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Abstract

The dilatancy of soil and rock eludes continuum mechanics, thermodynamics and ma-
terials science as it is localized in fractal patterns of shear bands (faults) and/or cracks.
As far as shear bands dominate it is captured by a driven succession of saddle points
of the specific elastic energy, which are equivalent to a Mohr-Coulomb condition with
effective stress, growing friction and waning cohesion. A driven dilatation turns into a
spontaneous contraction when the energy reaches a tipping point with regard to the pore
volume, then the pore water pressure grows and the stress deviator drops. The implied
state variables and rates are defined as quasi-local and -momentary by means of frac-
tional derivatives. Energy-based constitutive equations include a relation of stress and
dilatancy with maximal dissipation, while rockburst with dominant cracks is excluded
by a criterion. Successions of driven dilatation and spontaneous contraction imply seis-
mogenic mechanical chain reactions, which are enhanced by seismic waves and spreading
of pore water. Such mechanisms are observed in sandbox and cell tests, which serve as
analogue models beyond usual similarity rules. The scale-independence of features thus
obtained is validated in the companion paper on lithosphere sections.

1 Introduction

The ancient Greek word κρισις (crisis) means moment of decision. More specifically in
a physical sense, it means a bifurcation at an energetically defined critical point. For
instance, the gravitational energy of a sphere upon an open hand is at tipping points
along the rim and at a saddle point upon the wrist; in both cases it rolls inwards or
outwards. If water in a box is at a critical point the transition energy from liquid to
vapor vanishes, then bifurcations from thermodynamic equilibria lead to bubbles and
drops with a fractal size distribution. Tectonic critical phenomena in the lithosphere are
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more intricate as this system is not conservative: differently to molecules, rock fractions
and their arrangement change with a loss of potential energy. τϵκτων (tecton) means
builder and mover, in this sense tectonic evolutions may be understood as structure-
forming and -erasing critical phenomena. The pore system of rock with faults and cracks
is permeable: πoρoς (poros) means passage, this is extremely variable. Thus effective
pressures decrease by a growing pore pressure if the total pressure does not change. Rock
has fractal features due to former critical phenomena, so how to explain changes of solid
state and pore system with the aid of successive critical points?

Reynolds (1885) coined the notion dilatancy for the dilatation of dense grain fabrics
by shearing with constant overall pressure. Taylor (1948) observed that the ratio of
shear stress and effective pressure by shearing grows with dilatancy. Referring to triaxial
tests with sand, Rowe (1962) showed that the ratio of principal stress components is
inversely proportional to the ratio of inelastic strain rate components. Leaving aside that
the dilatancy is always localized in shear band patterns (Desrues et al. 2007) and that
it comes in jerks, such stress-dilatancy relations work with spatially averaged stress and
strain rate components after smoothing-out fluctuating experimental plots. With reverse
shearing the ratio of shear stress and effective pressure drops, and the dilatancy gets
negative by turning into contractancy. Thus shear bands can be erased, and the pressure
of pore water grows by a rapid contraction so that a water-saturated grain fabric can
turn into a mush.

Kadanoff (1966) proposed a ’renormalization group’ method for thermodynamic crit-
ical phenomena which exhibit fractality. Later he tried to apply his method to granular
flow, but concluded that this does not work and that integral equations are required
(Kadanoff 1999). Leaving aside fractal features, Jiang and Liu (2009) proposed a
constitutive model by means of an additional granular temperature and a conjugated
granular entropy. Thus dilatancy is obtained beyond a saddle point of the elastic en-
ergy with regard to invariants of elastic strain, which is equivalent to a Mohr-Coulomb
condition. Replacing the granular temperature by a sensitivity of the grain fabric and
modifying the elastic energy, Gudehus (2019) captured dilatancy and contractancy up
to a decay with pore water or during a densification in shear cycles. Shear localization
and jerks are again left aside by spatial averaging and smoothing out. Boxes with sand,
clay or similar matter are often used as analogue models of tectonic evolutions. Following
Hubbert (1937), rules of mechanical similarity are applied, inferring constitutive rela-
tions of soil mechanics or rheology. Interpreting shear bands as faults, patterns of the
former resemble those in the lithosphere, and combining their orientations with a Mohr-
Coulomb condition stress fields can be estimated (Mandl 1988). However, such stresses
are not the ones proposed by Cauchy (1827) as his volume elements are not compatible
with shear bands. Model tests with cohesive powder can produce also crack patterns
which resemble those observed in situ (Holland et al. 2006), but this kind of fractally
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localized dilatancy eludes likewise present mathematical methods. So how could fractal
patterns of shear bands and cracks, which arise in model tests like in the lithopshere, be
explained by means of critical phenomena?

Pointing to fractal distributions from logging along boreholes, Leary (1997) concluded
that the lithosphere is in a subcritical state. He argues that rock is no ’engineered’
(i.e. technically processed) material because of divergent correlation lengths, i.e. as
fluctuation wavelengths diverge. In other words, rock is no simple material in the sense of
Truesdell and Noll (2004) as constitutive relations are not locally confined. Spatial
and temporal distributions with fractal fluctuations cannot be smoothed out so that they
are not differentiable, and - as outlined by Jiang and Liu (2009) - thermodynamic
potentials do not suffice. Therefore tectonic critical phenomena with dilatancy cannot be
sufficiently captured with materials science, thermodynamics and continuum mechanics.
Especially, the representation of rock joints by shear bands in numerically simulated grain
fabrics with cohesion by Ord and Hobbs (2010), and their use of thermodynamics and
instabilities with differential equations for getting fractal patterns, are questionable.

Alejandro and Alonso (2005) tried to capture the relation of dilatancy and stress
for rock by means of elasto-plastic models. Speaking of loading, strength, damage and
failure, Cieslik (2018) proposed a similar approach. However, rock is rather clastic
than plastic, and not a simple (or technically processed) material. The lithosphere is
not loaded nor damaged and cannot fail like a technical structure, and strength is an
inadequate notion. Moreover, dilatation and contraction of the pore system require a
redistribution of pore water, which is related with tectonic stressing or relaxation. So
which features observed with analogue models, including rock samples and pore water,
can capture critical phenomena with dilatancy and contractancy and can be scaled up to
the lithosphere? And how to define and interpret mean values and coefficients of variation
in the light of the wild randomness, visible by divergent fluctuation wavelenghts which
characterizes fractality (Mandelbrot 1999) and eludes standard method of statistics?

For comparison we consider first models without dilatancy (Sect. 2). Then we turn to
sand, clay and similar matter in experimental setups which can serve as tectonic ana-
logue models (Sect. 3). Thereafter uniaxial, triaxial and biaxial tests with samples of
sandstone and granite are likewise evaluated as analogue models (Sect. 4). In both sec-
tions fractal features are first left aside by means of overall quantities, then taken into
account by means of quasi-local and -momentary quantities defined with the aid of frac-
tional derivatives. Mathematical details are outlined in an appendix, such a clarification
is indispensable despite or just due to the complexity and opacity of geo-matter. The
paper ends with conclusions and an outlook (Sect. 5). The scale-independence of the
proposed features is outlined in the companion paper on lithosphere sections (Gudehus
and Lempp 2022b).
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2 Models without dilatancy

Dominoes standing on a table are conserved, but not their energy and arrangement if
the latter enables a mechanical chain reaction. If the gravitational energy of a tilted
domino attains a tipping point it turns over a suitably placed neighbor, and so on until
a neighbor stands cross, too close or far off. The successive collapse reduces the void
volume between the dominoes, while a part of the potential energy is dissipated into
noise and heat. We will see in Sect. 4 that mechanical chain reactions in rock samples
are likewise contractant and enhanced by shock waves, and also by pore water, but after
stressing with dilatancy, and that they cannot be calculated as with dominoes.

Water at equilibrium in a closed box has a sum of intermolecular potential and thermal
kinetic energies which can be represented as a function of pressure p and absolute tem-
perature T . At its critical point (Tc = 647 Kelvin and pc = 21, 7 MPa) the transition
energy from liquid to vapor disappears, therefore drops and bubbles attain sizes with
a fractal distribution. During this critical phenomenon the molecules and their overall
energy are conserved, while their fluctuating velocities turn from a normal (Maxwell-
Boltzmann) to a power-law (fractal) distribution. The randomness turns form mild to
wild (Mandelbrot 1999) so that fluctuation wavelengths diverge, whereas the latter
are confined to a few molecule diameters in the non-critical range. Such thermodynamic
critical phenomena with fractality are captured by a renormalization (Kadanoff 1966).
However, a one-to-one transfer of this method to the lithosphere (as proposed e.g. by
Leary 1997) is not justified as rock fractions and their energies are not conserved.

Critical phenomena of solids (e.g. the change of magnetism at the Ising point) do not leave
back traces if crystallites and their arrangement are conserved, but this is no more the case
with dislocations. Persson (2000a) captures the dependence of stress on strain rate of a
pore-free solid with thermally activated dislocations (Appendix A1). A straightforward
transfer of his theory to minerals is not feasible as adequate tests with pore-free mineral
are not available. However, estimates can be obtained by means of triaxial tests with
quartz sand and kaolin clay, wherein strain rates are imposed with amounts changing by
at least two orders of magnitude (Gudehus 2011). This leads to a ratio Ea/kBT ≈ 40
of activation and thermal energies for quartz and about 15 for kaolin with T = 293 K.
These are crude estimates as sizes of dislocated crystallite blocks and kinematic relations
of soil fabric and mineral strain rates have to be guessed. Persson’s (2000a) relations
cannot capture tectonic dislocations with divergent fluctuation wavelengths, so we will
employ his strain-rate dependence and his lower and upper bounds with reservation.

Sliding of a solid block past a rigid plane implies dislocation and wear so that such a
system is not conservative. Persson (2000b) derives Coulomb’s friction law by means
of minute solid bridges with a total surface proportional to the normal force. A bridge
slides off if it reaches a critical point of the sum of elastic and surface energies. This
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occurs in a random succession, but so that the total sliding resistance is proportional to
the normal force independently of the spatio-temporal distribution of solid bridges.

Persson (2000b) obtains a successive stick-slip, i.e. a kind of seismicity, with solid blocks
connected by springs when they slide past an idealized fault plane. This theory differs
from the Burridge-Knopoff (1967) model, which leads to a kind of Gutenberg-Richter
frequency distribution by means of a reduction from halting to sliding friction, but the
latter is not energy-based as proposed by Persson. Turcotte (2001) shows that the
Burridge-Knopoff model is algebraically equivalent to the theory ofBak et al. (1987) with
a ’self-organized criticality’. Such algorithms can yield Gutenberg-Richter-like frequency
distributions, but cannot capture tectonic critical phenomena as the algorithms do not
imply realistically defined critical points.

The analogies of this section are remote as they do not take into account dilatancy with
divergent fluctuation wavelengths. This holds also true for the similarity of electromag-
netic and seismic jerks (Dahmen and Ben-Zion 2009). Nevertheless dominoes on a
table constitute a prototype of mechanical chain reactions, thermally activated disloca-
tions delimit the rate-independence of tectonic critical phenomena, and plane arrays of
slider blocks with springs can yield Gutenberg-Richter-like frequency plots although such
models cannot properly represent the lithosphere.

3 Analogue models with granular matter

An early sandbox test

George Darwin (1883) - second son of Charles Darwin, astronomer and mathematician
- carried out experiments with dry flint flour in a box. He filled it up to different heights
and released a string with a spring-balance which kept a movable wall with a hinge,
and observed a decrease of the string force during the release up to a breakdown of
equilibrium. The latter - called ’capricious’ as it could not be repeated quantitatively -
was indicated by a sudden rise of the string force and a hissing noise. Darwin’s findings
refuted theories of his time with limit stress fields, whereas his limit earth pressures
matched those by Coulomb’s (1776) theory. He got the advice from Clerk Maxwell
that ’a historical element would enter largely into the nature of the limiting equilibrium
of sand’, and concluded that this would ’essentially elude mathematical treatment’.

Darwin (1883) observed a driven dilatation (called unsettling) up to a spontaneous
contraction (settling) of the grain fabric under nearly constant pressure, so - except
wording - he discovered dilatancy before Reynolds (1885), and also contractancy. His
findings were largely ignored, and until present there are no calculation models which
could reproduce them. His experiments exhibit features which are similarly observed in
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the lithosphere: the horizontal stretching of the grain fabric due to the yielding of a wall
resembles a tectonic extension, and the hissing noise during the thus attained collapse
indicates micro-seismic P-waves with a frequency f ≈ 103 s−1 and more, i.e. wavelengths
up to cp/f ≈ 10−1 m nearly like the layer thickness of flint powder with cp ≈ 100 ms−1.

Limit states and shear bands of sand

Casagrande (1936) proposed stationary ’critical states’ of dry sand sheared in a box
with the Coulomb limit condition (a misnomer as Coulomb did not know Cauchy’s stress)

τ = σ tanϕr (1)

for shear stress τ and normal stress σ with a residual friction angle ϕr and a critical
void ratio ec(σ). Roscoe (1970) observed dilatated shear bands with about 10 grains
thickness and non-uniform stress distributions in sheared sand samples, concluding that
uniform and stationary ’critical states’ are not attainable. Biaxial tests with fixed smooth
confining plates yield a shear band which is visible by offsets of the confining membrane
(Gudehus 2011). Its inclination against the major principal stress σ1 is θ ≈ 450 −
ϕ/2 as by (1) and the tangent to a stress circle. Analyses of a quasi-static bifurcation
from uniform deformation to localized dilated shearing yield similar θ-values (Kolymbas
1981, Vardoulakis 1996).

X-ray tomographies reveal fractal shear band patterns which evolve alongside with dilatancy
in biaxial tests so that eventually one shear band dominates (Desrues et al. 2007). Such
bands are reproduced numerically with about ten grains thickness by means of inter-
granular rotations and an initial fluctuation of the void ratio (Nübel 2002). Moreover, if
a membrane on a rigid base under a layer of originally dense sand is extended a pattern
of crossing shear bands is obtained with θ ≈ ±(450 − ϕ/2) against the vertical stress
and a distance of about 1/4 of the layer thickness, while the surface exhibits grabens
and rifts. With a further extension secondary smaller shear bands arise, while tertiary
ones are not achieved as a quasi-static continuation gets impossible, which indicates an
impending collapse. Such a fractal uniformity is not achieved in general: for instance,
shear band patterns observed with X-rays during triaxial tests wane towards the sample
axis and the endplates (Desrues et al. 2007).

Shear bands arise likewise in water-saturated sand, for which Terzaghi’s (1936) relation

σ = σ′ + pw (2)
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of total stress σ, effective stress σ′ and pore water pressure pw determines the interaction
of grain fabric and pore water. (2) results from the neutrality of the grain mineral with
respect to changes of pw (Gudehus 2020). Dilatating shear bands take up pore water
so that its pressure pw is reduced, but this reduction is minor with drainage as long as
the time of overall deformation exceeds the time needed for regaining a hydrostatic pw.
A contractant collapse after an overall dilatation up to a tipping point causes a sudden
rise of pw, this can lead to a decay of the grain fabric, i.e. to σ′ → 0 via (2) by pw → σ.

Energy-based constitutive relations for sand

Jiang and Liu (2009) propose an elastic energy we per unit of grain fabric volume (or
specific ) as a function of elastic strain ϵeij and void ratio e. we is the potential of the
effective stress by

σ′
ij = (1− µ)

∂we

∂ϵeij
, (3)

wherein µ increases with a granular temperature Tg from zero for rest to µh ≈ 0.8 for
a hypoplastic range (hypo=sub). we has saddle points with regard to invariants of ϵeij
which are equivalent to a Mohr-Coulomb condition without cohesion. dϵeij grows with the
total strain increment dϵij by the same reduction factor 1−µ, and decreases in proportion
to dϵ ≡ |dϵij|, ϵeij and Tg. These relations are derived with Onsagers’ symmetry for the
thermal entropy production, therein a specific granular entropy sg ∝ T 2

g is proposed for
enabling stable equilibria.

In a modification of this theory (Gudehus 2019) we has similar saddle points, but the
equation for dϵeij is adapted to the actual rate-independence (i.e. dϵeij(λdϵij) = λdϵeij(dϵij)
for λ > 0). Tg is replaced by the intensity χ of spatial fluctuations of the elastic energy,
which is equivalent to the sensitivity or eutaraxy χ (ϵυ=favoring, ταραξις=disturbance).
χ grows with a monotonous deformation from at least 0 to a maximum χh in the hypo-
plastic range, while µ grows via µ = µhχ/χh. χ and µ dwindle with a reversal of strain
path, more so with many reversals of small amplitude, and rise again with monotonous
deformations.

(3) is taken over byGudehus (2019), which means that a major part of the elastic energy
is quenched in spatial fluctuations - like with glassy matter (Sornette 2000) - so that
it does not contribute to the force-transferring effective stress. This disordered energy is
proportional to a specific configuration entropy sχ ∝ χ2 instead of sg by Jiang and Liu
(2009). A reduction factor 1− µ both for average force and relative velocity is similarly
achieved in a bicycle by a transmission belt with stick-slip upon smooth wheels instead
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of a chain upon indented wheels. The specific elastic energy we can reach a tipping point
with regard to the void ratio e, then a dry grain fabric collapses with contraction and a
water-saturated one turns into a mush.

As outlined in Appendix A3, this approach works also with fractally uniform shear band
patterns, then the state variables ϵ̂eij (or equivalently σ̂′

ij), n̂ (or ê = n̂/(1+ n̂)) and χ̂ are
quasi-local quantities. They are mean values for an inspection cube which dwindle with
its size by a power-law, except χ̂ which is proportional to the coefficient of variation;
both properties characterize the spatial fractality (A2). The elastic energy ŵe(ϵ̂

e
ij) works

as potential of the effective stress as by (3). Quasi-local quantities for fractally uniform
sections are reconciled with non-fractal spatial trends by means of fractional gradients
which vanish with fractal uniformity (A2). This approach requires a reference length,
which serves also as lower bound of inspection cube sizes with fractality and provide
independence of length units.

A stress-dilatancy relation despite shear bands and jerks

In a Mohr-Coulomb condition with an n̂-dependent friction factor tanϕ′ (A3) this ex-
ceeds the residual tanϕ′

r by (1) due to the dilatancy with shear bands. With cylindrical
symmetry driven successions of such saddle points of the elastic energy can be captured
by the stress-dilatancy relation (Rowe 1962)

σ̂′
1

σ̂′
3

= −2 tan2(π/4 + ϕ′
r/2)

dϵ̂i3
dϵ̂i1

. (4)

Therein dϵ̂i1 and dϵ̂i3 denote increments of inelastic axial and radial overall strain ϵ̂i3 and
ϵ̂i1, derived from smoothed-out plots of ϵ̂3 versus ϵ̂1. Quasi-local quantities in (4) mean
that thickness and pattern of shear bands do not matter for the relation of stress and
dilatancy, which is legitimate as overall force and velocity ratios do not depend on spatial
fluctuations of inter-granular forces and velocities. With our constitutive model the rate
of dissipation is proportional to the eutaraxy χ̂, and maximal with dϵ̂i3/dϵ̂

i
1 by (4) for

a given σ̂′
1/σ̂

′
3 (A3). This behavior can be attributed to successive incremental steepest

descents of the elastic energy from saddle points. Dilatancy with stressing, and also
contractancy with unstressing, is captured by the same constitutive model not only with
axial symmetry.

Using thermography Luong (1982) observed a flash-heating up to ca 10000 C at quartz
grain contacts. This kind of heating requires an inter-crystalline strain rate ϵ̇ > 1010/s
(A1), while the overall strain rate was ˙̂ϵ ≈ 10−4/s, which indicates that dislocations of
crystallites can temporarily and locally be up to about 1014 times faster than rearrange-
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ments of the grain fabric. Together with the crackling or hissing noise these findings show
that rearrangements of grain fabrics evolve with jerks.

Tectonic analogue models with sand

The proposed concept enables a scaling up from micro-tectonic sandbox tests with sim-
ilarity rules beyond those proposed by Hubbert (1937). Inspection cubes with fractal
patterns of shear bands (mini-faults) can be employed for defining a quasi-local effect-
ive stress tensor σ̂′

ij, which is related with a quasi-local elastic strain tensor ϵ̂eij via an
elastic energy (A3). Both tensors are not the ones proposed by Cauchy (1827) with an
infinitesimal volume element as this gets impossible with shear bands. With assumed
symmetry both tensors can be represented by principal values, principal directions and
Mohr circles. Similarities of fault and shear band patterns (Mandl 1988) speak for
a scale-independent Mohr-Coulomb condition with an angle 450 − ϕ/2 between σ̂′

1 and
shear bands. Stress-dilatancy relations and coaxiality of stress and stretching rate imply
time-stretching invariance and maximal dissipation (A3).

Biaxial tests can serve as analogue models with fractality although their boundary con-
ditions may differ more from those of lithosphere sections than with sandbox tests. Re-
ferring to his pioneer investigations of shear banding in sand, Vardoulakis (1996)
explained the formation of a single shear band as a quasi-static bifurcation by means
of an elasto-plastic constitutive relation. Vardoulakis and Sulem (1996) extended
this approach to rock, though without fractality. Kolymbas (1981) proposed a similar
analysis with a hypoplastic constitutive model. Later he questioned the employed prin-
ciple of local action because of fractality (Kolymbas 2003). However, his calculation of
shear band inclinations remains valid despite fractal shear band patterns (Desrues et
al. 2007) as the eigenvalue problem of a quasi-static bifurcation has the same directional
solution with fractal uniformity and quasi-local stress components.

In a wide range the response of sand bodies to imposed deformations is time-stretching
invariant. This means that the duration of driven stressing between jerks with micro-
seismicity and flash-heating does not matter, although thermally activated inter-crystalli-
ne dislocations are rate-dependent (A1). Water-saturated sand is no more time-stretching
invariant, although the grain fabric is so, if changes of pore volume entail a so rapid
seepage that changes of pore water pressure matter for the fabric stress. This effect is
negligible for a slow driven dilatation, but not for a collapse thereafter. Time-stretching
invariance is also observed with rock samples (Sect. 4), and holds likewise with a wide
range of overall stretching rates for lithosphere sections as outlined in the companion
paper.
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Analogue models with clay

Shear bands occur also in water-saturated clay, but clay particles are smaller and softer
than sand grains. The permeability is far lower, therefore a driven evolution with dilating
shear bands can turn the pore water pressure into suction (pw < 0), and the rise of pw by a
collapse can last for a longer time. Thus shear box tests with water-saturated kaolin clay
without overall drainage yield more detailed shear band patterns than with sand, this
helps understand faults with Riedel shears (Morgenstern and Tchalenko 1967). A
single shear band with about 10 clay particles thickness arises by shearing a thin layer
of water-saturated clay, consolidated with up to 15 MPa, its shearing resistance has a
low ϕ′

r ≈ 100 due to flat clay particles (Balthasar et al. 2006). As with sand, driven
critical states of the clay fabric could be represented by saddle points of the elastic energy
with regard to the elastic strain, and a collapse occurs at a tipping point with regard to
the pore volume attained by dilatation.

Balthasar et al. (2006) report that a 3 mm thick clay layer under a constant overall
pressure σ̂ ≈ 10 MPa slightly below the previous consolidation pressure and a shear
stress τ̂ > σ̂ tanϕ′

r slid off after about 20 min. This collapse occurred after a quasi-
static dilatation up to a critical pore volume in a shear band, delayed by the access of
pore water and the rate-dependence of the mineral (A1). The subsequent shearing is
enhanced by an increase of pw as the excess pore water due to the sudden contraction
could not evade in a short time. This mechanism helps explain the Vajont catastrophy
1963 (Hardenberg 2011): a part of the Monte Toc imposed nearly stationary σ̂ and
τ̂ > σ̂ tanϕ′

r to an inclined mudstone layer, this dilated slowly up to a critical pore
volume, then the mineral fabric collapsed so that pw rose and the rock mass above slid
down with acceleration. On the other hand, the fabric of clay smears in faults (Vrolijk
et al. 2016) can relax so that their elastic energy does not attain a tipping point by
tectonic stressing, but the dilatation can enhance the opening of clay smears and erosion.

Soil-like masses, and limitations

Soil-like masses without water are also used for tectonic analogue models (Rosenau et
al. 2016). Viscoplastic masses with silicone are capable of shear localization, but without
dilatation and micro-seismicity. Dry powder with a slight cohesion dilatates with shearing
by widening of cracks, and can yield geometrical features of faults and cracks near the
free surface (Holland et al. 2006). Such analogue models can reproduce features of
tectonic critical phenomena with dilatancy both by shear banding and cracking, but not
of spontaneous ones with contractancy and enhancement by pore water.

The localized dilatation and the subsequent contraction of grain fabrics, which occur
analogously also in the lithosphere, elude a mathematical treatment with continuum
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models and locally confined constitutive relations. Localized shearing can be analyzed
by means of additional polar quantities, this can lead to a fractally uniform pattern within
a stretched layer. The emergence of fractal patterns with dilatancy cannot generally be
captured with systems of differential equations (as proposed e.g. by Peletier and
Troy 2001) as spatial and temporal fractal distributions cannot be classically differen-
tiated. Thus rearrangements of grain fabrics with fractal shear band patterns are not
properly captured by classical stretching rate tensors. Deformations may be employed
for samples in experimental devices, and also for technical structures embedded in the
ground, but for lack of an objective reference configuration this notion is not adequate
for the lithosphere. On the other hand, solutions of quasi-static bifurcation problems
with quasi-local stress tensors can yield orientations of major shear bands which match
orientations of shear bands in sand samples and main faults in the lithosphere despite
the ever-present fractality.

The relation of quasi-local quantities with probabilities poses further problems. Mean
values could be defined as mathematical expectations if underlying random sets were
specified by probability distributions, but these are not given. The quasi-local specific
configuration entropy ŝχ, which is assumed proportional to χ̂2 as implied by Gudehus’
(2019) model without fractality, could be proportional to a Tsallis entropy sT as a measure
of disorder beyond Boltzmann’s specific entropy sB. Sornette (2000) shows that sT
is maximal for fractal random sets and turns into sB without fractality. With a driven
dilatant stressing ŝχ increases and the fractal exponent α decreases, thus the formation
of fractal patterns means a growing disorder, while a contractant collapse in a chain
reaction means a spontaneous regain of order. On the other hand, sB decreases by a
driven stressing and increases by a subsequent chain reaction, that’s why the wax and
wane of tectonic structures cannot be captured by thermodynamics only.

4 Analogue models with rock

Uniaxial and triaxial tests with sandstone

Changes of crystal lattice distances, observed in uniaxially loaded sandstone samples via
the diffraction of neutron beams (Frischbutter et al. 2000), reveal a growing non-
homogeneity of elastic strain alongside with growing cracks. Elastic strain and related
stress are thus no more the ones in Cauchy’s (1827) sense. These findings confirm
that tectonic dislocations elude continuum approaches as fluctuation wavelengths diverge,
whereas inter-crystallite dislocations of pore-free solids with locally confined fluctuations
can be captured by a mean-field theory with locally confined fluctuations (A1). Like with
sand, dislocations of rock with dilatancy therefore cannot be captured with materials
science, thermodynamics and continuum mechanics. However, uniaxial tests with rock
samples may be considered as tectonic analogue models as far as cracks dominate also in
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situ. We turn now to triaxial tests which yield mainly shear bands, and a criterion for
the distinction from dominant cracks will be proposed.

Water-saturated sandstone samples were repeatedly brought to limit states, visible by a
sudden drop of the overall stress deviator σ̂1 − σ̂3, in multi-stage triaxial tests with axial
shortening, controlled σ̂3 and/or pore water pressure pw at an endplate (Lempp et al.
2020). Plots of peak σ̂1 − σ̂3 versus mean effective pressure p̂′ ≡ (σ̂′

1 + 2σ̂′
3)/3 for such

states can be captured by a Mohr-Coulomb condition in the range σ̂′
3 > ĉ′. The validity

for various pw/σ̂3 confirms Terzaghi‘s relation (2). Initially ’intact’ samples have an
effective peak friction angle ϕ′

p ≈ 500 and an effective cohesion ĉ′ ≈ 15 MPa. Subsequent
limit states with higher σ̂′

3, achieved without disintegration of the sample by means of a
servo-control, can be captured with an almost undiminished ϕ′

p, while ĉ′ vanishes nearly

in the 3rd or 4th stage. The modulus of elasticity Ê for un- and reloading increases less
than linearly with σ̂′

3 from its amount for σ̂′
3 ≈ ĉ′, and scatters like ĉ′.

Figure 1: Unrolled combined photographs of a cylindrical sandstone sample after a multi-
stage triaxial test with σ̂′

3 > ĉ′ except at the onset and near the endplates (Lempp et al.
2020)

Cylindrical sample surfaces, unwrapped after test stages with σ̂′
3 > ĉ′, exhibit in the

middle third fractally uniform patterns of shear bands with few cracks (e.g. Fig. 1). Like
with sand the shear bands are inclined against σ̂′

1 by θ ≈ ±(450−ϕ′/2). Cracks - opened
by complete unloading - follow shear bands, whereas cracks percolating the whole sample
dominate in experiments with σ̂′

3 < ĉ′. The repeated quasi-static widening of shear bands
with minute cracks means a driven dilatation. The reduction of σ̂1 − σ̂3 thereafter with
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constant σ̂3 entails a spontaneous contraction, which is indicated by a crackling noise
and a temporary increase of pw. The contraction of shear bands is accompanied by a
comminution of grains.

The response of the solid fabric in driven test stages is time-stretching invariant, i.e.
the velocity of shortening - including rest intervals - does not matter for changes of σ̂′

1

and σ̂′
3, nor for the overall pore volume fraction n̂, with the overall axial strain ϵ̂1. This

happens as the duration of thermally activated dislocations is far shorter than the one
of quasi-static driving intervals (A1). However, driving stages exhibit jerks of different
size, i.e. brief local losses of equilibrium and a stabilization thereafter without an overall
collapse. The flash-heating of dry rock samples, observed with up to 16500 C by Brady
and Rowell (1986), indicates that inter-crystalline dislocations can be up to about 1014

times faster than overall deformations of the porous solid (like with sand, Sect. 3). The
time-stretching invariance is thus delimited by thermally activated dislocations, but even
with elevated temperatures they do not matter in triaxial tests with hard mineral and
attainable duration.

Uniaxial and triaxial tests with granite

Uniaxial and triaxial tests have also been carried out with water-saturated granite samples
at 2000 to 3000 C (Lempp 1994). Taken from quarries, they had minute inter-connected
cracks with an overall pore volume fraction n̂ ≈ 0.002 to 0.004. The overall permeability
was initially low, viz. k̂f ≈ 10−14 m/s, but increased substantially by dilatation so that
pw ≈ 0 was achieved with open drainage and a slow drive (negligible evaporation via
narrow access tubes). Peak stress circles of originally ’intact’ samples have a tangent
with ϕ′

p ≈ 400 to 450 and ĉ′ ≈ 20 to 30 MPa. ĉ′ ≈ 0 was attained after four to five
overall losses of equilibrium, confined by a servo-control, while ϕ′

p decreased scarcely and
n̂ increased up to about 0.006 to 0.012. Tests without drainage led to lower ϕ and higher
ĉ with total stress components σ̂1 and σ̂3 due to higher pw, but the latter could not be
observed (nor with direct shear tests) so that the entailed reduction of p̂′ can only be
guessed.

The initial modulus Ê for uniaxial reloading is approximately proportional to the uniaxial
compressive strength σ̂d of intact samples, with the same factor for different granites
(Lempp and Natau 1985). Lower overall void ratios ê ≡ n̂/(1 + n̂) are related with
higher σ̂d. Shear tests with faults of the same granite yield ϕp from about 300 to 400,
residual ϕr from about 250 to 300 and c from zero to about 0.8 MPa.

Keeping the total axial stress constant the sample got shorter within several weeks, and
keeping the sample height constant the axial stress decreased and partly returned, both
with jerks and rest intervals of few days (Fig. 2). Despite higher temperatures this
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Figure 2: Jerky relative changes of axial strain with constant stress (above) and stress
with constant height (below) of water-saturated granite samples in uniaxial tests (after
Lempp 1994). ϵ and σ denote axial shortening and pressure, respectively, subscript 0
denotes their onset values and ∆ autogeneous changes, times in 106 seconds

behavior cannot be explained with thermally activated dislocations as these would yield
a smooth increase of ϵ̂1 or decrease of σ̂1, respectively, in far longer times (A1). The jerks
indicate fractal fluctuations like with sandstone, therein rest intervals enable a diffusion
of pore water as outlined further below.

Crystallites of granite had sizes up to about 2 mm, therefore shear bands with about ten
grains thickness could not evolve in patterns like with our fine-grained sandstone. Only
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Figure 3: Section of a granite sample at mid-height after a triaxial test with σ̂′
3 < ĉ′, pore

system filled with epoxy resin (Althaus et al. 1994)

a single shear band arose from top to bottom in tests with σ̂′
3 > ĉ′, its inclination against

σ̂′
1 was roughly 450−ϕ′/2. Polished horizontal sections of granite samples after tests with

σ̂′
3 < ĉ′ exhibit a fractal non-uniformity (e.g. Fig. 3). Major nearly radial primary cracks

dwindle towards the centre, secondary cracks branch from the primary ones, tertiary
ones can scarcely be identified among cracks of the initially ’intact’ sample. Such cracks
arise in a hierarchical succession of bifurcations during which the pore volume increases,
though with a waning amount towards the centre for lack of freedom there. This kind
of non-uniformity resembles the one of shear band patterns of sandstone samples after
tests with σ̂′

3 > ĉ′ (Fig. 1), and the latter can likewise be attributed to hatched successive
bifurcations which are characteristic of fractality (Mandelbrot 1982). Its confinement
by the endplates and the rubber membrane causes non-fractal gradients of mechanical
quantities which can be reconciled with the fractal non-differentiability by means of
quasi-local quantities and fractional gradients (Appendix A2). In the sequel we will first
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take overall quantities instead of quasi-local ones and then take into account non-fractal
gradients, though in a simplified way. Fractional gradients are employed analytically in
the companion paper.

Constitutive relations

Like with sand the frictional resistance of rock results from repulsive solid bridges and
dilatancy. Both factors would not occur without a pore system as the mineral is nearly
incompressible, they determine the shearing resistance even with a minute pore volume
and are more pronounced than along smoothed-out faults. The effective cohesion ĉ′ can
be attributed to cohesive solid bridges which entail an additional fabric pressure p̂c so
that the fabric stress components are σ̂f

1 = σ̂′
1 + p̂c and σ̂f

3 = σ̂′
3 + p̂c. For simplicity the

additional pressure is thus assumed isotropic, this suffices for judging critical phenomena
with dominating shear bands for σ̂′

3 > ĉ′, but not those with dominating cracks for
σ̂′
3 < ĉ′. p̂c means ĉ′ = p̂c tanϕ

′, i.e. ĉ′ ≈ p̂c for ϕ′ ≈ 450. While ϕ′ rises by dilatancy
p̂c dwindles and can disappear, thereafter the fabric has only repulsive bridges. This
approach substitutes the one by Griffith (1922) for a single crack, and also the one
by Vardoulakis and Sulem (1995) without fractality. Leaving first aside multi- and
non-fractal trends by endplates and radial symmetry, we employ overall quantities of the
sample instead of quasi-local ones (A2), denoting both by .̂

Our constitutive model for sand (A3) is extended for rock in Appendix A4. In addition
to the elastic energy ŵe the potential energy has a term ŵc for cohesive bridges, this is
the potential of p̂c via their strain ϵ̂c which is related with the volumetric strain of the
fabric, thus σ̂f

1 = σ̂′
1 + p̂c and σ̂f

3 = σ̂′
3 + p̂c are obtained. The fabric is dilatated by axial

shortening with constant σ̂′
3, this means a driven succession of saddle points of ŵe and

tipping points of ŵc so that ϕ′ grows, while p̂c wanes alongside with the specific area ŝc
of cohesive bridges. Like with sand the dilatation ends with a collapse of the fabric when
its energy ŵe attains a tipping point with regard to the pore volume fraction n̂. The
collapse entails a contraction, i.e. a reduction of n̂, which is delayed by the pore water,
and a drop of σ̂′

1/σ̂
′
3, in the case of axial shortening which implies σ̂′

3 > ĉ′.

Incorporating the pressure p̂c from cohesive bridges, driven successions of saddle points
with radial symmetry can be captured by the extended stress-dilatancy relation

σ̂f
1

σ̂f
3

≡ σ̂′
1 + p̂c

σ̂′
3 + p̂c

= −2 tan2(π/4 + ϕ′
r/2)

dϵ̂i3
dϵ̂i1

. (5)

It is confirmed by triaxial tests with sandstone, e.g. Fig. 4. Therein σ̂′
1/σ̂

′
3 and dϵ̂3/dϵ̂1 are

calculated by combining smoothed-out plots of σ̂′
1 and ϵ̂3 = 2ϵ̂v− ϵ̂1 versus ϵ̂1, wherein the
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Figure 4: Stress-dilatancy plots of a water-saturated sandstone sample in a triaxial test
with σ̂′

3 = 9 to 11 MPa in the second (upper), third (middle) and fourth (lower curve)
driven stage up to a spontaneous drop (asterisk) of σ̂′

1 − σ̂′
3 (Menezes 2022)

volumetric strain ϵ̂v is determined by volume changes of pore water as directly measured
ϵ̂3-values are not reliable (Menezes 2022). dϵ̂i3/dϵ̂

i
1 as in (4) is replaced by dϵ̂3/dϵ̂1 for

simplicity, which is legitimate as elastic fractions are below 1/10 of total strain increments.
p̂c = 0 (i.e. ĉ′ = 0) is nearly attained in the 4th stage, then (5) reduces to (4) so that
ϕ′ grows from 310 (no dilatancy) to 500 (maximal dilatancy). The plateau of σ̂′

1/σ̂
′
3 for

the 2nd stage leads to p̂c ≈ 9 MPa with the same ϕ′, this matches ĉ′ = p̂c/ tan 50
0 ≈ 10

MPa as obtained for the 1st stage. Values of σ̂′
1/σ̂

′
3, increased by p̂c, enable a calibration

of p̂c-parameters (A4), but these are not needed in the sequel.

The curves in Fig. 4 cannot be captured by (5) near the plateau, and this formula
fails also for σ̂′

3 < ĉ′ as then cracks dominate (Menezes 2022). Minute cracks open
near the endplates despite σ̂′

3 > ĉ′ with overall quantities as there shear bands cannot
arise (cf. Fig. 1) and σ̂′

3 gets lower than ĉ′. A more precise distinction by the sign of
σ̂′
3− ĉ′ requires quasi-local quantities as overall quantities get insufficient substitutes with

a growing fractal non-uniformity (A2). For test stages with dominant shear bands the
dwindling ĉ′ has about the same spatial fluctuation as σ̂′

1 and σ̂′
3, this speaks for (5) in

the range σ̂′
3 > ĉ′.

The collapse after a peak of σ̂′
1 − σ̂′

3 versus ϵ̂1 (confined by the servo-control) ensues an
inelastic contraction, i.e. dϵ̂i1 + 2dϵ̂i3 > 0, which means a reduction of the volumetric
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elastic strain ϵ̂ev ≡ ϵ̂e1 + 2ϵ̂e3, and therefore of the effective pressure p̂′ ≡ (σ̂′
1 + 2σ̂′

3)/3, as
the initial volume increment is dϵ̂1+2dϵ̂3 = 0 due to the incompressibility of mineral and
pore water. Repeated collapses occurred at n̂ ≈ 0.11 in the test of Fig. 4, despite the
non-uniform porosity this confirms our assumption that a loss of equilibrium occurs at a
tipping point of the elastic energy ŵe with regard to n̂.

Biaxial tests

Biaxial tests with rock samples between two smooth plates like with sand, which yield
shear band patterns up to a dominating band (Sect. 3), are not available with rock.
Biaxial devices with cubical rock samples fixed at their corners (e.g. Li et al. 2021) yield
patterns of shear bands and cracks which exhibit no analogy with the lithosphere, and
elude also methods of materials science. However, experimental setups with perforated
rock blocks between two fixed hard and smooth plates can serve as biaxial analogue
models, not only for estimating in situ stresses from borehole logging data. Lempp et
al. (2012) loaded a sandstone block with an included steel tube in such a device. The
orientation of the achieved ovalization of the tube matched the anisotropy of the imposed
external stress components. After a test the block exhibited dilatancy with dominant
shear bands and minor cracks, which was more marked towards the perforation. The thus
indicated coaxiality of quasi-local stress and stretching rate tensors matches the principle
of maximal dissipation, which supports also our stress-dilatancy relation (Appendix A4).

The stress at the block’s surface, calculated with isotropic elasticity and the stress at the
tube from its elastic deformation, is about half the imposed external stress (Lempp et
al. 2012). The difference can be explained by means of our constitutive model (A3 and
A4). The second term of the evolution equation (14) of elastic strain is negligible against
the first one as χ̂ is below 100 and ϵ̂ei below 10−4. The resulting relation dϵ̂ei = (1− µ̂)dϵ̂i,
with 1 − µ̂ from about 0.3 to 0.7 for a driven dilatation, means that the elastic strain
increment dϵ̂ei is about half the total one dϵ̂i. Calculated stress increments are likewise
underestimated as the incremental elasticity by (12) is nearly isotropic and the modulus
E is nearly constant by (16). Thus the observed underestimation of the external stress
without inelastic effects confirms our theory, and with it such biaxial tests are of use
beyond borehole logging.

Interaction of solid fabric and pore water

After a sudden rise of p̂w in the range σ̂′
3 > ĉ′ the contraction of the pore system can go

on with seepage until a new equilibrium is attained with the pre-collapse pw and p̂′, but
lower deviator σ̂′

1 − σ̂′
3 and surface ŝc of cohesive bridges. In other words, after a slow

stressing and dilatation a collapse with dominant shear bands causes a temporary rise
of pore water pressure, and leaves back a denser fabric with a lower stress deviator and
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a reduced cohesion. Both dilatation and contraction are captured by our constitutive
model, also beyond axial symmetry (A4). Thus calculated speeds of P- and S-waves
match the ones observed in triaxial tests and in situ (Gudehus et al. 2022).

The entailed hydraulic diffusion, i.e. the autogeneous interaction of seepage and nearly
elastic change of pore volume, causes a delay of the contraction by

t̂d ≈ d2
γw

k̂f Ê
(6)

with sample size d, specific weight γw of water, Young’s modulus Ê and permeability k̂f .
t̂d by (6) denotes the time for a water-saturated poro-elastic solid to reach an equilibrium
after imposing and keeping constant a total pressure (Gudehus 2011). This is a crude
estimate as the seepage of water is not properly captured by Darcy’s law with a fractal
pore system: like the motion of the rock fabric the one of pore water is not temporally and
spatially differentiable, but it could be captured with fractional derivatives (Appendix A1
of the companion paper). With γw ≈ 10 kN/m3, d ≈ 0.1 m, Ê ≈ 107 kPa and k̂f ≈ 10−9

m/s (6) yields t̂d ≈ 100 s for sandstone, less with wider cracks and more for granite as
visible e.g. in Fig. ??.

Imagine a subdivision of the sample into smaller inspection cubes, say with 1 cm width
for a sample diameter of 10 cm so that there are about 1000 cubes. Pore system and
elastic strain components for each of them may be observed via attenuation of X-rays and
diffraction of neutron beams, respectively (Gudehus et al. 2022). These data could be
evaluated for getting quasi-local quantities and non-fractal trends. If a loss of equilibrium
occurs in a cube its pore water pressure increases and a part of its elastic energy turns
into kinetic energy. Thus generated seismic waves and hydraulic diffusion enhance an
audible seismogenic chain reaction, which comes to an end with less critical surrounding
cubes or by the servo-control for the sample as a whole.

Limitations

Differently to limitations for tectonic analogue models with soil-like matter (Sect. 3),
those with rock samples are of limited validity also due to cracks. The proposed distinc-
tion of dominant shear bands or cracks by the sign of σ̂′

3 − ĉ′ is imprecise as both the
quasi-local effective cohesion ĉ′ and the smallest principal stress σ̂′

3 can but crudely be
estimated. Plots of axial stress and volumetric strain versus axial strain can be smoothed
out for the range with σ̂′

3 > ĉ′ as fluctuations in the sample are confined by its boundary
conditions, while an analogous restriction in lithosphere sections is less evident. A rock-
burst in the range σ̂′

3 < ĉ′ would be dilatant, and a single crack can arise with σ̂′
3 = 0
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(axial splitting) or σ̂′
1 = 0 (discing). Apart from rockburst the proposed relations of

quasi-local and -momentary quantities imply a power-law dependence on the size of in-
spection cubes except the coefficient of variation, but cannot reproduce the formation of
fractal patterns more in detail. A configuration entropy, as outlined at the end of Sect.
3, could lead to probability distributions for this kind of fractality.

5 Conclusions and outlook

We explain the slow tectonic widening of shear bands (faults) with minor cracks as
quasi-static driven succession of critical points of porous solid fabrics within fractally uni-
form inspection cubes, which are suitably chosen for analogue models of the lithosphere.
Therein the fabric state is described by quasi-local mean values of elastic strain and
energy-conjugated stress, pore volume fraction, specific surface of cohesive solid bridges,
and an eutaraxy (sensitivity) which is proportional to the coefficient of variation of spa-
tial fluctuations. During a driven dilatation of the fabric its elastic energy is at saddle
points with regard to its elastic strain, while the potential energy of cohesive bridges
is at tipping points. Such successive critical points can equivalently be represented by
a Mohr-Coulomb condition with an increasing friction angle by dilatancy and a waning
cohesion by opening cohesive bridges.

This evolution is captured by a stress-dilatancy relation including the effective cohesion ĉ′,
which is validated by triaxial tests with water-saturated sandstone samples. This relation
works as long as the dilatation is mainly localized in shear bands and not in cracks, which
requires that the smallest principal effective stress σ̂′

3 exceeds the effective cohesion ĉ′ in
a quasi-local sense. It implies a maximal rate of dissipation, which justifies also the
coaxiality of stress and stretching rate tensors, and includes an angle near 450 − ϕ′/2
between σ̂′

1 and shear bands. Quasi-local and -momentary quantities are mean values
of inspection cubes which depend on its size except the coefficient of variation, and
are legitimate although a driven dilatation proceeds with jerks. With the prevailing
hard minerals the reaction to a drive is largely time-stretching invariant. The drive is
enhanced by an injection of pore water, while the pore water pressure is not reduced by
a slow driven dilatation with an open drainage.

A dilatated fabric collapses with contraction when its elastic energy attains a tipping
point with regard to the pore volume fraction. The contraction is impeded by the pore
water until a part of it flows towards a less critical surroundings. As far as the latter
is nearly collapsible and equally aligned a collapse front widens laterally by pressure
waves and proceeds by the spreading of pore water in a mechanical chain reaction. Such
spontaneous critical phenomena entail a stress-drop and a contraction of the solid fabric,
thereafter a continued drive leads again to dilatation and stressing up to a collapse, and
so on with with diverging fluctuation wavelengths. This concept works as long as shear
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bands dominate in the range where the the smallest principal effective stress exceeds
the effective cohesion in a quasi-local sense. Otherwise cracks dominate, and widen also
beyond a tipping point of the quasi-local elastic energy with regard to the pore volume
fraction so that the collapse is dilatant.

As shown in the companion paper these features are scale-independent, and they could
be further investigated with triaxial and model tests. Micro-seismicity, attenuation of
X-rays and diffraction of neutron beams could help clarify fractal features of pore system
and solid fabric so that quasi-local and -momentary state variables are better understood
(Gudehus et al. 2022). State variables could be extended with further invariants and
directional features, thus constitutive relations could be sophisticated. Successions of
driven and spontaneous critical phenomena with dilatancy and contractancy, respectively,
could be captured by an extended field theory with fractional rates and gradients. The
implied probability distributions could be captured by means of a configuration entropy
in addition to Boltzmann’s entropy. The rockburst, which is a dilatant collapse with a
waning stress deviator, can lead to a dominant single crack instead of a dominant shear
band. Other critical phenomena, especially folding and convection cycles, could similarly
be taken into account in analogue models and their evaluation. These could replace
numerical simulations, which are not classically legitimate for lack of differentiablity,
although boundary conditions in the lab are simpler than with lithosphere sections.

APPENDIX

A1 Thermally activated dislocations

Persson (2000a) considers dislocations of a pore-free solid with crystallites and thermal
oscillation. Employing Maxwell’s normal distribution for spatially confined scattering,
he derives the relationship

σ = 2cd[1 +
kBT

Ea

ln(
3G

cd

Ea

kBT

ϵ̇

fc
)] (7)

of deviatoric stress σ and strain rate ϵ̇ for one-dimensional stretching in the range

exp(
−Ea

kBT
) ≪ 3G

cd

Ea

kBT

ϵ̇

fc
≪ 1 (8)

with absolute temperature T , Boltzmann constant kB, shear modulus G, crystalline shear
strength cd, activation energy Ea and a reference frequency fc. Assuming Ea ≈ cdd

3
d for

nano-sized blocks of length dd and cohesion cd, and fc ≈ cs/dd with speed cs of shear
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waves, the evaluation of creep tests with steel yields Ea/kBT ≈ 40, which means Ea ≈5
eV (electron volt) with 1 eV≈ 40kBT for T = 293 K. With these data and 3G/cd ≈ 103

the lower bound in (8) means roughly ϵ̇ ≫ 10−9/s, under it the relation of σ with ϵ̇ gets
linear so that σ → 0 is obtained for ϵ̇ → 0. The upper bound means roughly ϵ̇ ≪ 1010/s,
over it mechanical heating reduces σ.

A2 Fractality and fractionality

Taking over Mandelbrot’s (1982) mass fractal, the solid mass of a fractal solid within
iso-centric cubes of width d is m = mr(d/dr)

3α with an exponent α just below 1. Equi-
valently, the added-up solid mass length along a straight line is proportional to (d/dr)

α.
The implied fractal uniformity holds for d from a lower bound dr up to an upper bound,
therein the mass density is ρ̂ = ρr(d/dr)

3(α−1). The elastic energy and its density ŵe

depend likewise on d, and via (18) also the mean solid pressure p̂′, while the direction
σ̂′
ij/|σ̂′

ij| of effective stress is d-independent. α just below 1 results from a slightly higher
fraction of wider faults and cracks within wider cubes, but α can scarcely be calculated
from in situ data. α varies spatially and temporally as it evolves with reconfigurations
(A3 and A4), lower amounts indicate a more marked fractality.

With temporal fractality the seismic velocity v at a point has a spectrum v2 ∝ f−2β with
β just below 1 within lower and upper bounds of frequency f . Observed spectra do not
enable a precise determination of β, and the ensued reduction of v2/∆t with a longer
observation interval ∆t by a factor ∝ (∆t)β−1 can only be postulated. The simplifying
assumption β = α is justified by observed features of wave propagation (Gudehus and
Touplikiotis 2016). The lowest duration tr of intervals with stationary fractality may
be related with dr by tr = dr/vd with a relative driving velocity vd.

The fractional derivative dαf/dxα (shorthand instead of a convolution integral) of a
function f(x) is the average of difference quotients for sections of length ∆x = ξxr

around x with weighting factor 1/ξα and reference length xr. dαf/dxα = 0 leads to
f ∝ (x/xr)

α (Tarasov 2005), this means fractal uniformity as proposed above with
the same exponent α. The fractional gradient ∇ijf(xi, t) of a function f(xi) is defined
analogously for three coordinates xi. The temporal fractional derivative dβg/dtβ of a
function g(t) is likewise defined, but one-sided for causality. With α = β the temporal
partial fractional derivative is ∂αf(xi, t)∂t

α, while the reference quantities xr = dr and
tr can be defined and related as outlined above. Thus a displacement ui(xi, t) leads to a
velocity vi = ∂αui/∂t

α and a stretching rate Dij = (∇α
ijvj +∇α

ijvj)/2.

Balances of conserved extensive quantities - mass, energy and momentum - are expressed
by fractional integrals, and can be translated into fractional differential equations. Tara-
sov (2005) proposed a fractional divergence theorem which relates spatial integrals and
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boundary conditions, but assumed a temporal β = 1. Temporal integration with ca
0.9 < β = α < 1 requires an initial condition which is not easily given. The Fourier
transform of dαf/dxα is αf(x), with f(xi) this leads to a triple transform integral. The
one-sided Laplace transform of dβg/dtβ is βg(t). A quantity f(xi, t) with fractional de-
rivatives may be interpreted as mathematical expectation f̂(xi, t) of a fractal random set
in a quasi-local and -momentary sense. The eutaraxy χ̂, which is related with α = β, is
proportional to the coefficient of variation in our constitutive approach (A3 and A4), so
it does not depend on size and duration of inspection cubes and intervals, respectively,
in the case of fractal uniformity and stationarity.

A3 Constitutive relations of sand with fractality

In an elastic range the total differential of mechanical work per unit of volume of a
homogeneous grain fabric would be

dw = σ′
ijdϵij = dwe = σ′

ijdϵ
e
ij (9)

if there were no spatial fluctuations beyond those by inter-crystalline dislocations (A1).
(9) would lead to (3) with µ = 0. Extending Gudehus’ (2019) theory to a fractally
homogeneous inspection cube of sand with shear bands, its quasi-local elastic energy can
be represented as

ŵe = Bϵ̂ev(ϵ̂
e2
v + bϵ̂e2d ) (10)

with quasi-local volumetric and deviatoric invariants ϵ̂ev ≡ ϵ̂eii > 0 and ϵ̂ed ≡ |ϵ̂eij − ϵ̂evδij|.
Therein b depends on the quasi-local pore volume fraction n̂ by

b = bp − (bp − b0)(
n̂p − n̂

n̂p − n̂0

)2 (11)

with peak and reference values b = bp for n̂ = n̂p and b = b0 for n̂ = n̂0. Saddle points of

ŵe have ϵ̂
e
d/ϵ̂

e
v =

√
2/b, which means τ̂ /p̂′ =

√
2b with the mean fabric pressure p̂′ ≡ σ̂′

ii/3
and the deviatoric stress invariant τ̂ ≡ |σ̂′

ij − p̂′δij| by

σ̂′
ij = (1− µ̂)

∂ŵe

∂ϵ̂eij
(12)
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instead of (3). µ̂ is related with the quasi-local eutaraxy χ̂ by µ̂ = µ̂hχ̂/χ̂h, wherein h
denotes the hypoplastic range. ŵe has a further critical point by (11), namely a tipping
point at n̂ = n̂p. G ≈

√
Bp′ is obtained with (10) and (12) for the shear modulus G at

τ̂ = 0, which matches observations with B ≈ 100 GPa for quartz sand at n̂ = n̂min. The
friction factor b in (10) can be expressed by a friction angle ϕ′, viz.

b = 6(
sinϕ′

3− sinϕ′ )
2, (13)

for axial shortening of a cylindrical sample. Quartz sand has ϕ′ ≈ 30o for a loose fabric
and ϕ′ ≈ 40o for a dense fabric with few shear bands, i.e. b ≈ 0.5 and b ≈ 5, respectively.

Taking over Gudehus’ (2019) equations, driven evolutions of cylindrical inspection
volumes can be captured by

dϵ̂ei = (1− µ̂)dϵ̂i − χ̂[ϵ̂ei − hϵ̂ev]dϵ̂ (14)

for elastic and total overall strain increments, viz. dϵ̂ei , dϵ̂i and dϵ̂ ≡
√

dϵ̂21 + 2dϵ̂22 for cyl-
indrical symmetry (i=1, 2=3), with h ≈ 0.1. The eutaraxy χ̂ evolves with deformations
approximately by

dχ̂ =
cχ

1 + tan2(πχ̂/2χ̂h)
dϵ̂ (15)

with ĉχ ≈ 104 and χ̂h ≈ 100 for monotonous drives. Including (12) with µ̂ = µ̂hχ̂/χ̂h,
the ratio dϵ̂i3/dϵ̂

i
1 of inelastic strain increments by (14) and (15) is independent of χ̂,

whereas the differential of dissipated energy dŵd = σ̂′
1dϵ̂

i
1 + 2σ̂′

3dϵ̂
i
3 is proportional to χ̂

and maximal for dϵ̂i3/dϵ̂
i
1 by the stress-dilatancy relation (4). The latter results from the

maximum of dŵd = [σ̂′
1 + 2σ̂′

3g(dϵ̂
i
3/dϵ̂

i
1)]dϵ̂

i
1 for g =const and d2g/d(dϵ̂i3/dϵ̂

i
1)

2 > 0. (4)
enables a calibration of the parameters in (11) with (13). The reduction parameter µ̂ can
be related with the fractional exponent α by µ̂ = µ̂h − (α− αh)

2/(1− αh)
2 for capturing

the actual multi-fractality.

(14) and (15) can be generalized, this leads to an invariant version of (4) and to coaxi-
ality of σ̂′

ij or ϵ̂eij with quasi-local and -momentary stretching rates D̂ij, D̂
e
ij ≡ ˙̂ϵeij and

D̂i
ij ≡ D̂ij − D̂e

ij (A2). The dilatant evolution ends at a tipping point of ŵe with regard
to n̂, thereafter ŵe and τ̂ /p̂′ drop suddenly. This follows from (10), (11) and the gener-
alization of (14) and (15). The evolution of χ̂ with rearrangements of the grain fabric
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can be captured so that it ranges from 0 after a densification with minute cycles to χ̂h

in the hypoplastic range. The latter holds for critical phenomena, then the coefficient of
variation is also maximal. Presumably the latter is proportional to χ̂, and independent
of the size of inspection cubes within fractal uniformity (A2), which is characteristic of
fractality.

A4 Constitutive relations of rock with fractality

Modifying (10), the specific potential energy of fractally uniform parts of rock samples
can be represented by

ŵ = ŵe + ŵc = B(ϵ̂ev)
2/3(ϵ̂e2v + bϵ̂e2d ) + Cŝa[(ϵ̂

c − ϵ̂c0)−
(ϵ̂c − ϵ̂c0)

2

2(ϵ̂cc − ϵ̂c0)
] (16)

with a fabric term ŵe and an additional term ŵe for cohesive bridges. ŵe depends on
volumetric (ϵ̂ev > 0) and deviatoric (ϵ̂ed) invariants of the quasi-local elastic fabric strain
ϵ̂eij with a friction factor b by (11) and a stiffness factor B almost as by (10), but with

(ϵ̂ev)
2/3 instead of ϵ̂ev for capturing the observed increase of the modulus E of axial stiffness

with uniaxial strength and confining pressure. ϵ̂c denotes the tensile strain of cohesive
bridges, which can be related with the fabric strain by

ϵ̂c = ϵ̂cr − ϵ̂ev. (17)

Therein ϵ̂cr is a reference value which exceeds ϵ̂c due to ϵ̂ev > 0 (compression of fabric
and tensile strain of bridges positive). ϵ̂cc in (16) denotes ϵ̂c at a critical point of cohesive
bridges, and ϵ̂c0 denotes ϵ̂

c for ŵc = 0. Thus the effective stress, which transfers momentum
in the solid rock mass, is

σ̂′
ij = (1− µ̂)

∂ŵ

∂ϵ̂eij
= (1− µ̂)[

∂ŵe

∂ϵ̂eij
+

∂ŵc

∂ϵ̂c
] = σ̂f

ij − δij p̂
c (18)

with a reduction factor 1− µ̂ depending on the eutaraxy χ̂ as for sand (A3). σ̂f
ij denotes

the fabric stress including the additional pressure p̂c, which with (16), (17) and (18) is

p̂c = (1− µ̂)
∂ŵc

∂ϵ̂c
= (1− µ̂)Ĉŝc(1−

ϵ̂c − ϵ̂cc
ϵ̂c0 − ϵ̂cc

). (19)
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Therein ŝc denotes the area of cohesive bridges per volume of the sample, and Ĉ their
specific surface energy.

The evolution of the friction factor b̂ could be approximated by means of (5). An evolution
equation for ŝc could be added with ŝc → 0 for continued dilation. The reference values
ϵ̂cr and ϵ̂c0 do not matter for critical phenomena, they could be calibrated as indicated
under Fig. 4. A subsequent contractant collapse could also be captured by means of (14)
and (18), but the validation gets more difficult due to autogeneous changes of pw. The
multi-fractality could be captured by a relation of µ̂ and the variable fractal exponent α
as for sand (A3).

Like with sand these constitutive relations can be written with tensors and invariants
beyond axial symmetry. With (18) the symmetry ϵ̂eij = ϵ̂eji implies σ̂′

ij = σ̂′
ji, and stress-

aligned orthogonal anisotropy of the differential stiffness matrix Mijkl ≡ ∂σ̂′
ij/ϵ̂

e
kl. Beyond

the elastic range the evolution of elastic strain can be captured by

ˆ̇ϵeij ≡ D̂e
ij = (1− µ̂)D̂ij − χ̂(D̂e

ij − hD̂e
v)D̂. (20)

Therein D̂ij denotes the quasi-local stretching rate tensor (A2), D̂ its amount and D̂e
ij

its elastic part. Its symmetry D̂ij = D̂ji by definition implies the symmetry ϵ̂eij = ϵ̂eji by
(20), which means also σ̂′

ij = σ̂′
ji by (18). The auxiliary parameter h, the evolution of the

eutaraxy χ̂ and its relation with the reduction parameter µ̂ and the fractal exponent α
can be approximated as for sand (A3). The evolution of the internal pressure p̂c can also
be generalized from the one with axial symmetry. Like with sand (Gudehus 2019) this
leads to dilatancy alongside with a growth of the invariant ratio τ̂ /p̂′, and to contractancy
with a reduction of τ̂ /p̂′.
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Lempp C., Menezes F. and Schöner A. (2020): Multi-stage triaxial tests with
water-saturated sandstones - a microtectonic study with a fractal perspective. Journal
of Structural Geology, https://doi.org/10.1016/j.jsg.2020.104092.

Li L., Hu J., Li S., Qin C., Liu H., Chen D. and Wang J (2021): Develop-
ment of a Novel Triaxial Rock Testing Method Based on Biaxial Test Apparatus and Its
Application. Rock Mech. Rock Engng., online edition.

Luong M.P. (1982): Mechanical aspects and thermal effects of cohesionless soils under
cyclic and transient loading. Proc. IUTAM Conf. Deform. Failure Gran. Mat., Delft,
239-264.

Mandelbrot B. (1982): The fractal Geometry of Nature. 460 p., Freeman, New York.

Mandelbrot B. (1999): Multifractals and 1/f-noise - wild self-affinity in physics. 450
p., Springer.

Mandl G. (1988): Mechanics of Tectonic Faulting, Models and Basic Concepts. 407
p., Elsevier.



34 Tectonic critical phenomena with dilatancy in analogue models

Menezes F. (2022): Stress-dilatancy relations for water-saturated sandstone samples.
Under preparation for Acta Geot.

Morgenstern N.R. and Tchalenko J.S. (1967): Microspopic structures in kaolin
subjected to direct shear. Géotechnique, 17, 309-328.
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