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Abstract
Tests based on pairwise distance measures for multivariate sample vectors are
common in ecological studies but are usually restricted to two-sided tests for dif-
ferences. In this paper, we investigate extensions to tests for superiority, equiva-
lence and non-inferiority.
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1 INTRODUCTION

Multivariate tests with high-dimensional data are a challenge, particularly as sample sizes inmany applications are small.
One attempt to overcome this difficulty is the use of one- or low-dimensional scores derived from the high-dimensional
data. Starting from asymptotic test versions such as the proposals of O’Brien (1984) or Tang et al. (1993), Läuter (1996), and
Läuter et al. (1996, 1998) showed that exact parametric tests are possible with linear scores or score vectors with weights
derived from the original data. The most common of these tests is the principal component test. A modification for very
large number of variables is given by Ding et al. (2012). Other proposals for asymptotic test versions avoiding the inversion
of the covariance matrix of the sample vectors had previously been given by Box (1954) and Dempster (1958, 1960). More
recent papers are from Srivastava and von Rosen (2004), Srivastava and Fujikoshi (2006), and Bathke et al. (2009). Most of
these multivariate tests are two-sided, but directed tests are available, too, such as the ALR test of Tang, Geller and Pocock
(1993) or one-sided tests with one score, where special problems with monotonicity may occur as reported by Glimm and
Läuter (2010).
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In this paper, we consider a class of tests based on pairwise multivariate distance measures between the sample vectors.
The basic idea behind these tests is that distances between sample vectors from different groups must be stochastically
larger than those between sample vectors from the same group if the groups differ in their distribution. Such tests are rather
common in the field of ecology (Anderson, 2001). In medical biometry, they are getting more relevant with the increasing
interest in the microbiome of patients but also with high-resolution imaging techniques. As an example, Marozzi (2015)
used interpoint distance-based tests for the analysis of cardiovascular magnetic resonance imaging data.
Usually, these tests are applied to detect (undirected) differences between populations. As a starting point for further

discussion, we review this situation. Then we present proposals for extensions that can be used to investigate directed
differences, equivalence, or noninferiority. In contrast to multiple test procedures, no statements about single variables
under familywise error control are intended here but rather a characterization of the variables in their entirety. This
can be of special interest in the case of a large number of variables with similar importance. For example, consider the
composition of microbial communities in biological material. The microbiome consists of a large number of different
species of bacteria or fungi, many of which may not even be concretely characterized genetically. In such a situation, it is
more meaningful to compare the total microbial composition rather than to try to identify and quantify the abundance
of single species. As another example, in clinical trials, usually a large number of adverse event types is monitored. In
this situation, multiple test procedures with strong control of the familywise error rate might have only low power—in
contrast to a global comparison of the whole set of adverse event types.
Following a short specification of themodel and of the used distancemeasures in Section 2,wewill consider the different

testing problems. Section 3 reviews tests for undirected difference. Section 4 focuses on one-sided tests for superiority. Tests
for equivalence and noninferiority are proposed in Sections 5 and 6, respectively. Section 7 considers the robustness of the
procedures under various conditions. Section 8 presents two applications. A short discussion concludes the paper.

2 POPULATIONMODEL AND DISTANCEMEASURES

Consider the simple situation of two independent samples of 𝑝-dimensional random vectors of sizes 𝑛1 and 𝑛2, respec-
tively. Let 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑝)′ ( 𝑖 = 1, … , 𝑛, 𝑛 = 𝑛1 + 𝑛2) be the 𝑛 sample units ordered by sample

𝑦1, ⋯ , 𝑦𝑛1 ∼ 𝐹1 (𝑦) , 𝑦𝑛1+1, ⋯ , 𝑦𝑛1+𝑛2 ∼ 𝐹2 (𝑦) (2.1)

with multivariate distribution functions 𝐹1 and 𝐹2 in the two populations.
Next, we define a distance measure between two sample vectors

𝛿𝑗𝑘 = 𝛿
(
𝑦𝑗, 𝑦𝑘

)
, 𝑗, 𝑘 = 1, … , 𝑛. (2.2)

The measure shall fulfil the conditions

𝛿𝑖𝑗 ≥ 0, (2.3)

𝛿𝑖𝑖 = 0. (2.4)

For now, we will also assume that

𝛿𝑖𝑗 = 𝛿𝑗𝑖 , (2.5)

(𝑖, 𝑗 = 1, … , 𝑛). Later on, in tests for directed alternatives, the symmetry condition (2.5) will be dropped.
Common examples are
- the squared Euclidean distance

𝛿𝑖𝑗 =
(
𝑦𝑗 − 𝑦𝑖

)′ (
𝑦𝑗 − 𝑦𝑖

)
=
‖‖‖𝑦𝑗 − 𝑦𝑖‖‖‖

2
, (2.6)
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- the maximum absolute distance

𝛿𝑖𝑗 = max
𝑘=1, …, 𝑝

|||𝑦𝑗𝑘 − 𝑦𝑖𝑘||| , (2.7)

- the city block distance

𝛿𝑖𝑗 =

𝑝∑
𝑘=1

|||𝑦𝑗𝑘 − 𝑦𝑖𝑘||| , (2.8)

and
the minimum absolute distance

𝛿𝑖𝑗 = min
𝑘=1, …,𝑝

|||𝑦𝑗𝑘 − 𝑦𝑖𝑘||| . (2.9)

TheMahalanobis distance (𝑦𝑗 − 𝑦𝑖)′𝚺−1(𝑦𝑗 − 𝑦𝑖) is another popularmultivariate distancemeasure. However, it requires
the inversion of a covariance matrix 𝚺. This can be a problem in a high-dimensional setup because of difficulties with
estimating 𝚺 from the data and because the inversion can be computationally costly.
Prominent applications of distance-based tests are comparisons ofmicrobial populations, where the𝑝 variables indicate

the relative frequency of different microbes (so-called operational taxonomic units, OTUs). In this case, the city block
distance corresponds to two times the Bray–Curtis distance as a very common distance measure in ecologic studies. The
relative frequencies are sometimes log or probit transformed (with an additive correction term to avoid zeros) in order to
enhance the weight of rare OTUs in the analyses. Also in this context, the Pearson correlation between sample vectors is
often used as a similarity measure instead of a distance measure. We will revisit this topic in the discussion.
The pairwise distances are averaged over those pairs of sample vectors that consist of sample vectors from different

groups,

𝛿between =
1

𝑛1𝑛2

∑
𝑖≤𝑛1,𝑗>𝑛1

𝛿𝑖𝑗, (2.10)

and over those pairs of vectors from the same group,

𝛿within =
1

𝑛1 (𝑛1 − 1) + 𝑛2 (𝑛2 − 1)

⎛⎜⎜⎝
∑

𝑖, 𝑗≤𝑛1, 𝑖≠𝑗

𝛿𝑖𝑗 +
∑

𝑖, 𝑗>𝑛1, 𝑖≠𝑗

𝛿𝑖𝑗

⎞⎟⎟⎠ . (2.11)

Based on these two averages, we will consider the following three versions of a test statistic:

𝑑 = 𝛿between − 𝛿within, (2.12)

𝑑∗ = 𝛿between, (2.13)

𝑑∗∗ =
𝛿between − 𝛿within

𝛿within
. (2.14)

In the definition of 𝛿within, 𝛿𝑖𝑖 are excluded. Including them would amount to using 1

𝑛2
1
+𝑛2
2

as the multiplicative fac-

tor in 𝛿within. If additionally 𝑛1 = 𝑛2, then 𝑑 from (2.12) with the squared Euclidean distance (2.6) would be identical to‖�̄�(1) − �̄�(2)‖2, where �̄�(1) and �̄�(2) are the sample mean vectors in the two groups. For the other distances, such intuitive
reformulations of the difference are not available. In this paper, we will use the definition (2.11).
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A more recent development are interpoint distance-based tests (Jurečková & Kalina, 2012; Marozzi et al., 2020). These
start with the pairwise distance measures as well, but combine the within-group and between-group distances in a more
sophisticated way, often using nonparametric elements. The resulting tests have a large power and are robust for a wide
class of distributions. As our main focus here are the extensions to one-sided tests and equivalence/noninferiority tests,
we restrict to the above statistics that can also be interpreted as effect measures for which tolerance limits can be given.

3 TESTS FOR UNDIRECTED DIFFERENCE BETWEEN THE TWO POPULATIONS

In the simplest case, we want to test the null hypothesis of agreement of both distributions,

𝐻0 ∶ 𝐹1 (𝑦) = 𝐹2 (𝑦) ∀𝑦 (3.1)

against differences in any direction

𝐻1 ∶ 𝐹1 (𝑦) ≠ 𝐹2 (𝑦) for some 𝑦. (3.2)

This case is easy to treat, because the null hypothesis ensures the basis for usual permutation tests for the case of two
independent groups. Under the null hypothesis, all permutations of the 𝑛 sample elements have the same distribution.
Thus, the test statistic 𝑑 according to (2.12), (2.13) or (2.14) is calculated once for the original sample and then repeatedly
for the permuted samples. If 𝑑0 denotes the original value and 𝑑1, … , 𝑑𝑁 the values obtained from permutations (all
remaining permutations or a random selection of size𝑁 of all permutations), then the P-value of the permutation test can
be calculated as the proportion of permutation test statistics that are larger than or equal to the original value 𝑑0

𝑃 =
# (𝑖 ∈ {1, … , 𝑁} ∶ 𝑑𝑖 ≥ 𝑑0) + 1

𝑁 + 1
. (3.3)

Formula (3.3) yields a conservative estimate of the proportion of rejections under the null in the true underlying popu-
lation from which the sample was obtained, since all permutations that yield 𝑑0 are regarded as still supporting the null
hypothesis. However, since in many fields of applications (e.g., clinical trials), the use of methods for “breaking the ties”
are unpopular and the conservativeness of the approach is seen as a partly desirable feature of the method, we prefer not
to address this topic here. Pesarin and Salmoso (2010) cover this issue in depth. The permutation test is already treated by
Mantel (1967), and also described in Anderson (2001) or Kropf et al. (2004) among others.
In the special case of multivariate normal data with equal covariance matrix 𝚺 in both samples, one can use rotation

tests (Kropf et al., 2007; Langsrud, 2005) instead of permutation tests. The main advantage of rotation tests is that they are
applicable in the case of very small samples sizes that lead to a low number of possible permutations and hence severe
power loss. The number of possible rotations is always infinite, whereas the number of possible permutations is always
finite.
Generally, permutation tests with the statistic 𝑑 have a surprisingly good power even for moderate sample sizes in high-

dimensional data and are well applicable for sample sizes of 4 or larger per group (Kropf et al., 2007). The arguments
about the exactness of the permutation test remain true for the alternative test statistics 𝑑∗ and 𝑑∗∗ as well as for other
test statistics mentioned in Section 1 that are derived from asymptotic arguments (Pesarin & Salmaso, 2010).
In these permutation tests for the undirected test of difference, the test statistics 𝑑, 𝑑∗ and 𝑑∗∗ give equivalent test results.

This is easy to see by using the symmetry of the distance measures in this section and expressing the sum of all differences
𝛿𝑖𝑗 as a decomposition into 𝛿within and 𝛿between. Since this sum is the same for all permutations of the treatment indicator,
there is a fixed monotonous relation between 𝛿within and 𝛿between.
Unfortunately, this simple permutation approach does not yield a confidence interval for the expectation 𝐸(𝑑). If that is

desired (the test statistic 𝑑 can also be interpreted as an effect measure), then the approximate leave-one-out and bootstrap
procedures of Section 5 can be used.
Figure 1 illustrates the power of the permutation tests based on the statistic 𝑑 for the three distancemeasures (2.6)–(2.8).

As comparator we used the maxT permutation test by Westfall and Young (1993). The simulation series considers two
independent samples of size 𝑛1 = 𝑛2 = 10 with multivariate normal data vectors of dimension 𝑝 = 20. The variables
are grouped into two blocks of variables. They are uncorrelated between the blocks but have an equal pairwise correlation
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F IGURE 1 Contour plots for the power of distance based tests on two-sided difference between both groups (levels 0.1, 0.5, and 0.8). The
parameters of the simulation runs are described in the text. Upper panel: equal number of variables in the two blocks of variables, lower
panel: one variable belongs to block 1, the 19 others to block 2

coefficient of 0.3 within the blocks. All variables have variance 1 in both samples and expectation 0 in sample 1. Block 1
comprises 𝑝1 variables with expectation 𝜇1 in sample 2, block 2 consists of the remaining 𝑝2 variables with expectation 𝜇2
in sample 2. The two location parameters 𝜇1 and 𝜇2 vary in steps of 0.1 between−1 and+1. Each parameter constellation is
investigated in 4000 independently simulated data sets. Permutation tests are carried out with 200 random permutations.
The upper panel of Figure 1 shows results for equal block sizes 𝑝1 = 𝑝2 = 10. Correspondingly, the contour plots are

symmetric in the direction of both axes. For all three distancemeasures, the contour lines are approximately circles around
the originwith the smallest diameter (largest power) for the squared Euclidean distance followed by the city block distance
and the maximum absolute distance. The contour lines for the global test based on the maxT test have a more flattened
shape around the axis and particularly much larger diameters reflecting a distinctly smaller power of this multiple test
procedure when considered as a global test.
The plots in the lower panel show the results for 𝑝1 = 1 and 𝑝2 = 19, that is, the case where the group effect in the first

variable differs from the commoneffect in all other 19. Correspondingly, the diameter of the contour lines is slightly smaller
in 𝜇2-direction (controlling the 19 variables) and much larger in 𝜇1-direction. Deviations in 𝜇1-direction are now better
detected with the maximum absolute distance than with city block distance or squared Euclidean distance, whereas in
𝜇2-direction again themaximum absolute distance has worst performance among the three distancemeasures. ThemaxT
test is similar in performance to the maximum absolute distance and better than the other two distances for deviations in
𝜇1-direction and still worse than all distance-based tests for deviations in 𝜇2-direction.
Figure S2 in the Supporting Information shows additionally analogous results for the minimum absolute distance. In

our parameter settings, this version yielded poor power and is thus omitted from subsequent consideration. According to
Marozzi (2015), this distance has advantages in distributions with heavy-tailed and highly skewed distributions. In this
paper, we will focus on moderate deviations from normal distributions (see discussion in Section 7).

4 TESTS FOR SUPERIORITY

Next, we consider one-sided tests. The null hypothesis is still given by (3.1). However, we now attempt to design tests with
a high power to reject𝐻0 when sample 2 is stochastically larger than sample 1.
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As the symmetric distancemeasures (2.6)–(2.8) do not allow a distinction between “better” or “worse”, we use one-sided
modifications here:
for the squared Euclidean distance

𝛿
(+)
𝑖𝑗
=

∑
𝑘∶𝑦𝑗𝑘>𝑦𝑖𝑘

(
𝑦𝑗𝑘 − 𝑦𝑖𝑘

)2
, 𝛿

(−)
𝑖𝑗
=

∑
𝑘∶𝑦𝑗𝑘<𝑦𝑖𝑘

(
𝑦𝑗𝑘 − 𝑦𝑖𝑘

)2
(4.1)

for the maximum absolute distance

𝛿
(+)
𝑖𝑗
= max
𝑘∶ 𝑦𝑗𝑘>𝑦𝑖𝑘

|||𝑦𝑗𝑘 − 𝑦𝑖𝑘||| , 𝛿(−)𝑖𝑗 = max
𝑘∶ 𝑦𝑗𝑘<𝑦𝑖𝑘

|||𝑦𝑗𝑘 − 𝑦𝑖𝑘||| (4.2)

for the city block distance

𝛿
(+)
𝑖𝑗
=

∑
𝑘∶𝑦𝑗𝑘>𝑦𝑖𝑘

|||𝑦𝑗𝑘 − 𝑦𝑖𝑘||| , 𝛿(−)𝑖𝑗 =
∑

𝑘∶𝑦𝑗𝑘<𝑦𝑖𝑘

|||𝑦𝑗𝑘 − 𝑦𝑖𝑘||| (4.3)

For convenience, we define 𝛿(+)
𝑖𝑗
= 0 if 𝑦𝑗𝑘 ≤ 𝑦𝑖𝑘 for all k and likewise 𝛿

(−)
𝑖𝑗
= 0 if 𝑦𝑗𝑘 ≥ 𝑦𝑖𝑘 for all k. The minimum

absolute distance is not suitable for this one-sided situation as it very often results in distances of zero.
Note that this kind of modification can destroy themeaning of a distancemeasure andmay not be applicable for a given

situation. This should be checked carefully on a case-by-case basis. Particularly, on compositional data (when variables
represent relative frequencies), negative changes in some variables induce positive effects in other variables. One-sided
test are not meaningful in this situation.
For this one-sided testing problem, it is important that 𝛿between in (2.10) is defined with the first sample element (index

i) from sample 1 and the second (index j) from sample 2. For the two-sided tests of Section 2, this order of the samples does
not matter.
The seemingly straightforward way would be the use of the “positive” distance measures 𝛿(+)

𝑖𝑗
instead of 𝛿𝑖𝑗 in the

definitions of the test statistic of Section 2 together with the permutation test of Section 3. However, this results in one-
sided tests for the very specific alternative that there is at least one variable with larger values in sample 2 compared to
sample 1 regardless of possibly inverse effects in one or even the majority of the other variables. That might be of interest
in special situations. Here, we are interested in alternatives with positive effects in at least one variable and essentially no
inverse effects in the other variables. Therefore, the use of 𝛿(+)

𝑖𝑗
is not further investigated here.

Instead, we propose to reverse the procedure in two details:

1. We use the “negative” distances 𝛿(−)
𝑖𝑗

in the definition of the test statistic yielding the values 𝑑0 for the original sample
and 𝑑𝑖 (𝑖 = 1, … ,𝑁) for the permuted samples. Analogously, the alternative test statistics 𝑑∗ and 𝑑∗∗ could be used.

2. We calculate the p-value of the permutation test at the lower tail of the null distribution:

𝑃(−) =
# (𝑖 ∈ {1, … , 𝑁} ∶ 𝑑𝑖 ≤ 𝑑0) + 1

𝑁 + 1
. (4.4)

In other words, we show that there are less negative effects in the variables than one would expect under the null
hypothesis of equality of both distributions. The method rejects H0 if few variables indicate ‘bad’ results on sample 2 and
these inferior results are numerically not much inferior.
This procedure guarantees an exact control of the type I error under the null hypothesis (3.1) of equal multivariate

distributions in both samples. Considering the shift hypothesis

𝐻1 ∶ 𝐹2 (𝑦) = 𝐹1 (𝑦 − 𝜃) ∀ 𝑦

for some shift vector 𝜃 as class of alternatives in (3.2), rejections of the null hypothesis also occur outside the positive
orthant of 𝜃 with a probability above the nominal alpha level. That happens particularly near the borders of the positive
orthant where large positive effects in some variables override small negative effects in others. Our proposal shares this
problem with other one-sided test versions such as the ALR test of Tang et al. (1993), one-sided applications of O’Brien’s
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(1984) test versions or the proposal of Glimm and Läuter (2010). Even in a multiple test procedure with local tests for each
component of 𝜃, it would be difficult to achieve a strict type I error control over the whole parameter space outside the
positive orthant without dramatic power losses in situations where group differences in the desired direction occur only
in some of the variables. One would have to accept a very poor power on the borders of the orthant or to define tolerance
limits for acceptable deteriorations in single variables.
In contrast to the two-sided tests in Section 3, there is no direct relation between the two averages 𝛿between and 𝛿within

over the permutations of the combined samples. The term 𝛿between includes only those pairs of sample elements where the
first elements belongs to sample 1 and the second one to sample 2. The “opposite” pairs have different distances with the
asymmetric distance measures, and this omitted part is not constant over the permutations. As a consequence, the three
statistics 𝑑, 𝑑∗, and 𝑑∗∗ give different test decisions (p-values). In situations with a large shift between the two groups in
some of the variables, the distances of sample elements from different groups are essentially determined by these (possible
few) variables with large shift. In contrast, for pairs of sample elements of the same group, the number of contributing
variables (with negative shift) may vary from zero to 𝑝, which brings about a large variability of 𝛿within.
Therefore, statistic 𝑑 is omitted in the simulation study below. The statistics 𝑑∗ and 𝑑∗∗ do not suffer from this problem

because 𝛿within is not included in 𝑑∗, and it occurs in the nominator as well as the denominator of 𝑑∗∗ levelling out the
disturbances.
Figure 2a shows the results of simulation experiments with these test versions with the same parameter settings as in

Section 3, only the two location parameters 𝜇1 and 𝜇2 controlling the two blocks of variables vary here in larger steps of
0.3 between −3 and +3. Again, we consider the situation of two blocks of variables of an equal size of 10 and the situation
with block 1 being a single variable and block 2 comprising the remaining 19 variables. The city block distance gives very
similar results as the squared Euclidean distance and is therefore omitted here. Both remaining distance measures are
investigated, each in combination with the two test statistics 𝑑∗and 𝑑∗∗. In this one-sided situation, two comparators are
considered in Figure 2b. The first one is the one-sidedmaxT test (Union-intersection test: “Is there at least onemultiplicity
adjusted univariate significance?”), the second one is the combination of the one-sided t tests by the intersection-union
principle (“Are all unadjusted univariate tests significant?”).
As expected, in all distance-based test versions the contour lines for the power level of 0.05 (nominal test level) cross the

point 𝜇1 = 𝜇2 = 0. The parameter region with a power above 0.05 also comprises points outside the positive orthant as
discussed above. However, the versions based on the statistic 𝑑∗∗ are more focused on this orthant than those based on 𝑑∗.
Furthermore, the versions based on the maximum absolute distance are concentrated a little more in the positive orthant
than versions based on the squared Euclidean distance. The second panel shows, however, that even in the most focused
version with maximum absolute distance and statistic 𝑑∗∗, negative deviations in a single variable can be disguised by
large positive deviations in the other variables.
The choice of the test version involves a trade-off. On the one hand, a large power in the positive orthant is desirable.

That includes the boundaries (except the origin) where positive effects in a part of the variables are meaningful even if
other variables do not show effects. On the other hand, (substantial) negative effects should be ruled out.
For comparison, Figure 2b shows the contour lines in the same situation for two extreme strategies. The one-sidedmaxT

test considers positive effects in at least one variable, no matter what other variables do. That is the situation discussed
above for the use of the “positive” one-sided distancemeasures,which is usually not the objective in one-sidedmultivariate
tests. The stringent exclusion of negative effects—as the other extreme—is ensured with the intersection union principle
where the multivariate decision is significant only if a positive effect is proven for each single variable. For practical
purposes, this requirement is too strict, leading to very low power in general and particularly for low or absent effects
in some variables.

5 TESTS FOR EQUIVALENCE

The classical way to test for equivalence in a multivariate context would be to show equivalence in each variable. Accord-
ing to the intersection-union principle, this requires no 𝛼-adjustment (Hothorn&Oberdoerfer, 2006). However, the power
to declare equivalence is decreasing with the number of variables, hence this requirement is unreasonably strict in high-
dimensional data. Therefore, multivariate distance-based tests are applied for this type of test problem here. The two
groups are considered equivalent if the multivariate distance measure (defined as the expectation of one of the test statis-
tics) can be shown to be smaller than a pre-defined tolerance threshold 𝜃, that is, if the null hypothesis𝐻 ∶ 𝐸(𝐷) > 𝜃 can
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F IGURE 2 (a) Contour plots for the power of distance based tests on one-sided difference between both groups (levels 0.05, 0.5, and 0.8).
The parameters of the simulation runs are described in the text. (b) Contour plots for the power of one-sided maxT test and one-sided
univariate t tests combined with the intersection-union principle, both as comparators to the results of the distance based tests in Figure 2a
(levels 0.05, 0.5, and 0.8)

be rejected at a given significance level. Here and later on in this section, 𝐷 denotes one of the test statistics (2.12)–(2.14)
(or a transformation of them, see below).
Chervoneva et al. (2007) investigated this situation for multivariate normal variables and gave an asymptotic solution

that in some sense corresponds to our approach when using the squared Euclidean distance as the distance measure
between two sample vectors.
Unfortunately, we did not find a way to use permutation tests here. The null hypothesis is not a point hypothesis. The

same multivariate distance can arise from various univariate shifts in the p variables and there are shifts that remain
within the space of the null hypothesis. Due to this, it is not obvious how shift methods (or permutations of residuals that
would allow the adaptation of permutation tests) could be generalized to this situation. A somewhat different approach
based on ranks (Pauly et al., 2016) could be considered, but is not further explored here.
Hence, we propose to apply a leave-one-out approach instead. The starting point is one of the test statistics (2.12)–(2.14)

or a transformation of them (particularly, we will use the square root of (2.13) later on). The statistic is computed once
with the whole sample of all 𝑛 = 𝑛1 + 𝑛2 sample elements and then 𝑛 times repeatedly under successive exclusion of
one sample element in each repetition. Here we use the notation 𝐷 for the test statistic (one of 𝑑, 𝑑∗, 𝑑∗∗, or

√
𝑑∗) in the
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whole sample and 𝐷−𝑗 (𝑗 = 1, … , 𝑛) for the leave-one-out versions for this statistic (see restrictions below). With this
notation, Efron and Stein (1981) have proposed a variance estimator

V̂AR 𝐷. = �̂�2 =
𝑛 − 1

𝑛

𝑛∑
𝑗 = 1

(
𝐷−𝑗 − 𝐷.

)2
with 𝐷. =

1

𝑛

𝑛∑
𝑗 = 1

𝐷−𝑗 (5.1)

for the average of the leave-one-out estimates. They have shown in Theorem 2 of their paper that this yields a conser-
vative estimate for any statistic having finite second moment, where 𝐷 = 𝐷(𝑦1, … , 𝑦𝑛) is not necessarily symmetrically
defined in its arguments and the 𝑦𝑗 are independent but not necessarily identically distributed. Thus, the two-sample
situation is covered as long as the finite second moment exists.
Here we assume that the variance of 𝐷 is approximately equal to the variance of 𝐷. and that the test statistic approxi-

mately follows a normal distribution. Asymptotically, if the number of variables remains finite while the sample size goes
to infinity in such a way that 0 < 𝑛1

𝑛2
< ∞, these assumptions are covered under mild regularity conditions by standard

central limit theorems (Sen, 1985). In our simulation studies, this also seemed acceptable for the test statistic 𝑑∗∗ from
(2.14) for the finite sample sizes we considered. The statistic 𝑑∗ from (2.13) has a skewed distribution but can sufficiently
be normalized using the square root

√
𝑑∗. We did not find a suitable transformation for statistic 𝑑 from (2.12), so that it

cannot be used here. Under this normality assumption, we calculate an approximate one-sided (1− ∝)-confidence interval
for the expectation of 𝐷 by

(
−∞, 𝐷 + 𝑡1−𝛼, 𝑛−2

√
�̂�2

)
. (5.2)

In order to complete the equivalence test, a threshold 𝜃 for the expectation of the test statistic has to be defined that
constitutes the maximal distance between both populations to be still considered as equivalent. If the upper limit of the
confidence interval is below the threshold, that is,𝐷 + 𝑡1−𝛼, 𝑛−2

√
�̂�2 < 𝜃, then equivalence is concluded. The actual type

I error control of this procedure is checked for selected normal data situations subsequently in this section and in more
general settings in Section 7.
Since it is already a challenge to define such a threshold in the univariate situation, it is evenmore difficult in this setup

with complex multivariate distance measures and test statistics derived from them. In Antweiler et al. (2017), additional
features of the experimental design have been used to derive a threshold. A selection of those data is reconsidered here as
Example 2 in Section 8. But such additional features are not always available in an experiment. Test statistic 𝑑∗∗ in (2.13)
can still be calculated if such features are missing. The statistic 𝑑∗∗ describes the increase of between-group distances over
within-group distances, relative to the within-group distances. For such a relative measure it might be possible to find a
general agreement similar to the 80% / 125% limits in bioequivalence studies.
Again, the simulation settings of the previous section are used to demonstrate the performance of the proposed tests.

We present the results for the test statistics 𝑑∗∗ (as relative measure) and
√
𝑑∗ (as absolute measure). Both yielded at least

partly approximate normal distributions over the simulation runs for fixed parameter settings (histogram plots over the
simulation replications, not shown here). As a consequence, the type I error was kept in good approximation in these
situations (see below).
Figure 3a shows the results of simulation series with both statistics. As in the previous sections, the power over the

range of both shift parameters 𝜇1 and 𝜇2 is presented in contour plots (contour lines for 5%, 50%, and 80%). The threshold
for the relative statistic 𝑑∗∗ was chosen as 0.25 (inspired by the usual univariate thresholds in bioequivalence studies).
For the statistic

√
𝑑∗ , the threshold (2.0 with maximal absolute distance, 10.0 with squared Euclidean distance) was

fixed pragmatically at values that led to a sufficient variation of power values in the considered range of the expectation
parameters 𝜇1 and 𝜇2. Of, course, the largest power values are around the origin.
Additionally, for each 𝜇1-𝜇2-combination, the expectation of the test statistic was estimated as the arithmetic mean

of the calculated values of the test statistic 𝐷 over the 4000 independent simulation runs for a parameter setting. The
contour line for this expectation at the level of the tolerance threshold is added to the figures. This allows to distinguish
between parameter settings under the formal null hypothesis (expectation of test statistic is larger than the threshold) and
those under the alternative hypothesis (expectation of test statistic is small enough to accept equivalence). Comparing the
contour lines of the power and that of the expected test statistic enables a check of type I error control.
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F IGURE 3 (a) Contour plots for the power of distance-based tests on (two-sided) equivalence between both groups (levels 0.05, 0.5, and
0.8). The parameters of the simulation runs are described in the text. The figure includes two versions of distances (Maximum absolute
distance and squared Euclidean distance), both in combination with one of the test statistics

√
𝑑∗ or 𝑑∗∗ and for two independent blocks of

variables of size 10/10 or 1/19, respectively. (b) Contour plots for the power of the test proposals by Chervoneva et al. (2007) using both the
normal and the chi-square approximation compared to the above test best on the squared Euclidean distance and the relative statistic 𝑑∗∗ and
a modified version where the within-group distances are computed only from the reference group. Additionally, the limits of that part of the
parameter space under the null hypothesis are presented as bold dashed lines
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For the tests based on the maximum absolute distance, the contour lines for the power of 5% and for the expectation
of the test statistic at the threshold value agree very well indicating a good formal type I error control. The statistic 𝑑∗∗
based on squared Euclidean distance showed a very slight anticonservative behavior as the region within the expectation
threshold is a bit smaller than the region with a power above 5%. In the simulation runs, additionally the coverage rates
of the region (5.2) for the expected value of the test statistics have been obtained at each grid point in the 𝜇1-𝜇2-plane.
These graphs are not presented here because they agree very well with the considerations so far: the coverage rates were
very close to 95% in most situations but were only between 90% and 95% in some regions of the considered 𝜇1-𝜇2-plane for
the statistic 𝑑∗∗ with the squared Euclidean distance. When increasing the sample sizes to 20 per group, these deviations
disappeared.
The regions of power above the considered reference values for the tests with the relative statistic 𝑑∗∗ are larger with the

maximum absolute distance than with the squared Euclidean distance. That indicates a larger power for the maximum
absolute distance. However, one has to keep in mind that the same threshold for the expectation of the test statistic has a
different meaning in terms of the expectation of the raw data even though both test versions use the relative presentation
𝑑∗∗. That can be seen from the contour lines for the expectation of the test statistic at the level of the equivalence threshold
(bold dashed lines). An allowed deviation of 25% is more stringent in a statistic based on a quadratic measure than with
a linear one. Power comparisons between the versions based on 𝑑∗∗ and

√
𝑑∗ and also between the

√
𝑑∗-version with

squaredEuclidean distance andwithmaximumabsolute distance are not possible for the same reason that the equivalence
thresholds are not comparable.
Although the upper panel with equal number of variables in the two blocks with expectation 𝜇1 and 𝜇2, respectively,

show symmetric graphs with respect to the two axes, the contours in the lower panel have larger extent in the 𝜇1-direction.
A large difference in a single variable is not ignored, but has less influence than moderate differences in many variables.
Figure 3b compares the test proposal by Chervoneva et al. (2007) with the above test based on the squared Euclidean

distance and the relative statistic 𝑑∗∗. Chervoneva et al. propose two asymptotic approximations, a normal and a chi-
square approximation. Our threshold of 0.25 corresponds to a threshold of 0.5 in their notation. Despite the common
basis of multivariate normal data, the use of squared Euclidean distances and a ratio statistic, there are two concep-
tual differences. Although Chervoneva et al. consider the ratio of the expectations of numerator and denominator, we
use the expectation of the ratio. More importantly, Chervoneva et al. use only the reference group for the calcula-
tion of within-group distances. Therefore, Figure 3b includes a modification of our proposal, where the calculation of
within-group differences is restricted to the reference group (sample 1) as well. The contour lines for the power of the
procedures are again presented together with the contour lines for the limits of the parameter space under the null
hypothesis.
Both approximations for the test of Chervoneva et al. show a low power, so that only the contour line for a power of 0.05

is presented. The comparison with the limit of the parameter space under the null hypothesis shows an anticonservative
behavior in both approximations (cf. Section 7 for some additional results). Our original test proposal for the squared
Euclidean distance reaches a power of 0.8 near the origin. In the modified version with within-group distances calculated
only from the reference group, the power is similar to that of the Chervoneva procedure.

6 TESTS FOR NON-INFERIORITY

For a test of noninferiority, we use the leave-one-out approaches from Section 5 in combination with the asymmetric dis-
tance measures (4.1)–(4.3). In contrast to Section 4, we no longer aim to show that group 2 is better than group 1, but
rather that it is not relevantly worse. Following the approach in Section 4, again an inversion of the one-sided (asym-
metric) measures has to be used in order to rule out a strong deterioration in one or several variables. The averages
𝛿within and 𝛿between and the test statistic are computed according to (2.10), (2.11) and one of (2.12)–(2.14) from the distance
measures (4.1), (4.2), or (4.3). This is repeated in a leave-one-out cycle in order to determine the one-sided confidence
interval for the expectation as in (5.1)/(5.2) and finally to compare the interval with the tolerance threshold. Remem-
ber that the inverted one-sided distance measures assess the deterioration of group 2 with respect to group 1. There-
fore, the upper limit of the confidence interval for the expectation of the statistic 𝐷 is used in the test for noninferiority
as well.
As in Section 5, the “relative” test statistics 𝑑∗∗ and the transformed “absolute” statistic

√
𝑑∗ showed approximate

normal distributions in the respective histogram plots when considered in simulation experiments with the same data



588 KROPF et al.

F IGURE 4 Contour plots for the power of distance based tests for noninferiority of group 2 with respect to group 1 (levels 0.05, 0.5, and
0.8). The parameters of the simulation runs are described in the text. The upper panels show the results for two versions of distances
(Maximum absolute distance and squared Euclidean distance), both in combination with the test statistic 𝑑∗∗ and

√
𝑑∗ for two independent

blocks of 10 variables each. The lower panel presents the analogous results for the case that the first block of variables comprises only of one
variable and the second one of 19 variables. In addition to the contour lines for a power of 5%, 50%, and 80% (all thin lines), the contour lines
for the expectation of the multivariate measure (

√
𝑑∗ or 𝑑∗∗) at the threshold values of the equivalence test are presented as bold dashed lines,

derived as average over the 4000 independent simulation runs. The threshold values used are 0.25 for 𝑑∗∗ (with both distance measures), 6 for√
𝑑∗ with squared Euclidean distance, and 1.75 for

√
𝑑∗ with maximum absolute distance

settings as in Sections 4 and 5. For the simulation series with the relative statistic 𝑑∗∗, the same tolerance threshold of 0.25
is used as for the equivalence tests. For the transformed absolute statistic

√
𝑑∗, smaller values for the threshold are used

than in the last section because the one-sided distance measures give smaller values than the two-sided ones. Therefore,
the threshold 1.75 is used in combination with the maximum absolute distance, and the value 6 for the squared Euclidean
distance.
Figure 4 shows the results of the simulation series. Again, the contour plots for the power over varying values of the

two shift parameters 𝜇1 and 𝜇2 are combined with the contour line for the expectation of the test statistics at the level of
the tolerance threshold.
The contour line for the expectation of the test statistic at the used threshold level coincides rather well with the contour

line of the power 0.05 in all plots (a bit better for the maximum absolute distance). The nominal type I error is reasonably
well kept in these analyses.
In the upper panel, the four plots are similar. Of course, this relies on the choice of the tolerance threshold val-

ues. Particularly, the thresholds for the statistic
√
𝑑∗ were chosen pragmatically to give similar plots. In contrast, the

choice of the threshold 0.25 for statistic 𝑑∗∗ is less arbitrary. As in the simulation runs for the equivalence tests, one
can observe that the same threshold for this “relative” statistic yields slightly different contour lines for the expectation
of the statistics and for the power. These lines are shifted into the negative direction on both axes for the maximum
absolute distance, so that for only slightly negative shifts noninferiority can be proven with this measure but not with
the squared Euclidean distance. The differences are much more obvious in the lower panel with only one variable with
expectation 𝜇1. In the analyses with the squared Euclidean distance, changes in this one variable have only little effect
on the test result. In contrast, the maximum absolute distance reflects such changes much more (as expected from the
definition).
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F IGURE 5 Contour plots for the power of one-sided tests for superiority (levels 0.05, 0.5, and 0.8) with varying number of variables in
the two uncorrelated blocks of variables. Other parameters are used as before

7 BEHAVIOR IN LARGER DIMENSIONS AND ROBUSTNESS

Although the concept of the distance-based tests is not restricted in the number of variables, we have so far considered
rather small dimensions in the simulation settings, mainly for reasons of computing time. Here we will consider some
selected test versions for varying number of variables. Again, we use two samples of size 10 each and two uncorrelated
blocks of variables of size 𝑝1 and 𝑝2 with within-block correlations of 0.3 as before. The shift between both samples is
constant within the blocks, but varies between the blocks (𝜇1 and 𝜇2, respectively). However, now the number of variables
per block varies as𝑝1 = 𝑝2 = 1, 10, 100, 1000. Figure 5 shows the results for selected one-sided tests (4000 replications).



590 KROPF et al.

The tests with the squared Euclidean distance and with the maximum absolute distance (both one-sided versions and
combined with the relative test statistic 𝑑∗∗) show a distinct improvement in power over the positive orthant as 𝑝1 =
𝑝2 = 1 increases to 𝑝1 = 𝑝2 = 10. For further increases of 𝑝1 = 𝑝2 power does not increase a lot anymore (in contrast
to corresponding results for two-sided tests that are not presented here). For the univariate t tests combined with the
intersection-union principle used as comparator here, the regions with power above the considered thresholds 0.05, 0.5,
and 0.8 drift more and more towards the upper right corner of the parameter field. This is the price that has to be paid for
the strict one-sided error control in each variable in comparison with the aggregated assessment of variables. Again, the
maximum t permutation test rejects also in such constellations where only one block of variables has a positive shift but
the other has a negative shift. That behavior would usually not be considered as useful in one-sided multivariate tests.
Figure S1 shows analogous results for some selected versions of equivalence tests. The tests based on the squared

Euclidean distance and themaximum absolute distance, both as two-sided versions combined with the relative test statis-
tic 𝑑∗∗, show an anticonservative behavior for variable blocks of size 1. This can be seen from the fact that the contour
lines for the power at level 0.05 are outside the region limited by the bold dashed lines, that is, within the parameter
region under the null hypothesis. With increasing number of variables, this anticonservative behavior completely dis-
appears for the maximum absolute distance and to a large extent for the squared Euclidean distance. In contrast, both
versions of Chervoneva’s approach (normal and chi-square approximation) become increasingly conservative with larger
dimensions.
With respect to robustness, we consider two aspects here: deviations from the normal distribution of the data and

imbalanced sample sizes. Additional figures for these situations are given in the Supplemental Material. Here, we present
the investigated scenarios and the summary of the results.
The tests for difference or superiority use permutation techniques and do not depend on the distributions with regard

to type I error control. However, the shapes of the contour lines for the power might depend on the distribution. In the
tests for equivalence and noninferiority, there is the additional question of the performance of the normal approxima-
tion in the leave-one-out solution for the confidence interval. In order to investigate these issues, we generated data with
slight deviations from the normal distribution in a first step. In particular, slightly skewed data were generated by the
Gamma (2, 1

2

√
2) distribution, deviations in the excess by the Laplace (0, 1

2

√
2) distribution. Both have standard devi-

ation 1 as used before for the normal data. After generating sample matrices with iid elements from these distributions,
the correlation structure was introduced by multiplying the matrix by the Cholesky root of the same covariance matrix
that was used in the simulation of normally distributed data above. This appended multiplication disturbs the marginal
distributions, but with the considered relative small correlation values, the disturbance is small. We restrict here to the
case 𝑝1 = 𝑝2 = 10, the results for 𝑝1 = 1, 𝑝2 = 19 were similar.
As shown in Figures S2 and S3, the contour lines for power in the tests for difference and superiority change only

very little with these mild modifications of the distribution for nearly all test versions considered in this paper. Only tests
with the maximum absolute distance lose a bit of power, whereas those with the minimum absolute distance gain a bit
(but are still less powerful than most other test versions). The shapes of the contour lines for power and the type I error
control in tests for equivalence and non-inferiority in Figures S4 and S5 are also very similar to the normal case. The
most obvious change is the asymmetric shape of the contour lines for power with the Chervoneva procedure in the case
of Gamma distributed data. This situation has also been studied with unbalanced sample sizes ( 𝑛1 = 5, 𝑛2 = 15). As
shown in Figure S6, the test versions based on the squared Euclidean distance show an anticonservative behavior (more
distinctly with the statistic 𝑑∗∗, but in tendency also for

√
𝑑∗) with normal and Laplace distributed data. Tests based on the

maximum absolute distance approximately keep the type 1 error with these symmetric distributions, but are also slightly
liberal with the skewed Gamma distribution.
If the distributions are more skewed, other problems may become relevant. This is demonstrated for log-normal data

in Figure 6 for equivalence and noninferiority tests based on the squared Euclidean distance and the maximum absolute
difference, considered with sample sizes of 10 for each group as before and for the version with two blocks of variables,
each of size 10. Column (a) of Figure 6 shows the contour plots for log-normal data (exponentiated normal data with
the correlation structure as before and a subsequent shift with parameters 𝜇1 and 𝜇2 for the two blocks of variables).
The contour lines for the power have approximately the expected shape, even though these lines are not as close to the
limits of the first orthant as with normal data. The tests show a conservative behavior in some cases. As the log-normal
distribution has variance greater than 1 here, the border of the parameters under the null hypothesis is outside of the
presented section of the parameter space in the second row of the figure. More importantly, however, adding a shift to a
log-normal distribution gives a distribution that might be considered very artificial. For example, negative values might
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F IGURE 6 Contour plots for the power of tests for equivalence and noninferiority with levels 0.05, 0.5, and 0.8 with log-normal
distributed data ( 𝑛1 = 𝑛2 = 10, 𝑝1 = 𝑝2 = 10, other parameters as before). The contour lines for the region under the null hypothesis are
added as bold dashed lines. For the description of columns a, b, and c, see the text
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occur with a negative shift. Furthermore, in many fields of application, ratios are preferred to differences of observations
when the distributions on the original scale are skewed. Therefore, column (b) of Figure 6 considers the situation where
the shift by 𝜇1 and 𝜇2 is applied to the normal data before the transformation by exp(.). Then the geometrical distances in
the figure correspond to the suspected practical impact, but the shapes of the contour lines differ strongly from the desired
shapes. That is particularly obvious in the tests for noninferiority, where large parts of the second and forth orthant lead
to false decisions (with respect to the intended interpretation of the test as checking non-inferiority). Figure S7 shows the
results of analogous tests for undirected differences or superiority that support the above discussion. In order to avoid such
misbehavior, the measurement scale should be chosen appropriately or it should be corrected before applying the test. In
the present case, taking the logarithmswould trace back the situation to the case of normal distribution as considered in the
previous sections. Also a rank transformation of the skewed distributionworkswell here, particularly in combinationwith
the squared Euclidean distance, as shown in column (c). Obviously, the combination of all variables in the calculation of
the multivariate distances smooths the discrete rank transformation sufficiently well. In contrast, the maximum absolute
difference shows deformations of the contour lines in some of the considered situations. There is some analogy to the
proposal by Marozzi et al. (2020) who apply ranks to the distances, whereas we apply the ranks to the raw data before
starting the tests. Of course, a rank transformation has to be taken into consideration when defining tolerance thresholds
for equivalence or noninferiority, and one has to decide if a rank based threshold is appropriate for the given research
question.
We conclude this section with a remark on the random error associated with the presented simulation study. All series

have been performedwith 4000 replications. The same set of randomnumbers has been used for each parameter combina-
tion (𝜇1, 𝜇2) in order to prevent random fluctuations in the contour lines. In Figure S8, we oppose some of the previously
shown figures with versions generated with different seeds for the random number generation. The calculated power val-
ues for each parameter combination (not shown here) vary in line with what can be expected from the performed number
of simulations according to the corresponding binomial rejection probabilities. Regarding the figures in this paper and
the Supplemental Material, the influence on the presented contour lines is so small that it can hardly be seen even when
the corresponding figures are overlaid.

8 EXAMPLES

8.1 Example 1—gene expression data

The first example uses gene expression data for thyroid nodules from a study of Prof. Paschke and colleagues at theMedical
Department III, University of Leipzig, Germany (Eszlinger et al., 2001). Originally, 15 patients with hot nodules and 15with
cold nodules were included in the study. Here we use only the data of the female patients (12 hot, 9 cold nodules) thus
eliminating possible confounding by gender effects and reducing the power of all included tests versions to make them
distinguishable. The tissue samples were analyzed by Affymetrix GeneChips considering gene expression levels of 12,625
genes. The data and the SAS code for the analyses are presented in the Supplemental Material.
We applied a log transformation to the expression values in order to reduce skewness and to adapt to a fold change scale

that is often applied in gene expression analyses.
The primary research question concerns the presence of differences in gene expression between hot and cold nodules.

For our test proposals, we use the city block distance. Technically, we used the relative statistic 𝑑∗∗ in a permutation test
with 99,999 random permutations. However, as mentioned in Section 2, all tests statistics deliver identical p-values in the
test for undirected differences. The value of the test statistic is 𝑑∗∗ = 0.045 with the corresponding p-value of 0.00356.
Using maxT tests by the SAS procedure MULTTEST as one of the common methods for the analysis of high-dimensional
expression data as competing approach, we end up with the smallest permutation adjusted p-value of 0.0046, which is
slightly larger than that of our distance-based test.
For biological reasons, one might suspect that the observed differences are mostly due to larger expression values in the

hot nodules. Therefore, we also apply the one-sided test version to compare hot versus cold nodules here. Againwe use the
city block distance (one-sided version) and the test statistic 𝑑∗∗. The test statistic is 𝑑∗∗ = −0.053with the corresponding
p-value of 0.2309, which is far from significance. Figure 7 shows a histogram of the differences of themean log values from
hot and cold nodules for all included genes. The slight tendency toward larger expression values in the hot nodules is not
strong enough to render the one-sided test significant.
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F IGURE 7 Histogram of the difference of the
mean ranks of gene expression data of hot and cold
nodules (hot minus cold) for the 12,625 genes

8.2 Example 2—sequencing data

For the test of equivalence, we reconsider data of Antweiler et al. (2017) with a modified test statistic. The data originate
from a biological study of the Institute for Epidemiology and Pathogen Diagnostics of the Julius Kühn-Institut in Braun-
schweig, Germany. The purpose of the study was to investigate if an antifungal biocontrol treatment with P. jessenii RU47
against the target pathogen R. solani affects the fungal composition in arable soil in the next season. It was hoped that the
study can rule out disturbances of the fungal composition by the treatment. Three different soils were investigated in an
experimental plot system in Großbeeren near Berlin. For each soil type, eight samples were taken from plots with RU47
treatment in the previous season and eight samples from control plots. The sampleswere analyzed by high-throughput ITS
amplicon sequencing and sequences were allocated to operational taxonomic units (OTUs) by two different approaches.
Here, we use only the data classified by the database-dependent strategy (DBDS) and from soil type loess loam (LL) for
which eight additional samples from an external field under control condition were available.
Omitting OTUs with sequences in less than five of the soil samples, 585 OTUs were available for the analysis. The SAS

data set RU47_LL_with_external_samples.sas7bdat in the Supplemental Material contains the relative frequencies of the
OTUs multiplied with the factor 1000.
We first compare the groups using the test statistic

√
𝑑∗. We choose city-block distances applied to the relative frequen-

cies, which is proportional to the relative Bray-Curtis distance that is very popular in ecological studies (De Caceres et al.,
2013). The comparison of RU47-treated samples and the internal control group yields

√
𝑑∗ = 26.341 with the upper limit of

the confidence interval of 27.428. To give an ecological argument for a tolerance threshold, we utilize the external control
samples (one of two choices in Antweiler et al., 2017). If we compare the internal and the external control sample in terms
of

√
𝑑∗, then the lower limit of a 95%-CI yields a value of 35.400. Using this lower limit as the tolerance threshold, we

see that the upper confidence limit for RU-47-treated samples versus the internal control group is much lower, indicating
equivalence (𝑝 = 3 ⋅ 10−10).
In order to find more proper comparisons with competing methods that are more restrictive in their choice of distance

measure, we also use the relative test statistic 𝑑∗∗ with the threshold 𝜃 = 0.25 as in the simulation studies before. Now
the analysis is based on squared Euclidean distances, and the data are log-transformed (ln(𝑟 ⋅ 1000 + 1), 𝑟 = relative
frequency) for a better approximation to the normal distribution. The comparison of the RU47-treated samples with the
(internal) controls yields the test statistic 𝑑∗∗ = −0.0120with a p-value of 0.0007 in the test against the threshold 0.25 and
the upper limit of the confidence interval of 0.1050. Thus, the test for equivalence is highly significant again.
Using the proposal of Chervoneva et al. (2007) as first competing method, with the control group as reference group

and the adapted tolerance threshold of 0.5 according to their notation, does not give a significant results. We embedded
their proposals to compute the upper limit of the confidence intervals for fixed test level α in a nonlinear optimization
procedure (NLPHQN procedure in SAS/IML) to find the test level where the confidence level is just on the border of the
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tolerance region. This way, we obtained the p-values 0.6171 for the normal approximation and 0.6141 for the chi-squared
approximation. Both are far from significance presumably mainly due to the strongly conservative behavior for large
number of variables (cf. Section 7 and Figure S1) and the fact that this method uses only the reference group for the
calculation of within-group distances.
As a second competitor, we consider univariate tests for all variables combined with the intersection-union principle

that is, of course, a much stricter criterion. In the special case of only one included variable, equal sample sizes 𝑛1 = 𝑛2 =
𝑛0 in both groups and the squared Euclidean distance asmeasure, a simple algebraic calculation yields 𝑑∗∗ =

1

2
(
�̄�1−�̄�2

𝑠
)2 −

1

𝑛0
, where �̄�1 and �̄�2 are the two samplemeans and 𝑠 is the pooled standard deviation. Thus, a test for 𝑑∗∗ with the tolerance

threshold 𝜃 is comparable to a test of ( �̄�1−�̄�2
𝑠
)2 with the threshold 2(𝜃 + 1

𝑛0
). Then, at the border of the tolerance region, the

test statistic𝐹0 = (
�̄�1−�̄�2

𝑠
)2

𝑛1𝑛2

𝑛1+𝑛2
follows a noncentralF-distributionwith degrees of freedom 𝑑𝑓1 = 1, 𝑑𝑓2 = 𝑛1 + 𝑛2 − 2

and noncentrality parameter 𝜆 = 2(𝜃 + 1

𝑛0
)
𝑛1𝑛2

𝑛1+𝑛2
. The p-value follows as 𝑃(𝐹(𝑑𝑓1, 𝑑𝑓2, 𝜆) ≤ 𝐹0). From the 585 variables,

191 have p-values below 0.05, 259 below 0.10 and 462 below 0.25. The maximum p-value was 0.933. As that is also the
p-value of the intersection-union test, this much stricter approach to equivalence testing does not yield significance here.
However, in high-dimensional data with partly limited knowledge on the importance of single variables as in the present
situation, the summarizing multivariate approach as proposed here seems appropriate and insistence on variable-wise
equivalence as in the intersection-union test would be unreasonable.
The SAS code for the analyses is contained in the Supplemental Material.

9 DISCUSSION

In this paper, we consider a class of tests that is based on pairwisemultivariate distancemeasures between sample vectors.
Such tests are in widespread use as tests for differences, particularly in the field of ecology. They can as well be used in
other fields where a group of variables shall be investigated jointly. The choice of the distance measure determines the
degree to which single or a few variables influence the outcome of the test and allows a flexible use in different fields of
application.
The modifications for asymmetric distance measures presented here facilitate directed tests. In every application, one

has to check if the modified measure still reflects the research question. Particularly, they are not suitable for relative
frequencies because of the inherent indirect relationships between the variables. Both versions for directed or undirected
differences can be implemented as permutation tests.
We also present extensions for multivariate equivalence tests or tests for noninferiority. Instead of checking equivalence

for each variable separately, we make the decision on the basis of the multivariate distance measures that is a weakened
claim butmight be appropriate particularly in high-dimensional data. Since permutation techniques are difficult to imple-
ment and interpret formultivariate tests of entire parameter regions under the null hypothesis, we propose a leave-one-out
technique that estimates the variance of the test statistic and provides a confidence interval for the expectation of the test
statistic that is used to decide about equivalence or non-inferiority.
The permutation tests are distribution-free, but the confidence interval via leave-one-out variance estimate requires an

approximate normal distribution of the test statistic in the considered populations. In the simulation experiments, it was
difficult to find a suitable transformation for the difference of the means of within-group and between-group distances. A
simple root transformation did quite well for themean of between-group differences (as graphically checked by histogram
plots over the simulation runs). The ratio of between-group und within-group distances by the within-group distances
also yielded a sufficient approximation. An attempt to overcome the restriction of approximate normality by additional
bootstrap-loops within the leave-one-out loop was not successful and has been omitted here.
The two selected test procedures showed robustness with respect to mild deviations from normality of the raw data. In

severely skewed data, the robustness can be checked in adapted simulation studies. Furthermore, one has to check then if
the chosen distancemeasure reflects the intentions for the aggregation over the variables. Basically, the distancemeasures
considered here are based on the idea of similarly scaled linear variables. Generally in many situations, a transformation
of the original data may be useful. If, for example, a new drug shall be compared to the standard drug for a disease with
respect to adverse events in a noninferiority test on the basis of counts in a large list of different adverse effects—some of
them occurring more often, others only rarely—then the log transformation ln(𝑥 + 1)might be useful. This would give a
better approximation of normality and also a more convenient weighting of small and large values.
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The ratio-based test statistic has the advantage that a standardized tolerance threshold could be defined for it. Otherwise,
additional experimental extensions or experience from former research is required for the tolerance threshold definition.
In analyses of the composition of microbial species in agricultural experiments, Pearson correlation coefficients 𝑟 are

often used as similarity measures between two sample elements instead of distance measures. These analyses are based
on counts of the species. However, for reasons of technological and financial limitations in the sampling and the sam-
ple analysis techniques, the total count is not biologically or statistically meaningful in these experiments. Only relative
counts (percentages) aremeaningful, which is automatically respected in the calculation of correlation coefficients. In the
framework presented here, the correlation coefficient r could be handled by using (1 − 𝑟2) as the distance measure. Alter-
natively, similarity measures such as r could be used in the permutation tests of Section 3 or the leave-one-out versions for
tests of equivalence in Section 5. One has just to take in account the reversed orientation (similar sample elements have
large correlations but small distances). The derivation of one-sided tests (Sections 4 and 6) based on Pearson correlations,
however, seems less straightforward to us.
As already mentioned in Antweiler et al. (2017), it is possible to include several criteria in tests for equivalence or

noninferiority. For example, one could claim that two treatment groups are considered equivalent only if the differences
expressed by the squared Euclidean distance (targeting a smoothing over several variables) and additionally expressed
by the maximum absolute distance (targeting the influence of single variables) are both below corresponding thresholds.
It may also be of interest to address additionally the influence of some variable of particular interest. As in these cases,
equivalence or noninferiority is only accepted if all partial criteria are fulfilled (intersection-union principle), each of these
partial tests can be done at the unadjusted error level 𝛼. However, the power analysis has to be adjusted for the additional
criteria.
In this paper, only the simple case of two groups has been considered. The tests for difference can be easily extended

to multi-factorial designs including covariables. Anderson (2001) gave an overview in the nonparametric setup. Recent
developments use permutations of residuals (Pauly et al., 2015). In the classicalmultivariate normal situation, permutation
tests can be replaced by rotation tests yielding exact parametric tests for small samples (Kropf&Adolf, 2009). Both versions
might be applicable to one-sided tests for difference, equivalence, or noninferiority based on distances between sample
elements. These generalizations require further research.
As discussed above, it is difficult to compare the power of the proposed multivariate tests with that of univariate tests

combined in a multiple test procedure because the targets differ. This concerns the strictness with which weak effects in
the wrong direction in one-sided tests are tolerated and the definition of tolerance thresholds for tests of equivalence or
noninferiority. These caveats have to be kept in mind in applications.
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