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OTTO VON GUERICKE UNIVERSITÄT MAGDEBURG

Abstract
Institut für Mathematische Stochastik

Fakultät für Mathematik

Structured Pure Exploration Bandit Problems and Extensions

by James Cheshire

The subject of this thesis is a study of several multi armed bandit problems (MAB),
with a focus on structured pure exploration bandit problems. We begin with an
extensive overview of the MAB literature, with specific weight given to classical
techniques and results, for pure exploration bandit problems. Over the course of our
analysis we will explore several novel extensions to the MAB. Our first contribution
will be to classify the minimax rate for the Thresholding Bandit Problem (TBP). We
will then go on to consider the TBP under several shape constraints and again classify
the minimax rate in each of these cases. Our second contribution is to study the
shape constrained TBP in a problem dependent setting. For the TBP, under both a
monotone and concave constraint, we provide problem dependent upper and lower
bounds, matching up to log terms. Our third contribution is to consider a potentially
infinite armed formulation of the MAB, where a proportion of the arms are optimal.
In this setting we provide problem dependent upper and lower bounds, matching up
to log terms, for both cumulative regret and best arm identification.

Das Gegenstand dieser Dissertation ist die Untersuchung von mehreren Multi Armed
Bandit-Probleme (MAB) mit einem Fokus auf Structured Pure Exploration Bandit-
Probleme. Wir fangen mit einer umfangreichen Übersicht der MAB Literatur an, wobei
wir in die klassischen Techniken und Ergebnisse für Pure Exploration Bandit-Probleme
tiefer eingehen. Im Laufe unserer Analyse werden wir mehrere originelle Erweiterungen
zur MAB untersuchen. Unser erstes Beitrag wird das Klassifizieren der Minimax-
Raten für das Thresholding Bandit Problem (TBP) sein. Anschließend werden wir
das TBP unter einigen Formbeschränkungen betrachten und die Minimax-Rate in
jedem dieser Fälle klassifizieren. Unser zweites Beitrag wird die Untersuchung des
formbeschränkten TBPs in einer problemabhängigen Umgebung sein. Für das TBP,
unter sowohl einem monotonen, als auch konkaven Zwang, bieten wir problemabhängige
Ober- und Untergrenzen an, die bis auf die Log-Terme übereinstimmt. Unser dritter
Beitrag wird die Betrachtung einer potentiellen Infinite Armed Formulierung des
MAB sein, wobei ein Anteil der Arme optimal sind. In dieser Umgebung schaffen wir
problemabhängige Ober- und Untergrenzen, die für beide Cumulative Regret und Best
Arm Identification bis auf die Log-Terme übereinstimmt. Das letzte Kapitel von dieser
Dissertation widmet sich einer laufenden Arbeit, der Cluster-Identifikation mit Bandit
Rückmeldung.

HTTPS://WWW.OVGU.DE/
https://www.math.ovgu.de/Institute/IMST.html
https://www.math.ovgu.de/




ix

Contents

Declaration of Authorship iii

Abstract vii

1 Introduction 1
1.1 Stochastic multi armed bandit problems (MAB) . . . . . . . . . . . . . 1

1.1.1 Preliminary notation and terminology . . . . . . . . . . . . . . 2
1.1.2 Minimax rates and problem independent vs dependent . . . . . 3
1.1.3 Fixed budget vs fixed confidence . . . . . . . . . . . . . . . . . 3

1.2 The 2 armed bandit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Probability of error in BAI for fixed budget 2 armed bandit . . 4
1.2.2 Cummulative regret for 2 armed bandit . . . . . . . . . . . . . 6

1.3 Cumulative regret for the K-armed bandit . . . . . . . . . . . . . . . . 9
1.3.1 UCB algorithm for the K-armed bandit . . . . . . . . . . . . . 9
1.3.2 Lower bound for cumulative regret in K-armed bandit . . . . . 11
1.3.3 Asymptotic optimality and the KL-UCB . . . . . . . . . . . . . 12

1.4 Pure exploration bandit problems . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Best arm identification (BAI) . . . . . . . . . . . . . . . . . . . 14
1.4.2 TopM problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 The thresholding bandit problem (TBP) . . . . . . . . . . . . . . . . . 23
1.5.1 The APT algorithm and problem dependent bounds for the TBP 24
1.5.2 Problem independent bounds for the TBP . . . . . . . . . . . . 27

1.6 Shape constrained thresholding bandit problem . . . . . . . . . . . . . 28
1.6.1 Problem independent TBP under a monotone constraint . . . . 28
1.6.2 Problem independent TBP under concave and unimodal constraints 34
1.6.3 Problem dependent rates for the shape constrained TBP . . . . 35

1.7 Best arm identification under many optimal arms . . . . . . . . . . . . 37
1.7.1 Bandits with an infinite reservoir . . . . . . . . . . . . . . . . . 37
1.7.2 BAI for for bandits with infinite reservoir, under fixed confidence 39
1.7.3 BAI under fixed proportion of many optimal arms in the fixed

budget setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.8 Cumulative regret under many optimal arms . . . . . . . . . . . . . . . 44

2 The Influence of Shape Constraints on the TBP 47
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Minimax expected regret for TBP , MTBP , UTBP , CTBP . . . . . . . 51
2.4 Minimax optimal algorithms . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Unstructured case TBP . . . . . . . . . . . . . . . . . . . . . . 53
2.4.2 Monotone case MTBP . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.3 Unimodal case UTBP . . . . . . . . . . . . . . . . . . . . . . . 56
2.4.4 Concave case CTBP . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



x

2.5.1 Supplementary discussion concerning the TBP and MTBP . . 59
2.5.1.1 Comparison of TBP and MTBP and focus on the main

difference coming from the monotone structure . . . . 59
2.5.1.2 Supplementary details of the related works: TBP . . . 59
2.5.1.3 Supplementary details of the related works: MTBP . 59
2.5.1.4 Contribution with respect to the literature . . . . . . 60
2.5.1.5 Problem dependent regime . . . . . . . . . . . . . . . 61

2.5.2 Supplementary discussion . . . . . . . . . . . . . . . . . . . . . 61
2.5.2.1 Parameters of the algorithms . . . . . . . . . . . . . . 61
2.5.2.2 Making the algorithms anytime . . . . . . . . . . . . . 62
2.5.2.3 Computational complexity . . . . . . . . . . . . . . . 63

2.6 Extension of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.1 Adaptation to the β-Hölder continuous case . . . . . . . . . . . 63
2.6.2 Extension to σ2-sub-Gaussian for TBP and MTBP . . . . . . . 63
2.6.3 Extension of results to fixed confidence setting . . . . . . . . . 64
2.6.4 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.5 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.1 Proof of Theorem 23 . . . . . . . . . . . . . . . . . . . . . . . . 66
2.7.2 Proof of Theorem 24 . . . . . . . . . . . . . . . . . . . . . . . . 69
2.7.3 Proof of Theorem 25 . . . . . . . . . . . . . . . . . . . . . . . . 78
2.7.4 Proof of Theorem 26 . . . . . . . . . . . . . . . . . . . . . . . . 81
2.7.5 Sketch proof of Proposition 11 . . . . . . . . . . . . . . . . . . 88

3 Problem Dependent View on Structured TBP 91
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Minimax rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.1 Problem dependent unstructured setting TBP . . . . . . . . . . 95
3.3.2 Problem dependent monotone setting . . . . . . . . . . . . . . . 96
3.3.3 Problem dependent concave setting . . . . . . . . . . . . . . . . 97

3.4 Optimal algorithms in the problem dependent regime . . . . . . . . . . 97
3.4.1 Monotone case MTBP . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.2 Concave case CTBP . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.5.1 Algorithms Explore and ProbDep-CTB . . . . . . . . . . . . . . 103
3.5.2 Problem classes and optimality . . . . . . . . . . . . . . . . . . 103
3.5.3 Comparison of rates between settings . . . . . . . . . . . . . . . 104
3.5.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.6 Potential further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.6.1 Algorithms that are problem dependent and minimax-optimal . 107
3.6.2 Unimodal constraint . . . . . . . . . . . . . . . . . . . . . . . . 108

3.7 Proofs relating to the Monotone setting . . . . . . . . . . . . . . . . . 108
3.8 Proofs relating to the concave setting . . . . . . . . . . . . . . . . . . . 113
3.9 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4 Bandits with Many Optimal Arms 125
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xi

4.2 Cumulative regret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2.1 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.3 Impossibility of adapting to p? . . . . . . . . . . . . . . . . . . 134

4.3 Best-arm identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.1 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.5 Conclusion and open questions . . . . . . . . . . . . . . . . . . . . . . 136
4.6 Cumulative regret proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.6.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.6.3 Impossibility of adaptation to p? . . . . . . . . . . . . . . . . . 140

4.7 Best-arm identification proofs . . . . . . . . . . . . . . . . . . . . . . . 142
4.7.1 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.7.2 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.8 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.9 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149





1

Chapter 1

Introduction

1.1 Stochastic multi armed bandit problems (MAB)

First introduced in the context of clinical trials, [81], in the stochastic multi armed
bandit problem, (MAB), a learner is faced with many actions or “arms". At each time
step they must choose a single action from which they observe a, typically noisy, reward.
A classical objective of the learner is then to maximise their expected cumulative
reward, see [81]. With this objective the learner wishes to choose arms with high
expected pay off as much as possible. However, the expected rewards are unknown to
the learner - leading to the exploration vs exploitation trade off.

The classical multi armed bandit problem is as follows. The learner is presented
with an arm set A where each arm, a ∈ A follow a distribution νa with mean µa. The
learner has a budget T > 0 and sequentially samples the arms for a total T times.
At time t < T let at be the arm chosen, the learner then receives a reward Yt ∼ νat
conditionally independent of the past. We term the policy of the learner a sampling
strategy, that at each time step maps the past observations, both previous rewards
and arm choices, plus potentially some external randomness to the next choice of arm.

As mentioned the MAB was first considered in the context of maximising expected
cumulative reward,

E

[
T∑
t=1

Yt

]
.

Clearly, the optimal policy would be to always pick the arm with highest expected
reward. With this in mind, for an arm set A we define

µ∗ = max
a∈A

(µa) ,

as the maximum value attained by the means of the arms. An arm is said to be
optimal, if its mean is equal to µ∗. We now define the cumulative regret of the learner
as the difference between the learner’s policy and the optimal policy,

R(T ) := Tµ∗ − E

[
T∑
t=1

Yt

]
. (1.1)

Now the learner is faced with the “exploration vs exploitation" trade off, they wish
to spend most of their budget on arms that are optimal - or at least near optimal,
however the means of the arms are unknown. Therefore the learner must explore the
arm set, sampling many arms to find ones with a high expected reward. There are
also such "pure exploration bandit problems", here the learner does not care about
their cumulative reward and only wishes to uncover some hidden property of the arms.
Perhaps the simplest such setting is that of best arm identification (BAI). That is, at
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the end of T rounds the learner must output a prediction â of an optimal arm. One
can then evaluate their performance on their expected simple regret,

r(T ) := E[µ∗ − µâ] , (1.2)

that is, the expected difference in the mean of the predicted arm to the true optimal.
Or their probability of error,

e(T ) := P(µâ 6= µ∗) . (1.3)

Over the course of this thesis we will cover both pure exploration MAB, as well as
the more classical cumulative regret, in a variety of settings.

1.1.1 Preliminary notation and terminology

For simplicity, in the entirety of Section 2.1 we assume that all arms a ∈ A are
distributed with support bounded on [0, 1]. Almost exclusively our results will extend
to, and maintain optimality under, the assumption of sub Gaussian distributions
with unbounded support. The single instance where this in not the case is clearly
highlighted.

With the exception of Sections 1.8 and 1.7, for the entirety of the introduction
to this thesis, we will be restricted to the K armed bandit setting, that is A is finite
and |A| = K. In this case we denote B the set of all possible bandit problems with
K arms, where the distribution of each arm has bounded support on [0, 1]. We also
define the set of all possible policies, C. We suppress dependency of B and C on K in
our notation. The regret of the learner is some function φ,

φ : (B, C, T )→ R .

We term the regret of a policy π on a problem ν ∈ B, for a regret function φ, with
budget T , as φνπ(T ). As an example, consider the cumulative regret, Equation (1.1),
where for a policy π ∈ C, problem ν ∈ B and budget T , the cumulative regret of policy
π, with budget T , on on problem ν, is given as Rνπ(T ). In some cases, when it is
obvious to the reader, we may drop the dependency on π, ν in the notation.

For a bandit problem ν and policy π we will denote the distribution on the
canonical bandit model, see [63](Chapter 4.6) as Pν,π. Essentially this can be seen
as the distribution on all samples gathered by a policy π on bandit problem ν. We
similarly define Eν,π as the expectation on the canonical bandit model. For two
distributions P,Q, on the same measurable space (Ω,F), for P absolutely continuous
to Q, we write P � Q. For a integer K ∈ N, we define,

[K] := {1, ...,K} .

For time t > 0 and arm a ∈ A, let Na(t) be the number of times the learner has pulled
arm a up to, but not including, time t, that is,

Na(t) :=
∑
s<t

1(as = a) .

One of the defining characteristics of the MAB is that the learner does not have
access to the true means of the arms. We also denote for some time t and arm a, the
empirical mean of arm a at time t as,
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µ̂a,t :=
1

Na(t)

∑
s<t:as=a

Ys .

Where obvious, we will occasionally drop the dependency on t in the notation and
simply denote the empirical mean of arm a as µ̂a.

1.1.2 Minimax rates and problem independent vs dependent

One way to judge a policy π, on B, is by its worst case performance, i.e.

sup
ν∈B

φνπ(T ) . (1.4)

A benchmark to measure (1.4) against is the minimax rate, which we define as follows,

φ∗T (B) := inf
π∈C

sup
ν∈B

φνπ(T ) ,

that is the "best worst case performance" across all possible policies π ∈ C on the class
of problems B. By considering regret on the entire class of problems, B, our results
are termed to be problem independent in the sense that they hold in the worst case,
across all problems. However, if we do not wish to default to worst case performance,
we can instead consider a restricted class, that only contains problems of a certain
difficulty. To perform well in the setting of cumulative regret, the learner must be able
to distinguish arms as optimal or sub optimal; the difficulty of this problem depends
upon the distance between the means of the arms. With this in mind, for some a ∈ A
let us define the gap to an optimal arm, ∆a, of the ath arm as,

∆a := µ∗ − µa .

We then say, that the sequence of gaps (∆a)a∈A classifies the complexity of the problem.
Instead of evaluating the learner on their worst case performance, across all possible
problems, we can classify their regret given a specific vector of gaps. That is, given a
sequence of gaps ∆̄, we can consider the rate on the restricted set of bandit problems,

B∆̄ := {ν ∈ B : ∀a : µa 6= µ∗, µ∗ − µa ≥ ∆̄a} .

In this case, our results will be dependent upon the gaps (∆a)a∈A and are termed
problem dependent results. For a given ∆̄ and regret function φ, we can again define
the minimax rate on this restricted set of problems as,

φ∗T (B∆̄) := inf
π∈C

sup
ν∈B∆̄

φνπ(T ) .

During this thesis we will present results from both the problem dependent and problem
independent perspective.

1.1.3 Fixed budget vs fixed confidence

So far we have introduced the MAB in terms of a fixed budget, that is the learner
provides a policy π which runs for a total of T time steps, were their goal is to minimise
their regret, φπ(T ). This is in contrast to the fixed confidence setting. Here there is
no fixed T , instead, along with a policy π, the learner must choose a stopping time
τ . That is, their policy π will run for τ time steps. The stopping time τ may be
dependent on both observed rewards and external randomness. Fix a problem class B
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and regret function φ, where the regret of some policy π, with stopping time τ , on
some problem ν ∈ B, is given as φνπ(τ). For some confidence level δ > 0 and margin
of error ε > 0, a policy π, with stopping rule τ , is said to be PAC(δ, ε) (probably
approximately correct), under regret function φ on the class of problems B, if,

∀ν ∈ B,Pν,π[φνπ(τ) ≤ ε] ≤ δ . (1.5)

The goal of the learner is to then obtain a PAC(δ, ε) policy such that the expected
stopping time in the worst case,

sup
ν∈B

Eν [τ ] ,

is minimised. In certain settings, e.g. when the regret is given as some probability
of error, we will take ε = 0. In such cases, dependency on ε may be dropped in the
notation and we refer to PAC(δ) policies.

While the majority of novel results presented in this thesis will be in the fixed
budget setting, much of the related literature is in the fixed confidence setting.

1.2 The 2 armed bandit

In this section we will first present a toy problem, the two armed bandit. Our goal is
to build the reader’s intuition and also introduce some classical proof techniques. In
the 2 armed bandit, we restrict the arm set to have cardinality 2, that is, A = {1, 2}.
We will study this problem under both probability of error for BAI and cumulative
regret. For the two armed case, there is a single gap ∆ = |µ1 − µ2|. If µ1 = µ2, in
the 2 armed case, then both BAI and minimisation of cumulative regret are trivial,
therefore, for the remainder of this section, we assume |µ1 − µ2| > 0.

1.2.1 Probability of error in BAI for fixed budget 2 armed bandit

To minimise probability of error for BAI in the two armed bandit, we utilise perhaps
the most simplistic algorithm in bandit theory, Uniform Allocation. That is, we pull

for a ∈ {1, 2} do
Pull arm a, T/2 times, let µ̂a denote sample mean

end
Output: arm in arg maxa∈{1,2}(µ̂a)

Algorithm 1: Uniform allocation

both arms a total of T/2 times and then output the arm with highest empirical mean.

Upper bound on regret of Uniform Allocation To upper bound the probability
of error of Uniform Allocation, we recall a classical result, Hoeffding’s inequality.

Theorem 1. Let X1, ..., Xn be independent random variables all supported on the
interval [b, d] for some b, d ∈ R with b < d. Let

∑n
i=1Xi = Sn, then for all s > 0,

P(|Sn − E[Sn]| ≥ s) ≤ 2 exp

(
− 2s2

n(d− b)2

)
.

Concentration inequalities, such as the above, are very useful in bandits, as
illustrated by the proof of the following theorem.
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Theorem 2 (Specific version of Theorem 2 [2]). Let ∆ > 0 and assume T > 2, K = 2,
on all bandit problems ν ∈ B∆, Uniform Allocation will satisfy,

eνUniform Allocation(T ) ≤ exp(−T∆2/4) .

Proof. Without loss of generality, assume that µ1 > µ2. Firstly note that,

e(T ) ≤ P(µ̂1 ≤ µ̂2) . (1.6)

Now define the event,
ξ := {µ̂1 > µ̂2} .

Via Hoeffding’s we have that,

P(µ̂1 − µ̂2 ≤ 0) ≤ exp(−T∆2/4) ,

and thus,
P(ξ) ≥ 1− exp(−T∆2/4) . (1.7)

As under event ξ, the algorithm recommends the correct arm, the proof follows.

Lower bound for BAI in the two armed case When constructing lower bounds,
we will typically identify pairs or families of bandit problems, that are hard for the
learner to distinguish between. An important quantity of interest will be the Kullback
Leibler divergence. For two distributions Q,P , with P � Q, on the same measurable
space (Ω,F) we denote the Kullback Leibler divergence as,

KL(P,Q) =

∫
Ω

log

(
dP (x)

dQ(x)

)
dP (x) .

In the case where P is not absolutely continuous to Q then we let KL(P,Q) =∞,
however, for the entirety of this thesis, we will only consider the KL divergence on
distributions absolutely continuous to one another. To prove our lower bounds we
will use information theoretic results, such as the Bretagnolle-Huber’s Inequality (see
Theorem 14.2 [63]).

Theorem 3 (Bretagnolle-Huber’s Inequality). For any two probability measures P,Q
on a measurable space (Ω,F), and an arbitrary event A ∈ F ,

P (A) +Q(Ac) ≥ 1

2
exp(−KL(P,Q)) .

Thus, for two bandit problems, ν, ν ′ and policy π, of particular interest to us will
be the Kullback Leibler distance, KL(Pν,π,Pν′,π). We remind the reader that in this
section we restrict to K = 2, however, as it will be of use later we generalise to the K
armed bandit momentarily. Let

ν = {P1, ..., PK} ,

and
ν ′ = {Q1, ..., QK} ,

via application of the chain rule, see [63](Chapter 15.1), one can show,

KL(Pν,π,Pν′,π) =
K∑
a=1

Eν,π[Na(T )]KL(Pa, Qa) . (1.8)
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In our restricted setting of the 2 armed bandit, the above simplifies to,

KL(Pν,π,Pν′,π) = Eν,π[N1(T )]KL(P1, Q1) + Eν,π[N2(T )]KL(P2, Q2) .

With Theorem 3 and equation (1.8) in mind, we are now ready to construct our lower
bound.

Theorem 4. Assume T > 2, K = 2 and 0 < ∆ < 1/4, for any policy π there exists a
problem ν ∈ B∆, such that on problem ν the policy π suffers the following probability
of error,

eνπ(T ) ≥ 1

4
exp(−8T∆2) .

Proof. For x ∈ [0, 1], let Ber(x) denote the Bernoulli distribution with mean x. Define
the following two bandit problems, ν<1>, ν<2>, with,

ν<1>
1 = Ber(1/2 + ∆), ν<1>

2 = Ber(1/2) ,

and
ν<2>

1 = Ber(1/2), ν<2>
2 = Ber(1/2 + ∆) ,

Under problem ν<1> arm 1 is optimal while under problem ν<2> arm 2 is optimal.
Now,

KL(Ber(1/2 + ∆),Ber(1/2)) ≤ 4∆2 ,

and
KL(Ber(1/2),Ber(1/2 + ∆)) ≤ 8∆2 ,

thus via (1.8),

KL
(
Pν<1>,π,Pν<2>,π

)
≤ 8T∆2 .

Now we define the event,
ξ := {â = 2} ,

and then by application of the Bretagnolle-Huber Inequality, Theorem 3, on event ξ,

Pν<1>,π(ξ) + Pν<2>π(ξc) ≥ 1

2
exp(−8T∆2), ,

and thus,

max
j∈{1,2}

(ev
<j>

π (T )) ≥ 1

4
exp(−8T∆2) .

As we can see, for the 2 armed bandit, the upper bound of Theorem 2 matches our
lower bound of Theorem 4, up to multiplicative constants, both in and outside the
exponential. Later in this thesis, we will showcase the more general upper and lower
bounds for the K-armed bandit, see Section 1.4.

1.2.2 Cummulative regret for 2 armed bandit

In the setting of cumulative regret, the learner is faced with the exploration vs
exploitation trade-off. Perhaps the most naive way of approaching this, is to divide
ones budget into two distinct phases. During the first phase, the learner uses a fixed
amount of their budget to sample all of the arms evenly. The learner identifies the
best performing arm from the first phase and then uses the remainder of their budget
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to sample said arm exclusively. This is the Explore Then Commit (ETC) algorithm,
explicitly described as follows.

Input: exploration parameter m < T/2
for a ∈ {1, 2} do

Pull m times arm a, let µ̂a denote sample mean
end
Pull an arm arg maxa∈{1,2}(µ̂a) for final T − 2m rounds

Algorithm 2: ETC Algorithm for 2 armed bandit

Upper bound on the regret of ETC

Theorem 5. Let ∆ > 0 and assume T ≥ 1
∆2 , K = 2, running the ETC algorithm with

m = (4 log(T∆2)/∆) ∧ (T/2) will satisfy,

R(T ) ≤ log(T∆2)

∆
+

4

∆
,

on all bandit problems ν ∈ B∆.

Proof. In the case where T/2 < 4 log(T∆2)/∆ the proof is immediate, thus, assume
T/2 ≥ 4 log(T∆2)/∆. Without loss of generality, assume µ1 > µ2 and define the event,

ξ := {µ̂1 > µ̂2} .

Via application of Hoeffding’s, as in the proof of Theorem 2, we have that

P(ξ) ≥ 1− exp(−m∆2/4) .

On event ξ we have that, after 2m rounds, the algorithm will pull the optimal arm for
the remainder of the budget. Therefore,

R(T ) ≤ T∆ exp(−m∆2/4) +m∆ .

Choosing m = 4 log(T∆2)/∆2 will minimise the above and complete the proof.

Remark 1. The assumption T ≥ 1
∆2 , of Theorem 5, is reasonable, as in the case

where T < 1
∆2 , the trivial upper bound on the regret, R(T ) ≤ T∆, will match the

lower bound, up to a constant, as shown in Theorem 6.

Lower bound on cumulative regret for 2 armed case

Theorem 6. Let 0 < ∆ < 1/2 and K = 2. Under the assumption, T > 1
∆2 , for any

policy π there exists a problem ν ∈ B∆, such that on problem ν, the policy π suffers
the following regret,

Rνπ(T ) ≥
(
c log(T∆2)

∆

)
∧ (T∆) ,

where c > 0 is an absolute constant.
Under the assumption T ≤ 1

∆2 , for any policy π there exists a problem ν ′ ∈ B∆,
such that on problem ν ′, the policy π suffers the following regret,

Rν
′
π (T ) ≥ c′T∆ ,

where c′ > 0 is an absolute constant.
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Proof. Firstly we assume T > 1
∆2 .

Step 1: T > 1
∆2 We define the following two bandit problems, ν<1>, ν<2>, with,

ν<1>
1 = Ber(1/2 + 2∆), ν<1>

2 = Ber(1/2 + ∆) ,

and
ν<2>

1 = Ber(1/2), ν<2>
2 = Ber(1/2 + ∆) .

Now via equation (1.8) and the fact that KL(Ber(1/2 + 2∆),Ber(1/2)) ≤ 16∆2 we
have that,

KL
(
Pν<1>,π,Pν<2>,π

)
≤ 16E[N1(T )]∆2 .

Now firstly assume Eν<1> [N1(T )] ≥ log(T∆2)
32∆2 , under this assumption we have that,

Rν<1>(T ) ≥ log(T∆2)

32∆
,

and the proof is complete. Otherwise we have Eν<1> [N1(T )] < log(T∆2)
32∆2 and thus,

KL
(
Pν<1>,π,Pν<2>,π

)
< log(T∆2)/2 .

Define the event ξ
ξ := {N1(T ) > T/2} .

Note that on ξ, under problem ν<2> the learner will suffer regret T∆/2 and will also
suffer regret T∆/2 on event ξc, under problem ν<1>. Then by application of the
Bretagnolle-Huber Inequality, Theorem 3, on event ξ,

Pν<2>,π(ξ) + Pν<1>,π(ξc) ≥ 1

2
exp(− log(T∆2)/2) =

1

2∆
√
T
,

and thus, there exists ν ∈ {ν<1>, ν<2>} such that on problem ν, policy π suffers the
following regret,

R(T ) ≥
√
T/8 .

As we assume T > 1
∆2 , we have

√
T/8 > log(T∆2)

16∆ and the proof also follows.

Step 2: T ≤ 1
∆2 Under this assumption we have that,

KL
(
Pν<1>,π,Pν<2>,π

)
≤ 16 ,

and thus, defining the event ξ as in Step 1,

Pν<2>,π(ξ) + Pν<1>,π(ξc) ≥ 1

2
exp(−16) ,

and thus, there exists ν ∈ {ν<1>, ν<2>} such that on problem ν, policy π suffers the
following regret,

R(T ) ≥ 1

4
exp(−16)T∆ .

When we compare to the lower bound of Theorem 6, the ETC appears near optimal.
However, the issue with the ETC is that the learner must specify the length of the
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exploration phase m and to do this optimally, requires knowledge of ∆. In the case
where the gaps are large, the arms are easy to distinguish from one another and one
would want a relatively short exploration phase. When the gaps are small, the opposite
holds. Therefore, for the two armed bandit, for 0 < ∆ < 1/4, T > 1

∆2 , we have
classified the minimax rate,

R∗T (B∆) := inf
π∈C

sup
ν∈B∆

Rνπ(T ) ,

as of the order,
log(T∆2)/∆ ,

only in the case where ∆ is known. Knowing ∆ is an unreasonable assumption in most
practical applications. In the following section we will discuss an algorithm, the Upper
Confidence Bound (UCB) algorithm, that overcomes this obstacle.

1.3 Cumulative regret for the K-armed bandit

In this section, we consider cumulative regret under the more general setting where
|A| = K. As seen in the 2 armed case, a naive approach to balance exploration and
exploitation is to fix a proportion of the budget to be used for exploration. However,
to maximise performance of such strategies, one requires knowledge of (∆a)a∈A, in
order to tune the length of the exploration phase. This is an unreasonable assumption
in most practical applications.

1.3.1 UCB algorithm for the K-armed bandit

UCB stands for "upper confidence bound". Assume at time t we have n iid samples of
some arm a, via Hoeffding’s we can create a confidence bound around the empirical
mean as follows,

µa ∈

[
µ̂a,t −

√
log(2/δ)

2n
, µ̂a,t +

√
log(2/δ)

2n

]
,

w.p. greater than 1− δ. The principle of the UCB algorithm is "optimism in the face
of uncertainty", that is, when choosing which arm to sample next, the learner picks
the arm with the highest upper confidence bound. By doing this, we give more weight
to arms that have been pulled less. Taking δ = 1/T 2, we define the UCB index of arm
a at time t as in [4],

UCB(a, t) := µ̂a,t +

√
log(2T 2)

2Na(t)
.

The UCB algorithm is then as follows, see UCB.

Sample each arm once.
for t = (K + 1), ..., T do

Sample arm at = arg maxAUCB(a, t)
end

Algorithm 3: UCB

One may point out, that pulling arms based on the UCB index opens up the
possibility of pulling sub optimal arms. However, for a sub optimal arm, after pulling
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it several times its upper confidence bound will decrease and we will cease to pull it.
This intuition is summarised in the following proposition.

Proposition 1 (Contained in Proof of Theorem 1 [4]). Following execution of the
UCB algorithm, on some problem ν ∈ B, for a sub optimal arm a one has,

Eν,UCB[Na(T )] ≤ 3 +
4 log(

√
2T )

∆2
a

.

Proof. For t ≤ T , a ∈ A, let Xa,t be the sample received pulling the ath arm for the
tth time. Assuming all rewards are generated in advance for the learner to uncover,
for all arms a ∈ A, t ≤ T , Xa,t is well defined. Assume without loss of generality, that
µ1 = µ∗. For some arm a ∈ A : µa 6= µ∗ define the event,

ξa :=

{
∀t < T, µ∗ ≤ 1

t

t∑
s=1

X1,s +

√
log(2T 2)

2t

}
∪

{
∀t < T,

∣∣∣∣∣1t
t∑

s=1

Xa,s − µa

∣∣∣∣∣ ≤
√

log(2T 2)

2t

}
.

Via Hoeffding’s and a union bound we have that,

P(ξa) ≥ 1− 2

T
.

Now say there exists a time s where,

Na(s) >
2 log(2T 2)

∆2
a

.

For all t ≥ s, under event ξa we have the following,

UCB(a, t) < µ̂a,t + ∆a/2

≤ µa + ∆a/2 + ∆a/2 ≤ µ∗ ,

and thus, under event ξa, for all t ≥ s,

UCB(a, t) < UCB(a∗, t) ,

and

Na(T ) ≤ 2 log(2T 2)

∆2
a

+ 1 .

Therefore we have that,

E[Na(T )] ≤ P(ξca)T +
2 log(2T 2)

∆2
a

+ 1 ≤ 3 +
2 log(2T 2)

∆2
a

.

For a policy π ∈ C and problem ν ∈ B, we can decompose the cummulative regret
of the learner as follows,

Rνπ(T ) =
∑
a∈A

E[Na(T )]∆a ,

and thus by considering the pulls on all sub optimal arms, Proposition 1 leads to
the following bound on the regret of the UCB.
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Theorem 7 (Theorem 1 [4]). Let K = |A|. For ∆̄ ∈ [0, 1]K , on all bandit problems
ν ∈ B∆̄, running the UCB algorithm will satisfy,

RπUCB(T ) ≤
(

1 +
π2

3

) K∑
a=1

∆̄a + 8 log(T )
∑

a:µa 6=µ∗

1

∆̄a
.

1.3.2 Lower bound for cumulative regret in K-armed bandit

For the lower bound, it is relatively straightforward to generalise the proof of Theorem
6 for the K armed case.

Lemma 1 ([63] Lemma 16.3). Let i ∈ [K] and ν, ν ′ ∈ B be two K armed bandit
problems such that, ν, ν ′ differ only in the distribution of the ith arm and furthermore,
for problem ν arm i is strictly sub optimal and for problem ν ′ arm i is optimal. Let

λ = min

(
µ′i − µi, max

a∈[K]
(µa)− µi

)
.

In this case, for any policy π,

Eν,π[Ni(T )] ≥ log(λ/4) + log(T )− log(Rνπ(T ) +Rν
′
π (T ))

KL(vi, v′i)
.

The proof of Lemma 1 follows from a straight forward adaptation of our technique,
in the proof of Theorem 6, to the K-armed case. Lemma 1 then leads to the following
Theorem.

Theorem 8 (Specific version of Theorem 16.4 [63]). Let K = |A|. Consider ∆̄ ∈
[0, 1/2)K and policy π. If the regret of policy π, on all problems ν ∈ B∆̄, satisfies,

Rνπ(T ) ≤ c
√
T ,

for some constant c > 0, then their exists a problem ν̃ ∈ B∆̄, such that on problem ν̃,
policy π suffers the following regret,

Rν̃π(T ) ≥ c′
K∑
a=1

log(T ∆̄2
a)

∆̄a
,

where c′ > 0 is an absolute constant depending only on c.

Proof. Consider the bandit problem ν ∈ B∆̄ where,

νj =

{
Ber(1/2) if j = 1

Ber(1/2− ∆̄j) if j 6= 1 .

Take a suboptimal arm i > 1 on problem ν. Consider the bandit problem ν ′ ∈ B∆̄,
such that,

ν ′j =

{
νj if j 6= i

Ber(1/2 + ∆̄j) if j = i .

We remind the reader that for some α ∈ [0, 1/2),

KL(Ber(1/2− α),Ber(1/2 + α)) ≤ 8α2 ,
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and thus by application of Lemma 1 we then have,

Eν,π[Ni(T )] ≥ log(∆̄i/4) + log(T )− log(Rνπ(T ) +Rν
′
π (T ))

8∆̄2
i

.

Therefore under the assumption that,

∀ν̃ ∈ B∆̄, R
ν̃
π(T ) ≤

√
T/2 ,

we have that,

Eν,π[Ni(T )] ≥ log(T )/2 + log(∆̄i/4)

8∆̄2
i

,

and thus,

Rνπ(T ) ≥
K∑
a=1

log(T ∆̄2
a/16)

16∆̄a
,

providing the result.

Thus via combinations of Theorem 7 and Theorem 8, for a given ∆̄ ∈ [0, 1]K , α > 1,
with T ≥ mina∈A(∆̄a)

−2α, we have identified the minimax rate, R∗T (B∆̄)

R∗T (B∆̄) := inf
π∈C

sup
ν∈B∆̄

Rνπ(T ) ,

as,

cα log(T )
K∑
a=1

1

∆a
,

where cα is a constant depending only upon alpha.

Remark 2. In the problem independent setting the UCB does not attain the minimax
rate. A modified version of the UCB, termed MOSS, see [3], is minimax optimal in
the problem independent setting. However, as this thesis doesn’t concern the problem
independent setting for cumulative regret, an analysis of the MOSS algorithm is not
included.

1.3.3 Asymptotic optimality and the KL-UCB

While the original results of this thesis all concern finite time bounds, it is nevertheless
important to mention results for asymptotic bounds, i.e. as T →∞, on cumulative
regret, as much of the related literature will be linked to this concept. The presence
of the log(T ) term in the finite time lower bound, Theorem 8, ensures that for any
possible policy π, as T →∞,

sup
ν∈B

Rνπ(T )→∞ .

Therefore, given a problem ν ∈ B, it makes more sense to consider how the scaled regret,
Rνπ(T )/ log(T ), behaves as T →∞. Let us first introduce an asymptotic concept, that
of consistency. A policy π is said to be consistent on a class of problems B̄, if, ∀p > 0
and ∀ν ∈ B̄,

lim
T→∞

Rνπ(T )

T p
= 0 .

For example, from Theorem 7 one can see that the UCB is consistent.
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Theorem 9 (Theorem 16.2 [63]). For a class of bandit problems B̄, and a bandit
problem ν ∈ B̄, and any consistent policy π,

lim
T→∞

Rνπ(T )

log(T )
≥

∑
a:µa 6=µ∗

∆a

infσ∈B̄:E[σa]>µ∗ KL(νa, σa)
.

To give some intuition behind the result of Theorem 9, let N be the class of bandit
problems, where all arms follow a normal distribution N (µ, 1), for some unknown
µ ∈ R. That is,

N := {ν ∈ B : ∀a ∈ A,∃µ ∈ R : νa ∼ N (µ, 1)} .

For a ν ∈ N and arm a ∈ A, we remind the reader that,

KL(N (µa, 1),N (µ∗, 1)) = ∆2
a/2 , (1.9)

thus, for some bandit problem ν ∈ N, and arm a,

inf
σ∈N:E[σa]>µ∗

KL(νa, σa) = ∆2
a/2 .

From Theorem 7 we have that,

lim
T→∞

RνUCB(T )

log(T )
≤ c

∑
a:µa 6=µ∗

1

∆a
.

for some absolute constant c > 0. Therefore, in the case where we restrict to the class
of problems N, the UCB will match the asymptotic lower bound of Theorem 9, up to
a constant. As we see from Equation (1.9), for normal distributions the KL-divergence
is equal to the squared gap, however, this is not always the case. Let us write B as
the class of bandit problems where all arms follow a Bernoulli distribution Ber(µ) for
some unknown µ ∈ [0, 1], that is,

B := {ν ∈ B : ∀a ∈ A,∃µ ∈ [0, 1] : νa ∼ Ber(µ)} .

For some bandit problem ν ∈ B, and arm a,

inf
σ∈B:E[σa]>µ∗

KL(νa, σa) = KL(Ber(µa),Ber(µ∗)) ,

and,

KL(Ber(µa),Ber(µ∗)) = µa log

(
µa
µ∗

)
+ (1− µa) log

(
1− µa
1− µ∗

)
,

which can differ significantly from ∆2
a, specifically in cases where µa is far from 1/2.

Therefore, if we extend beyond the restricted Gaussian setting of N, the UCB algorithm
can no longer be considered asymptotically optimal. To achieve asymptotic optimality,
in the case where we restrict to Bernoulli distributed arms, a modified version of the
UCB algorithm, the KL-UCB achieves asymptotic optimality. The principle of the
KL-UCB is to construct the upper confidence bounds using the KL-divergence, as
opposed to Hoeffding’s. We define the KL-UCB index of an arm a ∈ A at time t < T
as,
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KLUCB(a, t) := max

{
q ∈ R : Na(t)KL(Ber(µ̂a,t),Ber(q)) ≤ log(t) + 3 log log(t)

}
.

The KL-UCB algorithm is then as the UCB, the only change being that at each round
we pick the arm maximising the KLUCB index, as opposed to the UCB index. The
asymptotic regret of the KL-UCB is upper bounded as follows.

Theorem 10 (Theorem 1 [36]). For all ν ∈ B, the KL-UCB satisfies,

lim
T→∞

Rν(T )

log(T )
≤

∑
a:µa 6=µ∗

∆a

KL(νa,Ber(µ∗))
.

Thus, Theorem 10 shows the asymptotic optimality of the KL-UCB for Bernoulli
distributed arms, also optimal in the constant term. Furthermore as the result extends
to the case of [0, 1] bounded support, the KL-UCB also has potential to outperform
the UCB in this more general setting, see [36].

1.4 Pure exploration bandit problems

1.4.1 Best arm identification (BAI)

In pure exploration problems, the learner does not care about their cumulative regret,
but instead wishes to uncover some underlying property of the arms. A natural
objective is best arm identification (BAI). That is, at the end of T rounds the learner
must output a prediction â of an optimal arm. One can then evaluate their performance
on their expected simple regret - the expected difference in the mean of the predicted
arm to the true optimal, see Equation (1.2), or probability of error - the probability
the learner outputs a non optimal arm as their prediction, see Equation (1.3). In the
fixed budget setting, simple regret is a more suitable measure of regret for the problem
independent case and probability of error is more suited to the problem dependent
case. To see this, imagine for the two armed case that we let ∆→ 0, the probability
of error of any algorithm will then tend to one. Thus, probability of error is not an
informative measure of regret in the problem independent setting.

BAI in the fixed confidence setting To the best of the authors knowledge, BAI
was first studied, under expected simple regret, in the fixed confidence regime. In [75]
the authors propose an algorithm based on successive elimination of the arms, see also
[69], [32] and [31]. Confidence bound based algorithms have also been studied, see [48].
In [57] the authors provide upper and lower bounds, for the expected stopping time
of PAC(δ) algorithms, see Equation (1.5), for the two armed case, that match in the
asymptotic, i.e. as δ →∞. This result is extended to the K armed bandit in [37]. To
the best of the authors knowledge, optimal non asymptotic bounds, for BAI in the
fixed confidence setting, remains an open question.

BAI under simple regret for the fixed budget setting For the fixed budget
setting, under expected simple regret, the paper [77] classifies minimax optimal rates
for the restricted case of 2 arms. Moving on to the more general K-armed case, results
follow almost immediately from existing results on cumulative regret. As highlighted in
[12], a straightforward adaptation of the proof of Theorem 5.1 [5] leads to the following
lower bound.
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Theorem 11. Assume T > K, then for any policy π there exists a problem ν ∈ B
such that on problem ν the policy π suffers the following expected simple regret,

rνπ(T ) ≥ c
√
K

T
,

where c > 0 is an absolute constant.

In [12] the authors also show the following upper bound.

Theorem 12 (Corollary 3 [12]). Assume T > 2K, on all bandit problems ν ∈ B, the
strategy of uniform allocation, then outputting the arm with highest empirical mean
will satisfy,

rν(T ) ≤ c
√
K log(K)

T
,

where c > 0 is an absolute constant.

The proof follows almost immediately from application of Hoeffding’s and then
integrating over all probabilities. The authors of [12] also show that, for large enough
T , running the UCB and outputting the most played arm, will also achieve the upper

bound on regret of
√

K log(K)
T , up to a constant term. The log(K) term, in discrepancy

with the lower bound of Theorem 11, can be removed, by recommending the most
played arm, after instead running the later introduced MOSS algorithm, of [3]. The
minimax rate for BAI under simple regret,

r∗T (B) := inf
π∈C

sup
ν∈B

rνπ(T ) ,

is therefore of the order, √
K

T
. (1.10)

The take away from this result is that, in the worst case problem independent setting
of simple regret, cumulative regret minimisation and BAI are essentially interchangeable,
with algorithms such as MOSS being optimal in both cases. Intuitively this makes
sense, as when the gaps become very small, the cost of exploration disappears.

BAI under probability of error for the fixed budget setting Of more interest
for BAI, is to consider the problem dependent setting, taking regret as the probability
of error. As we are in the problem dependent setting, our rates will depend upon the
arm gaps. We define the following problem complexity,

H :=
∑

a:µa 6=µ∗

1

∆2
a

, (1.11)

and for a specific complexity H̃, the set of bandit problems,

BH̃ :=

ν ∈ B :
∑

a:µa 6=µ∗

1

∆2
a

≥ H̃

 . (1.12)

Following the intuition in Section 1.2, for a sub optimal arm a : µa 6= µ∗, if we
wish to distinguish it as sub optimal, with some constant probability, we must pull
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it approximately 1
∆2
a
times. Thus H is, broadly speaking, the minimum number of

samples required, to find the optimal arm with constant probability. Our overview
of BAI in the problem dependent setting, will mostly draw on results from the two
seminal papers, [2] and [17], the former providing upper bounds and the latter lower
bounds.

A UCB based approach For the finite K-armed bandit, where |A| = K, in [2]
the authors propose UCB based algorithm, with the index tuned by an exploration
parameter h > 0. That is, for each arm a ∈ A, at time t ≤ T define,

B(a, t) := µ̂a,t +

√
h

Na(t)
.

Their algorithm, the UCBE is then as follows,

Input: exploration parameter h
Pull each arm once
for t = (K + 1), ..., T do

Pull arm at in arg maxa∈A(B(a, t))
end
Output: an arm in arg maxa∈A(Na(T ))

Algorithm 4: Upper Confidence Bound Exploration UCB-E

To minimise cumulative regret, one would take the exploration parameter h of
the order log(T ), however, it is well known that in the problem dependent setting,
algorithms achieving optimal cumulative regret perform poorly in BAI. Specifically,
[12] show that an algorithm with at most logarithmic cumulative regret, will have a
lower bound on its simple regret, of the order n−γ , for some γ > 0. Thus, we need to
let our exploration parameter grow much faster with T . The following theorem shows,
that by letting h grow linearly with (T −K)/H, the UCBE performs well.

Theorem 13 (Theorem 1 [2]). Let H > 0, T > 5K, on all bandit problems ν ∈ BH ,
running the UCBE algorithm, with h = T−K

16H will satisfy,

eνUCBE(T ) ≤ 2TK exp

(
−T −K

16H

)
.

Therefore assuming T > c(H log(TK) +K), for some well chosen constant c, on all
bandit problems ν ∈ BH , the UCBE will satisfy,

eνUCBE(T ) ≤ exp(−c′T/H) ,

where c′ is a constant depending only on c.

Proof. Set h = T−K
16H and let a∗ = arg maxa∈A(µa). For t ≤ T , a ∈ A, let Xa,t be

the sample received pulling the ath arm for the tth time. Assuming all rewards are
generated in advance for the learner to uncover, for all arms a ∈ A, t ≤ T , Xa,t is well
defined. We will work on the following favourable event,

ξ =

{
∀t < T, a ∈ A,

∣∣∣∣∣1t
t∑

s=1

Xa,s − µa

∣∣∣∣∣ ≤
√
h

4t

}
.
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Via Hoeffding’s and a union bound we have,

P(ξ) ≥ 1− 2KT exp(−h)

≥ 1− 2KT exp

(
−T −K

16H

)
.

Under event ξ we have that,

∀t < T,B(a∗, t) > µ∗ . (1.13)

Now assume there exists an arm a 6= a∗ and time s such that as = a andNa(s) ≥ 4h
∆2
a
.

With this assumption, under event ξ,

B(a, s) ≤ µ̂a,s + ∆a/2

≤ µa + ∆a/4 + ∆a/2 < µ∗ ,

contradicting Equation (1.13), and therefore under event ξ we have,

∀a 6= a∗, Na(T ) ≤ 4h

∆2
a

+ 1 . (1.14)

Thus following Equation (1.14) we have that, under event ξ,

Na∗(T ) ≥ T −
∑
a6=a∗

(
4h

∆2
a

+ 1

)
,

≥ T −K − 4hH ,

≥ T −K − T −K
4

,

≥ T/2 ,

where final line comes from the fact we assume T > 5K. Therefore, under event ξ,
arg maxa∈A(Na(T )) = a∗ and the proof follows.

Problem dependent lower bound for BAI The authors of [2] also show that,
for any policy π ∈ C, there exists a problem ν ∈ BH , such that,

eνπ(T ) ≥ exp(−c(T log(K))/H) ,

for an absolute constant c > 0. The log(K) gap is tightened in the paper [17], where
the authors provide the following lower bound.

Theorem 14 (Theorem 1 [17]). Let H > 0 and assume T > cH2 log(TK), for a well
chosen absolute constant c, then, for any policy π there exists a problem ν ∈ BH , such
that on problem ν the policy π suffers the following regret,

eνπ(T ) ≥ 1

6
exp(−c′T/H) ,

where c′ > 0 is a constant depending only on c.
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Therefore in the case where H > 0 is known and T > c(H2 log(TK) + K), for
some absolute constant c, we see that via combination of Theorems 13 and 14, for
BAI under probability of error, on the class of problems BH , we have upper and lower
bounds of matching order, up to a constant term in the exponential depending on c.

Successive rejects algorithms in the case where H is unknown The issue
remains, that the UCBE needs to know the problem complexity H to optimally tune its
exploration parameter h. Is it possible to construct optimal algorithms and classify
the minimax rate in the case where H is unknown? Algorithms based on successive
elimination of arms, that do not require knowledge of H, have been proposed, see [2],
[52]. The successive rejects (SR) algorithm of [2] is as follows, see SR. To overcome a
technical issue the authors of [2] define,

log(K) :=
1

2
+

K∑
k=2

1

k
.

For K > 2 we have log(K) ≤ 2 log(K). The SR algorithm runs over K rounds

Initialise: A1 = [K], log(K) = 1
2 +

∑K
k=2

1
k and for k ∈ [K] set,

nk =

⌈
1

log(K)

T −K
K + 1− k

⌉
for k ∈ [K − 1] do

For each a ∈ Ak, pull arm a, nk − nk−1 times, let µ̂a,nk denote the sample
mean
Set Ak+1 = Ak\{a ∈ arg mina∈Ak µ̂a,nk}

1

end
Output: unique element of AK

Algorithm 5: Successive rejects algorithm (SR)

during which it maintains an active set of arms. Initially, the active set is the entire set
of arms. Then, at each round k, each arm in the active set is pulled a fixed number of
times, nk−nk−1. Thus at the end of round k, every remaining arm has been pulled nk
times. The single arm with minimal empirical mean is then discarded. Therefore, after
K rounds only one arm will remain and importantly, on completion the algorithm, for
each k ∈ [K − 2], exactly one arm has been pulled a total of nk, and exactly 2 arms
have been pulled a total of nK−1 times. Therefore, we can bound the total number of
pulls of the SR as,

K−1∑
k=1

⌈
1

log(K)

T −K
K + 1− k

⌉
+

⌈
T −K

2log(K)

⌉
≤ K +

T −K
log(K)

(
K−1∑
k=1

1

K + 1− k
+

1

2

)
= T .

The number of samples it allocates per arm per round increases, for instance, at the
end of the first round, all arms have been pulled only

⌈
T−K

log(K)K

⌉
times. Whereas

nK =
⌈

T−K
2log(K)

⌉
, so that at end of the final round, when only two arms remain both

1If multiple arms exist in arg mina∈Ak
µ̂a,nk , choose one to eliminate at random.
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have pulled
⌈

T−K
2log(K)

⌉
times. Intuitively this makes sense, as when few arms remain,

we need to be more careful that we do not discard the optimal arm and on the other
hand, when there are many arms, we do not want to waste our budget unnecessarily.
For more intuition, see the proof of the following theorem, which upper bounds the
probability of error of the- SR algorithm.

Theorem 15 (Theorem 2 [2]). Let H > 0, on all bandit problems ν ∈ BH , the SR
algorithm satisfies,

eνSR(T ) ≤ c′K(K − 1) exp

(
−c T −K

log(K)H

)
,

for absolute constants c, c′ > 0. Therefore, assuming cT > 2c′Hlog(K)2 + cK, for all
bandit problems ν ∈ BH ,

eνSR(T ) ≤ exp

(
−c T

2log(K)H

)
.

Proof. Assuming all rewards are generated in advance for the learner to uncover, even
if for some k ∈ [K] there exists an arm a ∈ A which is not pulled nk times, we can still
define µ̂a,nk . For a ∈ [K] define the arm with ath highest mean as (a). If arms have
equal means, let them be ordered randomly amongst themselves. Define the optimal
arm as, a∗ := arg maxa∈A µa. If the optimal arm is eliminated in the kth round, i.e.

a∗ /∈ Ak+1 ,

then the following must hold,

µ̂a∗,nk ≤ max
a∈{(K),...,(K+1−k)}

µ̂a,nk .

Now via union bound,

e(T ) ≤
K−1∑
k=1

P(a∗ /∈ Ak+1) ,

and then via Hoeffding’s,

e(T ) ≤
K−1∑
k=1

P(a∗ /∈ Ak+1) ≤
K−1∑
k=1

K∑
a=K+1−k

P
(
µ̂a∗,nk ≤ µ̂(a),nk

)
,

≤
K−1∑
k=1

K∑
a=K+1−k

exp
(
−nk∆2

(a)/2
)
≤

K−1∑
k=1

k exp
(
−nk∆2

(K+1−k)/2
)
.

Now note that for all k ∈ [K],

k

∆2
(k)

≤
K∑
a=1

1

∆2
a

,
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and therefore,

K−1∑
k=1

k exp
(
−nk∆2

(K+1−k)/2
)

=
K−1∑
k=1

k exp

(
−(T −K)

2log(K)

∆2
(K+1−k)

K + 1− k

)
(1.15)

≤ 2K(K − 1) exp

(
− T −K

2log(K)H

)
. (1.16)

Thus completing the proof.

As one can see from Theorem 15, the SR algorithm pays an additional multiplicative
log(K) term, as the cost for being adaptive to unknown H, we remind the reader that
for K > 2, log(K) ≤ 2 log(K). For some time, the necessity of log(K) term remained
an open question. A log(K) term may seem insignificant, however, as it is in the
exponential, it can have a severe effect on the regret as K grows. In [17] the authors
also show that, in the case where one does not have a tight bound on H, the log(K)
cost for adaptation is necessary, as the following theorem shows.

Theorem 16 (Theorem 1 [17]). Assume T > cK2 log(TK), for some well chosen
constant c > 0, then for any policy π there exists a problem ν ∈ {BH : H < c′K2},
where c′ is a constant depending only on c, such that on problem ν the policy π suffers
the following regret,

eνπ(T ) ≥ 1

6
exp(−c′′T/(log(K)Hν)) ,

where Hν is the complexity, as defined in Equation 1.11, associated to problem ν and
c′′ > 0 is an absolute constant.

By combination of Theorems 15 and 16 we have demonstrated the optimality of
the SR algorithm, in the case were one does not have too tight a bound on the problem
complexity, H. This completes our overview of BAI.

1.4.2 TopM problem

Pure exploration bandit problems go beyond best arm identification. A natural
extension is the TopM problem, here the objective of the learner is to identify the m
best arms. In the TopM setting, the difficulty is in classifying arms as belonging to the
m best arms or not. The problem hardness is thus now dependent on the distances of
arms to the mth and m+ 1th best arms. With this in mind, we define the following
notion of arm gaps. Without loss of generality, assume that the arms are ordered as
follows,

µ1 ≥ µ2 ≥ ... ≥ µK2 ,

and for a given arm a define the following gap,

∆<m>
a :=

{
µm − µa if a > m

µa − µm+1 if a ≤ m .

TopM problem in the fixed confidence setting The TopM problem has been
extensively studied in the fixed confidence PAC(ε, δ) setting and is relatively well
understood. In this setting the learner must return a set Ŝ of m arms, where |Ŝ| must

2This assumption is made for simplicity, we remind the reader that the learner remains unaware of
the ordering of the arms.
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equal m and then suffers the regret,

(µm −min
a∈Ŝ

µa) ∨ 0 .

The objective of the learner is to then provide a PAC(δ, ε) algorithm with minimal
stopping time. There have been approaches using uniform sampling and successive
elimination, see [59] and [88], as well as sequential index based algorithms, see [59]
and [51]. As it will be of use later on, in Section 1.7, we will briefly cover such an
index based approach, the LUCB (lower upper confidence bound) algorithm. For each
arm a ∈ A, and some exploration parameter β(t, δ), we then define the following two
indexes,

UCB(a, t) = µ̂a,t +

√
β(t, δ)

Na(t)
,

and

LCB(a, t) = µ̂a,t −

√
β(t, δ)

Na(t)
.

Also, at time t define the set of arms Jm(t) as the m best arms according to empirical
mean, at time t. The LUCB algorithm is then as follows, see LUCB. At each iteration

Input: confidence level δ, tolerance ε
Pull each arm once
Set ψ(t) = ε
while ψ(t) ≥ ε do

Pull arm at = arg maxa/∈Jm(t)(UCB(a, t))
Pull arm bt = arg mina∈Jm(t)(LCB(a, t))

ψ(t) = max
a/∈Jm(t)

UCB(a, t)− min
a∈Jm(t)

LCB(a, t)

end
Output: Jm(T )

Algorithm 6: LUCB

the LUCB samples a pair of arms. One sampling rule of the LUCB,

arg min
a∈Jm(t)

(LCB(a, t)) ,

explores the m best arms, adaptive to their gaps and should sample the mth best arm
many times. The other sampling rule of the LUCB,

arg max
a∈Jm(t)

(UCB(a, t)) ,

explores the m+ 1th to Kth best arms, adaptive to their gaps and should sample the
m+ 1th best arm many times. These sampling rules, allows it to define its stopping
rule,

max
a/∈Jm(t)

UCB(a, t)− min
a∈Jm(t)

LCB(a, t) < ε .

The performance of the LUCB is bounded in the following Theorem.
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Theorem 17 (Combination of Theorem 1, Corollary 7 [51]). Let ε, δ > 0. For a
suitable choice of exploration parameter, β(t, δ), the LUCB algorithm with output m
arms, Ŝ, is PAC(δ, ε), that is,

P((µm −min
a∈Ŝ

µa) ≤ ε) ≥ 1− δ ,

and furthermore, for a constant c > 0, with probability 1− cδ, has its stopping time τ
bounded as,

τ ≤ c′Hm
ε log(Hm

ε /δ) ,

where Hm
ε =

∑
a∈A

1
ε2∧(∆<m>

a )2 and c′ > 0 is a constant depending only on c.

Remark 3. The complexity Hm
ε is the standard TopM problem complexity, with the

additional property that when the gaps are smaller than ε, they no longer effect the
complexity, which makes sense in the PAC(δ, ε) context.

TopM problem in fixed budget setting Compared to the fixed confidence setting,
the fixed budget has seen less progress. To the best of the authors knowledge, the
TopM problem was first considered in the fixed budget setting in [14]. Again, without
loss of generality, assume the arms are ordered as follows,

µ1 ≥ µ2 ≥ ... ≥ µK .3

As in the fixed confidence setting, the learner must output a list Ŝ of m arms, however,
we now take regret as the probability of error,

P
(
∃a ≤ m : a /∈ Ŝ

)
.

Let us first define our problem complexity for the fixed budget setting,

Hm
1 :=

K∑
a=1

(∆<m>
a )−2 .

Hm
1 is essentially a direct parallel with (1.11) in the best arm identification setting. A

slightly weaker version of problem complexity is,

Hm
2 := max

a∈A

(
a(∆<m>

a )−2
)
.

We say Hm
2 is weaker than Hm

1 , in the sense that,

Hm
2 ≤ Hm

1 ,

however, they differ at most up to a multiplicative log(2K) term,

Hm
1 ≤ log(2K)Hm

2 .

The authors of [14] describe a successive accept and reject algorithm, which we
will denote SRM , that for all ν ∈ B, for the TopM problem, has the following upper

3We make such an assumption only for simplicity of notation. As before, the learner does not
know the ordering of the arms.
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bound on its probability of error,

Pν,SRM
(
∃a ≤ m : a /∈ Ŝ

)
≤ 2K2 exp

(
−c T −K

8 log(K)Hm
2

)
,

for some absolute constant c > 0. The authors also conjecture a lower bound of the
order,

exp

(
−c′ T

Hm
1

)
, (1.17)

for some absolute constant c′. Even if one was able to prove the conjectured lower
bound, there would remain the discrepancy between, Hm

1 and Hm
2 , although this would

at most amount to a log(K) factor. To the best of the authors knowledge, no explicitly
stated lower bound for the TopM problem, in the fixed budget setting, exists in the
literature.

Another related problem is multi bandit best arm identification, (MB). In this
setting the arm set is partitioned into several sets of arms. The learner has complete
knowledge of the partition and aims to return the set wise optimal arms, for the MB
in the fixed budget setting, see [35].

1.5 The thresholding bandit problem (TBP)

In the TopM problem, we wish to identify a subset of arms, the m best arms. Another,
very natural, subset to consider is, for some given threshold τ , the set of arms with
mean greater than τ . Recovery of this set, is the thresholding bandit problem. In [23]
the authors describe a general framework for pure exploration bandit problems, which
they term "Combinatoral Pure Exploration" (CPE) bandit problems, the thresholding
bandit problem fits into the CPE framework and therefore, to the best of the authors
knowledge, [23] can be considered as the first work to consider the thresholding bandit
problem. In this setting the learner is given a threshold τ and aims to correctly classify
all arms as above or below threshold, based on their mean. That is, if for an arm a,
such that µa ≥ τ , arm a is said to be above threshold, and below threshold otherwise.
At the end of T rounds, the learner must output a list Q̂ ∈ {−1, 1}K that classifies
the arms as above or below threshold. Let Q encode the true classification, i.e.

Qa = 21{µa≥τ} − 1 ,

with the convention Qa = 1 if arm a is above the threshold and Qa = −1 otherwise.
For a policy π ∈ C and problem ν ∈ B, we can then define an equivalent simple regret
in this setting as,

r̄νπ(T ) := Eν,π

[
max

a:Q̂a 6=Qa
|τ − µa|

]
. (1.18)

We can also measure the regret of the learner again by probability of error, i.e. the
probability they misclassify at least one arm,

ēνπ(T ) := Pν,π
(
∃a : µa 6= τ : Q̂a 6= Qa

)
.
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1.5.1 The APT algorithm and problem dependent bounds for the
TBP

In [68], the TBP is studied under the objective of minimising probability of error. The
work of [68] is in the fixed budget finite armed bandit setting, with |A| = K. They
provide an algorithm, the APT and demonstrate an upper bound on its probability of
error, along with a lower bound, on the probability of error for any possible algorithm,
matching up to log terms. Before analysing the APT we must first define the gaps,
specific to the thresholding bandit problem. The gap of an arm is now defined as its
distance to the threshold, as opposed to the optimal arm, i.e. for any a ∈ A let,

¯
∆a := |µa − τ | .

As for BAI, the problem complexity is then again taken as

¯
H :=

∑
a:µa 6=τ

1

¯
∆2
a

,

and for a specific complexity H̃, we can define,

B̄H̃ : {ν ∈ B :
¯
H ≥ H̃} .

The APT algorithm The APT algorithm is index based, in that at each time step it
calculates an index for each arm and pulls the arm with minimum index. As one would
expect this index differs from the UCB index. Firstly, it is based on the empirical gaps
of the arms, not the empirical means, that is, for an arm a ∈ A at time t define,

¯
∆̂a,t := |µ̂a,t − τ | ,

we then define the index,

¯
Bτ (a, t) =

√
Na(t)

¯
∆̂a,t .

Input: τ
Pull each arm once
for t = K + 1, ..., T ∈ [T −K] do

Pull arm at = arg mina∈A(
¯
Bτ (a, t))4

end
Output: Ŝ = {a : µ̂a,T ≥ τ}

Algorithm 7: APT

Say we pull an arm a ∈ A, a total of n times with empirical mean µ̂a. If we classify
arm a according to its empirical mean, via Hoeffding’s the probability of,

|µa − µ̂a| ≥
¯
∆a ,

and thus the probability of incorrect classification will be roughly,

exp
(
−cn

¯
∆2
a

)
,

4If arg mina∈A(
¯
Bτ (a, t)) contains multiple arms, choose a single arm at random.
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where c > 0 is an absoulte constant. Therefore if one wishes to achieve the regret
bound of approximately,

exp(−c′T/
¯
H) ,

for some absolute constant c′ > 0, mirroring that for BAI, for all a ∈ A we would need
Na(T ) of the order,

T

∆2
a ¯
H
.

This is the principle behind taking the index of the APT as
√
Na(t)

¯
∆̂a,t .

Problem dependent upper bound for the APT The following theorem upper
bounds the performance of the APT.

Theorem 18 (Theorem 2 [68]). Let H > 0, T > 2K, on all bandit problems ν ∈ B̄H ,
the APT algorithm will satisfy,

ēνAPT(T ) ≤ exp

(
−c T

H
+ c′ log(K(log(T ) + 1))

)
,

where c, c′ > 0 are absolute constants.

Proof. For t ≤ T , a ∈ A, let Xa,t be the sample received pulling the ath arm for the
tth time. Assuming all rewards are generated in advance for the learner to uncover,
for all arms a ∈ A, t ≤ T , Xa,t is well defined. During the proof we will work under a
favourable event ξ,

ξ :=

{
∀a ∈ A, ∀t ≤ T,

∣∣∣∣∣1t
t∑

s=1

Xa,s − µa

∣∣∣∣∣ ≤ α
√

T

Ht

}
, (1.19)

where we take α = 1
4
√

2
. For all u ≤ blog(T )c and a ∈ A, we have that, via a martingale

inequality,

P

(
∃v ∈ [2u, 2u+1] :

∣∣∣∣∣1v
v∑
s=1

Xa,s − µa

∣∣∣∣∣ > α

√
2T

Hv

)
≤ 2 exp

(
− α2Tv

H2u+1

)
≤ 2 exp

(
−α

2T

2H

)
.

Then considering a union bound across all (log(T ) + 1)K combinations, we can show,

P(ξ) ≥ 1− 2(log(T ) + 1)K exp

(
−α

2T

2H

)
.

The next step of the proof is to recognise that after completion of our budget, at least
one arm ã ∈ A must have been pulled at least T−K

2H∆2
ã

+ 1 times. To see this, if,

∀a ∈ A, Na(T ) <
T −K
H

¯
∆2
a

+ 1 ,

then,

T <

K∑
a=1

(
T −K
H

¯
∆2
a

+ 1

)
= T ,
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a contradiction. Furthermore as T > 2K,

Nã(T ) ≥ T

2H
¯
∆2
a

+ 1 .

Let s̃ be the last time arm ã was pulled, we have Nã(s̃) ≥ T
2H

¯
∆2
ã
. Now for all a ∈ A,

under event ξ,

(
¯
∆a − α

√
T

Na(s̃)H

)√
Na(s̃) ≤ Bτ (a, s̃) ≤

(
¯
∆a + α

√
T

Na(s̃)H

)√
Na(s̃) . (1.20)

and specifically for arm ã,

Bτ (ã, s̃) ≥ (1/
√

2− α)

√
T

H
. (1.21)

Via action of the algorithm, and combination of Equations (1.20) and (1.21), for all
a ∈ A, at time s̃, on event ξ we must have,(

¯
∆a + α

√
T

Na(s̃)H

)√
Na(s̃) ≥ (1/

√
2− α)

√
T

H
,

and thus,

Na(s̃) ≥ (1− 2
√

2α)2 T

2
¯
∆2
aH

.

For an arm a ∈ A, as Na(T ) ≥ Na(s̃), we then have that, on event ξ,

|µ̂a,T − µa| ≤
α
√

2
¯
∆a

1− 2
√

2α
,

taking α = 1
4
√

2
, the above simplifies to |µ̂a,T − µa| ≤

¯
∆a/2. Thus, on the event ξ, the

APT will classify all arms correctly.

Remark 4. It is important to note, that in [68] their results are extended to a more
general setting, where, for some ε > 0, the learner only aims to classify arms of distance
greater than ε to the threshold. The analysis in such a setting remains unchanged,
one simply makes an alternate definition of the gaps,

¯
∆ε
a := |µa − τ |+ ε .

For simplicity we will fix ε = 0. The results of [68] can also be extended to the sub
Gaussian case, again for simplicity, we restrict to distributions with bounded support
on [0, 1].

Problem dependent lower bound for the TBP The authors of [68] also prove
a lower bound, they show that for H > 0, for any policy π, there exists a problem
ν ∈ B̄H of the order, such that,

ēνπ(T ) ≥ exp

(
−c T

H
− c′ log(K log(T ))

)
,
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where c, c′ > 0 are absolute constants, thus, the upper bound on the regret of the APT
matches the corresponding lower bound, up to multiplicative constants and additive
log terms in the exponential and interestingly one does not pay an additional log(K)
term for adaptation, as in the BAI setting. The reason for this, is that in the TBP
the learner has a key advantage over BAI, that is, they know the threshold τ . This
would be akin to knowing the value of µ∗ in the BAI setting. This advantage allows for
the removal of the multiplicative log(K) term in the exponential. Indeed, by setting
τ = µ∗ and outputting the most pulled arm, the APT is optimal in the BAI setting,
see [68][Chapter 3.2]. The TBP was further studied in [70] and [86] where the authors
consider a "variance aware algorithm", that bases its actions on the empirical variances,
as well as the empirical means. Their problem complexity and then also their rates,
then depend upon the variances of the arms. This gives their results a significantly
different flavour to those of [68] and this thesis.

1.5.2 Problem independent bounds for the TBP

With the results of [68] in mind, a question of interest is whether one can recover
optimal rates on the expected simple regret, that is, the expected maximum distance to
threshold among mis-classified arms, see Equation (1.18), in the problem independent
setting. Unlike the independent setting for BAI, simply running MOSS and outputting
the most pulled arm will no longer work, as one now needs to separately classify each
arm. The lower bound of [12], will hold for the TBP under expected simple regret,
that is, for any policy π ∈ C, there exists a problem ν ∈ B, such that,

r̄νπ(T ) ≥ c
√
K

T
,

for some absolute constant c > 0. The problem dependent upper bound of [68], on the
probability of error for the APT algorithm, can be adapted to the problem independent
setting to show that, for all ν ∈ B, δ > 0,

Pν,APT

(
max

a:Q̂a 6=Qa
|τ − µa| ≤ c′

√
K log(K log(T/δ))

T

)
≥ 1− δ ,

for some absolute constant c′ > 0.

Contribution

In the paper [26], co authored with Pierre Menard and Alexandra Car-
pentier, we tighten both of the above bounds so that they match. We show that
algorithm, Uniform, which entails a uniform sampling of the arms, and then
classification of arms as above or below threshold according to their sample means,
on all problems ν ∈ B, has an upper bound on it’s expected simple regret of the
following order,

r̄νUniform(T ) ≤ c
√
K log(K)

T
,

where c > 0 is an absolute constant, see Proposition 3. In itself this result may not
be too surprising, however, we also prove that, for any policy π ∈ C, there exists a
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problem ν ∈ B, such that,

r̄νπ(T ) ≥ c′
√
K log(K)

T
,

where c′ > 0 is an absolute constant, see Proposition 2. As our lower and upper
bounds are of the same order, we can say that our uniform algorithm is optimal
and we have identified the minimax rate, up to a multiplicative constant, for the
problem independent TBP,

r̄∗T (B) := inf
π∈C

sup
ν∈B

r̄νπ(T ) ,

as of the order, √
K log(K)

T
, (1.22)

see Theorem 23.

The fact that a uniform sampling strategy can attain the minimax rate may seem
surprising, however, remember we are in the problem independent setting. Essentially,
what the result of Equation (1.22) tells us, is that the hardest problem is one such
that,

∀a ∈ A,
¯
∆a = c

√
K log(K)

T
,

where c > 0 is some absolute constant and in this case, uniform sampling is the best
one can do.

1.6 Shape constrained thresholding bandit problem

The scope of [26] extends much further than the above result. We also consider the
TBP under several shape constraints on the sequence of arm means.

1.6.1 Problem independent TBP under a monotone constraint

The first constraint we consider is a monotone constraint. In this setting the learner is
given the information that the means form a monotonically increasing sequence. That
is,

µ1 ≤ µ2 ≤ ... ≤ µK .

For the monotone constraint define the following class of bandit problems,

Bm := {ν ∈ B : µ1 ≤ µ2 ≤ ... ≤ µK} .

A monotone constraint is a natural extension to the TBP when considering potential
applications. For example, in [39], this version of the TBP is considered in the context
of drug dosing. When developing a new drug one wishes to maximise the dosage
without having side effects exceed a certain tolerance. They consider the problem in
the fixed confidence setting. That is, given some confidence level δ > 0, they aim to
provide a PAC(δ, 0) algorithm, see Equation (1.5), with minimal stopping time. They
provide an algorithm which they then show to be optimal in the asymptotic sense, i.e.



1.6. Shape constrained thresholding bandit problem 29

Figure 1.1: 5 Armed bandit problem viewed as a binary tree

as δ →∞. There remains a large gap between their work and that of finding optimal
rates on expected simple regret, or indeed probability of error, for a fixed T .

Noisy binary search An immediate solution under the monotone constraint, is
to use a binary search to find the point at which the arms cross the threshold, as
noted in [53] Section 1.2. To do this we first map our arm set onto a binary tree.
Precisely, we consider a binary tree with nodes of the form v = {L,M,R} where
{L,M,R} are indexes of arms and we note respectively v(l) = L, v(r) = R, v(m) = M .
The tree is built recursively as follows: the root is root = {1, b(1 +K)/2c,K},
and for a node v = {L,M,R} with L,M,R ∈ {1, . . . ,K} the left child of v is
L(v) = {L,Ml,M} and the right child is R(v) = {M,Mr, R} with Ml = b(L+M)/2c
and Mr = b(M +R)/2c as the middle index between. The leaves of the tree will be
the nodes {v = {L,M,R} : R = L+ 1}. If a node v is a leaf we set R(v) = L(v) = ∅.
We consider the tree up to maximum depth dlog(K)e.

Now consider the following algorithm, Naive Binary Search, that moves down
the binary tree. For i ≤ dlog(K)e, let vi be the current node the algorithm samples
from at the ith step of the search, with v1 = root. At each step i ≤ dlog(K)e we
sample T/dlog(K)e times, the arm corresponding to the middle index of the current
node, vi(m), let µ̂i denote it’s empirical mean. We then progress to the right or left
child, setting vi+1 = L(vi) or vi+1 = R(vi), depending on whether the empirical mean
µ̂i is above or below τ respectively.

for i = 1, ..., dlog(K)e do
Sample T/dlog(K)e times arm vi(m), let µ̂i denote the empirical mean
if µ̂i < τ then

vi+1 = R(vi)
end
if µ̂i ≥ τ then

vi+1 = L(vi)
end

end
Output: Q̂ = 21a≥vi(r) − 1

Algorithm 8: Naive binary search

The Naive Binary Search moves down through the binary tree until it reaches a
leaf. At each step it decides to progress to the left or right child of the current node,
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however, only one direction is the correct decision. As the decision is made solely
based on whether or not µ̂i > τ , if µ̂i is close to the true mean µvi(m), specifically,

|µ̂i − µvi(m)| < ¯
∆vi(m) ,

we can be sure the algorithm progresses to the correct child. If we have that,

∀i ≤ dlog(K)e, |µ̂i − µvi(m)| < ¯
∆vi(m) ,

we can be sure to correctly identify the point at which the arms cross the threshold.
However, if there is potential for the algorithm to make a single mistake, i.e.

∃i : |µ̂i − µvi(m)| ≥ ¯
∆vi(m) ,

we have no guarantee on our regret bound. This is demonstrated in the following
theorem.

Theorem 19 (Following intuition of Section 1.2 [53]). Assume T > log(K), on all
bandit problems ν ∈ Bm, running the Naive Binary Search will satisfy,

r̄ν(T ) ≤ c
√

log(K)(log log(K) ∨ 1)

T
,

where c > 0 is an absolute constant.

Proof. For i < dlog(K)e, let Fi be the information available up to and including the
ith step of the algorithm and define the event,

ξi := {|µ̂i − µvi(m)| ≥ ε} .

For i < dlog(K)e, via Heoffding’s we have that,

P(ξi|Fi) ≤ 2 exp

(
−2Tε2

dlog(K)e

)
.

Therefore,

P

 ⋂
i≤dlog(K)e

ξci

 ≥ 1− 2dlog(K)e exp

(
−2Tε2

dlog(K)e

)
and thus,

P(r(T ) ≥ ε) ≤ 2dlog(K)e exp

(
−2Tε2

dlog(K)e

)
∧ 1 .

Now set ε0 =

√
dlog(K)e logdlog(K)e

2T and note that

dlog(K)e exp

(
−2Tε2

dlog(K)e

)
= exp

(
−2T (ε2 − ε2

0)

dlog(K)e

)
.
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We can now integrate over the probabilities to bound expected simple regret,

r(T ) ≤ ε0 +

∫ +∞

ε0

exp

(
−2(ε2 − ε2

0)
T

dlog(K)e

)
dε ,

≤ ε0 +

∫ +∞

0
exp

(
−2((ε+ ε0)2 − ε2

0)
T

dlog(K)e

)
dε ,

≤ ε0 +

∫ +∞

0
exp

(
−2(ε2 + 2εε0)

T

dlog(K)e

)
dε ,

≤ ε0 +

∫ +∞

0
exp

(
−2ε2 T

dlog(K)e

)
dε ,

=

√
dlog(K)e logdlog(K)e

2T
+ c′

√
dlog(K)e

T
,

≤ c
√

log(K)(log log(K) ∨ 1)

T
.

where c, c′ > 0 are absolute constants.

Auto correcting binary search Exploiting the monotone constraint with a naive
binary search, is already a substantial improvement on the unconstrained TBP, however,
there is potential for further improvement, specifically where it concerns the log logK
term. Essentially, the reason we pay a log log(K), is that, if the binary search makes a
single mistake at any of it’s logK steps and progresses to the incorrect node, we have
no guarantee on our regret. Therefore we need to apply a union bound to ensure the
algorithm makes the correct decision at each of its log(K) steps, this then leads to
the additional log log(K) term in our upper bound. If one were to allow for mistakes
in the binary search, the union bound would become unnecessary and the log logK
term could be removed. There are clear hints to this also in the literature and a
technique used by many is a binary search with corrections, [33], [8], and [30], see
also [53]. However, not only are the above papers in the fixed confidence setting,
they also consider severely restrictive structural assumptions and their results are not
applicable to our setting. In [53], the authors consider a setting where each arm a ∈ A
is restricted to follow a Bernoulli distribution with parameter pa such that,

p1 < p2 < ... < pK ,

we denote the set of such problems, Bm, that is,

Bm := B ∩ Bm .

Their results are in the fixed confidence setting, in that for a fixed δ, ε > 0 they provide
a PAC(δ, ε) algorithm, see Equation (1.5), with an upper bound on its expected
stopping time. To remind the reader, in this setting, for a problem ν ∈ B, an algorithm
is PAC(δ, ε), if it correctly classifies all arms of distance greater than ε to the threshold,
with probability greater than 1− δ. For a specific ε = 1/3 and τ = 1/2, they propose
the following algorithm Auto-correcting Binary Search.

At each step i, instead of only sampling the arm vi(m), the Auto-correcting
Binary Search also samples the arms vi(l) and vi(r). If an inconsistency is detected
then the algorithm backtracks to the parent node. At each step, with probability
1/ log(K), it performs a confirmation check as to whether the algorithm should
terminate on the current node. The expected number of steps to perform a confirmation
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Initialise: k = d300 log(K)e
for i = 1, 2, ... do

Sample arm vi(l), two times, let X l
1,i, X

l
2,i denote the samples.

Sample arm vi(r), two times, let Xr
1,i, X

r
2,i denote the samples.

if X l
1,i ∧X l

2,i > 0 or Xr
1,i ∨Xr

2,i < 1 then
vi+1 = P (vi)

end
else

Sample arms vi(m), once, let Xm,i denote the sample.
if Xm,i = 0 then

vi+1 = R(vi)
end
if Xm,i = 1 then

vi+1 = L(vi)
end

end
Draw single sample Ui from Uniform(0, 1)
if Ui ≤ 1/ log(K) then

Sample arm vi(r), k times, let µ̂i,r denote sample mean.
Sample arm vi(l), k times, let µ̂i,l denote sample mean.
if µ̂i,l ∈ [1/4, 3/4] then

Output: Q̂ = 21a>vi(l) − 1

end
if µ̂i,r ∈ [1/4, 3/4] then

Output: Q̂ = 21a≥vi(r) − 1

end
if r = l + 1 and µ̂i,l <

1
2 < µ̂i,r then

Output: Q̂ = 21a≥vi(r) − 1

end
end

end

Algorithm 9: Auto correcting binary search

check is log(K), the depth of tree. The performance of the algorithm is bounded in
the following theorem.

Theorem 20 (Combination of Propositions 5.1, 3.1 [53]). Setting ε0 = 1/3, δ0 =
1/4 and threshold τ = 1/2, for all ν ∈ Bm, the Auto-correcting Binary Search
algorithm is PAC(ε0, δ0) and its stopping time τ̃ satisfies,

E[τ̃ ] ≤ c log(K) ,

for some absolute constant c > 0. Furthermore, given δ > 0, there exists an algorithm
which, for all ε > 0 and ν ∈ Bm, is PAC(ε, δ), with stopping time τ̃ ′ satisfying,

E
[
τ̃ ′
]
≤ c′ log log(ε) log(δ) log(K)/ε2 ,

for some absolute constant c′ > 0.

Remark 5. The proof of the second statement of Theorem 20, involves a slightly
modified version of the Auto-correcting Binary Search algorithm, which, instead
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of sampling arms a constant number of times at each step, tunes the number of samples
according to δ.

If one wished to translate the result of Theorem 20 to our fixed budget setting,
there are two non trivial issues.

• With an auto correcting binary search, the main issue is knowing when to
stop and output an arm as the point at which the arms cross the threshold.
The Auto-correcting Binary Search of [53] gets around this by performing
a confirmation check at each step with a certain probability. However, this
technique relies on the fact that they only bound the stopping time in expectation,
and not with high probability, and is therefore not suitable in the fixed budget
setting.

• The second result of Theorem 20 only holds for a fixed δ, such a result is not
suitable to bound simple regret in our fixed budget setting, as one would need a
bound on all δ simultaneously, see the proof of Theorem 19.

In [8] they describe a similar result to that of [53], for δ, ε > 0, they provide a PAC(δ, ε)
algorithm with expected stopping time bounded above by c(1−δ) log(K)/ε2, with c > 0
an absolute constant, however, as with [53], their algorithm takes δ as a parameter
and therefore, the same issue remains when translating their results to our setting,
where a more nuanced treatment will be needed.

Contribution

In [26] we describe an algorithm, the MTB, which is an auto correcting
binary search, working under the more general assumption of distributions with
supports bounded on [0, 1], with a novel method of choosing a cutting point. Our
analysis is also novel and allows us to provide bounds holding simultaneously
across all probabilities. We show that for all problems ν ∈ Bm, the expected
simple regret of our algorithm is upper bounded as,

r̄νMTB(T ) ≤ c
√

log(K)

T
,

where c > 0 is an absolute constant, see Corollary 5. We also prove that, for any
policy π ∈ C, there exists a problem ν ∈ Bm, such that,

r̄νπ(T ) ≥ c′
√

log(K)

T
,

where c′ is an absolute constant, see Proposition 5. Thus, we identify the minimax
rate for expected simple regret, on the set of monotone bandit problems,

r̄∗T (Bm) := inf
π∈C

sup
ν∈Bm

r̄νπ(T ) ,

as of the order, √
log(K)

T
.

see Theorem 24.
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1.6.2 Problem independent TBP under concave and unimodal con-
straints

Alternative to the monotone constraint on the means, we also consider a concave
constraint and a uni-modal constraint. For the concave constraint define the class of
bandit problems,

Bc :=

{
ν ∈ B : ∀2 < a < K − 1,

1

2
µa−1 +

1

2
µa+1 ≤ µk

}
.

To the best of our knowledge, such a setting had not yet been considered in the
literature.

Contribution

For the TBP under a concave constraint we describe an algorithm, the
CTB, which utilises an auto corrective binary search but now on a well chosen
log(K) sized subset of the arms. We show that for all problems ν ∈ Bc, the
expected simple regret of our algorithm is upper bounded as,

r̄νCTB(T ) ≤ c
√

log log(K)

T
,

where c > 0 is an absolute constant, see Proposition 11. We also prove that, for
any policy π ∈ C, there exists a problem ν ∈ Bc, such that,

r̄νπ(T ) ≥ c′
√

log log(K)

T
,

where c′ is an absolute constant, see Proposition 10. Thus, we identify the minimax
rate for expected simple regret, on the set of concave bandit problems,

r̄∗T (Bc) := inf
π∈C

sup
ν∈Bc

r̄νπ(T ) ,

as of the order, √
log log(K)

T
,

see Theorem 26. Here, our result is tied to the distributions of the arms being
supported on [0, 1]. The related settings of optimisation or estimation of a convex
function, are almost exclusively studied in the continuous setting and focus on
achieving good dependency in the dimension d.

For the unimodal constraint define the class of problems,

Bu := {ν ∈ B : ∃a∗ ∈ As.t.∀l ≤ a∗, µl−1 ≤ µl and ∀l ≥ a∗, µl ≥ µl+1} .

Contribution
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For the TBP under a unimodal constraint, we provide an algorithm,
the UTB, and for all ν ∈ Bu, show that,

r̄νUTB(T ) ≤ c
√
K

T
,

where c > 0 is an absolute constant, see Proposition 9. For the unimodal constraint,
if we were to know the location of an optimal arm, i.e. one in arg maxa∈A(µa),
we could split the arm set into a monotonically increasing set and monotonically
decreasing set, on which we could then run the MTB5. The strategy of the UTB
algorithm, is therefore, to first identify an optimal arm, â, and then run the MTB
on the arm sets [1, â] and [â,K]. To output a prediction of an optimal arm it
utilises a well known approach, see [12] and Theorem 11. The minimax rate for

BAI under simple regret is of the order
√

K
T , see Equation (1.10) and therefore,

this is the dominating term in the regret of the UTB.
We also prove that, for any policy π ∈ C, there exists a problem ν ∈ Bu, such

that,

r̄νπ(T ) ≥ c′
√
K

T
,

where c′ is an absolute constant, see Proposition 8. Thus, we identify the minimax
rate for expected simple regret, on the set of unimodal bandit problems,

r̄∗T (Bu) := inf
π∈C

sup
ν∈Bu

r̄νπ(T ) ,

as of the order, √
K

T
,

see Theorem 25. Much of the related literature concerns the problem dependent
setting, [85] and [69] are in the problem independent setting, however, they work
in the continuous case and have smoothness assumptions on the arm means around
the optimal arm, which does not translate to our discrete setting, where one can
have jumps between the means of the arms.

Before moving on to the shape constrained TBP in the problem dependent setting,
let us present our identified minimax rates for simple regret, under each of the considered
constraints, see Table 1.1.

1.6.3 Problem dependent rates for the shape constrained TBP

Our work in [26] was from the problem independent perspective, in that our rates did
not depend on the distance of the arms to the threshold. In the paper [25], co authored
with Pierre Menard and Alexandra Carpentier, we again study the thresholding bandit
problem under shape constraints but now from a problem dependent perspective.
In such a setting, probability of error is a more suitable measure of the learner’s
performance than expected simple regret. For a sequence of gaps ∆̄ ∈ [0, 1]K , define
the set of bandit problems,

5So far we have bounded the regret of the MTB on monotonically increasing sequences of arms,
however, it can be trivially modified to give identical guarantees under a monotonically decreasing
constraint, see DEC-MTB.
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Results Unstructured TBP Monotone TBP Unimodal TBP Concave TBP

Minimax rate
√

K logK
T

√
logK
T

√
K
T

√
log logK

T

Table 1.1: Order of the minimax rate for expected simple regret
in TBP, r̄(T ), see Equation (1.18), in the case of all four structural
assumptions, on the means of the arms, considered in this thesis. All

results are given up to universal multiplicative constants.

B∆̄
m = {ν ∈ Bm : ∀a ∈ A, |µa − τ | = ∆̄a} .

Contribution

In the monotone setting we describe an algorithm, ProbDep-Explore-
again based on an auto correcting binary search but with several key differences,
that, for a sequence of gaps ∆̄ ∈ [0, 1]K and T > 36 logK, for all problems ν ∈ B∆̄

m,
satisfies,

ēνProbDep-Explore(T ) ≤ exp(−cT min(∆̄)2 + c′ log(K)) , (1.23)

where c, c′ > 0 are absolute constants, see Theorem 28. We also prove a lower
bound, such that for any sequence of gaps ∆̄ and any policy π, there exist a
problem ν ∈ B∆̄

m, such that,

ēνπ(T ) ≥ exp(−c′′T min(∆̄)2) ,

where c′′ > 0 is an absolute constant, see Theorem 27.

One will notice that for T ≥ c log(K)
min ∆2 , for some absolute constant c > 0, our bound

(1.23) matches the result of Theorem 2, for BAI in the 2 armed setting. Essentially
this means, that in this regime, the TBP is no harder than classifying the single
arm with minimal gap as above or below threshold, a result that was surprising to
us! Furthermore the learning rate for the concave setting is also of the same order.
Precisely, for a sequence of gaps ∆̄ ∈ [0, 1]K , define the following set of problems,

B∆̄
c :=

{
ν ∈ Bc : ∀a ∈ A, |µa − τ | ∈

[
∆̄a

2
, 3

∆̄a

2

]}
.

Contribution

In the concave setting, we provide an algorithm, ProbDep-CTB, that, for
a sequence of gaps ∆̄ ∈ [0, 1]K and T > 108 log(K), for all problems ν ∈ B∆̄

c ,
satisfies,

ēνProbDep-CTB(T ) ≥ 3 exp(−cT min(∆k)
2 + c′ log(K)) ,

where c, c′ > 0 are absolute constants, see Theorem 30. We also demonstrate a
lower bound, such that for any sequence of gaps ∆̄ ∈ [0, 1]K , and any policy π,
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there exist a problem ν ∈ B∆̄
c such that on problem ν algorithm π has the following

lower bound on its probability of error,

ēνπ(T ) ≥ exp(−c′′T min(∆k)
2) .

where c′′ > 0 is an absolute constant, see Theorem 30.

The lack of difference in rates between the monotone and concave constraints is in
sharp contrast to the problem independent setting where the rates for the monotone
and concave constraints differ.

1.7 Best arm identification under many optimal arms

We now turn to a slightly different topic, that of best arm identification, under the
possibility of many optimal arms. In the classical setting of best arm identification
one often assumes a single optimal arm, e.g. [2], [48], however, in many practical
applications this is simply not the case. For example, when recommending a film to a
user there will, most likely, be multiple potential titles they would respond favourably
to. When there are many optimal arms, one would expect the learner to be able to
leverage this to their advantage. Classical regret bounds for best arm identification
scale poorly with many optimal arms, we recall the bound of [2], Theorem 13,

e(T ) < exp

(
− cT∑

a:µk 6=µ∗ ∆−2
a

)
,

with c > 0 an absolute constant. Here, even if half the arms were optimal, we would
see an improvement only in the constant term in the exponential. Furthermore, if we
fix the proportion of optimal arms to a constant fraction, say 1

2 , and let K grow to
infinity, the bound quickly becomes nonsensical. One would hope that with a large, or
even infinite set of arms, if a large proportion are optimal, the learner should still be
able to recover comparable bounds on their regret. With this in mind we will introduce
a new formulation of the MAB, one that extends beyond the K armed bandit.

1.7.1 Bandits with an infinite reservoir

We consider a setting with a (potentially infinite) set of arms A, which we call the
reservoir. Each arm a ∈ A is associated with a probability distribution νa, which
we assume to be supported on [0, 1], and we denote its mean by µa. Again, write
µ∗ = supa∈A µa for the highest mean and write,

µsub = sup
a∈A:µa 6=µ∗

µa ,

for the mean of the largest non optimal arm. We further assume that there exists a
partition A = A∗ ∪ Asub such that each arm a ∈ A∗ is optimal, i.e.

∀a ∈ A, µa = µ∗ ,

and each arm a ∈ Asub strictly is sub-optimal, i.e.

∀a ∈ Asub, µa < µsub .
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We assume that the agent can pick arms at random from the reservoir, according to
some distribution on A, which we shall denote P̄A. The arms A∗ form a p? proportion
of the reservoir, that is, for an arm a drawn from the reservoir,

P̄A(a ∈ A∗) = p? ,

and,
P̄A(a ∈ Asub) = 1− p? ,

i.e. this arm belongs either to the set A∗ with probability p?, or it belongs to the
set Asub with probability 1− p?. We again fix the time horizon at T and the learner
interacts with the environment in several rounds t = 1, 2, . . . , T . At each round t ≤ T ,
the learner chooses an arm at by either picking a new arm from the reservoir A, or
playing a past arm and gets a reward Yt ∼ νat . As before, the arm choice depends
only on the past observations, the past arm choices, and possibly some exogenous
randomness. The rewards for each arm a are i.i.d. random variables with mean µa,
unknown to the learner. Let D denote the global class of bandit problems with a
potentially infinite reservoir A, with associated distribution P̄A, admitting partition,
A = A∗ ∪ Asub.

We will again work in the problem dependent regime, we denote

∆min = µ∗ − µsub ,

for the associated minimal gap. For larger ∆min the optimal arms are further from
the rest and therefore easier to identify. For ∆ > 0, p ∈ (0, 1] we let D∆,p, define the
set of bandit problems whose reservoir distribution is such that p? ≥ p and ∆min ≥ ∆,
that is,

D∆,p := {ν ∈ D : p? ≥ p, |µ∗ − µsub| ≥ ∆} .

Ideally, what we would hope to achieve in this setting is something comparable to
the classical bound for BAI with K arms, see Theorem 13, but with the dependency
on K replaced with one on p?.

Literature relating to BAI in the infinite reservoir setting under fixed bud-
get Formulating the MAB with a potentially infinite reservoir is well studied in
the fixed budget literature. A classical assumption in this setting is that, for ∆ > 0,
the proportion of ∆ - near optimal arms is of order ∆α for some α > 0. This was
first considered by [9] with further work by [83] and [10], all for cumulative regret,
see Section 1.8 for further discussion of their results. In the case of BAI, under the
assumption that, for ∆ > 0, the proportion of ∆ - near optimal arms is of proportion
larger than ∆α for some α > 0, [18] identify the minimax rate as of the order,

T−1/2 ∨ T−1/α ,

up to a log log(T ) term. Their assumption on the reservoir is much weaker than assum-
ing a fixed proportion of optimal arms p?, however, their rates are also considerably
weaker than what we would hope for. They essentially identify a sub optimal arm,
whose distance to the optimal is bounded polynomially with T , while we would aim
for an exponential decay in the regret with respect to T .
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1.7.2 BAI for for bandits with infinite reservoir, under fixed confi-
dence

While much of the fixed budget literature differs greatly to our setting, in terms of
their assumptions on the reservoir, in the fixed confidence regime there are several
works much closer to our own. These works consider various settings, which can all be
related to BAI. We will address each setting in turn.

Quantile estimation In the works of [7, 20] they are in the fixed confidence setting
and their objective is to identify an arm â with mean greater than a quantile of known
order, with respect to the reservoir distribution, with high probability. For simplicity,
when covering their results we will restrict to the setting where for all arms a ∈ A,
νa is Bernoulli. In [7] their results extend beyond this assumption to general reward
distributions on the arms. For some i > 0, let Gi denote the ipth quantile, that is, for
an arm a drawn from the reservoir,

Gi = sup
(
x : P̄A(µa ≥ x) ≥ ip ∧ 1

)
.

Given p > 0, we can then measure the learners regret as,

(G1 − µâ)+ .

The objective of the learner is then, for δ, ε > 0, to describe a PAC(ε, δ), see Equation
(1.5), algorithm with minimal expected stopping time. In [7] they propose a method
that first draws an appropriately sized sample from the reservoir, and then proceeds
to run the KL-LUCB algorithm. Essentially, the KL-LUCB algorithm is to the LUCB
what the KL-UCB is to the UCB, in that its confidence bounds are based on the KL
divergence as opposed to Hoeffdings. We will treat the KL-LUCB as a black box,
see [59] for a detailed analysis. For a given p, ε, δ > 0, the algorithm of [7] is then as
follows, see (p, δ, ε)-KL-LUCB. The (p, δ, ε)-KL-LUCB first draws a sub sample of size

Input: target quantile p, confidence level δ, tolerance ε
Draw a 1

p log(2
δ ) sized sub sample

Run KL-LUCB on sub sample
Algorithm 10: (p, δ, ε)-KL-LUCB

1
p log(2

δ ) from the reservoir. Due to its well chosen size, there will be an arm with mean
above the pth quantile contained in said sample, with probability roughly greater than
1−δ. One can then run known techniques for finite bandits, in this case the KL-LUCB,
and maintain PAC(δ, ε). To understand the rates of [7] we must understand their
definition of problem complexity. Let m = d1

pe, they then define the following problem
complexity,

Hp,ε :=
1

ε2
+

m∑
i=2

1

max(ε2/2, d∗(Gi,G1))
,

where, for d, p ∈ [0, 1], d∗(p, q) is the Chernoff information and is equal to KL(Ber(z∗),Ber(p))
where z∗ is the unique solution in z to KL(Ber(z),Ber(p)) = KL(Ber(z),Ber(q)). Nat-
urally the Chernoff information is closely related to the KL divergence and also the
arm gaps, for an arm a ∈ A we have,

∆2
a

2
≤ d∗(µa, µ∗) ≤ KL(Ber(µa),Ber(µ∗)) ≤

∆2
a

µ∗(1− µ∗)
.
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The complexity Hp,ε can then be seen as somewhat analogous to the complexity
H in the finite armed case, see equation (1.11). There is the additional effect that,
when the confidence level ε becomes greater than an arm’s gap, that gap’s effect on
the complexity disappears.

Theorem 21 (Theorem 6 [7]). Let δ < p < 1/3, on all problems ν ∈ D, such that
∀a ∈ A, νa is Bernoulli, the (p, δ, ε)-KL-LUCB algorithm is PAC(δ, ε), that is,

Pν,(p, δ, ε)-KL-LUCB((G1 − µâ)+ ≥ ε) ≤ δ ,

and furthermore, with probability greater than 1− 7δ, it’s stopping time τ is upper
bounded as follows,

τ ≤ cHp,ε log(1/δ)2 ,

for some absolute constant c > 0.

Remark 6. In [7] the authors extend the result of Theorem 21 to the one parameter
exponential family of distributions.

For ε = 06 and target quantile p > 0, in [7], they also provide a lower bound on
the expected stopping time of any PAC(δ, 0) algorithm of the order,

c′

KL(Ber(µ∗),Ber(G2))
+ log(c/δ)

m−1∑
i=2

1

KL(Ber(Gi),Ber(µ∗))
, (1.24)

for some absolute constants c′, c > 0.

Remark 7. The authors of [7] extend the lower bound of Equation (1.24) to distribu-
tions continuously parameterised by their mean, with some additional assumptions,
typical for the one parameter exponential family of distributions, see [7][Assumption
1].

Note the log(1/δ) discrepancy in the bounds of Theorem 21 and Equation (1.24).
In the case where ∀a ∈ Asub, µa = µsub, we have Hp,ε = 1

ε2
+ m

max(ε2/2,d∗(G2,G1))
. Thus,

in the aforementioned case, taking ε = ∆min and p = p∗, the bound of Theorem 21,
roughly translates to our fixed budget setting as,

exp

(
−c
√
Tp∗∆2

min

)
,

for some absolute constant c > 0. This is far larger than what we would hope to achieve.
Essentially, the additional multiplicative log(1/δ) in Theorem 21 is sub optimal, this
also highlighted in gap between the UB and LB in [7]. The authors therein wonder if
the additional multiplicative log(1/δ) term is necessary for such two stage algorithms.
They note that in the first stage, clearly one cannot avoid drawing at least c1

p log(1
δ )

arms from the reservoir, for some absoulte constant c > 0. However, in the second
phase one only needs to find an arm in the top p fraction, and in expectation there
should be roughly log(1/δ) such arms in the sub sample. One should, therefore, be
able to do better than the standard rates for BAI in this case.

Epsilon good arm identification Also directly comparable is the problem of ε-
good arm identification. This can be seen as the PAC(δ, ε), see Equation (1.5), setting

6Their lower bound also extends to the ε > 0 case, see [7][Remark 4]
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for BAI under simple regret. That is, given a prediction of the learner â, we consider
the simple regret,

|µâ − µ∗| ,

and, for δ, ε > 0, the aim of the learner is to provide a PAC(δ, ε) algorithm with
minimal stopping time. Let us write p?ε as the proportion of epsilon good arms, that
is, for an arm a drawn from the reservoir,

P̄A(µ∗ − µa ≤ ε) = p?ε .

We now take the gap as the distance between the worst epsilon good arm and the best
non-epsilon good arm, that is, we define,

∆<ε> := inf
a:µa≥µ∗−ε

(µa)− sup
a:µa<µ∗−ε

(µa) .

The paper [55] considers such a setting and proposes a UCB type algorithm that runs
over increasingly large brackets of arms taken from the reservoir. For a given arm a at
time t, with confidence level δ > 0, they define their UCB index as follows,

ŨCBδ(a, t) = µ̂a,t + c

√
log(log(Na(t))/δ)

Na(t)
,

for some absolute constant c > 0. Their algorithm is then as follows, see BUCB.
As mentioned, if the learner does not know ε or the proportion of ε good arms, they

Input: confidence level δ > 0
Initialise: l = 0, R0 = 0
for t = 1, 2, ... do

if t > 2ll then
Draw sample Al+1 of size 2l from reservoir
l = l + 1

end
Rt = Rt−11Rt<l + 1

Pull arm at = arg maxa∈ARt

(
ŨCBδ(a, t)

)
Ot = arg max

a∈Arfor some r≤l

(
ŨCBδ/(|Ar|r2)(a, t)

)
end

Algorithm 11: Bracketing UCB (BUCB)

cannot tune the size of a single sub sample. The BUCB algorithm overcomes this by
running over multiple sizes of sub sample simultaneously, drawing increasingly larger
brackets of arms from the reservoir as it runs. That is, for l = 1, 2, 3.. at time l2l it
opens a new bracket Al of size 2l. In the meantime it runs its UCB type algorithm
over all open brackets. It is important to note that the BUCB algorithm does not have
a explicit stopping time, instead the user must decide a time t > 0 at which to stop
and take output Ot. With this in mind, the performance of the BUCB is upper bounded
in the following theorem.
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Theorem 22 (Specific version Theorem 2 [55]). Let δ < 0.025, ε > 0, their exists a
stopping time τ such that, for all problems ν ∈ D, when running the BUCB,

P(∃s > τ : Os < µ∗ − ε) ≤ 2δ ,

and furthermore,
E[τ ] ≤ cH̃δ log(H̃δ) ,

where H̃δ = 1
p∗ε∆2

<ε>
log(1/δ) and c > 0 is an absolute constant.

At a glance, Theorem 22 appears to be a clear improvement over Theorem 21,
as the additional multiplicative log(1/δ) term is removed and the BUCB algorithm is
adaptive on ε. However, we see Theorem 22 is a fundamentally different result and
not comparable to Theorem 21 for two key reasons.

• Firstly, the stopping time τ such that E[τ ] ≤ cH̃δ log(H̃δ), for some absolute
constant c > 0, is not explicitly stated and indeed the stopping time used in
the proof requires knowledge of the true means of the arms, information not
available to the learner.

• Furthermore the main result in Theorem 22 is in expectation, not high probability.
This is a far weaker result and means that Theorem 22 cannot be directly applied
to the fixed budget setting. If the authors of [55] wished to obtain a result which
holds in high probability they would need to sample far more arms and would
end up paying the log(1/δ)2. To try and build some intuition for this statement,
consider l̃ > 1 : 1

p∗ε
= l̃2l̃. Thus when the BUCB algorithm opens a bracket of size

l̃2l̃ one can expect to have at least one epsilon good arm in said bracket. However,
if one wanted to have an epsilon good arm in the bracket with probability greater
than δ, one would need to open a much larger bracket, of size log(1/δ)l̃2l̃. See
also Remark 4 in [56] and page 15 in the appendix of the full version [55].

This is not to disparage the work of [55], the focus of their paper is instead to get
more complete gap dependent bounds, considering also the gaps within the epsilon
good arms.

Most biased coin problem The most biased coin problem is a restricted version
of our setting where,

∀a ∈ A∗, νa = Ber(µ∗) ,

that is, all optimal arms follow a Ber(µ∗) distribution and furthermore,

∀a ∈ Asub, νa = Ber(µsub) ,

that is, all sub optimal arms are distributed according the same Ber(µsub) distribution.
The goal of the learner is then again to return an optimal arm, which in this setting
can be seen as identifying "the most biased coin". This setting has been studied in the
fixed confidence regime, see [19], [49]. Specifically, [49] provide an algorithm that, in
the above setting, for δ > 0 will, with probability at least 1− δ output an optimal arm
and furthermore, with probability greater than 1− δ, have it’s stopping time upper
bounded by,

c log(1/(p?∆2
min))

log(1/δ)

p?∆2
min

,
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where c > 0 is an absolute constant. Translating this result to the fixed budget setting
would yield a bound of the order,

exp
(
−cTp?∆2

min/ log(1/(p?∆2
min))

)
,

for some absolute constant c > 0. This is very close to what we aim to achieve, however,
specifying that all sub optimal arms must have the same distribution fundamentally
changes the nature of the problem, as in this, restricted setting one is able to estimate
∆min.

1.7.3 BAI under fixed proportion of many optimal arms in the fixed
budget setting

The algorithms employed in the above literature typically approach the challenge of
an infinite arm set by drawing a finite sub sample (or samples) from the reservoir
and then using classical techniques for best arm identification on said sub sample(s).
If we assume we have p? proportion of optimal arms in the reservoir and, for some
δ > 0, draw a sub sample of order of size log(1/δ)

p? we will, roughly speaking, have an
optimal arm in our sub sample with probability greater than 1− δ. Thus, if one were
to know p?,∆min one could draw a suitably sized sub sample and run classical bandit
algorithms. As we have seen in the fixed confidence literature there are two main
issues with this,

• What if we do not know p?,∆min, how do we tune the size of our sub sample?

• How do we exploit the fact that in expectation we will have multiple optimal
arms in our sub sample?

In the paper [45] we overcome both these issues by utilising a successive elimina-
tion algorithm, see the SR and also the elimination algorithm of [52], with a novel
modification.

Contribution

We show that for any ∆, p > 0, on all problems in D∆,p, our provided
alglorithm, Elimination, has the following upper bound on its probability of
error,

eνElimination(T ) ≤ exp

(
−cT∆2p

log(T )

)
, (1.25)

for some absolute constant c > 0, see Theorem 34. We also show a lower bound,
such that for any policy π and ∆, p > 0, there exists a bandit ν ∈ D∆,p, such that
on problem ν, policy π has the following lower bound on its probability of error,

eνπ(T ) ≥ exp
(
−c′T∆2p

)
, (1.26)

for some absolute constant c′ > 0, see Theorem 35.

Without any knowledge of ∆min or p∗, removing the log(T ) term in our upper
bound, for us, seems unfeasible. Perhaps, with an alternate algorithm not based on
successive elimination, an improvement in the log T term would be possible, this is a
question for future research.
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1.8 Cumulative regret under many optimal arms

Following BAI, it is then natural to also consider cumulative regret minimisation under
many optimal arms. The setting is as in the previous Section 1.7, the only difference
being that we now consider the cumulative regret,

R(T ) := Tµ∗ − E

[∑
t<T

Yt

]
,

as opposed to probability of error. As in BAI, classical regret bounds for cumulative
regret do not scale well under many optimal arms. Recall the upper bound of Theorem
7. For the K armed bandit, on all problems ν ∈ B,

RνUCB(T ) ≤ c
∑
a∈[K]

∆a + c′ log(T )
∑
a∈[K]

1

∆a
.

where c, c′ > 0 are absolute constants, even if half the arms were optimal the bound
would still be of the order log(T )

∑
a∈Asub

1
∆a

and becomes nonsensical as we letK grow
very large. As in BAI, what we would hope to achieve, is to replace the dependency
on K with one on p?, leading to an ideal bound of the order,

log(T )

p?∆min
.

To the best of our knowledge cumulative regret has not been studied in the
specific case of an infinite arm set with p? proportion of optimal arms, however, it has
been studied in several related bandit settings with an infinite reservoir. A common
assumption, first considered in [9] and then [83], is that there exists a β > 0 such that
for ε > 0, for an arm a drawn from the reservoir,

P̄A(µa ≥ µ∗ − ε) = cεβ , (1.27)

where c > 0 is an absolute constant. The approach of [83] is to draw a finite sample
of size K from the reservoir and then run a UCB variant on said sub sample. Their
UCB variant is tuned to have a shorter than normal exploration phase to exploit the
possibility of multiple near optimal arms in the sub sample. Assuming the learner
knows β and µ∗ the upper bound on the expected cumulative regret of their algorithm
is of the order,

log(T )(
√
T ∨ T β/(1+β)) ,

this is far worse than what we would hope to achieve, however, as in the case of [18]
their assumptions are far weaker than our own. The authors in [29] also consider a
infinitely armed bandit under very similar assumptions to [83]. Their tail assumption
is slightly more general but contains (1.27). The main difference of their paper is that
the rewards are no longer stochastic but are now deterministic. This means that after
pulling an arm once the learner knows the exact value of its mean. In this setting, again
assuming (1.27), they are able to achieve an upper bound on the expected cumulative
regret of their algorithm of the order,

log(T )(
√
T ∨ T β/(1+β2)) ,

without knowledge of β or µ∗. As mentioned, the above papers consider much weaker
assumptions on the reservoir and we would expect to significantly out perform their
results. Our approach will be similar, at least in spirit, to that of [83], that is we
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will run a UCB variant on a appropriately sized sub sample. However, our particular
variant of the UCB differs greatly to that of [83], as it must exploit our much stronger
assumptions.

Contribution

Given ∆, p ∈ (0, 1], we provide an algorithm, Sampling-UCB, and for
all problems ν ∈ D∆,p, demonstrate the following upper bound on its regret,

RνSampling-UCB(T ) ≤ c log(T ) log(1/∆)

p∆
,

where c > 0 is an absolute constant, see Theorem 31. We also prove that, given
∆, p ∈ (0, 1], for any policy π, there exists a problem ν ∈ D∆,p, such that,

Rνπ(T ) ≥ c′ log(T∆2)

p∆
,

where c′ is an absolute constant, see Theorem 32. Importantly, Sampling-UCB
does not require knowledge of ∆ and although it does take p as a parameter, we

show that is inevitable. Specifically, let p ≤ 1/4,∆ > 0, with T ≥ 4
(
c′′ log(T )
p∆2

)2
,

with c′′ > 0 an absolute constant. We show that, for any policy π, such that for
all problems ν ∈ D∆,p,

Rνπ(T ) ≤ c′′ log(T )

p∆
,

for all q ≤ 4p
c′′ , there exists ν ′ ∈ D∆,q, such that,

Rν
′
π (T ) ≥

√
T∆

4
,

see Theorem 33.

It is a common phenomenon that one is able to be adaptive to parameters in
pure exploration problems while adaptive algorithms are impossible in the setting of
cumulative regret. Indeed, if we are in a pure exploration bandit problem we can
allocate a constant fraction of our budget to estimate parameters, if we were to do
this in the cumulative regret setting, our regret would be linear in T .
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Chapter 2

The Influence of Shape Constraints
on the TBP

In this chapter we present the following work, "The Influence of Shape Constraints on
the Thresholding Bandit Problem" [26], authored by James Cheshire, Pierre Ménard
and Alexandra Carpentier.
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2.1 Introduction

Stochastic multi-armed bandit problems consider situations in which a learner faces
multiple unknown probability distributions, or “arms”, and has to sequentially sample
these arms. In this paper, we focus on the Thresholding Bandit Problem (TBP), a
Combinatorial Pure Exploration (CPE) bandit setting introduced by Chen et al. [23].
The learner is presented with [K] = {1, . . . ,K} arms, each following an unknown
distribution νk with unknown mean µk. Given a budget T > 0, the learner samples
the arms sequentially for a total of T times and then aims at predicting the set of
arms whose mean is above a given threshold τ ∈ R.

The performance of the learner is measured through the expected simple regret
which in this setting is the expected maximal gap between τ and the mean of a
misclassified arm. Note that our problem is in fact akin to estimating in a sequential
setting a given level-set of a discrete function under shape constraints.

In this paper we will be interested only in the problem independent case, and want
to characterise the minimax-order of the expected simple regret on various sets of
bandit problems. In particular we study the influence of various shape constraints on
the sequence of means of the arms, on the TBP problem, i.e. see how classical shape
constraints influence the minimax rate of the expected simple regret. We will consider
four shape constraints.
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Vanilla, unstructured case TBP First we consider the vanilla case where we only
assume that the distributions of the arms are supported in [0, 1]. We will refer to
this case as the unstructured problem, (TBP). The fixed confidence version of TBP
was studied in [23, 24] -see also e.g. [32, 22, 78, 37] for papers in the related best
arm identification and TOP-M setting1 in the fixed confidence case. The fixed budget
version of TBP was studied in Chen et al. [23], Locatelli, Gutzeit, and Carpentier
[68], and Mukherjee et al. [71], Zhong, Huang, and Liu [87] - but also see e.g. [12, 2,
34, 17] for papers in the related best arm identification and TOP-M setting in the
fixed budget case. These papers almost exclusively concern the problem dependent
regime, which is not the focus of this paper, and the adaptation of their rate to the
problem independent case is sub-optimal, see the discussion under Theorem 23 for a
more thorough comparison to this literature, and Appendix 2.5.1 for details.
In this paper, we prove that the minimax-optimal order of the expected simple regret

in TBP is
√

K logK
T . While a simple uniform-sampling strategy attains this bound,

the lower bound is more interesting, in particular the presence of the
√

logK term.
See the discussion following Theorem 23. For a discussion on the performance of the
uniform-sampling strategy in the problem dependent regime, see Appendix 2.5.1.

Monotone constraint, MTBP . We then consider the problem where on top of
assuming that the distributions are supported in [0, 1], we assume that the sequence of
means (µk)k is monotone - this is problem MTBP . This specific instance of the TBP
is introduced within the context of drug dosing in Garivier et al. [39]. In this paper,
the authors provide an algorithm for the fixed confidence setting that is optimal from
a problem dependent point of view. The shape constraint on the means of the arms
implies that the MTBP is related to noisy binary search, i.e. inserting an element
into its correct place within an ordered list when only noisy labels of the elements
are observed, see [33]. In the noiseless case, an effective approach due to the shape
constraint is to conduct a binary search - and the classification of the arms can therefore
be performed in just O(log(K)) steps, while K steps are needed in the noiseless TBP .
It is therefore clear that MTBP is radically different from TBP , even in the noiseless
case. In the noisy case, the learner has to sample many times each arm in order to
get a reliable decision at each step. While a simple naive strategy, although sufficient
in Xu et al. [84], is to do noisy binary search where at each step the learner simply
samples about O(T/ log(K)) times each arm, there are clear hints from the literature
that in the MTBP this is not going to be optimal. For the related yet different problem
of noisy binary search, [33], Ben-Or and Hassidim [8] and Emamjomeh-Zadeh, Kempe,
and Singhal [30] solve this issue by introducing a noisy binary search with corrections
- see also [73], [53]. However, all these papers consider the problem of noisy binary
search in settings with more structural assumptions and where the objective is more
related to a fixed confidence setting, their results are therefore not directly applicable
to our setting. See the discussion under Theorem 24 for a more thorough comparison
to this literature and see Appendix 2.5.1 for details.
In this paper, we prove that the minimax-optimal order of expected simple regret
in MTBP is

√
log(K)/T . Interestingly and as highlighted in this paragraph, this

rate is much smaller than the minimax rate over TBP . This reflects the fact that the
monotone shape constraint makes the problem much simpler than TBP , and closer
to noisy binary search. Further discussion on the comparison between the TBP and

1In the TOP-M setting, the objective of the learner is to output the M arms with highest means.
A popular version of it it is the TOP-1 problem where the aim is to find the arm that realises the
maximum.
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MTBP , specifically the difference coming from the monotone assumption, can be found
in Appendix 2.5.1 and see the algorithm Explore and the associated text in Section 2.4
for more intuition on the link to noisy binary search. Discussion on the performance
of our algorithms for the MTBP in the problem dependent regime can also be found in
Appendix 2.5.1.

Unimodal constraint, UTBP . We also consider the problem where on top of
assuming that the distributions are supported in [0, 1], we assume that the sequence
of means (µk)k is unimodal - this is problem UTBP . It has not been considered to
the best of our knowledge. However similar problems have been studied such that
identifying the best arm or minimizing the cumulative regret [28, 27, 74, 85]. [74,
27] focus on the problem dependent regime, and are not transferable - at least to the
best of our knowledge - to the problem independent setting. [85, 28] are closer to our
problem as it focuses on the problem independent regime. However, they consider the
X -armed setting (continuous set of arms e.g. in [0, 1]) setting and assume Hölder type
regularity assumption around the maximum, which prevents jumps in the mean vector.
These results therefore do not apply to our setting, where of course jumps are bound
to happen as we are in the discrete setting. See the discussion under Theorem 25 for a
more thorough comparison to this literature.
In this paper, we prove that the minimax-optimal order of the expected simple regret
in UTBP is of order

√
K/T . This is interesting in contrast to the rate of MTBP .

Monotone bandit problems are much easier than unimodal bandit problems - which can
be written as a combination of a non-decreasing bandit problem, and a non-increasing
bandit problem. This is however not very surprising, as finding the maximum of the
unimodal bandit problem - i.e. the points where the non-increasing and non-decreasing
bandit problems merge - is difficult.

Concave constraint, CTBP . Finally we consider the problem where on top of
assuming that the distributions are supported in [0, 1], we assume that the sequence of
means (µk)k is concave - this is problem CTBP . To the best of our knowledge this
setting has not yet been consider in the literature. However, two related problems
have been considered: the problem of estimating a concave function, and the problem
of optimising a concave function - for both problems, mostly in the continuous setting,
which renders a comparison with our setting delicate. The problem of estimating a
concave function has been thoroughly studied in the noiseless setting, and also in the
noisy setting, see e.g. [79], where the setting of a continuous set of arms is considered,
under Hölder smoothness assumptions. The problem of optimising a convex function
in noise without access to its derivative - namely zeroth order noisy optimisation - has
also been extensively studied. See e.g. [72][Chapter 9], and [82, 1, 66] to name a few,
all of them in a continuous setting and in dimension d. The focus of this literature is
however very different than ours, as the main difficulty under their assumption is to
obtain a good dependence in the dimension d, and in this setting logarithmic factors
are not very relevant. See the discussion under Theorem 26 for a more thorough
comparison to this literature.
In this paper, we prove that the minimax-optimal order of the expected simple regret
in CTBP is

√
loglog(K)/T . This is interesting in contrast to rate in the case of UTBP .

Concave bandit problems are much easier than unimodal bandit problems. Also, if
we compare with MTBP , we have that concave bandit problems are also much easier
than monotone bandit problems, which is perhaps surprising - in particular the fact
that the dependence in K is much smaller.
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Results Unstructured TBP Monotone TBP Unimodal TBP Concave TBP

Regret
√

K logK
T

√
logK
T

√
K
T

√
loglogK

T

Table 2.1: Order of the minimax expected simple regret for the thresh-
olding bandit problem, in the case of all four structural assumptions on
the means of the arms considered in this paper. All results are given

up to universal multiplicative constants.

Organisation of the paper Our results are summarized in Table 2.1. See also
Appendix 2.6.1 for an adaptation of these results in the X -armed bandit setting. In
Section 2.2 we define the setting and the TBP , MTBP , CTBP and UTBP problems.
Minimax rates for the expected regret for all cases are given in Section 2.3. In Section
2.4 we describe algorithms attaining the minimax rates of Section 2.3, again for all cases.
The Appendix contains the proofs for all results, as well as formulation of the upper
and lower bounds leading to the minimax rates in a broader setting, transposition of
some results in the fixed confidence setting, and also some additional discussions and
remarks.

2.2 Problem formulation

The learner is presented with a K-armed bandit problem
¯
ν = {ν1, . . . , νK}, with

K ≥ 3, where νk is the unknown distribution of arm k. Let τ ∈ R be a fixed threshold
known to the learner. We aim to devise an algorithm which classifies arms as above or
below threshold τ . That is, the learner aims at finding the vector Q ∈ {−1, 1}K that
encodes the true classification, i.e. Qk = 21{µk≥τ} − 1 with the convention Qk = 1 if
arm k is above the threshold and Qk = −1 otherwise.

The fixed budget bandit sequential learning setting goes as follows: the learner has
a budget T > 0 and at each round t ≤ T , the learner pulls an arm kt ∈ [1,K] and
observes a sample Yt ∼ νkt , conditionally independent from the past. After interacting
with the bandit problem and expending their budget, the learner outputs a vector
Q̂ ∈ {−1, 1}K and the aim is that it matches the unknown vector Q as well as possible.

That is, the fixed budget objective of the learner following the strategy π is then to
minimize the expected simple regret of this classification for Q̂ := Q̂π:

R¯
ν,π
T = E

¯
ν

[
max

{k∈[K]: Q̂πk 6=Qk}
∆k

]
,

where ∆k := |τ − µk| is the gap of arm k, and where E
¯
ν is defined as the expectation

on problem
¯
ν and P

¯
ν the probability. We also write for the simple regret as a random

variable R¯
ν,π
T = max{k∈[K]: Q̂πk 6=Qk}

∆k . When it is clear from the context we will
remove the dependence on the bandit problem

¯
ν and/or the strategy π. We now

present several sets of bandit problems that correspond to our four shape constraints.

Vanilla, unstructured case TBP We assume that the distribution of all the arms
νk are supported in [0, 1]. We denote by µk the mean or arm k. Let B := B(K) be the
set of such problems.
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Monotone case MTBP We denote by Bm the set of bandit problems,

Bm := {ν ∈ B : µ1 ≤ µ2 ≤ . . . ≤ µK} ,

where the learner is given the additional information that the sequence of means
(µk)k∈[K] is a monotonically increasing sequence.

Unimodal case UTBP We will denote by Bu the set of bandit problems,

Bu := {ν ∈ B : ∃k∗ ∈ [K]s.t.∀l ≤ k∗, µl−1 ≤ µl and ∀l ≥ k∗, µl ≥ µl+1} ,

where the learner is given the additional information that the sequence of means
(µk)k∈[K] is unimodal.

Concave case CTBP We will denote by Bc the set of bandit problems,

Bc :=

{
ν ∈ B : ∀1 < k < K − 1,

1

2
µk−1 +

1

2
µk+1 ≤ µk

}
,

where the learner is given the additional information that the sequence of means
(µk)k∈[K] is concave.

Minimax expected regret Consider a set of bandit problems B̃ - e.g. Bu,Bm,Bc,B.
The minimax optimal expected regret on B̃ is then

R∗T (B̃) := inf
π strategy

sup

¯
ν∈B̃

R¯
ν,π
T .

2.3 Minimax expected regret for TBP , MTBP , UTBP ,
CTBP

In this section we present all minimax rates on the expected regret in the case of all
four shape constraints.

Algorithms achieving these mini-max rates are described in Section 2.4. For two
positive sequences of real numbers (an)n, (bn)n, we write an � bn if there exists two
universal constants2 0 < c < C such that can ≤ bn ≤ Can.

Theorem 23 provides the minimax rate of the TBP . The proof can be found in
Appendix 2.7.1, i.e. Proposition 2, and Proposition 4.

Theorem 23. It holds that

R∗T (B) �
√
K logK

T
.

The algorithm Uniform described in Sections 2.4 (see also Appendix 2.7.1) attains this
rate.

It is difficult to compare this result to state of the art literature as existing
papers consider almost exclusively the problem dependent regime, and often the fixed
confidence setting. One can however deduce from [68] an upper bound of order√
K log(K log T/δ)/T , and from [24] a lower bound of order

√
K/T , which are both

slightly sub-optimal.
2In particular, independent of T,K.
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Theorem 24 provides the minimax rate of the MTBP . The proof can be found in
Appendix 2.7.2, i.e. Proposition 5, and Corollary 5.

Theorem 24. It holds that

R∗T (Bm) �
√

logK

T
.

The algorithm MTB described in Section 2.4 attains this rate.

The literature that achieves results closest to this theorem is the noisy binary
search literature cited in the introduction. The results that are most comparable to
ours are the ones in Karp and Kleinberg [53]. They consider the special case where
all arms follow a Bernoulli distribution with parameter pk and p1 < ... < pK , and the
aim is to find a i such that pi is close to 1/2. In the fixed confidence setting, they
prove that the naive binary search approach is not optimal and propose an involved
exponential weight algorithm, as well as a random walk binary search, for solving the
problem. They prove that for a fixed ε, δ > 0, the algorithm returns all arms above
threshold with probability larger than 1− δ, and tolerance ε, in an expected number
of pulls less than a multiplicative constant that depends on δ in a non-specified way
times log2(K)/ε2. They prove that this is optimal up to a constant depending on
δ. In the paper [8] they refine the dependence on δ in a slightly different setting -
where one has a fixed error probability. They prove that up to terms that are negligible
with respect to log(K)/ε2, a lower bound in the expected stopping time is of order
(1− δ) log(K)/ε2. Even after a non-trivial transposition effort from their setting to
ours, these results would still provide sub-optimal bounds in our setting as we consider
the expected simple regret - and a sharper dependence in their δ would be absolutely
necessary here in all regimes to get our results.

Theorem 25 provides the minimax rate of the UTBP . The proof can be found in
Appendix 2.7.3, i.e. Proposition 8, and Proposition 9.

Theorem 25. It holds that

R∗T (Bu) �
√
K

T
.

The algorithm UTB described in Section 2.4 attains this rate.

Most related papers consider the problem dependent setting. However the pa-
pers [85, 28] consider the problem independent regime, in the X -armed setting and in
both cases under additional shape constraint assumptions inducing that the maximum
is not too "peaky" and isolated. They prove that the minimax simple regret for the
TOP-1 problem is of order

√
log(T )/T .

This seems to contradict our results, to which a direct corollary is that the minimax
expected regret for finding a given level set of a β-Hölder, unimodal function in [0, 1]

is T−
β

2β+1 , see Appendix 2.6.1. This might seem unintuitive when compared to their
result where the rate is much faster. But is not, as the assumption that both papers
make essentially imply that the set of arms that are ε-close to the arm with highest
mean decays in a regular way, which implies that a binary search will provide good
results in this case - unlike in our setting.

Therefore their setting is closer in essence to the MTBP problem than to the
TBP problem, as binary-search type methods work well there as highlighted in [28].
And interestingly, a direct corollary to Theorem 24 for MTB is that the minimax
expected regret for finding a given level set of a β-Hölder, monotone function in [0, 1] is√

log(T )/T , see Appendix 2.6.1, which is very much aligned with the findings in [28].
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Theorem 26 provides the minimax rate of the CTBP . The proof can be found in
Appendix 2.7.4, i.e. Proposition 10, and Proposition 11.

Theorem 26. It holds that

R∗T (Bc) �
√

loglogK

T
.

The algorithm CTB described in Section 2.4 attains this rate.

As stated in the introduction, the closest literature to our setting is that which
concerns sequential estimation of a convex function and noisy convex zeroth order
optimisation. Since this literature deals with the continuous case, let us first remark
that a straightforward3 corollary of Theorem 26 is that in the case where the arms are in
[0, 1] and where f is β−Hölder for some β > 0, the minimax expected regret according
to our definition (but in this continuous setting) is

√
loglog(T )/T , see Appendix 2.6.1

for details.
In [79], the authors present the problem of estimating a convex function by constructing
a net of points that is more refined in areas where the function varies more, i.e. by
adapting a quadrature method to the noisy setting. Under an assumption on the
modulus of continuity, that is essentially equivalent to assuming that the function is
β−Hölder for some β > 0, the authors provide results in the fixed confidence setting.
If one inverses their bounds to go to the fixed budget setting, their results hint toward
a lower bound on estimating the convex function in l∞ norm of order

√
log(T )/T and

an upper bound of order log(T )/
√
T . The fact that the logarithmic dependency is

much worse in their setting than in ours highlights that the problem of estimating
entirely the convex function is more difficult than the problem of estimating a single
level set.
In [72][Chapter 9], and [82, 1, 66] the authors consider continuous zeroth order noisy
convex optimisation, and focus mainly on reducing the exponent for the dimension
d - in this setting the minimax precision for estimating the minimum of the function
is conjectured to be d3/2poly(log(T ))/

√
T where the poly(log(T )) term is not really

investigated, as the problem is already very difficult as it is. We on the other hand
consider mainly d = 1 and aim at obtaining optimal logarithmic terms.

2.4 Minimax optimal algorithms

In this section we present algorithms that match minimax regret rates in Section 2.3
up to multiplicative constants for TBP , MTBP , UTBP and CTBP .

2.4.1 Unstructured case TBP

Given an unstructured problem
¯
ν ∈ B we consider the algorithm Uniform which

samples uniformly across the arms. That is each arm in [K] is sampled bT/Kc times.
The learner then classifies each arm according to its sample mean, see Algorithm 17 in
Appendix 2.7.1.

Surprisingly the naive Uniform algorithm is optimal in the unstructured case
with respect to the lower bound of Theorem 23. See the proof of Proposition 4 in
Appendix 2.7.1. This contrasts with the related TOP-1 bandit problem where the
minimax regret rate is

√
K/T , see [12, 3] for hints toward this. This is not very

surprising as in the TOP-1 problem we are interested in finding one arm only, namely
3By simply discretising the space in K1/β bins and applying the method on these bins.
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the arm with highest mean, while in our problem we search for all arms above threshold
and for this we pay an additional

√
logK.

2.4.2 Monotone case MTBP

In this section we fix a problem
¯
ν ∈ Bm. We also assume, in this section, without loss

of generality that τ ∈ [µ1, µK ]. Indeed, we can always add two deterministic arms 0
and K + 1 with respective means µ0 = −∞ and µK+1 = +∞.

We introduce the MTB (Monotone Thresholding Bandits) algorithm. It is composed
of two sub-algorithms, Explore and Choose. The first algorithm, Explore, performs
a random walk on the set of arms [K] seen as a binary tree, the algorithm Choose
then selects, among the visited arms, the one that will be chosen as the threshold for
the classification. That is, we choose an arm â which leads to the estimator Q̂, where
Q̂ : Q̂[k] = −1 ∀k < â, Q̂[k] = 1 ∀k ≥ â .

Binary Tree We associate to each problem
¯
ν ∈ Bm a binary tree. Precisely we

consider a binary tree with nodes of the form v = {L,M,R} where {L,M,R} are
indexes of arms and we note respectively v(l) = L, v(r) = R, v(m) = M . The tree is
built recursively as follows: the root is root = {1, b(1 +K)/2c,K}, and for a node
v = {L,M,R} with L,M,R ∈ {1, . . . ,K} the left child of v is L(v) = {L,Ml,M} and
the right child is R(v) = {M,Mr, R} withMl = b(L+M)/2c andMr = b(M +R)/2c
as the middle index between. The leaves of the tree will be the nodes {v = {L,M,R} :
R = L+ 1}. If a node v is a leaf we set R(v) = L(v) = ∅. We consider the tree up to
maximum depth H = blog2(K)c+ 1. We note P

(
l(v)

)
= P

(
r(v)

)
the parent of the

two children and let |v| denote the depth of node v in the tree, with |root| = 0. We
adopt the convention P (root) = root. In order to predict the right classification we
want to find the arm whose mean is the one just above the threshold τ . Finding this
arm is equivalent to inserting the threshold into the (sorted) list of means, which can
be done with a binary search in the aforementioned binary tree. But in our setting
we only have access to estimates of the means which can be very unreliable if the
mean is close to the threshold. Because of this there is a high chance we will make a
mistake on some step of the binary search. For this reason we must allow Explore to
backtrack and this is why Explore performs a binary search with corrections. Then
Choose selects among the visited arms the most promising one.

Explore algorithm We first define the following integers,

T1 := d6 log(K)e T2 :=

⌊
T

3T1

⌋
.

The algorithm Explore is then essentially a random walk on said binary tree moving
one step per iteration for a total of T1 steps. Let v1 = root and for t < T1 let vt
denote the current node, the algorithm samples arms {vt(k) : k ∈ {l,m, r}} each T2

times. Let the sample mean of arm vt(k) be denoted µ̂k,t. Explore will use these
estimates to decide which node to explore next. If an error is detected - i.e. the
interval between left and rightmost sample mean do does not contain the threshold,
then the algorithm backtracks to the parent of the current node, otherwise Explore
acts as the deterministic binary search for inserting the threshold τ in the sorted list of
means. More specifically, if there is an anomaly, τ 6∈ [µ̂l,t, µ̂r,t], then the next node is
the parent vt+1 = P (vt), otherwise if τ ∈ [µ̂l,t, µ̂m,t] the the next node is the left child
vt+1 = L(vt) and if τ ∈ [µ̂m,t, µ̂r,t] the next node is the right child vt+1 = R(vt). If at
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time t, τ ∈ [µ̂l,t, µ̂r,t] and the node vt is a leaf then vt+1 = vt. See Algorithm Explore
for details.

Initialization: v1 = root
for t = 1 : T1 do

sample T2 times each arm in vt
if τ 6∈ [µ̂l,t, µ̂r,t] then

vt+1 = P (vt)
else if R(vt) = L(vt) = ∅ then

vt+1 = vt
else if µ̂m,t ≤ τ ≤ µ̂r,t then

vt+1 = R(vt)
else if µ̂l,t ≤ τ ≤ µ̂m,t then

vt+1 = L(vt)
end

end
Algorithm 12: Explore

Choose algorithm Algorithm Choose takes the history of algorithm Explore, namely
the sequence of empirical means (µ̂l,t, µ̂m,t, µ̂r,t)t≤T1

and visited nodes (vt)t≤T1
, as the

input. In addition it takes as input a parameter ε > 0. The action of Choose is to
then identify the set of arms among those sampled whose empirical means satisfy one
or more of the following:

• their empirical mean is within ε of τ ,

• their empirical mean is less than τ and the empirical mean of the right hand
adjacent arm is greater than τ .

Here we recognize the set of arms that may lead to a classification with simple regret
smaller than ε if the estimates are correct. The algorithm Choose then orders this set
by ascending arm index and returns the median, see Algorithm 13.

Input: ε, (µ̂l,t, µ̂m,t, µ̂r,t)t≤T1
, (vt)t≤T1

Initialization: S1 = [ ]
for t = 1 : T1 do

St+1 = St
if {∃k ∈ {l,m, r} : |µ̂k,t − τ | ≤ ε} ∨
{k = vt(r) = vt(l) + 1; µ̂l,t + ε < τ ≤ µ̂r,t − ε} then

append vt(k) to the list St+1

end
end
order the list ST1+1 by ascending arm index
return Median(ST1+1).

Algorithm 13: Choose

Remark 8. Note that for any time t ≤ T1 we append at most one arm to the list
St+1. If at time t there are multiple candidates the choice is made at random.

MTB algorithm The algorithm first runs Explore. We fix a constant ε0 =
√

2 log(48)/T2 ,
and compute the parameter ε̂ with the history of algorithm Explore,

ε̂ =

2ε0 if ∃(t, k) : k = vt(l) = vt(r)− 1; µ̂l,t ≤ τ ≤ µ̂r,t
max

(
2ε0, min

t≤T1,k∈{l,m,r}
|µ̂k,t − τ |

)
else .
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Then MTB runs the algorithm Choose with parameter ε̂. Note that ε̂ is the smallest
parameter greater than 2ε0 such that the list ST1+1 is non empty. This choice will
become clear in the proof of Theorem 24 in Appendix 2.7.2. Morally it allows to select
a majority of “good" arms (i.e that provide a low regret classification Q̂) in ST1+1 such
that the median â is also a “good" arm, see Algorithm 14.

run algorithm Explore

• Output: (µ̂l,t, µ̂m,t, µ̂r,t)t≤T1
, (vt)t≤T1

run algorithm Choose

• Input: ε̂, (µ̂l,t, µ̂m,t, µ̂r,t)t≤T1
, (vt)t≤T1

• Output: arm index â

return (â, Q̂) : Q̂k = 21{k≥â} − 1
Algorithm 14: MTB

The MTB algorithm will achieve the minimax rate on expected simple regret given
in Theorem 24, see the proof of Theorem 24, in Appendix 2.7.2, for details.

Remark 9 (Adaptation of MTB to a non-increasing sequence, DEC-MTB). MTB is applied
for a monotone non-decreasing sequence (µk)k, and it is easy to adapt it to a monotone
non-increasing sequence (µk)k. In this case, we transform the label of arm i into
K − i, and apply MTB to the newly labeled problem - where the mean sequence in now
non-decreasing. We refer to this modification as DEC-MTB.

2.4.3 Unimodal case UTBP

We now turn to the algorithm for the unimodal case, UTB (Unimodal Thresholding
Bandits) algorithm. This algorithm is based on the algorithm MTB, and on any black-
box algorithm that is minimax-optimal for TOP-1 simple regret on B, as described
in [12]. We name such an algorithm SR; it takes no parameter and returns an arm m̂.
Since SR is minimax optimal for the TOP-1 simple regret, we have on any problem
ν ∈ B with means (µk)k and maximal mean µ∗, that if SR is run for T times, then

Eν [µ∗ − µm̂] ≤ cSR

√
K

T
,

where cSR > 0 is a universal constant. Note that taking MOSS from [3] and modifying
it so that it outputs m̂ as being sampled at random according to the proportion of
times that each arm was sampled by MOSS, is minimax-optimal algorithm for the
TOP-1 problem.

The idea of UTB is to start by running SR on a fraction of the budget, and take its
output m̂. Then we run respectively MTB on {1, . . . , m̂}, and DEC-MTB on {m̂, . . . ,K}
on a fraction of the budget. They respectively return l̂, r̂. We then use the last fraction
of the budget to sample all arms in {l̂, r̂, m̂, l̂ − 1, r̂ + 1} and compute the respective
empirical means µ̂k for k being one of these arms. If l̂, r̂ seem either close enough to the
threshold, or seem above while the adjacent arm seems below, we predict {l̂, . . . , r̂} as
the set of arms above threshold. Otherwise we return the empty set, see Algorithm 15.

This intuitively makes sense as m̂ is an estimator of the maximum k∗ of the mean
sequence and unimodality implies that (µk)k≤k∗ is non-decreasing, and that (µk)k≥k∗ is
non-increasing. So l̂, r̂ are estimators of the points where the mean sequence crosses the
threshold, respectively on the left and on the right of the estimator of the maximum.
The last step - where we compute empirical means and check based on them if the
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outputs seem reasonable - is a checking step for making sure that the output of SR
is not so close to threshold (or flawed), that the outputs of MTB and DEC-MTB are
completely flawed.

Initialization: m̂ = output of SR with budget bT/4c,
l̂ = k̂ output of MTB with arms {1, . . . , m̂}, threshold τ , budget bT/8c,
r̂ = k̂ output of DEC-MTB with arms {m̂, . . . ,K}, threshold τ , budget bT/8c,
Sample m̂, l̂, r̂, l̂ − 1, r̂ + 1 each bT/10c times
if
(
{µ̂l̂−1 < τ < µ̂l̂} ∨ {|µ̂l̂ − τ | ≤ µ̂m̂ − τ}

)
∧
(
{µ̂r̂ < τ < µ̂r̂+1}

)
∨ {|µ̂r̂ − τ | ≤

µ̂m̂ − τ}
)
then

Ŝ = {l̂, . . . , r̂}
else

Ŝ = ∅
end

end
return Q̂ : Q̂k = 21{k∈Ŝ} − 1

Algorithm 15: UTB

2.4.4 Concave case CTBP

In this section, we present the CTB algorithm, which is based on several applications of
MTB. We first define the following log-sets. Consider two integers l ≤ r and the associated
set {l, l + 1, . . . , r}. We write S log

l,r = {l, l + 1, l + 2, l + 22, . . . , (l + 2a) ∧ b(l + r)/2c},
where a is the smallest integer such that l + 2a ≤ r ≤ l + 2a+1.

Algorithm CTB proceeds in phases. At phase i an interval {li, . . . , ri} is refined
from both ends by applying MTB and DEC-MTB. Algorithm CTB makes sure that with
high probability, the regret of {li, . . . , ri}, is bounded by εi = (7/8)i. A very important
idea of CTB is that it does not apply MTB and DEC-MTB on {li, . . . , ri} but thanks to
the concavity only on the log-sets associated to {li, . . . , ri}. I.e. we will apply MTB on
S log
li,ri

and DEC-MTB on −S log
−ri,−li . This allows us to have much shorter phases as the

two log-sets contain about log(ri − li) arms, instead of ri − li arms.
We now describe formally CTB. The algorithm CTB consists of two sub-routines, an

iterative application of MTB and then a decision rule based on the collected samples.
These routines are respectively the for loop and if statement in the CTB algorithm.

Iterative application of MTB. For M̃ > 0 and i < M̃ we set

δ
(M̃)
i = 2i−M̃ εi =

(
1− 1

8

)i
τi = τ − 3

4
εi, T

(i)
2 (M̃) =

⌊
214 log logK

ε2
i

log

(
1

δ2
i

)⌋
,

and let M be the largest integer such that 6
∑

i≤M T
(i)
2 (M) ≤ T . In what follows we

write
δi := δ

(M)
i , T

(i)
2 = T

(i)
2 (M).

CTB proceeds in M phases and at each it updates a set of three arms li ≤ mi ≤ ri -
where mi is at the middle between li and ri. It first samples all these arms - as well as
li−1, ri+1 - T (i)

2 times, and these samples are used to compute empirical means µ̂p,i for
p ∈ {m, l, r, l−1, r+1} - corresponding respectively to the arms {mi, li, ri, li−1, ri+1}.
It then runs respectively MTB on S log

li,ri
and DEC-MTB on −S log

−ri,−li , both with threshold

τi and budget T (i)
2 . These routines output li+1, ri+1, and we define mi+1 as the middle

between these arms.
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Decision rule The second sub routine of CTB is a decision rule between all li, ri, for
finding the right scale, based on the arms and empirical means collected in the previous
routine. It takes the li, ri that are as close as possible to arms mi far from threshold,
but that are close to threshold - and it outputs a set Ŝ. Finally CTB classifies this set
as being above threshold. Set

Im = {i : µ̂m,i ≥ τ + 2εi}, and

Il = {i : µ̂l,i ≥ τ − 2εi, µ̂l−1,i ≤ τ −
εi
4
}, and Ir = {i : µ̂r,i ≥ τ − 2εi, µ̂r+1,i ≤ τ −

εi
4
}.

Initialization: l0 = 1, r0 = K,m0 = b l0+r0
2 c

for i = 1 : M do
sample arms li, li − 1, ri, ri + 1 and mi each T

(i)
2 times.

li+1 = output k̂ of MTB with arms S log
li,ri

, threshold τi, budget T
(i)
2

ri+1 = output k̂ of DEC-MTB with arms −Slog
−ri,−li , threshold τi, budget T

(i)
2

mi+1 = b li+1+ri+1

2 c
end
if Im = ∅ then

Set Ŝ = ∅
else

Set l̂ = max{li : i ∈ Il, li ≤ minj∈Im(mj)}
Set r̂ = min{ri : i ∈ Ir, ri ≤ maxj∈Im(mj)}
Set Ŝ = {l̂, . . . , r̂}

end
end
return Q̂ : Q̂k = 21{k∈Ŝ} − 1

Algorithm 16: CTB
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2.5 Discussion

2.5.1 Supplementary discussion concerning the TBP and MTBP

2.5.1.1 Comparison of TBP and MTBP and focus on the main difference
coming from the monotone structure

In the TBP , the proof of the bound of algorithm Uniform is very classical. It is,
as usual in bandits, event based. We consider the event where all arms concentrate
around their mean with error bounded by O(

√
K log(K/δ)/T ) - where the log(K/δ)

term comes from a union bound over all K arms - and prove that on this event the
regret is bounded. The lower bound is slightly less classical when it comes to the
bandit literature, and is close in spirit to the use of a sequential version of Fano’s
inequality - stating effectively that the union bound in the analysis of the event on the
means is tight.

In the MTBP , however, both the algorithm MTB and its proof are far less classical.
As discussed in Section 2.1 a naive, yet suboptimal, approach to the MTBP is a binary
search. At each step we sample an arm O(T/ log(K)) times and then decide to go
left or right. This kind of strategy relies on making a correct decision at each step,
and requires an event based analysis. The event is here that all O(log(K)) sampled
arms have their empirical means that concentrate around the true means at rate√

log(K) log(log(K)/δ)/T - the log(log(K)/δ) term coming from the union bound.
This results in a regret of order

√
log(K) log(log(K))/T , which is strictly sub-optimal.

With this in mind we consider a different algorithm that performs a ‘corrective’ version
of the binary search, i.e. a version where the algorithm can self-correct if it realises
that it made a mistake This subtle, yet fundamental difference highlights the very big
gap between TBP and MTBP .

2.5.1.2 Supplementary details of the related works: TBP

Comparing TBP and MTBP thoroughly to related work is tricky since many related
works are written in the fixed confidence setting. We extend the discussion here with
respect to what is done in the paper.

In the problem independent regime of the TBP , current state of the art results can
be deduced from the paper [68]. A corollary to the lower bound in [68] in the problem
independent case is that for any algorithm, there exists a bandit problem where all
arms have their distribution on [0, 1] and such that with probability larger than 1/2,
at least one arm is missclassified and at more than a strictly positive constant times√
K/T from the threshold - this is also a corollary from the lower bound in [12] for

the different problem of best arm identification. Reciprocally, the state of the art
upper bound in the problem independent case is a corollary to the upper bound in [68].
In the problem independent setting, with probability larger than 1− δ, all arms are
within a strictly positive constant times

√
K log(K log T/δ)/T from τ . As one can

see, current state of the art upper and lower bounds are are far from matching in the
problem independent case.

2.5.1.3 Supplementary details of the related works: MTBP

The papers [33], Ben-Or and Hassidim [8] and Emamjomeh-Zadeh, Kempe, and Singhal
[30] introduce a noisy binary search with corrections. However in the above papers the
probability of making an error during the binary search is treated as fixed. But this
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assumption does not hold in the setting of the MTBP . In [73] a more generalised version
of the binary search is considered with weaker assumptions on structure, however there
is no contribution to classical binary search beyond that of [53].

Karp and Kleinberg [53] consider the special case where all arms k follows a
Bernoulli distribution with parameter pk and p1 < ... < pK , and the aim is to find a i
such that pi is close to 1/2. In the fixed confidence setting, they prove that the naive
binary search approach is not optimal and propose an involved exponential weight
algorithm, as well as a random walk binary search, for solving the problem. They
prove that for ε, δ > 0 fixed, then the algorithm returns all arms above threshold with
probability larger than 1− δ and tolerance ε in an expected number of pulls less than
a multiplicative constant that depends on δ in a non-specified way times log2(K)/ε2.
They prove that this is optimal up to a constant depending on δ. In the paper [8] they
refine the dependence in δ in a slightly different setting - where one has a fixed error
probability. They prove that up to terms that are negligible with respect to log(K)/ε2,
a lower bound in the expected stopping time is of order (1− δ) log(K)/ε2.

2.5.1.4 Contribution with respect to the literature

Our contributions can be summarised are as follows:

• Problem independent optimal rate for TBP We provide the first -to the best of
our knowledge - upper and lower bounds in the problem independent regime for
the TBP - both in the fixed confidence and fixed budget setting - as well as an
associated parameter-free algorithm, Uniform.

• Extension of MTBP to σ2-sub-Gaussian distribution The lower bound and opti-
mal algorithm proposed in [53] is specific to the assumption that all arms follow
a Bernoulli distribution - and related literature makes even more constraining
assumptions [33, 8, 30]. An extension of their algorithms- even in the fixed confi-
dence setting - beyond this assumption is non-trivial. We propose an algorithm
whose only assumption is that the arms follow a σ2-sub-Gaussian distribution.

• MTBP in the fixed budget setting We treat in a problem independent optimal
way the fixed budget setting.

The algorithms proposed in Karp and Kleinberg [53] - as well as in [33, 8,
30] in a more restricted setting regarding the error distributions - operate in
the fixed confidence setting. Adapting their results to a fixed budget setting
is challenging, in particular since we consider the expected maximal gap as a
measure of performance - see Section 2.2.

• Simultaneous bound on all probability The MTB regret bound holds simultaneously
across all probabilities. That is for all δ > 0 and after T rounds of our algorithm,
we have a guarantee that with probability larger than 1− δ, the simple regret
will be bounded depending on δ. This is in strong contrast to what is done in
the fixed confidence literature [53, 8, 30, 23], where δ is given as a parameter to
the algorithm, and where the behaviour of the algorithm is only studied on an
event of probability 1− δ, and a clear improvement with respect to [53] where
the dependence in δ is not explicitly stated in the bound on regret. Our result is
more general, as it allows us to get a bound on the expected simple regret for
the fixed budget setting, but also to easily transform our algorithm to the fixed
confidence setting.
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We also refer to Table 2.2 for a comprehensive summary of state of the art rates, as
well as of our rates.

2.5.1.5 Problem dependent regime

While not the focus of this paper we comment on the performance of our algorithms
in the problem dependent regime for the TBP and MTBP . The problem dependent
regime is defined as follows: for some sequence ∆ ∈ RK+ we consider a sub class of
problems B∆ ⊂ B where

B∆ = {ν ∈ B : ∀k ∈ [K], |µk − τ | = ∆k} .

Similarly we can define

B∆
m = {ν ∈ Bm : ∀k ∈ [K], |µk − τ | = ∆k} .

The mechanics of the game are then identical to those described in Section 2.2
with the exception that we consider a modified version the simple regret

R̃¯
ν,π
T = P

¯
ν

(
∃k ∈ [K] : Q̂πk 6= Qk

)
,

that is, the probability the learner makes at least one miss classification - which is
more relevant than the simple regret considered in this paper in the regime where the
∆k are not very small, depending on T,K.

In the case of the TBP consider the class of problems B∆ for some ∆ ∈ RK+ . An
upper bound on the simple regret of the order exp

(
−c 1

K

∑
∆2
i
T
K + c′ log(log(T )K)

)
is

provided from [68], for the APT algorithm that does not take any parameters - where
c, c′ > 0 are universal constants. A matching lower bound is also provided in [68], up
to universal constants in the exponential. In the same setting we can upper bound
the simple regret of the Uniform algorithm by

∑
k exp

(
−c∆2

k
T
K

)
, where c > 0 is a

universal constant. Clearly the uniform algorithm under performs heavily in cases
with high variance across the gaps, this should not come as a surprise.

In the case of the MTBP consider the class of problems B∆
m for some ∆ ∈ RK+ .

We can construct and immediate lower bound on the simple regret of the order
exp
(
−cT mink∈[K] ∆2

k

)
- where c > 0 is some universal constant - while the MTB

algorithm achieves an upper bound of the order exp
(
−c T

log(K) mink∈[K] ∆2
k

)
- where

c > 0 is some (different) universal constant. Thus, while it is not optimal, the algorithm
MTB is nevertheless quite efficient in the problem dependent setting.

2.5.2 Supplementary discussion

2.5.2.1 Parameters of the algorithms

The Uniform algorithm only takes T as a parameter, see Subsection 2.5.2.2 for a
discussion on how to make it anytime. The MTB algorithm takes only σ,K, T as
parameters. Again, see Subsection 2.5.2.2 for an anytime version. Getting rid of σ is
however more tricky and is an open problem. We believe that in some pathological
situations, the knowledge of σ is necessary. Note however that it is a very mild
assumption. Indeed σ comes from Definition 1.In many case, natural choices for σ
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State of the art Our results

LB UB LB UB

TBP FB 1
[68]

√
K
T

√
K log(K log T )

T

√
K log(K)

T
4

√
K log(K)

T
5

TBP FC
[23]

K log(δ−1)
ε2

K log(K2ε−2δ−1)
ε2

K log(K)(1−K−1−δ)
ε2

6 K log(Kδ−1)
ε2

MTBP FB None None
√

log(K)
T

√
log(K)
T

MTBP FC 2
[53]

cδ log(K)
ε2

3 c̄δ log(K)
ε2

(1−K−1−δ) log(K)
ε2

7 log(K) log(δ−1)
ε2

8

Table 2.2: Upper and lower bounds on the expected simple regret in
the fixed budget (FB) setting and on the expected stopping time for
(ε, δ)-PAC strategies in the fixed confidence (FC) setting. All results
are given up to universal multiplicative constant - in the case where
the sub-Gaussian parameter σ is set to 1. Left: previous state of the

art bounds. Right: bounds from our paper.

are available - for instance if reward are bounded. Regarding UTB and CTB, simple
extensions can be made so that they also consider the sub-Gaussian case.

2.5.2.2 Making the algorithms anytime

Although the Uniform algorithm, for simplicity, takes a known budget T it can trivially
be extended to an anytime algorithm. With T unknown one can easily obtain a uniform
distribution of pulls by repeatedly pulling all arms once in a batch until the “unknown"
budget is expended.

In the case of the MTB Algorithm such a trivial extension is not possible. At each
time step the number of times the arms in the current node are pulled is dependant
upon budget T . Now note that it is possible to apply a doubling trick to our problem.
I.e. first call the algorithm MTB with budget T = b6 log(K)c+ 1, and then until the
algorithm is stopped, always double the budget and call algorithm MTB from scratch.
Then when the algorithm is stopped, recommend the arm recommended by the last
full iteration. Note that this arm will have been selected with at least a fourth of
the budget, and so Proposition 6 and Corollary 5 hold with the doubling trick and
therefore without taking T as parameter, and replacing T by T/4 in the bound. Similar
tricks hold also for UTB and CTB.

4See also Bubeck, Munos, and Stoltz [12] for the LB.
5Here cδ, c̄δ > 0 is a function of δ that is left unspecified in Karp and Kleinberg [53].
6See also Ben-Or and Hassidim [8] for the LB (1−δ) log(K)

ε2
up to terms that are negligible with

respect to log(K)/ε2.
7In Locatelli, Gutzeit, and Carpentier [68] The problem complexity H is upper bounded by K/ε2.

Replacing H with such provides the given upper bound
8The lower bound is well known, see Bubeck, Munos, and Stoltz [12].
9And combining this with the lower bound in [23], we get the problem independent lower bound of

order K log(Kδ−1)

ε2
that matches our upper bound.

10See also [8] for a LB that is essentially equivalent to this.
11In the case where δ ≥ K−3/4 and is smaller than any universal constant strictly smaller than 1,

our UB is more refined and of order log(K)

ε2
, which is order optimal.
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2.5.2.3 Computational complexity

The computational complexity of both our algorithms is very low. Algorithm Uniform
is just uniform sampling, and then a computation of K empirical means and their
comparison to the threshold. I.e. this is in total n operations (where by operations we
mean addition or comparisons), and needs to store only K variables, i.e. the empirical
means.

Algorithm MTB consists of

• first running Algorithm Explore, which consists just in computing about log(K)
empirical means, and taking decisions based on them. The algorithm just needs
to perform n operations (where by operations we mean addition or comparisons),
and needs to store only about logK variables, i.e. the empirical means and
position of sampled arms.

• then running Algorithm Choose which consists in scanning one time the list of
sampled arms, i.e. doing about log(K) operations, and returning the median.
The number of operations is therefore of order log(K) and the algorithm needs
to store only about log(K) variables, i.e. the empirical means and position of
relevant sampled arms.

Similarly, the computational complexity of UTB and CTB is also low.

2.6 Extension of results

2.6.1 Adaptation to the β-Hölder continuous case

In this section we explain how our results can be adapted in a very simple way to the
case where the arms are not {1, . . . ,K} but the continuous set [0, 1], and where the
mean sequence (µk)k∈[0,1] is now a function. We assume, on top of the fact that the
distributions are supported in [0, 1], that the mean function µ is β-Hölder for some
constant β > 0, i.e. in the case β ≤ 1 and a constant L > 0 such that ∀x, y ∈ [0, 1],
|µx − µy| ≤ L|x− y|β . In this case, straightforward corollaries of our results imply the
minimax regret rates in Table 2.3.

In order to get these results, it is sufficient to divide [0, 1] inM intervals of same size
and adapt the results as usually done in the non-parametric literature (by controlling

the bias). We need to choose (i) M as
(

T
log T

) 1
2β+1 in TBP , (ii) M as T 1/β in MTBP ,

(iii) M as T
1

2β+1 in UTBP , and (iii) M as T 1/β in CTBP .
Interestingly, the rates of MTBP and CTBP do not depend on β - but note that β

plays a role in the multiplicative constants in front of the rate, i.e. the smaller β, the
larger the constant. On the other hand the rates in TBP and UTBP depend on β.
Note that this is a phenomenon specific to the 1-dimensional case. Indeed, finding the
level set of a monotone and of a convex function in dimension d is typically done at a
much slower rate, depending on β and d.

2.6.2 Extension to σ2-sub-Gaussian for TBP and MTBP

While in the main text for simplicity we only consider distributions bounded on the
[0, 1] interval all proofs relating to the TBP and MTBP given in the appendix will
extend to the sub Gaussian case. The lower bound for the CTBP will also extend
to the sub Gaussian case. That is we redefine the setting as follows: the learner is
presented with a K-armed bandit problem

¯
ν = {ν1, . . . , νK}, where νk is the unknown
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Our results Unstructured Monotone Unimodal Convex

TBP MTBP UTBP CTBP

K-arms
√

K logK
T

√
logK∨1

T

√
K
T

√
log logK∨1

T

β-Hölder
(

log T
T

) β
2β+1

√
log T∨1

T

(
1
T

) β
2β+1

√
log log T∨1

T

Table 2.3: Order of the minimax expected regret for the thresholding
bandit problem, in the case of all four structural assumptions on the
means of the arms considered in this paper. All results are given
up to universal multiplicative constants. The first line concerns the
K−armed setting of the main paper, and the second line concerns the
X -armed setting where the set of arms is [0, 1] and where the function

is β-Hölder (on top of the shape constraints).

distribution of arm k. Let σ2 > 0, all arms are assumed to be σ2-sub-Gaussian as
described in the following definition, we write µk for the mean of arm k.

Definition 1 (σ2-sub-Gaussian). A distribution ν of mean µ is said to be σ2-sub-
Gaussian if for all t ∈ R we have,

EX∼ν
[
et(X−µ)

]
≤ exp

(
σ2t2

2

)
.

In particular the Gaussian distributions with variance smaller than σ2 and the
distributions with absolute values bounded by σ are σ2-sub-Gaussian.

The only adaptation that has to be made to accommodate this case in the MTB
algorithm is to define

ε0 =

√
2σ2 log(48)

T2
.

2.6.3 Extension of results to fixed confidence setting

Fixed confidence setting. In this section we extend our results to the fixed confi-
dence setting for the MTBP and TBP . In this case, we define δ, ε > 0, to be respectively
the target confidence, and target precision of our algorithm. We say that a strategy π
is (ε, δ)-PAC if it stops sampling at some stopping time T̂ πε,δ of its choice, and satisfies
that with probability larger than 1− δ, R¯

ν,π
T ≤ ε. In this setting the aim is to find a

(ε, δ)-PAC strategy that minimises the expected stopping time E
¯
ν [T̂ πε,δ]. The following

Corollaries are an immediate consequence of our previous results, thus we omit proofs.

2.6.4 Lower Bounds

The following corollary is a direct extension to Proposition 2 which provides a lower
bound in the unstructured case.

Corollary 1. Let ε, δ > 0. It holds that for any strategy π that stops at a stopping
time T̂ πε,δ and that is (ε, δ)-PAC, there exists a unstructured bandit problem

¯
ν ∈ B, such

that

E
¯
ν [T̂ πε,δ] ≥

2σ2K max(log(K), 2)(1−K−1 − δ)2

ε2
.
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Proof. Consider the notations of the proof of Proposition 2. Assume that there exists
an (ε, δ)-PAC strategy π such that for all Q ∈ {−1, 1}K , we have

EQ[T̂ πε,δ] <
2σ2K max(log(K), 2)(1− 1/K − δ)2

ε2
.

From the proof of Proposition 2 it holds

1

2K

∑
Q

PQ(Q̂ = Q) ≤ 1/K +
√

sup
Q′∈{−1,1}K

EQ[T̂ πε,δ]ε
2/(2Kσ2 max(log(K), 2)) .

And so there is a contradiction:

inf
Q

PQ(Q̂ = Q) < 1− δ .

Combining this result with the lower bound from Theorem 2 of [23], we obtain
that for any (ε, δ)-PAC strategy, there exists a bandit problem where all arms are
1/4-sub-Gaussian and such that the expected stopping time is of higher order than
K log(K/δ)

ε2
, since they prove that the expected stopping time for any (ε, δ)-PAC strategy

is higher than K log(1/δ)
ε2

, on some bandit problem.

The following corollary is a direct extension to Proposition 5 which provides a
lower bound in the monotone case.

Corollary 2. Let ε, δ > 0 and K ≥ 2. It holds that for any strategy π that stops at a
stopping time T̂ε,δ and that is (ε, δ)-PAC, there exists a unstructured bandit problem

¯
ν ∈ Bm, such that

E
¯
ν [T̂ε,δ] ≥

2σ2 max(2, log(K))(1−K−1 − δ)2

ε2
.

A very similar result was already obtained in [53] , but for Bernoulli random
variables in the lower bound, and without providing an explicit dependence on δ. In
the paper [8], they refine this bound in the case of fixed probability of error which
implies that for any strategy that (ε, δ)-PAC, there exists a structured bandit problem
where all arms are 1/4-sub-Gaussian and such that the expected stopping time is
of higher order than (1− δ) log(K)/ε2 up to terms that are negligible with respect to
log(K)/ε2 - which is essentially the same as what we have.

We say that a strategy is optimal if its expected simple regret (or its expected
stopping time for the fixed confidence setting) matches one of this lower bounds up to
a universal constant.

2.6.5 Upper Bounds

The following Corollary is a direct extension to Proposition 4, which provides an upper
bound on regret of the Uniform algorithm.

Corollary 3. Let ε, δ > 0. For any unstructured bandit problem
¯
ν ∈ B, Algorithm

Uniform launched with parameter T := b2σ2K log(2K/δ)
ε2

c+K is (ε, δ)-PAC.

Interestingly the stopping time can be taken here as deterministic, and this matches
up to a multiplicative constant the lower bound in Corollary 1 combined with the one
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in [23].

The following Corollary is a direct extension to Corollary5 which provides an upper
bound on the regret of the MTB algorithm,

Corollary 4. Let ε, δ > 0. For any problem
¯
ν ∈ Bs, algorithm MTB launched with

parameter T := b21σ2 log(K)
ε2

+ 12 log(K)c if δ ≥ K−3/4 and T := b432σ2 log(K) log(9/δ)
ε2

+
12 log(K)c otherwise, is (ε, δ)-PAC.

Interestingly, the stopping time can be taken here as constant. For δ large enough
i.e. δ ≥ K−3/4, yet smaller than any universal constant strictly smaller than 1, this is
order optimal up to a multiplicative constant - see Corollary 2. For δ smaller, this is
order optimal up to a multiplicative constant that depends on δ - and it is an open
question to obtain optimality in this case.

Similar results can be obtained in UTBP and CTBP .

2.7 Proofs

2.7.1 Proof of Theorem 23

In the proof of all results in this section, we assume that the more general sub-
Gaussian assumption described in Section 2.6.2 is satisfied - and not necessarily that
the distributions of all arms are bounded on the [0, 1] interval. We explain in the proof
how the lower bound can be straightforwardly adapted to distributions supported in
[0, 1].

We denote the Kullback-Leibler divergence between two Bernoulli distributions
Ber(p) and Ber(q) (with the usual conventions) by

kl(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

.

for k = 1 : K do
Sample arm k a total of b TK c times.
Compute µ̂k the sample mean of arm k.

end
return

Q̂ : Q̂k =

{
−1 if µ̂k < τ

1 if µ̂k ≥ τ

Algorithm 17: Uniform
During this section we will prove Theorem 23 by first demonstrating a lower bound

on expected regret across B and then showing that the Uniform algorithm achieves
said lower bound. We first prove the following proposition to establish a lower bound.

Proposition 2. For any T ≥ 1 and any strategy π, there exists a unstructured bandit
problem

¯
ν ∈ B, such that

R
π,

¯
ν

T ≥ 3

4

√
σ2 max

(
2, log(K)

)
K

8T
.

Proof. Without loss of generality we can assume that τ = 0. Fix some positive real
number 0 < ε < 1. And consider the family of Gaussian bandit problems indexed by
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an vertex of the unite hyper-cube of dimension K, id est Q ∈ {−1, 1}K

¯
νQ =

(
N (Q1ε, σ

2), . . . ,N (QKε, σ
2)
)
,

and note that if we wish to consider distributions supported in [0, 1] we can consider
instead τ = 1/2 and

¯
νQ =

(
B(1/2 +Q1ε), . . . ,B(1/2 +QKε)

)
,

up to minor adaptations of the constants, and to considering τ = 1/2. Note that all
these bandit problems belong to the set of unstructured bandit problems,

¯
νQ ∈ B.

The regret in the bandit problem
¯
νQ of the strategy π can be rewritten as follows

R¯
νQ,π
T = εEQ max

k
1{Q̂k 6=Qk}

= ε(1− EQ1{Q̂=Q}) ,

where we denote by EQ the expectation under the bandit problem
¯
νQ. We will provide

a minimax lower bound on the regret by using the classic Fano inequality. We first
lower bound the minimax expected regret in the problem

¯
νQ by the Bayesian regret

with a uniform distribution over the bandit problems
¯
νQ,

max
Q

R¯
νQ,π
T ≥ ε

1− 1

2K

∑
Q

EQ1{Q̂=Q}

 . (2.1)

Let Qk be the transformation of Q that flip the sign of the coordinate k,

Qka =

{
Qa If a 6= k,

−Qa If a = k .

Thanks to the contraction and the convexity of the relative entropy, see Gerchinovitz,
Ménard, and Stoltz [41], we have

kl

 1

K

K∑
k=1

EQk1{Q̂=Qk},
1

K

K∑
k=1

EQ1{Q̂=Qk}︸ ︷︷ ︸
≤1/K

 ≤ 1

K

K∑
k=1

EQk
[
Nk(T )

] ε2

2σ2
,

where Nk(T ) =
∑T

t=1 1{kt=k} denotes the number of times in total arm k is sampled.
Then using a refined Pinsker inequality (see Gerchinovitz, Ménard, and Stoltz [41])
kl(x, y) ≥ (x− y)2 max

(
2, log(1/y)

)
, we obtain

1

K

K∑
k=1

EQk1{Q̂=Qk} ≤
1

K
+

√√√√ 1

K

K∑
k=1

EQk
[
Nk(T )

] ε2

2σ2 max
(
2, log(K)

) . (2.2)

Therefore thanks to the concavity of the square root, we can average over all the bandit
problems

¯
νQ

1

2K

∑
Q

1

K

K∑
k=1

EQk1{Q̂=Qk} ≤
1

K
+

√√√√ 1

2K

∑
Q

1

K

K∑
k=1

EQk
[
Nk(T )

] ε2

2σ2 max
(
2, log(K)

) .
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Now it remains to remark that by symmetry

∑
Q

K∑
k=1

EQk1{Q̂=Qk} =
∑
Q′

K∑
k=1

EQ′1{Q̂=Q′} = K
∑
Q

EQ1{Q̂=Q} ,

∑
Q

K∑
k=1

EQk
[
Nk(T )

]
=
∑
Q′

K∑
k=1

EQ′
[
Nk(T )

]
=
∑
Q

T .

Hence from (2.2) we get

1

2K

∑
Q

EQ1{Q̂=Q} ≤
1

K
+

√
Tε2

2Kσ2 max
(
2, log(K)

) ,
and then from (2.1) we obtain

max
Q

R¯
νQ,π
T ≥ ε

(
1

2
−

√
Tε2

2Kσ2 max
(
2, log(K)

)) .
Choosing ε =

√
Kσ2 max

(
2, log(K)

)
/(8T ) allows us to conclude.

We next prove the following proposition to establish a upper bound on the regret
of the Uniform algorithm with high probability,

Proposition 3. For any unstructured bandit problem
¯
ν ∈ B, any T ≥ K, any

0 < δ < 1, Uniform satisfies

P
¯
ν

(
R

Uniform,
¯
ν

T ≥

√
4σ2K

T
log

(
2K

δ

))
≤ δ .

Proof. During the execution of the Uniform algorithm ∀k ∈ {1, ...,K} arm k is sampled
bT/Kc times with sample mean µ̂k. Let δ > 0 and consider the event,

ξ :=

{
∀ k ≤ K, |µ̂k − µk| ≤

√
4σ2K

T
log

(
2K

δ

)}
.

Thanks to the Hoeffding inequality and an union bound this event occurs with
probability greater than 1− δ. As under the event ξ,

µk ∈

[
µ̂k −

√
4σ2K

T
log

(
2K

δ

)
, µ̂k +

√
4σ2K

T
log

(
2K

δ

)]
,

and the returning classification is

Q̂ : Q̂k =

{
−1 if µ̂k < τ

1 if µ̂k ≥ τ
,

we have with probability at least 1− δ

RT = max
{k∈[K]: Q̂k 6=Qk}

∆k ≤

√
4σ2K

T
log

(
2K

δ

)
.
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We are now able to demonstrate a bound on the expected regret of the Uniform
algorithm.

Proposition 4. For any unstructured bandit problem
¯
ν ∈ B, and any T ≥ K, Uniform

satisfies

R
Uniform,

¯
ν

T ≤ 7

√
σ2 log(2K)K

T
.

Proof. By application of Theorem 3, for ε > 0 we have,

P(RT ≥ ε) ≤ 2K exp

(
−ε2 T

4σ2K

)
.

Hence for ε0 =
√

4σ2 log(2K)K/T integrating these probabilities we obtain an upper
bound on the expected simple regret

RT ≤
√

2ε0 +

∫ +∞

√
2ε0

exp

(
−(ε2 − ε2

0)
T

2σ2K

)
dε

≤
√

2ε0 +

∫ +∞

0
exp

(
−ε2 T

8σ2K

)
dε

=

√
8σ2 log(2K)K

T
+

√
2πσ2K

T

≤ 7

√
σ2 log(2K)K

T
.

Setting σ = 1, Theorem 23 follows directly from a combination of Propositions 4
and 2.

2.7.2 Proof of Theorem 24

In the proofs of all results in this section, we assume that the more general sub-
Gaussian assumption described in Section 2.6.2 is satisfied - and not necessarily that
the distributions of all arms are bounded on the [0, 1] interval. In this case, we remind
that we redefine ε0 as in Section 2.6.2. Also, we explain in the proof of the lower
bound how it is possible to straightforwardly adapt the proof to the case where the
distributions are supported in [0, 1].

During this section we will prove Theorem 24 by first demonstrating a lower bound
upon expected regret in the MTBP setting, Proposition 5. We will then go on to
provide an upper bound on the regret of the MTB with high probability, Proposition 6
which will be used to finally prove Corollary 5 which provides a optimal bound for
the MTB in expected regret. Setting σ = 1 Theorem 24 will then follow directly from
Proposition 5 and Corollary 5.

Proposition 5. For any T ≥ 1 and any strategy π, there exists a structured bandit
problem

¯
ν ∈ Bm, such that

R
π,

¯
ν

T ≥ 1

8

√
σ2 max

(
2, log(K)

)
8T

.

Proof. We will proceed as in the proof of Proposition 2. Fix some positive real number
0 < ε < 1. Without loss of generality we can assume that τ = ε/2. And consider the
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family of Gaussian bandit problems
¯
νk indexed by k ∈ {0, . . . ,K}, such that for all

k ∈ {0, . . . ,K}, l ∈ [K],

νkl =

{
N (0, σ2) if l < k

N (ε, σ2) else
.

Note that if we wish to consider distributions supported in [0, 1] we can consider
instead τ = 1/2 + ε/2 and

νkl =

{
B(1/2) if l < k

B(1/2 + ε) else
.

up to minor adaptations of the constants, and to considering τ = 1/2.
Note that all these bandit problems belong to the set of structured bandit problems,

¯
νk ∈ B. Following the same steps as in the proof of Proposition 2 one can lower bound
the maximum of the expected regrets over all the bandit problems introduced above,

max
k∈[K]

R¯
νk,π
T ≥ ε

2

(
1− 1

K

K∑
k=1

Ek1{Q̂=Qk}

)
,

where we denote by Ek the expectation and by Qk the true classification in the problem

¯
νk. Thanks to the contraction and the convexity of the relative entropy we have

kl

 1

K

K∑
k=1

Ek1{Q̂=Qk},
1

K

K∑
k=1

E01{Q̂=Qk}︸ ︷︷ ︸
≤1/K

 ≤ 1

K

K∑
k=1

K∑
l=k

Ek
[
Nl(T )

] ε2

2σ2

≤ Tε2

2σ2
.

Then using a refined Pinsker inequality kl(x, y) ≥ (x−y)2 max
(
2, log(1/y)

)
, we obtain

1

K

K∑
k=1

Ek1{Q̂=Qk} ≤
1

K
+

√
Tε2

2σ2 max
(
2, log(K)

) .
Hence combining the last three inequalities we get

max
k∈[K]

R¯
νk,π
T ≥ ε

2

(
1

2
−

√
Tε2

2σ2 max
(
2, log(K)

)) .
Choosing ε =

√
σ2 max

(
2, log(K)

)
/(8T ) allows us to conclude.

We next prove the following to proposition to establish an upper bound on the
simple regret of the MTB algorithm with high probability and then prove Corollary 5 to
establish an upper bound on the expected regret of the MTB algorithm. For Proposition
6 we consider a more general set of problems, given ε > 0, define,

B∗,εm := {B : (min(|µi − τ |, ε) sign(µi − τ))k≤K is an increasing sequence} .
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Note that for all ε > 0, Bm ⊂ B∗,εm , hence all results will hold also in the unaltered
monotone setting.

Proposition 6. For any ε > ε0 and any problem
¯
ν ∈ B∗,εm , and any T > 6 log(K), the

MTB Algorithm will achieve the following bound on simple regret,

P
¯
ν(R

MTB,
¯
ν

T ≥ ε) ≤ min

(
exp

(
− 3 log(K)

4

)
, 72 log(K) exp

(
− Tε2

216σ2 log(K)

))
.

Corollary 5. For any problem
¯
ν ∈ Bm and any T ≥ 12 log(K), the MTB algorithm

will achieve the following bound on expected regret,

R
MTB,

¯
ν

T ≤ 80

√
σ2 log(K)

T
.

The proof of Proposition 6 and Corollary 5 is structured in several steps which
we will first summarise. For a level ε > 0 we define a set of “good nodes" containing
“ε-good arms", those which when outputted will achieve the bound RT < 2ε. In
Proposition 7 we prove these nodes form a "consecutive tree", see Definition 3. At
time t we say we have a “favourable event" if all sampled empirical means are within
ε of the true mean, In this case we say the algorithm makes a “good decision”, see
(2.10). In Lemma 4 we prove that on every good decision we move towards the set
of good arms or remain within them. Lemma 5 then shows that provided we make
enough good decisions the number of good arms in S is large. We can then bound the
probability of making a high proportion of good decisions, see Lemma 6, to give an
upper bound on regret. This in combination with a second upper bound, Lemma 8,
will give our result.

Step 0: Definitions and Lemmas We will use the following definitions.

Definition 2. We define the subtree ST (v) of a node v recursively as follows: v ∈
ST (v) and

∀ q ∈ ST (v), L(q), R(q) ∈ ST (v) .

Definition 3. A consecutive tree U with root uroot is a set of nodes such that
uroot ∈ U and

∀v ∈ U : v 6= uroot, P (v) ∈ U.

with the additional condition,

root ∈ U ⇒ uroot = root

where root is the root of the entire binary tree.

We define Zε, the set of ε-good nodes, as the union of the two sets

Zε1 := {v : ∃k ∈ {l,m, r} : |µv(k) − τ | ≤ ε} , (2.3)

Zε2 := {v : v(r) = v(l) + 1; µv(l) ≤ τ ≤ µv(r)}\Zε1 , (2.4)

that is

Zε := Zε1 ∪ Zε2 .
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It is important to note that

Zε2 6= ∅ ⇒ |Zε| = 1 . (2.5)

Proposition 7. Zε is a consecutive tree with root zεroot the unique element v ∈ Zε,
such that P (v) /∈ Zε.

Proof. If Zε2 6= ∅ by (2.5) we have |Zε| = 1 and the proposition is trivially verified.
Hence we assume Zε = Zε1 . Consider v ∈ Zε, such that P (v) /∈ Zε, there is at least
one such node. We first prove that v is unique. As v ∈ Zε = Zε1 we know that

∃k ∈ {l,m, r} :
∣∣µv(k) − τ

∣∣ ≤ ε . (2.6)

Now since v(l), v(r) ∈ P (v) and P (v) /∈ Zε, it follows that, thanks to (2.6),

∀k ∈ {l, r} :
∣∣µv(k) − τ

∣∣ > ε |µv(m) − τ | ≤ ε .

For node q 6= v satisfying the same properties, assume that v(m) < q(m) without loss
of generality. With this assumption we have,

v(r) ≤ v(m) ≤ q(l) ≤ q(m) ,

however, as the sequence (min(|µi − τ |, ε) sign(µi − τ))k≤K is increasing we must
have |µv(r) − τ | ≤ ε and |µq(l) − τ | ≤ ε, a contradiction. Hence v = q, and thus v is
unique which implies ∀q ∈ Zε : q 6= v, P (q) ∈ Zε.

At time t we define wεt as the node of maximum depth whose subtree contains
both vt and an “ε-good node" belonging to Zε. Formally, for t ≤ T1,

wεt := arg max
{w:ST (w)∩Zε 6=∅ & vt∈ST (w)}

|w| .

Lemma 2. The node wεt is unique and

wεt = arg min
{w:ST (w)∩Zε 6=∅ & vt∈ST (w)}

(
|vt| − |w|+ (|zεroot| − |w|)

+) . (2.7)

Proof. At time t consider, a node qεt which also satisfies 2.7, giving

|vt| − |wεt |+ (|zεroot| − |wεt |)
+ = |vt| − |qεt |+ (|zεroot| − |qεt |)

+ .

As vt ∈ ST (wεt ) and vt ∈ ST (qεt ) we can assume without loss of generality
qεt ∈ ST (wεt ) with |qεt | ≥ |wεt |. Thus,

|vt| − |qεt | ≤ |vt| − |wεt | ,

and therefore,

(|zεroot| − |qεt |)
+ ≥ (|zεroot| − |wεt |)

+ ,

which implies, |qεt | ≥ |wεt |, therefore |qεt | = |wεt | and as qεt ∈ ST (wεt ), we have
qεt = wεt .

For t ≤ T1 we define Dε
t as the distance from vt to Zε, it is taken as the length of

the path running from vt up to wεt and then down to an ε-good node in Zε. Formally,
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we have
Dε
t := |vt| − |wεt |+ (|zεroot| − |wεt |)

+.

Note the following properties of Dε
t and wεt ,

ST (vt) ∩ Zε 6= ∅ ⇒ vt = wεt , (2.8)
Dt = 0⇒ vt = wεt And w

ε
t , vt ∈ Zε . (2.9)

Let Sεt denote the list produced by an execution of algorithm Choose with parameter
ε ≥ ε0. We define Wε as the set of ε-good arms

Wε :=
{
k ∈ [K] : ∆k ≤ 3ε OR µk−1 < τ < µk

}
,

and at time t the counter Gεt , tracking the number of 3ε-good arms in S2ε
t ,

Gεt :=
∣∣∣{k ∈ S2ε

t : k ∈W3ε

}∣∣∣ . (2.10)

Note that if â belongs to this set then we suffer at most a regret of 3ε. We define also
the favorable event where the estimates the means are close to the true ones for all
the arms in vt,

ξεt :=
{
∀k ∈ {l,m, r},

∣∣µ̂k,t − µvt(k)

∣∣ ≤ ε} . (2.11)

Step 2: Actions of the algorithm on all iterations After any execution of
algorithm Explore and subsequent execution of algorithm Choose with parameter ε,
note the following,

• for t ≤ T1, vt and vt+1 are separated by at most one edge, i.e.

vt+1 ∈ {L(vt), R(vt), P (vt)} , (2.12)

• for t ≤ T1,
|S2ε
t | ≤ |S2ε

t+1| ≤ |S2ε
t |+ 1 . (2.13)

Lemma 3. On execution of algorithm Explore and algorithm Choose with parameter
ε > 0 for all t ≤ T1 we have the following,

Dε
t+1 ≤ Dε

t + 1, (2.14)
Gεt+1 ≥ Gεt . (2.15)

Proof. As the algorithm moves at most 1 step per iteration, see (2.12), for t ≤ T1, it
holds

||vt| − |wεt || ≥ ||vt+1| − |wεt || − 1 .

Noting that,

Dε
t = ||vt| − |wεt ||+ (|zεroot| − |wεt |)

+

≥ ||vt+1| − |wεt ||+ (|zεroot| − |wεt |)
+ − 1

≥
∣∣|vt+1| −

∣∣wεt+1

∣∣∣∣+
(
|zεroot| − |wεt+1|

)+ − 1

= Dε
t+1 − 1 ,
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where the third line comes from the definition of wεt+1, see (2.7), we obtain Dε
t+1 ≤

Dε
t + 1. By (2.13) we have, for t ≤ T1,

|S2ε
t | ≤ |S2ε

t+1| ≤ |S2ε
t |+ 1 ,

hence Gεt+1 ≥ Gεt .

Step 3: Actions of the algorithm on ξεt

Lemma 4. On execution of algorithm Explore and algorithm Choose with parameter
ε > 0 for all t ≤ T1, on ξεt , we have the following,

Dε
t+1 ≤ max(Dε

t − 1, 0) , (2.16)
Gεt+1 ≥ Gεt + 1{Dεt=0} . (2.17)

Proof. We first prove (2.17). Note that if the arm vt(k) is added in S2ε
t+1 then either

|µ̂k,t − τ | ≤ 2ε or vt(k) = vt(r) = vt(l) + 1 and µ̂l,t + ε ≤ τ ≤ µ̂r,t. Thus, on ξεt , we
obtain in the first case ∆vt(k) ≤ 3ε and in the second case

vt(k) = vt(l) = vt(r)− 1 and µvt(l) + ε ≤ τ ≤ µvt(r) − ε .

In both case we have vt(k) ∈ W 3ε, hence Gεt+1 ≥ Gεt + 1. It remains to prove that,
when Dt = 0, an arm is effectively added in S2ε

t+1. If Dε
t = 0 then we know vt ∈ Zε. If

vt ∈ Zε1 then under ξεt there exists k ∈ {l,m, r} such that |µ̂k,t − τ | ≤ 2ε. Otherwise
we know that

vt(l) = vt(r)− 1 and µvt(l) + ε ≤ τ ≤ µvt(r) − ε ,

which implies on ξεt that
µ̂l,t ≤ τ ≤ µ̂r,t .

In both case an arm is added to S2ε
t+1.

Now we prove (2.16). Note that on the favorable event ξεt , we have ∀k ∈ {l,m, r},

µvt(k) ≥ τ + ε⇒ µ̂k,t ≥ τ , (2.18)

µvt(k) ≤ τ − ε⇒ µ̂k,t ≤ τ . (2.19)

We consider the following three cases:

• If τ /∈
[
µvt(l) + ε, µvt(r) − ε

]
. From (2.18) and (2.19), under ξεt , we get τ /∈

[µ̂l,t, µ̂r,t], and therefore vt+1 = P (vt). Since in this case we are getting closer to
the set of ε-good nodes by going up in the tree we know that wεt = wεt+1. Thus
thanks to Lemma 2, under ξεt ,

Dε
t+1 = |vt+1|−

∣∣wεt+1

∣∣+(|zεroot| − |wεt+1|
)+

= |vt|−1−|wεt |+(|zεroot| − |wεt |)
+ = Dε

t−1 .

• If τ ∈
[
µvt(l) + ε, µvt(r) − ε

]
and vt /∈ Zε. Note that in this case vt can not be a

leaf and we just need to go down in the subtree of vt to find an ε-good node, id
est wt = vt. Since vt /∈ Zε, without loss of generality, we can assume for example
µvt(m) > τ+ε. From (2.18) and (2.19), under ξεt , we then have τ ∈ [µ̂l,t, µ̂r,t] and
µ̂m,t ≥ τ . Hence algorithm Explore goes to the correct subtree, vt+1 = L(vt).
In particular we also have for this node

τ ∈
[
µvt+1(l) − ε, µvt(m) + ε

]
,
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therefore it holds again wt+1 = vt+1. Thus combining the previous remarks we
obtain thanks to Lemma 2, under ξεt ,

Dε
t+1 = (|wt+1| − |zεroot|)

+ = (|wt| − |zεroot|)
+ − 1 = Dε

t − 1 .

• If τ ∈
[
µvt(l) + ε, µvt(r) − ε

]
and vt ∈ Zε. We distinguish two cases: Zε2 is empty

or not. In both cases we will show that, under ξεt , vt+1 ∈ Zε and thus

Dε
t+1 = Dε

t = 0 .

Hence it remains to consider these two cases:

– If Zε2 6= ∅. Via the definition of Zε2 , see (2.4), and the fact Zε1 = ∅, vt is a
leaf with µvt(r) ≤ τ − ε and µvt(l) ≥ τ + ε. Hence from (2.18) and (2.19) we
have µ̂l,t ≤ τ ≤ µ̂r,t. Therefore by the action of algorithm Explore we will
stay in the same node vt+1 = vt.

– Else Zε2 = ∅. If µvt(m) ∈ [τ − ε, τ + ε], we have R(vt), L(vt), P (vt) ∈ Zε
hence trivially vt+1 ∈ Zε. Else we have µvt(m) /∈ [τ − ε, τ + ε]. Without loss
of generality we assume µvt(m) > τ + ε. This implies that µvt(r) > τ + ε
and since vt ∈ Zε = Zε1 it holds µvt(l) ∈ [τ − ε, τ + ε]. Thus, under ξct we
then get as previously τ ∈ [µ̂l,t, µ̂r,t] and µ̂m,t ≥ τ . Therefore by the action
of algorithm Explore we will go to the left child vt+1 = L(vt) ∈ Zε.

Step 4: Lower bound on GεT1+1 We denote by ξ̄εt the complement of ξεt .

Lemma 5. For any execution of algorithm Explore and subsequent execution of
Choose with parameter ε ≥ ε0,

GεT1+1 ≥
3

4
T1 − 2

T1∑
t=1

1ξ̄εt
.

Proof. Combining (2.16) and (2.14) from Lemma 3 and Lemma 4 respectively we have

Dε
t+1 ≤ Dε

t + 1ξ̄εt
− 1ξεt1{Dεt>0}

= Dε
t + 21ξ̄εt − 1 + 1ξεt1{Dεt=0} .
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Using this inequality with (2.17) we obtain

GεT1+1 =

T1∑
t=1

Gεt+1 −Gεt

≥
T1∑
t=1

1ξεt1{Dεt=0}

≥
T1∑
t=1

(
Dε
t+1 −Dε

t − 21ξεt + 1
)

≥ T1 −Dε
1 − 2

T1∑
t=1

1ξt,ε

≥ 3

4
T1 − 2

T1∑
t=1

1ξt,ε ,

where we used in the last inequality the fact that D1 ≤ log2(K) and that log2(K) ≤
T1/4 by definition of T1 .

Step 5: First high probability bound on the regret

Lemma 6. For all ε ≥ ε0, following the execution of algorithm MTB,

P(RT > 3ε) ≤ e−3 log(K)/4 . (2.20)

Before proving Lemma 6 we need to show that the number of times a favorable
events ξε0t occurs is not to small with high probability. Precisely in the following lemma
we upper bound the probability of the event

ξε0 =

{
T1∑
t=1

1ξ̄ε0t
≤ T1

8

}
.

Lemma 7. For any execution of algorithm Explore and subsequent execution of
Choose with parameter ε0,

P(ξ̄ε0) ≤ e−3 log(K)/4 .

Proof. Let Ft be the information available at and including time t. Thanks to the
Hoeffding inequality and the choice of T2, we have for all k ∈ {l,m, r},

P
(∣∣µ̂k,t − µvt(k)

∣∣ ≥ ε0|Ft−1

)
≤ 2 exp

(
−T2ε

2
0

2σ2

)
≤ 1

24
,

hence by a union bound P(ξ̄ε0t |Ft−1) ≤ 1/8. Then the Azuma-Hoeffding inequality
applied to the martingale

T1∑
t=1

[
1ξ̄ε0t
− P(ξ̄ε0t |Ft−1)

]
,

with respect to the filtration (Ft)t≤T1 allows us to conclude

P

(
T1∑
t=1

[
1ξ̄ε0t
− P(ξ̄ε0t |Ft−1)

]
≥ T1

4

)
≤ e−2T1/16 ≤ e−3 log(K)/4 , (2.21)
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where we used that T1 = d6 log(K)e.

We are now ready to prove Lemma 6.

Proof of Lemma 6. We first prove it for ε = ε0. Thanks to Lemma 5 on the event ξε0
we have

Gε0T1+1 ≥
3

4
T1 − 2

T1∑
t=1

1ξ̄ε0t
≥ T1

2
.

But thanks to the choice of ε̂ ≥ 2ε0 we know that

S2ε0
T1+1 ⊂ S

ε̂
T1+1 .

Thus there is more than the half of the arms of S ε̂T1+1 in W3ε0 , since this list is at most
of size T1. In particular this implies that â = Median(S ε̂T1+1) ∈W3ε0 . Indeed W3ε0 is
a segment in [K], see (2.6). Therefore, on the event ξε0 we have

RT ≤ 3ε0.

Lemma 7 allows us to conclude, for ε ≥ ε0,

P(RT > 3ε) ≤ P(RT > 3ε0) ≤ e−3 log(K)/4 .

Step 6: Second high probability bound on the regret

Lemma 8. For all ε ≥ ε0, following the execution of algorithm MTB,

P(RT > 3ε) ≤ 72 log(K) exp

(
− Tε2

36σ2 log(K)

)
. (2.22)

Proof. We consider the event where all the favorable events ξεt occur,

ξεa :=

T1⋂
t=1

ξεt .

On this event ξεa thanks to Lemma 5 we have

GεT1+1 ≥
3

4
T1 − 2

T1∑
t=1

1ξ̄εt

=
3

4
T1 ,

hence S2ε
T1+1 6= ∅ is not empty. Furthermore following the same arguments of the

beginning of the proof of Lemma 4 all arms in the list S2ε
T1+1 6= ∅ are also in W3ε. Then

noting that by construction

ε̂ = inf
ε′≥2ε0: Sε

′
T1+1 6=∅

ε′ ,

we get ε̂ ≤ 2ε therefore S ε̂T1+1 ⊂ S2ε
T1+1. Thanks to the remarks above we know that

â ∈W3ε thus on ξεa,
RT ≤ 3ε .
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The Hoeffding inequality in combination with a union bound allows us to conclude,

P(ξ̄εa) ≤
T1∑
t=1

E
[
P(ξ̄εt |Ft−1)

]
≤ 72 log(K) exp

(
−T2ε

2

2σ2

)
(2.23)

≤ 72 log(K) exp

(
− Tε2

36σ2 log(K)

)
. (2.24)

Conclusion The proof of Proposition 6 is straightforward combining Lemma 6 and
Lemma 8. Thus we obtain for all ε ≥ 3ε0,

P(RT ≥ ε) ≤ min

(
exp

(
−3 log(K)

4

)
, 72 log(K) exp

(
− Tε2

324σ2 log(K)

))
.

We can integrate the high probability upper bound obtained in Proposition 6 to prove
Corollary 5.

Proof of Corollary 5. Thanks to Proposition 6, for ε1 = log(72 log(K))
√

324σ2 log(K)/T ,
we have

E[RT ] ≤ ε0 + (ε1 − ε0)e−3 log(K)/4 +

∫ +∞

ε=ε1

72 log(K) exp

(
− Tε2

324σ2 log(K)

)

≤
√

36σ2 log(48) log(K)

T
+

 log(72 log(K))

K3/4︸ ︷︷ ︸
≤3

+

√
π

2


√

324σ2 log(K)

T

≤ 80

√
σ2 log(K)

T
.

Setting σ = 1 Theorem 24 follows directly from Proposition 5 and Corollary 5.

2.7.3 Proof of Theorem 25

To prove Theorem 25 we first demonstrate, in Proposition 8, a lower bound on the
expected regret of any strategy on the UTBP . We will then show, with Proposition
9, that the UTB achieves said lower bound. The proof of Theorem 25 will then follow
directly. For all proofs during this section we make the assumption that arms are
distributed as σ2-sub-Gaussian with σ = 1. Also, we explain in the proof of the lower
bound how it is possible to straightforwardly adapt the proof to the case where the
distributions are supported in [0, 1].

Proposition 8. For any T ≥ 1 and any strategy π, there exists an unimodal bandit
problem

¯
ν ∈ Bu, such that

R
π,

¯
ν

T ≥ 1

8

√
K

T
.

Proof. We will proceed as in the proof of Proposition 2. Fix some positive real number
0 < ε < 1. Without loss of generality we can assume that τ = ε/2. And consider the
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family of Gaussian bandit problems
¯
νk indexed by k ∈ {0, . . . ,K}, such that for all

k ∈ {0, . . . ,K}, l ∈ [K],

νkl =

{
N (ε, σ2) if k = l

N (0, σ2) else
.

Note that if we wish to consider distributions in [0, 1] we can consider instead τ =
1/2 + ε/2

νkl =

{
B(1/2 + ε) if k = l

B(1/2) else
,

up to minor alterations of the constants, and to considering τ = 1/2.
Note that all these bandit problems belong to the set of unimodal bandit problems,

¯
νk ∈ Bu. Following the same steps as in the proof of Proposition 2 one can lower
bound the maximum of the expected regrets over all the bandit problems introduced
above,

max
k∈[K]

R¯
νk,π
T ≥ ε

2

(
1− 1

K

K∑
k=1

Ek1{Q̂=Qk}

)
,

where we denote by Ek the expectation and by Qk the true classification in the problem

¯
νk. Thanks to the contraction and the convexity of the relative entropy we have

kl

 1

K

K∑
k=1

E01{Q̂=Qk}︸ ︷︷ ︸
≤1/K

,
1

K

K∑
k=1

Ek1{Q̂=Qk}

 ≤ 1

K

K∑
k=1

E0

[
Nk(T )

] ε2

2σ2

≤ Tε2

2Kσ2
.

Then using the Pinsker inequality kl(x, y) ≥ 2(x− y)2, we obtain

1

K

K∑
k=1

Ek1{Q̂=Qk} ≤
1

K
+

√
Tε2

4σ2K
.

Hence combining the last three inequalities we get

max
k∈[K]

R¯
νk,π
T ≥ ε

2

(
1

2
−
√

Tε2

4σ2K

)
.

Choosing ε =
√

4σ2K/T allows us to conclude.

Proposition 9. There exists a universal constant cuni > 0 such that for any unimodal
bandit problem

¯
ν ∈ Bu, UTB satisfies

R
CTB,

¯
ν

T ≤ cuni

√
K

n
.

Proof. Step 1: Definitions Write

∆̂ = µ∗ − µm̂,
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and
ε̂ = |µ̂l̂ − µl̂| ∨ |µ̂r̂ − µr̂| ∨ |µ̂m̂ − µm̂| ∨ |µ̂r̂+1 − µr̂+1| ∨ |µ̂l̂−1 − µl̂−1|.

and we write R(l) for the regret of MTB on {1, . . . , m̂} when played by algorithm UTB,
and R(r) for the regret of DEC-MTB on {m̂, . . . ,K} when played by algorithm UTB. Let
us also write RT = RUTB,ν

T for the regret associated to the outputted set Ŝ.

E(l) = {|µ̂l̂ − τ | ≤ µ̂m̂ − τ} ∪ {µ̂l̂−1 ≤ τ ≤ µ̂l̂},

and define similarly E(r) replacing l by r. Define

E = {E(l) ∩ E(r)}.

Step 2: Bound on the regret on the events Assume without loss of generality
that R(l) ≥ R(r). By definition of the algorithm this implies under this condition that

RT = R(l)1{E} + (µ∗ − τ)+1{EC},

which implies directly

RT ≤ R(l)1{E} + (µm̂ − τ)+1{EC}+ ∆̂. (2.25)

Note that

E ⊂ {|µl̂ − τ | ≤ µm̂ − τ + 2ε̂} ∪ {µl̂−1 − ε̂ ≤ τ ≤ µl̂ + ε̂}.

And so since R(l) ≤ |µl̂ − τ |, we have

R(l)1{E} ≤ R(l) ∧ (µm̂ − τ)+ + 2ε̂. (2.26)

Note also that on EC and under our condition R(l) ≥ R(r), we have that

EC ∩ {R(l) ≥ R(r)} ⊂ {|µl̂ − τ | ≥ µm̂ − τ − 2ε̂}.

And on EC ∩ {R(l) ≥ R(r)}, we have that R(l) ≥ (µl̂ − τ)+ − 2ε̂, which leads to under
our assumption R(l) ≥ R(r)

(µm̂ − τ)+1{EC} ≤ R(l) ∧ (µm̂ − τ)+ + 2ε̂. (2.27)

So we have combining (2.26) and (2.27) all cases in (2.25) that if R(l) ≥ R(r)

RT ≤ (R(l)) ∧ (µm̂ − τ)+ + 2ε̂+ ∆̂.

Considering similarly the case R(r) ≥ R(l) gives

RT ≤ (R(l) ∨R(r)) ∧ (µm̂ − τ)+ + 2ε̂+ ∆̂.

Step 3: Integration of the regret Consider ε0 = 4cSR

√
K
n . Consider the event

where (µm̂ − τ)+ = ε̃ ≥ ε0. On this event, and since the sequence of arms’s means
is unimodal, MTB satisfies the assumptions of Corollary 6 for ε̃ and a set of arms
{1, . . . , m̂}, and integrating over the tail probability between ε0 and ε̃ - conditional to
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we know that there exists an absolute constant C > 0 such that

E[R(l) ∧ ε̃|(µm̂ − τ)+ = ε̃] ≤ C
√

logK + 1

n
.

Similarly

E[R(r) ∧ ε̃|(µm̂ − τ)+ = ε̃] ≤ C
√

logK + 1

n
.

And so

E
[
(R(l) ∨R(r)) ∧ (µm̂ − τ)+

]
≤ C

√
logK + 1

n
.

combining this with the sub-Gaussian properties of the means which give that

Eε̂ ≤ c
√

1

T
,

where c > 0 is some absolute constant, and with the minimax optimality of SR which
gives

E∆̂ ≤ 4cSR

√
K

T
,

this provides the result.

2.7.4 Proof of Theorem 26

For the proof of Proposition 11 we make the assumption that the distribution of all
arms is bounded on the [0, 1] interval. In the case of the lower bound we consider
σ2-sub-Gaussian distributions. Also, we explain in the proof of the lower bound how
it is possible to straightforwardly adapt the proof to the case where the distributions
are supported in [0, 1].

Proposition 10. For any T ≥ 1, K ≥ e12 and any strategy π, there exists a structured
bandit problem

¯
ν ∈ Bc, such that

R
π,

¯
ν

T ≥ 1

8

√
σ2 max

(
2, log(log(K)− 1)

)
8T

.

Proof. We will proceed as in the previous proofs but with a different alternative set.
Fix some positive real number ε in [0, 1] and without loss of generality set τ = ε.
And consider the family of Gaussian bandit problems

¯
νl indexed by l ∈ {0, . . . , L :=

blog2(K)c} defined by
¯
νl = N (µl, 1) with

µlk =

{
k
kl
ε if k ≤ 2kl := 2l+1

2ε else .
.

Note that if we want to consider distributions supported in [0, 1] we can consider

¯
νlk = B(1/2 + µlk) and τ = 1/2 + ε instead of the Gaussian distributions, up to minor
adaptations of the constants, and to considering τ = 1/2 + ε.

Note that all these bandit problems belong to the set of convex bandit problems,

¯
νk ∈ Bc. We will lower bound the maximum of the expected regrets over all the bandit
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problems introduced above,

max
l∈[L]

R¯
νl,π
T = max

l∈[L]
El
[

max
k∈[K]

∆l
k1{Q̂k 6=Qlk}

]
,

where we denote by El the expectation and by Ql the true classification in the problem

¯
νl. In particular we have Ql = [−1, . . . ,−1, 1, . . . , 1] where the first one is at position
kl. Let l̂ = arg min{j ∈ [L] : ∀i ≥ j, Q̂ki = 1} be an estimate for the index of the
problem with the convention l̂ = L if the set is empty. Then we have

max
k∈[K]

∆l
k1{Q̃k 6=Qlk}

≥ ε

2
1{

l̂ /∈{l,l+1}
} .

Indeed if l̂ < l then we know that Q̂kl̂ = 1 6= −1 = Qkl̂ , thus we obtain

max
k∈[K]

∆l
k1{Q̂k 6=Qlk}

≥ ∆l
kl̂

= ε−
kl̂
kl
ε ≥ ε

2
.

Else l̂ > l + 1, and similarly we get, because Q̂kl̂−1
= −1 and l̂ − 1 > l (or Q̂k = −1

for some k > l̂ if we choose l̂ = L in the case where the set defining l̂ is empty),

max
k∈[K]

∆l
k1{Q̂k 6=Qlk}

≥ ∆l
kl̂−1

= min

(
kl̂−1

kl
ε− ε, ε

)
≥ ε

2
.

Using the previous inequality we obtain

max
l∈[L]

R¯
νl,π
T ≥ ε

2
max
l∈[L]

El[1− 1{l̂=l} − 1{l̂=l+1}] ≥
ε

2

1− 2

L

∑
l∈[L]

El1{l̂=l}

 .

We can conclude as previously. Thanks to the contraction and the convexity of the
relative entropy we have

kl

 1

L

L∑
l=1

El1{l̂=l},
1

L

L∑
l=1

E01{l̂=l}︸ ︷︷ ︸
≤1/L

 ≤ 1

L

L∑
l=1

K∑
k=1

El
[
Nk(T )

] ε2

2σ2

≤ Tε2

2σ2
.

Then using a refined Pinsker inequality kl(x, y) ≥ (x−y)2 max
(
2, log(1/y)

)
, we obtain

1

L

L∑
l=1

El1{l̂=l} ≤
1

L
+

√
Tε2

2σ2 max
(
2, log(L)

) .
Hence combining the last three inequalities we get

max
l∈[L]

R¯
νl,π
T ≥ ε

2

(
1− 2

L
− 2

√
Tε2

2σ2 max
(
2, log(L)

)) .
Choosing ε =

√
σ2 max

(
2, log(L)

)
/(8T ) allows us to conclude.
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Proposition 11. There exists a universal constant cconv > 0 such that for any convex
bandit problem

¯
ν ∈ Bc, CTB satisfies

R
CTB,

¯
ν

T ≤ cconv

√
log logK ∨ 1

T
.

For a sketch of proof of Proposition 11, see Section 2.7.5. Before going on to prove
Proposition 11 we first show the following.

Lemma 9. Consider 1 ≤ p ≤ q ≤ K, ε̃ > 0, τ̃ ∈ R. Consider any 1 ≤ p < q ≤ K,
such that,

µb p+q
2
c ≥ τ̃ +

1

8
ε̃ . (2.28)

Then (
min(|µk − τ̃ |,

1

8
ε̃) sign(µk − τ̃)

)
k

,

is monotonically increasing on [p : bp+q2 c] and monotonically decreasing on [bp+q2 c : q].

Proof. We just prove that the sequence is monotonically increasing on [p : bp+q2 c], the
other case is proven similarly.

Since (µk)k≤K is concave, we know that there exists k∗ ∈ {1, . . . ,K} such that
(µk)k≤k∗ is increasing and (µk)k≥k∗ is decreasing.

• If k∗ ∈ [p, bp+q2 c], and since (2.28) holds, we have that ∀k ∈ [k∗, bp+q2 c], µk− τ̃ ≥
ε̃/8. This implies the result.

• If k∗ 6∈ [p : bp+q2 c], we have either (i) that µk is increasing on the interval which
implies the result or (ii) that µk is decreasing on the interval. In case (ii), we
know by (2.28) that ∀k ∈ [p, bp+q2 c], µk − τ̃ ≥ ε̃/8. This implies the result.

Lemma 10. Let ε̃ > 0, τ̃ ∈ R. For any 1 ≤ p ≤ q ≤ K, such that,

µp ∧ µq ≥ τ̃ − ε̃ ,

µb p+q
2
c ≤ τ̃ −

5

8
ε̃ ,

we have that, ∀k ∈ {p, . . . , q} that µk ≤ τ̃ − 1
8ε.

Proof. We assume ∃k ∈ {p, . . . , q} such that µk > τ − 1
8 ε̃ and aim to prove by

contradiction. Without loss of generality assume k < p+q
2 , in combination with the

assumptions of Lemma 10 we have (µk − µb p+q
2
c) >

1
2 ε̃. However, via the convex

property (µk − µb p+q
2
c) ≤ (µb p+q

2
c − µq), a contradiction as it implies with the forelast

equation that µq < τ̃ − 1
8 ε̃.

We now define the event,
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ξi :=
(
ξ

(L)
i ∩ ξ(R)

i

)
∪ ξ(A)

i

:=

({
µli ≥ τ − εi , ∀k < li : µk ≤ τ −

1

2
εi

}

∩

{
µri ≥ τ − εi , ∀k > ri : µk ≤ τ −

1

2
εi

})

∪

{
∀k ≤ K,µk ≤ τ −

1

8
εi

}
.

Consider the event
Ei = {µmi ≥ τi +

1

8
εi}. (2.29)

Proposition 12. Let i ≤M and set

δ′i = min

(
exp

(
− 3 log log(K)

4

)
, 72 log log(K) exp

(
− T

(i)
2 ε2

i

216× 64 log log(K)

))
.

Let l′i+1 be the largest arm smaller than li+1 in S log
li,ri

. It holds that

P

(
|µli+1

− τi| ≤ εi/8 OR µl′i+1
+ εi/8 < τi < µli+1

− εi/8

∣∣∣∣∣Ei
)
≥ 1− δ′i.

Also for r′i+1 be the smallest arm smaller than ri in −S log
−ri,li .

P

(
|µri+1 − τi| ≤ εi/8 OR µr′i+1

+ εi/8 < τi < µri+1 − εi/8

∣∣∣∣∣Ei
)
≥ 1− δ′i.

Proof. A straightforward corollary of Proposition 6 is as follows.

Corollary 6. Consider a problem
¯
ν ∈ B(K) and ε ≥

√
2 log(48)6 log(K)

T , such that
(min(|µk − τ |, ε)sign(µk − τ) + τ)k is increasing with k. Then the MTB Algorithm will
allow us to identify and arm â such that,

|µâ − τ | ≤ ε OR µâ−1 + ε ≤ τ ≤ µâ−1 − ε

with probability greater than,

1−min

(
exp

(
− 3 log(K)

4

)
, 72 log(K) exp

(
− Tε2

216 log(K)

))
.

The result of the proposition follows by applying this corollary and noting that

• in any case, |S log
li,ri
| ≤ logK so that we apply MTB on a problem that has less than

logK arms,

• that on Ei, we have that (min(|µk − τi|, εi/8)sign(µk − τi))k∈[li,mi] is increas-
ing (respectively, (min(|µk − τi|, εi/8)sign(µk − τi))k∈[mi,ri] is decreasing) - see
Lemma 9.
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• Moreover εi ≥ εM ≥
√

2 log(48)6 log log(K)
T . And so since S log

li,ri
⊂ [li,mi] (resp.−S log

−ri,−li ⊂
[mi, ri]) and |Slog

li,ri
| ≤ log(K), the conditions of Corollary 6 are satisfied, for the

set S log
li,ri

of arms.

Therefore we can apply Corollary 6 to show that when running MTB (S log
li,ri

, τi, T
(i)
2 )

we are able to identify an arm â such that setting li+1 = â satisfies our result with
probability greater than 1− δ′i.

Proposition 13. We have that for i ≤M

P
(
ξ

(L)
i+1

∣∣∣ξi ∩ Ei) ≥ 1− δ′i,

and
P
(
ξ

(R)
i+1

∣∣∣ξi ∩ Ei) ≥ 1− δ′i.

Proof. We prove this proposition only for ξ(L)
i+1 as the proof for ξ(R)

i+1 is similar. Consider
the high probability event of Proposition 12, where we just have two possibilities for
the mean of li+1 which we summarize below.

Case 1 Consider the case where MTB outputs li+1 such that,

µl′i+1
+ εi/8 < τi < µli+1

− εi/8 , (2.30)

where l′i+1 is defined in Proposition 12. Since (µk)k<K is concave and since by definition
of the concave grid S log

li,ri
we have that for l′i+1 6= li,

µl′i+1
− µli+1

≥ εi
4
.

However this would imply

µli < τi −
εi
8
− εi

4
< τ − εi ,

contradicting ξi, hence li = l′i+1 and therefore via choice of l′i+1, li+1 = li+1. Therefore
as µk<K is concave,

∀k < li+1, µk ≤ µli+1
.

The property µli+1
≥ τ − εi+1 follows directly from (4), we have ξ(L)

i+1

Case 2 Consider the case where MTB outputs li+1 such that,

|µli+1
− τi| ≤ εi/8.

From Lemma 9 we have that the sequence (µk)k<K is increasing on [τi − 1
8εi, τi + 1

8εi]
Therefore ∀k < li+1, µk ≤ µli+1

. Hence ξLi+1 holds.

And so we have as desired that

ξ
(L)
i+1 ∩ ξi ∩ Ei ⊂ {|µli+1

− τi| ≤ εi/8 OR µl′i+1
+ εi/8 < τi < µli+1

− εi/8} ∩ ξi ∩ Ei.

This concludes the proof.
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Proposition 14. We have that for i ≤M

P
(
ξ

(A)
i+1

∣∣∣ξi ∩ Eci ) = 1.

Proof. On ξi ∩ Eci , we know that mi = b li+ri2 c and

µmi ≤ τi +
1

8
εi = τ − 5

8
εi,

and
µli ∨ µri ≥ τ − εi,

and so by Lemma 10 we conclude that for any k ≤ K, µk < τ − 1
8εi. And so ξ(A)

i+1

holds.

Corollary 7. We have that
P(ξi+1|ξi) ≥ 1− 2δ′i

Proof. This holds by combining Propositions 13 and Proposition 14.

Hence by Corollary 7 and for any I ≤M we have,

P(∩i≤Iξi) ≥
∏
i≤I

(1− 2δ′i) ≥ 1− 2
I∑
i=1

δ′i.

For I, i ≤M consider the event

ηIi :=

{
|µ̂m,i − µmi | ∨ |µ̂l,i − µli | ∨ |µ̂r,i − µri |∨

|µ̂l−1,i − µli−1| ∨ |µ̂r+1,i − µri+1| ≤
1

16
εi ∨ εI

}
,

(2.31)

which via Azuma’s martingale inequality occurs with probability greater than,

1− 10 exp

(
−1

2
T

(i)
2 ε2

i

)
≥ 1− 10δi. (2.32)

Proposition 15. Fix I ≤M and assume that there exists k such that µk > τ − 1
8εI .

On ξI , we have that {k : µk ≥ τ} ⊂ {lI , . . . , rI} ⊂ {k : µk ≥ τ − εI}.

Proof. First note that under the condition µk > τ − 1
8εI we have that ξ(L)

I ∩ ξ(R)
I holds.

Therefore the second inclusion holds, see Corollary 7 and the definition of ξI . Now
assume {k : µk = τ} 6= ∅. Let k∗ be as in the proof of Lemma 9. By definition of
ξI and since (µk)k is concave, it is clear that lI ≤ k∗ ≤ rI . The first inclusion then
follows again by definition of ξI . In the case where {k : µk = τ} = ∅ the first inclusion
is obvious.

Proposition 16. Fix I ≤M and assume that for all k, µk ≤ τ− 1
8εI . On ξI∩(∩i≤MηIi ),

we have that Ŝ = ∅.

Proof. Under the conditions of the proposition we have that µmi ≤ τ − 1
8εI , for all i

and this implies the result by definition of the ηIi and Im.



2.7. Proofs 87

Proposition 17. Fix I ≤M . On ξI ∩
(
∩i≤M ηIi

)
, we have that

{mi : i ∈ Im} ⊂ {lI , . . . , rI},

and also
I ∈ Il I ∈ Ir.

Proof. On ∩i≤IηIi , we have that {mi : i ∈ Im} ⊂ {k : µk ≥ τ} ∪ {lI , . . . , rI}, and so
from Propositions and 15 and 16, we have on ∩i≤IηIi ∩ ξI , that {mi : i ∈ Im} ⊂
{lI , . . . , rI}.

The proof that I ∈ Il on ξI ∩ ηII - as well as the fact that I ∈ Ir - follows
immediately by combining the definition of Il - resp. Ir - with Proposition 15 and 16,
and the definition of ηII .

Proposition 18. Fix I ≤M , and assume that I 6∈ Im. On ξI ∩
(
∩i≤I ηIi

)
, we have

that {k : µk ≥ τ + 4εi} ⊂ ∅ ⊂ {l̂, . . . , r̂} ⊂ {k : µk ≥ τ − εI}.

Proof. On ξI∩
(
∩i≤IηIi

)
we have from Proposition 17 that {mi : i ∈ Im} ⊂ {lI , . . . , rI}

and that I ∈ Il, I ∈ Ir. This implies that on ξI ∩
(
∩i≤I ηIi

)
, {l̂, . . . , r̂} ⊂ {lI , . . . , rI}.

Together with Propositions 15 and 16 this implies that on ξI ∩
(
∩i≤I ηIi

)
we have

{l̂, . . . , r̂} ⊂ {k : µk ≥ τ − εI}.
Moreover, on ηII , we have by the assumption of Proposition 18 that µmI ≤ τ + 17

8 εI .
Together with Proposition 15 and 16 and Lemma 10, this implies that on ξI ∩ ηIi ,
∀k ≤ K,µk ≤ τ + 4εI . This concludes the proof with the fact that {l̂, . . . , r̂} ⊂
{lI , . . . , rI}.

Proposition 19. Fix I ≤M , and assume that I ∈ Im. On
(
∩i≤I ξi

)
∩
(
∩i≤M ηIi

)
,

we have that {k : µk ≥ τ + εI} ⊂ {l̂, . . . , r̂} ⊂ {k : µk ≥ τ − εI}.

Proof. As in the proof of Proposition 18, we have on ξI ∩
(
∩i≤I ηIi

)
that it holds that

{l̂, . . . , r̂} ⊂ {k : µk ≥ τ − εI}. Under the event ηII as l̂ ∈ {li : i ∈ Il}, r̂ ∈ {ri : i ∈ Ir}
we have that,

µl̂−1 < τ + εI & µr̂+1 < τ + εI .

Moreover, on ηII , we have by the assumption of Proposition 19 that µmI ≥ τ + 15
8 εI .

Therefore, as µmI ∈ {l̂ − 1, . . . , r̂ + 1} via the concavity of (µk)k<K we have that
{k : µk ≥ τ + εI} ⊂ {l̂, . . . , r̂}. This concludes the proof.

Proof of Proposition 11. Let I ≤M . Combining Propositions 18 and 19, we have on(
∩i≤I ξi

)
∩
(
∩i≤M ηIi

)
that

{k : µk ≥ τ + 4εI} ⊂ {l̂, . . . , r̂} ⊂ {k : µk ≥ τ − εI}.

Note that

P

[(
∩i≤I ξi

)
∩
(
∩i≤M ηIi

)]
≥ 1− 10

∑
i≤I

δi −
∑
i≤I

δ′i − (M − I)δI .
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We have by definition of δ′i, T
(i)
2 that

δ′i ≤ min

(
1

log(K)3/4
, 72 log log(K)δ2

i

)
,

and also we have that δi = 2i−M so that whenever M − i ≥ log log log(K), we have
that log log(K)δ2

i ≤ δi. And so ∑
i≤I

δ′i ≤ 144δi,

since when M − i ≥ log log log(K), we have 72δi ≥ 1
log(K)3/4 . And so

P

[(
∩i≤I ξi

)
∩
(
∩i≤M ηIi

)]
≥ 1− 164δI − (M − I)δI = 1− (M − I + 164)2I−M .

Thus for any i ∈ {0, . . . ,M} we have

P

[
RT ≥ 4

(7

8

)M−i]
≤ (i+ 164)2−i ≤ 200

(2

3

)i
.

This concludes the proof by summing over I for finding the expected regret, and noting

that there exists a universal constant C > 0 such that
(

7
8

)M
= εM ≤ C

√
log logK

T , by
definition of M .

2.7.5 Sketch proof of Proposition 11

Broadly speaking the CTB runs the MTB iteratively on logK size subsets of arms to
gradually refine our arm set. To better understand the mechanism at work, let us first
consider a more restricted setting, where the sequence of means is both monotone and
concave.

An illustrative example in the case of a monotone and concave constraint
Consider a bandit problem whose sequence of means is both monotone and concave,
i.e. a problem ν ∈ Bm ∩ Bc. Say we wish to find an arm k̃ such that

k̃ ≥ τ − 1

2
and ∀k < k̃, µk ≤ τ . (2.33)

To do this we can run the MTB on the set Slog
1,K , with threshold τ̃ = τ − 1

2 . Consider the
arm a = min{k ∈ Slog

1,K : µa ≥ τ − 1
2}, that is, a is the arm we hope to output running

the MTB on Slog
1,K with threshold τ̃ = τ − 1

2 . If a ∈ {1, 2} then it trivially satisfies the
properties of Equation (2.33). Assume a ≥ 4, if

µa ≥ τ −
1

2
, µa/2 < τ − 1

2
,

then via the concavity of the sequence of means, we have the additional guarantee
that µa ≤ τ , as otherwise, via concavity µa/4 ≤ τ − 1, contradicting the assumption
that ∀k ∈ [K], µk ∈ [0, 1]. Thus, by running the MTB on a log(K) sized subset of our
arms, we can find, with high probability, an arm k̃ satisfying Equation (2.33) and can
effectively refine our arm set by removing all arms k : k 6= k̃, µk ≤ τ − 1

2 . The CTB will
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make use of repeated application of this phenomenon, to incrementally refine our arm
set, although, as we only assume the sequence of means is concave, not necessarily
monotone, there are several additional technical difficulties.

The CTB for the concave setting The CTB runs for M phases, at each phase
i ∈ [M ] it maintains an active set of arms {li, ..., ri}, with mi = b li+ri2 c. We will refine
our set as follows, run MTB on Slog

li,ri
, respectively DEC-MTB on −S log

−ri,−li , with threshold
τi, to find arm li+1, respectively ri+1. Our probabilistic guarantees on li+1 and ri+1

depend upon mi. Firstly, assume

µli ≥ τ − εi ,∀k < li : µk ≤ τ −
1

2
εi ,

and,

µri ≥ τ − εi ,∀k > ri : µk ≤ τ −
1

2
εi .

Case 1: µmi ≥ τi + 1
8εi. In this case, where arm mi is significantly greater than τi,

the following will hold with high probability,

µli+1
≥ τ − εi+1 , ∀k < li+1 : µk ≤ τ −

1

2
εi+1 ,

and
µri+1 ≥ τ − εi+1 ,∀k > ri+1 : µk ≤ τ −

1

2
εi+1 .

This result is contained in Proposition 13. The reason the above holds is that we exploit
the phenomenon observed in the first paragraph of this sketch of proof. Of course,
things are a little more complicated without the additional monotonic assumption, as
now we must insure that li+1,ri+1 remain either side of the max of our concave sequence,
that is, maxµk ∈ [li, ri], however, this is merely a technical issue and is resolved using
the concavity of the sequence of means and the assumption µmi ≥ τi + 1

8εi of Case 1,
while utilising several technical Lemmas, see Lemmas 9 and 10.

Case 2: µmi ≤ τi + 1
8εi. In this case, the arm mi is not significantly greater than

the threshold τi and we can leverage the concave property to show that,

∀k ≤ K,µk ≤ τ −
1

8
εi ,

this result is contained in Proposition 14. Essentially, this case isn’t an issue as we
can simply classify all arms as below threshold, however, the CTB must recognise when
Case 2 occurs. Proposition 16 ensures that if, for some phase i < M , Case 2 occurs,
with high probability we will set Ŝ = ∅ and classify all arms below threshold.

Choosing Ŝ The number of phasesM is chosen carefully such that εM ≤
√

log log(K)
T .

However, assuming Ŝ 6= ∅, instead of simply outputting Ŝ = {lM , rM}, we set Ŝ =
{l̂, ..., r̂} for a carefully chosen l̂, r̂. This final step is to ensure that we have suitable
bounds on the probability that the regret of the CTB exceeds some ε, for all ε ≥ εM ,
as such a result is necessary to bound the expected simple regret.

Conclusion As we run the MTB iteratively on log(K) sized subsets, as opposed to
the entire arm set, we can expect tighter error bounds. The trade off is that we run
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the MTB many times and must divide our budget accordingly, however, in the initial
phases, we deal with arms very far from threshold and can be relatively loose with our
probabilistic guarantees. For this reason, when allocating our budget across the M
phases, we give more budget to later phases. This can be seen in our definition of T (i)

2 .
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Chapter 3

Problem Dependent View on
Structured TBP

In this chapter we present the following work, "Problem Dependent View on Structured
Thresholding Bandit Problems" [25], authored by James Cheshire, Pierre Ménard and
Alexandra Carpentier.
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3.1 Introduction

Stochastic multi-armed bandit problems model situations in which a learner faces
multiple unknown probability distributions, or “arms”, and has to sequentially sample
these arms.

In this paper, we focus on the Thresholding Bandit Problem (TBP), a Combinatorial
Pure Exploration (CPE) bandit setting introduced by Chen et al. [23]. The learner
is presented with [K] = {1, . . . ,K} arms, each following an unknown distribution νk
with unknown mean µk. We focus on the fixed budget variant of this problem. Given a
budget T > 0, the learner samples the arms sequentially for a total of T times and then
aims at predicting the set of arms whose mean is above a known threshold τ ∈ R. We
will measure the learner’s performance by the probability of error - i.e. the probability
that the learner mis-classifies at least one arm - and consider therefore the problem
dependent regime.

The focus of this paper is on structured, shape constrained TBP. More precisely, we
study the influence of some classical structures, in the form of a shape constraint on the
sequence of means of the arms, on the TBP problem. That is, we study how classical
shape constraints influence the probability of error. A related study was performed by
Cheshire, Ménard, and Carpentier [26] for the problem independent (overall worst-case)
regime, and we aim at extending this study to the problem dependent regime. We will
aim at finding the problem dependent quantities that have an impact on the optimal
probability of error, and at providing matching upper and lower bounds.
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We will discuss three structured TBPs in this paper; among those, we recall existing
results of one, and provide results for two. Here is a short overview.

Vanilla, unstructured case TBP The vanilla, unstructured case is the simplest
TBP where we only assume that the distributions of the arms are sub-Gaussian - also
related to the TOP-M1 setting. The TBP is already well studied in the literature -
both in a fixed budget and in a fixed confidence context - and we only introduce it
here to provide a benchmark for later structured problems. We recall here results in
the problem dependent, fixed budget, setting, which is most relevant for this paper.
Locatelli, Gutzeit, and Carpentier [68] prove that up to multiplicative constants, and
additives log(TK) terms, in the exponential, the optimal probability of regret in
this problem is exp(− T∑

i:∆i>0 ∆−2
i

), where ∆i = |τ − µi|. We present their results for

completeness and comparison to the bounds under additional shape constraints in
Table 3.1 - see also Subsection 3.3.1. The TBP in the problem dependent regime is
also studied by Mukherjee et al. [71] and Zhong, Huang, and Liu [87], however they
consider a problem complexity based also upon variance making their results not so
relevant to our setting. The problem independent regime for the TBP is studied by
Cheshire, Ménard, and Carpentier [26], we also present their results in Table 3.1 for
comparison across the different regimes.

Monotone constraint, MTBP . We then consider the problem where on top of
assuming that the distributions are sub-Gaussian, we assume that the sequence of
means (µk)k∈[K] is monotone - this is problem MTBP . This specific instance of the
TBP is introduced within the context of drug dosing by Garivier et al. [39]. In this
paper, the authors provide an algorithm for the fixed confidence setting that is optimal
asymptotically, in the fixed confidence regime. However the definition of the algorithms,
as well as the provided optimal error bound, are defined in an implicit way and not so
easy to relate in a simple way to the gaps ∆i moreover it is not clear how to translate
a result from the fixed confidence setting to the fixed budget one. On the other hand,
the shape constraint on the means of the arms implies that the MTBP is related to
noisy binary search, i.e. inserting an element into its correct place within an ordered
list when only noisy labels of the elements are observed, see Feige et al. [33]. They
describe an algorithm structurally similar to ours, using a binary tree with infinite
extension however they consider a simpler setting where the probability of correct
labeling is fixed as some δ > 1

2 and go on to show that there exists an algorithm that
will correctly insert an element with probability at least 1− δ in O

(
log
(
K
δ

))
steps. For

further literature on the related yet different problem of noisy binary search, see Feige
et al. [33], Ben-Or and Hassidim [8], Emamjomeh-Zadeh, Kempe, and Singhal [30],
Nowak [73]. Again, these papers consider settings with more structural assumptions
than our own and are focused on the problem independent, fixed confidence regime.
The problem independent regime for the MTBP is studied by Cheshire, Ménard, and
Carpentier [26], we also present their results in Table 3.1 for comparison across the
different regimes.

In this work, we prove that, up to universal multiplicative constants and additive
log(K) terms in the exponential, the optimal error probability is exp(−T mink ∆2

k),
which highlights the somewhat surprising fact that this structured monotone TBP
problem is akin to a one armed TBP - see Subsection 3.3.2. We provide the Problem

1In the TOP-M setting, the objective of the learner is to output the M arms with highest means.
A popular version of it it is the TOP-1 or "best arm identification" problem where the aim is to find
the arm that realises the maximum.
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Dependent Monotone TBP (ProbDep-Explore) algorithm that matches this bound,
see Section 3.4.

Concave constraint, CTBP . We next consider the problem where on top of
assuming that the distributions are sub-Gaussian, we assume that the sequence of
means (µk)k∈[K] is concave - this is problem CTBP . Again, in the problem independent
regime the CTBP has been studied by Cheshire, Ménard, and Carpentier [26]. In the
problem dependent regime however, to the best of our knowledge, the CTBP has not
been studied in the literature. However the related problems of estimating a concave
function and optimising a concave function are well studied in the literature. Both
problems are considered primarily in the continuous regime which makes comparison
to the K-armed bandit setting difficult. The problem of estimating a concave function
has been thoroughly studied in the noiseless setting, and also in the noisy setting,
see e.g. Simchowitz et al. [79], where a continuous set of arms is considered, under
Hölder smoothness assumptions. The problem of optimising a convex function in noise
without access to its derivative - namely zeroth order noisy optimisation - has also
been extensively studied. See e.g. Nemirovski and Yudin. [72][Chapter 9], and Wang
et al. [82], Agarwal et al. [1], and Liang, Narayanan, and Rakhlin [66] to name a few,
all of them in a continuous setting with dimension d. The focus of this literature is
however very different to ours and Cheshire, Ménard, and Carpentier [26], as the main
difficulty under their assumption is to obtain a good dependence in the dimension d,
and with this in mind logarithmic factors are not very relevant.

In this work, we prove that, up to universal multiplicative constants and additive
log(K) terms in the exponential, the optimal error probability is exp(−T mink ∆2

k),
which highlights the somewhat surprising fact that this structured concave TBP
problem is also akin to a one armed TBP - see Subsection 3.3.3. We provide the
Problem Dependent Concave TBP (CTB) algorithm that matches this bound, see
Section 3.4.

Organisation of the paper This paper is structured as follows. In Section 3.2
we formally introduce the TBP setting along with the monotone and concave shape
constraints. We also describe the performance criterion - probability of error, we will
be primarily using for the duration of the paper. Following this, upper and lower
bounds on probability of error for all shape constraints are presented in Section 3.3.
Descriptions of algorithms achieving said upper bounds can be found in Section 3.4. The
results are discussed and compared to related work in Section 3.5. In Appendix 3.9 we
conduct some preliminary experiments to explore how our theoretical results translate
in practice. All proofs are found in the Appendix.

3.2 Setting

Problem formulation The learner is presented with a K-armed bandit problem

¯
ν = {ν1, . . . , νK}, with K ≥ 3, where νk is the unknown distribution of arm k.

Let σ2 ≥ 0. We remind the learner that distribution ν of mean µ is said to be
σ2-sub-Gaussian if for all t ∈ R we have,

EX∼ν
[
et(X−µ)

]
≤ exp

(
σ2t2

2

)
.

In particular the Gaussian distributions with variance smaller than σ2 and the distri-
butions with absolute values bounded by σ are σ2-sub-Gaussian.
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Let B := B(K,σ2) be the set of all bandit problems as presented above, i.e. where
the distributions νk of the arms are all σ2 sub-Gaussian.

In what follows, we assume that all
¯
ν ∈ B, and we write µk for the mean of arm k.

Let τ ∈ R be a fixed threshold known to the learner. We aim to devise an algorithm
which classifies arms as above or below threshold τ based on their means. That is, the
learner aims at finding the vector Q ∈ {−1, 1}K that encodes the true classification,
i.e. Qk = 21{µk≥τ} − 1 with the convention Qk = 1 if arm k is above the threshold
and Qk = −1 otherwise. The fixed budget bandit sequential learning setting goes as
follows: the learner has a budget T > 0 and at each round t ≤ T , the learner pulls an
arm kt ∈ [K] and observes a sample Yt ∼ νkt , conditionally independent from the past.
After interacting with the bandit problem and expending their budget, the learner
outputs a vector Q̂ ∈ {−1, 1}K and the aim is that it matches the unknown vector Q
as well as possible.

Unstructured case TBP In the problem dependent regime, for ∆̄ ∈ RK+ , we
consider the following class of problems

B∆̄ = {ν ∈ B : ∀k ∈ [K], |µk − τ | = ∆̄k} .

Monotone case MTBP We denote by Bm the set of bandit problems,

Bm := {ν ∈ B : µ1 ≤ µ2 ≤ . . . ≤ µK} ,

where the learner is given the additional information that the sequence of means
(µk)k∈[K] is a monotonically increasing sequence. We denote by ∆Bm = {∆̄ ∈ RK+ :

∃ν ∈ Bm,∀k ∈ [K], |µk − τ | = ∆̄k} the set of possible vectors of gaps in Bm - i.e. the
set of sequences ∆̄ that would correspond to at least one problem in Bm. In the
problem dependent regime, for ∆̄ ∈ ∆Bm, we consider the following class of problems

B∆̄
m = {ν ∈ Bm : ∀k ∈ [K], |µk − τ | = ∆̄k} .

Concave case CTBP We will denote by Bc the set of bandit problems,

Bc :=

{
ν ∈ B : ∀1 < k < K − 1,

1

2
µk−1 +

1

2
µk+1 ≤ µk

}
,

where the learner is given the additional information that the sequence of means
(µk)k∈[K] is concave. We denote by ∆Bc = {∆̄ ∈ RK+ : ∃ν ∈ Bc, ∀k ∈ [K], |µk − τ | =
∆̄k, ∃l : µl ≥ τ} the set of possible vectors of gaps in Bc where at least one arm is
above threshold - i.e. the set of sequences ∆̄ that would correspond to at least one
problem in Bc where at least one arm is above threshold. In the problem independent
regime, for ∆̄ ∈ ∆Bc, we consider the following class of problems

B∆̄
c :=

{
ν ∈ Bc : ∀k < K, |µk − τ | ∈

[
∆̄k

2
, 3

∆̄k

2

]}
.

Remark 10. The classes of problems B∆̄,B∆̄
m,B∆̄

c contain bandit problems in resp. B,Bm,Bc
that are ‘local’ around ∆̄ in the sense that while the sign of µk−τ is arbitrary - although
severely restricted by the shape constraint when it comes to B∆̄

m,B∆̄
c - the gap of arm

k is fixed to being - approximately, for the concave case set B∆̄
c - ∆̄k. This implies

that in each case and on top of the respective shape constraint, we restrict ourselves to
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a small class of problems whose complexity is entirely characterised by ∆̄, in a problem
dependent sense.

Strategy A strategy is a sequence of functions that maps the information gathered
in the past to an arm and finally to a classification. Precisely, if we denote by It the
information available to the player at time t, that is It = {Y1, Y2, . . . , Yt}, with the
convention I0 = ∅. Then a strategy π =

(
(πt)t∈[T ], Q̂

π
)
is given by a sampling rule

πt(It−t) = kt ∈ [K] and a classification rule Q̂π(IT ) = Q̂ ∈ {−1, 1}K .

Minimax expected regret The problem independent, fixed budget objective of the
learner following the strategy π is then to minimize the expected simple regret of this
classification for Q̂ := Q̂π:

r¯
ν,π
T = E

¯
ν

[
max

{k∈[K]: Q̂πk 6=Qk}
∆k

]
,

where ∆k := |τ−µk| is the gap of arm k, and where E
¯
ν is defined as the expectation on

problem
¯
ν and P

¯
ν the probability. However, the focus of this paper is on the problem

dependent regime where, as usual, we consider as a performance criterion rather the
related probability of error

e¯
ν,π
T = P

¯
ν

(
∃k ∈ [K] : Q̂πk 6= Qk

)
.

When it is clear from the context we will remove the dependence on the bandit problem

¯
ν and/or the strategy π. Note that if we denote by ∆̄min = mink∈[K] ∆̄k the minimum
of the gaps then

r¯
ν,π
T ≥ ∆̄mine¯

ν,π
T .

Consider a set of bandit problems B̃ ⊂ B. The minimax optimal probability of error
on B̃ is then

e∗T (B̃) := inf
π strategy

sup

¯
ν∈B̃

e¯
ν,π
T .

We will study this quantity over the local classes B∆̄,B∆̄
m,B∆̄

c .

Remark 11. As argued above, the classes B∆̄,B∆̄
m,B∆̄

c contain only bandit problems
that satisfy their respective shape constraint and whose complexity is entirely char-
acterised by ∆̄, in a problem dependent sense. Studying the minimax probability of
error over these very restricted classes is therefore a very meaningful way of studying
the problem dependent regime of structured TBP problems - and we expect this
probability of error to heavily depend on ∆̄. The focus of this paper is to characterise
this dependence in a tight manner.

3.3 Minimax rates

In this section we present upper and lower bounds on probability of error for all three
shape constraints. Given a vector ∆̄ ∈ RK+ we denote ∆̄min = mink∈[K] ∆̄k.

3.3.1 Problem dependent unstructured setting TBP

The unstructured thresholding bandit in the problem dependent regime has already
been considered in the literature. We remind results from Locatelli, Gutzeit, and
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Carpentier [68], where they provide tight upper and lower bounds over e∗T (B∆̄), for
any ∆̄ ∈ RK+ . In our context they prove that

exp

(
− 3

σ2

T

H
− 4σ−2 log(12(log T + 1)K)

)
≤ e∗T (B∆̄)

≤ exp
(
− 1

64σ2

T

H
+ 2 log((log T + 1)K)

)
,

where H =
∑

i:∆̄i>0 1/∆̄2
i - see Theorems 1 and 2 by Locatelli, Gutzeit, and Carpentier

[68]. This implies that up to multiplicative universal constants and whenever T ≥
Hσ2 log(log(T ) +K), it holds that

− log
(
e∗T (B∆̄)

)
� 1

σ2

T

H
,

and upper and lower bound match up to universal multiplicative constants in the
exponential of the error probability. The quantity H is therefore the problem dependent
quantity that characterises the difficulty of the problem. Note that of course, the APT
algorithm by Locatelli, Gutzeit, and Carpentier [68] does not take any information on
the class - ∆̄, but also σ2 - as parameters, and is essentially parameter free.

In this paper, we won’t therefore discuss further this unstructured setting - the
reminder provided here is only to be taken as a benchmark for the rest of the paper.
We will on the other hand focus on the structured problems - monotone and concave
and study how the minimax error probability evolves, in particular depending on the
problem-dependent quantities ∆̄.

3.3.2 Problem dependent monotone setting

Given a class of problems B∆̄
m for some ∆̄ ∈ ∆Bm, the following theorem provides a

lower bound on the probability of error for any strategy π. The proof of Theorem 27
can be found in Appendix 3.7.

Theorem 27. Let ∆̄ ∈ ∆Bm. For any strategy π there exists a monotone bandit
problem

¯
ν ∈ B∆̄

m such that

e¯
ν,π
T ≥ 1

4
exp

(
−T ∆̄2

min

σ2

)
.

Now the following theorem gives an upper bound on the probability of error for
the ProbDep-Explore algorithm. The proof of Theorem 28 can be found in Appendix
3.7.

Theorem 28. Let ν ∈ Bm associated with arm gaps ∆, and assume that T > 36 log(K).
The algorithm ProbDep-Explore satisfies the following bound on error probability:

e¯
ν,ProbDep-Explore
T ≤ exp

(
−cmon

T∆2
min

σ2
+ c′mon log(K)

)
where cmon = 1/48 and c′mon = 12.

The parameter free algorithm ProbDep-Explore is described in Sections 3.4 - see
also Appendix 3.7.

The assumption on T is reasonable as in the monotone setting it is clear no
algorithm can gain enough information in less than log(K) pulls, see Cheshire, Ménard,
and Carpentier [26]. Note that combining both bounds yields that whenever T >
36 log(K)/∆̄2

min:
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− log
(
e∗T (B∆̄

m)
)
� 1

σ2
T ∆̄2

min,

and upper and lower bound match up to universal multiplicative constants in the
exponential of the error probability. Perhaps surprisingly, the number of arms plays no
role in this rate - as long as we assume that T > 36 log(K)/∆̄2

min. Only the minimal
arm gap appears, and this amounts to saying that when T > 36 log(K)/∆̄2

min, this
problem is not more difficult - in order, up to universal multiplicative constants in the
exponential - than a one-armed TBP with gap mink ∆k! And that in a sense, even if
we knew in our monotone problem the position of all means but one - the arm with
minimal gap - with respect to the threshold, the problem would not be significantly
easier.

3.3.3 Problem dependent concave setting

Given a class of problems B∆̄
c for some ∆̄ ∈ ∆Bc the following theorem provides a lower

bound on the probability of error for any strategy π. The proof of Theorem 29 can be
found in Appendix 3.8.

Theorem 29. Let ∆̄ ∈ ∆Bc. For any strategy π there exists a problem ν ∈ B∆̄
c such

that

e¯
ν,π
T ≥ 1

4
exp

(
−9

T ∆̄2
min

σ2

)
.

Now the following theorem gives an upper bound on the probability of error for
the CTB algorithm. The proof of Theorem 30 can be found in Appendix 3.8.

Theorem 30. Let ν ∈ Bc with associated gaps ∆ and assume T > 108 log(K). The
algorithm CTB has the following bound on error,

e¯
ν,CTB
T ≤ 3 exp

(
−ccon

T∆2
min

σ2
+ c′con log(K)

)
where ccon = 1/576 and c′con = 12.

The parameter free algorithm CTB is described in Sections 3.4 - see also Ap-
pendix 3.8.

The assumption on T is reasonable as in the monotone setting it is clear no algorithm
can gain enough information in less than log(K) pulls, see Cheshire, Ménard, and
Carpentier [26]. Note that combining both bounds yields that whenever T > 108 log(K)

∆̄2
min

:

− log
(
e∗T (B∆̄

m)
)
� 1

σ2
T ∆̄2

min,

and upper and lower bound match up to universal multiplicative constants in the
exponential of the error probability. Similar comments can be made here as in the
case of the monotone TBP in Section 3.3.2: the convex TBP is also as difficult as a
one-armed TBP with gap mink ∆k.

3.4 Optimal algorithms in the problem dependent regime

3.4.1 Monotone case MTBP

We assume in this section, without loss of generality, instead of considering K arms,
we consider for technical reasons K + 2 arms adding two deterministic arms 0 and
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K + 1 with respective means µ0 = −∞ and µK+1 = +∞. While we assume that the
distributions of the original K arms are σ2-sub-Gaussian the addition of two such
arms will not invalidate our proofs, see Appendix 3.7. We do this to ensure that, after
re-indexing of the arms and adapting the number of arms, τ ∈ [µ1, µK ].

To match a minimax rate as described in Section 3.3 we will utilise a modified
version of the MTB algorithm described by Cheshire, Ménard, and Carpentier [26].
The algorithm ProbDep-Explore performs a random walk on the set of arms [K] as a
binary tree. We consider the binary tree as Cheshire, Ménard, and Carpentier [26]
with an specific extension akin to that by Feige et al. [33].

Binary Tree We associate to each problem
¯
ν ∈ Bm a binary tree. Precisely we

consider a binary tree with nodes of the form v = {L,M,R} where {L,M,R} are
indexes of arms and we note respectively v(l) = L, v(r) = R, v(m) = M . The tree is
built recursively as follows: the root is root = {1, b(1 +K)/2c,K}, and for a node
v = {L,M,R} with L,M,R ∈ {1, . . . ,K} the left child of v is L(v) = {L,Ml,M} and
the right child is R(v) = {M,Mr, R} withMl = b(L+M)/2c andMr = b(M +R)/2c
as the middle index between. The leaves of the tree will be the nodes {v = {L,M,R} :
R = L+ 1}. If a node v is a leaf we set R(v) = L(v) = ∅. We consider the tree up to
maximum depth H = blog2(K)c+ 1. We note P

(
l(v)

)
= P

(
r(v)

)
the parent of the

two children and let |v| denote the depth of node v in the tree, with |root| = 0. We
adopt the convention P (root) = root.

Extended Binary Tree We extend the above Binary tree in the following manner.
For a leaf v we replace the condition R(v) = L(v) = ∅ with the following: for any leaf
v = {L,M,R} we set R(v) = ṽ where ṽ = {L,M,R} and set L(v) = ∅. Note that ṽ is
also a leaf therefore iterative application this relation will lead to an infinite extension.
The result being that each leaf in our original binary tree is now the root of an infinite
chain of identical nodes, see Figure 3.1. For practical purposes we need only consider
such an extension up to depth T and can simply cut the tree at this depth.

Remark 12. We set L(v) = ∅ for some leaf v during the extension of the binary tree
as by construction all leaves of the original binary tree are of the form {v = {L,M,R} :
R = L+ 1 and M = L}.

In order to predict the right classification we want to find the arm whose mean
is the one just above the threshold τ . Finding this arm is equivalent to inserting the
threshold into the (sorted) list of means, which can be done with a binary search in
the aforementioned binary tree. But in our setting we only have access to estimates of
the means which can be very unreliable if the mean is close to the threshold. Because
of this there is a high chance we will make a mistake on some step of the binary
search. For this reason we must allow ProbDep-Explore to backtrack and this is why
ProbDep-Explore performs a binary search with corrections.

ProbDep-Explore algorithm First, define the following integers

T1 := d6 log(K)e T2 :=

⌊
T

3T1

⌋
. (3.1)

The algorithm ProbDep-Explore is then essentially a random walk on said binary
tree moving one step per iteration for a total of T1 steps. Let v1 = root and for t < T1

let vt denote the current node, the algorithm samples arms {vt(j) : j ∈ {l,m, r}}
each T2 times. Let the sample mean of arm vt(j) be denoted µ̂j,t. ProbDep-Explore
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will use these estimates to decide which node to explore next. If an error is detected
- i.e. the interval between left and rightmost sample mean does not contain the
threshold, then the algorithm backtracks to the parent of the current node, otherwise
ProbDep-Explore acts as the deterministic binary search for inserting the threshold
τ in the sorted list of means. More specifically, if there is an anomaly, τ 6∈ [µ̂l,t, µ̂r,t],
then the next node is the parent vt+1 = P (vt), otherwise if τ ∈ [µ̂l,t, µ̂m,t] the the
next node is the left child vt+1 = L(vt) and if τ ∈ [µ̂m,t, µ̂r,t] the next node is the
right child vt+1 = R(vt). If at time t, τ ∈ [µ̂l,t, µ̂r,t] and the node vt is a leaf, that is
v(r) = v(l) + 1, then due to the extension of our binary tree R(vt) = L(vt) = ṽt where
ṽ is a duplicate of vt. Hence vt+1 = ṽt. Via this mechanism the ProbDep-Explore
algorithm essentially gives additional preference the the node vt. See ProbDep-Explore
for details. We now formally state the parameter free ProbDep-Explore algorithm
(Problem Dependent Monotone Thresholding Bandit Algorithm). We rely on the
assumption T > 36 log(K), see Theorem 28 to ensure T2 ≥ 1.

Initialization: v1 = root for t = 1 : T1 do
sample T2 times each arm in vt
if τ 6∈ [µ̂l,t, µ̂r,t] then

vt+1 = P (vt)
end
else

if µ̂m,t ≤ τ ≤ µ̂r,t then
vt+1 = R(vt)

end
end
else

if µ̂l,t ≤ τ ≤ µ̂m,t then
vt+1 = L(vt)

end
end

end
Set â = vT1+1(r)
Output: (â, Q̂) : Q̂k = 21{k≥â} − 1

Algorithm 18: ProbDep-Explore
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Figure 3.1: Extended binary tree for K = 5

Remark 13 (Adaptation of ProbDep-Explore to a non-increasing sequence, PD-DEC-MTB).
ProbDep-Explore is applied for a monotone non-decreasing sequence (µk)k∈[K], and
it is easy to adapt it to a monotone non-increasing sequence (µk)k∈[K]. In this case,
we transform the label of arm k into K − k, and apply ProbDep-Explore to the newly
labeled problem - where the mean sequence in now non-decreasing. We refer to this
modification as PD-DEC-MTB.

Remark 14 (Relaxing the monotone assumption). By inspecting the proof of Theo-
rem 28 in Appendix 3.7 we can obtain the same guarantee for a larger class of problem
than one with increasing means. Indeed we only need that there exists an arm for
which all the arms before it have a mean below the threshold and all arm after have a
mean above the threshold. Precisely the bound of Theorem 28 holds also for problems
that belongs to

Brm :={ν ∈ B : ∃k ∈ [1,K], ∀j ≤ k µj ≤ τ,
∀j ≥ k + 1 µj ≥ τ} .

Note the same remark also applies for problems with monotone non-increasing
sequence.

3.4.2 Concave case CTBP

We assume in this section, without loss of generality, instead of considering K arms, we
consider for technical reasons K + 2 arms adding two deterministic arms 0 and K + 1
with respective means µ0 = µK+1 = −∞. While we assume that the distributions
of the original K arms are σ2-sub-Gaussian the addition of two such arms will not
invalidate our proofs, see Appendix 3.8. We do this to ensure that after re-indexing
τ > µ1, µK .
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As in the monotone case we construct a binary tree to span the arms of the bandit
problem. The construction of this tree is identical to that described in Section 3.4.1
but without the infinite extension. We will use a variant off the ProbDep-Explore Al-
gorithm, Grad-Explore to move around the tree. The difference is that Grad-Explore
bases its movement off the estimated gradients of the arms as opposed to their sample
means. The objective of Grad-Explore is to find an arm with corresponding mean
above threshold. Once such an arm has been identified we split our problem into
two “relaxed monotone" bandit problems - see Remark 14, one increasing and one
decreasing. We then run ProbDep-Explore and PD-DEC-MTB respectively. We split
our budget evenly across the three algorithms: Grad-Explore, ProbDep-Explore and
PD-DEC-MTB.

Grad-Explore algorithm As with ProbDep-Explore the algorithm Grad-Explore
is essentially a random walk on the said binary tree moving one step per iteration
for a total of T1 steps. Let v1 = root and for t < T1 let vt denote the current node,
the algorithm samples arms {vt(l), vt(l) + 1, vt(m), vt(m) + 1, vt(r), vt(r) + 1}} each
T2 times. As in Section 3.4.1, we adopt the convention that the arm K + 1 is a Dirac
distribution at −∞. Let the sample mean of arm vt(j) be denoted µ̂j,t and the sample
mean of arm vt(j) + 1 be denoted µ̂j+1,t. Let the estimated local gradient at arm
j, that is µ̂j,t − µ̂j+1,t denote ∇̂j,t. Grad-Explore will use these estimates to decide
which node to explore next. If an error is detected - i.e. the left most or right most
gradient is negative or positive respectively, then the algorithm backtracks to the
parent of the current node, otherwise Grad-Explore acts as the deterministic binary
search for the maximum mean, maxi∈[K] µi. More specifically, if there is an anomaly,(
∇̂l,t, ∇̂r,t

)
/∈ (R+,R−), then the next node is the parent vt+1 = P (vt), otherwise if

∇̂m,t < 0 the next node is the left child vt+1 = L(vt) and if ∇̂m,t ≥ 0 the next node is
the right child vt+1 = R(vt). See Algorithm 19 for details.
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Initialization: v1 = root
for t = 1 : T1 do

St+1 = St
for each k ∈ vt sample T2

12 times the arms k, k + 1 if ∃k ∈ {l,m, r} : µ̂k > τ
then
Append arm k to the list St+1

vt+1 = vt
end
else

If
(
∇̂l,t, ∇̂r,t

)
/∈ (R+,R−) vt+1 = P (vt)

end
else

If∇̂m,t ≥ 0 vt+1 = R(vt)
end
else

if ∇̂m,t < 0 then
vt+1 = L(vt)

end
end

end

Algorithm 19: Grad-Explore
run Grad-Explore
Output: list ST1 if |ST1 | ≤ T1

4 then
Output: Q̂ = {−1}K

end
else

â = Median(ST1)
l = output of PD-DEC-MTB on set of arms [1, â] budget: T

3
r = output of Explore on set of arms [â,K] budget: T

3

Output: Q̂ : Q̂k = 1− 21k<l − 21k>r
end

Algorithm 20: ProbDep-CTB
For the arms whose means are below threshold, due to the concave property

gradients are essentially greater than ∆̄min and can easily be estimated. Above
threshold however gradients are less than ∆̄min and are relatively hard to estimate.
Therefore, although on the face Grad-Explore is in part a binary search for the arm
with maximum mean, in reality this is not feasible. The true utility of Grad-Explore
to the learner is to act as a binary search for the "set" of arms above threshold. If
we refer to nodes containing an arm k : µk > τ as "good nodes" the idea behind
Grad-Explore is to spend a sufficient amount of time in exploring this set of nodes
and adding "good arms" - i.e ones with a corresponding mean above threshold, to the
list S. We can then output such an arm with high probability when outputting the
median of ST1 .

Once we have identified our arm above threshold we split our problem into two
bandit problems where the classification can be done by binary search, see Remark 14
and 13. We can thus then apply ProbDep-Explore and PD-DEC-MTB. Precisely, the
complete procedure, namely ProbDep-CTB (Problem Dependent- Concave Threshold
Bandits), is detailed in Algorithm 20.
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3.5 Discussion

3.5.1 Algorithms Explore and ProbDep-CTB

Both the ProbDep-Explore and ProbDep-CTB are based upon a binary search with
corrections, this allows them to exploit the structure of the shape constraints reducing
the problems to sets of arms with cardinally of order log(K), something in sharp contrast
to existing algorithms for the vanilla setting. The difference between ProbDep-Explore
and ProbDep-CTB is that while ProbDep-Explore works exclusively on a binary tree
based upon the classification of an arms mean above or below threshold, the sub
algorithm Grad-Explore of ProbDep-CTB bases a binary tree on positive or negative
gradient. Therefore ProbDep-Explore acts as a search for the point the arms cross
threshold while Grad-Explore acts as a search for the arm k∗ = arg maxk(∆̄k).
Another more subtle difference is that on a "good decision" at time t - i.e when the
sample means are well concentrated up to ∆̄min, ProbDep-Explore will make a step
in the right direction. The same cannot be said for Grad-Explore as we can only
guarantee that the increments between arms are greater than ∆̄min for arms below
threshold, this is a direct result of the concave property. Therefore the true utility of
Grad-Explore is not to find k∗ but to find any arm k : µk > τ .

It is worth noting that both algorithms described in this paper are parameter free,
being adaptive not only to the hardness of the problem characterised by the gaps ∆̄,
but also to the underlying sub-Gaussian assumption parameter σ2.

3.5.2 Problem classes and optimality

In the monotone and concave settings we consider a very narrow class of problems
and argue our classes are relevant for characterising the problem dependent regime -
i.e. are narrow enough.

• In the monotone setting this is obvious as the class of problems is defined by
a specific vector ∆̄ ∈ RK+ , so that all problems in this class have a similar
complexity, bear in mind that our algorithms do not need to know ∆̄min or any
aspect of ∆̄. In fact, when constructing our lower bound, we just need a class
with two problems where, given a first problem, we simply switch the arm with
minimal gap ∆̄min from below to above threshold in order to obtain the second
problem - see the proof of Theorem 27.

• In the concave setting this approach is unfeasible as under the concave constraints
the class of problems defined by a specific vector of gaps ∆̄ ∈ RK+ has very often
cardinality 1 which is nonsensical for a lower bound. Instead, given a specific
vector ∆̄ ∈ RK+ we consider a class of problems with gaps within a proportional
tolerance of ∆̄. This class is designed to be as narrow as possible while still
containing multiple problems which disagree on the placement of certain arms
above or below threshold. In fact, when constructing our lower bound, we just
need a class with two problems where, starting from a first problem, we simply
flip the arm with minimal gap and translate other means vertically in such a
way to preserve concavity - see the proof of Theorem 27.

In both cases, we prove that for T large enough, the problem dependent optimal
probability of error is of order

exp(−T ∆̄2
min/σ

2),
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up to universal multiplicative constants inside and outside the exponential. This
implies that from a problem dependent perspective, both problems are as difficult as a
one armed bandit problem where we just want to decide whether the arm with minimal
gap ∆̄min is up or down the threshold, which is quite surprising - as the number of
arms plays therefore no role asymptotically. While the lower bounds are relatively
simple, the upper bounds are more interesting and challenging.

3.5.3 Comparison of rates between settings

Table 3.1 presents a comparison of results across the problem independent and de-
pendent regimes. Although the results are not immediately comparable between the
regimes, of particular interest is the difference in rates across the monotone and concave
settings in the problem independent regime compared to the lack of difference between
said rates in the problem dependent regime.

problem: independent dependent

Unconstrained
√

K logK
T exp

(
− T
H

)
Monotone

√
logK∨1

T exp
(
−T ∆̄2

min

)
Concave

√
log logK∨1

T exp
(
−T ∆̄2

min

)
Table 3.1: Order of the optimal problem dependent probability of
error, and of the problem independent expected simple regret for the
three structured TBP , in the case of all four structural assumptions
on the means of the arms considered in this paper. All results are
given up to universal multiplicative constants both in and outside the
exponential. The first line concerns the problem independent setting
and the simple regret, see Cheshire, Ménard, and Carpentier [26]. The
second line concerns the problem dependent setting and the probability
of error, the main focus of this paper. The results for the monotone
and concave are novel and can be found in this paper, see Section 3.3.
The results for the unstructured setting are by Locatelli, Gutzeit, and

Carpentier [68], where they take H =
∑K

i=1 ∆̄−2
i

In both the monotone and concave setting an initial lower bound is one which does
not depend upon K - imagine the setting in which a learner places their entire budget
on the two arms either side of the threshold. We show that in the problem dependent
regime a binary search with corrections can match this bound, up to a log(K) term
which disappears for large T . The intuition behind this is that as the depth of the
tree is only log(K) the binary search can quickly find the point of interest and spend
the majority of its time there. As both the concave and monotone problems can be
solved with a binary search they therefore have the same rate.

In the problem independent regime the situation is slightly more nuanced. In terms
of lower bounds one is no longer restricted to a narrow class of problems and can
consider a number of different problems, all close in terms of distributional distance but
nevertheless disagreeing on the classification of certain arms above or below threshold.
The cardinality of these sets differs between the monotone and concave setting - being
log(K) and loglog(K) respectively. This then leads to a difference in the lower bound.
Upper bounds naturally must follow suit, while an adaptation of the standard binary
search is still optimal in the monotone case in the concave case an algorithm using
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a binary search on a log scale is required. The above is by no means a rigorous
explanation but hopefully gives the reader some intuition behind the differences in
rates between the problem dependent and independent regimes, for more detail refer
to Cheshire, Ménard, and Carpentier [26].
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3.5.4 Related work

Unstructured TBP As mentioned in Section 3.3 and demonstrated in Table 3.1
the unstructured problem dependent TBP is already well studied in the literature,
see [23, 24] for the fixed confidence setting and Chen et al. [23], Locatelli, Gutzeit,
and Carpentier [68], and Mukherjee et al. [71], Zhong, Huang, and Liu [87] for the
fixed budget. As mentioned in Section 3.1, [68] is most relevant to our setting as they
consider the fixed budget case. Their rate for the unstructured case depends upon
the distribution of gaps across all the arms, which is of course to be expected. This
again highlights the fact that the rate for the monotone setting depends only upon the
minimum gap - that is the one adjacent to the threshold.

Monotone constraint MTBP The MTBP problem was first introduced by Gariv-
ier et al. [39] in the context of drug dosing. Their results are in contrast to ours as they
consider the fixed confidence setting. Furthermore the algorithm proposed is shown to
be optimal only in the asymptotic case, i.e when the confidence 1− δ converges to 1.
The monotone shape constraint of the MTBP implies it is related to a noisy binary
search i.e. inserting an element into its correct place within an ordered list when only
noisy labels of the elements are observed. A naive approach to the MTBP would be
a binary search with T

log(K) samples at each step of the binary search. However for
our setting this is not optimal, even in the problem independent case, see [26]. In [33]
this issue is solved by introducing a binary search with corrections. They describe an
algorithm structurally similar to ProbDep-Explore, using a binary tree with infinite
extension however they consider a simpler setting where the probability of correct
labeling is fixed as some δ > 1

2 and go on to show that there exists an algorithm that
will correctly insert an element with probability at least 1− δ in O

(
log
(
K
δ

))
steps. For

further literature on the related yet different problem of noisy binary search see, [33],
Ben-Or and Hassidim [8], Emamjomeh-Zadeh, Kempe, and Singhal [30], [73]. Again,
these papers consider settings with more structural assumptions than our own and are
focused on the problem independent, fixed confidence regime. The minimax rate on
expected regret for the problem independent MTB is presented by Cheshire, Ménard,
and Carpentier [26].

For us the adaptation of the algorithm in Cheshire20 to the problem dependent
regime is not obvious. An important fact in our problem dependent regime is that the
number of arms K stops appearing in the error bound which is of order exp(−cT∆2

min)
whenever T is large enough, i.e. larger than log(K)/∆2

min. In Cheshire, Ménard,
and Carpentier [26], the number of arms appeared in all bounds and was the main
topic of study therein - the bound for the monotone problem was

√
log(K)/T . A key

interesting phenomenon here is that somewhere between the problem independent and
problem dependent regime, K stops playing a role. This implies that a very different
dynamic is happening in the problem dependent regime, as compared to the problem
independent regime.

Precisely in Cheshire, Ménard, and Carpentier [26] they consider a sequence of
events ξt that depend on K and occur with constant probability - which is the target
probability of error in the worst case. Lemma 15 therin then applies Hoeffding’s-Azuma
to the summation of the indicator functions of said events to achieve a bound on
the probability of making too many bad decisions in the tree. In order to achieve a
problem dependent bound, we consider events ξt which are problem dependent - they
depend on ∆min - but NOT on K. This event is now problem dependent and the
probability of its complement depends on both ∆min and T/ log(K) (the number of
times we sample each arm), i.e. is of order exp(−cT∆min/ logK), which, interestingly,
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is NOT the target probability of error in the problem dependent regime, but is quite
larger. Our Lemma 22 is then substantially more than just a problem dependent
adaptation of Lemma 15 of Cheshire, Ménard, and Carpentier [26], as we need to
leverage the fact that there are many events ξt - here logK - in order to bypass the
fact that the probability of each individual ξt depends on K in our setting. We use a
Chernoff bound to bound the sum of the indicator functions of said events - and then
in turn the probability of error - by exp(−T∆2

min) - which is much smaller than the
probability of each individual ξt. This phenomenon is not needed in Cheshire, Ménard,
and Carpentier [26].

Another point in favour of the PD-MTB is that it is significantly simpler than that
of the MTB of Cheshire, Ménard, and Carpentier [26]. We use an infinite extension
to the binary tree which allows it to take the final node as output. This means we
don’t require an additional subroutine to choose from a list of arms the algorithm has
collected.

Concave constraint To the best of our knowledge the CTBP was first introduced
in [26] in the problem independent regime. However the related problems of estimating
a concave function and optimising a concave function are well studied in the litera-
ture. Both problems are considered primarily in the continuous regime which makes
comparison to the K-armed bandit setting difficult. The problem of estimating a
concave function has been thoroughly studied in the noiseless setting, and also in
the noisy setting, see e.g. [79], where a continuous set of arms is considered, under
Hölder smoothness assumptions. The problem of optimising a convex function in noise
without access to its derivative - namely zeroth order noisy optimisation - has also been
extensively studied. See e.g. [72][Chapter 9], and [82, 1, 66] to name a few, all of them
in a continuous setting with dimension d. The focus of this literature is however very
different to ours and [26], as the main difficulty under their assumption is to obtain a
good dependence in the dimension d, and with this in mind logarithmic factors are
not very relevant.

3.6 Potential further work

3.6.1 Algorithms that are problem dependent and minimax-optimal

As described earlier after the related theorems, our algorithm ProbDep-Explore is
optimal for minimising the probability of error, in a problem dependent sense, and
up to universal multiplicative constants in the exponential. A relevant question is on
whether it is possible to construct a strategy that is optimal both in this problem
dependent sense, but also in a problem independent sense - i.e. global minimax - when
it comes to the simple regret.

While designed for the problem independent regime - and reaching in this regime

the minimax optimal simple regret of order
√

logK
T - we conjecture the MTB algorithm,

described by Cheshire, Ménard, and Carpentier [26] is optimal also in the problem
dependent regime, i.e. that it achieves an upper bound on the probability of error of
same order as that of ProbDep-Explore in Theorem 28. However note that to prove
such an opitmaility, at least for us, would be none trivial, see the above Section 3.5.4.

As with ProbDep-Explore the MTB algorithm takes a monotone bandit problem
mapped to a binary tree - although without the infinite extension, as input. The MTB
algorithm then consists of two sub algorithm. The first, Explore is an exploration
phase, identical to our algorithm ProbDep-Explore. However, as opposed to simply
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outputting the end node the history of the random walk is passed to the second
algorithm, Choose. The algorithm Choose selects all arms whose sample mean is
within a certain tolerance of the threshold - chosen to be as small as possible while still
producing a none empty set, and then takes the median of said set. This additional
step is required as the MTB algorithm aims to achieve the minimax rate on expected

regret - that is
√

log(K)
T , and therefore wishes to output any arm k : |µk− τ | .

√
log(K)
T .

The idea being that during the explore phase enough time will be spent on nodes
containing such arms.

If we consider the problem dependent regime, and whenever we are not in the

trivial regime where ∆̄min .
√

log(K)
T , we conjecture that the MTB algorithm will

spend sufficient time on the unique node ṽ : µṽ(l) < τ < µṽ(r) with high probability
matching the bound of Theorem 28. The algorithm Choose will then output arm
ṽ(r). The problem dependent regime allows for a less convoluted approach - indeed
ProbDep-Explore is very simple in comparison to MTB. However, it is nevertheless
important to note that for the monotone setting there exists an algorithm that is
optimal in both problem dependent and problem independent regimes.

In regards to the concave case it is not as immediate that the CTB algorithm by
Cheshire, Ménard, and Carpentier [26] will also be optimal in the problem dependent
concave setting. The CTB algorithm is significantly more complex than the MTB as it
successively applies a noisy binary search on a log scale to find arms increasingly close
to threshold at a geometric rate. We however conjecture that it will be the case the
CTB is also optimal in the problem dependent regime.

3.6.2 Unimodal constraint

A natural additional shape constraint for the TBP is a Unimodal one. Indeed bandit
problems with a unimodal constraint are already considered in the literature, for the
problem of minimising the cumulative regret or identifying the best arm under unimodal
constraints see Yu and Mannor [85], Combes and Proutiere [27], Paladino et al. [74]
and Combes and Proutiere [28]. The TBP in particular with a unimodal constraint is
studied in Cheshire, Ménard, and Carpentier [26] in the problem independent regime.
With the above work already in hand it is natural to consider a unimodal shape
constraint on the TBP in the problem dependent regime. A possible algorithm would
be one which, similar to the ProbDep-CTB, first finds an arm above threshold and
then reduces the problem to one with a monotone constraint. We conjecture that
if one considers a class of problems with M arms above threshold the regret of the
problem will be dominated by that of finding a single arm above threshold and will be
of the order exp

(
−MT ∆̄min

K

)
with a matching lower bound. If one wishes to consider a

narrower class based on a single vector of gaps, as in the concave or monotone setting
one might hope to achieve a rate exp

(
−MT

K ( 1
M

∑M
i=1 ∆̄i)

2
)
however this result, for

both an upper and lower bound, appears not so straightforward.

3.7 Proofs relating to the Monotone setting

We first state a useful inequality. Let kl(p, q) be the Kullback-Leibler divergence
between two Bernoulli distributions of parameter p and q,

kl(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
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It holds

kl(p, q) = p log

(
1

q

)
+ (1− p) log

(
1

1− q

)
+ p log(p) + (1− p) log(1− p)

≥ p log

(
1

q

)
− log(2) . (3.2)

Proof of Theorem 27. We denote by N t
k the number of times the arm k is pulled

until and included time t, i.e. N t
k =

∑t
s=1 1ks=k. Let i = arg mink∈[K] ∆̄k, that is

∆̄i = ∆̄min. Consider the two bandit problems
¯
ν+ and

¯
ν− where

ν+
k =

{
N (∆̄k, σ

2) if k ≥ i
N (−∆̄k, σ

2) else
, ν−k =

{
N (∆̄k, σ

2) if k > i

N (−∆̄k, σ
2) else

.

Note these bandit problems belong to the class of MTBP B∆̄
m. In particular we can

lower bound the error by the probability to make a mistake in the prediction of the
label of arm i

e¯
ν+

T ≥ P
¯
ν+(Q̂i = −1) e¯

ν−

T ≥ P
¯
ν−(Q̂i = 1) .

We can assume that P
¯
ν+(Q̂i = −1) ≤ 1/2 otherwise the bound is trivially true. Thanks

to the chain rule then the contraction of the Kullback-Leibler divergence (e.g. see
Garivier, Ménard, and Stoltz [40]) and (3.2), it holds

T
∆̄2

min

2σ2
≥ E

¯
ν+ [NT

i ]
∆̄2

min

2σ2
= KL(PIT

¯
ν+ ,PIT

¯
ν−)

≥ kl
(
P

¯
ν+(Q̂i = 1),P

¯
ν−(Q̂i = 1)

)
≥ P

¯
ν+(Q̂i = 1) log

(
1

P
¯
ν−(Q̂i = 1)

)
− log(2) ,

where we denote by PIT
¯
ν the probability distribution of the history IT under the bandit

problem
¯
ν. Thus, using that P

¯
ν+(Q̂i = 1) = 1− P

¯
ν+(Q̂i = −1) ≥ 1/2 we obtain

P
¯
ν−(Q̂i = 1) ≥ 1

4
exp

(
−T ∆̄2

min

σ2

)
.

Which allows us to conclude that

max(e¯
ν+

T , e¯
ν−

T ) ≥ 1

4
exp

(
−T ∆̄2

min

σ2

)
.

Proof of Theorem 28. We assume in the proof, without loss of generality, that

∆min ≥ cmin

√
σ2 log(K)

T

with cmin = 13. Indeed, otherwise, the bound of Theorem 28 is trivially true.
The proof of Theorem 28 is structured in the following manner. In our original

binary tree we know there is a unique leaf v∆, such that τ ∈ [µv∆(l), µv∆(r)]. Essentially
we want to show that the explore algorithm will terminate in the subtree of this v∆̄

with high probability - recall that we extend our binary tree by attaching an infinite sub
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tree to each leaf, the nodes of which are identical to the respective leaf. At time t we
say our algorithm makes a favourable decision if all sample means are well concentrated
- that is with ∆min of their true mean. On such a favourable decision we show that
the explore algorithm will make a step towards the subtree of v∆, or go deeper if it
is already in it. Therefore if overall we can make sufficient proportion of favourable
events we are guaranteed to terminate in the subtree of v∆. We then show that this
favorable event holds with high probability.

Step 1: Initial definitions and lemmas We denote by ST (v) the subtree rooted
at node v.

Definition 4. The subtree ST (v) of a node v is defined recursively as follows: v ∈
ST (v) and

∀ q ∈ ST (v), L(q), R(q) ∈ ST (v) .

We define Z∆min , the set of good nodes, as

Z∆min := {v : ∃k ∈ {l,m, r} : |µv(k) − τ | ≤ ∆min} ,

Note that Z∆min is simply the leaf v∆ and it’s sub tree attached during the infinite
extension of the binary tree. At time t we define wt as the node of maximum depth
whose subtree contains both vt and Z∆min . Formally, for t ≤ T1, we let

wt ∈ arg max
{v:τ∈[µv(l),µv(r)] & vt∈ST (v)}

|v| . (3.3)

Lemma 11. The node wt is unique.

Proof. At time t consider, a node qt which also satisfies (3.3). As vt ∈ ST (wt) and
vt ∈ ST (qt) we can assume without loss of generality qt ∈ ST (wt) with |qt| ≥ |wt|.
This then implies, from (3.3), that |qt| = |wt| and as qt ∈ ST (wt), we have qt = wt.

For t ≤ T1 we define Dt as the relative distance from vt to v∆, it is taken as the
length of the path running from vt up to wt and then down (or up if vt ∈ Z∆min) to
v∆. Formally, we have

Dt := |vt| − |wt|+ |v∆| − |wt|.

Note the following properties of Dt and wt,

ST (vt) ∩ Z∆min 6= ∅ ⇒ vt = wt , (3.4)
Dt ≤ 0⇒ vt = wt and wt, vt ∈ Z∆min . (3.5)

We define the favorable event where the estimates of the means are close to the true
ones for all the arms in vt, At time t we define the event

ξt := {∀k ∈ {l,m, r}, |µ̂k,t − µvt(k)| ≤ ∆min}

and we denote ξ̄t as the complement of ξt.

Step 2: Actions of the algorithm on all iterations After any execution of
algorithm ProbDep-Explore note the following, for t ≤ T1, vt and vt+1 are separated
by at most one edge, i.e.

vt+1 ∈ {L(vt), R(vt), P (vt)} . (3.6)
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Lemma 12. On execution of algorithm ProbDep-Explore for all t ≤ T1 we have the
following,

Dt+1 ≤ Dt + 1

Proof. As the algorithm moves at most 1 step per iteration, see (3.6), for t ≤ T1, it
holds

|vt| − |wt| ≥ |vt+1| − |wt| − 1 .

We consider two cases. Firstly, assume we are in the event {vt+1 6= P (vt)} ∪ {wt 6= vt}.
Under this event note that vt+1 ∈ ST (wt). It follows

Dt = |vt| − |wt|+ |v∆| − |wt|
≥ |vt+1| − |wt|+ |v∆| − |wt| − 1

≥ |vt+1| − |wt+1|+ |v∆| − |wt+1| − 1

= Dt+1 − 1 ,

where the third line comes from the definition of wt+1, see (3.3).
In the case where wt = vt and vt+1 = P (vt) note that wt+1 = vt+1 and,

Dt+1 = |v∆| − |wt+1| = |v∆| − |wt|+ 1 = Dt + 1 .

Therefore in all cases we have Dt+1 ≤ Dt + 1.

Step 3: Actions of the algorithm on ξt

Lemma 13. On execution of algorithm ProbDep-Explore for all t ≤ T1, on ξt, we
have the following,

Dt+1 ≤ Dt − 1 .

Proof. Note that on the favorable event ξt, we have ∀j ∈ {l,m, r},

µvt(j) ≥ τ ⇒ µ̂j,t ≥ τ , (3.7)

µvt(j) ≤ τ ⇒ µ̂j,t ≤ τ . (3.8)

We consider the following three cases:

• If τ /∈
[
µvt(l), µvt(r)

]
. From (3.7) and (3.8), under ξt, we get τ /∈ [µ̂l,t, µ̂r,t], and

therefore vt+1 = P (vt) and wt = wt+1. Thus thanks to Lemma 11, under ξt,

Dt+1 = |vt+1| − |wt+1|+ |v∆| − |wt+1| = |vt| − 1− |wt|+ |v∆| − |wt| = Dt − 1 .

• If τ ∈
[
µvt(l), µvt(r)

]
and vt /∈ Z∆min . Note that in this case vt can not be a leaf

and we just need to go down in the subtree of vt to find v∆, id est wt = vt. Since
vt /∈ Z∆min , without loss of generality, we can assume for example µvt(m) > τ .
From (3.7) and (3.8), under ξ, we then have τ ∈ [µ̂l,t, µ̂r,t] and µ̂m,t ≥ τ .
Hence algorithm ProbDep-Explore goes to the correct subtree, vt+1 = L(vt). In
particular we also have for this node

τ ∈
[
µvt+1(l), µvt(m)

]
,

therefore it holds again wt+1 = vt+1. Thus combining the previous remarks we
obtain thanks to Lemma 11, under ξt,

Dt+1 = |v∆| − |wt+1| = |v∆| − |wt| − 1 = Dt − 1 .
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• If τ ∈
[
µvt(l), µvt(r)

]
and vt ∈ Z∆min . Firstly note that wt = vt. Now, using the

same reasoning as in the previous case, as τ ∈ [µvt(l), µvt(r)] we have vt+1 = L(vt)
or vt+1 = R(vt). In either case we get vt+1 ∈ Z∆min because of (3.7) and (3.8),
thus it holds wt+1 = vt+1. Therefore we have

Dt+1 = |vt+1| − |wt+1|+ |v∆| − |wt+1| = |v∆| − |wt| − 1 = Dt − 1 .

Step 4: Upper bound on DT1+1

Lemma 14. For any execution of algorithm ProbDep-Explore

DT1+1 ≤ 2

T1∑
t=1

1ξ̄t −
3T1

4
.

Proof. Combining Lemma 12 and Lemma 13 respectively we have

Dt+1 ≤ Dt + 1ξ̄t − 1ξt .

Using this inequality we obtain

DT1+1 = D1 +

T1∑
t=1

(Dt+1 −Dt)

≤ D1 +

T1∑
t=1

(
1ξ̄t − 1ξt

)
≤ D1 + 2

T1∑
t=1

1ξ̄t − T1

≤ 2

T1∑
t=1

1ξ̄t −
3T1

4
,

where we used in the last inequality the fact that D1 ≤ log2(K) and that log2(K) ≤
T1/4 by definition of T1 .

Lemma 15. For cmon = 1/48 and c′mon = 12 it holds

P

(
T1∑
t=1

1ξ̄t ≥
T1

4

)
≤ exp

(
cmon

−T∆2
min

σ2

)
.

Proof. Let Ft be the information available at and including step t of algorithm
ProbDep-Explore. Thanks to the Chernoff inequality and the choice of T2, we have
for all j ∈ {l,m, r},

P
(∣∣µ̂j,t − µvt(j)∣∣ ≥ ∆min|Ft−1

)
≤ 2 exp

(
−T2∆2

min

2σ2

)
≤ 2 exp

(
−c2

min

log(K)

36 log(K) + 6

)
≤ 1

24
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as we assume ∆min > cmin

√
σ2 logK

T and cmin ≥ 13. Therefore by a union bound

pt := P(ξ̄t|Ft−1) ≤ p0 := 6 exp

(
−T2∆2

min

2σ2

)
≤ 1

8
. (3.9)

We will apply the Chernoff inequality to upper bound the sum of indicator function.
Thanks to the Markov inequality for λ ≥ 0 we have

P

(
T1∑
t=1

1ξ̄t ≥
T1

4

)
≤ E

[
exp

(
λ

T1∑
t=1

1ξ̄t

)]
e−λ

T1
4 . (3.10)

Let φp(λ) = log(1− p+ peλ) be the log-partition function of a Bernoulli of parameter
p ∈ [0, 1]. Note that for λ ≥ 0, since p 7→ φp(λ) is non-decreasing and because of (3.9)
it holds φpt(λ) ≤ φp0(λ) for all t. Thus by induction we have

E

[
exp

(
λ

T1∑
t=1

1ξ̄t

)]
= E

[
E
[
exp
(
λ1ξ̄t

)
|FT1−1

]
exp

(
λ

T1−1∑
t=1

1ξ̄s

)]

= E

[
e
φpT1

(λ)
exp

(
λ

T1−1∑
t=1

1ξ̄t

)]
≤ eφp0 (λ)E

[
exp

(
λ
t−1∑
s=1

1ξ̄t

)]
≤ E

[
eT1φp0 (λ)

]
.

Then going back to (3.10) and using that supλ≥0 λq − φp(λ) = kl(q, p) when q ≥ p we
get

P

(
T1∑
t=1

1ξ̄t ≥
T1

4

)
≤ exp

(
−T1 sup

λ≥0

(
λ

1

4
− φp0(λ)

))
= e−T1 kl(1/4,p0) .

It remains to conclude with (3.2)

T1 kl(1/4, p0) ≥ T1
1

4
log(1/p0)− T1 log(2)

≥ 1

8

T1T2∆̄2
min

σ2
− T1

(
log(2) +

1

4
log(3)

)
≥ 1

48

T ∆̄2
min

σ2
− T1

(
log(2) +

1

4
log(3)

)
≥ cmon

T ∆̄2
min

σ2
− c′mon log(K)

where cmon = 1/48 and c′mon = 12.

By combination of Lemmas 14 and 15 we have that DT1+1 ≤ 0 with probability
greater than 1 − exp

(
−cmon

T∆2
min
σ2 + c′mon log(K)

)
. Thus with said probability we

output an arm â such that τ ∈ [µâ, µâ+1].

3.8 Proofs relating to the concave setting

Before proceeding with the proof of Theorem 29 we present the following structural
lemma.
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Lemma 16. Let ∆ ∈ ∆Bc and let (µk)k be an associated concave sequence of means.
There exists a sequence of means (µ′k)k - with associated gaps ∆′ = |µ′ − τ | - such that

(a) (µ′k)k is concave.

(b) µ and µ′ have not all the arms classified in the same way:

∃k ∈ [K] : sign(µk − τ) 6= sign(µk − τ) .

(c) For all k ∈ [K] it holds that

|µ′k − µk| ≤ 3∆min.

(d) For all k ∈ [K] it holds that

∆k

10
≤ ∆′k ≤ 3∆k.

Proof. Let k∗ ∈ arg mink∈[K] ∆k. We proceed in two cases: either this arm is up thresh-
old, or it is below threshold. In everything that follows we set ∆min := mink∈[K] ∆k.

Case 1: Arm below threshold, i.e. µk∗ ≤ τ . Let us write kL, kR for the two arms
that are ‘just’ below threshold, i.e. such that µkL ≤ τ ≤ µkL+1 and µkR ≤ τ ≤ µkR−1.
These two arms can be defined without loss of generality since there is at least one
arm above threshold, and since we can always take two virtual means µ0, µK+1 at
−∞ on the boundaries.

In the context where µk∗ ≤ τ it is clear that we can pick k∗ ∈ {kL, kR} and so let
us assume w.l.g. that k∗ = kL.

In this case, we define µ′ either:

• if ∆kR ≤ 3∆min/2, for all k ∈ [K],

µ′k = µk + 2∆min.

• if ∆kR ≥ 3∆min/2, for all k ∈ [K],

µ′k = µk + 5∆min/4.

(a) holds as we just translated vertically the concave means. Also (b) holds since
we switched the sign of arm k∗ by construction. (c) holds also since we precisely
added at most 2∆min to the means. And finally for (d): we have for any k ∈ [K] that
|∆̄k −∆′k| ≤ 2∆min, so that

∆′k ≤ 3∆k.

Moreover for all arms k above threshold, it is clear that ∆′k ≥ ∆k. On the other hand,
for any arm k below threshold and that are not next to an arm up threshold - i.e. not
kL or kR - we have by concavity that

τ − µk ≥ 3∆min,

which implies
τ − µ′k ≥ τ − µk − 2∆min ≥

τ − µk
3

,
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i.e. ∆′k ≥ ∆k/3. Finally for {kL, kR}: it is clear that ∆′k∗ ≥ ∆k∗/4 by construction so
that ∆′kL ≥ ∆kL/4. And also by construction:

• if ∆kR ≤ 3∆min/2, then ∆′kR ≥ ∆min/2 ≥ ∆kR/3.

• if ∆kR ≥ 3∆min/2, then ∆′kR ≥ ∆kR − 5∆min/4 ≥ ∆kR/6.

So that in both situations (d) holds.

Case 2: Arm above threshold, i.e. µk∗ ≥ τ . Note first that if k∗ is the only arm
above threshold, we simply set for any k

µ′k = µk − 2∆min,

and this satisfies the requirements (a)-(d). Assume now that this case does not hold,
so that k∗ ∈ {kL + 1, kR− 1} and kL + 1 < kR− 1.We now again consider several cases.
Note that in any case k∗ ∈ {kL + 1, kR − 1}.
Sub-case 1: µ not too flat around the threshold. Assume first that ∆kL+2 ∧∆kR−2 ≥
3∆min/2. Assume w.l.o.g. that k∗ = kL + 1. In this sub-case we define µ′ either as:

• if ∆kR−1 ≥ 5∆min/4 set
µ′ = µ− 9∆min/8,

• otherwise if ∆kR−1 ≤ 5∆min/4 set

µ′ = µ− 11∆min/8.

It is clear that (a) holds (vertical translation of a concave sequence), (b) holds (arm
k∗ changes sides of threshold) and (c) holds since we translate at most by 11∆min/8.
Now for (d): it is clear in both cases that ∆′k ≤ ∆k + 11∆min/8 ≤ 3∆k. Moreover:

• if ∆kR−1 ≥ 5∆min/4, then for all k 6= k∗, we have ∆′k ≥ ∆k − 9∆min/8 ≥ ∆k/8 -
and also by definition ∆k∗ = ∆k∗/8. And so (d) holds in this case.

• if ∆kR−1 ≤ 5∆min/4 we have for all k such that µk ≤ τ that ∆′k ≥ ∆k, and for
any k ∈ {kL+2, ..., kR−2} that ∆′k ≥ ∆k−11∆min/8 ≥ ∆k/8 since for such k we
have ∆k ≥ 3∆min/2. Also ∆′kL+1 ≥ ∆′kR−1 ≥ ∆min/8 ≥ ∆kR−1/10 ≥ ∆kL+1/10.
And so (d) holds in this case.

Sub-case 2: µ quite flat around the threshold. Assume now that ∆kL+2 ∧∆kR−2 ≤
3∆min/2. Assume w.l.o.g. that ∆kL+2 ≤ 3∆min/2 and set

µ′kL+1 = µkL+1 − 9∆kL+1/8.

and for k 6= kL + 1
µ′k = µk −∆kL+1/2.

(b) holds since µ′kL+1 ≤ τ ≤ µkL+1. Since ∆kL+1 ≤ ∆kL+2 ≤ 3∆min/2, we know that
(c) and (d) hold. Finally note that

µkL+1 − µkL ≥ µ
′
kL+1 − µ′kL = 3∆kL+1/8 + ∆k

≥ µ′kL+2 − µ′kL+1 + 5∆kL+1/8 = µ′kL+2 − µ′kL+1 ≥ µkL+2 − µkL+1,

since µ′kL+2 − µ′kL+1 ≤ ∆min/2 - since ∆kL+1 ≤ ∆kL+2 ≤ 3∆min/2 - so that ∆k ≥
∆min ≥ µ′kL+2 − µ′kL+1 + ∆kL+1/4. So (a) holds since for any k 6∈ {kL + 1, kL + 2}, we
have µk − µk−1 = µ′k − µ′k−1.
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Proof of Theorem 29. Consider ∆̄ ∈ ∆Bc associated with the vector of means (µk)k∈[K].
We define

¯
ν as the Gaussian bandit problem with these means, that is, νk = N (µk, σ

2)
for all k ∈ [K]. Thanks to Lemma 16 there exists a vector of means (µ′k)k∈[K] that
verifies the conditions of Lemma 16. We denote by

¯
ν ′ the Gaussian bandit problem

such that ν ′k = N (µk, σ
2) for all k ∈ [K]. Thanks to (a) and (d) we know that

¯
ν ′ ∈ Bc.

Thanks to (b) there exists i ∈ [K] such that, for example, µi > τ and µ′a < τ . In
particular we can lower bound the error by the probability to make a mistake in the
prediction of the label of arm i

e¯
ν
T ≥ P

¯
ν(Q̂i = −1) e¯

ν′

T ≥ P
¯
ν(Q̂i = 1) .

We then conclude as in the proof of Theorem 27. We can assume that P
¯
ν(Q̂i =

−1) ≤ 1/2 otherwise the bound is trivially true. Thanks to (c), the chain rule, the
contraction of the Kullback-Leibler divergence and (3.2), it holds

T
9∆̄2

min

2σ2
≥ KL(PIT

¯
ν ,P

IT

¯
ν′ )

≥ kl
(
P

¯
ν(Q̂i = 1),P

¯
ν′(Q̂i = 1)

)
≥ P

¯
ν(Q̂i = 1) log

(
1

P
¯
ν′(Q̂i = 1)

)
− log(2) ,

where we denote by PIT
¯
ν the probability distribution of the history IT under the bandit

problem
¯
ν. Thus, using that P

¯
ν(Q̂i = 1) = 1− P

¯
ν(Q̂i = −1) ≥ 1/2 we obtain

P
¯
ν′(Q̂i = 1) ≥ 1

4
exp

(
−9

T ∆̄2
min

σ2

)
.

Which allows us to conclude that

max(e¯
ν+

T , e¯
ν−

T ) ≥ 1

4
exp

(
−9

T ∆̄2
min

σ2

)
.

Proof of Theorem 30. We assume in the proof, without loss of generality, that

∆min ≥ ccon−min

√
σ2 log(K)

T

with ccon−min = 8064. Indeed, otherwise, the bound of Theorem 30 is trivially true.
The proof of Theorem 30 is structured in the following manner. In our original

binary tree we assume there is at least one arm above threshold, the contrary case is
dealt with separately, see Lemma 23. We wish to show that with high probability the
Grad-Explore algorithm will add sufficient arms above threshold to the list ST1 such
that when we take it’s median we are guaranteed to output an arm above threshold.
At time t we say our algorithm makes a favourable decision if all sample means are
well concentrated - that it with ∆̄min of their true mean. It is important to note
that for arms below threshold this also implies the estimated gradients are close to
their true values. On such a favourable decision we show that the explore algorithm
will make a step towards the subtree of nodes containing an arm above threshold, or
remain inside if it is already in it. We also show that upon encountering an arm above
threshold, on a good decision said arm is always added to ST1 . Therefore if overall
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we can make sufficient proportion of favourable events we are guaranteed to have a
sufficient number of arms above threshold in ST1 . We then show that this favorable
event holds with high probability. Once we have identified an arm above threshold the
problem is essentially split into two monotone problems - see Remark 14, where the
point the arms cross threshold on either side can be found by applying the PD-DEC-MTB
and ProbDep-Explore algorithms in opposite directions.

Step 1: Initial definitions and lemmas We thus assume first that there is an
arm k∗ such that µk∗ > τ .

Definition 5. We define the subtree ST (v) of a node v recursively as follows: v ∈
ST (v) and

∀ q ∈ ST (v), L(q), R(q) ∈ ST (v) .

Definition 6. A consecutive tree U with root uroot is a set of nodes such that
uroot ∈ U and

∀v ∈ U : v 6= uroot, P (v) ∈ U.

with the additional condition,

root ∈ U ⇒ uroot = root

where root is the root of the entire binary tree.

We define Z, the set of good nodes with at least an arm with a mean above the
threshold,

Z := {v : ∃j ∈ {l,m, r} : µv(j) > τ} .

At a given time t note the following property of Z and vt,

ST (vt) ∩ Z 6= ∅ ⇔ k∗ ∈ [vt(l), vt(r)] . (3.11)

Proposition 20. Z is a consecutive tree with root zroot the unique element v ∈ Z
such that P (v) /∈ Z if there exists at least one, otherwise zroot = root.

Proof. First, if for all v ∈ Z we have P (v) ∈ Z then root ∈ Z and Z is a consecutive
tree with root zroot = root. Otherwise, consider v ∈ Z, such that P (v) /∈ Z, there is
at least one such node. We first prove that v is unique. As v ∈ Z we know that

∃j ∈ {l,m, r} : µv(j) > τ . (3.12)

Now since v(l), v(r) ∈ P (v) and P (v) /∈ Z, it follows that, thanks to (3.12),

∀k ∈ {l, r} : µv(k) < τ .

For node q 6= v satisfying the same properties, assume that v(m) < q(m) without loss
of generality. With this assumption we have,

v(r) ≤ v(m) ≤ q(l) ≤ q(m) ,

however this then implies µq(l) > τ a contradiction. Hence v = q, and thus v is unique
which implies ∀q ∈ Z : q 6= v, P (q) ∈ Z.
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At time t we define wt as the node of maximum depth whose sub tree contains
both vt and Z. Formally, for t ≤ T1,

wt := arg max
{ST (w)∩Z 6=∅ & vt∈ST (w)}

|w| . (3.13)

Lemma 17. The node wt is unique.

Proof. At time t consider, a node qt which also satisfies (3.13). As vt ∈ ST (wt) and
vt ∈ ST (qt) we can assume without loss of generality qt ∈ ST (wt) with |qt| ≥ |wt|. This
then implies, from (3.13), that |qt| = |wt| and as qt ∈ ST (wt), we have qt = wt.

For t ≤ T1 we define Dt as the distance from vt to Z, it is taken as the length of
the path running from vt up to wt and then down to an good node in Z. Formally, we
have

Dt := |vt| − |wt|+ (|zroot| − |wt|)+.

Note the following properties of Dt and wt,

ST (vt) ∩ Z 6= ∅ ⇒ vt = wt , Dt = 0⇒ vt = wt and wt, vt ∈ Z .

Define at time t the counter Gt, tracking the number of good arms in St,

Gt :=
∣∣∣{k ∈ St : µk > τ

}∣∣∣ . (3.14)

At time t we define the following favorable event where the sampled arms at time t a
well concentrated around their means,

ξt := {∀j ∈ {l, l + 1,m,m+ 1, r, r + 1},
∣∣µ̂j,t − µvt(j)∣∣ ≤ ∆min}.

Step 2: Actions of the algorithm on all iterations After any execution of
algorithm Grad-Explore note the following,

• for t ≤ T1, vt and vt+1 are separated by at most one edge, i.e.

vt+1 ∈ {L(vt), R(vt), P (vt)} , (3.15)

• for t ≤ T1,
|St| ≤ |St+1| ≤ |St|+ 1 . (3.16)

Lemma 18. On execution of algorithm Grad-Explore for all t ≤ T1 we have the
following,

Dt+1 ≤ Dt + 1, (3.17)
Gt+1 ≥ Gt . (3.18)

Proof. As the algorithm moves at most 1 step per iteration, see (3.15), for t ≤ T1, it
holds

||vt| − |wt|| ≥ ||vt+1| − |wt|| − 1 .
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Noting that,

Dt = ||vt| − |wt||+ (|zroot| − |wt|)+

≥ ||vt+1| − |wt||+ (|zroot| − |wt|)+ − 1

≥ ||vt+1| − |wt+1||+ (|zroot| − |wt+1|)+ − 1

= Dt+1 − 1 ,

where the third line comes from the definition of wt+1, see (3.3), we obtainDt+1 ≤ Dt+1.
By (3.16) we have, for t ≤ T1,

|St| ≤ |St+1| ≤ |St|+ 1 ,

hence Gt+1 ≥ Gt.

Step 3: Actions of the algorithm on ξt We first state several properties relating
to the event ξt. Firstly for all t we have that under event ξt,

∀k ∈ {l,m, r}, sign(µ̂k,t − τ) = sign(µk − τ) . (3.19)

Since there is at least an arm above the threshold, due to the concave property, note
the following,

∀k ∈ [K] : µk < τ, |µk − µk+1| ≥ 2∆min , (3.20)

thus from (3.20) for all t under event ξt, we have that,

∀j ∈ {l,m, r} : µvt(j) < τ, sign(∇̂j,t) = sign(∇vt(j)) . (3.21)

Lemma 19. On execution of algorithm Grad-Explore for all t ≤ T1, on ξt, we have
the following,

Dt+1 ≤ max(Dt − 1, 0) , (3.22)
Gt+1 ≥ Gt + 1{Dt=0} . (3.23)

Proof. We first prove (3.23). If Dt = 0 then we know vt ∈ Z. If vt ∈ Z then under ξt
there exists j ∈ {l,m, r} such that µ̂j,t > τ , see (3.19), and arm is added to St+1, thus
Gt+1 ≥ Gt + 1{Dt=0}.

We now prove (3.22). We consider the following three cases:

• If Z ∩ST (vt) = ∅. First of all we have that ∀j ∈ {l,m, r} : µvt(j) ≤ τ . Therefore
from (3.19) the algorithm will not add an arm to St. Now, we have that
k∗ /∈ [vt(l), vt(r)], see (3.11), therefore via the concave property ∇vt(l) < 0 or
∇vt(r) > 0. Via (3.21) this implies that ∇̂vt(l) < 0 or ∇̂vt(r) > 0 respectively.
Thus by action of the algorithm vt+1 = P (vt). Since in this case we are getting
closer to the set of good nodes by going up in the tree we know that wt = wt+1.
Thus thanks to Lemma 2, under ξt,

Dt+1 = |vt+1|−|wt+1|+(|zroot| − |wt+1|)+ = |vt|−1−|wt|+(|zroot| − |wt|)+ = Dt−1 .

• If k∗ ∈ ST (vt) and vt /∈ Z. First of all we have that ∀j ∈ {l,m, r} : µvt(j) ≤ τ .
Therefore from (3.19) the algorithm will not add an arm to St. Now note that
in this case vt can not be a leaf and we just need to go down in the subtree of vt
to find an good node, id est wt = vt. Since vt /∈ Z, without loss of generality,
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we can assume for example ∇̂t,m > 0. From (3.21), under ξt, we then have that
∇vt(m) > 0 which implies k∗ ∈ [vt(l), vt(m)]. Hence algorithm Grad-Explore
goes to the correct subtree, vt+1 = L(vt). In particular we also have for this node

k∗ ∈ [vt+1(l), vt(m)] ,

therefore it holds again wt+1 = vt+1. Thus combining the previous remarks we
obtain thanks to Lemma 2, under ξt,

Dt+1 = (|wt+1| − |zroot|)+ = (|wt| − |zroot|)+ − 1 = Dt − 1 .

• If k∗ ∈ ST (vt) and vt ∈ Z. In this case there exists j ∈ {l,m, r} such that
µvt(j) > τ . From 3.19 we have for said j that, µ̂j,t > τ . Hence the algorithm will
not move giving vt = vt+1 thus Dt = Dt+1 = 0.

Step 4: Lower bound on GT1+1 We denote by ξ̄t the complement of ξt.

Lemma 20. For any execution of algorithm Grad-Explore,

GT1+1 ≥
3

4
T1 − 2

T1∑
t=1

1ξ̄t .

Proof. Combining (3.22) and (3.17) from Lemma 18 and Lemma 19 respectively we
have

Dt+1 ≤ Dt + 1ξ̄t − 1ξt1{Dt>0}

= Dt + 21ξ̄t − 1 + 1ξt1{Dt=0} .

Using this inequality with (3.23) we obtain

GT1+1 =

T1∑
t=1

Gt+1 −Gt

≥
T1∑
t=1

1ξt1{Dt=0}

≥
T1∑
t=1

(
Dt+1 −Dt − 21ξ̄t + 1

)
≥ T1 −D1 − 2

T1∑
t=1

1ξ̄t,

≥ 3

4
T1 − 2

T1∑
t=1

1ξ̄t, ,

where we used in the last inequality the fact that D1 ≤ log2(K) and that log2(K) ≤
T1/4 by definition of T1 .
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Lemma 21. Upon execution of algorithm Grad-Explore with budget T
3 we have that,

P

(
T1∑
t=1

1ξ̄t ≤
T1

8

)
≤ exp

(
−ccon

T ∆̄2
min

σ2
+ c′con log(K)

)
.

where ccon = 1
576 and c′con = 12.

Proof. The proof follows as in the proof of Lemma 15, with altered constants.

Lemma 22. Under the assumption ∃k : µk > τ , upon execution of algorithm
Grad-Explore with output â we have that µâ ≥ τ with probability greater than

1− exp

(
−ccon

T ∆̄2
min

σ2
+ c′con log(K)

)
.

Proof. By combination of Lemmas 5 and 21 we have that GT1+1 ≥ 1
2T1 with probability

greater than 1−exp
(
−ccon

T ∆̄2
min
σ2 c′con log(K)

)
. As |ST1+1| ≤ T1 and as the arms GT1+1

form a segment (they are all above threshold) by taking the median of ST1+1 under
the circumstance GT1+1 ≥ 1

2T1 we have that the output of Grad-Explore â is such
that µâ > τ . This then gives the result.

With the following lemma we deal with the special case where all arms are below
threshold before finally completing the proof of Theorem 30.

Lemma 23. Under the assumption ∀k ∈ [K] : µk < τ , upon execution of algorithm
Grad-Explore with output â we have that ∀k ∈ [K], Q̂k = −1 with probability greater
than

1− exp

(
−ccon

T ∆̄2
min

σ2
+ c′con log(K)

)
.

where ccon = 1
576 and c′con = 12.

Proof. Under the assumption ∀k ∈ [K] : µk < τ , for all t < T1, we have that under
the event ξt, St+1 = St, see (3.19). Therefore the following holds,

|ST1 | ≤
T1∑
t=1

1ξ̄t .

The proof now follows from direct application of Lemma 21.

We are now ready to prove Theorem 30.

Proof of Theorem 30. In the case where µk < τ, ∀k ∈ [K] Lemma 23 immediately
gives the result. Therefore we consider the case in which ∃k ∈ [K] : µk > τ . Under
this assumption the algorithm Grad-Explore will return an arm â : µâ > τ with
probability greater than

1− exp

(
− 1

576

T ∆̄2
min

σ2
+ 12 log(K)

)
,

see Lemma 22. In this case we have the sets of arms [1, â], [â,K] which satisfy the
assumption described in Remark 14. Therefore via Theorem 28 and a union bound we
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have that with probability greater than

1− 2 exp

(
− 1

48

T∆2

σ2
+ 12 log(K)

)
we will correctly classify arms on both these sets. With an additional union bound we
achieve the result.

3.9 Experiments

We conduct some preliminary experiments to test the performance of both ProbDep-Explore
and ProbDep-CTB to illustrate our theoretical understanding. As a bench mark we
will use both a Uniform algorithm and also a naive binary search - that is without
back tracking, that we will term Naive, for an exact description of both see Appendix.
Note that Naive essentially behaves as a uniform sampling algorithm on a bandit
problem with log(K) arms. As our theoretical bounds are likely far to loose in terms
of constants we also include a parameter tuned version of the ProbDep-Explore where
we tune the constants in the definition of T1 and T2, see Equation (3.1).

We would expect the Naive algorithm to have an upper bound of the order
exp
(
−T ∆̄2

min
log(K)

)
. This is sub-optimal compared to ProbDep-Explore which removes the

log(K), see Theorem 28. However, ProbDep-Explore must divide it’s budget across
several arms at each round, while Naive algorithm samples only one. This may out
weigh the benefit of backtracking when K is not very large.

In our experiments we consider two thresholding bandit problems. In Setting 1 the
gap of one arm is set to ∆, with the remaining gaps very large - i.e. 100, In Setting 2
all gaps are set to ∆, for the CTB we modify this to a concave setting where all arms
are Delta apart. The former problem should more favour ProbDep-Explore as it can
quickly traverse the binary tree and expend most of it’s budget on the leaf in question.

In Figure 3.2 we consider consider the expected error in Setting 1 as a function
of the gap ∆ and as a function of the number of arms K.The effect of varying ∆
follows our intuition. Firstly all algorithms show an increased performance for greater
∆, this should be completely expected. Secondly, in Setting 1 the ProbDep-Explore
algorithm decrease in probability of error faster than Naive and much faster than
Uniform. This is also unsurprising as in this setting the Uniform, and to a lesser
extent Naive, algorithms are forced to waste an unnecessary amount of their budget
on arms far from threshold. In the case of varied K, on the right, ProbDep-Explore
appears to outperform Naive, showing no obvious dependency on K past a certain
point, however there is considerable noise.
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Figure 3.2: On the right: expected error as a function of the number
of arms K ∈ (100× i)i∈[100] with T = 1000 and ∆ = 0.2 in Setting 1
averaged over 10000 Monte Carlo simulations. On the left: expected
error as a function of the gap ∆ ∈ (0.01× i)i∈[100] with T = 1000 and
K = 100 in Setting 1 averaged over 1000 Monte Carlo simulations.

In figure 3.3 we consider consider the expected error in Setting 2 as a function
of the gap ∆ and as a function of the number of arms K. In both cases Naive out
performs both ProbDep-Explore and it’s tuned version, vastly so for largerK. It would
appear that here dividing our budget cancels out any gains one receives from reducing
dependency on log(K). It is unfortunate that we were unable to find heuristic evidence
of a lack of dependency on logK, although this was perhaps expected. Based on our
results, see Theorem 28, to remove such a dependency one would need T∆2 >> log(K).
This would lead to extremely low probabilities of error which are near impossible to
detect accurately without huge numbers of Monte Carlo simulations, unfortunately
beyond the scope of this paper.

Figure 3.3: On the right: Expected error as a function of the number
of arms K ∈ (100× i)i∈[100] with T = 1000, ∆ = 0.3, in Setting 2,
plotted on a log scale averaged over 10000 Monte Carlo simulations.
On the left: expected error as a function of the gap ∆ ∈ (0.01× i)i∈[60]

with K = 100, T = 1000, in Setting 2, averaged over 1000 Monte Carlo
simulations
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Initialization: v1 = root for t = 1 : T1 do
sample b T

log(K)c times each arm in vt(m)

if µ̂m,t ≤ τ then
vt+1 = R(vt)

end
else

vt+1 = L(vt)
end

end
Set â = vT1+1(r)
Output: (â, Q̂) : Q̂k = 21{k≥â} − 1

Algorithm 21: Naive

for k = 1 : K do
Sample arm k a total of
b TK c times.
Compute µ̂k the sample mean of arm k.

end
Output:

Q̂ : Q̂k =

{
−1 if µ̂k < τ

1 if µ̂k ≥ τ

Algorithm 22: Uniform
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Chapter 4

Bandits with Many Optimal Arms

In this chapter we present the following work, [45], authored by Rianne de Heide,
James Cheshire, Pierre Ménard and Alexandra Carpentier.
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4.1 Introduction

In the classical stochastic multi-armed bandit model – see [63] for a recent survey – a
learner interacts with an environment in several rounds. At each round, the learner
chooses an arm to play, and receives a random reward from the associated probability
distribution. Popular settings are respectively the fixed budget cumulative regret
setting [76], and best-arm identification setting [32, 12, 2]. In the first setting, the
learner is interested in maximizing the sum of rewards gathered – or minimizing the
cumulative regret – and in the best-arm identification setting, the learner is asked at
the end of the game to output a guess for the arm with the largest mean reward, and
is interested in the quality of this guess – typically measured by the probability of
error in the guess.

In most of the papers that concern this topic, it is assumed (i) that there is a
single optimal arm, i.e. arm with highest mean, and (ii) that the number of arms is
bounded and small when compared to the time horizon, i.e. the number of rounds
where the player is allowed to choose an arm. However in many realistic applications,
it is not the case, for example in image classification, mining of resources, personalized
medicine, or hyperparameter tuning (see [9] for more examples). And while it is clear
that in all generality, the task of the learner becomes unsolvable if the number of arms
is too large, it intuitively makes sense that if the proportion of optimal arms is also
large, this should help the learner.

In this paper, we lift both assumptions summarised in (i) and (ii) and study
both the cumulative regret and best-arm identification setting. See Section 4.1.3 for
literature related to this that we will discuss later. We will focus on the problem
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dependent setting and will aim at characterising optimal learning rates depending on
the proportion of optimal arms, and on the minimal gap between the mean of an
optimal arm and the mean of a sub-optimal arm.

4.1.1 Setting

We consider a setting with a (potentially infinite) set of arms A, which we call
the reservoir. Each arm a ∈ A is associated with a probability distribution νa,
which we assume to be supported on [0, 1], and we denote its mean by µa. Write
µ∗ = maxa∈A µa for the highest mean1, µsub = supa∈A:µa 6=µ∗ µa for the second highest
mean, and ∆ = µ∗ − µsub for the associated minimal gap. We will focus throughout
this paper on the case where ∆ > 0.

We further assume that there exists a partition A = A∗ ∪Asub such that each arm
a ∈ A∗ is optimal, i.e. µa = µ∗, and each arm a ∈ Asub is sub-optimal, i.e. µa ≤ µsub.
We assume that the agent can pick arms uniformly at random from the reservoir A2,
and this arm belongs either to the set A∗ with probability p?, i.e. there is a proportion
p? of optimal arms in the reservoir; or it belongs to the set Asub with probability 1−p?,
i.e. there is a proportion 1− p? of sub-optimal arms in the reservoir.

The learner interacts with the environment in several rounds t = 1, 2, . . . , T , where
we fix the time horizon T . At each round t ≤ T , the learner chooses an arm at by
either picking a new arm from the reservoir A or playing a past arm, and gets a
reward Yt ∼ νa(t). The arm choice depends only on the past observations, the past
arm choices, and possibly some exogenous randomness. The rewards for each arm a
are i.i.d. random variables with mean µa unknown to the learner.

Cumulative regret setting. The first setting we study is that of minimizing the
cumulative regret. This setting enforces the exploration-exploitation trade-off : the
learner needs to balance exploratory actions to get a better estimate of the reward
distributions, and exploitative actions to maximize the total return – and minimise
the associated cumulative regret. The cumulative regret is the difference between the
sum of expected rewards the learner would have obtained by only choosing the arm
with the highest mean reward, and the sum of expected rewards she actually collected:

R(T ) =

T∑
t=1

µ? − µa(t) .

Best-arm identification setting In the second setting we study, we are interested
in identifying an arm with the highest mean reward. At the end of T rounds, the
agents selects an arm âT and aims at minimising the probability of outputting an arm
with sub-optimal mean:

e(T ) = P(âT /∈ A∗).

A closely related popular measure of error is the simple regret, which is not discussed
in this paper.

Equivalent settings Firstly, our setting is directly applicable to the problem of
competing against the j-th best arm, where we assume w.l.o.g. the arms to be ordered
according to their means. Indeed our setting translates to this if we replace p? by j/K

1We assume that it is attained for some arm(s).
2In case of infinite A, one can obviously not sample from a uniform distribution. Our analysis

extends to general distributions on A.
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and ∆ by the gap between the j/2-th and the j+ 1-th best arm, i.e. ∆ = |µj/2−µj+1|.
Secondly, our setting is directly applicable to that of identifying an ε good arm, and
thirdly, our setting is directly applicable to finding any arm in the reservoir with a
mean larger than the quantile of a known order – see the discussion in Section 4.1.3.

4.1.2 Contributions

We characterise the optimal learning rates both for the cumulative regret setting, and
for best-arm identification, for our problem described above. We characterise the
optimal learning rates in terms of the problem parameters T, p?, and ∆.

In order to describe our results, let us write for ∆̄ > 0, p̄? ∈ [0, 1): B∆̄,p̄? , for the
set of bandit problems whose reservoir distribution is such that p? ≥ p̄? and such that
|µ̄∗ − µsub| ≥ ∆̄.

Cumulative regret We provide an algorithm, that takes p? as a parameter, that is
such that (see Theorem 31)

ER(T ) ≤ O
(

log T log(1/∆)

p?∆

)
.

Conversely, we prove in Theorem 32 that for p̄? ≤ 1/4 and ∆̄ ≤ 1/4, and for any
algorithm, there exists a problem in B∆̄,p̄? such that

ER(T ) ≥ Ω

(
log T

p̄?∆̄

)
.

These two bounds match up to a multiplicative factor of order log(1/∆). They highlight
the intuitive fact that we should pay the number of arms in the rate only relative
to the number of optimal arms – i.e. only through p?. Indeed, the probability of
picking an optimal arm in the reservoir when sampling uniformly at random being
p?, if we sample about 1/p? arms at random from the reservoir, we will have sampled
one optimal arm with constant probability – so that 1/p? plays the same role as the
number of arms.

Having said that, there is a main conceptual difficulty in order to get a rate that is
tight in terms of its dependence in T . If we sample only 1/p? arms from the reservoir,
the probability of having no optimal arms in the chosen set of arms is also a constant –
so that the regret is linear in T . It is therefore essential to sample more arms. In order
to have a logarithmic regret in T , we need to sample at least about log T/p? arms
from the reservoir – in which case at least one of them is optimal with probability
polynomially decaying with T . But if we do this, we get a regret of order (log T )2

p?∆ , as
there are about log T/p? sub-optimal arms whenever p? is not too close to 1. This
is much larger than the bound that we have, where the dependence on T is only
log T . In order to achieve this bound, we need to take into account the fact that when
sampling log T/p? arms from the reservoir, there is typically not just 1, but log T
optimal arms with high probability – and leverage this fact both in our algorithm and
in the associated proof. We describe this in more detail in Section 4.2.1.

Best-arm identification We provide an algorithm that does not take p? as a pa-
rameter, such that,

e(T ) ≤ O
(

log(T ) exp

(
−cT∆2p?

log(T )

))
,
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where c is some universal constant. Conversely, we prove that for p? ≤ 1/4 and
∆ ≤ 1/4, and for any algorithm, there exists a problem in B∆̄,p̄? such that e(T ) ≥
Ω
(
exp
(
−cT∆2p?

))
, where c > 0 is some universal constant. These two bounds match

in order up to a factor of order log(T ) in the exponential, it is an open question here
whether this term is necessary or not.

These bounds highlight the intuitive fact that we should pay the number of arms
in the rate only relative to the number of optimal arms – i.e. only through p?. As
in the cumulative regret setting, if we sample about 1/p? arms at random from the
reservoir, we will have sampled one optimal arm with constant probability – so that
1/p? plays the same role as the number of arms.

As in the cumulative regret setting, there is again a main conceptual difficulty in
order to get a rate that is tight in terms of its dependence in T . If we sample only 1/p?

arms from the reservoir, the probability of having no optimal arms in the chosen arms
is also a constant – which is way smaller than the targeted best-arm identification
probability. In order to have at least one optimal arm in the set of arms picked from
the reservoir with a probability that decays exponentially with p?T∆2, the number of
arms that have to be sampled should be larger than T∆2. But if we do this, we get
an upper bound on the probability of error that is of constant order – which is much
larger than the bound that we have. In order to obtain our upper bound, we need to
take into account the fact that when sampling T∆2 arms from the reservoir, there is
typically not just 1, but p?T∆2 optimal arms with high probability – and leverage
this fact both in our algorithm and in the associated proof. We describe this in more
detail in Section 4.3.1.

Adaptation to p?: diverging pictures for cumulative regret and best-arm
identification The algorithm for cumulative regret takes (a lower bound on) p? as
parameter, but the algorithm for best-arm identification does not take anything related
to p? or ∆ as a parameter. And so, while our algorithm for best-arm identification is
adaptive to p? and ∆, our cumulative regret algorithm is adaptive to ∆ but not p?.
In Section 4.2.3 we prove that it is not just a weakness of our analysis, but that it is
impossible to adapt to p? when it comes to the cumulative regret. The phenomenon of
adaptation to the problem hyper-parameters being possible for best-arm identification
but not for cumulative regret, was observed earlier: In the X -armed bandit setting
[67] show it is impossible to adapt to smoothness and [44] further classifies the cost
of adaptation in this case. [89] explore the cost of adaptation to p? for the problem
independent case where the number of arms is large.

4.1.3 Related work

Finite and small number of arms. The regret-minimization setting, introduced
by [76], has been well-studied for finite-armed bandit models. Algorithms for this
problem fall into several categories: algorithms based on upper-confidence bounds
(UCB) for the unknown arm means [54, 4, 6, 16], algorithms that exploit a posterior
distribution on the means, such as Thompson Sampling [80, 60], and many more such as
explore-then-commit [38] and phased-elimination [31]. Logarithmic instance-dependent
lower bounds have already been obtained in the seminal paper by [62], and were
generalized later, e.g. by [15], see [40] for an overview and simple proofs. In the setting
where the number of arms |A| is finite and not too large – much smaller than T – a
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classical problem dependent upper bound on the expected cumulative regret is3∑
a∈A\A∗

(
8 log T

µ∗ − µa
+ 2

)
≤ |Asub|

log T

∆
+ 2|Asub|. (4.1)

The bound in the RHS is tight if all sub-optimal arms have the same gap ∆. Moreover,
this regret bound asymptotically matches the lower bound by [15] up to a multiplicative
constant. In the case where there are infinitely many sub-optimal arms, on the other
hand, this upper bound is infinite, even when the proportion of optimal arms p? is
large and where one would hope for better performances.

The fixed-budget best-arm identification setting was introduced by [12, 2] and has
been widely studied. It is well-known that algorithms that are optimal for cumulative-
regret minimization cannot yield optimal performance for best-arm identification [11,
58]. Write3H =

∑
a∈A\A∗

1
(µ∗−µa)2 ≤ |Asub|∆2 . The bound in the RHS is tight if all sub-

optimal arms have gap ∆. It is proven by [2] that given H, there exists an algorithm
such that the probability of misidentifying an optimal arm is of order exp(−cT/H),
where c > 0 is some universal constant. In the case where there is a single optimal
arm this bound is provably optimal [17] when H is known. However, in the case where
there are infinitely many sub-optimal arms this upper bound is larger than 1 and thus
vacuous, even when the proportion of optimal arms p? is large and where one would
hope for better performances.

Importantly, our results in both settings extend to finite bandits. Furthermore we
do not need infinite A for our results to be near optimal. In the finite setting with
K arms and p?K optimal arms the problem is strictly harder than one with 1

p? arms
and a single optimal arm. Indeed, the latter problem would correspond to one where
the learner receives, as additional information, a partition of the set of K arms in 1

p?

groups, where one of the groups contains all optimal arms, and the others are only
composed of sub-optimal arms. One can then see that we match the classical UB and
LB for the finite bandit problem, up to log(1/∆) terms.

Large to infinite number of arms. The setting with an infinite number of arms –
and sometimes also many optimal arms – has been studied in different settings.

A setting that is very related to ours is the infinitely many-armed setting where a
distribution is assumed on the reservoir – called the reservoir distribution. At each
round, the learner can pull a previously queried arm, or a new arm that is sampled
according to the reservoir distribution. A classical assumption on the reservoir is that
the proportion of ∆̄-near optimal arms is of larger order than ∆̄−α for any ∆̄. This
setting been studied for both cumulative regret minimization [9, 83, 10, 29] and for
best-arm identification [18, 7, 20]. A classical strategy is to select a subset of arms
from the reservoir, large enough so that it contains a near optimal arm with high
probability, and to use classical bandit strategies on these arms. The minimax order
of magnitude of the cumulative regret is then

√
T ∨ Tα/(α+1) and for the simple regret

it is T−1/2 ∨ T−1/α.
Related results have also be obtained in the setting where the number of arms

is finite, but large – i.e. K > T – and under related assumptions on the frequency
of near-optimal arms [89]. While our setting is extremely related to this setting, the
assumption about the frequency of near-optimal arms differs in the above literature
from the assumption we make in this paper. Their bounds are not dependent upon
∆ – they assume ∀k ∈ [K], µk ∈ [0, 1], and instead focus on achieving semi adaptivity

3 In the case where A is finite otherwise the quantity below is infinite.
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in regards to an unknown α∗, where α∗ := inf{α : K/|S∗| < Tα}. In the context of
our setting Tα would act as a upper bound on 1/p?. They propose an algorithm with
user defined parameter β that has no guarantees on regret for β < α. And while our
assumption is more restrictive, we also expect to obtain much smaller optimal rates.
Our results differ from this stream of literature in the same way that, in the classical
MAB, problem dependent results differ from problem independent results.

Another setting takes a regularity assumption on the reservoir distribution around
µ∗ – that is, the proportion of arms in the reservoir whose gap is of order greater
than ∆̄ is bounded above by a function of ∆̄, typically ∆̄α, where α is the regularity
coefficient. For best-arm identification adaptivity is possible without knowledge of α
and [18] provide algorithms for the simple regret with LB matching up to log(T ) terms.
In the case of cumulative regret [83] and [10] again provide near optimal results but in
the case of known α. While the above literature considers a weaker assumption on the
reservoir distribution, their results are also considerably weaker than our own. For
best-arm identification they identify a sub optimal arm whose distance to the optimal
arm is bounded polynomially with T . For cumulative regret the regret is bounded
polynomially with T . These bounds are in both cases much larger than our bounds –
which essentially reflects that their assumption are weaker.

Closer to our setting are the works [20] and [7], where they try to find any arm in
the reservoir with a mean larger than the quantile of a known order (with respect to the
reservoir distribution) with high probability. This can be seen as the fixed confidence
version of our setting for best-arm identification where the order of the quantiles is
our known proportion of optimal arms p? and the gap ∆ is the difference between
the first and the second quantile of order p?. Precisely, [7] provide an algorithm that
can find an arm above the quantile of order p? with probability at least 1− δ in less
than H∆,p? log(1/δ)2 samples on average, where H∆,p? ≈ 1/(p?∆2) is the problem
dependent constant. The fixed confidence result of [7] translates, in the fixed budget
setting, into an upper bound on the probability of error e(T ) of order exp(−c

√
Tp?∆2)

where c > 0 is some universal constant – which is much larger than our bound for large
T . Similarly, [21] consider the regret with respect to a fixed quantile of order p? of the
distribution of the means in the reservoir which is again quite related to the regret
in our setting. They obtain an algorithm with a bound on cumulative regret of order
R(T ) ≤ O

(
1/p? +

√
(T/p?) log(p?T )

)
, for any ∆ > 0 – in this sense, this analysis is

problem independent.
Also closely related is the paper [56] which deals with identifying an ε good arm

– in the case where there are many such ε good arms, with high probability. Again
this can be seen as a fixed confidence version of our setting, with the proportion of
ε good arms being equivalent to our p?. However, the focus of their results differs
considerably to our own. Specifically, in our setting, Theorem 2 of [56] provides an
upper bound on the expectation of a stopping time for epsilon good arm identification,
of the order H̄ log(H̄) where H̄ ≈ 1/(p?∆2) log(1/δ) but this bound does not hold in
high probability, which would be necessary if one wished to directly compare their
results to ours. Indeed for the stopping time of their algorithm to be bounded in high
probability one would need to pay a log(1/δ)2 term, corresponding to exp(−

√
∆2p∗T )

in our setting, see Remark 4 in [56] and page 15 in the appendix of the full version [55].
The focus of [56] is instead to get more complete gap dependent bounds, considering
also the gaps within the epsilon good arms but as mentioned their results cannot be
applied directly to our setting and, as they point out, extending their approach to
include high probability guarantees would be strictly sub optimal compared to our
results.

We can also view the most-biased coin problem studied by [19] and [49] as a
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particular instance of our setting where all optimal arms are distributed according
to a Bernoulli distribution Ber(µ?) and any sub-optimal arm is distributed according
to the same Bernoulli distribution Ber(µ−). The goal is then to identify an optimal
arm with high probability with as few samples as possible. Precisely, [49] prove that
they can find an optimal arm with probability at least 1− δ with log

(
1/(p?∆2)

) log(1/δ)
p?∆2

samples in expectation when µ?, µ− and p? are unknown to the agent and with log(1/δ)
p?∆2

samples if p? is known. It is also worth mentioning the problem of p? estimation for
the biased coin problem. For unknown p? and ∆, [65] describe, in the fixed confidence
setting, the optimal learning rate for estimating p?, up to an additive error ε, of the
order p?

ε2∆2 log(1/δ).
The translation of the result from [49] to the fixed budget setting is much closer to

our result, as it would provide a bound of order exp
(
−cTp?∆2/ log(1/(p?∆2))

)
where

c > 0 is some universal constant. This is very similar to our bound, but there is a
main difference: we do not assume that there are just two possible distribution for
the arms as [49] – the set Asub of sub-optimal arms might contain arms of diverse
means, all being at a gap more than ∆ from µ∗. This makes the problem significantly
more difficult – in particular regarding the adaptation to p? – since in our setting, it
is impossible to estimate the minimal gap ∆, see Section 4.5. In fact, extending to
a more general reservoir is an open question of interest left at the end of the above
paper.

Otherwise, there are some other formulations of the infinitely-many armed bandit
problem that are quite popular, but very different from our setting, and that we
mention here for completeness. Many works are devoted to the setting where there is
some topological relation between the index of the arms, and the mean of the arms [61,
13, 43]. This setting is often referred to as the X−armed bandit setting, and not
related to our work as we do not make such topological assumptions. Finally, a paper
in which the setting is close to ours, but where the goal is very different, is the one
by [50]. The authors consider a partition of the (infinite) space Ω of K-armed bandit
models ν = (ν1, . . . , νK), and want to identify for a given bandit model µ ∈ Ω the
correct partition component it belongs to.

Fixed confidence to fixed budget setting In the fixed confidence setting for
best-arm identification, given some δ > 0, one aims to bound the expected number
of samples one needs to correctly identify an optimal arm with probability greater
than 1 − δ. With our best-arm identification upper bound (Theorem 34) in mind,
we can essentially translate our result to the fixed confidence setting by considering
δ = exp

(
− Tp?∆2

log(1/∆)

)
, and solving for T . This leads to a upper bound on the number

of samples Elimination needs to be δ-approximately correct of: log( 1
δ ) log( 1

∆)
p?∆2 . The

papers [49] and [7] both deal with settings very related to our own but from the fixed
confidence perspective. [7] deals with quantile estimation and as highlighted above their
results can be applied to our setting but with a significantly worse bound on probability
of error of order exp(

√
Tp?∆). In [49] the problem of best-arm identification is tackled

directly but with strong restriction on the reservoir distribution, they consider the
case were all sub optimal arms are identically distributed.

Pair matching An additional setting that can be seen in the context of our problem
is that of pair matching. Here the learner is presented with a finite graph of nodes,
N . The set of nodes N is partitioned into 2 or more communities. The general
idea is that nodes in the same community are more likely to be connected by an
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edge than those in separate communities. A simple and well studied situation is
where the graph is generated according to a stochastic block model (SBM), see [46].
In this setting the probability of an edge forming between two nodes of the same
community is p and the probability of an edge forming between two nodes of differing
communities is q, with p > q. Much of the literature is then concerned with identifying
communities given complete access to the graph, see [64] and references therein. Of
more relation to our specific setting is the paper [42]. Here the learner does not
immediately observe the complete graph but is instead able to sequentially query
whether two nodes are connected up to a budget T . Their objective is then to minimise
their sampling regret, the number of times they query and edge between 2 nodes of
differing communities. The problem can be viewed as a bandit problem where each
pair of vertices represents an arm following a bernoulli distribution of mean p or q. In
our setting the minimal proportion p∗ would then be the proportion of pairs which
belong to the same community and the gap as ∆ = p− q. The fundamental difference
is that each arm can only be pulled once, making the problem significantly harder,
however, the learner can exploit the SBM structure to their advantage. Assuming the
case with exactly two equally sized communities with T ≤ |N |2, in [42] they show
it is possible to attain a sub linear regret of the order T∆ ∧ (p+q)T

∆ . The significant
worsening of their rate, in comparison to our own, is due to the fact one cannot sample
an arm more than once, which significantly changes the flavour of their algorithms.

4.2 Cumulative regret

We first present an algorithm and prove an upper bound on its cumulative regret, and
then we present a problem-dependent lower bound that shows we match the regret
bound up to poly-log terms in ∆. Lastly, we provide a theorem to the effect that
adaptation to the proportion of optimal arms p? is not possible in this setting.

4.2.1 Upper bound

We present Sampling-UCB for cumulative regret minimization. This algorithm is an
Upper Confidence Bound (UCB) type algorithm [63]. We first sample a set L of arms
large enough such that with high probability (of order 1− 1/T ) there is a proportion
of order p? optimal arms. Then we build an upper confidence bound on the empirical
mean of each sampled arm, see (4.2), where µ̂ta is the empirical mean of arm a at time
t and N t

a the number of times arm a was pulled until time t. At time t we pull the
arm a ∈ L with the highest upper confidence bound U ta. The complete procedure is
detailed in Algorithm 23. Notably, we do not tune the upper confidence bounds such
that they are exceeded with probability less than 1/T , as for finite-armed bandits. In
that setting, a common choice is to have bonuses of the form µ̂ta +

√
2 log(T )/N t

a, see
[63]. Instead we use an exploration function that does not depend on T , such that the
upper confidence bounds are exceeded with probability smaller than a fixed constant,
see (4.2). Thus we only pay a constant regret of order log(1/∆) on the set of sampled
arms L. This is made possible by leveraging the fact that we know that there is a
proportion of order p? optimal arms.

We prove the following regret bound for Sampling-UCB in Appendix 4.6.

Theorem 31. For T ≥ 2, γ ∈ (0, 1) and L =
⌈
4 log(T )/(p?γ2)

⌉
, the expected cumula-

tive regret of Sampling-UCB is upper bounded as follows:

ER(T ) ≤ O
(

log(T ) log(1/∆)

p?∆

)
,
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Input: γ ∈ (0, 1), L ≥ 1
Initialize: Pick L, with |L| = L, arms from the reservoir A. Sample each arm
once.
for t = L+ 1 to T do

Compute for each arm a ∈ L the quantity

U ta = µ̂ta +

√
γ2(1− γ)−1/4 + log(π2/6) + 2 log(N t

a)

2N t
a

, (4.2)

Play at = arg maxa∈L U
t
a.

end

Algorithm 23: Sampling UCB

see the end of the proof for a precise bound, i.e. (4.3).

Note that this bound matches the lower bound of Theorem 32 of Section 4.2.2, for
T large enough and up to a log(1/∆) multiplicative factor. Also, L can be calibrated
with a lower bound on p? instead of p?, but this lower bound will appear in the rate
instead of p?.

Remark 15. Algorithm Sampling-UCB samples L arms uniformly at random from
the reservoir. What we mean by this is that each arm is pulled at random from A
independently from the other pulled arms. In other words, by doing this, we potentially
artificially create several independent copies of the same arm – which might seem
counter-intuitive, but is formally not a problem.
What this anyway implies is that the case |A| ≤ L is not a problem – with this idea of
independent copies, we can pull more arms from the reservoir than the number |A| of
arms.

Remark 16. Our algorithm is reminiscent of that of [47], which, as our own, uses a
UCB which does not depend on the time horizon, but only on the number of times an
arm has been pulled. However, they do so for different reasons, namely to adapt to
the infinite time horizon of the fixed confidence setting.

4.2.2 Lower bound

We can prove an equivalent of the [62] lower bound for finite-armed bandits for our
setting. The following theorem is proved in Appendix 4.6.

Theorem 32. Consider ∆ ∈ (0, 1/4) and p? ∈ (0, 1/4]. For any bandit algorithm,
there exists a bandit problem in B∆,p? such that

ER(T ) ≥ min

(
1

60

max
{

log(∆2T/16), 0
}

p?∆
,
√
T

)

Note that if we consider the gap ∆ and the proportion of optimal arms p? as
fixed and T large in comparison, i.e. ∆ �

√
1/T , then our lower bound is of order

log(T )/(p?∆). This is the problem-dependent regime that we consider in this paper.
On the contrary, if ∆ ≈

√
1/T then our lower bound is of order

√
T . This is rather

the problem-independent regime studied by [21]. We can make a parallel between
the lower bound in our setting and the one for finite-armed bandits. Indeed, if we
consider that the proxy for the number of arms is |A| ∼ 1/p? which implies that there
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is p?|A| ∼ 1 optimal arm, then we recover the problem-dependent lower bound of order
|A| log(T )/∆, if there are |A| − 1 sub-optimal arms with gap ∆.

4.2.3 Impossibility of adapting to p?

The following theorem shows that in the setting of minimizing the cumulative regret,
it is impossible to adapt to the proportion of optimal arms p?. The theorem is proved
in Appendix 4.6.

Theorem 33. Let p? ≤ 1
4 and c > 0 such that T ≥ 4

(
c log(T )
p?∆2

)2
. For any bandit

algorithm A such that for all bandit problems in B∆,p?, we have,

ER(T ) ≤ c log(T )

p?∆

one has that ∀q? ≤ 4p?

c there exists a problem in B∆,q? such that

ER(T ) ≥
√
T∆

4
.

Remark 17. The Sampling-UCB algorithm takes a user defined parameter γ (which
can be taken as a universal constant) and L, which should be calibrated depending on
(a lower bound on) p?. While this is necessary, it is important to not that none of the
parameters requires knowledge of ∆.

4.3 Best-arm identification

We present our Elimination algorithm for best-arm identification, together with an
upper bound on the probability of outputting a sub-optimal arm; next we prove a
lower bound, which is matched by our upper bound up to a 1/ log(T ) factor in the
exponential.

4.3.1 Upper bound

As its name suggests, the Elimination algorithm (summarized in Algorithm 24)
works by successive elimination of arms – through the update at round i of a set Ai –
although with a twist. We begin by sampling approximately T arms at the first round.
Namely, we first select a set A1 of |A1| = bc̄T/ log T c arms taken at random from the
reservoir, for some constant c̄ > 0. Then at each round we use a T/ log T fraction of
our budget to sample the arms in our set. And so at round i we sample each arm
in the set Ai a number of ti = bc̄T/(|Ai| log T )c. We then eliminate half of the arms
based on the arms’ empirical means – namely, we just keep the

⌊
|Ai|/2

⌋
∨ 1 arms in

Ai that have highest empirical means – and introduce an additional number of arms
sampled from the reservoir distribution – namely

⌊
|Ai|/4

⌋
– such that the final size of

our arm set is reduced by 3
4 . At the end of the budget, we have one arm remaining –

due to the choices of c̄ – which is the arm that we return. Note that Remark 15 applies
here too so that it is not a problem if |A| is smaller than the number of arms required
by the algorithm. Theorem 34 is proved in Appendix 4.7.

Theorem 34. Set c̄ = log(4/3). Elimination satisfies

P(âT ∈ A?) ≥ 1− 2 log(T ) exp

(
−c∆2p?T

log T

)
,
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Input: c̄
set i← 1
while i < log T/c̄ do

Sample each arm in Ai a number ti = bc̄T/(|Ai| log T )c of times and
compute their empirical means (µ̂i(a))a∈Ai

Put in Ai+1 the 1 ∨ b|Ai|/2c arms that have highest empirical means
(µ̂i(a))a∈Ai , and add on top of that b|Ai|/4c new arms taken at random
from the reservoir
i← i+ 1

end
Return any âT in Ai

Algorithm 24: Elimination

where c = c̄/19200

Remark 18. Elimination works by discarding many sub-optimal arms and few
optimal arms in each round, so that at the end, when just one arm remains, it is
optimal with high probability. A key element is that Elimination adds fresh arms
from the reservoir at each round. This is to ensure that our algorithm is adaptive
to p?,∆, as ensured by Theorem 34. Whenever the arms in Ai are pulled less than
about ∆−2 times, there is no guarantee on what happens when half of the arms are
eliminated. Therefore, we have to make sure that when the algorithm arrives at a
round i such that ti & ∆−2, the proportion of optimal arms is of larger order than
p? with high enough probability. This is ensured by adding the fresh arms added
from the reservoir. Note that for some arm distributions, we do not need to add fresh
arms and the algorithm would function also by just halving at each step the number
of arms. Indeed, in the case where all arms follow a Bernoulli distribution, in terms
of preserving the proportion of optimal arms, one can prove that halving the set of
arms according to the empirical means is no worse than random halving of the set.
Thus, in this case, with high probability we increase the proportion of optimal arms
at each step, without diminishing it. This is however specific to the case of Bernoulli
distributions and some other parametric families, and it is an open question whether
this would be true in general.

Remark 19. The successive halving strategy our algorithm for best-arm identification
is based on was first introduced by [52], however, without the trick of adding fresh
arms, as they didn’t need to be adaptive to p?.

4.3.2 Lower bound

The following Theorem provides a lower bound on the probability of error for best arm
identification in our setting. The proof of Theorem 35 can be found in Appendix 4.7.

Theorem 35. Consider ∆ ∈ (0, 1/4) and p? ∈ [0, 1/4]. For any bandit algorithm,
there exists a bandit problem in B∆,p? such that

e(T ) ≥ 1

4
exp

(
−Tp?∆2

32

)
.

In proving the above theorem we essentially show that an agent cannot accurately
distinguish between two cases: µ∗ = 1

2 and µ∗ = 1
2 + ∆. That is, we consider two

reservoirs R0 and R1 where µ∗0 = 1
2 and µ∗1 = 1

2 + ∆. Using a coupling argument we
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bound the KL divergence between the distribution of samples collected on R0 and R1.
The results then follows by application of Bretagnolle-Huber’s inequality.

4.4 Experiments

We conduct a preliminary set of experiments to test the performance of our algorithms.
Specifically, for cumulative regret we compare our Sampling-UCB to the QRM1
algorithm by [21] and the SR algorithm by Zhu and Nowak [89]. For simple regret
we compare our Elimination to the BUCB algorithm by [56]. In both cases our
performance appears comparable to the literature. See Appendix 3.9 for details.

4.5 Conclusion and open questions

Classifying optimal learning rates on the continuous armed bandit problems with a
proportion of optimal arms and general reservoir distribution has been a question of
interest in the literature for some time, see [49]. Recent papers – [7] and [89], while
focused on a slightly different setting, have considerably weaker results when applied
to our setting. Therefore, we believe our results mark a significant improvement in
the state of the art. An extension of our results would be to remove the log(1/∆)
discrepancy between UB and LB for cumulative regret. However, this appears non-
trivial and in particular we struggle to see how a UCB based strategy would achieve
this tighter bound in the case of the cumulative regret. Another possibility for further
work is an expansion of our setting. Consider the arm reservoir A partitioned into K
possible distributions, each with associated probability pk. Let k∗ = arg max[K] µk and
take gaps (∆k)[K] = (µk∗ − µk)[K]. One could then consider more detailed bounds,
dependent on the sequence ((pk,∆k))[K] as opposed to just p? and the smallest gap.
The main difficulty here would be to deal with the case where some pk are much
smaller than the proportion p? corresponding to the optimal arm.
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4.6 Cumulative regret proofs

4.6.1 Upper Bound

Proof of Theorem 31. We denote by L the set of arms sampled from the reservoir such
that |L| = L. We also denote by L? = {a ∈ L : a ∈ A?} the set of optimal arms in L
and by L? = |L?| its cardinality. Note that these quantities are all random.

Because of the choice of L =
⌈
4 log(T )/(p?γ2)

⌉
, we know that with high probability

there is at least a proportion of γp? optimal arms in L. Precisely, if we denote
this favorable event by E = {L?/L ≥ (1 − γ)p?} then by Chernoff’s inequality (see
Lemma 26), we have

P(Ec) = P
(
L?/L < (1− γ)p?

)
≤ e−

γ2

4
Lp? ≤ 1

T
.

We can decompose the regret given this event and its complement:

E[R(T )] = E

[∑
a∈L

(µ? − µa)E[NT
a |L]1E

]
+ TP(Ec)

≤ E

 ∑
a∈L/L?

∆aE[NT
a |L]1E

+ 1 .

We now follow the classical proof of UCB-type strategies to upper-bound the number
of times a sub-optimal is pulled. From now on, we fix a set of sampled arms L. Fix an
a ∈ L \ L?. We have

E[NT
a |L] ≤ 1 +

T∑
t=L+1

P(∀b ∈ L?, U bt−1 ≤ µ?|L) + P(at = a, Uat−1 ≥ µ?|L) .

For the first term in the summation we use the fact that there are many optimal arms.
Precisely, using Hoeffding’s inequality, we have

P(∀b ∈ L?, U bt−1 ≤ µ?|L) ≤ P

(
∀b ∈ L?, ∃n ∈ [T ] : µ̂b,n

+

√
γ2(1− γ)−1/4 + log(π2/6) + 2 log(n)

2n
≤ µ?

∣∣∣∣∣L
)

≤
∏
b∈L?

(
T∑
n=1

1

n2
e−γ

2(1−γ)−1/4−log(π2/6)

)

= e−
γ2

4
(1−γ)−1L? .

For the second term we proceed as usual. Let

n0 = inf

{
n ∈ N :

√
γ2(1− γ)−1/4 + log(π2/6) + 2 log(n)

2n
≤ ∆/2

}
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be such that pulling any arm a ∈ Asub more than n0 times is a small probability event.
Note that thanks to Lemma 27

n0 ≤ 4
(1− γ)−1 + log

(
24(1− γ)−1/∆2

)
∆2

+ 1 .

Then, using again Hoeffding’s inequality for an arm a ∈ L \ L?, we obtain

T∑
t=L+1

P(at = a, Uat−1 ≥ µ?|L) ≤
T∑

n=na+1

P(µ̂a,n − µ ≥ ∆/2) + n0

≤
∑
n≥1

e−n∆2/2 + n0 ≤ n0 +
2

∆2
.

Collecting the previous inequalities we can conclude for T ≥ 2

E[R(T )] ≤ E

 ∑
a∈L/L?

Te−γ
2(1−γ)−1L?/41E + 1 + ∆n0 +

2

∆

+ 1

≤ E

 ∑
a∈L\L?

Te−γ
2L/41E + 1 + ∆n0 +

2

∆

+ 1

≤ L
(

2 + ∆n0 +
2

∆

)
+ 1

≤ 8 log(T )

p?∆γ2

(
10(1− γ)−1 + 4 log

(
24(1− γ)−1/∆4

))
+ 1 . (4.3)

4.6.2 Lower Bound

We denote by Ber(p) the Bernoulli distribution of parameter p. The Kullback-Leibler
(KL) divergence between probability distributions P and Q is denoted by KL(P,Q). In
particular, the KL divergence between two Bernoulli distributions Ber(p) and Ber(q) is

kl(p, q) = KL
(
Ber(p),Ber(q)

)
= p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
.

Proof of Theorem 32. We fix a partition of the reservoir A = A1 ∪A2 ∪A3 and set p?

the probability to sample an arm in A1, A2 and 1− 2p? the probability to sample an
arm in A3. We define two bandits problems associated with this reservoir. The bandit
problem ν where the arms in A1 have probability distribution Ber(1/2), the arm in
A2 and A3 have probability distribution Ber(1/2−∆). The second bandit problem
ν ′ is such that the arms in A1 have probability distribution Ber(1/2), the arms in
A2 have probability distribution Ber(1/2 + ∆) and the arms in A3 have probability
distribution Ber(1/2−∆). We denote by Eν respectively Eν′ the expectation under
the bandit problem ν respectively ν ′.

Let NT
Ai =

∑T
t=1 1{at∈Ai} be the number of times an arm in Ai is pulled. Note

that since the arms in A2 and A3 are indistinguishable for the agent in the problem ν,
it holds

Eν [NT
A2

] =
p?

1− p?
Eν [NT

A2
+NT

A3
] .
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Let It be the information available by the agent at time t, i.e. the collection of collected
rewards and arms pulled. We denote by PItν respectively PItν′ the distribution of this
random variable under the bandit problem ν respectively ν ′. Thanks to the chain rule
and the above remark we can upper bound the Kullback-Leibler divergence between
these two probability distributions

KL(PI
T

ν ,PI
T

ν′ ) = kl(1/2−∆, 1/2 + ∆)Eν [NT
A2

]

= kl(1/2−∆, 1/2 + ∆)
p?

1− p?
Eν [NT

A2
+NT

A3
]

≤ 22p?∆2Eν [NT
A2

+NT
A3

] = 22p?∆Eν
[
R(T )

]
, (4.4)

where in the last inequality we used that p? ≤ 1/4 and

kl(1/2−∆, 1/2 + ∆) = 2∆ log

(
1 +

2∆

1/2−∆

)
≤ 4∆2

1/2−∆
≤ 16∆2.

We assume that

Eν
[
R(T )

]
= ∆

(
T−Eν [NT

A1
]
)
≤
√
T , Eν′

[
R(T )

]
= ∆Eν′ [NT

A1
]+2∆Eν′ [NT

A3
] ≤
√
T ,

otherwise the result is trivially true. In particular this implies that

1−
√

1

∆2T
≤

Eν [NT
A1

]

T

Eν′ [NT
A1

]

T
≤
√

1

∆2T
. (4.5)

Using the contraction of the entropy (see Garivier, Ménard, and Stoltz [40]), the
inequality kl(x, y) ≥ x log(1/y)− log(2) then (4.5), we obtain

KL(PI
T

ν ,PI
T )
ν′ ) ≥ kl

(
Eν [NT

A1
]/T,Eν′ [NT

A1
]/T
)

≥
Eν [NT

A1
]

T
log

(
T

Eν′ [NT
A1

]

)
− log(2)

≥ 1

2

(
1−

√
1

∆2T

)
log(∆2T )− log(2) .

The previous inequality with the fact that the Kullback-Leibler divergence is positive
yields

KL(PI
T

ν ,PI
T

ν′ ) ≥ 3

8
log(∆2T/16)+ . (4.6)

Indeed if ∆2T/16 ≤ 1 then (4.6) is trivially true. In the other case we have

1

2

(
1−

√
1

∆2T

)
log(∆2T )− log(2) ≥ 3

8
log(∆2T )− 1

4
log(16)

≥ 3

8
log(∆2T/16) .

Combining (4.4) and (4.6) allows us to conclude

Eν
[
R(T )

]
≥ 1

60

log(∆2T/16)+

p?∆
.
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Remark 20. During this proof we have fixed a partition of the reservoir A = A1 ∪
A2 ∪A3. We remind the reader that, the learner does not have access to the categories
A1,A2 or A3 directly, and may only draw an arm from the reservoir. Furthermore, we
remind the reader that, upon drawing an arm a from the reservoir, the learner is not
given the information as to which category a belongs. As a result, a trivial algorithm
such as "only pull arms from A1" is not possible. Therefore, when considering the class
algorithms for which our lower bound will hold, we do not need a so called "invariance
to labelling assumption", as seen in, for example, Giraud et al. [42][Section 2.2]. This
remains true for all lower bounds considered in this paper.

4.6.3 Impossibility of adaptation to p?

Sketch of proof of Theorem 33 For the proof of Theorem 33 we construct two
reservoir distributions:

• The reservoir distribution R0 characterised by p1 = p? and p2 = 1 − p? and
ν1 = B(1/2) and ν2 = B(1/2−∆).

• The reservoir distribution R1 characterised by p1 = q?, p2 = p? and p3 =
1− q? − p? and ν1 = B(1/2 + ∆) and ν2 = B(1/2) and ν3 = B(1/2−∆).

where we assume that p?, q? follow the assumptions of Theorem 33. For the reservoirR0,
optimal arms make up a proportion p? of the reservoir, and following the assumption
of Theorem 33, the learner will suffer a low regret on R0. Our goal is to then show
that as a result of this assumption, the learner must suffer a high regret on R1.

Note that, on reservoir R0 arms with mean 1/2 are optimal, thus for the learner
to suffer a small regret on R0 they must pull arms with mean 1/2 many times. On
reservoir R1, however, arms with mean 1/2 are sub optimal and for the learner to
suffer a small regret on R1 the must pull arms with mean 1/2 few times. To prove
Theorem 33, we will show that the reservoirs R0 and R1 are hard for the learner to
distinguish between, and thus, if with high probability, on R0 the learner will pull
arms with mean 1/2 many times, then they will also, with high probability pull arms
with mean 1/2 many times on R1. Thus, if the leaner suffers a small regret on R0, as
a consequence they must then suffer a large regret on R1.

The question remains as to how we will show R0 and R1 are hard for the learner
to distinguish between. To do this in practice, we will upper bound the divergence
between distributions on the samples the learner is able to collect from each of the
reservoirs, R0 and R1. Consider the samples the learner collects on R0. As the learner
suffers low regret on R0, we can expect a large number of these samples to be on arms
with mean 1/2. Essentially the distribution on these samples will not differ to the
case where the learner draws from R1, as both R0, R1 have an equal proportion of
arms a : µa = 1/2. This is already a significant step in upper bounding the divergence
between the two sampling distributions on R0 and R1.

A second step is to instead consider the samples the learner draws from arms
a : µa 6= 1/2. Conditional on µa 6= 1/2, under reservoir R0 the probability µa = 1/2−∆
is 1, under reservoir R1 the probability µa 6= 1/2−∆ is q?

1−p? . For this reason we will
be able to recover an additional multiplicative q?

1−p? term in our upper bound on the
divergence between the two sampling distributions on R1 and R0, see our coupling
argument and Equation (4.7) for details.

It remains to consider the event where the learner pulls arms with mean 1/2
more than T/2 times. The probability of this event on reservoir R0 must be large,
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following the assumptions of Theorem 33. Then, using a standard information theoretic
inequality, the Bretagnolle-Huber inequlaity and our previous upper bound on the
divergence between the two sampling distributions on R1 and R0, we can show that
the probability of said event on R1, must also be large, providing the result.

Proof of Theorem 33. Consider ∆ ∈ (0, 1/4) and the following two definitions of two
reservoir distributions:

• The reservoir distribution R0 characterised by p1 = p? and p2 = 1 − p? and
ν1 = B(1/2) and ν2 = B(1/2−∆).

• The reservoir distribution R1 characterised by p1 = q?, p2 = p? and p3 =
1− q? − p? and ν1 = B(1/2 + ∆) and ν2 = B(1/2) and ν3 = B(1/2−∆).

Note that the Bernoulli distribution is completely characterised by its mean and so
we can use the mean to characterise the distribution. Let µ̃ = (µ̃j)j≤T be T i.i.d. means
corresponding to T i.i.d. distributions sampled according to the reservoir distribution
R1. Note that µ̃j ∈ {1/2−∆, 1/2, 1/2 + ∆}. Write also µ̃′ = (µ̃′j)j≤T for the vector of
means such that µ̃′j = µ̃j if µ̃′j ∈ {1/2−∆, 1/2}, and µ̃′j = 1/2−∆ otherwise. Note that
then, we have that (µ̃′j)j≤T are T i.i.d. means corresponding to T i.i.d. distributions
sampled according to the reservoir distribution R0, by definition of R0. Write ER1 for
the expectation according to the distribution of µ̃, i.e. according to R⊗T1 , and ER0 for
the expectation according to the distribution of µ̃′, i.e. according to R⊗T0 .

Consider an algorithm A and a bandit problem involving Bernoulli distributions
characterised by a vector of means m = (mj)j≤T . Write PA

m for the distribution of
the samples obtained by the algorithm run on this problem, and EA

m the associated
expectation. Consider now another Bernoulli bandit problem characterised by the
means m′ = (m′j)j≤T . We have because of the chain rule

KL(PA
m′ ,P

A
m) =

∑
j≤T

EA
m′ [Tj ] kl(m′j ,mj) ,

where EA
m′ is the expectation according to problem m′ on which algorithm A is used,

and where Tj is the number of times arm j is sampled at time T .
From our assumption on A we have that ER0 [R(T )] ≤ c log(T )

p?∆ . Now, we can obtain

KL(ER0P
A
µ̃′ ,ER1P

A
µ̃) = KL(ER1P

A
µ̃′ ,ER1P

A
µ̃)

≤ ER1

[
KL(PA

µ̃′ ,P
A
µ̃)

]
= ER1

[∑
j≤T

EA
µ̃′ [Tj ] kl(µ̃′j , µ̃j)

]

≤ ER1

[∑
j≤T

EA
µ̃′ [Tj ]

∆2

16
1{µ̃j = 1/2 + ∆}

]

= ER0

[∑
j≤T

EA
µ̃′ [Tj ]

∆2

16
1{µ̃′j = 1/2−∆} q?

1− p?

]

=
q?∆

8
ER0 [R(T )] ≤ cq?

8p?
log(T ) ≤ 1

2
log(T ) , (4.7)

where the penultimate equality follows since by definition of R0,R1, conditionally
on µ̃′j = 1/2−∆, the probability that µ̃j = 1/2 + ∆ is q?

1−p? ≤ 2q?, and otherwise it is
0. And where the final inequality comes from our assumption p? > cq?

4 .
Consider the event,
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E :=

{∑
j≤T

Tj1{µ̃′j = 1/2} > T/2

}
.

Note that on R0, we have µ∗ = 1
2 . Thus, on R0 the event EC will signify a regret

greater than T∆
2 , similarly on R1 the event E signifies a regret greater than T∆

2 . Thus,

ER0R(T ) ≥ ER0P
A
µ̃′(E

C)
T∆

2
, ER1R(T ) ≥ ER1P

A
µ̃(E)

T∆

2
(4.8)

Now from our assumption upon A we have that ER0R(T ) ≤ c log(T )
p?∆ , therefore

Equation (4.8) leads to,

ER0P
A
µ̃′
(
EC
)
≤ c log(T )

p?∆
× 2

T∆
. (4.9)

Now, using the Bretagnolle-Huber’s inequality (see Theorem 14.2 by Lattimore and
Szepesvári [63]) in combination with (4.7) we obtain

ER0P
A
µ̃′(E

C) + ER1P
A
µ̃(E) ≥ 1

2
exp

(
−KL(ER0P

A
µ̃′ ,ER1P

A
µ̃)

)
≥ 1

2
√
T
.

This result in combination with Equation (4.9) gives the following,

ER1P
A
µ̃(E) ≥ 1

2
√
T
− 2c log(T )

p?T∆2
≥ 1

4
√
T
, (4.10)

where the final inequality comes from our assumption T ≥ 4
(
c log(T )
p?∆2

)2
. Finally our

result follows from combination of Equation (4.8) and Equation (4.10).

4.7 Best-arm identification proofs

4.7.1 Upper Bound

Proof of Theorem 34. Proof-specific notations and preliminary considerations.
At round i, write Ki = |Ai| and write pi for the proportion of optimal arms in Ai,
namely

pi = |Ai ∩ A∗|/|Ai| .

We also write Mi for the number of optimal arms in Ai such that µ̂i(a) ≥ µ∗ −∆/2,
namely

Mi =
∣∣{a ∈ Ai ∩ A∗ : µ̂i(a) ≥ µ∗ −∆/2}

∣∣ ,
and Ni for the number of sub-optimal arms in Ai such that µ̂i(a) ≥ µ∗ −∆/2, namely

Ni =
∣∣{a ∈ Ai ∩ Asub : µ̂i(a) ≥ µ∗ −∆/2}

∣∣ .
Note that by definition

Ki+1 =

(
1 ∨

⌊
Ki

2

⌋)
+

⌊
Ki

4

⌋
.



4.7. Best-arm identification proofs 143

Therefore the following bounds holds((
3

4

)i
K1

)
∨ 1 ≥ Ki ≥

(
1

2

)i
K1 − 4 . (4.11)

We write I for the smallest index i such that Ki = 1 and will not investigate what
happens at rounds i > I. By the upper bound (4.11) on Ki it holds I ≤ log4/3(K1) ≤
log4/3(T ). Note that since log4/3(T ) = c̄ log T , the algorithm terminates with a set
containing just one arm.

Step 1: Introduction of high-probability events of interest. We define the
constant

c =
c̄

10
.

We define j∗ as the largest j smaller than or equal to I such that

Kj ≥ cT∆2/(2 log T ).

Note that such j∗ exists since K1 ≥ c̄T/(2 log T ), and since KI = 1. We prove below
the following upper bound on j∗. Take any round i. Note that for any k, conditionally
on Ai, by Hoeffding’s inequality, for any a ∈ Ai

P
(∣∣µ̂i(a)− µi(a)

∣∣ ≥ ∆/2
∣∣∣Ai) ≤ 2 exp(−∆2ti/2) = qi, (4.12)

where µi(a) is the true mean associated with arm a. We now state the following
technical lemma proved below.

Lemma 24. Assume that p? ≤ 1/2, and consider I ≥ i ≥ j∗. Under the assumptions
of the theorem, we have

q
−1/2
i ≥ 200 ≥ e2 − 1 , (4.13)

∆2ti/4 ≥ log 2 . (4.14)

We define for i ≥ j∗ and p̄i :=
(
p?

6 (5/4)i−j
∗ ∧ (1/2)

)
, the event

ξi = {pi > p̄i}.

Consider from now on i ≥ j∗.

Step 2: Lower bound on Mi conditional to ξi. We have by definition of Mi:

Mi =
∑

a∈Ai∩A∗
1{µ̂i(a) ≥ µ∗ −∆/2},

where by Equation (4.12), and conditionally on Ai, the 1{µ̂i(a) ≥ µ∗ − ∆/2} are
independent and dominate stochastically B(1 − qi), for any a ∈ Ai ∩ A∗. And so
conditionally on Ai, we have that Mi stochastically dominates B(Kipi, 1− qi). And so
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by Chernoff’s inequality, for any x ≥ √qi:

P(Mi − piKi(1− qi) ≤ −xpiKi|Ai) ≤

[
ex/qi

(1 + x/qi)1+x/qi

]Kipiqi
≤ exp

[
xKipi − log(1 + x/qi)(Kipiqi + xKipi)

]
≤ (1 + x/qi)

−xKipi/2.

as for i > j∗ we have log(1 + x/qi) > 2, see Lemma 24.
So that for x ≥ √qi

P(Mi ≤ Kipi(1− 2x)|Ai) ≤ exp
(
− x∆2tiKipi/16

)
,

since log(q−1
i ) = ∆2ti/2− log 2 ≥ ∆2ti/4 for I ≥ i ≥ j∗ - see Lemma 24.

And so since pi ≥ p?

6 on ξi

P(Mi ≤ piKi(1− 2x)|ξi) ≤ exp
(
−c̄′xp?∆2T/ log T

)
:= u. (4.15)

where c̄′ = c̄/96 and recalling ti = bc̄T/
(
Ki log(T )

)
c.

Step 3: Upper bound on Ni conditional to ξi. We have by definition of Ni:

Ni =
∑

a∈Ai∩Asub

1{µ̂i(a) ≥ µ∗ −∆/2},

where by Equation (4.12), and conditionally on Ai, the 1{µ̂i(a) ≥ µ∗ − ∆̄/2} are
independent and are stochastically dominated by B(qi), for any a ∈ Ai ∩Asub. And so
conditionally on Ai, we have that Ni is stochastically dominated by B(Ki, qi). And so
by Chernoff’s inequality for any x ≥ 2:

P(Ni −Kiqi ≥ xKi|ξi) ≤

[
ex/qi

(1 + x/qi)1+x/qi

]Kiqi
≤ (1 + x/qi)

−xKi/2,

similar to Step 2.
So that for x ≥ √qi

P(Ni ≥ 2Kix|Ai) ≤ exp
(
− x∆2tiKi/16

)
,

as in Step 2.
And so similar to in Step 2:

P(Ni ≥ 2xKi|ξi) ≤ exp
(
−c̄′x∆2T/ log T

)
≤ u. (4.16)

Step 4: Bound on the probability of ξi and conclusion. First we have – since
we add Kj∗−1/4 = Kj∗/3 fresh arms to the set Aj∗ - that

∣∣∣∣∣∣
∑
a∈Aj∗

1{a ∈ A∗} − 1

3
p?Kj∗

∣∣∣∣∣∣ ≤ 1

6
p?Kj∗

 ⊂ ξj∗ ,
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where it holds that 1{a ∈ A∗} ∼ B(p∗) for the fresh arms and |Aj∗ | = Kj∗ . And so by
Chernoff’s inequality:

P(ξj∗) ≥ 1− 2 exp(−p?Kj∗/10) ≥ 1− 2 exp

(
−c p

?T∆2

20 log T

)
=: 1− v, (4.17)

by definition of j∗.
Now consider i > j∗, let,

ξ
′
i =

{
pi+1 ≥

5

4
pi ∧

1

2

}
.

Lemma 25. Assume that 2x ≤ 1/100. We have for I ≥ i > j∗:

ξ′′i := {Mi > piKi(1− 2x)} ∩ {Ni < 2xKi} ⊂ ξ′i.

Note also that
P(ξ′′i |ξi) ≥ 1− 2u,

by Equations (4.15) and (4.16), so that by Lemma 25

P(ξ′i|ξi) ≥ 1− 2u. (4.18)

By induction it holds that for any 1 ≤ m ≤ I − j∗

ξj∗ ∩
⋂

j∗<i≤j∗+m
ξ′i ⊂

⋂
j∗≤i≤j∗+m

ξi,

so that by Equations (4.17) and (4.18)

P

 ⋂
j∗≤i≤j∗+m

ξi

 ≥ (1− v)(1− 2u)m ≥ 1− v − 2um.

In particular using the previous inequality for m = I − j∗ and since I ≤ log T it
holds

P

 ⋂
j∗≤i≤I

ξi

 ≥ 1− v − 2u log T.

Since KI = 1, and since by definition of the ξi we know that on ξI we have that
the only arm in AI is optimal, this concludes the proof - taking x = 1/200, which is
compatible with x ≥ √qi as qi ≤ 1/2002 by Lemma 24.

We prove now successively, Lemma 24, Lemma 25 used in the proof of Theorem 34.

Proof of Lemma 24. Note first that for I ≥ i ≥ j∗ we have

Ki+1 = bKi/2c ∨ 1 + bKi/4c ≤
3Ki

4
∨ 1.

So that for any 0 ≤ m < I − j∗ we have by definition of I as the first index such that
KI = 1

Ki ≤ Kj∗(3/4)m. (4.19)
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Also for any i such that Ki ≥ 4

Ki+1 ≥ Ki/2,

and for any i such that Ki < 4, we have

Ki+1 = 1,

so that for any 0 ≤ m < I − j∗ we have

Ki ≥ Kj∗(i/2)m.

Inequality (4.13): We therefore have for I > i ≥ j∗ and by Equation (4.19)

q
−1/2
i = 2−1/2 exp(∆2ti/4) ≥ 2−1/2 exp

(
c̄

∆2T

2Kj∗ log(T )

)
,

≥ 2−1/2 exp(10) ≥ 200 ≥ e2 − 1

Inequality (4.14): We have,

qi = exp(−∆2ti/2) ,

thus by inequality (4.13) we have

exp(∆2ti/4) ≥
√

2(e2 − 1),

so that
∆2ti/4 ≥ log 2.

Proof of Lemma 25. Let i such that I ≥ i > j∗. Note that on ξi′′, we have Mi > 0 so
that pi > 0.

First case: 0 < pi ≤ 2/5. Assume first that pi ≤ 2/5. On ξ′′i we have that

Mi > piKi(1− 2x),

and
Ni < 2Kix,

so that
Mi +Ni < piKi + 2Kix ≤ (2/5)Ki +Ki/100 ≤ Ki/2.

since 2x ≤ 1/100 for i ≥ j∗ - see Lemma 24. And so all Mi arms of {a ∈ Ai ∩ A∗ :
µ̂i(a) ≥ µ∗ − ∆̄/2} are going to be in Ai+1. This implies – as in this case Ki ≥ 2
otherwise we cannot have 0 < pi ≤ 2/5 – that

pi+1 ≥
Mi

Ki+1
=

Mi

1 ∨ bKi/2c+ bKi/4c
≥ 4

3
(1− 2x)pi >

5

4
pi,

as 2x ≤ 1/100.
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Second case: pi > 2/5. Assume now that pi > 2/5. On ξ′′i we have that

Mi > piKi(1− 2x) ≥ 198

500
Ki,

and
Ni < 2Kix ≤ Ki/100,

since 2x ≤ 1/100 for I ≥ i > j∗ – see Lemma 24. Since 198/500 + 1/100 = 203/500 <
1/2 this implies that at least 199

500Ki from the arms in {a ∈ Ai∩A∗ : µ̂i(a) ≥ µ∗− ∆̄/2}
are going to be in Ai+1. So that

pi+1 ≥
Mi

Ki+1
=

Mi

1 ∨ bKi/2c+ bKi/4c
≥ 4

3
× 198

500
=

66

125
> 1/2.

This concludes the proof.

4.7.2 Lower Bound

Proof of Theorem 35. We consider a similar setting to that in the proof of Theorem 33
although with a slightly different construction of R0,R1.

Consider the following two reservoir distributions:

• The reservoir distribution R0 characterised by p1 = p? and p2 = 1 − p? and
ν1 = B(1/2) and ν2 = B(1/2−∆).

• The reservoir distribution R1 characterised by p1 = p? and p2 = p? and p3 =
1− 2p? and ν1 = B(1/2 + ∆) and ν2 = B(1/2) and ν3 = B(1/2−∆).

We define µ̃, µ̃′, and associated expectations and probabilities as in the proof of
Theorem 33. Consider also any algorithm A. We have by similar calculations as
Equation (4.7) the following upper bound on the KL divergence

KL(ER0P
A
µ̃′ ,ER1P

A
µ̃) = KL(ER1P

A
µ̃′ ,ER1P

A
µ̃)

≤ ER1

[
KL(PA

µ̃′ ,P
A
µ̃)

]
= ER1

[∑
j≤T

EA
µ̃′ [Tj ] kl(µ̃′j , µ̃j)

]

≤ ER1

[∑
j≤T

EA
µ̃′ [Tj ]

∆2

16
1{µ̃j = 1/2 + ∆}

]

= ER0

[∑
j≤T

EA
µ̃′ [Tj ]

∆2

16
1{µ̃′j = 1/2−∆} p?

1− p?

]
, (4.20)

since by definition of R0,R1, conditionally on µ̃′j = 1/2 − ∆, the probability that
µ̃j = 1/2 + ∆ is p?

1−p? , and otherwise it is 0.
By Equation (4.20), and since

∑
j≤T EA

µ̃′ [Tj ] = T , we have

KL(ER0P
A
µ̃′ ,ER1P

A
µ̃) ≤ T ∆2

16

p?

1− p?
. (4.21)

Let us write âT for the arm that the algorithm A recommends. Set

E = {µ̃âT = 1/2} .
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Note that on E, we make a mistake in prediction for µ̃, and that on EC , we make a
mistake in prediction for µ̃′. Thus, via Bretagnolle-Huber’s inequality (see Theorem
14.2 by Lattimore and Szepesvári [63]), and Equation (4.21), we have

ER1P
A
µ̃(E) + ER0P

A
µ̃′(E

C) ≥ 1

2
exp

(
− T ∆2

16

p?

1− p?

)
.

This concludes the proof by definition of E.

4.8 Technical lemmas

Lemma 26. (Chernoff bound) Let X1, . . . ,Xn ∼ Ber(p) be n samples from a Bernoulli
distribution and Sn =

∑n
k=1Xn their sum. Then for all γ ∈ [0, 1] it holds

P
(
Sn
n
≤ (1− γ)p

)
≤ e−

γ2

4
np ,

P
(
Sn
n
≥ (1 + γ)p

)
≤ e−

γ2

4
np .

Proof. We prove the first inequality; the second one is similar. If (1− γ)p < 0 or γ = 0
the inequality is trivially true. Else, because of Chernoff’s inequality, we have

P
(
Sn
n
≤ (1− γ)p

)
≤ e−n kl

(
(1−γ)p,p

)
.

It remains to remark to conclude that

kl
(
(1− γ)p, p

)
≥ γ2

2
p ,

where we used the refined Pinsker inequality from Garivier, Ménard, and Stoltz [40],
for 0 ≤ x < y ≤ 1,

kl(y, x) ≥ 1

2 maxx≤q≤y q(1− q)
(x− y)2 ≥ 1

2y
(x− y)2 .

For the second inequality we use

kl
(
(1 + γ)p, p

)
≥ 1

2(1 + γ)p
γ2p2 ≥ γ2

4
p .

Lemma 27. Let A,B,C ≥ 0 be constants such that A ≥ C, then for n0 = inf{n ≥ 1 :
A+B log(n) ≤ nC} we have

n ≤
A+B log

(
(2(B2 +AC)/C2

)
C

+ 1 .

Proof. First let x0 ≥ 1 be such that A + B log(x0) = Cx0. It exists since A +
B log(x)/x→ 0 if x→∞ and since A ≥ C. In particular, because of the definition of
n0 we have x0 ≤ n0 ≤ x0 + 1. Then note that A+B

√
x0 ≤ Cx0. Thus

√
x0 is smaller

than the largest roots of the polynomial Cy2 −By−A. Using
√
a+ b ≤

√
a+
√
b and
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(a+ b)2 ≤ 2(a2 + b2) we obtain

x0 ≤

(
B +

√
B2 + 4AC

2C

)2

≤ 2
B2 +AC

C2
.

Inserting the previous inequality in the definition of x0 and using n0 ≤ x0 + 1 allows
us to conclude

n0 ≤
A+B log

(
2(B2 +AC)/C2

)
C

+ 1 .

4.9 Experiments

In this section we conduct preliminary experiments for the cumulative regret and
best-arm identification setting.

Cumulative regret For the cumulative regret we compare Sampling-UCB (with
γ = 0.5) with the QRM1 algorithm by [21] and SR algorithm by [89]. We arbitrarily4

choose the following reservoir: the arms are distributed according to a Bernoulli
distribution with possible means [0.5, 0.8] sampled with probabilities [0.8, 0.2]. We
remark that the SR algorithm and Sampling-UCB are very similar, they both sample
approximately log(T )/p? arms and run a regret minimizer algorithm on this set of
arms. The only difference is that the SR algorithm relies on the MOSS algorithm.
Whereas the QRM1 algorithm proceeds by progressively adding new arms. In particular
this algorithm is anytime. In Figure 4.1 we compare the cumulative regret of the
different algorithms for a fixed horizon T = 20000. We observe that Sampling-UCB
behaves similarly to SR and that QRM1 performs slightly worst (maybe because of the
adaptation to T ). We also check that all algorithms have a regret that is logarithmic
with the horizon as expected. To this aim, in Figure 4.2, we plot the cumulative regret
(for the same reservoir) for all horizons T ∈ {100, 200, . . . , 10000}.

Best-arm identification For best arm identification we compare our algorithm
with the BUCB algorithm by [56]. In Figure 4.3 we compare the performance of the
algorithms across varying ∆ for a fixed T = 1000. That is, we consider reservoirs of
the form [0.2,∆, 1] for ∆ ∈ (0.01 × i)i∈[79] with probabilities [0.29, 0.69, 0.02]. The
BUCB algorithm presents an issue as it is designed for the fixed confidence regime
the algorithm takes δ as a parameter. We set δ equal to an arbitrarily low constant.
The BUCB algorithm works by opening successively large brackets of arms, however
as they do not provide results in high probability, only in expectation, they can draw
significantly less arms from the reservoir. The performance of Elimination seems
favourable compared to BUCB, however, one may be able to improve the performance
of BUCB with parameter tuning.

4Which is not very important, since we evaluate the algorithms from a problem-dependent point
of view
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Figure 4.1: Cumulative regret in function of the time estimated by
100 Monte-Carlo simulations.

Figure 4.2: Cumulative regret in function of the horizon T ∈
{100, 200, . . . , 10000} estimated by 100 Monte-Carlo simulations.
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Figure 4.3: Probability of error for best arm identification across
varying ∆ using 500 Monte-Carlo simulations.
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