

Bachelorarbeit

Zum Erlangen des Grades eines Bachelor of Engineering des Studienganges Maschinenbau, Mechatronik und Physiktechnik im Fachbereich Ingenieur und Naturwissenschaften der Hochschule Merseburg.

Thema:

Erstellung einer Mehrkörpersimulation eines Stirnrad-Planetengetriebes zur verbesserten Darstellung des dynamischen Systemverhaltens

Vorgelegt von:

Herrn Peter Wustlich

Betreuer:

Prof. Dr.-Ing. Achim Merklinger; Hochschule Merseburg, Fachbereich INW
M. Eng. Konrad Mehle; Hochschule Merseburg, Fachbereich INW
Dipl.-Ing. Lutz Werge; GTL Getriebetechnik Leipzig GmbH
B. Eng. Felix Wabnitz; GTL Getriebetechnik Leipzig GmbH

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit mit dem Titel

"Erstellung einer Mehrkörpersimulation eines Stirnrad-Planetengetriebes zur zur verbesserten Darstellung des dynamischen Systemverhaltens"

selbstständig und ohne unerlaubte fremde Hilfe angefertigt, keine anderen als die angegebenen Quellen und Hilfsmittel verwendet und die den verwendeten Quellen und Hilfsmitteln wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Ort, Datum

Unterschrift

1 INHALTSVERZEICHNIS

2	ABBILDUNGSVERZEICHNIS	3
3	TABELLENVERZEICHNIS	4
4	FORMELZEICHEN UND BEZEICHNUNGEN	5
4.1	Formelzeichen	5
4.2	Bezeichnungen	7
5	EINLEITUNG	8
5.1	Problemstellung und Ziel der Arbeit	9
5.2	Aufbau der Arbeit	10
6	GRUNDLAGEN	11
6.1	Das Stirnradgetriebe	11
6.2	Das Planetengetriebe	12
6.3	Das Stirnrad-Planetengetriebe	14
7	PARAMETERERMITTLUNG UND MODELLBILDUNG	15
7.1	Ermittlung der Parameterwerte und Modellierung der Wellen	17
	7.1.1 Torsionssteifigkeit	17
70	7.1.2 Damplung	20
1.2	7.2.1 Zahnsteifigkeitsverlauf	20
	7.2.2 Verzahnungsdämpfung	31
7.3	Federsteifigkeit und Dämpfung der Verbindungselemente	32
7.4	Lagersteifigkeiten	33
7.5	Verdrehflankenspiel	34
7.6	Reibmomente der Lager	35
7.7	Weitere Einflüsse auf das dynamische Verhalten	37
8	DAS MODELL IN OPENMODELICA	38
9	ANWENDUNGSFÄLLE / SIMULATIONEN	41
9.1	Hochfahren unter Last	41
9.2	Einfallen einer Sicherheitsbremse	43
9.3	Wirkungsgrad des Getriebes	46
9.4	Untersuchung auf Resonanzstellen	48

10	DAS RÄUMLICHE MODELL	49
11	MÖGLICHKEITEN DER VERIFIZIERUNG	51
12	ZUSAMMENFASSUNG UND FAZIT	51
13	LITERATURVERZEICHNIS	53
14	ANHÄNGE	55
14.1	Allgemeine Getriebedaten	55
14.2	2 Wellendatenblätter	56
14.3	3 Lagerreibmomente in Abhängigkeit der Drehzahl	68

2 Abbildungsverzeichnis

Abbildung 1: Getriebeplan	7
Abbildung 2: Einteilung Getriebe nach Form der Bewegungsübertragung	8
Abbildung 3: Aufbau eines einstufigen Stirnradgetriebes	11
Abbildung 4: Aufbau eines Planetengetriebes (Quelle: tec-science.com)	13
Abbildung 5: Räderzug des Stirnrad-Planetengetriebes (links) und Planetenstufe (rechts).	14
Abbildung 6: Einfaches Torsionsschwingungsmodell (Quelle: (Henlich, 1998))	16
Abbildung 7: Modellierung der Ritzelwelle als diskretes Masse-Feder-Dämpfer-System	17
Abbildung 8: Die Massenträgheitsmomente in OpenModelica	18
Abbildung 9: Längen und Zusatzlänge am Modell einer einfach abgesetzten Welle	19
Abbildung 10: Erfahrungswerte für den Dämpfungsgrad Di (Quelle: (Laschet, 1988 S. 49))).20
Abbildung 11: Modell der Impulsanregung der Ritzelwelle SP970-302 in OpenModelica	24
Abbildung 12: Ergebnis der FFT der Welle SP970-302	25
Abbildung 13: Verzahnungsmodell in OpenModelica	26
Abbildung 14: Spez. Verzahnungssteifigkeit für verschiedene Überdeckungsgrade	27
Abbildung 15: Sinusförmiger Zahnsteifigkeitsverlauf (Quelle: (Laschet, 1988, S. 176))	28
Abbildung 16: Codefragment zur Berechnung des dynamischen Zahnsteifigkeitsverlauf	29
Abbildung 17: Minimalmodell der Verzahnung 301-201	30
Abbildung 18: Winkelgeschwindigkeit am Abtrieb ohne dynamische Eingriffsfedersteifigke	it30
Abbildung 19: Winkelgeschwindigkeit am Abtrieb mit dynamischer Eingriffsfedersteifigkeit	31
Abbildung 20: Verzahnungsdämpfungsmaße (Quelle: (Linke, 2010 S. 230))	31
Abbildung 21: Lagerreibmoment in Abhängigkeit der Drehzahl (Quelle: (SKF))	36
Abbildung 22: Gesamtmodell in OpenModelica mit Nummern für Zahnräder und Wellen	38
Abbildung 23: Winkelgeschwindigkeiten	41
Abbildung 24: Aufbau der Bremssteuerung	43
Abbildung 25: Teilmodell zur Notbremssimulation	44
Abbildung 26: Winkelgeschwindigkeitsverlauf des Zahnrad 201	44
Abbildung 27: Momentenverlauf am Planetenträger	45
Abbildung 28: Absolutbeschleunigungskurve	46
Abbildung 29: Relative Winkelbeschleunigung der Verzahnung 301-201 beim Anfahren	48
Abbildung 30: Räumliches Modell der Planetenstufe	49
Abbildung 31: Sonnenwelle mit Lagerung	49
Abbildung 32: Submodell "Koppelelement"	50
Abbildung 33: Das räumliche Gesamtmodell in OpenModelica	50
Abbildung 34: Frequenzspektrum SP970-301, ungedämpft	57
Abbildung 35: Frequenzspektrum SP970-302, ungedämpft	59
Abbildung 36: Frequenzspektrum SP970-303, ungedämpft	61

Abbildung 37: Frequenzspektrum SP970-304, ungedämpft	63
Abbildung 38: Frequenzspektrum SP970-601, ungedämpft	65
Abbildung 39: Frequenzspektrum SP970-602PT, ungedämpft	67

3 Tabellenverzeichnis

Tabelle 1: Übersetzungen der jeweiligen Stufen beginnend beim Abtrieb	14
Tabelle 2: Berechnung der Torsionsnachgiebigkeit NG [rad/Nm] typischer Getriebeteile	18
Tabelle 3: Methodenabhängige Eigenfrequenzen der Ritzelwelle SP970-302	24
Tabelle 4: statische Eingriffsfedersteifigkeiten	29
Tabelle 5: Verzahnungsdämpfungskoeffizienten	32
Tabelle 6: Dämpfungskoeffizienten der Passfederverbindungen	33
Tabelle 7: Kräfte, Momente, Verschiebungen, Steifigkeiten der Lager	34
Tabelle 8: Mittlere Verdrehflankenspiele	35
Tabelle 9: Mittlere Lagerreibmomente	37

4 Formelzeichen und Bezeichnungen

4.1 Formelzeichen

<u>Zeichen</u>	Zeichen Bezeichnung	
а	Winkelbeschleunigung	rad/s ²
b	Zahnbreite	m
β	Schrägungswinkel	o
C _{v,stat}	Statische Zahnsteifigkeit	Nm/rad
C _{v,dyn}	Dynamische Zahnsteifigkeit	Nm/rad
c_v	Gesamtzahnsteifigkeit	Nm/rad
Cγ	Spezifische Eingriffsfedersteifigkeit	N/mm
		μm
d	Durchmesser	m
d_0	Teilkreisdurchmesser	m
d_T	Torsionsdämpfungskoeffizient	Nm * s/rad
d_Z	Zahndämpfungskoeffizient	Nm * s/rad
D	Lehr'sches Dämpfungsmaß	-
D_z	Verzahnungsdämpfungsmaß	-
Ε	E-Modul	N/m^2
E_{kin}	Kinetische Energie	J
E_{pot}	potenzielle Energie	J
F	Kraft	Ν
G	Schubmodul	N/m^2
Ι	Flächenträgheitsmoment	m^4
I_p	Polares Flächenträgheitsmoment	m^4
i	Übersetzung	-
i ₀	Standübersetzung	-
J	Massenträgheitsmoment	kg/m^2
j _{ti}	Verdrehflankenspiel Kleinstmaß	μm
j _{te}	Verdrehflankenspiel Höchstmaß	μm
j _{tm}	Mittleres Verdrehflankenspiel	μm
Κ	Steifigkeitsmatrix	-
k_B	Biegesteifigkeit	Nm/rad
k _t	Einzeltorsionssteifigkeit	Nm/rad
k_T	Gesamttorsionssteifigkeit	Nm/rad
l	Länge	m

Μ	Massenmatrix	-
η	Wirkungsgrad	-
n	Drehzahl	min^{-1}
Ω_z	Zahneingriffsfrequenz	<i>s</i> ⁻¹
Р	Leistung	W
arphi	Winkel	rad,°
r _b	Grundkreisradius	m
r_w	Wälzkreisradius	m
Τ, τ	Drehmoment	Nm
t	Zeit	S
ω	Winkelgeschwindigkeit	rad/s
ω_n	Eigenkreisfrequenz	s^{-1}
ρ	Dichte	kg/m^3
Ζ	Zähnezahl	-

4.2 Bezeichnungen

Für die in dieser Arbeit verwendeten Bezeichnungen bezüglich des Getriebes gelten folgende Beziehungen, wobei die Welle 601 den Abtrieb und die Wellen 303 bzw. 304 den Antrieb bilden:

Abbildung 1: Getriebeplan

Wellen beginnen, mit Ausnahme der Abtriebswelle und des Planetenträgers (602PT), mit einer 3. Zahnräder sind mit einer 2 beginnend nummeriert und bei Verzahnungen gilt Rad 1 als antreibendes Rad und Rad 2 als getriebenes Rad.

Eigennamen, die sich auf Bestandteile der Modelica-Bibliothek beziehen, sind in der Schriftart Courier New dargestellt.

5 Einleitung

"Ein Getriebe ist eine Vorrichtung zur Kopplung und Umwandlung von Bewegungen und Energien beliebiger Art"¹. In dieser sehr umfassenden Deutung beschreibt die Getriebetechnik somit alle Bewegungsprobleme der Technik unter Anwendung mechanischer, hydraulischer, pneumatischer oder elektrischer Prinzipien.

Die je nach technischer Nutzung existierenden Getriebearten kann man Anhand der Bewegungsübertragung einteilen, wobei grundsätzlich zwischen ungleichförmiger und gleichförmiger Übersetzung unterschieden wird.

Abbildung 2: Einteilung Getriebe nach Form der Bewegungsübertragung

Abbildung 2 zeigt zwar nur eine von mehreren Möglichkeiten, die große Zahl unterschiedlicher Getriebearten zu systematisieren, lässt aber schon deren breiten Nutzen in den unterschiedlichsten Anwendungsgebieten erahnen.

Beispielhaft seien für ungleichförmig übersetzende Getriebe das Schubkurbelgetriebe und der Kniehebel zu nennen. Ersteres wandelt eine rotatorische Bewegung in eine translatorische Bewegung und ist in Form von Kurbelwelle, Pleuel und Kolben das zentrale Element eines Kolbenmotors. Der Kniehebel als Beispiel eines Koppelgetriebes dient dagegen mehr als Kraftmultiplikator und kommt zum Beispiel bei mechanischen Pressen oder Handwerkzeugen, wie Bolzenschneidern und Gripzangen zum Einsatz.

¹ (Franke, 1958)

Bei den gleichförmig übersetzenden Getrieben ist das Kettengetriebe in der Anwendung als Fahrradkettenschaltung zu nennen, oder auch das Riemengetriebe, wie es unter anderem an Automotoren und Werkzeugmaschinen z.B. Drehbänken zu finden ist.

Die wohl bedeutendste Getriebeart aber ist das Zahnradgetriebe. Es kommt aufgrund seiner formschlüssigen Leistungsübertragung dort zum Einsatz, wo Drehmoment und Drehzahl auf kleinem Raum präzise gewandelt und übertragen werden müssen. Es ist von zentraler Bedeutung im Maschinenbau und so findet man es beispielsweise nicht nur in Form eines Planetengetriebes in heimischen Rührgeräten, oder als Schaltgetriebe in Kraftfahrzeugen, sondern auch als Hubgetriebe in Krananlagen des Schwermaschinenbaus.

5.1 Problemstellung und Ziel der Arbeit

So unterschiedlich die Einsatzgebiete der Zahnradgetriebe sind, so verschiedenartig sind auch die Anforderungen, die an sie gestellt werden.

Getriebe des Werkzeugmaschinenbaus (z.B. Drehmaschinen oder Fräsmaschinen) sollten eine hohe Steifigkeit der Hauptspindel und des Vorschubgetriebes, sowie ihrer Lagerungen aufweisen, da sonst z.B. die Gefahr für Torsionsschwingungen und damit verbundene Schnittgeschwindigkeitsänderungen besteht, welche sich negativ auf die Oberflächengüte auswirken können.

Getriebe, welche der Positionierung dienen, haben ebenfalls hohe Anforderungen was die Steifigkeit betrifft. Erst dadurch wird ein exaktes Positionieren bzw. Nachführen des Geräts gewährleistet.

Anders verhält es sich bei Anwendungen mit Antriebsträngen, welche einen hohen Energiebedarf haben, wie z.B. die Robotik oder die Fahrzeugtechnik. Hier stehen, besonders vor dem Hintergrund steigender Energiekosten, die Wirkungsgrade der einzelnen Maschinenelemente und der damit verbundene Gesamtwirkungsgrad im Vordergrund, was neben anderen Getriebebauformen auch zu einer Reduzierung der bewegten Massen führt.

Eine der wesentlichsten Anforderung aber ist die Ausfallsicherheit. Sie spielt bei jedem Getriebe eine zentrale Rolle. Dies führt zuweilen bei Getrieben des allgemeinen Maschinenbaus dazu, dass sie im Hinblick auf ihre Lebensdauer stark überdimensioniert sind. Ausgesprochen hohe Anforderungen bezüglich der Lebensdauer bei extremen Belastungen haben Getriebe, welche in kritischen Bereichen eingesetzt werden, wie kerntechnische Anlagen oder Stahlwerke. Dort birgt ein Schaden bzw. der Ausfall eines Getriebes ein hohes Risiko für Gesundheit und Leben einerseits und wirtschaftlichen Schaden durch Stillstand der Anlage andererseits. Dennoch ist man als Konstrukteur aus Gründen der Kostenersparnis stets bestrebt Größenund Gewichtseinsparungen vorzunehmen. Dies führt bisweilen aber dazu, dass Anlagen und Vorrichtungen, so auch Getriebe, hinsichtlich ihrer Beanspruchungen an ihre Belastungsgrenzen kommen, wobei die Forderung nach einer hohen Lebensdauer weiterhin erfüllt werden muss. Gerade unvorhergesehene oder außergewöhnliche dynamische Zusatzbelastungen, wie das Einfallen einer Sicherheitsbremse oder die Anregung der Eigenfrequenzen bergen dabei ein hohes Risiko und können für einen frühzeitigen Getriebeausfall sorgen.

Es ist für den Ingenieur also von großer Bedeutung bereits im laufenden Konstruktionsprozess bzw. vor Herstellung des Getriebes Kenntnisse über das dynamische Verhalten zu bekommen. Dadurch können Risiken von vornherein minimiert oder Optimierungen hinsichtlich der Konstruktion durchgeführt werden. Während dies bei einfachen Getrieben noch durch die Erfahrung des Konstrukteurs gewährleistet werden kann, so ist man bei komplexeren Bauarten, wie z.B. Kombinationen aus Stirnrad- und Planetengetrieben, auf Modelle und Simulationen angewiesen.

Die Vorteile liegen dabei klar auf der Hand. So kann die Simulation nicht nur Geld und Zeit sparen, indem sie kostspielige und zeitintensive Versuche am realen Objekt ersetzt, sondern es ist auch möglich in einer risikolosen Umgebung sogenannte "Was-wäre-wenn-Situationen" zu testen und Unsicherheiten zu handhaben.

Ziel dieser Arbeit soll es sein, ein geeignetes Modell für ein konkretes Getriebe zu erstellen, mit welchem verschiedene Situationen simuliert werden können, um zum Beispiel Hinweise für eine günstige Auslegung hinsichtlich des dynamischen und statischen Verhaltens zu bekommen.

5.2 Aufbau der Arbeit

In einem ersten Schritt werden einige Grundlagen vermittelt und das Getriebe als Ganzes vorgestellt. Anschließend werden die wichtigsten, die Dynamik betreffenden, Einflüsse vorgestellt, sowie die Möglichkeiten ihrer Modellierung und Quantifizierung. Danach folgt eine Vorstellung des auf Grundlage der Vorarbeit entwickelten Softwaremodells, sowie einige Simulationen besonderer Ereignisse. Den Abschluss bildet eine Diskussion der während dieser Arbeit gewonnenen Erkenntnisse in Form eines Fazits.

6 Grundlagen

Wie bereits in der Einführung angedeutet kommen Getriebe, genauer gesagt Zahnradgetriebe als Bestandteil von Kraft- und Arbeitsmaschinen in vielen Anwendungen vor. Sieht man sie jedoch als eigenständiges System so sind es "Übertragungseinrichtungen zum Umformen, Wandeln oder Transformieren von Bewegungen unter Einschluss damit verbundener Kraftumformungen."²

Sie bestehen in ihrer einfachsten Ausführung aus mindestens 3 Gliedern, dem Antrieb, dem Abtrieb und dem Gehäuse. Die beiden wichtigsten Bauformen der Zahnradgetriebe sind das Stirnrad- und das Planetengetriebe. Sie sollen an dieser Stelle kurz erläutert werden, da das zu modellierende Stirnrad-Planetengetriebe eine Kombination aus beiden ist.

6.1 Das Stirnradgetriebe

In Abbildung 3 ist eine Stirnradgetriebe in seiner einfachsten, einstufigen Ausführung dargestellt. Dabei bilden das Zahnrad 1 und das Zahnrad 2 eine Zahnradstufe, wenn sich beide Zahnräder zusammenwirkend im Eingriff befinden.

Abbildung 3: Aufbau eines einstufigen Stirnradgetriebes

Die mechanische Leistung wird auf der Antriebsseite des Getriebes aufgegeben. Aufgrund der unterschiedlichen Zähnezahl der beiden Zahnräder werden das Antriebsmoment und die Antriebsdrehzahl zu Abtriebsmoment und Abtriebsdrehzal übersetzt, welche dann in Form von Abtriebsleistung an eine angeschlossene Arbeitsmaschine abgegeben werden.

² (Loomann, 1996)

Die Übersetzung einer Getriebestufe erhält man aus dem Quotienten der Zähnezahl der im Eingriff befindlichen Zahnräder und die Gesamtübersetzung aus dem Produkt der Einzelübersetzung zusammengefügter Zahnradstufen.

$$i = \frac{z_2}{z_1} \tag{3.10}$$

$$i_{ges} = \prod_{k=1}^{n} i_k \tag{3.11}$$

Solange Antriebsleistung und Abtriebsleistung gleich sind, spricht man von einem idealen Getriebe. Da dies aber nur in der Theorie existiert und in einem realen Getriebe Verluste aufgrund von Reibung, z.B. Zahnreibung oder Lagerreibung, auftreten, wird die Abtriebsleistung um die Verlustleistung gemindert. Aus dem Verhältnis von Abtriebsleistung und Antriebsleistung ergibt sich dann der mechanische Wirkungsgrad des Getriebes.

$$\eta_{mech} = \frac{P_{ab}}{P_{an}} \tag{3.12}$$

6.2 Das Planetengetriebe

Bei Planetengetrieben, auch Umlaufgetriebe genannt, sind An- und Abtriebs-Welle nicht parallel, sondern koaxial angeordnet. Ein Planetengetriebe besteht in der einfachsten Ausführung aus einem zentral gelagerten Sonnenrad, einem innenverzahnten Hohlrad und mehreren Planetenrädern, die zwischen Sonnenrad und Hohlrad abrollen. Die Planetenräder sind dabei auf einem Planetenträger bzw. Steg, welcher die Abtriebswelle bildet oder mit dieser verbunden ist, befestigt. Durch die Lastverteilung auf mehrere Planetenräder ist es möglich hohe Drehmomente zu übertragen und eine kompakte Bauweise zu realisieren.

Man unterscheidet bei Planetengetrieben zwischen Zweiwellenbetrieb und Dreiwellenbetrieb. Beim *Zweiwellenbetrieb* wird eine Welle festgehalten, zum Beispiel das Hohlrad, und die Drehung der zweiten freien Welle ist beim Antrieb einer Welle eindeutig.

Weiterhin unterscheidet man im Zweiwellenbetrieb zwischen Standübersetzung und Umlaufübersetzung. Bei der Standübersetzung steht der Planetenträger still und Sonnen- und Hohlrad bewegen sich. Bei Umlaufübersetzung steht entweder das Hohlrad oder die Sonnenwelle still. An- und Abtrieb erfolgen über die verbleibende freie Zentralradwelle und den Planetenträger.

Abbildung 4: Aufbau eines Planetengetriebes (Quelle: tec-science.com)

Im *Dreiwellenbetrieb* kann das Planetengetriebe als Summiergetriebe oder Verteilergetriebe arbeiten, wobei beim Summiergetriebe 2 Wellen antreiben und eine Welle getrieben wird. Beim Verteilergetriebe verhält es sich andersherum. Dort treibt eine Welle an und 2 Wellen sind getrieben.

Die Übersetzungsverhältnisse bei Planetengetrieben im Zweiwellenbetrieb stellen sich, je nachdem welche Welle fest ist, wie folgt dar:

	<u>Antrieb / Abtrieb</u>	Übersetzung
j fest	Sonnenrad / Hohlrad	$i = \frac{n_{SR}}{n_{HR}} = i_0 = \frac{z_2}{z_1}$
Ste	Hohlrad / Sonnenrad	$i = \frac{n_{HR}}{n_{SR}} = \frac{1}{i_0}$
t.	Antrieb / Abtrieb	<u>Übersetzung</u>
ad fes	Sonnenrad / Steg	$i = \frac{n_{SR}}{n_S} = 1 - i_0$
Hohlr	Steg / Sonnenrad	$i = \frac{n_S}{n_{SR}} = \frac{1}{1 - i_0}$
st	Antrieb / Abtrieb	<u>Übersetzung</u>
rad fe	Hohlrad / Steg	$i = \frac{n_{HR}}{n_S} = 1 - \frac{1}{i_0}$
Sonnei	Steg / Hohlrad	$i = \frac{n_S}{n_{HR}} = \frac{i_0}{i_0 - 1}$

6.3 Das Stirnrad-Planetengetriebe

Das in dieser Arbeit zu modellierende Getriebe ist eine Kombination aus Stirnradgetriebe und Planetengetriebe. Es kommt als Hubgetriebe in einer Krananlage zum Einsatz. Das Besondere dabei ist das redundante Antriebskonzept, indem die erste Getriebestufe ein Planetengetriebe enthält. Dadurch können nicht nur unterschiedliche Gangarten realisiert werden, sondern das Getriebe ist auch bei Ausfall eines Motors noch in der Lage seine Last zu halten.

Der Antrieb erfolgt über die Sonnenwelle und das außenverzahnte Hohlrad.

Abbildung 5: Räderzug des Stirnrad-Planetengetriebes (links) und Planetenstufe (rechts)

Die rechnerische Auslegung des Getriebes erfolgte bereits in einer Vorarbeit zu dieser Arbeit mit Hilfe des SystemManagers der GWJ Technology GmbH. Die Ergebnisse dieser Berechnungen bilden die Grundlage für die Parameterermittlung und die Modellbildung des Getriebes in Form von Konstruktionszeichnungen, Verzahnungsdaten und Wellenberechnungen. Diese sind sehr umfangreich und der Arbeit in digitaler Form beigefügt.

Getriebestufe	Einzelübersetzung
1. Stufe (Abtrieb)	3.2222
2. Stufe	3.9412
3. Stufe	2.1818
Übersetzung Planetengetriebe bei fester	1.2143
Sonnenwelle	
Antrieb – Hohlrad außen	4.6666
Gesamt	157

Tabelle 1: Übersetzungen der jeweiligen Stufen beginnend beim Abtrieb

7 Parameterermittlung und Modellbildung

Kein reales Antriebssystem lässt sich durch ein Computermodell derart abbilden, dass alle Parameter erfasst werden und sich das Modell so verhält wie sein reales Vorbild. Ein Berechnungsmodell ist stets das Resultat einer Verallgemeinerung zu einem bestimmten Zweck. So kann es durchaus vorkommen, dass für ein System unterschiedliche Simulationsmodelle bestehen, je nach den zu beantwortenden Fragestellungen.

Auch wenn heutige Technik sehr detaillierte Modelle ermöglicht, ist dies nicht immer zweckmäßig, da mit zunehmenden Grad an Komplexität nicht nur die benötigte Rechenleistung und -zeit steigt, sondern das Modell auch undurchsichtiger bzw. schwerer nachvollziehbar wird und somit das Risiko für Modellbildungsfehler zunimmt.

Das zu modellierende Stirnrad-Planetengetriebe besteht, wie die meisten Maschinen und Anlagen, aus sich drehenden, also rotierenden Maschinenelementen, wie Wellen, Zahnrädern und Lagern. Die wesentlichen Einflussfaktoren auf die Dynamik des Getriebes sind dabei nach (Gold, 1979):

- Verzahnungselastizität
- Radkörperverformung
- Elastizität der Verbindungselemente, wie z.B. Passfedern
- Torsion der Wellen
- Axiale Verformung der Wellen
- Lagerung

Es liegt auf der Hand, dass eine Berücksichtigung aller Einflussfaktoren eine immense Herausforderung sowohl für die Technik als auch für den Modellierer darstellt und so sei an dieser Stelle vorweggenommen, dass im Rahmen der Arbeit lange versucht wurde ein Modell zu erstellen, welches die Lagerreaktionen und Biegeelastizitäten der Wellen mitberücksichtigt. Leider musste kurzfristig davon Abstand genommen werden, da es nicht gelungen ist die einzelnen Wellen-Zahnradsysteme zu koppeln und eine Drehmomenten- und Geschwindigkeitsübertragung zu realisieren. Die Ursache dafür liegt darin, wie OpenModelica seine Gleichungssysteme löst. Viele Versuche ein Modell mit mehr als einer Übersetzung zu realisieren, führten trotz größter Sorgfalt zu überbestimmten Systemen oder unendlich vielen Lösungen. Hinzu kam, dass mit jeder neuen Welle der Rechenaufwand deutlich stieg, wodurch am Ende das Modell nicht mehr zweckmäßig bzw. händelbar war. Rechenzeiten von 2-3h waren keine Seltenheit. Daher musste letzten Endes Vieles verworfen und ersatzweise ein Minimalmodell des Getriebes entwickelt werden, welches sich auf einen Freiheitsgrad, der Torsion, beschränkt.

Auch wenn damit die Erfassung einzelner Lagerreaktionen und 3-dimensionaler Effekte, wie der Wellenverschiebung aufgrund der Biegeelastizität oder axiale Verformungen, nicht

möglich ist, so bietet das Torsionsschwingermodell dennoch die Möglichkeit den Einfluss äu-Berer und innerer Anregung zu untersuchen. Nach (Linke, 2010) konnte man in Untersuchungen zur Getriebedynamik nachweisen, dass das reale Schwingungsverhalten von Getrieben mit diesem einfachen Modell gut erfassbar ist.

Entscheidend für die Abbildungsqualität ist dabei die Ermittlung der entsprechenden Parameter des diskret strukturierten, aus mehreren Masse- und Federelementen bestehenden Schwingungsmodells.

Zu den für die Modellbildung wesentlichsten Parametern zählen:

- Massenträgheitsmomente
- Federsteifigkeiten
- Absolutdämpfungen
- Relativdämpfungen
- Eigenfrequenzen
- Eigenschwingformen

Die Bestimmung der Parameter sowie Ihre Implementierung in das Modell sollen Thema der folgenden Abschnitte sein.

Abbildung 6: Einfaches Torsionsschwingungsmodell (Quelle: (Henlich, 1998))

7.1 Ermittlung der Parameterwerte und Modellierung der Wellen

7.1.1 Torsionssteifigkeit

Die Wellen werden als Torsionsschwingerkette modelliert, was am Beispiel der Ritzelwelle SP970-302 des Getriebes exemplarisch gezeigt werden soll.

In einem ersten Schritt werden die einzelnen Abschnitte der abgesetzten Welle in separate Massenträgheitsmomente und Koppelglieder in Form von Feder-Dämpfer-Elementen diskretisiert. Als Bezugspunkt gilt hierbei der jeweilige Schwerpunkt eines Wellenabschnitts (Abb. 7).

Abbildung 7: Modellierung der Ritzelwelle als diskretes Masse-Feder-Dämpfer-System

Die polaren Trägheitsmomente J_i der zylinderförmigen Körper berechnen sich über:

$$J_{i} = \rho * I_{p,i} * l_{i} \quad mit \qquad I_{p,i} = \frac{\pi * d_{i}^{4}}{32}$$
(4.1.1)

Auch genutete Wellenabschnitte können der Einfachheit halber als Zylinder modelliert werden, wobei im Gegenzug die Massenträgheit der Passfeder dann keine Berücksichtigung mehr findet.

Trägheitsmomente von Wellenabschnitten, welche sich nur ungenau mit einfachen geometrischen Formen annähern lassen, wie z.B. gezahnte Wellenabschnitte oder Zahnräder, können mit Hilfe von CAD Programmen genau bestimmt werden.

Abbildung 8: Die Massenträgheitsmomente in OpenModelica

Als nächstes müssen die Steifigkeits- und Dämpfungsparameter zwischen 2 benachbarten Wellenabschnitten bestimmt werden. Dazu werden die jeweiligen Teilsteifigkeiten, also die Steifigkeiten der einzelnen Wellenabschnitte, aus den halben Abschnittslängen wie folgt bestimmt:

$$k_{t,i} = \frac{G * 2 * I_{p,i}}{l_i}$$
(4.1.2)

Dieser Ansatz gilt aber nur für reine Vollzylinderabschnitte. Wellenabschnitte mit anderen Geometrien, wie z.B. genutete Wellenabschnitte oder Abschnitte mit Innenradius, haben aufgrund des geringeren polaren Flächenmoments I_p eine geringere Steifigkeit, was faktoriell erfasst werden muss.

Tabelle 2: Berechnung der Torsionsnachgiebigkeit NG [rad/Nm] typischer Getriebeteile

Quelle: (KTA-3990, 2012)

Tabelle 2 zeigt einige Möglichkeiten zur Berechnung der Nachgiebigkeit bestimmter Getriebeteile, welche auch in dieser Arbeit zur Anwendung kamen. Der Kehrwert der Nachgiebigkeit ist dabei die gesuchte Torsionssteifigkeit des Wellenabschnitts mit voller Länge.

Die Torsionssteifigkeit gezahnter Wellenabschnitte wurde in dieser Arbeit näherungsweise mit dem Ansatz für Keilwellen berechnet, wobei für *b* die Normalzahndicke s_n am Teilkreisdurchmesser angenommen wurde.

Bevor die Teilsteifigkeiten $k_{t,i}$ und $k_{t,i+1}$ in Reihe zur Gesamtsteifigkeit k_{Ti} geschaltet werden können, müssen die jeweiligen Teillängen um eine Zusatzlänge Δl_i erweitert bzw. verkürzt werden. Grund dafür ist, dass der Kraftfluss spontanen Durchmessersprüngen nicht direkt folgen kann und die Berechnung der Gesamtsteifigkeit nach:

$$k_{Ti} = \left(\frac{1}{k_{t,i}} + \frac{1}{k_{t,i+1}}\right)^{-1}$$
(4.1.3)

ein zu hartes Schwingungssystem ergeben würde (Vgl. Laschet, 1988 S. 34).

Für $d_i < d_{i+1}$ geht Gleichung (4.1.3) damit über in:

$$k_{Ti} = \left(\frac{1}{k_{t,i}^*} + \frac{1}{k_{t,i+1}^*}\right)^{-1} \quad \text{mit} \quad k_{t,i}^* = \frac{G * 2 * I_{p,i}}{l_i + \Delta l_i} \quad \text{und} \quad k_{t,i+1}^* = \frac{G * 2 * I_{p,i}}{l_i - \Delta l_i}$$
(4.1.4)

Abbildung 9: Längen und Zusatzlänge am Modell einer einfach abgesetzten Welle

Für Δl_i wird nach (Dresig, et al., 2020 S. 204) für kleine Übergangsradien von d_i nach d_{i+1} vereinfachend angenommen:

$$\Delta l_{i} = \lambda * d_{i} \quad \text{mit} \quad \lambda = \begin{cases} 0.155 & f \ddot{\mathrm{u}} r \ 0 < \delta \le 0.3 \\ -0.155\delta + 0.1895 & f \ddot{\mathrm{u}} r \ 0.3 \le \delta \le 0.5 \text{ und } \delta = \frac{d_{i}}{d_{i+1}} \\ 0.264 * (1 - \delta) & f \ddot{\mathrm{u}} r \ 0.5 \le \delta \le 1 \end{cases}$$
(4.1.5)

7.1.2 Dämpfung

Nachdem die einzelnen Torsionssteifigkeiten der Welle ermittelt wurden, müssen noch die jeweiligen Dämpfungskonstanten bestimmt werden.

Die Dämpfung eines schwingungsfähigen Systems lässt sich in zwei Kategorien einordnen:

- a) Absolutdämpfung (äußere Dämpfung):
 Dämpfung durch äußere Einflüsse in Form von Bewegungswiderständen wie z.B.
 Lagerreibung
- b) Relativdämpfung (innere Dämpfung): material- bzw. werkstoffabhängige Dämpfung durch innere Verformungswiderstände

Somit interessiert an dieser Stelle der Modellbildung in erster Linie die relative Dämpfung, für deren Bestimmung hier ein Verfahren nach (Laschet, 1988) angewendet wird, wobei jedem Steifigkeitsort $k_{T,i}$ eine Eigenkreisfrequenz ω_n zugeordnet und mit Hilfe von Erfahrungswerten für den Dämpfungsgrad D_i folgende Gleichung gelöst werden kann:

$$d_{T,i} = \frac{2 * D_i * k_{Ti}}{\omega_n}$$
(4.1.6)

Übertragungselement	Dämpfungsgrad D_i		
Welle (St) (d: mittlerer Durchmesser) $d \leq 100 \text{ mm}$ d > 100 mm	0,005 0,01		
Getriebe (Verzahnung) (P : Leistung) $P \leq 100 \text{ kW}$ $100 < P \leq 1000 \text{ kW}$ P > 1000 kW	0,02 0,04 0,06		
elastische Kupplung $(\psi_i\colon ext{verhältnismäßige})$ Dämpfung)	0, 040, 2 oder: $D_i = \psi_i / 4\pi$		

Abbildung 10: Erfahrungswerte für den Dämpfungsgrad Di (Quelle: (Laschet, 1988 S. 49))

Hierzu wird Anfangs das Eigenverhalten, also Eigenformen und Eigenmoden, des ungedämpften Schwingungssystems bestimmt.

Zur Ermittlung der Eigenkreisfrequenzen ω_i werden die Bewegungsgleichungen der Form:

$$M * \vec{\varphi} + K * \vec{\varphi} = 0 \tag{4.1.7}$$

mit Hilfe der Lagrange'schen Energiemethode aufgestellt. Das Modell der Ritzelwelle SP970-302 hat für jede Massenträgheit einen rotatorischen Freiheitsgrad, wodurch sich für die kinetische Energie folgendes ergibt:

$$E_{kin} = \frac{1}{2} * J_1 * \dot{\varphi}_1^2 + \frac{1}{2} * J_2 * \dot{\varphi}_2^2 \frac{1}{2} * J_3 * \dot{\varphi}_3^2 \frac{1}{2} * J_4 * \dot{\varphi}_4^2$$
(4.1.8)

Und für die potenzielle Energie:

$$E_{pot} = \frac{1}{2} * k_{T1} * (\varphi_1 - \varphi_2)^2 + \frac{1}{2} * k_{T2} * (\varphi_2 - \varphi_3)^2 + \frac{1}{2} * k_{T3} * (\varphi_3 - \varphi_4)^2$$
(4.1.9)

Anschließend werden die einzelnen Stellen der Massen- und Steifigkeitsmatrix schrittweise durch zweimaliges Ableiten der kinetischen Energie nach $\dot{\phi}$ bzw. der potenziellen Energie nach ϕ besetzt:

$$M_{ij} = \frac{\partial^2 E_{kin}}{\partial \dot{\phi}_i \partial \dot{\phi}_j}$$

$$\downarrow$$

$$M = \begin{bmatrix} J_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & J_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & J_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & J_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & J_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & J_5 \end{bmatrix}$$
(4.1.10)

$$K_{ij} = \frac{\partial^2 E_{pot}}{\partial \varphi_i \partial \varphi_j}$$

$$\downarrow$$

$$K = \begin{bmatrix} k_{T1} & -k_{T1} & 0 & 0 & 0 & 0 \\ -k_{T1} & k_{T1} + k_{T2} & -k_{T2} & 0 & 0 & 0 \\ 0 & -k_{T2} & k_{T2} + k_{T3} & -k_{T3} & 0 & 0 \\ 0 & 0 & -k_{T3} & k_{T3} + k_{T4} & -k_{T4} & 0 \\ 0 & 0 & 0 & -k_{T4} & k_{T4} + k_{T5} & -k_{T5} \\ 0 & 0 & 0 & 0 & -k_{T5} & k_{T5} \end{bmatrix}$$

$$(4.1.11)$$

Das homogene Differentialgleichungssystem 2. Ordnung (4.1.7) kann nun mit Hilfe des Exponentialansatzes:

$$\overrightarrow{\varphi(t)} = \hat{\overrightarrow{\varphi}} e^{\lambda t} \tag{4.1.12}$$

gelöst werden. Einsetzen von (4.1.12) in (4.1.7) liefert:

$$\lambda^2 * M * \hat{\vec{\varphi}} e^{\lambda t} + K * \hat{\vec{\varphi}} e^{\lambda t} = 0 \quad \text{bzw.} \qquad (\lambda^2 M + K) \hat{\vec{\varphi}} e^{\lambda t} = 0 \tag{4.1.13}$$

Andere Lösungen als die triviale Lösung $\hat{\vec{\varphi}} = 0$ ergeben sich nur, wenn die Determinante der Matrix ($\lambda^2 M + K$) den Wert 0 annimmt.

Es muss also gelten:

$$det(\lambda^2 M + K) = 0 (4.1.14)$$

Die Berechnung der Determinante führt dann auf das charakteristische Polynom:

$$P(\lambda) = \det(\lambda^2 M + K) = 0 \tag{4.1.15}$$

dessen Lösungen, also die Eigenwerte λ_i , die Eigenkreisfrequenzen ω_n und Eigenfrequenzen f_n in der Form:

$$\omega_n = \sqrt{\lambda_i^2}$$
 bzw. $f_n = \frac{\omega_n}{2\pi}$ (4.1.16)

enthalten.

Durch einsetzen der gefundenen Eigenwerte in:

$$\left(\lambda_i^2 M + K\right)\hat{\vec{\varphi}} = 0 \tag{4.1.17}$$

erhält man zu jedem Eigenwert den entsprechenden Eigenvektor $\widehat{\varphi_i}$. Dieser wird im Folgenden noch benötigt, um die jeweilige Eigenkreisfrequenz ω_n zum entsprechenden Steifigkeitsort k_{Ti} zuzuordnen. Man geht bei der Zuordnung davon aus, dass der größte lokale Anteil der potenziellen Energie einer Eigenform die entsprechende Eigenfrequenz primär beeinflusst.

Für die potenzielle Energie - bezogen auf die n-te Eigenkreisfrequenz - gilt:

$$E_{pot,i} = \frac{1}{2} k_{Ti} * \Delta \varphi_{i,n}^2$$
(4.1.18)

Wenn also eine bestimmte Steifigkeit bei einer bestimmten Eigenkreisfrequenz eine maximale potenzielle Energie zur Folge hat, kann die Eigenkreisfrequenz der Steifigkeit in (4.1.6)

zugeordnet werden. Dabei kann es, gerade bei mehrfach verzweigten oder auch vermaschten Systemen, zu Mehrfachzuordnungen kommen, da eine eindeutige Zuordnung nicht immer gegeben ist.

Am Beispiel der Ritzelwelle SP970-302 ergibt das beschriebene Verfahren für die 5 ermittelten Eigenkreisfrequenzen folgende Verteilung der potenziellen Energien:

Damit können Zuordnungen der Art:

 $\omega_1 \rightarrow k_{T2}, \qquad \omega_2 \rightarrow k_{T4}, \qquad \omega_3 \rightarrow k_{T1}, \qquad \omega_4 \rightarrow k_{T3}, \qquad \omega_5 \rightarrow k_{T5}$

erfolgen und die entsprechenden Dämpfungswerte d_{Ti} nach (4.1.6) berechnet werden.

Das Vorgehen für die Biegesteifigkeiten um die x- oder y-Achsen in einem 3-dimensionalen Modell wäre analog dem der Torsionssteifigkeit, wobei der Ansatz:

$$k_{B,i} = \frac{E * I_i}{l_i}$$
(4.1.19)

gilt und der "Steinersche Anteil" beim Aufstellen der Trägheitsmatrix berücksichtigt werden muss, da die Rotationsachse bei der Biegung hier nicht mit der Schwerpunktachse zusammenfällt.

Die Implementierung der Steifigkeit erfolgt in OpenModelica über eine SpringDamper-Komponente, in welcher ebenfalls die ermittelten Dämpfungskennwerte hinterlegt werden können. Um die Plausibilität und die Genauigkeit des Modells zu überprüfen, wird sowohl die Welle als Volumenkörper, als auch das strukturdynamische Ersatzmodell einer Modalanalyse unterzogen und hinsichtlich der Eigenfrequenzen verglichen.

Die Eigenfrequenzen des Volumenmodells werden dazu mit Hilfe der FEM und einem entsprechenden Programm, wie in diesem Fall Ansys Workbench, ermittelt. Dabei sind nur die Eigenmoden aufgrund von Torsion von Interesse. Das ungedämpfte mechanische Ersatzmodell hingegen wird durch eine Impulsfunktion angeregt und das Amplitudenspektrum der Antwortfunktion, z.B. die Winkelgeschwindigkeit des letzten Wellenabschnitts, über eine "Fast Fourier Transformation" - kurz FFT - ausgewertet.

Abbildung 11: Modell der Impulsanregung der Ritzelwelle SP970-302 in OpenModelica

<u>Eigenmode</u>	Biegung		Torsion	
	FFT [Hz]	FEM [Hz]	FFT [Hz]	FEM [Hz]
1.	4946	3945	5684	5286
2.	11974	11530	10050	8917
3.	15510	15027	10945	12696
4.	30595	-	16495	15539

Für die Ritzelwelle SP970-302 stellen sich die Ergebnisse folgendermaßen dar:

Tabelle 3: Methodenabhängige Eigenfrequenzen der Ritzelwelle SP970-302

Es lässt sich gut erkennen, dass die Ergebnisse der FFT in etwa die gleiche Größenordnung haben, wie die Ergebnisse der FEM. Dennoch gibt es teilweise recht große Abweichungen. Um diese zu verringern, bieten sich unterschiedliche Möglichkeiten. Eine Möglichkeit wäre das Wellenmodell in noch mehr Massenträgheiten und Übertragungselemente (d.h. Steifigkeiten) aufzuteilen. Dies hätte aber im Gegenzug einen größeren Aufwand bei der Bestimmung der einzelnen Parameter und mehr Rechenzeit bei der numerischen Lösung des Modells zur Folge.

Eine andere Möglichkeit, welche auch in dieser Arbeit zur Anwendung kam, ist die gezielte Beeinflussung der Steifigkeiten des mechanischen Ersatzmodells mit Hilfe eines Vorfaktors. Durch die bereits im Vorfeld geschehene Zuordnung der Federsteifigkeiten zu bestimmten Eigenkreisfrequenzen können Eigenfrequenzen gezielt angepasst werden, indem die entsprechende Steifigkeit erhöht oder verringert wird. Dies ist im Rahmen der Arbeit auch geschehen und so enthalten die im Modell hinterlegten Steifigkeiten bereits diesen Faktor.

Abbildung 12: Ergebnis der FFT der Welle SP970-302 vor (blau) und nach (rot) der Steifigkeitsanpassung

Die Parameter und Ergebnisse der Berechnungen dieser hier behandelten und der übrigen Getriebewellen sind im Anhang der Arbeit in Form von Wellendatenblättern dargestellt. Die zugrundeliegenden Konstruktionsunterlagen, sowie weitere Rechnungen und Ergebnisse zur Biegesteifigkeit sind der Arbeit aufgrund des Umfangs in digitaler Form angefügt.

7.2 Ermittlung der Parameterwerte und Modellierung der Verzahnung

Abbildung 13 zeigt das im Modell verwendete Submodell für die Verzahnung, womit neben der Übersetzung auch die Zahnsteifigkeit, die Verzahnungsdämpfung, der Verzahnungswirkungsgrad und das mittlere Verdrehflankenspiel berücksichtigt werden können.

Abbildung 13: Verzahnungsmodell in OpenModelica

Grundlage ist das Gearbox-Modell, welches bereits in Modelica enthalten ist und das für die Zwecke des hier gebildeten Getriebemodells angepasst wurde.

Die Herleitung der entsprechenden Parameter, sowie deren Implementierung in das Modell werden im Folgenden vorgestellt.

7.2.1 Zahnsteifigkeitsverlauf

Die Elastizität der Verzahnung begründet sich in der Zahnbiegung und der Hertzschen Pressung am Zahnkontakt. Sie schwankt aufgrund des Wechsels zwischen Einzel- bzw. Mehrfacheingriff und ist stark vom Überdeckungsgrad abhängig, wie Abbildung 14 zeigt.

Abbildung 14: Spez. Verzahnungssteifigkeit für verschiedene Überdeckungsgrade (Quelle: (Laschet, 1988 S. 175)

Aufgrund von periodischen Zahnsteifigkeitsschwankungen ist der Zahnsteifigkeitsverlauf zeitlich nicht konstant und das Zahnradgetriebe zusätzlichen dynamischen Beanspruchungen ausgesetzt.

Diese winkelabhängige und damit zeitabhängige Störung kann, unter Umständen, durch Zahnfehler noch verstärkt werden.

(Laschet, 1988) nennt folgende Faktoren, welche Einfluss auf die Form des Zahnsteifigkeitsverlauf und die Größe der Zahnsteifigkeitsamplitude haben:

- verwendete Verzahnung (Normal-, Hochverzahnung) und durchgeführte Zahnkorrektur
- Überdeckungsgrad
- Zahnbelastung
- Verhältnis Zahnbreite zu Radkörperbreite
- Zahnfehler

Es existieren verschiedene Methoden, den Gesamt-Zahnsteifigkeitsverlauf zu erfassen.

Die einfachste und ressourcenschonendste Möglichkeit ist es, die Eingriffssteifigkeit als harmonische Funktionen (Abbildung 15) zu verstehen.

Abbildung 15: Sinusförmiger Zahnsteifigkeitsverlauf (Quelle: (Laschet, 1988, S. 176))

Man erhält den sinusförmigen Zahnsteifigkeitsverlauf $c_{v}(\varphi(t))$ näherungsweise durch:

$$c_{\nu}(\varphi(t)) = c_{\nu,stat} + c_{\nu,dyn} * \sin(\Omega_z * t)$$
(4.2.1)

 Ω_z ist dabei die Zahneingriffsfrequenz und $c_{v,dyn}$ die Amplitude des dynamischen Anteils. Mit:

$$c_{v,dyn} = x * c_{v,stat}$$
 und $x = 0.05 \dots 0.15$ (Vgl. Laschet, 1988 S. 175), (4.2.2)

sowie:

$$\Omega_z = 2 * \pi * \frac{z * n}{60} = \omega * z \tag{4.2.3}$$

folgt:

$$c_{v}(\varphi(t)) = c_{v,stat} + x * c_{v,stat} * \sin(z * \omega * t)$$

$$(4.2.4)$$

Häufig ist nur die spezifische Zahnsteifigkeit gegeben. Diese stellt den zeitlichen Mittelwert der Gesamt-Zahnfedersteifigkeit, also der Gesamt-Zahnnormalkraft pro mm Zahnbreite und pro Mikrometer Verformung, dar und muss mit Hilfe der geometrischen Daten wie Teilkreisdurchmesser d_0 , Radkörperbreite *b* und Schrägungswinkel β in den statischen Anteil der Torsionssteifigkeit umgerechnet werden:

$$c_{\nu,stat} = c_{\gamma} * \frac{b}{\cos\beta} * \left(\frac{d_0}{2}\right)^2$$
(4.2.5)

Damit ergibt sich für die Verzahnungssteifigkeit, welche in OpenModelica als Parameter hinterlegt werden kann:

$$c_{\nu}(\varphi(t)) = c_{\gamma} * \frac{b}{\cos\beta} * \left(\frac{d_0}{2}\right)^2 * [1 + x * \sin(x * \omega * t)]$$
(4.2.6)

Es existiert in der Standardbibliothek von OpenModelica kein Submodell zur Erfassung einer variablen Federsteifigkeit. Daher wurde ein neues Model Zahnsteifigkeit_Zahndaempfung auf Basis der Komponente elastoBacklash2 erstellt und um diese Möglichkeit erweitert, indem der in Abbildung 16 dargestellte Code hinzugefügt wurde.

```
6 parameter SI.Length b2 "Radkörperbreite getriebenes Rad";
7 parameter SI.Diameter d2 "Teilkreisdurchmesser getriebenes Rad";
9 parameter Integer z2 "Anzahl getriebenes Rad";
9 parameter SI.Angle beta(displayUnit="deg") "Schrägungswinkel";
10 parameter Real cy=16.9244 "[N/mn/ym] spezifische Eingriffsfedersteifigkewit nach DIN3990";
11 parameter Real x=0.1 "Faktor für dynamische Zahnsteifigkeit [0.05 - 0.15]";
12
13 final parameter SI.RotationalSpringConstant c_stat = (cy/(10^(-9)))*((b2)/cos(beta))*(d2/2)^2;
14
15 c=c_stat+(c_stat*x*sin(z2*der(flange_b.phi)*time));
```

Abbildung 16: Codefragment zur Berechnung des dynamischen Zahnsteifigkeitsverlauf

Die der Komponente zu übergebenden Parameter c_{γ} , b_2 , β , d_2 und z_2 können den Verzahnungsprotokollen der Getriebeauslegung entnommen werden, wobei die geometrischen Daten sich auf das angetriebene Rad (Index 2) beziehen, da die Komponente Zahnsteifig-keit_Zahndaempfung nach der eigentlichen Übersetzung innerhalb des Verzahnungsmodells kommt und die Winkelgeschwindigkeit des angetriebenen Rades für den Sinus verwendet wird.

Es zeigte sich im späteren Verlauf der Modellierung, dass der dynamische Zahnsteifigkeitsverlauf kaum eine Auswirkung auf die Simulationsergebnisse im Gesamtmodell hatte, sondern lediglich die Rechenzeiten negativ beeinflusste. Daher wurde vereinfachend mit der statischen Eingriffsfedersteifigkeit weitergearbeitet.

Stufe	$c_{\gamma} \left[\frac{N}{mm * \mu m} \right]$	β [°]	b _{Rad2} [mm]	d _{0,Rad2} [mm]	$c_{v,stat} \left[\frac{Nm}{rad}\right]$
301-601	17.9754	6	200	583	3.0716E08
302-301	16.9244	12	120	479	1.1909E08
602PT-302	19.1431	15	65	372	4.4562E07
304-2061	17.211	12	70	343.5	3.6226E07

Tabelle 4: statische Eingriffsfedersteifigkeiten

Um aber dennoch den Einfluss der dynamischen Zahnsteifigkeit auf den statischen Zustand eines Getriebes kurz zu verdeutlichen wurde ein 1-dimensionales Minimalmodell der letzten Getriebestufe erstellt.

Abbildung 17: Minimalmodell der Verzahnung 301-201

Dabei wird die Trägheit inertial, welche die Ritzelwelle darstellt, innerhalb einer Sekunde auf eine Winkelgeschwindigkeit von 6.388 rad/s beschleunigt. Das nötige Lastmoment wird durch einen am Ende angebrachten Dämpfer erzeugt. Die Zahnsteifigkeit wird, wie bereits im Vorfeld dargelegt, dynamisch berechnet.

In Abbildung 18 und Abbildung 19 sind Ergebnisse der Simulation in Form der Winkelgeschwindigkeit am Abtrieb mit und ohne variabler Zahnsteifigkeit über der Zeit aufgetragen.

Es ist deutlich der Einfluss des Zahnsteifigkeitsverlauf zu erkennen. Auch nach der Beschleunigung und dem Erreichen eines stationären Zustands wird das System harmonisch angeregt.

Abbildung 18: Winkelgeschwindigkeit am Abtrieb ohne dynamische Eingriffsfedersteifigkeit

Abbildung 19: Winkelgeschwindigkeit am Abtrieb mit dynamischer Eingriffsfedersteifigkeit

Von besonderem Interesse ist diese Parametererregung, wenn sie im Bereich der Eigenfrequenz beteiligter Wellen oder Zahnräder liegt. Hier kann unter Umständen der Resonanzfall auftreten, was zu erhöhten Laufgeräuschen und im schlimmsten Fall zur Schädigung des Getriebes führt. Dies ist im vorliegenden Getriebe jedoch nicht der Fall.

7.2.2 Verzahnungsdämpfung

Im Gegensatz zum Steifigkeitskoeffizienten kann der Dämpfungskoeffizient über die Eingriffsperiode als konstant angenommen werden. Dabei beeinflusst die im Zahneingriff wirksame Dämpfung hauptsächlich die Amplituden der durch den zeitlich variierenden Zahnsteifigkeitsverlauf angeregten Schwingungen. Außerhalb solcher Resonanzen ist die Zahndämpfung ohne Bedeutung. (Vgl. Linke, 2010)

Rechnerisch lässt sich der Dämpfungskoeffizient d_z über das Lehr'sche Dämpfungsmaß D_z bestimmen. Dies hat den Vorteil, dass trotz Unkenntnis des tatsächlichen Wertes eine vorsichtige Annahme getroffen werden kann und man die Dämpfung nicht gänzlich außenvor lassen muss.

	Dämpfungsmaß Dz			
Molerus [6.3/18]	0,01 0,1			
Peeken[6.3/19]	0,03 0,1			
Friedrich[6.3/20]	0,014 0,025 (im Stillstand)			
	0,025 0,4 (während des Laufes)			
Pagel[6.3/7]	0,02 0,14 (drehzahlabhängig)			
Linke[6.3/1]	0,05			
Bosch[6.3/21]	0,08			

Die Fachliteratur nennt unterschiedliche Werte für das Dämpfungsmaß.

Abbildung 20: Verzahnungsdämpfungsmaße (Quelle: (Linke, 2010 S. 230))

Für die konkrete Berechnung der Dämpfung kann wieder das Verfahren, welches bereits bei der Berechnung der Dämpfungskoeffizienten der Wellen zum Einsatz kam, verwendet werden (Vgl. Abschnitt 4.1).

Es ergeben sich für die einzelnen Stufen in Abhängigkeit der Gesamtträgheiten des Welle-Zahnradverbunds und statischen Eingriffsfedersteifigkeiten unter Verwendung von:

$$d_z = \frac{2 * D_z * c_{v,stat}}{\omega} \tag{4.2.7}$$

mit $D_z = 0.04$ folgende Verzahnungsdämpfungen:

Stufe	$J_1 \left[kg \ m^2 \right]$	$J_2 [kg m^2]$	$c_{v,stat} \left[\frac{Nm}{rad}\right]$	ω [s ⁻¹]	$d_z \left[\frac{Nms}{rad}\right]$
301-601	4.8	1503	3.0716E08	8023	3690
302-301	1	4.8	1.1909E08	11996	794
602PT-302	0.29	1	4.4562E07	14079	253
304-2061	0.011	0.946	3.6226E07	57720	50.2
602PT-302 304-206I	0.29 0.011	1 0.946	4.4562E07 3.6226E07	14079 57720	253 50.2

Tabelle 5: Verzahnungsdämpfungskoeffizienten

7.3 Federsteifigkeit und Dämpfung der Verbindungselemente

Einen nicht vernachlässigbaren Anteil an der Nachgiebigkeit von Getrieben haben Verbindungselemente wie Passfedern und Vielkeilprofile.

Die entsprechenden Steifigkeiten lassen sich nach einem empirischen Ansatz berechnen:

$$c_{PF} = \left(\frac{6.4}{d^2 * b * t * n}\right)^{-1} \tag{4.2.8}$$

wobei nach (KTA-3990, 2012) die Maße in mm einzusetzen sind und n für die Anzahl der in der Verbindung genutzten Passfedern steht.

Die Ermittlung der Dämpfungskennwerte erfolgte auch hier wieder über die Zuordnung der Eigenkreisfrequenzen zur lokalen Steifigkeit mit Hilfe der potenziellen Energie, wie in Abschnitt 4.1 beschrieben.
Mit D = 0.05 gilt:

Passfeder- verbindung	$J_1 \left[kg \ m^2 \right]$	$J_2 \left[kg \ m^2 \right]$	$c_{PF}\left[rac{Nm}{rad} ight]$	$\omega [s^{-1}]$	$d_{PF} \left[Nm \frac{s}{rad} \right]$
Seiltrommel	2x 742	19.45	55687500	2408	2320
601-201	1.39	1485	38115000	5239	727
301-202	0.316	4.48	9680000	5726	169
302-203	0.046	0.977	1736438	6278	27.6
602PT-204	0.246	0.043219	1905750	7200	26.5

Tabelle 6: Dämpfungskoeffizienten der Passfederverbindungen

7.4 Lagersteifigkeiten

Auch wenn, wie eingangs erwähnt, aufgrund technischer Schwierigkeiten, keine Lagerreaktionen dargestellt werden können, sollen die dafür nötigen Lagersteifigkeiten trotzdem hier erwähnt werden.

Das Schwingungsverhalten eines Antriebssystems wird durch Wälzlager in verschiedener Weise beeinflusst. So können sie nicht nur Schwingungserreger sein, wie es zum Beispiel bei Lagerschäden der Fall wäre, sondern auch als Federn und Dämpfer, bedingt durch ihre Steifigkeit, wirken.

Das Steifigkeitsverhalten der Lager- und Kontaktstellen ist für das Deformations- und Schwingungsverhalten von großer Bedeutung und sollte bei der Modellbildung entsprechend berücksichtigt werden.

Die Berechnung der Wälzlagersteifigkeiten erfolgte, aus Ermangelung von Herstellerangaben, am Betriebspunkt mit Hilfe des Online Tools "Bearinx Easy Friction" der Schaeffler AG.

Die notwendigen Parameter, wie Lagerkräfte- und Momente wurden der Getriebeberechnung aus dem GWJ SystemManager entnommen.

In Tabelle 7 sind die ermittelten Lagersteifigkeiten und Verschiebungen am Betriebspunkt in der jeweiligen Koordinatenrichtung, sowie deren zu Grunde liegenden Kräfte aufgeführt.

Dabei wurde unter Annahme elastischer Verformung vereinfachend der Ansatz:

$$k_i = \frac{F}{\Delta l_i} \tag{4.2.9}$$

verwendet.

Lagor	Fx	Δx	kx	Fy	Δy	ky	Fz	Δz	kz
Layer	[N]	[mm]	[N/m]	[N]	[mm]	[N/m]	[N]	[mm]	[N/m]
301-01	5750	0.0216	0.2662E09	159683	0.0805	1.9836E09	68712	0.0346	1.9859E09
301-02	-	-	-	150486	0.0738	2.0391E09	8042	0.004	2.0105E09
302-01	10900	0.0698	0.1562E09	51271	0.0417	1.2295E09	13838	0.0113	1.2246E09
302-02	-	-	-	63508	0.0447	1.4207E09	10222	0.0072	1.4197E09
303-01	-	-	-	323	0.0034	9.5E07	1468	0.0155	9.471E07
303-02	-	-	-	235	0.0090	2.61E07	201	0.0077	2.6104E07
304-01	2478	0.1499	16.531E06	1639	0.0015	1.093E09	3426	0.0032	1.07E09
304-02	-	-	-	3130	0.0083	0.3771E09	8000	0.0213	0.3759E09
601-01	-	-	-	193439	0.0737	2.6247E09	46933	0.0178	2.6367E09
601-02	24280	0.1874	0.1323E09	115900	0.0584	1.9846E09	49376	0.0249	1.983E09
602-01	5150	0.1523	33.814E06	21260	0.0155	1.3716E09	7647	0.0056	1.3655E09
602-02	2480	0.0476	0.0521E09	928	0.0017	0.5459E09	5153	0.0049	1.0516E09
602-03	-	-	-	5418	0.0108	0.5016E09	4736	0.0095	0.4985E09
602-04	-	-	-	1259	0.0015	0.8393E09	7687	0.0090	0.8541E09
603-01	-	-	-	3976	0.0134	0.2967E09	5384	0.0181	0.2975E09
603-02	-	-	-	2363	0.0089	0.2655E09	4937	0.0186	0.2654E09

Tabelle 7: Kräfte, Momente, Verschiebungen, Steifigkeiten der Lager

Streng genommen stellt dieser Weg eine sehr starke Vereinfachung dar. Die Steifigkeit eines räumlichen Bauelements, wie das Wälzlager, welches in drei unabhängige Richtungen durch Kräfte und Momente belastet wird, müsste durch eine 6x6-Steifigkeitsmatrix beschrieben werden. Dabei hängen die Koeffizienten, also die Federzahlen solch einer Matrix von sehr vielen Einflüssen ab, was einen hohen Aufwand für deren Ermittlung zur Folge hat. Hinzu kommt, dass das Steifigkeitsverhalten der Lager nicht linear ist und sehr stark von der wirkenden Radialkraft und der Überrollfrequenz der Wälzkörper abhängt.

7.5 Verdrehflankenspiel

Um die Abbildung des Getriebes im Modell noch etwas realistischer zu gestalten, wurde auch das Verdrehflankenspiel erfasst, welches dazu führt, das der Kontakt zwischen den miteinander in Eingriff befindlichen Zahnrädern zeitweilig verloren geht, wenn sich das Vorzeichen des zu übertragenden Drehmoments ändert. Während des Durchlaufens des Spiels bewegen sich Ritzel und Rad unabhängig voneinander, wodurch es zu Differenzen der Winkelgeschwindigkeit kommt. Dadurch können erhebliche Drehmomentstöße am Ende des Spieldurchlaufs im System entstehen.

Die während der Getriebeberechnung ermittelten Höchst- und Kleinstmaße des Flankenspiels wurden gemittelt und mit der Beziehung:

$$j_{tm} = r_{w2} * \hat{\varphi} \tag{4.2.9}$$

auf die Einheit Radiant umgerechnet.

j _{ti} [μm]	j _{te} [μm]	$d_{w2} \ [mm]$	j _{tm} [rad]
247.1359	426,7086	595,2642	1,132E-03
182.5195	328,979	486,5479	1,0513E-03
210.9505	369,2697	377,1429	1,5385E-03
172.7572	338,8886	350,8235	1,4584E-03
	j _{ti} [μm] 247.1359 182.5195 210.9505 172.7572	$\begin{array}{c c} j_{ti} \ [\mu m] & j_{te} \ [\mu m] \\ \hline 247.1359 & 426,7086 \\ 182.5195 & 328,979 \\ 210.9505 & 369,2697 \\ 172.7572 & 338,8886 \\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

 Tabelle 8: Mittlere Verdrehflankenspiele

7.6 Reibmomente der Lager

Aufgrund schmierfilmbedingter tribologischer Effekte, welche zwischen den Laufbahnen, Wälzkörpern und Käfigen entstehen, variiert die Reibung in einem Lager in Abhängigkeit von Drehzahl und Schmierstoffviskosität.

Dabei lassen sich im Wesentlichen beim Durchlaufen der Drehzahlbereiche 4 Zonen unterscheiden (Abbildung 21):

- **Zone 1:** In diesem Bereich tragen allein die Oberflächenunebenheiten die Last im Lager. Dadurch ist die Reibung zwischen den sich bewegenden Oberflächen hoch, was zu einem höheren, zu überwindenden Anlaufmoment am Beginn der Drehbewegung führt.
- Zone 2: In dieser Zone beginnt sich ein trennender Schmierfilm, welcher einen Teil der Last trägt, aufzubauen, wodurch sich weniger Unebenheiten berühren, und die Reibung abnimmt.
- **Zone 3:** In dieser Zone trägt allein der Schmierfilm die Last. Die viskosen Verluste sind dabei sehr hoch, wodurch die Reibung weiter ansteigt.

Zone 4: In Zone 4 herrschen schmierfilmreduzierende und schmierstoffverdrängende Einflüsse vor, wodurch die Reibung nicht weiter ansteigt und sogar gemindert werden kann.

Die lagerspezifischen Merkmale sowie lagerungsbedingte Einflüsse lassen sich durch:

$$\tau = \tau_{rr} + \tau_{sl} + \tau_{seal} + \tau_{drag} \tag{4.2.10}$$

, mit τ für das Gesamtreibmoment, τ_{rr} für Rollreibungsmoment τ_{sl} für Gleitreibungsmoment τ_{seal} für Reibungsmoment der Berührungsdichtung und τ_{drag} für Reibungsmomente bedingt durch Strömungs- und Planschverluste, bestimmen.

Abbildung 21: Lagerreibmoment in Abhängigkeit der Drehzahl (Quelle: (SKF))

Da jedem Summanden hierbei weitere komplexe Berechnungen zugrunde liegen (Vgl.SKF) wird auch bei der Bestimmung der Reibmomentenverläufe wieder auf das Onlinetool "Bearinx" zurückgegriffen, welches durch Festlegen der nötigen Randbedingungen, wie Art der Schmierung, Temperatur der Welle, Temperatur der Umgebung und Viskosität des Schmiermittels ein Reibmoment bei vorgegebener Drehzahl berechnet. Die so mühsam ermittelten Verläufe sind im Anhang der Arbeit aufgeführt. Auch hier stellte sich im Nachhinein bei Simulationstests heraus, dass eine dynamische Beachtung der Reibmomente die Simulation unverhältnismäßig verlangsamt. Daher wurde dazu übergegangen ein konstantes Reibmoment als Mittelwert der einzelnen drehzahlspezifischen Reibmomente im Modell zu implementieren.

Zur weiteren Begünstigung der Rechenzeit wurden die Reibmomente pro Welle in nur einem

BearingFriction-Element als Summe zusammengefasst.

Welle	$ au_{R,mittel}[Nm]$
601	44.5
301	27
302	8
303	0.3
304	1.5
602PT	11
Hohlrad	6.5

Tabelle 9: Mittlere Lagerreibmomente

7.7 Weitere Einflüsse auf das dynamische Verhalten

Weitere Einflüsse für das dynamische Verhalten eines Getriebes, welche in der hier vorgestellten Modellbildung keine Beachtung finden, aber der Vollständigkeit halber hier erwähnt seien, sind unter anderem:

- Steifigkeiten der Fügestellen
- Erregung durch Lagerschäden
- äußere Erregungen durch motorische Antriebe oder Schwingungen des Tragwerks
- Anregung durch zusätzliche Übertragungselemente, wie z.B. Kupplungen
- Anregung durch Verzahnungsfehler

Diese Aufzählung stellt nur einen kleinen Auszug aus der großen Anzahl an möglichen Einflüssen dar und es muss immer von Fall zu Fall unterschieden werden, welche Faktoren einer detaillierten Berücksichtigung im Modell bedürfen und welche vereinfacht angenommen oder gar weggelassen werden können.

8 Das Modell in OpenModelica

Nachdem nun die Parameter für das hier behandelte Modell ermittelt wurden, kann dazu übergegangen werden, diese softwareseitig zu erfassen. Das dadurch in OpenModelica entstandenen Modell zeigt Abbildung 22.

Abbildung 22: Gesamtmodell in OpenModelica mit Nummern für Zahnräder und Wellen

Es enthält die Trägheitsmomente der Wellen in Form von Inertia-Elementen aus der Rotational-Bibliothek. Diese werden durch SpringDamper-Elemente, in welchen die lokalen Steifigkeiten und Dämpfungen hinterlegt sind, gekoppelt.

Die Drehmoment- und Winkelgeschwindigkeitsübersetzung wird durch Gearbox-Elemente, welche die Daten für die Verzahnungssteifigkeit und -dämpfung, die Übersetzung und das Verdrehflankenspiel enthält, realisiert.

Die Sonnenwelle, der Planetenträger und das Hohlrad sind über einen IdealPlanetary-Baustein im Verbund und die Lagerreibung ist in der Komponente BearingFriction erfasst.

OpenModelica arbeitet mit der objektorientierten Modellierungssprache "Modelica" zur Darstellung komplexer physikalischer Systeme. Das besondere an Modelica ist, dass im Gegensatz zu klassischen Programmiersprachen Gleichungen beschrieben werden und nicht Anweisungen. Die Reihenfolge der Gleichungen ist dabei unerheblich. Wichtig ist nur, dass die resultierenden Gleichungssysteme in sich geschlossen und lösbar sind.

Die den jeweiligen Elementen zugrunde liegenden Gleichungen, welche dann durch die Software numerisch gelöst werden, sind im Folgenden dargestellt.

Inertia

SpringDamper

$$\tau_c = c * (\varphi_{rel} - \varphi_{rel,0})$$

$$\tau_d = d * \omega_{rel}$$

$$\tau = \tau_c + \tau_d$$

$$P_v = \tau_d * \omega_{rel}$$

Gearbox

Submodell, welches die Elemente lossyGear und elastoBacklash enthält (vgl. Abb. 12)

lossyGear

$$\varphi_a = i * \varphi_b$$

$$\tau_b + i * (\tau_a - \tau_v) = 0$$

$$\omega_a = \dot{\varphi}_a$$

$$a_a = \ddot{\varphi}_a$$

elastoBacklash

Im Wesentlichen wie die von SpringDamper, jedoch mit zusätzlichen winkelabhängigen Gleichungen für das Spiel IdealPlanetary

BearingFriction

$$\begin{aligned} \varphi_a &= \varphi_b &= \varphi \\ \omega &= \dot{\varphi} \\ a &= \ddot{\varphi} \\ \tau_a &+ \tau_b - \tau_R &= 0 \end{aligned}$$

Man bezeichnet diesen Ansatz als akausale Modellierung, da es im Modelica-Code keinen festen kausalen Zusammenhang gibt. Ähnlich wie bei mathematischen Gleichungen, wo für x = y auch y = x gilt.

Wichtig ist jedoch zu wissen, dass dies nur für die oberste Ebene der Modellierungssprache gilt. Für die numerische Lösung mit unterschiedlichen Algorithmen muss eine Berechnungsreihenfolge, also ein kausaler Zusammenhang, hergestellt werden. Das Gleichungssystem wird dazu mit Hilfe der Software manipuliert und in eine möglichst einfache lösbare Form gebracht, um anschließend durch Kompilieren in maschinenverständlichen Code übersetzt zu werden.

9 Anwendungsfälle / Simulationen

Das im vorigen Abschnitt vorgestellte Modell ist als eine Art Basismodell zu verstehen. Es muss für die jeweilige Anwendung noch leicht angepasst und um eventuell notwendige Elemente erweitert werden.

Die folgenden Abschnitte zeigen einiger dieser Anwendungsfälle, welche dazu beitragen sollen, die ordnungsgemäße Funktion des Modells zu belegen, sowie mögliche Verwendungszwecke aufzuzeigen.

9.1 Hochfahren unter Last

Diese Simulation soll dazu dienen die korrekte Übersetzung zwischen den einzelnen Getriebestufen zu überprüfen. Dazu wird mit Hilfe zweier Damper-Bausteine am Abtrieb (601) ein Lastmoment erzeugt. Der Antrieb erfolgt am Motormoment der Sonnenwelle (303) bzw. der Antriebswelle (304) mit Hilfe einer Speed-Komponente, welche eine geforderte Winkelgeschwindigkeit erzeugt. Die Eingangsgröße für den Speed-Baustein ist eine ramp-Funktion. Weiterhin werden die Lager entfernt, um keine Verluste im System zu erzeugen. Anschließend erfolgt die Auswertung der Winkelgeschwindigkeiten der einzelnen Wellen.

Abbildung 23 zeigt exemplarisch den Verlauf der verschiedenen Winkelgeschwindigkeiten über der Zeit, bei getriebener Sonnenwelle und Antriebswelle.

Abbildung 23: Winkelgeschwindigkeiten

Die konkreten Ergebnisse stellen sich wie folgt dar:

Randbedingung:	Sonnenwelle 303	getrieben: $156 \ rad/s = 1490 \ min^{-1}$
	Antriebswelle 304	getrieben: 156 $rad/s = 1490 min^{-1}$
	Lastmoment	67367 Nm

		Gesamt:	78.7
601	1.98	301 / 601	3.23
301	6.4	302 / 301	3.943
302	25.24	602PT / 302	2.182
602PT	55.07	303 / 602PT	2.832
<u>Winkelgeschwindigkeiten</u>	[rad/s]	<u>Übersetzungen i:</u>	

Randbedingung:	Sonnenwelle 303	fest: $0 \ rad/s = 0 \ min^{-1}$
	Antriebswelle 304	getrieben: 156 $rad/s = 1490 min^{-1}$
	Lastmoment	67367 Nm

		Gesamt:	157.03
601	0.99	301 / 601	3.23
301	3.2	302 / 301	3.94
302	12.62	602PT / 302	2.18
602PT	27.53	304 / 602PT	5.66
Winkelgeschwindigkeiten	[rad/s]	<u>Übersetzungen i:</u>	

Randbedingung:	Sonnenwelle 303	getrieben: $156 \frac{rad}{s} = 1490 \ min^{-1}$
	Antriebswelle 304	fest: $0 \frac{rad}{s} = 0 \min^{-1}$
	Lastmoment	67367 Nm

		Gesamt:	157.03
601	0.99	301 / 601	3.23
301	3.2	302 / 301	3.94
302	12.62	602PT / 302	2.18
602PT	27.53	303 / 602PT	5.66
Winkelgeschwindigkeiten	[rad/s]	<u>Übersetzungen i:</u>	

Die erreichbaren Übersetzungen entsprechen denen der Getriebeauslegung (Vgl. Tabelle 1). Daher kann das Modell in dieser Hinsicht als korrekt angesehen werden.

9.2 Einfallen einer Sicherheitsbremse

In dieser Simulation soll das Einfallen einer Sicherheitsbremse simuliert werden. Dazu werden dem Basismodell zwei Brake-Elemente hinzugefügt, die beim Übersteigen einer bestimmten Drehzahl ein Bremsmoment an den Trägheiten der Seiltrommeln aufbauen. Die Bremsen werden mit Hilfe des extra für diesen Zweck erstellten Submodells "STR_Bremse" geregelt. Sobald eine bestimmte Winkelgeschwindigkeit am Zahnrad 201 überschritten werden die Bremsen ausgelöst. Zusätzlich wurde in die Steuerung ein variabler Faktor integriert, der es erlaubt über den Anstieg des Bremsmoments die Bremszeit zu beeinflussen.

Abbildung 24: Aufbau der Bremssteuerung

Um von Beginn an einen Zustand unter Last zu simulieren, werden den beiden Wellenenden der Abtriebswelle 601 je die Hälfte des Lastmoments als Konstanten aufgegeben und am Antrieb 304 ein Gegenmoment mit Hilfe eines Step-Bausteins erzeugt. Die Sonnenwelle ist fixiert. Nach 1 Sekunde wird das Gegenmoment sprungartig auf 0 gesetzt, was dazu führt, dass aufgrund des immer noch wirkenden Lastmoments die Abtriebswelle beschleunigt und der Nothalt ausgelöst wird. Zugunsten der Simulationszeiten wurden Lagerreibungen wieder weggelassen.

Die Vorgaben des Bremsvorgangs sind Folgende:

- Lastmoment: 67367 Nm
- Bremsmoment: 197120 Nm
- Reibungskoeffizient der Bremsen: 0.5
- Ansprechdrehzahl: 21 U/min = 2.199 rad/s
- Bremszeit: 0.72s

Abbildung 25: Teilmodell zur Notbremssimulation

Die Zeit, über welche simuliert wird, beträgt 3 Sekunden, bei einer Schrittweite von 0.001 Sekunden.

Abbildung 26: Winkelgeschwindigkeitsverlauf des Zahnrad 201

Abbildung 26 zeigt ein Ergebnis der Simulation in Form der Winkelgeschwindigkeit über der Zeit des Zahnrads 201 auf der Abtriebswelle.

Gut zu sehen ist, dass die Drehzahl trotz Bremsen noch einen kurzen Moment ansteigt, um nach etwa der Hälfte der Bremszeit abzufallen. Dies liegt daran, dass sich das Bremsmoment erst linear aufbauen muss und nicht sprungartig anliegt. So erreicht die Abtriebswelle, wenn auch nur für einen sehr kurzen Moment noch eine Winkelgeschwindigkeit von bis zu 3.7 rad/s, was einer Drehzahl von ungefähr 35 Umdrehungen pro Minute entspricht.

Mit solchen Informationen könnte man nun zum Beispiel unter Beachtung der Seileinscherung und -dehnung und des Trommeldurchmessers überprüfen, wie weit die Last im Ernstfall droht abzurutschen, bevor die Anlage zum Stillstand kommt.

Eine weitere wichtige Information, die der Simulation entnommen werden kann, ist der Verlauf des anliegenden Drehmoments in bestimmten Bereichen des Getriebes.

Abbildung 27: Momentenverlauf am Planetenträger

Die obere Abbildung zeigt den Momentenverlauf am Planetenträger während der simulierten Zeit. Gut zu sehen ist der Anstieg des Moments während des Bremsvorgangs (Sekunde 1 - 1.7). Dabei nimmt das Moment bis ca. 3000 Nm zu. Die sehr ausgeprägten Schwingungen vor und nach dem Bremsen sind wahrscheinlich durch eine zu gering angenommene Dämpfung begründet. Hier kann im Einzelfall nach justiert werden, um einen etwas realistischeren Verlauf zu erhalten. Auf das Maximum der Amplitude hat dies aber keinen Einfluss. Deutlich erkennbar ist auch das vorhandene Zahnspiel, welches die Stufen während des Nulldurchgangs nach dem Bremsen innerhalb der Kurve verursacht.

Abbildung 28: Absolutbeschleunigungskurve

Abschließend zu dieser Simulation sei noch die absolute Beschleunigung einer Trägheit gezeigt (Abbildung 28).

Es ist gut zu erkennen, wie die Masse kurz vor Einsetzen des Bremsvorgangs beschleunigt wird (Sekunde 1) und wann es zu den bereits in Abschnitt 7.5 erwähnten Drehmomentstößen aufgrund des Durchlaufens des Verdrehflankenspiels kommt (Hohe Ausschläge ab Sekunde 1.7).

9.3 Wirkungsgrad des Getriebes

Eine weitere Möglichkeit, die das Modell bietet, ist die recht einfache Ermittlung des Getriebewirkungsgrads bei gegebene Lagerreibmomenten und Verzahnungswirkungsgraden. Dabei ist jedoch anzumerken, dass der Wirkungsgrad eines Getriebes eine drehzahlabhängige Größe ist und das Ergebnis hier bei konstanten Lagerreibmomenten nur ein Mittelwert darstellt.

Für die Simulation werden die Verzahnungswirkungsgrade in der Gearbox-Komponente, zusätzlich zu den schon erfassten mittleren Lagerreibmomenten, hinterlegt. Die Wirkungsgrade für die Verzahnung können den Verzahnungsprotokollen entnommen werden.

Am Abtrieb werden wieder zwei Damper-Elemente angebracht, die für das nötige Lastmoment sorgen. Der Antrieb erfolgt über die Sonnenwelle und die Antriebswelle 304 mit je 156 rad/s.

Nach erfolgreicher Berechnung der Simulation, die einige Zeit dauert, können die Momente und Winkelgeschwindigkeiten am An- und Abtrieb abgelesen und der mechanische Wirkungsgrad über den Zusammenhang:

$$\eta_{mech} = \frac{P_{Abtrieb}}{P_{Antrieb}} = \frac{\tau_{Abtrieb} * \omega_{Abtrieb}}{\tau_{Antrieb} * \omega_{Antrieb}}$$
(6.3.1)

berechnet werden.

Es wurden folgende Momente, Geschwindigkeiten und Leistungen ermittelt:

Moment Seiltrommel Links:	33472 Nm
Winkelgeschwindigkeit Seiltrommel Links:	1.98711 rad/s
Moment Seiltrommel Rechts:	33472 Nm
Winkelgeschwindigkeit Seiltrommel Rechts:	1.98711 rad/s
Moment Sonnenwelle 303:	442 Nm
Winkelgeschwindigkeit Sonnenwelle 303:	156 rad/s
Moment Antriebswelle 304:	442 Nm
Winkelgeschwindigkeit Antriebswelle 304:	156 rad/s
Vorhandene Leistung am Abtrieb:	133025 W
Vorhanden Leistung am Antrieb:	137904 W
Gesamtwirkungsgrad:	0.9646
Gesamtverlustleistung:	4879 W

Die Ergebnisse scheinen plausibel, da sie mit Vergleichswerten bezüglich des Wirkungsgrades aus der Fachliteratur (Wittel, et al., 2019 S. 774) gut übereinstimmen.

9.4 Untersuchung auf Resonanzstellen

Abschließend wurde das Modell hinsichtlich eventueller Resonanzstellen beim Anlaufen untersucht. Dazu wurde mit Hilfe einer ramp-Funktion die Drehzahl am Antrieb langsam erhöht um anschließend bestimmte Bereiche, wie zum Beispiel die Verzahnungen auf ungewöhnliche Amplitudenerhöhungen hin zu überprüfen.

Abbildung 29: Relative Winkelbeschleunigung der Verzahnung 301-201 beim Anfahren

Hier zeigten sich zwar Ausschläge auch nach dem anfänglichen Einschwingen beim Anfahren (vgl. Abbildung 29, ab Sekunde 1), jedoch ist deren Ursache sehr wahrscheinlich die verzögernde Rückwirkung anderer Massenträgheiten aufgrund der Federsteifigkeiten und nicht das Durchfahren von Resonanzstellen. Es konnten keine besonderen Erhöhungen der Amplituden bei Anregung der entsprechenden Verzahnung, mit der am Ort der Ausschläge ermittelten Drehzahlen festgestellt werden.

10 Das räumliche Modell

Auch wenn es nicht gelungen ist, ein funktionsfähiges räumliches Modell des Getriebes zu erstellen, so sollen die Ergebnisse dieser Arbeit dennoch kurz erläutert werden.

Abbildung 30: Räumliches Modell der Planetenstufe

Abbildung 30 zeigt zum Beispiel das komplexe Modell des Planetengetriebes. Dieses besteht aus einzelnen cylinder- und bodyShape-Komponenten (blau), welche mit Koppelelementen (gelb) verbunden sind. Die cylinder- und bodyShape-Elemente bilden dabei die diskreten Massen des Modells und liefern die physikalischen Größen "Masse" und "Massenträgheit" für die Simulation. Das Koppelelement wiederum, welches die rotatorischen Freiheitsgrade um die x- und y-Achse für Biegung und Torsion in Form zweier revolute joints enthält, sorgt für die nötige Steifigkeit und Dämpfung im System.

Abbildung 31: Sonnenwelle mit Lagerung

In Abbildung 31 ist ein Detail der Sonnenwelle mit Lagerung zu sehen. Die translatorischen Freiheitsgrade in x-,y- und z-Richtung werden durch 3 prismatic joints realisiert, wovon zwei mit Feder-Dämpfer-Bausteinen versehen sind um die Lagersteifigkeit in y- und z-Richtung zu gewährleisten. Die x-Richtung, sowie die Rotation um alle 3 Raumkoordinaten ist frei, da es sich hier um das Modell eines Loslagers handelt.

Abbildung 32: Submodell "Koppelelement"

Einzeln betrachtet funktionieren die entwickelten Wellenmodelle gut. Sie lassen sich problemlos, wenn auch mit etwas Zeit berechnen und liefern keine Fehlermeldungen bezüglich Unteroder Überbestimmmungen des Systems. Wenn man jedoch versucht die Wellen, so wie in Abbildung 33 dargestellt, untereinander zu koppeln, so ergibt sich immer ein überbestimmtes System aufgrund der im Modell vorhandenen Lagermodelle. Auch eine Geschwindigkeits- und Drehmomentübertragung von einer Welle zur anderen ist nicht möglich, da man dazu zusätzliche Freiheitsgrade um die Rotationsachse (x-Achse) in Form von revolute joints in das System bringen muss, wodurch der Grad der Überbestimmung weiter zunimmt.

Abbildung 33: Das räumliche Gesamtmodell in OpenModelica

Die 3-dimensionalen Modelle sind dem digitalen Anhang der Arbeit zur weiteren Beurteilung beigefügt.

11 Möglichkeiten der Verifizierung

Für eine Verifizierung des Modells bieten sich im wesentlichen nur Vergleichsmessungen am realen Objekt oder der Vergleich mit bereits vorhandenen Daten an.

Zur Bestätigung des Eigenverhaltens einzelner Maschinenelemente und der damit berechneten Parameter kann zum Beispiel eine experimentelle Modalanalysen mit Hilfe der Hammerschlagmethode oder Shakermessung durchgeführt werden.

Bezüglich der Genauigkeit des dynamischen Verhaltens des Modells bei außergewöhnlichen Ereignissen sind Betriebsschwingungsanalysen empfohlen, um überhaupt erst eine gewisse Datengrundlage zu schaffen.

Leider bestand zum Zeitpunkt der Anfertigung der Arbeit keine Möglichkeit derartige Messungen an einem Getriebe durchzuführen, um die Ergebnisse der Simulationen zu bestätigen. Auch der Vergleich mit Literaturwerten stellte sich als schwierig bis gar unmöglich heraus. Zu individuell sind die verschiedenen Modelle hinsichtlich ihres Aufbaus, sowie den getroffenen Annahmen und Randbedingungen. Häufig sind Beispiele von kleinen, sehr einfachen Modellen aufgeführt, die sich nur schwer mit dem hier Vorliegenden vergleichen lassen.

Auch einschlägige Fachliteratur, auf die schon innerhalb der Arbeit mehrfach verwiesen wurde, nennt meist nur experimentelle Untersuchungen als Verifizierungsmöglichkeit.

12 Zusammenfassung und Fazit

Die vorliegende Arbeit hat eine Möglichkeit der Modellierung eines formschlüssigen Getriebes in Form eines Stirnrad-Planetengetriebes mit Hilfe der Modellierungssprache Modelica vorgestellt. Es wurden dabei einige einfache Ansätze erläutert, welche es einem ermöglichen die für die Modellbildung notwendigen Parameter zu quantifizieren und modellhaft zu erfassen. Darauf aufbauend wurde ein sehr einfaches, auf einen rotatorischen Freiheitsgrad reduziertes, Torsionsschwingermodell entwickelt, welches die Möglichkeit bietet, verschiedene Situationen des realen Betriebs zu simulieren und dadurch das dynamische Verhalten des Getriebes zu beurteilen.

Wie gezeigt, eignet es sich gut Spitzenlasten bezüglich einer außergewöhnlichen Beanspruchung auf Torsion, wie dem Einfallen einer Sicherheitsbremse, im System zu identifizieren. Mit diesen Ergebnissen können dann die Maschinenelemente in weiteren Simulationen, wie zum Beispiel der Finiten Elemente Methode, hinsichtlich Ihrer Festigkeit untersucht werden. Die Ergebnisse der Simulationen scheinen dabei auf den ersten Blick plausibel und das Modell verhält sich den Erwartungen entsprechend. Eine endgültige Verifizierung des Modells bleibt diese Arbeit aber aus Ermangelung entsprechender Vergleichsdaten schuldig. Hier ist noch großes Potenzial für zukünftige Arbeiten und Untersuchungen. Es ist zu empfehlen, das Modell an ein vorhandenes Getriebe anzupassen und ausführliche Schwingungsmessungen am realen Objekt durchzuführen, um anschließend den Grad der Modellgenauigkeit abschätzen und eventuelle Feinjustierungen vornehmen zu können.

Das ursprüngliche Vorhaben, ein räumliches Mehrkörpermodell zu erstellen, welches auch translatorische Einflüsse, wie einzelne Lagerreaktionen, erfassen kann, konnte nicht realisiert werden. Es war trotz intensiver Bemühungen und vieler Wochen Arbeit nicht gelungen, das Modell in einen funktionsfähigen Zustand zu versetzen.

Die Recherchen und Bearbeitung des Themas haben weiterhin ergeben, dass bei der Modellierung eines solchen Systems sehr viele Bereiche des theoretischen Maschinenbaus betroffen sind, was tiefgehenden Kenntnisse, z.B. in Bereichen der Tribologie, der Maschinendynamik, der Werkstoffkunde aber auch der Getriebetechnik, sowie deren dynamisches Wirken untereinander voraussetzt. Dabei muss von Fall zu Fall immer wieder neu abgewogen werden, bis zu welcher Tiefe man den Modellierungsgrad betreibt und ob man Sachverhalte verallgemeinern kann. Es zeigte sich zudem, dass Rechenzeit und Verständlichkeit des Modells, auch in Bezug auf die Ergebnisse, sehr davon abhängen, wie genau man die meist zeitabhängigen Einflüsse abbildet. Ein Modell sollte daher also immer nur so genau wie nötig, nicht wie möglich, sein.

Abschließend wird empfohlen, auch gerade bezüglich der benötigten Rechenzeit und den damit verbundenen wirtschaftlichen Aspekten, zu Beginn ein eher allgemeines Modell zu erstellen und mit den so gewonnen Daten weitere Berechnungen an detaillierteren, auf die konkrete Fragestellung abzielenden, Teilmodellen durchzuführen.

13 Literaturverzeichnis

Beater, Peter. 2016. *Modellbildung und Simulation technischer Systeme mit Modelica 3.* Norderstedt : BoD - Books on Demand, 2016.

Brychta, Peter und Müller, Kai. 2004. *Technische Simulation*. Würzburg : Vogel Fachbuch Verlag, 2004.

Dresig, Hans und Fidlin, Alexander. 2020. *Schwingungen mechanischer Antriebssysteme.* Berlin : Springer-Verlag, 2020. S. 204.

Dreßig, Hans und Holzweißig, Franz. 2016. *Maschinendynamik.* Berlin : Springer-Verlag, 2016.

Franke, R. 1958. *Vom Aufbau der Getriebe -Entwicklungslehre der Getriebe,.* Düsseldorf : VDI-Verlag, 1958.

Fritzson, Peter. Introduction to object-oriented modeling and simulation with Modelica using OpenModelica. *The Modelica Association Web Page*. [Online] http://www.modelica.org/.

Gold, Peter Werner. 1979. *Statisches und dynamisches Verhalten mehrstufiger Zahnradgetriebe.* Braunschweig : Technische Universität Braunschweig, 1979.

Henlich, Thomas. 1998. Untersuchungen zu dynmaischen Lagerkräften bei Zahnradgetrieben. Dresden : s.n., 1998.

Junglas, Peter. 2014. *Praxis der Simulationstechnik - Eine Einführung in signal- und objektorientierte Methoden.* Haan-Gruiten : Verlag Europa-Lehrmittel, 2014.

Klocke, Fritz und Brecher, Christian. 2017. Zahnrad- und Getriebetechnik - Auslegung, Herstellung, Untersuchung, Simulation. München : Carl Hanser Verlag, 2017.

Knaebel, M. 1987. Technische Schwingungslehre. Stuttgart : Teubner Studienskripte, 1987.

KTA-3990. 2012. Auslegung von Hebezeugen in Kernkraftwerken. s.l. : Kerntechnischer Ausschuss, 2012. 2012-11.

Kücükay, Ferit. 1987. Dynamik der Zahnradgetriebe - Modelle, Verfahren, Verhalten. Berlin : Springer-Verlag, 1987.

Laschet, Andreas. 1988. Simulation von Antriebssystemen. Berlin : Springer-Verlag, 1988. S. 34.

Linke, Heinz. 2010. Stirnradverzahnung. München, Wien : Carl Hanser Verlag, 2010.

Loomann, Dr. Ing. Johannes. 1996. Zahnradgetriebe - Grundlagen, Konstruktion, Anwendung in Fahrzeugen. Berlin : Springer-Verlag, 1996.

Niemann, G. und Winter, H. 1985. *Maschinenelmente Band I +II.* Berlin : Springer-Verlag, 1985.

Otter, Prof. M. 2015. Objektorientierte Modellierung und Simulation von Antriebssystemen. [Buchverf.] D. Schröder. *Elektrische Antriebe - Regelung von Antriebssystemen.* Berlin : Springer-Verlag, 2015.

Scherf, E.H. 2004. *Modellbildung und Simulation dynamischer Systeme.* München : Oldenbourg Wissenschaftsverlag GmbH, 2004.

SKF. Das SKF Verfahren zur Berechnung des Reibungsmoments.

Wittel, et al. 2019. *Roloff/Matek Maschinenelemente 24. Auflage*. Berlin : Springer Vieweg, 2019.

Zimmer, Dirk. Virtual Physics. [Online] DLR - Institut für Robotik und Mechatronik. https://rmc.dlr.de/sr/de/staff/dirk.zimmer/VirtualPhysics.

14 Anhänge

14.1 Allgemeine Getriebedaten

		Anfrage Hu	bgetriebe	
Fabrik-	Nr.: 56528 / K	ran 684	erstellt am : 25.01.2017	
Baugru	ppe 232		Bearbeiter : Bischoff	
eingesetzte Motorbaugröße	315 M	vorh.P=	132 kW bei 100%	, ED
Anzahl der Motoren	nm=	2		
Motorsteuerung		Umrichter		
benötigte Leistung (Motor)	P1=	140,29 kW		
Anlaufmoment je Antrieb (Motor)	Mmax=	699,37 Nm		
Antriebsdrehzahl	n1=	1490 U/min		
Abtriebsdrehzahl	n2=	19,10 U/min		
notw. Übersetzung	i=	78,02		
benötigte Stückzahl		1		
Einstufung nach FEM 1.001	L3	T6 M7		
Hubwerkstyp DIN EN 13001-2		HD4		
Hubklasse DIN EN 13001-2		HC3		
Lastmoment am Abtrieb	TI=	67367,0 Nm	Dynamikbelwert (Lastkombination A	A1,B1)
Nutzlast (Hublast)		40000 kg	Dynamikbeiwert (Lastkombinatio	on C1)
Masse des Tragmittel (fest eingescl	hert)	24000 kg		
Totlast (nicht fest eingeschert)		0 kg	Trägheitsmoment	Motor 2,3 kgm ²
Seileinscherung		4x4/1	Trägheitsmoment Kup	oplung 0,12 kgm ²
Trommeldurchmesser	Dtr=	800 mm	Trägheitsmoment Bremstro	ommel 0,3871 kgm ²
vorh Hubgeschwindlakeit	v=	12,0 m/min	Trägheitsmoment Trommelkur	oplung 4 kam ²
Einschaltdauer (Motor)	ED=	60 %	Trägheitsmoment Tro	ammel 737,91 kgm ²
max Umgebungstemperatur		80 °C		
min Limaebungstemperatur		0°C	Wirkungsgrad Tro	ommel 0,9604
Finsatzort	ir	der Halle	Wirkungsgrad Flasch	enzug 0,97
Belastung der Antriebswelle	E	oppelbackenbremse		
Radiallast	FR1=	0 N		
Abstand zur Schulter	Lf1=	0 mm		
Winkel	Phi1=	0 *		
Bremsmoment	MB1=	1100 Nm	(Haltebremse,Not-Aus)	•
Bremszeit	tb =	1,0 s		
Durchmesser Bremstrommel	dB=	315 mm		
			1	
Belastung der Abtriebswelle	<u>_</u>	urch Seiltrommel	durch Sichern	elispremse
Radiallast	FR1=	38528 N	Bremsmoment	19/120 Nm
Abstand zur Schulter	Lt1=	65 mm	Bremsscheibendurchmesser	1120 mm
Winkel	Phi1=	0 *	Ansprecharenzani	21 0/1101
alagasatatas Cotriota	CTI Dia	natangatripha SD 02	I Bremszeit	0,72 \$
eingesetztes Getnebe	GIL-Pla	netengetnebe or 55		
	Schweilse	jenause spannungsar	m geglunt	
	Zannrade	er einsatzgenanet		
	Onne Ola	ablais - nur Blinostopie		
	Getrilebe	gerauscharm nach U	N1449-2 (850B)	
	Getriebe	mind.fur 40000 Vollas	themeosstunden ausgelegt	
	VVerkstof	te mit Materialatest 3.	1) /	- 11
	Rissprüfu	ing der Wellenenden u	ind Verzannungstelle mittels Ottrasch	all anontonguefall in dor
Trabuertekotta ainfallan dar Sicherhaltshamsel s 21.5				Unemenausian in dei
			n sp≥2.5	
	Sicherhe	in der Weiten nach Dir	Zahnfull Sicherheit a	egen Dauerbruch sr> 1.5
	verzanni	and user puresso	Zahnflanka Sicherheit a	egen Pittingbildung sue 1.2
			Erectradibiokolt a > 2 5	ogen i ninghinading one ris
	Loborad	ouer der Wölzlager el	DIN ISO 281 mindestens Lamb=40.000	h (Einstufung beachten)
	Die Ciele	and us waizinger II.	ch zu betrachten	a contraction of the second of
	DIE OICH	anonomionise ist stati		

14.2 Wellendatenblätter

 $H\ddot{U} = H\ddot{u}$ lse VW = Vollwelle KW = Keilwelle WmN = Welle mit Nut

Bezeichnung	SP970-301				
Ersatzschaltung	J_1 d_1 d_2 k_2	$J_2 \ d_{T,1-2} \ d_{T,2-3} \ k_{T,2-3}$	$J_3 = rac{d_{T,3-4}}{k_{T,3-4}}$	$= \frac{d_{T,4-5}}{k_{T,4-5}}$	J_5
Dichte [kg/m ³]	7850				
Trägheitsmomente [kg.m²]	J ₁ 0.009003	J ₂ 0.004441	J ₃ 0.207	J ₄ 0.063133	J ₅ 0.03384
Berechnung der Stei- figkeit nach	ΗÜ	VW	KW	WmN	ΗÜ
Zusatzlänge ∆ <i>l_i</i> [mm]	6.22	-0.81	-6.43	1.03	0
Torsionssteifigkeit [Nm/rad]	$k_{Tk,1}^*$ 25051076	k _{Tk,2} 455335872	k _{Tk,3} 102696004	k _{Tk,4} 56369176	k _{Tk,5} 155032242
Gesamtsteifigkeit {inkl. Korrekturfaktor} [Nm/rad]	$k_{T,1-2} = 1$ $k_{T,3-4} =$	6621304 { 0.7 } 36393188 { 1 }	k_T $k_{T,r}$	$r_{2-3} = 8379660$ $r_{4-5} = 6200790$	D1 { 1 } 8 { 1.5 }
Torsionsdämpfung [Nm.s/rad]	$d_{T,T}$ $d_{T,3}$	$_{1-2} = 8.3$ $_{-4} = 32.8$		$d_{T,2-3} = 12$ $d_{T,4-5} = 22$.	4
Steifigkeit Passfeder	9680000 Nm/ra	ad			
Dämpfungskoeffizient	169 Nm.s/rad				

Eigenfrequenzen [Hz]	<u>Eigenmode</u>	<u>FFT</u>	<u>Eigenwert</u>	Modalanalyse FEM
	1.	0	1.1264e-04	0
	2.	3449	3452	3573
	3.	7250	7251	6450
	4.	7445	7444	8692
	5.	-	25242	25688

Abbildung 34: Frequenzspektrum SP970-301, ungedämpft

Bezeichnung SP970-302

Ersatzschaltung	J_1 $\frac{d}{k_2}$	J ₂ T,1-2	$\begin{array}{c} J_{3} \\ \\ d_{T,2-3} \\ k_{T,2-3} \end{array} \qquad $	-4 -4	$\begin{array}{c c} & J_5 \\ \\ d_{T,4-5} & d_{T,} \\ \hline k_{T,4-5} & k_T \end{array}$	J_{6}
Dichte [kg/m ³]	7850					
Trägheitsmomente	J_1	J_2	J_3	J_4	J_5	J_6
[kg.m²]	0.00182915	0.00702567	0.004722	0.025649	0.002452	0.00354213
Berechnung der Steifigkeit nach	ΗÜ	WmN	KW	KW	KW	ΗÜ
Zusatzlänge	Δl_1	Δl_2	Δl_3	Δl_4	Δl_5	Δl_6
[mm]	5	-4	-1	0	-2	2
Torsionssteifigkeit [Nm/rad]	k _{Tk,1} 9538146	k _{Tk,2} 18647470 <u>2</u>	k _{Tk,3} 145486303	$k_{Tk,4}^*$ 31336301	k _{Tk,5} 313355114	k _{Tk,6} 4 31691512
Gesamtsteifigkeit	$k_{T,1-2}$	= 8834549 {1	.4}	<i>k</i> _{7,2-3}	= 13223124	· {0.8 }
{Inkl. Korrekturlak- tor}	$k_{T,3-4}$	= 25782917 {	1}	$k_{T,4-5}$; = 19941237	7 {0.7}
[Nm/rad]	$k_{T,5-6}$	= 28780740 {	1}			
Torsionsdämpfung	C	$l_{T,1-2} = 2.3$			$d_{T,2-3} = 7.8$	
[Nm.s/rad]	d	$L_{T,3-4} = 5.2$			$d_{T,4-5} = 7$	
	d	$L_{T,5-6} = 3.6$				
Steifigkeit Passfeder [Nm/rad]	1736438					
Dämpfungskoeffi- zient Passfeder [Nm.s/rad]	27.6					

Eigenfrequenzen [Hz]	<u>Eigenmode</u>	<u>FFT</u>	<u>Eigenwert</u>	<u>Modalanalyse FEM</u>
	1.	0	1.3443e-04	0
	2.	5574	5575	5306
	3.	9879	9874	8935
	4.	10984	10982	12712

Abbildung 35: Frequenzspektrum SP970-302, ungedämpft

Bezeichnung	SP970-303	SP970-303					
Ersatzschaltung	$\frac{J_1}{\frac{d_{T,1-2}}{k_{T,1-2}}}$	J_2 $\frac{d_{T,2-3}}{k_{T,2-3}}$	J_3 d_T k_T	$\frac{J_4}{d_{T,4-5}} = \frac{d_{T,4-5}}{k_{T,4-5}}$	J ₅	J_{6} $J_{7,5-6}$	
Dichte [kg/m ³]	7850						
Trächeitsmomente		I1		la.		I2	
[kg.m ²]	0.0000	00511774	0.00	0442189	0.000	616538	
		J_4		J_5		J_6	
	0.000)129297	0.00	0428686	0.000	529837	
Berechnung der Stei- figkeit nach	vw	KW	VW	VW	VW	WmN	
Zusatzlänge	Δl_1	Δl_2	Δl_3	Δl_4	Δl_5	Δl_6	
[mm]	3.16	-3.16	0	0	0	0	
Torsionssteifigkeit [Nm/rad]	k_{T}^{*} 2659 k_{T}^{*} 26600	^{k,1} 591 k,4 6989	k _{Tk} 2869 k _{Tk} 1113	$k_{Tk,2}^*$ $k_{Tk,3}^*$ 2869740 774365 $k_{Tk,5}^*$ $k_{Tk,5}^*$ 1113696 617216			
Gesamtsteifigkeit {inkl. Korrekturfaktor} [Nm/rad]	$k_{T,1-2}$ $k_{T,3-4}$ = $k_{T,5-6}$ =	= 170165 {0. = 790089 {1.0 = 416983 {1.0	7})5})5}	$k_{T,2-3} = 975703 \{1.6\}$ $k_{T,4-5} = 1336188 \{1.25\}$			
Torsionsdämpfung [Nm.s/rad]	$egin{array}{c} d_{T_{r}} \ d_{T_{r}} \ d_{T_{r}} \end{array}$	$_{1-2} = 0.019$ $_{3-4} = 0.648$ $_{5-6} = 0.174$		$d_{T_{i}}$	$_{2-3} = 0.294$ $_{4-5} = 0.193$		
Steifigkeit Passfeder Dämpfungskoeffizient Passfeder	351562 Nm/r 2.74 Nm.s/ra	rad Id					

Eigenfrequenzen [Hz]	<u>Eigenmode</u>	<u>FFT</u>	<u>Eigenwert</u>	Modalanalyse FEM
	1.	0	1.1264e-04	0
	2.	3650	3655	3838
	3.	6933	6932	7295
	4.	8988	8989	11772
	5.	20271	20266	19727
	6.	34892	34893	35204

Abbildung 36: Frequenzspektrum SP970-303, ungedämpft

Bezeichnung SP970-304

Ersatzschaltung	J_1 d_T	J ₂	J_3 $d_{T,2-3}$	J_4 $d_{T,3-4}$	J_5 $d_{T,4-5}$	J_6 $d_{T,5-6}$		
	k_T	F,1-2	$k_{T,2-3}$	$k_{T,3-4}$	$k_{T,4-5}$	$k_{T,5-6}$		
Dichte [kg/m³]	7850							
Trägheitsmomente		J_1		J_2		I ₃		
[kg.m²]	0.000	055392	0.000	0998791	0.005	86217		
		<i>J</i> ₄		<i>J</i> ₅		I ₆		
	0.00	186193	0.00	0151697	0.000	309386		
Berechnung der Stei- figkeit nach	WmN	VW	vw	KW	vw	ΗÜ		
Zusatzlänge	Δl_1	Δl_2	Δl_3	Δl_4	Δl_5	Δl_6		
[mm]	2.2	1.1	-3.33	0	-3.3	3.3		
Torsionssteifigkeiten [Nm/rad]	k_{Tk}^{*}	:,1	k_{Tk}^{*}	.,2	k_T^*	k,3		
	5791	163	2011	083	2390	398		
	k_{Tk}^*	2,4	k_{Tk}^*	.,5	k_T^*	k,5		
	7862	669	10097	/153	5462	076		
Gesamtsteifigkeit	$k_{T,1-2}$	= 674498 {	1.5}	<i>k</i> _{<i>T</i>,2-3}	= 764539 {().7}		
{INKI. KORREKTURTAKTOR} [Nm/rad]	<i>k</i> _{<i>T</i>,3-4}	= 2566342 {	[1.4}	$k_{T,4-5} = 5746591 \{1.3\}$				
	<i>k</i> _{<i>T</i>,5-6}	= 3544611	{1}					
Torsionsdämpfung	d_T	r, ₁₋₂ = 0.283		d	$r_{2-3} = 0.723$			
[Nm.s/rad]	d_T	_{7,3-4} = 1.578		d	$_{T,4-5} = 1.42$			
	d_{1}	$T_{7,5-6} = 0.58$						
Steifigkeit Passfeder	351562 Nm/ra	ad						
Dämpfungskoeffizient	6.2 Nm.s/rad	6.2 Nm.s/rad						

Eigenfrequenzen [Hz]	<u>Eigenmode</u>	<u>FFT</u>	<u>Eigenwert</u>	Modalanalyse FEM
	1.	0	2.1361	0
	2.	3425	3427	3346
	3.	4511	4513	5188
	4.	7099	7103	7938
	5.	11388	11386	10214
	6.	19196	19194	18790

Abbildung 37: Frequenzspektrum SP970-304, ungedämpft

Bezeichnung	SP970-601							
Ersatzschaltung	$\frac{d_{T,1-}}{k_{T,1-}}$	$\begin{array}{c} J_2 \\ 2 \\ 2 \\ \end{array} \qquad \qquad \begin{array}{c} d_{T,2-3} \\ k_{T,2-3} \end{array}$	J_3	$rac{d_{T,3-4}}{k_{T,3-4}}$	$\frac{J_5}{k_{T,A-5}}$	$J_6 = rac{J_6}{k_{T,5-6}}$		
Dichte [kg/m ³]	7850							
Trägheitsmomente		J_1		J_2		J ₃		
[kg.m²]	0.19	94165	0.1	51668	0.39	97176		
		J_4		J_5		J_6		
	0.35	50296	0.1	51668	0.19	94165		
Berechnung der Stei- figkeit nach	WmN	vw	WmN	vw	VW	WmN		
Zusatzlänge	Δl_1	Δl_2	Δl_3	Δl_4	Δl_5	Δl_6		
[mm]	4.75	0.05	-13.6	4.05	4.75			
Torsionssteifigkeit [Nm/rad]	k_{Tk}^*	,1 2047	k_{Tk}^*	,2	k_T^*	¹ k,3		
	50990 **	0047	200133	200133007		<i>k</i> *		
	κ _{Tk}	,4	κ_{Tk}	,5	κ_T	'k,5		
	47955	1225	19355	5884	5699	8347		
Gesamtsteifigkeit	<i>k</i> _{<i>T</i>,1-2}	= 58047229	{1.3}	<i>k</i> _{7,2-3}	= 98093278	{1.3}		
[INKI: KOITEKIUTIAKIOI} [Nm/rad]	$k_{T,3-4} =$	= 123965522	2 {1.3}	$k_{T,4-5}$, = 13789775	37897758 {1}		
	$k_{T,5-6}$	= 57241400	{1.3}					
Torsionsdämpfung	d	$_{T,1-2} = 98.33$	3	a	$l_{T,2-3} = 53.48$	3		
[Nm.s/rad]	d	$_{T,3-4} = 95.76$	6	a	$l_{T,4-5} = 65.72$	2		
	d	$_{T,5-6} = 66.06$	3		.,			
Steifigkeit Passfeder	Zahnrad: 381	15000 Nm/ra	ad					
Dämpfungskoeffizient	Seiltrommel:	je 55687500	Nm/rad					
	Zahnrad: 727	Nm.s/rad						
	Seiltrommeln	Seiltrommeln: 2320 Nm.s/rad						

Eigenfrequenzen [Hz]	<u>Eigenmode</u>	<u>FFT</u>	<u>Eigenwert</u>	<u>Modalanalyse FEM</u>
	1.	0	1.3267e-01	0
	2.	1671	1673	1882
	3.	2461	2464	2858
	4.	3610	3614	4163
	5.	5127	5132	5978
	6.	6445	6442	7123

Bezeichnung SP970-602PT

[kg.m²]	0.00	201998	0.00	025026 0.00868822		0.00	0.00170338 0.0097		75382	
		J_6		J_7	J ₇ J ₈		J9		J_{10}	
	0.03	840852	C).034	0.03	340402	0.000	363102	0.0047	74827
Berechnung der Steifigkeit nach	ΗÜ	VW	WmN	VW	VW	ΗÜ	VW	ΗÜ	ΗÜ	ΗÜ
Zusatzlänge	Δl_1	Δl_2	Δl_3	Δl_4	Δl_5	Δl_6	Δl_7	Δl_8	Δl_9	Δl_{10}
[mm]	4.3	0	3.45	0	4.9	-2.6	-20	-3.2	0	13.2
Torsionssteifigkeit [Nm/rad]	$k_{Tk,1}^*$ $k_{Tk,2}^*$		k,2	$k_{Tk,3}^*$		$k_{Tk,4}^{*}$		$k^*_{Tk,5}$		
[]	2138	2397	57220	9770	1832	7137	14020	96294	23070)7455
	k_T^*	k,6	k_{T}^*	k,7	k_T^*	k,8	k_T^*	k,9	k_{T}^{*}	k,10
	26920	76976	14335 ⁻	19945	29259	97554	83021	8722	1564	0040
Gesamtsteifigkeit	k_{T1-2}	= 20612	160{1}	k== = =	- 21310	033 (1 2)	k		2090670) {1}
{inkl. Korrekturfaktor}	$k_{T,4-5}$	=198109	9581{1}	k_{TT-c}	$k_{T,2-3} = 212496762 \{1\}$		$k_{T,3-4} = 935415192\{1\}$			
[Nm/rad]	<i>k</i> _{<i>T</i>,7-8}	=962142	2222{1}	$k_{T,8-9}$:	= 64671	9404 {1}	k_T	$f_{,9-10} = 19$	995611	{1.3}
Torsionsdämpfung	$d_{T,2}$	$_{1-2} = 0.9$	989	$d_{T,t}$	$_{2-3} = 5.$	193	$d_{T,3-4} = 9.590$			
[INIII.S/Tau]	$d_{T,4}$	$_{-5} = 10.$	252	$d_{T,5}$	$d_{T,5-6} = 32.184$			$d_{T,6-7} = 64.181$		
	$d_{T,7}$ -	₋₈ = 102	.306	$d_{T,s}$	$_{3-9} = 9.5$	497		$d_{T,9-10}$	= 6.164	
Steifigkeit Passfe-	1905750	0 Nm/rao	b							
der Dämpfungskoeffi- zient	26.5 Nm	n.s/rad								

Eigenfrequenzen	<u>Eigenmode</u>	<u>FFT</u>	<u>Eigenwert</u>	Modalanalyse FEM
[Hz]	1.	0	0	0
	2.	5969	5744	5997
	3.	9091	8999	8103
	4.	12490	12483	10039
	5.	20993	21560	22607
	6.	29914	29221	-
	7.	-	43675	-
	8.	-	61499	-
	9.	-	63638	-
	10.	-	335310	-

Abbildung 39: Frequenzspektrum SP970-602PT, ungedämpft

14.3 Lagerreibmomente in Abhängigkeit der Drehzahl

<u>Betriebsbedingungen</u>

Wellen- und Lagertemperaturen: 60°C

Gehäusetemperatur: 30°C

Schmierung: Ölnebel/Ölbad, VG460, unterster Wälzkörper ganz in Öl, keine Filterung

Lager	n [1/min]	w [rad/s]	M_R [Nm]	
301-01	0	0.00	19	20
	3	0.31	17.724	10
	5	0.52	17.488	18
	7	0.73	17.247	16
	9	0.94	16.999	14
	10	1.05	16.858	E 12
	15	1.57	15.91	
	20	2.09	14.981	ê 10
	25	2.62	14.181	8 8
	30	3.14	13.449	6
	35	3.67	12.902	0
	40	4.19	12.524	4
	45	4.71	12.245	2
	50	5.24	12.064	0
	55	5.76	11.956	0 3 5 7 9 10 15 20 25 30 35 40 45 50 55 60 65
	60	6.28	11.908	Drehzahl
	65	6.81	11.905	

Lager	n [min^-1]	w [rad/s]	M_R [Nm]	
301-02	0	0.00	15	16
	3	0.31	13.451	
	5	0.52	13.36	14
	7	0.73	13.242	12
	9	0.94	13.119	12
	10	1.05	13.049	± 10
	15	1.57	12.574	mer
	20	2.09	12.022	0 8
	25	2.62	11.53	Seit
	30	3.14	11.14	- 0
	35	3.67	10.862	4
	40	4.19	10.685	
	45	4.71	10.59	2
	50	5.24	10.557	
	55	5.76	10.574	0 3 5 7 9 10 15 20 25 30 35 40 45 50 55 60 65
	60	6.28	10.629	Drehzahl
	65	6.81	10.715	5.0.2011

0.05

0

0 10

50 200 400 600 800 1000 1200 1400 1600

Drehzahl

1000

1100

1200

1300

1400

1500

1600

104.72

115.19

125.66

136.14

146.61

157.08

167.55

0.28

0.296

0.311

0.326

0.34

0.353

0.366

304-01	0	0.00	0.5	1.8
	5	0.52	0.317	
	10	1.05	0.333	1.6
	25	2.62	0.366	
	50	5.24	0.372	14
	75	7.85	0.382	
	100	10.47	0.409	12
	150	15.71	0.482	1.2
	200	20.94	0.561	t t
	300	31.42	0.706	
	400	41.89	0.833	
	500	52.36	0.945	
	600	62.83	1.044	
	700	73.30	1.133	0.6
	800	83.78	1.214	
	900	94.25	1.287	0.4
	1000	104.72	1.353	
	1100	115.19	1.414	0.2
	1200	125.66	1.468	
	1300	136.14	1.518	0
	1400	146.61	1.563	0 10 50 100 200 400 600 800 1000 1200 1400 1600
	1500	157.08	1.605	Drehzahl
	1600	167.55	1.642	

0	0.00	0.4	1.2
5	0.52	0.186	
10	1.05	0.197	
25	2.62	0.22	1
50	5.24	0.228	-
75	7.85	0.238	
100	10.47	0.257	
150	15.71	0.306	0.8
200	20.94	0.356	±
300	31.42	0.45	u u u u u u u u u u u u u u u u u u u
400	41.89	0.532	ê 0.6
500	52.36	0.603	Reib
600	62.83	0.667	-
700	73.30	0.725	0.4
800	83.78	0.777	
900	94.25	0.824	
1000	104.72	0.866	0.2
1100	115.19	0.905	
1200	125.66	0.941	
1300	136.14	0.973	0
1400	146.61	1.002	0 10 50 100 200 400 600 800 1000 1200 1400 1600
1500	157.08	1.029	Drehzahl
1600	167.55	1.053	

Lager n [1/min] w [rad/s] M_R [Nm]

304-02

Lager n [1/min] w [rad/s] M_R [Nm]

Lager	n [1/min]	w [rad/s]	M_R [Nm]		
601-01	0	0.00	28.7	35	
	1	0.10	27.5		
	2	0.21	27.636		
	3	0.31	27.791	30	<u> </u>
	4	0.42	27.854		
	5	0.52	27.843	25	
	6	0.63	27.775		
	7	0.73	27.645	± 20	
	8	0.84	27.472	umei 20	
	9	0.94	27.24	omc	
	10	1.05	26.924	15 gei	
	11	1.15	26.536		
	12	1.26	26.081	10	
	13	1.36	25.575	10	
	14	1.47	25.04		
	15	1.57	24.528	5	
	16	1.68	24.016		
	17	1.78	23.52	0	
	18	1.88	23.049	0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
	19	1.99	22.604		Drehzahl
	20	2.09	22.184		

Lager n [1/min] w [rad/s] M_R [Nm]

602PT-02	0	0.00	2	10
	5	0.52	1.081	
	10	1.05	1.06	9
	25	2.62	1.192	
	50	5.24	1.501	8
	75	7.85	1.797	
	100	10.47	2.07	7
	150	15.71	2.557	
	200	20.94	2.986	+ 6
	300	31.42	3.727	an a
	400	41.89	4.364	Ē 5
	500	52.36	4.928	Seib
	600	62.83	5.437	4
	700	73.30	5.901	
	800	83.78	6.329	3
	900	94.25	6.727	
	1000	104.72	7.1	2
	1100	115.19	7.45	
	1200	125.66	7.782	1
	1300	136.14	8.097	
	1400	146.61	8.398	0 10 50 100 200 400 600 800 1000 1200 1400 1600
	1500	157.08	8.686	Drehzahl
	1600	167.55	8.963	Dichedin

Lager	n [1/min]	w [rad/s]	M_R [Nm]		
602PT-03	0	0.00	1	Д	
	5	0.52	0.321	Ŧ	
	10	1.05	0.316		
	25	2.62	0.368	3.5	
	50	5.24	0.482		
	75	7.85	0.589	3	
	100	10.47	0.687		
	150	15.71	0.863	2.5	
	200	20.94	1.019	2.5	
	300	31.42	1.292	nent	
	400	41.89	1.531	JOU 2	
	500	52.36	1.746	eibı	
	600	62.83	1.943	15	
	700	73.30	2.125	1.5	
	800	83.78	2.295		
	900	94.25	2.455	1	
	1000	104.72	2.606		
	1100	115.19	2.75	0.5	
	1200	125.66	2.887		
	1300	136.14	3.017		
	1400	146.61	3.143	0	0 10 50 100 200 400 600 800 1000 1200 1400 1600
	1500	157.08	3.263		Drehzahl
	1600	167.55	3.379		Dichzani
Lager	n [1/min]	w [rad/s]	M_R [Nm]		
602PT-04	0	0.00	1	12	
	5	0.52	0.427		
	10	1.05	0.516		
	25	2.62	0.846	10	
	50	5.24	1.331		
	75	7.85	1.731		
	100	10.47	2.079	8	
	150	15.71	2.697		
	200	20.94	3.238	ent	
	300	31.42	4.175	o me	
	400	41.89	4.978	ibm	
	500	52.36	5.688	Re	
	500	62.83	6.326	4	
	700	/3.3U	0.900	4	
	800	83.78 04.25	7.439		
	300	94.25 104 72	7.948 0 107		
	1100	104.72 115 10	0.4U/ 0 017	2	
	1200	112.19	0.01/		
	1200	125.00	9.239		
	1300	125.66 136.14	9.239	0	
	1300 1400 1500	125.66 136.14 146.61	9.239 9.619 9.97	0	0 10 50 100 200 400 600 800 1000 1200 1400 1600

10.646

167.55

Lager	n [1/min]	w [rad/s]	M_R [Nm]		
603P-01	0	0.00	0.05	0.6	
0001 01	5	0.52	0.016	0.0	
	10	1.05	0.036	0.5	
	25	2.62	0.055	0.5	
	50	5.24	0.083		
	75	7.85	0.107	0.4 ±	
	100	10.47	0.128	mer	
	150	15.71	0.166	0.3	
	200	20.94	0.199	Reik	
	300	31.42	0.258	0.2	
	400	41.89	0.311		
	500	52.36	0.358	0.1	
	600	62.83	0.402		
	700	73.30	0.444	0	
	800	83.78	0.482		5 25 25 25 25 25 200 1100 1100 11000 5000 5
	900	94.25	0.519		Drehzahl
	1000	104.72	0.554		
Lager	n [1/min]	w [rad/s]	M_R [Nm]		
Lager 603P-02	n [1/min] 0	w [rad/s] 0.00	M_R [Nm] 0.055	0.6	
Lager 603P-02	n [1/min] 0 5	w [rad/s] 0.00 0.52	M_R [Nm] 0.055 0.016	0.6	
Lager 603P-02	n [1/min] 0 5 10	w [rad/s] 0.00 0.52 1.05	M_R [Nm] 0.055 0.016 0.036	0.6	
Lager 603P-02	n [1/min] 0 5 10 25	w [rad/s] 0.00 0.52 1.05 2.62	M_R [Nm] 0.055 0.016 0.036 0.055	0.6	
Lager 603P-02	n [1/min] 0 5 10 25 50	w [rad/s] 0.00 0.52 1.05 2.62 5.24	M_R [Nm] 0.055 0.016 0.036 0.055 0.085	0.6 0.5	
Lager 603P-02	n [1/min] 0 5 10 25 50 75	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109	0.6 0.5 0.4	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131	0.6 0.5 0.4	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17	0.6 0.5 0.4 0.3	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204	0.6 0.5 0.4 0.3	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200 300	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94 31.42	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204 0.264	0.6 0.5 0.4 tuwuu 0.3 eian 0.2	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200 300 400	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94 31.42 41.89	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204 0.264 0.316	0.6 0.5 0.4 0.3 0.2	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200 300 400 500	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94 31.42 41.89 52.36	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204 0.264 0.316 0.364	0.6 0.5 0.4 0.3 0.2 0.1	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200 300 400 500 600	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94 31.42 41.89 52.36 62.83	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204 0.264 0.264 0.316 0.364 0.364	0.6 0.5 0.4 0.3 0.2 0.1	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200 300 400 500 600 700	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94 31.42 41.89 52.36 62.83 73.30	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204 0.264 0.316 0.364 0.408 0.408	0.6 0.5 0.4 0.3 0.2 0.1 0.1	
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200 300 400 500 600 700 800	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94 31.42 41.89 52.36 62.83 73.30 83.78	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204 0.264 0.316 0.364 0.364 0.364 0.408 0.449 0.487	0.6 0.5 0.4 0.3 0.2 0.1 0	0 10 15 10 150 100 150 100 600 600 600 600 600 900 900 9
Lager 603P-02	n [1/min] 0 5 10 25 50 75 100 150 200 300 400 500 600 700 800 900	w [rad/s] 0.00 0.52 1.05 2.62 5.24 7.85 10.47 15.71 20.94 31.42 41.89 52.36 62.83 73.30 83.78 94.25	M_R [Nm] 0.055 0.016 0.036 0.055 0.085 0.109 0.131 0.17 0.204 0.264 0.316 0.364 0.364 0.364 0.408 0.449 0.487 0.524	0.6 0.5 0.4 0.3 0.2 0.1	Drehzahl

															ι										C	n									\triangleleft					
	# 0														07 L L	צו ,ככ		148.014													J		۲ D	-	Blatt	von 1	Original	A3		
1	bis 396 DIN 397;	17	£	12	links	Prot 1.4-6°	0,388	121,659	140,6 400 FCF	202,801 116 697	-0.242	9	cd25	3	55,293 FF 220	۵77'CC ۱۴	14 148 215	148.087	305	67											-63)HR	Г С	1 ZP' +		elle		(7		-
	NN 3960 ngen n.	z	ш	beta			*×	P	e p	d t d Mf	z J	<u> </u>		× .	XX	× I	шр МЧР	MAR	a d	z2	÷										,5(58-		G-Gewict		adw		c c	05-0		
	nng n. C nforderu						٦	_ ۲	[E] -	Ē		1965 NIC			Ē,		נווווון זיש השח הב				airhnat	β β							ŧ		,2 + 0		Ę		stirnr			524		
	dverzahr nindestar		Ē	el [°]	tung	erkzeug	ungsfakto	esser [m	nesser [n	nesser [n	una [mm]	alität n. I	eranz		innmaß [π		- Nann	- Max/M	lmi	enrad	-unz	x, da,						glüht	ehärte	en	(1) = 1				hräg	ו		- 9212 - 9212	-	
	Stirnra Werksn	zahl	ilmodul [m	gungswink	gungsrich	sprofil W	verschiebı	eisdurchm	reisdurchi · · ·	teisdurchi takroic fr	öhenändel	nbsbunuq	icken-Tol	ähnezahl	reite – Ne	/Pollord	יטוופווטא /-	ollenmass	bstand fm	zahl Gege	seitin n	., z, E,						rmalge	Isatzg	gelass	550 HV	101	Material: IOLI		S		Z-Nr.	•		
2		Zähne	Norma	Schräd	Schräg	Bezug	Profil	Teilkre	Kopfkr r	FUSSKI	Konfhi	Verza	Zahndi	Messz	Zahnw		7 waird		Achsa	Zähne	stir.	Z-Nr.						IOU	ein	ЪПБ	h(5		. 2	Шe	tlich	lich P.		eipzig	-302.ipt	2
																																Maßstab:	-	Na	1 Wus	Wust		echnik L	5-SP930-	
											ŀ										-							I					emeintoleran O 2768-mK	Datum	31.05.202		Ľ	etriebet	einame: 3136	
									R 76 3	ר'חדע		×0,4			1	126 332-	121 Ø															_	Allg		gez.	ycpri Kons			atum Dat	
										>		1509 F 2,5									1		4		•														ame Di	
m					,	_ /	0	ĮΖЯ		R3		eistich DIN	-	(EL SE	0'0 0'0	;) ç	ЭШ (001	Ø	-			с 4		20														lerung N	m
					-						J				Ţ,	Ľ		F.		Ú			_ t		_														tatus Änd	\langle
																			\mathbb{N}			2×45°		c											_	3715			5	
						- 0,1 - 0,2								$\left \right $					$\left \right $					ct o tio									_	\geq	×	IN ISO 1	د, <u>0+</u> ل ا			
4						177									//									ילהלי 7	7 annor								/D-75	רזזע /		n nach [с, <u>0-</u> (<u>\</u>		4
																	Ш	\int	\mathbb{I}			2×45°	L											>	•	Kante		I		
						_	Ţ			R3		\mathbb{N}	\mathbb{N}	\int		\mathbb{Z}						_																		
			<	τ		<u>5'9</u>	zŊ 4	/	\ 	/			-4	,2	(+01										•	∢ ↓													
			7	_			9 F 2,5×0,		2 76 3	ר'חדי			0+	0+50		971'	0+) 0+)	9+ _	ַר <u></u> רַ)IØ	01	(+)	0	(() (נסן		T													
പ							tich DIN50		~	>		•	/							Ī	j ć		Ť	ב						-	_								1	ഗ
							Freis					9 F 1,6×0,		("	0'0 0'0	;) 9	ЭШ	08ç	ø		(26,3	C L	R C							•		~		\mathcal{T}						
												tich DIN50	Ĺ			32- \	t= ∕			_					<u> </u>					-	- 					0 + 0,2	- 0		-	
												Freis				ENIO	DSM													1410	۲ ۲ ۱				<u>×</u>	÷	-			
9											-	4				971	ø				•									1220	, ₀ _) 6,	a 80	Ċ						,	9
																																							ŧ	\langle

U

В

∢

∢

ш

ш

J

ш

