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Chapter 1

Introduction

1.1 Oxides and Their Interfaces

From the very advent of human civilization people were dealing with metal oxides. They
were admiring the beautiful green color of old copper roofs, fighting against rust on their
kettles and swords, attributing magic powers to noble metals since they never oxidize.
Ancient Chinese were using magnetite to orientate their boats on high seas, while me-
dieval Europeans were using various metal oxides to illuminate1 their books. During the
past decades of investigation, the research mainly focused on the structural and electronic
properties of bulk oxides. The problems of strong electronic correlations have attracted
theoreticians towards magnetic oxides already in the 1960’s. This investigation resulted in
creating theoretical models which describe the ground state of these materials properly (e.g.
the Hubbard model [1]). They have been successfully applied also to another important
class of oxides, high-Tc superconductors. However, with the advent of high-fluence lasers,
which made nonlinear (magneto-)optics possible [2], the description of non-equilibrium
states became neccessary. On the other hand, the scientific understanding of oxide sur-
faces and interfaces is still in its infancy, although in the last years many scientific programs
have been launched in order to clarify the physics of oxide interfaces.

From the beginning of computer technology, long-term (magnetic) data storage and
temporary (semiconductor-based) data storage have existed and have been developed sep-
arately. Semiconductor industry has been able to fit more and more transistors onto a
silicon chip while magnetic-recording industry has been shrinking the size of the reading
head, increasing the storage density. Nowadays, the demands of the market seemingly push
these two areas together: there is a need for nonvolatile memory chips where the infor-
mation remains stored even after switching the computer off, and on the other hand the
need for the speed of the storage devices may eventually eliminate the designs which rely
on the mechanical motion of the elements (like currently used hard disk drives) [3]. The
field which marries the two hitherto separate areas is magnetoelectronics, and the devices
which are supposed to supersede the conventional random access memories and hard disks
are Magnetic Random Access Memories (MRAMs).

1Illumination is a medieval book illustration in various shades of red.
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(001)

(111)

Figure 1: Surfaces of the cubic antiferromagnet NiO.

One of the most important components of the designed MRAMs are tunneling magne-
toresistance (TMR) devices, where the read-out current passing through the device depends
on the relative magnetization of two ferromagnetic layers. The central layer of this trilayer
structure consists of an oxide sandwiched between a soft and a hard magnetic layer2. For
these technological applications it is necessary to develop a technique to study buried oxide
interfaces. Already the preparation of transition-metal oxides is a challenge and requires a
method to characterize the structure and magnetism of these materials. Such a technique
can be optical second harmonic generation (SHG), which is easy to implement, sensitive to
antiferromagnetism and addresses surfaces and interfaces of materials which possess central
symmetry. One of the most favored antiferromagnets is nickel oxide (NiO), which is a pro-
totypic system for strong electronic correlations and has a simple crystallographic rock-salt
structure (see Fig. 1). However, this material is not easily accesible for the experimental
study, since it cannot be grown on nickel due to a large lattice mismatch (20%). To the
best of our knowledge, the understanding of its detailed spin structure is scarce - even
the spin orientation on the ferromagnetically ordered and antiferromagnetically coupled
(111) planes3 are not known. The technique presented in this work can shed some light on
that issue, and answer some other important questions related to antiferromagnetic oxide
interfaces.

2These two layers are often composed from the same material but of different thicknesses.
3Neither the detailed interatomic distances.
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1.2 Second Harmonic Generation

Figure 2: Bulk AF domain imaging by Fiebig et al. [4]. Images taken with right (a) and left (b) circularly
polarized light.

As stated before, SHG has the unique potential to become a tool for investigating
buried oxide interfaces, where other techniques fail. Until now, it has been proven to be
a very useful technique for the investigation of ferromagnetism at surfaces. The obvious
question is if this technique can also yield some new information in the case of more general
spin configurations, such as antiferromagnetic (AF) ordering at interfaces. An experimental
answer to this question has been provided by Fiebig et al. [4, 5], who obtained a pronounced
optical contrast from AF 180◦ domains of rhombohedral bulk Cr2O3. This experiment,
which is of great significance for us, will be described later in detail (page 9). Since it
is known that, in cubic materials, within the electric dipole approximation, optical SHG
originates only from surfaces, interfaces, or thin films, an important question is if SHG is
also sensitive to antiferromagnetism at surfaces of cubic antiferromagnets.

Experimental techniques for the detection of AF domain walls using linear optics in
some special geometries were elaborated already in the 1950’s [6]. The interior of the
domains has been visualized in piezoelectric AF crystals using a linear magneto-optical
effect [7]. However, linear optical experiments suffer from mixing the desired signal with a
contribution from other linear effects, such as birefringence or dichroism. A review of linear
optical experimental methods for the investigation of AF domains is given by Dillon [8].
Only neutron diffraction [9] and x-ray crystallography4 techniques and SHG are able to
address the balanced spin structures. All other techniques are not conclusive, for instance
the linear dichroism [10] couples to the order parameter squared and consequently cannot
distinguish antiferromagnetism from ferromagnetism.

The observation of the domain structure in antiferromagnets is more complicated than
in ferromagnetic materials since the reduction of the spatial symmetry in the antiferro-
magnetic phase is, unlike for ferromagnets, not linked to an imbalance in the occupation
of majority and minority spin states.

4X-ray crystallography addresses the structural properties of the sample. In antiferromagnets, it detects
the unit-cell doubling rather than antiferromagnetism, and thus it fails in materials like Cr2O3.
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Nonlinear optics exhibits an additional degree of freedom, since its elementary process
involves three photons instead of two in linear optics. For that reason, some authors,
e.g. Fröhlich [11] suggested the application of nonlinear optics even for k-selective spec-
troscopy, since multi-photon phenomena allow for the “scanning” of a small part of the
Brillouin zone, at least for semiconductors. Recently, non-linear optics has attracted more
and more attention to the investigation of magnetism due to its enhanced sensitivity to
twodimensional ferromagnetism [12, 13]. The magnetic effects are usually much stronger
than in linear optics (rotations up to 90◦, pronounced spin-polarized quantum well state
oscillations [14, 15], magnetic contrasts close to 100%) [16, 17]. An example of ferromag-
netic effects measurable only by SHG deals with the existence of surface magnetism in
very thin films of Fe/Cu(001) and is given in Ref. [18]. Nonlinear optical effects were
invoked to investigate high temperature superconductors [19, 20] and to study structures
composed from alternately ferro- and antiferromagnetically ordered thin films [21]5. SHG
in strong magnetic fields has been predicted also in vacuum [22], although the size of the
effect is questionable [23]. However, the first experiments concerning the detection of the
AF domains in materials such as Cr2O3 were carried out only recently [4, 24]. Already in
the 1970s, it has been proposed [25] that experimental studies of dc magnetic and electric
field-induced SHG could become an effective method of determining the crystal structure
of solids, the symmetry of which cannot be investigated by other methods. Extending this
idea towards surface crystallography provides us with a new technique for determining the
spin configuration in a given surface structure. In turn, it permits to use a known magnetic
configuration as a reference system for the determination of the surface structure. All the
mentioned information is more difficult or even impossible to obtain in linear optics, and
moreover other linear methods like neutron scattering, albeit capable to see AF domains,
have difficulties to probe AF spin configurations. In addition, the neutron diffraction suffers
from large acquisition times and is therefore not suitable for dynamics.

1.3 The Scope of this Work

The arguments mentioned hitherto suggest that the technique of optical second harmonic
generation (SHG) will play a key role in the investigation of complicated magnetic sandwich
structures. Therefore, our work aims at the theoretical investigation of SHG from anti-
ferromagnetic surfaces and interfaces. The project can be characterized by the following
points:

• Symmetry classification. We classify the symmetries of antiferromagnetic surfaces
and determine the influence of the symmetries on the nonlinear magneto-optical
susceptibility tensor. Using these results we check the possibility of domain imaging.
Until now, the group-theoretical classification was devoted to revealing the existing
tensor elements for a given symmetry for bulk systems, and without relation to
SHG. In the experiment, however, SHG results from the specific tensor elements,

5The antiferromagnetic Cr is assumed there to give no contribution to magnetization-induced SHG.



1.3. The Scope of this Work 7

and one often is interested in the particular spin structure rather than the name of
the appropriate symmetry group. Our work aims at filling this missing link.

• Domain imaging. Closely related to the previous, our work investigates the possibility
of domain imaging on antiferromagnetic surfaces. Until now, it has been proven that
linear optics cannot yield trustworthy results, and the only other method, neutron
scattering, is at least cumbersome in application. Also, the AF bulk domains have
been experimentally observed by nonlinear optics. Our work will investigate the
conditions under which also the AF surface domains can be imaged in SHG.

• Spin Reversal. Until now, the notions of time-reversal and spin-reversal were used
indiscriminately in the symmetry analysis. However, in nonlinear optics the applica-
bility of time-reversal is not obvious, on the other hand the spin degree of freedom
must show up in the symmetry analysis by space operations. In this work, we pro-
pose a consistent description of the dynamic process of SHG and define the notions of
reciprocity, time-reversal and moment-reversal for the use in the symmetry analysis
of nonlinear optics.

• Electronic theory. Based upon the previous points, we will propose a theoretical
framework which will allow for the calculation of the nonlinear magneto-optical spec-
tra from antiferromagnetic interfaces. Our theory, aiming at the most general level of
description (ability to treat para-, ferro-, and antiferromagnetism on equal footing)
will not be an ab initio theory. Also, ground state features (such as structure opti-
mization) will not be addressed in our approach. However, it successfully identifies
the spectral lines favorable for nonlinear optics, and magneto-optics in particular.
The theory forms a basis for the description of nearly all elements: only the systems
with electronic configuration d5 and those with f-electrons cannot yet be treated
within this framework. The extension of our theory towards d5 systems is straight-
forward. The calculations are performed for the NiO (001) surface, but an extension
to other AF oxide surfaces is possible.

• Femtosecond dynamics. Based on the electronic calculations, we present the results of
our simulations of an SHG pump-and-probe experiment. These results concern both
spin- and charge-dynamics (dynamics of the antiferromagnetic and paramagnetic
tensor elements) and reveal interesting dynamical properties of the antiferromagnetic
response within the femtosecond regime.



Chapter 2

Symmetry Analysis

Symmetries determine several important properties of the studied system, they also in-
fluence the experimental outcome. In theoretical physics, a proper understanding of the
symmetry of the problem considerably reduces the effort to obtain a desired result. For
example, a simple symmetry consideration can provide us with the information that two
particular quantities are mathematically equivalent, or that a particular value must van-
ish. Trying to calculate these values without the knowledge obtained from the symmetry
analysis one may end up in an unnecessary consumption of the time and effort, or may
even prove impossible.

In solid state physics, the symmetries play an especially important role. It is the trans-
lational symmetry which allows for a distinction of solids from molecules, for introduction
of the reciprocal space and the existence of the band structure. On the other hand, point
group symmetries make the difference between molecules and solids on one side, and free
atoms and ions on the other.

One determines the symmetry only with respect to an aspect of the investigated object.
In the case of this work, we will investigate symmetries of atomic arrangements (along with
their magnetic moments) from the geometric and magnetic point of view, while the nuclear
forces acting on elementary particles in our systems are not of our interest. For a symmetry
to show up, two conditions must be fulfilled [26]:

• An operation, capable of changing the investigated aspect, must be possible to con-
duct.

• If this operation leaves the investigated aspect of the system invariant, it belongs to
the symmetries of the system.

The first point indicates that for a given system under investigation, a reference system
must be present which will not be immune to the change. In our analysis, such a reference
will be the coordinate system in which we describe the surfaces of the crystals. As a conse-
quence, there is no use in investigating, for example, the magnetization-reversal symmetry
of paramagnetic systems.

8
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2.1 State of the Art

The first theoretical explanation of linear magneto-optic effects in bulk ferromagnets has
been given by Argyres [27] in the 50s. He used linear response theory for current-current
correlation functions. His microscopic explanation was already based on the combina-
tion of spin-orbit and exchange coupling. The application of linear magneto-optics to
antiferromagnetism, however, is unsuccessful in all practical cases. An early theoretical
work, based on group-theoretical classification, proposed the use of linear optical effects,
namely gyrotropic birefringence, for the observation of AF domains related to each other
by the space-inversion operation [28]. A theoretical review of the effects found by a group-
theoretical approach is presented by Eremenko and Kharchenko [29]. They performed
a comprehensive study of linear optical effects for various AF materials. Another effect
proposed recently by Dzyaloshinskii et. al. [30] gives a possibility to detect antiferromag-
netism taking advantage from optical path differences from antiferromagnetically coupled
but intrinsically ferromagnetic planes, e. g. at (111) surfaces of cubic antiferromagnets.

The literature for nonlinear magnetooptics is very rich, both in its theoretical and
experimental aspect. However, the applications of nonlinear magnetooptics to antiferro-
magnetism have not been that numerous so far. One of the first theoretical investigations
of the possibility to apply nonlinear optics to antiferromagnetism was performed by Kielich
and Zawodny [31]. These authors predicted, among other effects, the capability of SHG to
determine the crystal structure [25].

The first experimental investigation of SHG from antiferromagnetic oxides was the
observation of bulk domains in Cr2O3 by the Fröhlich group [5]. They observed that
circularly polarized light is absorbed differently in two possible domains depending on
the handedness of the polarization. Thus, σ+ light creates SHG mostly in one of the
two antiferromagnetic 180◦ domains, while σ− light yields SHG response mostly from the
other one. Thus a very pronounced intensity contrast of two AF domains is observed in
SHG. The authors attributed this contrast to the interference of magnetic and electric
dipole contributions, the latter being present only below the Néel temperature. These
contributions are described by the nonlinear magnetic and electric susceptibility tensors,
denoted as χm(i) and χe(c) respectively. The interference between the two contributions
is constructive in one domain and destructive in the other one (for the given helicity of
the light), which reflects the fact that χe(c) changes the sign under spin reversal6 (the
operation which leads the domains into each other) while χm(i) remains constant.

From the theoretical point of view, in most cases a symmetry analysis has been applied
to study the nonlinear magneto-optical susceptibility tensor χ

(2ω)
el (the source for SHG

within the electric dipole approximation). A classification following this approach, with
tensors of a rank up to six, has been performed by Lyubchanskii et al. [16, 32, 33, 34,
35]. In Ref. [16] the authors include the magnetization-gradient terms and apply the
group-theoretical classification to higher-rank susceptibility tensors. This approach then

6Originally, the authors use the name “time-reversal”, marking by (i) tensors which are invariant, and
by (c) those which change sign under this operation. In our opinion the idea of time-reversal cannot be
applied to nonlinear optics, thus we use the notion of “spin-reversal”. These issues are discussed in detail
in Sec. 2.4
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allows them to consider the thickness and the character (Bloch vs. Néel type) of domain

walls. An attempt by Muthukumar et. al. [36] to calculate the χ
(2ω)
el tensor elements

for antiferromagnetic Cr2O3 both from group theory as well as from the microscopic point
of view is rather unique. They implemented a (CrO6)2 cluster, thus taking into account
only half of the spins present in the elementary magnetic cell. In this approximation they
explained the SHG from Cr2O3 as observed by Fiebig et al. [5] and they were able to
give a quantitative estimate for that. Tanabe et al. [37], however, pointed out that the
occurrence of purely real or imaginary values of the tensor elements plays a decisive role for
the existence of SHG from this substance. They found that for a (CrO6)2 cluster SHG can
take place only in the case where the tensor elements are imaginary, and thus should vanish
in Muthukumar’s approximation. They proposed to take into account the full unit cell
with four inequivalent Cr ions including their “twisting” interaction with the environment.
However Tanabe et al. neglected the dissipation in the process of SHG7, which is a rather
crude approximation, in particular close to resonances. In general, dissipation makes the
χ
(2ω)
el tensor elements complex and invalidates their separation in purely real and imaginary

ones [39].

Lifting the inversion symmetry of a crystal is the source for SHG within the electric
dipole approximation. Lyubchanskii et al. [32, 34] suggested crystal lattice deformations
and displacements as possible reasons for SHG from YIG films. In the case of Cr2O3 and
YBa2Cu3O6+δ, described by Lyubchanskii et al. [33, 34], AF ordering lowers the symmetry
of an otherwise centrosymmetric crystal. In this work, however, we rely on the idea that,
rather than lowering the crystal symmetry in the bulk, SHG may also result from the
breaking of inversion symmetry at the surface of a bulk inversion-symmetric system. In
the next section, we will present our theory for the symmetry analysis of SHG, along these
lines.

2.2 Basic Principles of the Symmetry Analysis

In this section, we outline the method to classify the nonlinear magneto-optical response
from the symmetry point of view. This presentation will be done in two steps.

• Firstly, we will explain how the symmetries of the sample determine the presence or
absence of the elements of the nonlinear optical susceptibility tensor, which is the
source of SHG.

• Secondly, we will examine the dependence of these tensor elements on domain op-
erations and the magnetic order parameter. The fact that some tensor elements
preserve their sign while others change it under the change of the order parameter is
very important for domain imaging.

7The authors perform the analysis of χ(2ω) in the frequency space. There are no reasons to neglect

the damping in this approach. Moreover, if the dissipation is neglected, and χ
(2ω)
ijk is taken as purely real

or imaginary, then the Kramers-Kronig relations cannot be applied. In real time, on the other hand,
dissipation does not take place, as stated in [38]. This topic will be analyzed more deeply in Sec. 2.4.
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The surfaces of NiO serve as an example and guideline for our analysis. In Sec. 2.3, the
results of this analysis are applied to particular magnetic systems.

2.2.1 Nonvanishing Tensor Elements

Based on group theory, Dähn et al. [40] proposed a new nonlinear magneto-optic Kerr effect
(NOLIMOKE) at the (001), (110), or (111) monolayers of cubic antiferromagnets. They
also gave an example of an antiferromagnetic structure (the (001) surface of NiO) and an
optical configuration, where this new effect could be observed in SHG. Here, we perform
a complete group-theory based analysis of collinear AF fcc low-index crystal surfaces.
Surfaces of other crystal structures are as well described by our theory provided they are
similar to these fcc crystal surfaces, i.e. squares or hexagons. The results can be used to
detect the magnetic phase of a specific surface under investigation (to decide if the surface
is para-, ferro-, or antiferromagnetic) and allow for the determination of the surface spin
configuration in some important cases. However, in order to calculate the SHG yield
quantitatively, it is necessary to go beyond group theory and use electronic calculations8

of the nonlinear susceptibility. Such a calculation will be presented in Chapter 3 of this
thesis.

In order to be clear with respect to the essential notion of time reversal we would
like to emphasize the point of view taken in this paper in the beginning. Here, we do
not divide χ

(2ω)
el into even and odd parts in the magnetic order parameter. Instead, the

behavior of χ
(2ω)
el with respect to the magnetic order parameter (which for ferromagnetic

materials corresponds to the dependence of χ
(2ω)
el on magnetization) is fully taken into

account by the consideration of the magnetic point group. At no stage of our consideration
we invoke the notion of time reversal, consequently we do not apply the characterization
of the susceptibility χ(2ω) as c-tensor (changing its sign under time reversal) or i-tensor
(invariant under the time-reversal operation) [39].

Before we start our group theoretical classification of the nonlinear optical suscepti-
bilities of antiferromagnetic (AF) surfaces we would like to emphasize the following four
important points:
(i) We are not interested in effects resulting from the optical path difference from adjacent
crystal planes which are ferromagnetically ordered but only antiferromagnetically coupled
to each other. We do not consider this as an intrinsic AF effect.
(ii) Cubic crystals that we are interested in reveal a center of inversion in the para-, ferro-,
and all antiferromagnetic phases. Thus, within the electric dipole approximation, the SHG
signal exclusively results from the surface.
(iii) While in principle linear optical methods can be sensitive to the presence of a spin
structure, in practice they are not useful because, within the group theoretical approach,
they cannot distinguish the AF phase from either the paramagnetic or the ferromagnetic
one, nor can they distinguish different AF configurations from each other. They have to
resort to methods like lineshape analysis, where no strong statements characteristic for
symmetry analysis can be made.

8Such a calculation necessarily exploits group theory, however.
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(iv) Although the tensor elements for all the magnetic point groups are known and tabu-
lated in the literature (e.g. [41]), the connection between the different spin configurations
described by us and the mentioned symmetry groups has not been made, except for some
easy cases [40]. Thus, for SHG from antiferromagnetic surfaces, there has been up to now
no connection at all between the group theoretical classification and the real situations
found in experiments on oxide surfaces.

The following part of the text explains the fundamentals of applying NOLIMOKE
observations to investigate antiferromagnetism of surfaces.

Now we turn to SHG, the source of which is the nonlinear electrical polarization P
(2ω)
el

given by:

P
(2ω)
el = ε0χ

(2ω)
el : E(ω)E(ω). (2.1)

Here, E(ω) is the electric field of the incident light, while χ
(2ω)
el denotes the nonlinear

susceptibility within the electric dipole approximation, and ε0 is the vacuum permittivity.
The intensity of the outgoing SHG light is [42]:

I(2ω) ∼ (I0)
2




A1(Θ) cos Φ
A2(Θ) sin Φ
A3(Θ) cos Φ


×

×

χxxx χxyy χxzz χxyz χxzx χxxy

χyxx χyyy χyzz χyyz χyzx χyxy

χzxx χzyy χzzz χzyz χzzx χzxy


×

×




B1(ϑ) cos2 ϕ
B2(ϑ) sin2 ϕ
B3(ϑ) cos2 ϕ

B4(ϑ) cosϕ sinϕ
B5(ϑ) cos2 ϕ

B6(ϑ) cosϕ sinϕ







2

(2.2)

where I0 is the intensity of the incident light, Ai, Bj (i = 1..3; j = 1..6) are Fresnel
and geometrical factors for the incident and reflected light, ϑ and Θ angles of incidence
and reflection, respectively (ϑ=Θ), and Φ (ϕ) is the output (input) polarization angle at
frequency 2ω (ω). According to Neumann’s principle, “any type of symmetry which is
exhibited by the crystal is possessed by every physical property of the crystal” [41]. To
examine these physical properties, we determine the magnetic point group of the crystal
lattice, thus determine its symmetries. The same symmetries must leave the investigated
property tensor (in our case the nonlinear electric susceptibility χ

(2ω)
el ) invariant. This fact

is mathematically expressed by the following condition:

χ
(2ω)
el,i′j′k′ = li′ilj′jlk′kχ

(2ω)
el,ijk, i, j, k, i′, j′, k′ = x, y, z. (2.3)
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Figure 3: Example of an
antiferromagnetic surface spin
structure. Arrows represent
magnetic moments localized on
lattice sites. This fragment,
containing 5 lattice sites, fully
represents an infinite crystal
surface.

Here, ln,n′(n = i, j, k, n′ = i′, j′, k′, ) is a representation of an
element of the magnetic point group describing the crystal,
i.e. of its symmetry. For symmetry operations including the
time reversal there should be an additional “±” sign on the
right hand side of Eq.(2.3), but we do not use it here since, as
stated before, we exclude the time reversal from our consider-
ation. In particular, from Eq.(2.3) it follows immediately that

polar9 tensors of odd rank (such as χ
(2ω)
el ) vanish in inversion

symmetric structures. This explains why SHG is possible only
at surfaces and interfaces, where this symmetry is broken.

For a given spin configuration we apply Eq. (2.3) for every
symmetry operation present in the system. Thus, each of
these symmetries gives rise to a set of 27 equations with 27
unknown elements of the tensor χ

(2ω)
el . This set can be reduced

to 18 equations, since

χ
(2ω)
el,ijk = χ

(2ω)
el,ikj, (2.4)

which expresses the equivalence of the two incident photons of frequency ω in SHG, see
also the reduced tensor notation in Eq. (2.2).

As an example, we consider a spin configuration depicted in Fig. 3 which exhibits only
one nontrivial symmetry, which is the rotation by 180◦ degrees around the axis perpendic-
ular to the figure plane (denoted as 2z). This symmetry operation is represented by the
following matrix:

l(2z) =


 −1 0 0

0 −1 0
0 0 1




9Polar tensors change their sign under the space-inversion operation [41].
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Substituting this to Eq. (2.3) one gets the following set of equations:

χxxx = −χxxx

χxyy = −χxyy

χxzz = −χxzz

χxyz = χxyz

χxzx = χxzx

χxxy = −χxxy

χyxx = −χyxx

χyyy = −χyyy

χyzz = −χyzz

χyyz = χyyz

χyzx = χyzx

χyxy = −χyxy

χzxx = χzxx

χzyy = χzyy

χzzz = χzzz

χzyz = −χzyz

χzzx = −χzzx

χzxy = χzxy

(2.5)

Obviously, these equations can be satisfied only if some tensor elements (χxxx, χxyy, χxzz,
χxxy, χyxx, χyyy, χyzz, χyxy, χzyz, and χzzx) vanish. Other tensor elements can have arbi-
trary values.

Any additional symmetry present in the system will result in a different set of equations
which will put additional constraints on tensor elements. We solve the equations for each
symmetry separately, since the symmetry operations are independent. In this way, our sets
of equations were always limited to 18 equations.

A different symmetry operation than 2z will result in different constraints. In particular,
symmetries whose representations contain off-diagonal matrix elements force some relations
between tensor elements in the form of χijk = χlmn. Generally, if the representation of a
symmetry has a complicated form, the set of equations is also complicated. Fortunately,
this can always be split into several decoupled subsets. For example, an obvious subset
in every case is, due to the existence of the surface, the equation χzzz = χzzz, this tensor
element occurs nowhere else. The rank of the other subsets is, as it turns out for our cases,
never higher than six. In this manner, one may obtain a set of forbidden elements of the
susceptibility tensor as well as relations between allowed ones.
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2.2.2 Reversal of the Order Parameter

In the previous subsection we introduced a method which allows to determine the nonva-
nishing tensor elements (for a given spin configuration). Another interesting issue is the
behavior of the tensor elements with respect to the inversion or change of the AF order
parameter L (for ferromagnetic phases L should be replaced by the magnetization M),
which is imposed by the operations that transform one domain into another (i.e. domain
operations). Let us define the behavior of these tensor elements, which change their sign or
are invariant in a given domain operation (which may, but not necessarily does invert the
order parameter), as a domain-parity. The words “odd” and “even” are used henceforth
explicitly with respect to this domain-parity, unless stated differently.

In general, a tensor element can be decomposed in parts odd and even in the domain
operation, as shown in Eq. (2.6).

χ
(2ω)
ijk = χ

(2ω),odd
ijk + χ

(2ω),even
ijk (2.6)

In systems with high symmetry, it is possible to describe an operation which reverses L (or
M) by a spatial operation l̂. The operation l̂ belongs to the point group of the system, but
not to its magnetic point group. The application of this operation to a tensor element will
change its sign (keep it invariant) if this element is odd (even) in L. Consequently, each
tensor element can be either odd or even in L, a mixed behavior is forbidden.

Actually, the domain-parity of a given tensor element is a function of the chosen domain
operation l̂. In most antiferromagnetic configurations more than one operation leading to
different domain structures are possible (this means that the order parameter is a vector).
For example, for (001) surface one has 4z rotations (i.e. 90◦ rotations) leading to different
domains in addition to the eventual mirror-domain10 structure. For the (111) surface, there
are three domains resulting from the rotations with respect to the z axis alone. For some
configurations, they exist in addition to the mirror-domains. The 4z domain operation,
although it does not reverse the order parameter, allows for addressing the domain-parity
in a relatively simple way. After applying this operation, a given tensor element is often
mapped onto another one11. In many cases we were able to detect the change of the sign
(or its conservation) under such a mapping, and consequently, in many cases, we give the
domain-parity information for tensor elements in the 4z domain operation. This can ease
the analysis of the possible 90◦ domain imaging on antiferromagnetic surfaces.

Domain structures on (111) surfaces are usually more difficult to address from the
point of view of domain-parity. The naive notion of an operation with parity requires that
the original situation is restored after applying the operation at most twice. Obviously,
2z is such an operation and, for certain configurations, 4z satisfies this criterion as well
(where 2z is just a symmetry operation), besides we were able to draw some conclusions
on the domain-parity. However, neither 3z (120◦ rotation) nor 6z (60◦ rotation) have this
property - they must be applied at least 3 times to restore the original situation. Also,

10For the definition of mirror domains, see Subsec. 2.3.7.
11The indices x and y of the tensor element are exchanged, and a sign change may occur, since x → y

and y → −x.
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a b

Figure 4: Change of the order parameter (represented by the grey arrow) under operation 3z. Note that
a part of this order parameter changes its sign, while the other remains unchanged.

upon the 3z operation a single tensor element gets “split” into several tensor elements, and
the analysis of the conservation (or not) of the sign of the tensor element looses its sense.
The tensor elements are described in the Cartesian coordinate system, where quarters are
the elementary entities. Rotation by an angle other than 90◦ and its multiples cannot be
described as interchanging the axes and a possible modification of their signs. However,
it is possible to treat the domain-parity of tensor elements in the 3z and 6z operation
in a more general way. The very fact of having three states prevents us from using the
domain-parity in its usual meaning of something simply changing the sign or remaining
unchanged. Instead, we may allow the domain operation 3z (for example) to reverse only
one part of the order parameter, leaving the other part unchanged (Fig. 4). In other
words, we would decompose the order parameter (or an investigated tensor element) into
parts whose domain-parity can then be conventionally described. In this way we can deal
with the domain-parity of tensor elements on surfaces with arbitrarily complicated domain
structure. In this work however, we will not address the domains on (111) surfaces in
detail.

In many occasions, it is convenient to define one order parameter that describes equally
well all the magnetic phases and spin configurations of a given crystal structure [33, 43].
In this work, we define the order parameters separately for each of the addressed spin con-
figurations12. The order parameters defined in this way are, although vectors themselves,
components of the order parameter in the sense of [43].

Note, the presence of dissipation (redistribution of response frequencies) does not in-
fluence the considerations about the domain-parity. In general, dissipation in frequency
space is responsible for the mixing of the real and imaginary parts in the tensor elements
(as described in Sec. 2.4), while point-group symmetry governs the (non)existence of tensor
elements purely odd or even in the magnetic order parameters L or M.

12For the definition of configurations see Subsec. 2.3.1.
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So far we have presented the method used in our symmetry analysis of the surfaces.
We know how the symmetries determine the sets of non-vanishing tensor elements and (in
some cases) the relations between them. In the next section we will present the results we
obtained by applying this method.

2.3 Results of the Group Theoretical Analysis

In the previous section, we presented the method used for the symmetry classification of
the surfaces of cubic antiferromagnets. We now apply this method to all distinct spin con-
figurations of low-index surfaces of fcc crystals, including ferro- and paramagnetic surfaces
for the sake of completeness. Here, we would like to present the results of this study. This
presentation involves:

• nonvanishing tensor elements (and if applicable their domain-parity) for each spin
configuration for low index surfaces of fcc crystals,

• influence of different kinds of distortions,

• role of a second layer of atoms,

• conditions for domain imaging,

• considerations about experimental geometries.

The results of the symmetry analysis, presented in this section, can be used in an experi-
ment according to Fig. 5. The detailed description of an experimental use of our results is
presented in Subsec. 2.3.8.

2.3.1 “The Table” and How to Read It

The main results of our symmetry analysis is presented in Table I. It displays the non-
vanishing tensor elements and the relations between them for each of the spin structures
addressed by us. In the current subsection, we explain how this Table should be read.
First, we will define the notions of “phase”, “case”, and “configuration”, used henceforth
to classify our results.

• “Phase” describes the magnetic phase of the material, i.e. paramagnetic, ferromag-
netic, or AF.

• Secondly, the word “configuration” is reserved for the description of the magnetic
ordering of the surface. It describes various possibilities of the spin ordering, which
are different in the sense of topology. The configurations cannot be transformed
into each other by point-group operations, therefore we define the (ferromagnetic or
antiferromagnetic) order parameter separately for each configuration. We describe
up to 18 AF configurations, denoted by little letters a) to r), as well as several
ferromagnetic configurations, denoted as “ferro1”, “ferro2”, etc. The number of
possible configurations varies depending on surface orientation.
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SHG tensor elements

Polarization dependence
of SHG (experiment)

Conclusions on 
magnetic structure

Domain imaging

Spin configuration

Figure 5: An SHG experiment on an AF surface. Initial assumption about the examined structure is
verified by a proper choice of experimental geometry and polarization dependence.

• Thirdly, we describe different “cases”, i.e. additional structural features superim-
posed on the symmetry analysis. “Case A” does not have such additional features -
it describes usual surfaces of fcc crystals. In “case B” we address distortions of the
lattice of the magnetic atoms. “Case C” deals with two kinds of magnetic atoms in
an undistorted lattice. In “case D” we take into account a distorted sublattice of
nonmagnetic atoms, keeping the magnetic sublattice undistorted. All the analysis is
restricted to collinear antiferromagnets.

The results are displayed by (i) pictures (which define each of the addressed configura-
tions) and (ii) tables (which describe the SHG response of the given configuration).
(i) Presentation in figures. The figures present the spin configurations for the (001),
(110), and (111) surfaces. The philosophy of this presentation is that, to avoid extensive
length, we show the spin structure in one figure for each surface (Figs. 8, 9, and 10) for all
the four cases (A-D), and depict the effects taken into account in the cases B-D only for
the paramagnetic phase (Figs. 11, 12, and 13).

Several spin structures depicted in Fig. 8 and Fig. 10 are distinct configurations only
in case B, and they are addressed in the tables that concern only this case. For the rest of
the cases they are domains of other, fully described configurations, thus they are left out
from consideration in these cases.
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Figure 6: Conventional unit cell as a fragment of an infinite surface.

The figures display “conventional unit cells” with a limited number of lattice sites, how-
ever they represent an infinitely extended surface. No oxygen atoms are displayed here.
To obtain the whole surface from the depicted fragment, we use the following convention:
about the spin structure is presented in Fig. 7 13; this
neighboring spins along the x and y directions point the
same way (alternate) if they are parallel (antiparallel) on
the plaquette in these two directions. The spins in rows
and columns where only one spin is presented are contin-
ued in the same way as the corner spins. This is shown
in Fig. 6, for the conf. c) of the (001) surface. This con-
vention will be maintained henceforth (for a (111) surface
one has to alter or keep the spins along three axes, in-
stead of two). The smallest set that gives a complete idea
“magnetic Wigner-Seitz cell” does not give a clear pic-
ture of the crystal symmetries, however. Thus we show

Figure 7: Top view of a spin
structure on a (001) surface. The
dashed line depicts a conventional
unit cell, while the solid one outlines
the primitive unit cell.

the “conventional unit cell” instead (in the sense of crystal lattice theory) as outlined for
one example in Fig. 6. The whole crystal lattice can be reproduced by translations of this
cell, without performing other operations such as reflections or rotations.
(ii) Presentation in the tables. First, let us describe briefly the notation14 used for the
symmetry operations. Ni describes a proper rotation, where N is an integer and defines
the angle of rotation by 2π

N
, and i describes the axis of rotation. The axes are defined in

the Figure presenting the corresponding surface. Spatial inversion is described by 1, and
combinations of this operation with proper rotations define improper rotations, which we

13Although our primitive cell contains 4 magnetic atoms they do not fall on a straight line, and thus
we still have a two-sublattice antiferromagnet. The primitive cell of a typical four lattice antiferromagnet,
like Cr2O3 contains 4 magnetic atoms placed on a straight line.

14It is commonly called “International Notation”.
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use describe all the mirror operations in this work. The bar is then put over the multiplicity
factor of the rotation.

The tables show the SHG response types for each configuration. The various response
types are “encoded” by a “key”, which is then “decoded” in Tab. I. This table presents the
symmetries, domain operations, and nonvanishing tensor elements for each response type.
This is done in order to shorten the overall length of tables, because a given response type
can appear in several different cases.

Table I also contains the information on the domain-parity of the nonvanishing tensor
elements: the odd ones are printed in boldface. If two or more domain operations have
the same effect, we display all of them together. To make the Table I shorter and more
easily readable these domain operations (and the corresponding domain-parity information
for the tensor elements), that can be created by a superposition of the displayed domain
operations, are not displayed. Usually, if more than one domain pattern is possible for a
given configuration, the domain-parity of tensor elements is different in different domain
operations. For example, if both 90◦ domains and mirror domains with operation 2x are
possible, some tensor elements may be, say, odd in 4z and even in 2x. This is accounted
for by different entries for the domain operations of a given configuration in Table I.

Also, a situation is possible that a tensor element is even in the presented domain
operation but is odd in the inverse operation. This fact is expressed by use of italics,
and the use of bold- or lightface describes the domain-parity of the tensor element in
this operation which is listed in the table. Italic font just hints that the domain-parity
changes in the operation which is the inverse of the displayed one. For example, the
entry j) of Table I shows a tensor element χxxx displayed as xxx, which is even under the
operation 4z, this means that tensor element χxxx is odd under −4z. This behavior of tensor
elements may seem strange at first sight. However, it is caused by the fact that under these
operations, tensor elements are not mapped on themselves. In our example, after applying
4z the tensor element χxxx becomes χyyy, without changing its sign. If we now apply −4z,
χyyy (which is under −4z) becomes χxxx, again without changing the sign. In order to
keep the presentation short, we present the information about the domain-parity of the
tensor elements concerning only one domain operation from each pair of mutually inverse
operations.

The domain-parity of the elements has been checked in the operations 2z, 4z, and in the
operation connecting mirror-domains to each other (for the definition of the mirror-domain
structure see Subsec. 2.3.7). We do not address the domain-parity of tensor elements in
the 6z nor 3z operations for (111) surfaces nor any other operation that “splits” tensor
elements, although these operations also lead to a domain structure (see Subsec. 2.2.2).
As was discussed earlier, it is possible to define a parity of the tensor elements for the 3z
and 6z operations, however the tensor elements then undergo more complicated changes.
The situations where the domain-parity of the tensor elements is too complicated to be
displayed in the Table are indicated by a hyphen in the column “domain operation”. For
some configurations, there is no operation that leads to a domain structure - in those
configurations we display the information “one domain”.
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z z z z

para ferro1 ferro2 ferro3 ferro4

a) b) c) d) e)

f) g) h) i) j)

k) l) m) n)

o) p) q) r)

Figure 8: Spin configurations of an fcc (001) surface. Except for confs. “ferro4”and o) - r), the arrows
always indicate in-plane directions of the spins. In confs. “ferro4”and o) - r) ⊗ (�) denote spins pointing
along the positive (negative) z-direction, respectively.

Scope of the presentation. As far as the first layer is concerned, we address all the
collinear spin configurations of the low index surfaces of fcc antiferromagnets, with order
parameter L lying in plane or perpendicular to it and antiferromagnetic coupling between
nearest neighbors. For the (001) surfaces we also discuss the configurations, where the
antiferromagnetic coupling exists between the second-nearest neighbors (configurations a),
b), c), f), and o), along with d), g), and h) for case B.). We do not consider the coupling
to the third and further neighbors. This would not give rise to configurations of different
symmetries in two dimensions. It may at most replace spins by grains (blocks) of spins in
the configurations described by us. Thus, our symmetry analysis is complete.

In this work we thoroughly discuss the spin structure of the first (uppermost) atomic
layer. This is sufficient to study all the symmetries of (001) and (110) surfaces both in the
paramagnetic and ferromagnetic phases. For the (111) surface it is necessary to recognize
the atomic positions (but not the spins) in the second layer for the same purpose. For
the sake of completeness we also present a study of (111) surfaces without this extension.
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However, in the antiferromagnetic phase, the spin structure of the second and deeper layers
plays a role in determining the symmetry of the surface [44]. This is presented in Subsec.
2.3.6, for the simple (undistorted) case, i.e. case A. These structures can serve as simple
models for deriving predictions for more complicated cases (B, C, and D), while the full
consideration of the second layer would not bring any new interesting results. Taking into
account the spin structure of the second layer (deeper layers do not bring up anything new
to the analysis) results in creating several (up to two for the (001) surface and three for the
(111) surface) configurations out of each one addressed here by us. The symmetry of these
configurations may remain the same or be lowered (sometimes even below the symmetry
of the ferromagnetic phase) with respect to the “two-dimensional” configurations they are
generated from. The results of this analysis are described in Subsec. 2.3.6.

In the next subsections, we will discuss the results of our symmetry analysis.

Table I. Details of SHG response types. We denote χ
(2ω)
ijk by ijk.

Odd elements are in bold if a domain operation exists.

key pt. group symmetry operations domain operation non-vanishing tensor elements

a 4mm 1, 2z,±4z, 2x, 2y, 2xy, 2−xy one domain xxz = xzx = yyz = yzy, zxx = zyy, zzz
b m 1, 2x 2z, 2y xzx = xxz, xxy = xyx, yxx, yyy, yzz,

yyz = yzy, zxx, zyy, zzz, zyz = zzy
4z, 2xy no information about the domain-parity

c m 1, 2xy 2z, 2−xy xxx = -yyy, xyy = -yxx, xzz = -yzz,
xyz = yxz = xzy = yzx,
xxz = xzx = yyz = yzy,
xxy = -yyx = xyx = -yxy,
zxx = zyy, zzz,
zxz = zzx = -zyz = -zzy, zxy = zyx

4z, 2y xxxxxxxxx = -yyy, xyy = yxx, xzz = -yzz,
xyz = xzy = yxz = yzx,
xxz = xzx = yyz = yzy,
xxy = -yyxyyxyyx = xyx = -yxyyxyyxy, zxx = zyy,
zzz, zxzzxzzxz = zzxzzxzzx = zyz = zzy, zxy = zyx

d 4 1, 2z,±4z 2x, 2y, 2xy, 2−xy xyz = xzy = -yxz = -yzx,
xzx = xxz = yzy = yyz,
zxx = zyy, zzz

e mm2 1, 2z, 2x, 2y ±4z, 2xy, 2−xy xxz = xzx, yyz = yzy, zxx, zyy, zzz
f 2 1, 2z 2x, 2y xyz = xzy, xxz = xzx, yyz = yzy,

yzx = yxz, zxx, zyy, zzz, zxy = zyx
±4z, 2xy, 2−xy xyz = xzy, xxz = xzx, yyz = yzy,

yzx = yxz, zxx, zyy, zzz, zxy = zyx
g mm2 1, 2z, 2xy, 2−xy ±4z, 2x, 2y xxz = xzx = yyz = yzy,

xzy = xyz = yzx = yxz,
zxx = zyy, zzz, zxy = zyx

h m 1, 2y 2z, 2x xxx, xyy, xzz, xxz = xzx, yyz = yzy,
yyx = yxy, zxx, zzz, zzx = zxz

4z, 2xy xxx, xyy, xzz, xxz = xzx, yyz = yzy,
yyx = yxy, zxx, zzz, zzx = zxz

i 1 1 2z All the elements are allowed:
xxx, xyy, xzz, xyz = xzy, xzx = xxz,
xxy = xyx, yxx, yyy, yzz, yyz = yzy,
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key point group symmetry operations domain operation non-vanishing tensor elements
yzx = yxz, yxy = yyx, zxx, zyy, zzz,
zyz = zzy, zzx = zxz, zxy = zyx

2x xxx, xyy, xzz, xyz = xzy, xzx = xxz,
xxy = xyx, yxx, yyy, yzz, yyz = yzy,
yzx = yxz, yxy = yyx, zxx, zyy, zzz,
zyz = zzy, zzx = zxz, zxy = zyx

±4z, 2xy, 2−xy no information about the domain-parity
j m 1, 2−xy 2z, 2xy xxx = yyy, xyy = yxx, xzz = yzz,

xyz = yxz = xzy = yzx,
xxz = xzx = yyz = yzy,
xxy = yyx = xyx = yxy,
zxx = zyy, zzz,
zxz = zzx = zyz = zzy, zxy = zyx

4z, 2y xxx =yyyyyyyyy, xyy =yxxyxxyxx, xzz = yzzyzzyzz,
xyz = yxz = xzy = yzx,
xxz = xzx = yyz = yzy,
xxyxxyxxy = xyxxyxxyx = yyx = yxy, zxx = zyy, zzz,
zxz = zzx = zyzzyzzyz = zzyzzyzzy, zxy = zyx

k mm2 1, 2z, 2x, 2y one domain xxz = xzx, yyz = yzy, zxx, zyy, zzz
l m 1, 2x 2z, 2y xzx = xxz, xxy = xyx, yxx, yyy, yzz,

yyz = yzy, zxx, zyy, zzz, zyz = zzy
m 1 1 2z All the elements are allowed:

xxx, xyy, xzz, xyz = xzy, xzx = xxz,
xxy = xyx, yxx, yyy, yzz, yyz = yzy,
yzx = yxz, yxy = yyx, zxx, zyy, zzz,
zyz = zzy, zzx = zxz, zxy = zyx

2x xxx, xyy, xzz, xyz = xzy, xzx = xxz,
xxy = xyx, yxx, yyy, yzz, yyz = yzy,
yzx = yxz, yxy = yyx, zxx, zyy, zzz,
zyz = zzy, zzx = zxz, zxy = zyx

n 2 1, 2z 2x, 2y xyz = xzy, xxz = xzx, yyz = yzy,
yzx = yxz, zxx, zyy, zzz, zxy = zyx

o m 1, 2y 2z, 2x xxx, xyy, xzz, xxz = xzx, yyz = yzy,
yyx = yxy, zxx, zyy, zzz, zzx = zxz

p 6mm 1, 2z,±3z,±6z, 6(2⊥) one domain xxz = xzx = yyz = yzy, zxx = zyy, zzz
q 6 1, 2z,±3z,±6z 2x, 2y xyz = xzy = -yxz = -yzx,

xxz = xzx = yyz = yzy, zxx = zyy, zzz
r 3m 1,±3z, 2y, 2S(xy), 2S(−xy) one domain zxx = zyy, xxz = xzx = yyz = yzy, zzz,

xxx = -xyy = -yxy = -yyx
s 1 1 2y All the elements are allowed:

xxx, xyy, xzz, xyz = xzy, xzx = xxz,
xxy = xyx, yxx, yyy, yzz, yyz = yzy,
yzx = yxz, yxy = yyx, zxx, zyy, zzz,
zyz = zzy, zzx = zxz, zxy = zyx

t m 1, 2y - xxx, xyy, xzz, xxz = xzx, yyz = yzy,
yyx = yxy, zxx, zyy, zzz, zzx = zxz

u 3 1,±3z 2y xxx = -xyy = -yxy = -yyx,
xyz = xzy = -yxz = -yzx,
xzx = xxz = yyz = yzy,
xxy = xyx = yxx = -yyy,
zxx = zyy, zzz

w 1 1 - All the elements are allowed
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2.3.2 Case A: Equivalent Atoms

The predicted new nonlinear magneto-optical effects
result from the fact that the magnetic point groups of
antiferromagnetic configurations are different from those
describing paramagnetic or ferromagnetic phases of the
same surface. Since, depending on the magnetic phase,
different tensor elements vanish, it is possible to detect
antiferromagnetism optically by varying the polarization
of the incoming light.

The current subsection discusses nonvanishing ele-
ments of the nonlinear susceptibility tensor for an fcc
crystal consisting of only one kind of magnetic atoms.
The influence of nonmagnetic atoms in the material will
be discussed later. The configurations considered here
are “ferro1”, “ferro2”, “ferro4”, a), b), c), e), f), i), k),
m), o), p), and r) for the (001) surface (see Fig. 8),
“ferro1”, ferro3”, “ferro5”, a), c), f), i), and k) for the
(111) surface (see Fig. 10), and all configurations de-

configuration key (response type)

para a

ferro1 b

ferro2 c

ferro4 d

AF:

a), b), e), o) e

c), f) f

i), k), m), p) g

r) a

Table II. SHG response for all spin
configurations of the (001) surface of
a fcc lattice [45]. For the detailed de-
scription of the response types see Tab.
I. The configurations are depicted in
Fig. 8.

picted in Fig. 9 for the (110) surface. Other depicted spin structures form domains of
these configurations and are not referred to in this subsection nor in the tables concerning
the current subsection.15

(001) surface. All possible configurations of a fcc (001) surface are shown in Fig. 8. The
SHG response types for the (001) monolayer are given in Table II, for the paramagnetic,
ferromagnetic, and all AF phases. We can observe several sets of allowed tensor elements.

configuration key (response type)

para k

ferro1 l

ferro2 m

ferro3 n

ferro4 o

AF:

a), b), c), g) - l) k

d), e), f) n

Table III. SHG response for all spin
configurations of the (110) surface of a fcc
lattice [45]. For the detailed description
of the response types see Tab. I. The con-
figurations are depicted in Fig. 9.

Configuration (conf.) r) will produce the same signal
as the paramagnetic phase. Conf. “ferro1” reveals a
completely different, distinguishable set of tensor ele-
ments. In addition, conf. “ferro2” produces another
set of tensor elements, different from any other config-
uration. It is equivalent to the conf. “ferro1” rotated
by 45◦. In the confs. a), b), e), and o) we find the
same tensor elements as for the paramagnetic phase.
However, due to the lower symmetry, their values are
no longer related to each other. Confs. c) and f) bring
new tensor elements, thus allowing for the distinction
of these confs. from the previous ones. Confs. i), k),
m), p) reveal the same tensor elements as c) and f)
but some of these elements are related. Thus one may
possibly distinguish these two sets of configurations.

Conf. “ferro4” presents a completely different, distinguishable set of the nonvanishing

15If a spin structure is not described within this subsection (nor in the tables relevant to this subsection),
it is a domain of the last displayed configuration that precedes the omitted one. This applies to all the
Subsections 2.3.2, 2.3.3, 2.3.4, and 2.3.5.
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Figure 9: Spin configurations of an fcc (110) surface. Except for confs. “ferro3”, g), h), and i), the
arrows always indicate in-plane directions of the spins. In confs. “ferro3”, g), h), and i) ⊗ (�) denote
spins pointing along the positive (negative) z-direction, respectively.

tensor elements. Consequently, in six configurations (i.e. c), f), i), k), m), and p)) some
susceptibility tensor elements appear only in the AF phase, allowing for the detection of
this magnetic phase by varying the incident light polarization, as will be outlined in Subsec.
2.3.8. In addition, all other antiferromagnetic configurations but r) reveal the breakdown
of some of the relations between the different tensor elements, compared to the paramag-
netic phase, and thus can be detected as well. Generally, all the magnetic phases can be
distinguished from each other. There exists as well the possibility to distinguish different
AF configurations provided the corresponding tensor elements can be singled out by the
proper choice of the experimental geometry.

(110) surface. We now turn to the (110) surface (Fig. 9), which, in the paramagnetic
phase, reveals a lower symmetry than the (001) surface. On the other hand, the number
of symmetry operations in the AF configurations is comparable to the (001) surface. In
addition, as shown in Table III, the resulting SHG response types are not very characteris-
tic, so the detection possibilities for this surface are very limited. In particular, confs. a),
b), c), g), h), i), j), k), and l) give the same tensor elements as the paramagnetic phase.
Confs. d), e), f), and “ferro3” bring new tensor elements. Other ferromagnetic configura-
tions (“ferro1” and “ferro2”) present different sets of new tensor elements, making these
configurations distinguishable from the others as well as from each other. Conf. “ferro4”
yields a completely different set of tensor elements, however this set is related to the one
of conf. “ferro1” by a 90◦ rotation.

In short, the (110) surface presents very limited possibilities for any analysis due to a
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Figure 10: Spin configurations of an fcc (111) surface. Except for confs. “ferro5”, k), l), and m), the
arrows always indicate in-plane directions of the spins. In confs. “ferro5”, k), l), and m) ⊗ (�) denote
spins pointing along the positive (negative) z-direction, respectively.

low symmetry already in the paramagnetic phase.

(111) surface. The study of the (111) surface (see
Fig. 10) has to be separated in two subcases, according
to whether we take into account only one atomic mono-
layer or more [40]. In both subcases, we consider the
same configurations. The SHG response types for the
first subcase are listed in Table IV, and for the second
subcase in Table V. For the first subcase, confs. a), i),
and k) reveal the same tensor elements as the param-
agnetic phase, however due to the lower symmetry their
values are not related to each other. Configurations c)
and f) present new tensor elements. As for the previ-
ous surfaces, the ferromagnetic phase reveals completely
different sets of tensor elements, and the three ferromag-
netic configurations can be distinguished from each other
since they bring different tensor elements into play. Un-
like for the (110) surface, the axes x and y are not topo-

configuration key (response type)

para p

ferro1 l

ferro3 o

ferro5 q

AF:

a), i), k) k

c), f) n

Table IV. SHG response for all spin
configurations of the (111) surface of a
fcc lattice [45]. Only one monolayer is
taken into account. For the detailed
description of the response types see
Tab. I. The configurations are depicted
in Fig. 10.

logically equivalent, and thus the fact that tensor elements of “ferro1” are related to those
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of “ferro3” by 90◦ rotation does not affect the possibility to distinguish these two con-
figurations. The ferromagnetic conf. “ferro5” brings up the same tensor elements as AF
confs. c) and f), but the relations between the elements are different. The second subcase
(more layers taken into account) gives different sets of allowed tensor elements (compared
to the first subcase) for each but the “ferro3” configuration. Confs. a), i), k), and “ferro3”
share the same set of allowed tensor elements and can be easily distinguished from the
paramagnetic phase. Confs. c), f), and “ferro1” reveal all tensor elements, with their
values unrelated. Similarly, conf. “ferro5” presents another, distinguishable set of tensor
elements. The (111) surface presents less possibilities for distinction of the magnetic phases
than the (001) surface, but there exist a certain possibility to distinguish the particular
AF spin configurations, once the magnetic phase of the material is known.

The symmetry analysis of nonvanishing tensor
elements for ferromagnetic surfaces in the case A
has been performed by Pan et. al. [12]. Our anal-
ysis yields the same results, taking into account the
corrections made by Hübner and Bennemann [46].

From the above discussion we can state that
clearly the best possibilities to distinguish the mag-
netic phases and spin structures by SHG are pre-
sented by the (001) surface. There, the magnetic
spin structure of NiO surface - its magnetic phase
as well as the particular spin configuration - can be
detected unambiguously.

configuration key (response type)

para r

ferro1 s

ferro3 t

ferro5 u

AF:

a), i), k) t

c), f) u

Table V. SHG response for all spin con-
figurations of the (111) surface of a fcc lat-
tice [45]. More monolayers are taken into
account. For the detailed description of the
response types see Tab. I. The configura-
tions are depicted in Fig. 10.

In brief,

• the (001) surface offers good possibilities to distinguish the magnetic phases as well
as the particular spin configurations,

• the (110) surface presents poor possibilities for the analysis,

• the (111) surface presents good possibilities for the distinction of the spin configura-
tions, once the magnetic phase of the surface is known.

This concludes the discussion of the simple, undistorted antiferromagnetic surfaces. In
the next subsection, we will investigate the influence of the rhombohedral distortion of the
lattice.
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2.3.3 Case B: Distortions of Monoatomic Lattice

configuration key (response type)

para k

ferro1 m

ferro2 o

ferro3 l

ferro4 n

AF:

a), b) - h), o) n

i) - n), p) - r) k

Table VI. SHG response for all spin

configurations of the (001) surface of a fcc

lattice, distorted to a rhombohedral struc-

ture. For the detailed description of the

response types see Tab. I. For the surface

structure see Fig. 11, for the spin configu-

rations see Fig. 8.

The rhombohedral distortion of the atomic lat-
tice, described here and shown in Fig. 11, makes
the x and y axes of the (001) surface inequivalent,
even in the paramagnetic phase. On the (111) sur-
face, the y axis is not equivalent any longer to other
axes connecting the nearest neighbors. These in-
equivalences of axes are the reasons for the reduc-
tion of the number of symmetry operations already
in the paramagnetic phase. Because of this reduc-
tion some spin structures that previously formed dif-
ferent domains of a single configuration now cannot
be transformed into each other and become “inde-
pendent”configurations. This happens for almost ev-
ery of the previously addressed configurations of the
(001) and (111) surfaces. Consequently, all the de-
picted spin structures are in fact configurations, and
are addressed in this subsection.

(001) surface. The resulting SHG response types for the (001) surface are listed in Table
VI. For this surface, only two of the ferromagnetic configurations, namely “ferro1” and
“ferro2” can be easily distinguished from both the paramagnetic as well as the antiferro-
magnetic phases. These ferromagnetic configurations can also be distinguished from each
other. On the contrary, all the AF configurations yield only two types of response, and
in addition one of them is equivalent to the response of the paramagnetic phase. Conse-
quently, it will not be possible to determine the surface spin structure, and the distinction
of the AF phase from the paramagnetic one can be successfully performed only in confs.
a)-h) and o). Compared to the case A, there is an important symmetry breaking for most
configurations. Thus, the distinction between the two cases (A and B) is possible (compare
Tabs. II and VI).

(110) surface. All the (110) surfaces of an fcc crystal with a rhombohedral distortion are

Figure 11: Structure of the (001) and (111) surfaces of a fcc crystal with a rhombohedral distortion in
the paramagnetic phase. Note the changed orientation of the coordinate system for the (001) surface.
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topographically equivalent to the (110) surface of the case A. The distortion only stretches
the x or y axis, so the structure remains rectangular.
(111) surface. The analysis of the (111) surface (also depicted in Fig. 11 in the para-
magnetic phase) in the subcase of only one monolayer reveals sets of symmetries very
similar to the (110) surface, as it follows from the Table VII. In fact, the (111) surface of
a fcc crystal with a rhombohedral distortion can be
treated as two rectangular lattices superimposed on
each other. In turn, due to the distortion, it is no
longer convenient to describe the spin structures us-
ing “S”and “H”axes. The possibility to distinguish
AF configurations is very poor, and two of the AF
configurations (a) and k)) yield the same signal as
the paramagnetic surface. In confs. b) - j), l), and
m) the AF phase can be distinguished from the para-
magnetic one, but they give the same signal as conf
“ferro5”. Conf. “ferro2”can be easily distinguished
since it reveals a characteristic set of (all) tensor el-
ements. Confs. “ferro1”and “ferro3”yield different
sets of tensor elements, but they are related to each
other by a 90◦ rotation. Most of the configurations
allow for the distinction of the cases A and B (com-
pare Tabs. III and VII).

configuration key (response type)

para k

ferro1, ferro4 l

ferro2 m

ferro3 o

ferro5 n

AF:

a), k) k

b) - j), l), m) n

Table VII. SHG response for all spin
configurations of the (111) surface of a fcc
lattice, distorted to a rhombohedral struc-
ture. Only one monolayer is taken into ac-
count. For the detailed description of the
response types see Tab. I. For the surface
structure see Fig. 11, for the spin configu-
rations see Fig. 10.

configuration key (response type)

para t

ferro1, ferro2, ferro4, ferro5 s

ferro3 t

AF:

a), i), k) s

b) - h), j), l), m) t

Table VIII. SHG response for all spin configu-

rations of the (111) surface of a fcc lattice, distorted

to a rhombohedral structure. More monolayers are

taken into account. For the detailed description of of

the response types see Tab. I. For the surface struc-

ture see Fig. 11, for the spin configurations see Fig.

10.

In the subcase of two monolayers of the
(111) surface, the symmetry is dramatically
reduced (see Tab. VIII). Even in the param-
agnetic phase the group of symmetries con-
sists of only one nontrivial operation, and
this occurs also in the AF configurations a),
i), k), and “ferro3”. In all the other config-
urations all tensor elements are allowed due
to the lack of any symmetry. Only confs.
paramagnetic and “ferro5”allow for the un-
ambiguous distinction of the cases A and B
(compare Tabs. V and VIII). Consequently,
this surface is not very useful to an analysis
of the magnetic structure, with the excep-
tion of stating the distortion itself.

As the conclusion of the case of the distorted sublattice of magnetic atoms, the surfaces
give extremely limited possibilities to investigate the magnetic properties, because of the
limited symmetry already in the paramagnetic phase. In our further study, we will limit
ourselves to lattices of undistorted magnetic atoms.
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In brief, if the monoatomic lattice of magnetic atoms is distorted,

• all the surfaces, (001), (110), and (111), present poor possibilities for detection of the
magnetic phase and the spin structure,

• the rhombohedral distortion can easily be detected, regardless of the magnetic phase
of the material.

2.3.4 Case C: Structure with Nonequivalent Magnetic Atoms

We assume now that not all the magnetic atoms in
the cell are equivalent. An example of such a struc-
ture is a material composed of two magnetic elements,
but also a situation when the magnetic lattice sites
are inequivalent due to different bonds to a nonmag-
netic sublattice. Distortions of the sublattice of non-
magnetic atoms that preserve the center of twodimen-
sional inversion (in the paramagnetic phase) produce
the same effect. Other distortions of the sublattice of
nonmagnetic atoms will be discussed in Subsec. 2.3.5.
The magnetic moment at the distinguished positions
can be changed or not - this does not affect the results
obtained by the symmetry analysis. The configura-
tions considered here are “ferro1”, “ferro2”, “ferro4”,
a), b), c), e), f), i), k), m), o), p), and r) for the
(001) surface (see Fig. 8), “ferro1”, ferro3”, “ferro5”,
a), c), f), i), and k) for the (111) surface (see Fig.
10), and all configurations depicted in Fig. 9 for the
(110) surface. Other depicted spin structures form
domains of these configurations and are not referred
to in this subsection nor in the tables concerning the

configuration key (response type)

para a

ferro1 b

ferro2 vc

ferro4 d

AF:

a), o) h

b), e) b

c) f

f) i

i), m), p) e

k) j

r) d

Table IX. SHG response for all spin

configurations of the (001) surface of a fcc

lattice, with one atom distinguished. For

the detailed description of the response types

see Tab. I. For the surface arrangement see

Fig. 12. For the confs. see Fig. 8.

current subsection.

Figure 12: Surface structure of the non-equivalent magnetic atoms case in the paramagnetic phase.
Pictures present the (001), (110), and (111) surfaces, respectively. Filled and empty circles represent
the two kinds of magnetic atoms. Note, the fragment representing the (111) surface does not show the
conventional unit cell but a bigger set of atoms in order to give a clear idea about the surface structure.

The structure is depicted in Fig. 12. For the sake of brevity, we show the structure of
the distinguished atoms only for the paramagnetic phase. All the configurations are the
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same as in case A, for all surface orientations. The already mentioned “convention” of
alternating (or not) spin directions along certain axes is applied regardless of the atom
type. This allows us to obtain the whole crystal surface from the small displayed fragment.

(001) surface. Our analysis starts with the (001)
surface of an fcc crystal. TheSHG response types for
each configuration are listed in Table IX. In general,
we can observe seven types of response. The first
of them is represented by the paramagnetic phase
alone. The second type of response, exhibited by
the ferromagnetic “ferro1” and the AF a), b), e), o)
confs., differs from any other type by some tensor
elements. The confs. a) and o) reveal different ten-
sor elements than the other configurations from the
mentioned group. However, the signal from confs.
a) and o) is the same as for the confs. b), e), and
“ferro1” if one exchanges the axes x and y. Thus,
if the directions of the spins cannot be determined
by another method, confs. a) and o) cannot be dis-
tinguished from b), e), and “ferro1”. The next type
consists of conf. f) and reveals all tensor elements,
while no relations between them are enforced by the
symmetry analysis. A completely different type of
response is presented by conf. c) alone. Another

configuration key (response type)

para k

ferro1 l

ferro2 m

ferro3 n

ferro4 o

AF:

a) l

b), c), h), i), k), l) k

d) 1m
e), f), g) n

j) o

Table X. SHG response for all spin con-

figurations of the (110) surface of a fcc lat-

tice, with one atom distinguished. For de-

tailed description of response types see Tab.

I. For the surface arrangement see Fig. 12.

For the confs. see Fig. 9.

type, where confs. i), m) and p) belong to brings the same tensor elements as conf. c), but
there exist more relations between the elements due to a higher symmetry in these config-
urations. The next type is given by confs. “ferro2” and k). As in conf. f) all the tensor
elements are present but this time there are some relations between them. In addition,
confs. r) and “ferro4” yield a completely new set of tensor elements due to the preserved
fourfold rotational symmetry.

Thus, assuming one atom as distinguished may reduce the symmetry. New tensor
elements appear in confs. a), b), e), f), k), o), and r) compared to case A (compare
Tabs. II and IX). In these configurations it is therefore possible to distinguish the cases
of equivalent and nonequivalent magnetic atoms, provided the tensor elements that make
the cases different can by singled out by the experimental geometry. There exists also
a possibility to distinguish different AF configurations in case C. The antiferromagnetic
phase can be undoubtely detected in the surface configurations c), f), i), m), and p).

(110) surface. For the (110) surface, there are more possibilities to distinguish the con-
figurations with nonequivalent magnetic atoms than in the case A. However, the config-
urations still produce ambiguous signals (see Tab. X). Confs. b), c), h), i), k), and l)
are equivalent to the paramagnetic phase. Conf. a) is equivalent to the ferromagnetic
“ferro1” configuration, and conf. d) to “ferro2”. In addition, the confs. e), f), and g) are
equivalent to the conf. “ferro3” and conf. j) gives the same signal as conf. “ferro4”. Even
the presence of nonequivalent atomic sites in the lattice cannot be detected by SHG on
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this surface, since the symmetry of the (110) surface is usually not lowered further by the
existence of nonequivalent magnetic sites (compare Tables III and X). The only exception
are the confs. a), d), g), and j) which give different tensor elements in the two cases. As
in the case of equivalent atoms, the (110) surface is not very useful for the analysis.

(111) surface. The study of the (111) surface must
again be divided in the two subcases of one or more
monolayers, respectively. Fig. 12 depicts the situa-
tion in the paramagnetic phase. The SHG response
types are listed in Tables XI and XII for the first
and the second subcase respectively.
In the first subcase (one monolayer) the symmetry
establishes six different types of nonlinear response.
The “paramagnetic” type (for the paramagnetic con-
figuration only) is characteristic - all the other config-
urations have additional tensor elements. The next
type of response (the ferromagnetic conf. “ferro1”
and the antiferromagnetic conf. a)) brings some new
tensor elements. Other tensor elements appear in the
conf. k). Configurations “ferro3” and i) show another
set of nonvanishing tensor elements. The confs. c)
and f) reveal all tensor elements in an unrelated way.
In addition, conf. “ferro5” presents a characteristic
set of tensor elements.

configuration key (response type)

para p

ferro1 l

ferro3 o

ferro5 q

AF:

a) l

c), f) m

i) o

k) n

Table XI. SHG response for all spin

configurations of the (111) surface of a fcc

lattice, with one atom distinguished. Only

one monolayer taken into account. For the

detailed description of the response types

see Tab. I. For the surface arrangement

see Fig. 12. For the confs. see Fig. 10.

configuration key (response type)

para r

ferro1 s

ferro3 t

ferro5 u

AF:

a), c), f), k) s

i) t

Table XII. SHG response for all

spin configurations of the (111) surface

of a fcc lattice, with one atom distin-

guished. More monolayers are taken

into account. For the detailed descrip-

tion of the response types see Tab. I.

For the surface arrangement see Fig.

12. For the confs. see Fig. 10.

In the second subcase, only four different SHG re-
sponses are possible. Firstly, the paramagnetic phase is
characteristic - all the other configurations bring addi-
tional tensor elements into play. The next type of re-
sponse is presented by confs. “ferro3” and i) - they yield
some additional tensor elements. Confs. “ferro1”, a), c),
f), and k) reveal all tensor elements and no relations be-
tween them appear from our symmetry analysis. Again,
the conf. “ferro5” presents a unique set of nonvanishing
tensor elements.
Consequently, for the (111) surface, the symmetry break-
ing due to the presence of a second kind of magnetic
atoms has even more important consequences than for
the (001) surface. In the situation of only one mono-
layer, the distinction between the cases may be possible
for all the AF configurations (compare Tables III and
XI). Considering additional layers leads to further sym-
metry breaking and renders the distinction between the
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configurations impossible. The distinction between the cases A and C is possible in confs.
a) and k) (compare Tables V and XII). Besides, in most configurations it is possible to
decide if these additional layers play any role (compare Tables XI and XII).

In the Case C, the conditions to distinguish the magnetic structure of the surface are
less favorable than in the Case A. The presence of the second kind of atoms reduces the
symmetry and can be (in most situations) detected by SHG. Also, one may distinguish AF
spin configurations, at least at the (001) surface. In the next Subsection, we will address
surfaces where, like in NiO, only one kind of magnetic atoms are present, but the distortion
of the oxygen sublattice may result in a different SHG signal.

In brief, if two kinds of magnetic atoms are present (alloying),

• the (001) surface presents good possibilities to distinguish the spin configurations. In
some configurations, a possibility to detect the AF phase exists,

• the (110) surface presents poor possibilities to detect of the magnetic structure,

• the (111) surface shows nearly no possibilities to detect of the spin structure, and
the SHG signal of the AF phase is the same as for the ferromagnetic phase,

• the presence of the second kind of magnetic atoms can be detected in most situations
(except for the (110) surface),

• the presence of the second kind of magnetic atoms slightly reduces the possibilities
of detection of the AF phase.

2.3.5 Case D: Distorted Oxygen Sublattice

Due to the strong charge-transfer between nickel and oxygen in NiO the sublattices may
be distorted. This effect can lower the symmetry of the surface. A point-charge model
calculation by Iguchi and Nakatsugawa [47] presented a shift of the oxygen sublattice
(“rumpling”) in the direction perpendicular to the surface. Their method did not show
any in-plane displacement and thus no change of the surface symmetry. However, if the
“rumpling” also has an in-plane component, i.e. if the oxygen atoms are displaced also
in the x and y directions, it will also have a considerable effect on the symmetry of the
crystal surface. For our analysis, we have chosen a distortion that can lower the symmetry
of the surface and besides can be represented within one conventional unit cell. A slight
non-stoichiometry of NiO (oxygen vacancies) can produce results qualitatively similar to
the ones described in this subsection, however we will not focus on this issue. The config-
urations considered here are “ferro1”, “ferro2”, “ferro4”, a), b), c), e), f), i), k), m), o), p),
and r) for the (001) surface (see Fig. 8), “ferro1”, ferro3”, “ferro5”, a), c), f), i), and k)
for the (111) surface (see Fig. 10), and all configurations depicted in Fig. 9 for the (110)
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surface. Other depicted spin structures form domains of these configurations and are not
referred to in this subsection nor in the tables concerning the current subsection.

As will be shown later, the best conditions for the detection of this kind of distortion
are presented by the (110) surface. The (111) surface could show equally good possibilities
if only a monolayer of magnetic atoms is present.

Figure 13: Surface structures of the case with a distorted oxygen sublattice (white circles). Pictures
present the paramagnetic phase of (001), (110), and (111) surfaces, respectively. Note, the fragment
representing the (111) surface does not show the conventional unit cell but a bigger set of atoms in order
to give a clear idea about the surface structure.

In the presence of an oxygen sublattice distortion,
the chemical unit cell is also doubled. This effectively
means that magnetic unit-cell-doubling (describing the
fact that the magnetic unit cell is twice as big as the
chemical one) is lifted. In general, taking into account
distorted oxygen atoms in the paramagnetic phase does
not lower the symmetry of the problem. The exception
is the (111) surface, where the six-fold axis is replaced
by the three-fold one.

In the case of the distorted oxygen sublattice, the
symmetry group for each configuration is a subgroup of
the corresponding “non-distorted” configuration, i.e. of
the corresponding spin configuration in the case A. As
in case C we display only the paramagnetic phase in Fig.
13 to depict the atom positions. All the spin configura-
tions are the same as for the corresponding surfaces in
case A, and the spins are assumed to be equivalent.
(001) surface. As Table XIII shows, six different re-
sponses can be expected from the (001) surface. The
paramagnetic surface will give a characteristic response.
The second group is formed by the confs.: a), b), e), o),
and “ferro1”. Although confs. a) and o) have elements

configuration key (response type)

para a

ferro1 b

ferro2 c

ferro4 d

AF:

a), o) h

b), e) b

c), f) i

i), k) c

m) j

p) e

r) d

Table XIII. SHG response for all

spin configurations of the (001) surface

of a fcc lattice, with a distortion of

oxygen sublattice. For the detailed de-

scription of the response types see Tab.

I. For the surface arrangement see Fig.

13. For the confs. see Fig. 8.
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different from the remaining configurations in this group, this fact corresponds simply to
rotating the sample by 90◦ with respect to the z axis. Confs. c) and f) reveal all tensor
elements without relations between them. Confs. “ferro2”, i), k), and m) reveal all tensor
elements with some relations. The only difference between conf. m) and others from this
group is like for the previous group a 90◦ rotation with respect to the z axis. Another
group consists of conf. p) alone. It reveals the same tensor elements as the paramagnetic
phase, but certain relations between tensor elements are broken due to a lower symmetry
of the conf. p). The confs. r) and “ferro3” form the last group. All the configurations but
k) and “ferro3” can be distinguished from those of case A (compare Tabs. II and XIII).
However only confs. c) and g) can be distinguished from case C (compare Tables IX and
XIII). Thus, only in these configurations it will be possible to detect oxygen sublattice
distortions by SHG.

configuration key (response type)

para k

ferro1 l

ferro2 m

ferro3 n

ferro4 o

AF:

a), b), g), h), k), l) k

c) o

d), e), i), j) n

f) m

Table XIV. SHG response for all spin

configurations of the (110) surface of a fcc

lattice, with oxygen sublattice distorted. For

the detailed description of the response types

see Tab. I. For the surface arrangement see

Fig. 13. For the confs. see Fig. 9.

(110) surface. The SHG response types for the
(110) surface are presented in Table XIV. One can
observe that only configurations c), f) and i) give
rise to new (compared to case A, Table II) tensor
elements. Compared to case C (Table X), confs.
c), f), and i) bring new tensor elements, and, sur-
prisingly, confs. a) and g) have less tensor ele-
ments, due to higher symmetries in the case D.
Consequently, the confs. a), c), f), g), and i) allow
for an unambiguous determination of the oxygen
sublattice distortion from the (110) surface. The
possibility to distinguish different configurations is
rather limited.

(111) surface. Oxygen sublattice distortion similar to the one presented in Fig. 13 for a
(111) surface was found by Renaud et al. [48] and calculated by Gillan [49] in M2O3 mate-
rials (M = Al, Fe). Since the nonmagnetic sublattice symmetry group has an influence on
SHG this distortion can be detected also on surfaces of fcc crystals. In the previous cases
A and C we divided the study of (111) surfaces in two subcases, considering either one or
more atomic layers. Taking into account a distorted oxygen sublattice leads us immediately
to the subcase of “more atomic layers”. It is caused by the fact that, on (111) surfaces,
the oxygen and magnetic atoms belong to mutually exclusive planes. The resulting SHG
response types are listed in Table XV. For the AF and ferromagnetic phases, all tensor
elements are allowed for every configuration. Thus SHG cannot detect the magnetic phase
of the surface nor distinguish different configurations. Only confs. paramagnetic, “ferro3”,
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“ferro5”, and d) allow to decide unambiguously whether
the oxygen sublattice is distorted or not (compare Tabs.
V, XII, and XV).

For both the (001) and (111) surfaces, the symme-
try groups of case D appear to be the subgroups of the
corresponding configurations of case C. This means that
the oxygen sublattice distortion makes some (one half
of all) magnetic atoms distinguished as in case C, even
though we did not apply this distinction explicitly in case
D. On the other hand, the symmetry groups of the case
D differ clearly from those of case B. This is caused by
the difference in distortions assumed in these cases: the
rhombohedral one in case B and rotation-like in case D.

The distortion of the oxygen sublattice diminishes
the possibilities to detect the magnetic structure of the

configuration key (response type)

para u

ferro1, ferro3 w

ferro5 u

AF:

All confs. w

Table XV. SHG response for all

spin configurations of the (111) surface

of a fcc lattice, with oxygen sublattice

distorted. For the detailed description

of the response types see Tab. I. For

the surface arrangement see Fig. 13.

For the confs. see Fig. 10.

surface. Only for the (001) surface one may distinguish the magnetic phases by SHG.

In brief, the distortion of the oxygen sublattice16

• is possible to detect on (110) and (111) surfaces,

• renders the determination of the spin structure impossible (on all surfaces),

• makes the distinction of the magnetic phases difficult. Only on the (001) surfaces the
AF phase can be unambiguously detected.

2.3.6 Second Atomic Layer

In the previous subsections, we took into account the spin structure only for the first
(uppermost) atomic layer. For the (111) surfaces, we also addressed the role of the pres-
ence (but not the spin structure) of magnetic atoms lying deeper, since this could (and
usually did) change the symmetry of the described structure even in the paramagnetic
phase. On the other hand, taking into account the positions of the atoms in deeper layers
does not change the symmetry for the (001) and (110) surfaces. In this subsection, we
present a study of the low index surfaces with more than one layer taken into account,
addressing also the spins of the magnetic atoms for the simple (undistorted) case, i.e. case
A. The structures described here can serve as simple models for deriving predictions for

16Or the mentioned non-stoichiometry.
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yx y x

Figure 14: Spin structure of an antiferromagnetic (001) bilayer constructed from a shift of the monolayer
along the positive x (y) axis. Filled (empty) circles represent the topmost (second) layer. On the right
hand side the conventional unit cells for the resulting bilayer structure are presented. Here, conf. c) of the
(001) monolayer serves as an example.

more complicated cases, while the full considera-
tion of the second layer in the other cases (B, C,
and D) would not bring any new interesting re-
sults. Also, considering more than two layers will
not bring any new results, thus our analysis com-
pletely describes the antiferromagnetic surfaces.

Taking into account the spin structure of the
second layer results in creating several (up to two
for the (001) surface and three for the (111) sur-
face) configurations out of each one addressed
here by us. The symmetry of these configurations
may remain the same or be lowered (sometimes
even below the symmetry of the ferromagnetic
phase) with respect to the “two-dimensional”
configurations they are generated from. Conse-
quently the distinction of the configurations from
each other may be limited, but the possibility to
detect the magnetic phase is not severely affected.
Also our remarks on domain imaging remain valid,
however the number of domains is increased.

configuration key (response type)

para a

ferro1 b

ferro2 c

ferro4 d

AF:

ax), ox) h

ay), oy), r) e

bx), by), ex), ey) b

c), fx), fy) i

i) j

k) f

m), p) c

Table XVI. SHG response for all spin con-

figurations of the (001) surface of a fcc lat-

tice, with the spin structure of the second layer

taken into account. For the detailed descrip-

tion of the response types see Tab. I. For the

confs. see Fig. 8.

(001) surface. The paramagnetic phase and all the ferromagnetic configurations of the
(001) surface remain unchanged with respect to the results of the Subsec. 2.3.2 (for the
(001) monolayer). However, most of the AF configurations previously addressed break up
into two different configurations (sometimes even with a different symmetry). These con-
figurations are constructed from the ones of the previous paragraph by assuming that the
structure of the second atomic layer is identical with that of the topmost one but shifted
along the positive x axis (indicated by x after the name of the original configuration) or
positive y axis (indicated by y after the name of the “parent” configuration) in a proper
way to form a fcc structure; if only one configuration can be produced in this way we



38 Chapter 2. Symmetry Analysis

use the name of the original one. This construction is depicted in Fig. 14, along with
the corresponding conventional unit cells for the two topmost layers of the AF fcc (001)
surface. The resulting SHG response types are presented in Table XVI. In general, seven
types of response are possible. Firstly, the paramagnetic phase reveals a characteristic set
of tensor elements. Thus it can be unambiguously distinguished from any other magnetic
phase. Secondly, confs. “ferro1”, ax), ox), bx), by), ex), and ey) bring some additional
tensor elements into play. The symmetry of confs. ax) and ox) is different from the one
of the rest of this group, since the mirror plane is rotated by 90◦ around the z axis. A
different set of tensor elements is brought up by confs. “ferro2”, i), m), and p). The differ-

ba
Figure 15: Spin structure of an antiferromagnetic
(110) bilayer constructed from a shift of the mono-
layer, where two different shiftings are applied. Filled
(empty) circles represent the topmost (second) layer.
The rightmost panel shows the conventional unit cell
for the resulting bilayer structure. Here, conf. a) of
the (110) surface serves as an example.

ence between the response yielded by conf.
i) and the other confs. in this group, due to
a different symmetry, can be compensated
by rotating the sample by 90◦ around the z
axis. Another, characteristic set of tensor el-
ements is presented by conf. “ferro4”alone.
The fifth type of SHG response is given by
confs. ay), oy), and r). Tensor elements,
that do not vanish in these configurations,
are the same as for the paramagnetic phase
but some relations between them are broken
due to a lower symmetry in the AF phase.
Confs. cx), fx), and fy) yield all tensor ele-
ments in an unrelated way. The last, char-
acteristic type of response is presented by
conf. k) alone. Consequently, the detection
possibilities of an antiferromagnetic bilayer

are slightly worse than those for a monolayer. Especially, a difficulty in distinguishing
the ferromagnetic phase from the antiferromagnetic one may arise for some configurations
where then the combination of SHG with other methods is definitely required. There exists
a possibility to distinguish AF configurations from each other, similarly to the previous
situation. In most configurations, the difference (in terms of the SHG response) between
the bilayer structure described here and the previously addressed (001) monolayer can be
detected.

(110) surface. The previously described AF configurations of the (001) monolayer most
commonly get split into two different configurations when a bilayer structure is considered.
For the (110) bilayer it is not the case - only two of twelve AF configurations get split in
this way, thus one obtains 14 AF configurations of the (110) bilayer. Describing the results
of our analysis we use the nomenclature of our previous article, i.e. the antiferromagnetic
configurations are labeled by small letters. Only the four configurations that result from
splitting of the two configurations of the monolayer structure are labeled by small letters
with subscripts that carry the information about how they have been constructed from
the (110) monolayer. For configurations with subscript “a” the lower layer is constructed
by translation of the topmost layer by vector (0.5a, 0.5b), where a and b are interatomic
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ba

Figure 16: Spin structure of an antiferromagnetic (111) bilayer constructed from a shift of the monolayer,
where two different shiftings are applied. Filled (empty) circles represent the topmost (second) layer. Here,
conf. f) of the (111) monolayer serves as an example. The rightmost panel displays the conventional unit
cell for the resulting bilayer structure of conf. fa).

distances within the (110) plane along x and y axes, respectively. For configurations with
subsript “b” the vector of translation is (-0.5a, 0.5b).
This corresponds to the way we constructed the (001)
bilayers.
The configurations of the (110) monolayer structure
are depicted in Fig. 9, and the way the bilayer is
constructed is depicted in Fig. 15. The tensor el-
ements are presented in Table XVII. In general, we
can observe five types of response. However, the pos-
sibility to distinguish AF configurations is not much
improved compared to the (110) monolayer. Even
the possibility to detect the magnetic phase of the
surface is not evident.
As for the (001) surface, there is no difference in
SHG signal between the monolayer and bilayer for the
paramagnetic and ferromagnetic phases. For most
AF configurations, however (confs. a), b), c), e), fa,
fb), g), h), j), k), and l)) such a difference is present
due to a lower symmetry of the bilayer.

configuration key (response type)

para k

ferro1 l

ferro2 m

ferro3 n

ferro4 o

AF:

a), g), j) o

b), h), k) l

c), d), l) n

e), fa), fb) m

ia), ib) k

Table XVII. SHG response for all spin

configurations of the (110) surface of a fcc

lattice, with the spin structure of the sec-

ond layer taken into account. For the de-

tailed description of the response types see

Tab. I. For the confs. see Fig. 8.

(111) surface. The spin configurations of the (111) bilayer are constructed from the con-
figurations of the (111) surface of our previous work in the way that the spin structure
in the second atomic layer is the same as in the topmost layer, but shifted accordingly to
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configuration key (response type)

para r

ferro1 s

ferro3 t

ferro5 u

AF:

aa), ab), ia),

ib), ka), kb) t

ca), cb), fa), fb) s

Table XVIII. SHG response for all spin

configurations of the (111) surface of a fcc

lattice, with the spin structure of the second

layer taken into account. For the detailed

description of the response types see Tab. I.

For the confs. see Fig. 10.

form a hcp structure. Taking into account the spin
structure of the second layer causes all the AF con-
figurations to split, thus one obtains 10 AF configu-
rations of the (111) bilayer. The configurations are
labeled by small letters (indicating their “parent”
configuration) with subscript “a” if the mentioned
shifting is along the positive x axis, and “b” if the
shifting is along the negative Sxy axis.

The configurations of the (111) monolayer are
depicted in Fig. 10 and the construction of the bi-
layer is depicted in Fig. 16. The corresponding
tensor elements are displayed in Tab. XVIII. The
results are identical to those of the Subsec. 2.3.2,
where the second layer of the (111) surface was
present but treated as nonmagnetic. This means
that the spin structure of the second layer does not
play any role for SHG, however the presence of the

atoms in the second layer does.

In brief,

• (001) surface presents the best possibilities to detect the magnetic phase and the spin
structure of the material.

• These possibilities on the (110) surface are limited.

• The results for the (111) surface are the same as in Subsec. 2.3.2.

• In general, the presence of the second atomic layer (and deeper ones) does not in-
validate our remarks that SHG is able to detect the magnetic phase and the spin
structure of the surface.

2.3.7 Domain Imaging

So far, we have described the possibilities to detect the AF phase and various spin structures
on AF surfaces by means of SHG. Another interesting application of SHG is domain imaging
in AF materials. As we already pointed out, Fiebig et al. [4] were the first to image AF
bulk domains in Cr2O3. Here, we will analyze the possibilities for the domain imaging on
AF surfaces.

For simplicity, we will consider here only surfaces described hitherto by the case A of our
analysis. In this case, for AF surfaces, no 180◦ domains can be expected due to the presence
of magnetic unit-cell doubling. The allowed domains can be detected by surface-sensitive
SHG under the following two conditions.
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First, domains can be imaged by our method only if they manifest themselves at the
surface, i.e. if the surface spin ordering changes while passing from one domain to an-
other17. It is necessary to note, however, that the spin orderings for different domains
must belong to the same configuration in the sense of our classification. We do not con-
sider it as a domain structure if one portion of the surface is in one configuration and
another portion is in a different configuration. Under such conditions, we can encounter
two different types of domains: 90◦ domains (for the (111) surface they are rather 60◦

domains), resulting from the rotations around the z axis, and the second type (called by
us mirror-domains, characteristic for antiferromagnets), where spins point along the same
axis in all domains, but the ordering is still different (they are no 180◦ domains!). The
tables contain the complete information about the domain-parity of tensor elements in
mirror-domain operations, and also for 90◦ type domains, but not for 60◦ domains. The
90◦ type domains will be addressed later on. In the mirror-domain structure, the magnetic
point group describing the configuration must lack an operation that, while belonging to
the (nonmagnetic) point group of the system and leaving the spin axes invariant, only flips
some of the spins. Note, the flipped subset of the spins must be antiferromagnetically or-
dered in itself. Configurations, the symmetry groups of which lack one of these operations
can reveal surface domains, related to each other by this operation.

Figure 17: Two surface mirror domains for an AF configuration - panels b) and c) depict the same AF
domain, related to the panel a) by different mirror operations.

For an illustration we choose the configuration c) of the (001) surface (see Fig. 8),
one of the configurations characteristic for NiO. The spins point along the x axis. Thus
operations leaving the axis invariant are 2x, 2y and 2z. Of them, 2x and 2y are absent in
the magnetic point group of the considered configuration (see Tab. II, conf. c), and Tab.
I). The flipped subset of spins consists of the four outer spins for the 2x operation, and of
the central spin for 2y (see Fig. 17 b) and c), respectively). In fact, there are two domains
possible in this configuration: one with the spins kept invariant under translations by the
vector (−a

2
, a
2
, 0) (this domain is shown) and the other with the spins kept invariant under

translations by the vector (a
2
, a
2
, 0). Here, a denotes the lattice constant. These domains

are depicted in Fig. 17.
The second condition for domain imaging is an interference. It can be created internally

by different elements of the tensor χ(2ω) or by external reference [50, 51]. The interfering
elements should be of a similar magnitude for the largest possible image contrast. Group
theory, however cannot account for the amplitudes. With external as well as internal
reference, a tensor element that changes its sign under the reversal of the antiferromagnetic
order parameter L is necessary. Actually, every L dependence of χ(2ω) can be represented

17It is also possible for different bulk domains to yield the same spin ordering at the surface.
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by splitting the tensor elements into odd and even ones in L; even if a tensor element is
not purely odd or even we can always decompose it according to Eq. (2.6), i.e. a tensor
element consists of parts which are odd and even in L, respectively. In a system with
many terms of that kind the possibility of detecting domains may be limited, since they
can influence the signal with opposite sign, thus diminishing the interference. In highly
symmetric structures, such as an fcc crystal, the situation is more comfortable: every
tensor element is either odd or even in L (see Subsec. 2.2.2). By the appropriate set of
experiments an element can be singled out and give a clear image of AF domains.

Using our example, conf c) of the (001) surface, we see that in the s-output polarized

light only two tensor elements are present18: χ
(2ω)
yyz and χ

(2ω)
yzx . The first of them is even

while the second is odd under the domain operation 2x. The resulting SHG light IS can
thus be expressed as (compare Eq. (2.2)):

IS ∼ (χ(2ω)
yyz )2 + (χ(2ω)

yzx )2 ± 2χ(2ω)
yyz · χ(2ω)

yzx (2.7)

where “+” stands for one domain, “-” for a different one. The change of sign of one tensor
element results in the domain contrast.

Now, we turn to the 90◦ domain structure. Again, we take the conf. c) of the (001)
surface as an example. The operation connecting the domains is 4z. Under this operation,
the tensor element χ

(2ω)
zxy changes its sign, thus again we have an interference which renders

the domain imaging possible. This tensor element is even in the domain operation 2xy

(which is equivalent to the superposition of 2x and 4z), which means that domains related
to each other by this operation cannot be imaged using this particular tensor element.
Similarly, if a tensor element is odd in one domain operation and even in another, it must
be odd in their superposition.

It is necessary to mention at this point that taking into account the spin structure in
the second layer would not change the validity of the analysis presented in this subsection.
The only modifications would result from addressing bulk domains rather then surface
domains, and the symmetry of the AF configurations would be changed. Yet it would still
be possible to find domain operations as well as odd and even tensor elements leading to
interference and AF domain contrast. Only in some cases the possibility to identify each
of the domains may be limited due to the increased number of domains.

2.3.8 Possible Experimental Results

In this subsection, we propose and discuss possible experimental setups for the detection
of AF configuration and the imaging of AF domains from low-index surfaces of NiO that
exhibit magnetic unit-cell doubling in contrast to bulk Cr2O3 [5, 24]. We propose an
experimental setup for the detection of antiferromagnetism in the following way: both the
incident and reflected beams may lie in the xz plane (optical plane), and form the angle ϑ
with the z-axis (normal to the sample surface). In the plane perpendicular to the outgoing

18For simplicity, the result of the symmetry analysis of a monolayer (case A) are used here. The tensor
elements resulting from a bilayer (Subsec. 2.3.6) do not hamper the possibility of domain imaging, but
would make the presentation more cumbersome due to the enhanced number of tensor elements.
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beam axis, the electric field of the second-harmonic generated light has two components,
E

(2ω)
p and E

(2ω)
s , given by the formulae

|E(2ω)
p | = | cosϑE(2ω)

x − sinϑE(2ω)
z |

|E(2ω)
s | = |E(2ω)

y | (2.8)

E
(2ω)
x , E

(2ω)
y , and E

(2ω)
z are the components of the electric field resulting from SHG in the

coordinate system of the sample. The dependence of these components on the input electric
field is indicated by the tensor χ(2ω). The aim of the experiment is the determination of
vanishing and nonvanishing tensor elements. The easiest way to do this is to analyze the
output signal intensity as a function of the input polarization in both output polarizations
s and p, for a fixed angle of incidence and reflection. The dependence of the output second-
harmonic electric field on the input polarization is schematically displayed in Fig. 18 for
all tensor elements. The intensity of SHG light is the square of the linear combination of
these partial responses. Examples of the intensity dependence on the input polarization
is presented in Fig. 19 for all the magnetic phases. The intensity need not be symmetric
with respect to ϕ = 90◦, this results from the influence of the electric field depicted in
Fig. 18c). The coefficients of the mentioned combination are the products of the χ(2ω)

tensor elements and the corresponding Fresnel coefficients, according to Eq. (2.2). Thus
performing a best fit of these coefficients to the experimental results will give (after taking
into account the Fresnel and geometrical coefficients, known for the given experimental
geometry and material [42]) a set of non-vanishing elements of the χ(2ω) tensor. Thus for
instance, the magnetic phase can be determined.

Concerning another experimental geometry, with input polarization fixed and intensity
measured as a function of the output polarization, it is possible to determine whether the
nonlinear Kerr effect takes place. For instance, with the input polarization ϕ = 90◦, the
output electric field is given as follows [42]:

E(2ω) = sin Φ(A2(Θ)χ(2ω)
yyy B2(ϑ)) + cos Φ(A1(Θ)χ(2ω)

xyy B2(ϑ) + A3(Θ)χ(2ω)
zyy B2(ϑ)) (2.9)

As the result, maximum of the intensity is for Φ 6= 90◦, if at least one of the tensor elements
χ
(2ω)
xyy or χ

(2ω)
zyy does not vanish. Actually, tensor element χ

(2ω)
zyy is even in all the investigated

order parameters, but the tensor element χ
(2ω)
xyy can be odd. For such configurations the

Kerr effect (change of polarization caused by inversion of the magnetic order parameter)
takes place. Thus, it is possible to determine which tensor elements are associated with
the spin-orbit coupling.

The geometry with p polarization of the reflected SHG light seems to be less useful,
since there the tensor element χ

(2ω)
zzz is always present, regardless of the configuration.

Besides, this polarization mixes the χ
(2ω)
x.. and χ

(2ω)
z.. tensor elements. This mixing, however,

can be tuned by varying the angle of incidence ϑ and taking into account the influence
of the Fresnel coefficients. For smaller ϑ only the χ

(2ω)
x.. elements are important, while for

larger ϑ the χ
(2ω)
z.. dominate. If the experiment does not show any difference for these two

situations, the tensor elements must be related. This is the possibility to distinguish the
configurations with some relations between the tensor elements from those without such



44 Chapter 2. Symmetry Analysis

0 45 90 135 180
Input polarization [deg]

0 45 90 135 180
Input polarization [deg]

0 45 90 135 180

Input polarization [deg]

O
u
tp

u
t
e

le
c

tr
ic

fie
ld

[a
rb

.
u
n
its

]
O

u
tp

u
t
e

le
c

tr
ic

fie
ld

[a
rb

.
u
n
its

]
O

u
tp

u
t
e

le
c

tr
ic

fie
ld

[a
rb

.
u
n
its

]

xxx, xzz, xzx, yxx, yzz, yzx,

zxx, zzz, zzx

xyy, yyy, zyy

xyz, xxy, yyz, yxy,

zyz, zxy

a)

c)

b)

Figure 18: Electric field response of single tensor elements as a function of the input polarization. Tensor

element χ
(2ω)
ijk is denoted as ijk.
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Figure 19: SHG intensity in S-output geometry for different magnetic phases.
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relations. On the other hand, the s polarization gives better chances for singling out the
desired tensor elements.

The surface, which gives the best possibilities of drawing practical conclusions in an
experiment, is the (001) surface. This is true not only for monolayers with an undistorted
structure, as described by Dähn et al. [40], but also in case of a real surface (as repre-
sented by our analysis of a bilayer structure). In particular, Fig. 19 shows the possibility of
distinguishing magnetic phases of the (001) surface19, which, in the case of the structures
presumed for NiO, remains valid both for the monolayer and the surface. The most impor-
tant difference between the paramagnetic and the both magnetically ordered phases is the
fourfold symmetry of the SHG response for the first one. Two minima in the response of
the AF surface clearly distinguish it from the ferromagnetic phase. In the real experiments,
these minima need not be separated by 45◦, nor the response needs to fall to zero. Both
these features depend on the relative complex phase and magnitude of the tensor elements.
As our eletronic calculation in Chapter 3 hints, one can choose such a wavelength that the
tensor elements are similar, with respect to the complex phase and the magnitude. Thus,
one can expect the experimentally obtained polarization dependence of SHG to be similar
as in Fig 19c).

In brief, the features of the experimental s-polarized SHG response from the (001) surface
are expected to be as follows:

• paramagnetic phase: fourfold symmetry.

• ferromagnetic phase: twofold symmetry, one minimum.

• antiferromagnetic phase: twofold symmetry, two minima.

• domain imaging: both 90◦ and mirror domains possible to image.

2.4 Time Reversal

As was discussed in the previous sections, symmetries determine the optical response of a
crystal. In magnetic materials, time-reversal is believed to be of fundamental importance
since this operation reverses all magnetic moments [8, 24, 29]. However, the consequences
of applying time-reversal are more profound than a simple inversion of localized magnetic
moments. As it will turn out in the current section, there is a deep interrelation between
the absence of conventional dissipation in even-order (e.g. second) harmonic generation
and the influence of time-reversal on spin ordering. This brings about a subtle differ-
ence between time-reversal and spatial symmetries in nonlinear optics. The benefit of
this difference makes optical second harmonic generation (SHG) a rather unique probe of
antiferromagnetism, while linear optics (where dissipation in the conventional sense is pos-
sible) is blind for such balanced spin structures. The recent discussion about the influence

19The ferromagnetic configuration “ferro1” and the AF configuration c) were used to obtain the graphs.
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of micro-irreversibility on macro-reversibility and reciprocity ([52, 53, 54]) shows that the
issue of time-reversal, although extensively discussed, is far from being understood.

In this section, we will:

• present the contemporary status of applying of the time-reversal operation in the
symmetry analysis,

• discuss the issue of two kinds of dissipation in nonlinear magneto-optics,

• analyze the reversibility of an elementary process of SHG, and

• propose a novel operation which is better suited for the symmetry analysis of non-
linear magneto-optics.

2.4.1 Conventional Approach

In considering the time-reversibility of an experimental situation, three approaches are
possible: (i) time-reversal is applied to the sample, but all the processes resulting from
the experiment are unchanged. In particular, the magnetic moments in the sample are
reversed, but the direction of the light propagation through the sample is not affected.
This approach is presented e.g. in [55, 56]. We consider this approach as incomplete,
since it does not equally treat the sample and the light propagating through it. (ii) The
second approach, usually encountered in the so called Sagnac-interferometry, addresses
time-reversal by reversing the propagation of the light through the sample (see, e.g. [57,
58, 59]). Clearly, such procedure probes the reciprocity [60] of the sample rather than its
time-reversal symmetry. It can also be proven that the second approach is equivalent to
the first one. (iii) According to the third approach, presented e.g. in [61], time reversal
acts on both: the sample and the experimental setup. In this work, we follow approach
(iii).

2.4.2 Dissipation in SHG

In the processes of even-order harmonic generation, dissipation in the conventional sense,
converting radiation into heat, does not exist, since the energy loss of the electromagnetic
field is the time average [38]

−
〈
dP (t)

dt
E(t)

〉
, (2.10)

which vanishes for SHG (and all even-order harmonics), since

P (t) ∼ P0e
iωt

E(t) ∼ E0e
i2ωt

(2.11)
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Here, P and E denote the polarization of the medium and the electric field, respectively20.
The lack of dissipation in the conventional sense does not mean that the process of SHG is
reversible. Already the analysis by Armstrong et al. [62] assumes a unique time direction.
There, the nonlinear polarization PNL and the electric field E3 of a light beam resulting
from Sum Frequency Generation at a point r0 is given by:

PNL(ω3) ∼ 1

2
Re

[
ei(∆k·r0+∆φ)ei(k3r0−ω3t+φ3)

]
(2.12)

E3 ∼ Re

[
ei(k3·r0−ω3t+φ3)

]
, (2.13)

see eqs. (3.1) and (3.2) of Ref. [62]. Here, ω3 and k3 describe the frequency and wave
vector of the generated light (ω3 = ω1 + ω2 and k3 ≈ k1 + k2). The authors introduce the
idea of “work done on this wave” by the nonlinear polarization of the medium, equal to

W3 =
ω3

2π

∫
cycle

E3
dPNL(ω3)

dt
dt =

1

2
ω3E3P

NL(ω3, out-of-phase), (2.14)

if the polarization is exactly 90◦ out of phase with the electric field (which requires that
∆kzz + ∆φ = π/2). The work done on the generated wave determines the direction of
time. This presents a new kind of dissipation, namely “dissipation in the frequency space”,
which invalidates time-reversal symmetry.
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Figure 20: Light intensity distribution on the input (a) and on the output (b) of the SHG.

20Both ω and 2ω beams can be attenuated during their propagation, but this is merely dissipation in
the linear propagation of the wave through a medium. In our analysis, we neglect this kind of dissipation.
Under this condition, linear optics is reversible. This can be seen for example in the Faraday effect,
which (in the absence of dissipation) consists only of the rotation of the polarization plane (no induced
ellipticity). After applying the time-reversal operation, the polarization of the light at the output (of the
reversed process) is the same as the polarization at the input of the original process, thus time-reversal
symmetry is preserved. This is true if one follows our convention and applies the time reversal both to the
sample and to the measurement process.
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Figure 21: Time-reversal asymmetry in SHG. Panel (a) presents the original process, panel (b) a process
in reversed time which would restore the symmetry, panel (c) presents a physically valid process described
in reversed time.

As stated before, there is no dissipation in the process of SHG in the usual meaning,
i.e. the amount of energy in the radiative form is constant. However, there is a transfer
of energy between the frequencies, in particular energy flows from the frequency ω to
other frequencies (see Fig. 20). We call this dissipation in frequency space, in contrast to
the more usual dissipation in real time. Dissipation in frequency space can mix real and
imaginary parts of the nonlinear susceptibility tensor. The distinction between these two
types of dissipation is often encountered in the literature. We consider them here on an
equal footing stating that the presence of any of them (in our case it is the dissipation in
frequency space) causes the system to have dynamical [63] and thus irreversible properties.
In this case, time-reversal does not apply to the symmetry analysis [36, 40, 41].

This fact becomes even more obvious if one takes the global picture of SHG. Radiation
acting on an ensemble of atoms may excite and deexcite them in many ways simultaneously.
Thus contributions of many frequencies are always present (see Fig. 21(a)). One has a
unique source of ω light but several detectors for beams of different frequencies: 2ω, 3ω,
etc, resulting from sum frequency generation (in particular SHG); linearly propagating ω
light; and a DC current resulting from difference frequency generation. This is due to the
expansion of the source term (polarization P ) in terms of the electric field:

P = P1 + P2 + . . . = χ(1)(ω)E(ω) + χ(2)(ω): E(ω)E(ω) + . . . (2.15)

Imposing time reversal, the detectors become sources and vice versa. Thus, in the time
reversed process, one ends up with a single detector, the one which receives the light of
frequency ω (Fig. 21(b)). In order to obtain this single frequency one has to redirect all
these (previously generated) beams back to the sample, conserving their phase. The source
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term now becomes:

P = χ(1)(ω)E(ω) + χ(1)(2ω)E(2ω) + . . . + χ(2)(ω): E(ω)E(ω) + χ(2)(2ω): E(2ω)E(2ω) + . . .
(2.16)

Since the phases of the now incident electric fields are the same as for the previously
outgoing electric fields, all the terms but those with χ(1) cancel (which means that in the
outgoing light one now has only the contribution at the frequency ω) and the original
situation at the input of the process is restored. This description, though mathematically
correct, is physically invalid, since there is no practical way to detect an infinite array
of frequencies along with the beam phases and to revert it with arbitrary accuracy (Fig.
21(c)). Tracing out the “bath” degrees of freedom (frequencies other than ω and 2ω) causes
a transition from a pure to a mixed state of the system, which means that some memory
is lost. This happens because the traced subsystem and the bath are not statistically
independent [64]. Thus, in any practical situation, there is no possibility to generate only
the frequency ω out of a whole array of frequencies. The process of SHG looks different in
time t than in the reversed time −t. Such a process is called dynamical.

2.4.3 Spatial Operations

So far we have reasoned that the time-reversal operation has to be excluded from the
symmetry analysis of SHG. However, magnetism may bring an additional complication,
since the magnetic spin structure is an additional aspect the symmetry analysis must
account for, and it is the time-reversal which is conveniently applied to flip the local
magnetic moments. This is, however, not correct: it is the classical covering symmetry
[65] of the magnetic crystal which should be addressed in a symmetry analysis rather than
the quantum-mechanical symmetry of the wavefunctions21. This means that the operation
applied to reverse the localized magnetic moments should be performed in real space rather
than Hilbert spin space. Consequently, time-reversal cannot be used for the symmetry
classification of magnetic moments.

Taking into account that time-reversal is not suitable for the description of dynamical
phenomena, one needs an operation which merely flips the localized magnetic moments
without inverting the time-flow. This can be accomplished by purely spatial point-group
operations. In many antiferromagnetic (e.g. transition-metal-oxide) crystals a simple trans-
lation by a lattice vector reverses the magnetic moments. In many ferromagnetic and anti-
ferromagnetic systems this may be accomplished by a mirror operation. The spatial oper-
ation, which reverses the localized magnetic moments, is called by us “moment-reversal”.
This operation is obviously unitary, in contrast to the time-reversal operation, which is
anti-unitary. Consequently, one does not need to invoke the time-reversal operation to
describe the full symmetry of magnetic crystals.

21According to [65], both the σx and σy operations cause reversal of the spin part of the quantum-
mechanical fermionic wavefunction. Of them, σy is conveniently used to describe time-reversal, since it is
an anti-unitary operation [66].
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Figure 22: Nonlinear susceptibility tensor elements and resulting SHG intensity using time-reversal (panel

(a)) and spin-reversal (panel (b)). Position of the points “A” and “B” is given by (χ
(2)
e )2+(χ

(2)
o )2± 2χ

(2)
e ·

χ
(2)
o , and the distance of the points “A” and “B” from the origin of the complex plane corresponds to the

intensity of SHG from the domains A and B, respectively (see inset for an example of domains in Cr2O3).
For simplicity, the moduli of the tensor elements have been taken as equal to 1, but the argumentation
also holds in the general case.

2.4.4 Practical Implications

Next, we support our reasoning by an example where the application of time-reversal and
“moment-reversal” in the symmetry analysis yields different results (see Fig. 22). Let
us assume a spin structure with two domains, A and B, related to each other by spin-
reversal22. A symmetry analysis, similar to the one in [67], provides us with the set of
nonvanishing elements of the nonlinear susceptibility tensor (i.e. χ(2) tensor) along with
the parities of these elements. Let us assume that for a certain experimental geometry
only two tensor elements, called χ

(2)
o and χ

(2)
e , contribute to the resulting SHG light, and

that χ
(2)
o is odd while χ

(2)
e is even in the domain operation. The intensity of SHG light at

a fixed polarization is given by:

Ip ∼ |(χ(2)
e )2 + (χ(2)

o )2 ± 2χ(2)
e · χ(2)

o | (2.17)

where “+” stands for domain A, “-” for domain B. In the conventional approach, where
time-reversal is the operation mapping domains into each other and dissipation is absent,
χ
(2)
o must be purely imaginary and χ

(2)
e purely real (Fig. 22(a)), since then dissipation is

necessarily absent. In this traditional approach, the first two components of the sum in
eq. (2.17) are real, while the last one is imaginary. Because it is the modulus of the whole
sum that determines the output intensity, the domain contrast is lost since

|a+ib| = |a-ib|, (2.18)

22This is possible e.g. in antiferromagnets like Cr2O3 or those with inequivalent magnetic sites.
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which is in odds with experiment [5]. This is not the case if one uses the correct operation
of “moment-reversal” for the symmetry classification, since then both tensor elements
χ
(2)
o and χ

(2)
e are just complex numbers without any constraints on their relative phase,

see Fig. 22b, and domain imaging is possible, as described in [67]. Consequently, the
symmetry analysis yields very different predictions if one uses time- or spin-reversal. For
the frequencies far from resonances, however, the complex phase difference between χ

(2)
o

and χ
(2)
e approaches 90◦, and the domain contrast is lost also in the “moment-reversal”

description (in agreement with experiment [5]).
Finally we would like to remark on the validity of previous work on the group-theoretical

classification of (magneto-)optical tensors. According to Pan et. al. [12], the time-reversal
operation forces the tensor elements to decouple into mutually exclusive sets of purely real
and imaginary ones (if all the kinds of dissipation are neglected). In addition, the crystal
symmetry forces the tensor elements to decouple into mutually exclusive sets of elements
odd and even in magnetization-reversal, these two divisions are equivalent in the absence of
conventional dissipation, i.e. real (imaginary) elements are even (odd) in the magnetization.
These are the results of a purely quantum-mechanical approach, where the Hamiltonian
is Hermitean (non-dissipative). In a real experiment, the laser spot size is much bigger
than the Wigner-Seitz cell, thus the experimental response is of macroscopic character.
In order to describe this macroscopic response one should not apply uniquely microscopic
conclusions to the analysis of these tensor elements. Consequently, taking into account
the dissipation in frequency space (i.e. redistribution of the response frequencies) and thus
the nature of SHG as a dynamical process (which rules out the applicability of the time-
reversal operation) will prevent the classification of tensor elements as real or imaginary
ones, although for systems with higher symmetry the classification of tensor elements as
odd and even ones in the magnetization (or in the antiferromagnetic order parameter L)
can still apply. The nonlinear susceptibility tensor χ(2ω) was usually approximated to be
real far from resonances. This was justified for the crystals previously mostly used for SHG,
and even more extensively as textbook examples [68, 69], which were usually wide-bandgap
insulators. This approximation is not valid in the systems described by us: metals and
transition metal oxides, where at any frequency one is close enough to one of the resonances
(this will be shown in Sec. 3.3). Thus, the only choice for an operation which accounts for
the spin structure is “moment reversal”, realized as a spatial operation.
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Summary of symmetry analysis:

In our symmetry analysis, we took into account all the spin configuration of low index
surfaces of fcc antiferromagnets. As the result, we determined

• the nonvanishing elements of the nonlinear optical susceptibility tensor

• the behavior of those tensor elements in domain operations (domain-parity)

Knowing these results we can state that

• SHG is able to detect the surface antiferromagnetism

• distinguish it from any other magnetic phase

• the particular spin structure at the surface can be detected by SHG in many cases

• domain imaging of antiferromagnetic surfaces can be performed experimentally

These interesting results of our symmetry analysis do not complete our work on SHG
from antiferromagnets. So far we cannot say anything about the magnitude nor com-
plex phase of the nonvanishing tensor elements. Their frequency dependence (spectrum)
remains uncovered as well. In order to solve these problems, we need an electronic cal-
culation. For the purposes of achieving our ultimate goal, which is the description of
the dynamics of SHG, we also need an electronic many-body theory. This theory will be
presented in the next chapter of this thesis.



Chapter 3

Electronic Theory

In the previous chapter, we described the important results brought by symmetry analysis.
We have also stated its deficiences, namely the lack of quantitative conclusions. These
deficiencies can be overcome by performing an electronic calculation based upon the results
of our symmetry analysis. This electronic calculation, described in the current chapter of
this work, is the next step of developing our theory of SHG from antiferromagnetic surfaces.

We set up the theory and perform our calculation having a particular material, NiO, in
mind. However, taking into account the electronic configurations 3d8, 3d7, and 3d6 opens
the way to describe properly not only the highly excited states of NiO, but also other
materials. With only slight modification of this work, nearly all elements23 of the periodic
table can be addressed, which overcomes earlier limitations of that theory. Especially, the
extension to other cubic metal oxides is straightforward.

Our ligand-field-theory approach allows us to fully consider the surface of the material.
We are not restricted to a monolayer of NiO.

The results of our calculations concern the SHG response of the sample in the equilib-
rium state. We present the spectra of the nonlinear magneto-optical susceptibility tensor
which governs this response. Furthermore, we develop a theory and perform a simulation
of a pump-and-probe experiment. During such an experiment, the dynamical behavior of
electrical charges and magnetic moments of antiferromagnetic NiO can be investigated on
the time scale of femtoseconds.

3.1 Interplay of Symmetry and Electronic Theory

One of the important results of our symmetry analysis (Chapter 2) is the determination of
the nonvanishing elements of the nonlinear optical susceptibility tensor for a given surface
spin configuration. The existence or vanishing of certain tensor elements has, besides the
classical covering symmetry, also microscopical reasons. Here, will discuss the interplay
between these symmetry-related and microscopic origins of the nonlinear magneto-optical

23Systems which escape the analysis within this framework are atoms with the electronic configuration
d5 (Cr, Mn, Mo, Re), and those where valence band includes f electrons (actinides).

54
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susceptibility tensor. The argumentation presented here applies to the (001) surface, but
the extensions to other low-index surfaces can be performed without difficulties.

In general, the tensor element χ
(2)
ijk(2q, 2ω) can be expressed as follows [13, 70]:

χ
(2)
ijk(2q, 2ω) =

e3

2q3V

∑
k,l,l′,l′′

[
〈k + 2q, l′′|i|kl〉〈kl|j|k + q, l′〉〈k + q, l′|k|k + 2q, l′′〉 ×

×
f(Ek+2q,l′′ )−f(Ek+q,l′ )

Ek+2q,l′′−Ek+q,l′−~ω+i~α
− f(Ek+q,l′ )−f(Ekl)

Ek+q,l′−Ekl−~ω+i~α

Ek+2q,l′′ − Ekl − 2~ω + 2i~α

]
, (3.1)

where V is the volume of the unit cell (because we treat the surface, we integrate over
one half of the unit cell) and f is the Fermi distribution. The screening factor has been
neglected. The summation is executed over wavevectors k corresponding to the states l,
and also over two lattice sites, with the atomic magnetic moment set antiparallely in the
AF phase (staggered summation). This allows us to account for the antiferromagnetism.
The damping factor α gives us the causal part of the Green’s function and corresponds to
the breaking of time-reversibility of the Hamiltonian. Matrix elements 〈k, l|i, j, or k|k, l〉
describe transitions between the electronic d and s states of nickel, consequently they are
forbidden in the spherically symmetric environment. Breakdown of the inversion symmetry
at the surface changes the selection rules, so that transitions with ∆l = ±2,±1 and 0 are
allowed. We restrict ourselves to intra-atomic transitions, since they suffice to explain the
spectral structures within the gap of NiO [71, 72].

Spin-orbit coupling, being mainly effective in the magnetically-ordered phases, slightly
lifts the orthogonality of the wavefunctions (in addition to a similar effect produced by the
surface symmetry breaking). As the result, the dipoles x, y, and z are no longer orthogonal.
This allows for the non-vanishing triple product of these dipoles in eq. (3.1).

The transition matrix elements are quite cumbersome to calculate, thus in our calcula-
tions we will only use some estimates of their value according to [73]. Additionally, some
of the products of the transition matrix elements can cancel depending on the symmetry
of the investigated surface. In the following subsections, we will qualitatively discuss the
nonvanishing tensor elements as resulting from these products for each of the magnetic
phases of the surface.

3.1.1 The Paramagnetic Phase

In this magnetic phase, mainly the surface symmetry breaking plays a role in determining
the transition matrix elements. The directions x and y (in-plane) are equivalent, so we do
not expect any tensor elements which result from a combination of dipoles x and y. From
this and because the z direction is distinguished (surface normal),

• tensor elements χzxx and χzyy should be equal, but different from χzzz, and

• in order to suppress any information about magnetization, indices x and y should be
present an even number of times each.
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These conditions allow for the following tensor elements: χzxx = χzyy, χzzz, and χyyz =
χxxz. This is in agreement with the results of our symmetry analysis.

In the paramagnetic phase, the magnetic moments localized on nickel atoms are disor-
dered and thus do not influence the result. Therefore, for the tensor elements which do not
vanish in the paramagnetic phase, their value calculated according to eq. (3.1) is equal to
a value resulting from only one nickel atom multiplied by two.

As it can be seen from the above argumentation, the paramagnetic tensor elements do
not exhibit any dependence on spin-orbit coupling (to first order).

3.1.2 The Ferromagnetic Phase

y

x

Figure 23: The ferromagnetic
surface spin configuration used
to perform the analysis in the
current subsection.

The specific spin configuration we have in mind perform-
ing the analysis described here is shown in Fig. 23. Because
the magnetic moments are parallel to the x axis, we do not
expect any tensor elements containing x an odd number of
times. This leaves us with the set of tensor elements de-
scribed previously as paramagnetic, additionally some other
tensor elements are present, we will refer to them as ferro-
magnetic. These ferromagnetic tensor elements contain y an
odd number of times, from which we can deduce their linear
dependence on spin-orbit coupling. Pairs of tensor elements
which were equal in the paramagnetic phase, like χzxx = χzyy,
are not equal now because of the ferromagnetic contribution
to them. The preferential axis is namely parallel to x, which
is thus inequivalent to y. Our numerical calculation is unable
to determine this contribution, since it is of higher than first
order in spin-orbit coupling.

The set of tensor elements deduced from the above considerations is the same as the
set obtained by our symmetry analysis in the Chapter 2, for the configuration “ferro1” of
the (001) surface.

3.1.3 The Antiferromagnetic Phase

Unlike in the previous subsection, there is no net magnetization in the antiferromag-
netic phase. Thus, the “distinguished direction” is not defined by magnetic moments but
rather by the ligands, and these are in the directions (110) and (1̄10). Still, the axes x and
y exist, defined by the magnetic moments. These axes are inequivalent, since the localized
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x

y
Figure 24: The antiferromag-
netic surface spin configuration
used to perform the analysis in
the current subsection.

magnetic moments are parallel only to x. In addition, local-
ized magnetic moments alternate along the (110) line and are
kept invariant along the (1̄10) direction. As the spin-orbit cou-
pling lifts the orthogonality of x and y dipoles slightly, tensor
elements with the combination of indices x and y become al-
lowed. On the other hand, the ferromagnetic tensor elements
must disappear, since the contributions from opposing spins
cancel each other in the antiferromagnetic phase. This leaves
us with the set of tensor elements identical to the one deter-
mined by our symmetry analysis in the Chapter 2, for the AF
configuration c) of the (001) surface.

As the spin-orbit coupling is intervening only once, the
antiferromagnetic tensor elements are linear in the order pa-
rameter.

The above remarks about the microscopic origin of tensor elements in the AF phase suggest
that the SHG is of the same order of magnitude as from a ferromagnetic surface. This means
that the effect is measurable. Also, because no intersite spin-flip transitions are involved,
the dynamical SHG is expected to be at least as fast as for ferromagnets.

In order to obtain quantitative conclusions about the non-vanishing tensor elements,
an electronic calculation is needed. In the next sections, we present such a calculation.

3.2 The Hamiltonian

The proper description of effects encountered in transition metals and their oxides require
an extensive use of correlation effects. This is evident even in some effects of the ground
state [74], and becomes especially important in nonlinear optics where highly excited states
are frequently involved. Therefore, we employ an exact-diagonalization method which
allows for a non-perturbative treatment of electronic correlation. Under these conditions,
the most general Hamiltonian has the following form:

H = Hband + HC + HSO (3.2)

where Hband describes the band structure of the investigated system, HC describes the on-
site interaction, and HSO is the relativistic part, which describes the spin-orbit coupling
needed for magneto-optics. In this work, we focus on the on-site interaction part of the
Hamiltonian, which has the following form:

HC =
∑

i,j,k,l,σ,σ′,σ′′,σ′′′
Uiσ,jσ′,lσ′′′,kσ′′c†iσc

†
jσ′ckσ′′clσ′′′ (3.3)

Here, Uiσ,jσ′,lσ′′′,kσ′′ is the on-site Coulomb interaction which can be described in full gen-
erality by the three parameters: Coulomb repulsion U , exchange interaction J , and the
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exchange anisotropy ∆J . In this section, we will concentrate on this on-site Hamiltonian,
which possesses the full spherical symmetry of a free nickel ion. The assumption is that
exactly two electrons are transferred to the oxygen atom, so that the electronic configu-
ration of the nickel ion is 3d84s0, 3d74s1, or 3d64s2. The energy difference between the
configurations 3d84s0 and 3d74s1 constitute the gap of around 4.0 eV which makes NiO a
charge transfer insulator. The states most interesting for us are the 8, 7, or 6 d-states24,
or equivalently, 2, 3 or 4 holes in the d-shell of the nickel ion25.

In this work, we will describe the holes according to the convention presented in the
following table:

name band lz spin
1 3d -2 up
2 3d -2 down
3 3d -1 up
4 3d -1 down
5 3d 0 up
6 3d 0 down
7 3d 1 up
8 3d 1 down
9 3d 2 up
10 3d 2 down
11 4s 0 up
12 4s 0 down

The antisymmetrized products of the single-particle states, which constitute a basis for
our many-body states, are described with the use of square brackets, e.g. [1,6] describes a
two-particle state constructed of two 3d hole states, one with lz = −2, and the other with
lz = 0.

The states [i,j,k,l], where i...l are the single-particle states (either 3d or 4s), are referred
to as simple product states in Fock space. The Hamiltonian HC expressed in this basis
is called by us simple-product Hamiltonian. On the other hand, Clebsch-Gordan algebra
provides us with the way to obtain linear combinations of the simple-product states, these
linear combinations are adapted to the spherical symmetry of the free ion and thus describe
the coupled, many-body states. These many-body states form a symmetry-adapted basis
for the HC , which is then called symmetry-adapted Hamiltonian.

In the following subsections, we will describe how these holes couple to each other,
forming the desired many-body states.

243d8, 3d7, or 3d6
25We do not implement point-charge model (Madelung energy) since we are not interested in the deter-

mination of the total energy in the ground state.
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3.2.1 Two Holes

In the limit of weak spin-orbit coupling, two holes form a two-particle state by an LS
coupling. The resulting quantum numbers are expressed as

Lz = lz,1 + lz,2

Sz = sz,1 + sz,2
(3.4)

Here, the lz,i and sz,i denote the z-components of orbital and spin momenta of the i-th hole,
respectively. From Eq. (3.4) it becomes clear that the orbital momentum of the coupled
state constructed from two d-holes can be 0, 1, 2, 3, or 4, which is conveniently described
as S, P, D, F, and G states. The resulting spin can be equal to 0 or 1, in other words each
of these S - G states can have a singlet or triplet degeneracy, which is denoted as 1S, 3S,
1P, etc.

It is necessary to take into account the fact the two holes we couple are indistinguishable.
Thus, according to the Pauli principle, they have to differ by at least one quantum number.
As a single d-hole can be in one of 10 states, two d-holes can produce 45 different two-
particle states. Taking into account the multiplicity of the above mentioned two-particle
states, both from the point of view of their total orbital momentum and their total spin, we
see that the only way to fill these 45 states with our symmetry-adapted two-particle states
is (1S, 3P, 1D, 3F, 1G), where 1X means spin-singlet and 3X triplet with the corresponding
orbital momentum. These symmetry-adapted states are produced from simple products
with use of Clebsch-Gordan algebra, as presented in [75]. As the result, the symmetry-
adapted two-particle states take the form depicted in the table A.1 in the Appendix A.
The states there are named by capital letters after their angular momentum (L), their
superscripts describe the spin-degeneracy (S), and subscripts refer to the magnetic quantum
number (Lz). Similar nomenclature is maintained henceforth26.

The symmetry-adapted Hamiltonian has already a diagonal form since it describes a
static spherically-symmetric system. There are only five different values at the diagonal of
this Hamiltonian, degenerate according to the degeneracy of two-hole symmetry-adapted
wave functions which form the basis. We call these values ES, EP , ED, EF , and EG, they
can be expressed by the constants U, J, and ∆J. We use the form of diagonal elements of
the symmetry-adapted Hamiltonian as derived by Oleś and Stollhoff [76]27. Knowing that
all off-diagonal elements of the symmetry-adapted Hamiltonian (3.3) must vanish, we can
express the simple-product Hamiltonian by U, J, and ∆J. This will be used in the next
subsection.

There remains an important task of determining the numerical values of the parameters
U, J, and ∆J, through which all the energies are expressed. This can be done by fitting them
to measured spectroscopical lines of doubly ionized nickel in the gaseous phase. However,
since only two two-hole levels are measured spectroscopically for gaseous Ni++ [77] (3F and

26For three- and four-hole states, some of the states with identical angular momentum appear twice. We
distinguish them by displaying an additional index in parenthesis.

27Their Hamiltonian is less general than the one described here. In particular, it does not possess the
claimed spherical symmetry.
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3P)28, it is not possible to determine our three parameters. On the other hand, there is
another, equivalent system of parameters to describe the energy levels: Racah parameters
A, B, and C [78]. Since several authors give their estimates for the values of the parameters
B and C, we can express our energy levels as well as the simple-product Hamiltonian
elements by Racah parameters. The values of B and C have been taken from [79], and the
parameter A (equivalent to U) was adjusted to the experiment. Consequently, we obtain
the following two-holes energy levels:

E(3F ) = A− 8B = 0.0 eV

E(3P ) = A + 7B = 2.070 eV

E(1G) = A + 4B + 2C = 3.008 eV

E(1D) = A− 3B + 2C = 2.042 eV

E(1S) = A + 14B + 7C = 7.768 eV

(3.5)

3.2.2 Three and Four Holes

In this subsection we describe the treatment of three- and four-hole states within the
framework of our theory. This allows not only for the proper description of excited states
in NiO, but also other materials such as CoO and FeO. The three- and four-hole states (all
holes are on-site) form the basis for the Hamiltonian. Both the three-hole and four-hole
parts of the Hamiltonian preserve the spherical symmetry of a free nickel ion.

The states for the ionic nickel electronic configuration 3d74s are called three-hole states.
Symmetry-adapted three-hole states are produced by coupling of symmetry-adapted two-
hole states to a third d hole and performing the Clebsch-Gordan algebra followed by Gram-
Schmidt orthogonalization29. The result is presented in Tables A.2 and A.3.

There are 120 states conveniently grouped as 2P, 2D, 2D, 2F, 2G, 2H, 4P, and 4F states
according to their degeneracy in the spherical environment. The other set of 120 states
results from the opposite orientation of the fourth hole, namely that in the 4s band. Al-
though coupling of three d-holes can produce a state with angular momentum equal to 6,
the Pauli principle forbids using more than two holes with the maximal lz quantum num-
ber. Therefore the highest angular momentum is 5 (state 2H), which results from using
two holes with lz=2 and one with lz=1.

In that way we determine the basis for the three-hole symmetry-adapted Hamiltonian.
Matrix elements of the three-hole simple-product Hamiltonian representation are calculated
by the embedding of the matrix elements of the simple-product two-hole Hamiltonian. This
allows us to construct the symmetry-adapted three-hole Hamiltonian using the Clebsch-
Gordan algebra. As the result, the matrix elements of the symmetry-adapted Hamiltonian
are expressed by Racah parameters A, B, and C and their numerical value can be calculated.
This Hamiltonian is diagonal and its values are degenerate according to the multiplicity of
the symmetry-adapted states.

28Unlike for neutral Ni (starting point for calculations on metallic nickel) where energies of two-hole
states were measured.

29We have two different states of D character, they have to be orthogonal. Therefore we use different
two-hole states to obtain these D states, and perform the orthogonalization on this (partial) result.
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The symmetry-adapted four-hole states (i.e. states 3d64s2) are obtained by a Clebsch-
Gordan coupling of the two-hole states, followed by Gram-Schmidt orthogonalization. The
result of this numerically performed procedure is a set of 210 states 1S, 1S, 1D, 1D, 1F, 1G,
1G, 1I, 3P, 3P, 3D, 3F, 3F, 3G, 3H, and 5D presented in Table A.4. The highest angular mo-
mentum possible to obtain by coupling four undistinguishable d-holes is 6, since one has to
use two holes with lz=2 and two with lz=1. As previously, the matrix elements of the four-
hole simple-product Hamiltonian are determined by use of an embedding procedure, they
are then used to construct the four-hole symmetry-adapted Hamiltonian. Again, it is diag-
onal and its values are degenerate according to the multiplicity of the symmetry-adapted
states. The resulting Hamiltonian fully describes the three- and four-hole interactions.

The procedure presented here was performed for a specific system, nickel ion. Never-
theless, it can be applied to any system where up to four d-holes or d-electrons are present
(the parameter values must be altered), like cobalt, iron, scandium, titanium or vanadium.
Furthermore, an extension towards the systems with 5 d-electrons is possible - one has to
couple an additional hole to our four-hole states and orthogonalize the result. For the ele-
ments of such five-hole Hamiltonian, an embedding procedure similar to the one described
by us can then be performed.

3.2.3 Bulk vs. Surface of NiO

So far, we have discussed the on-site interaction part of the Hamiltonian in the spher-
ically symmetric environment. Because of this symmetry, the Hamiltonian is degener-

Spherical Oh C4v
1S 1A1

1A1
3P 3T1

3A1+
3E

1D
1E 1A1+

1B1
1T2

1B2+
1E

3F

3A2
3B2

3T1
3A1+

3E
3T2

3B1+
3E

1G

1A1
1A1

1E 1A1+
1B1

1T1
1A2+

1E
1T2

1B2+
1E

Table 3.1: Splitting of the spherical
symmetry-adapted states in the cubic
(Oh) and square (C4v) environments.

ate to a large extent. Nearly all these degeneracies are
lifted when the symmetry is lowered. Since the non-
linear magneto-optic effects are known to be sensitive
to the splitting of electronic levels [80], we examine the
crystal field induced level splitting in detail. Here, we
will show how the lowering of the symmetry influences
the two-hole part of our Hamiltonian. The extension of
the analysis to three- and four-hole parts of the Hamil-
tonian is straightforward.

First, we will describe the level splitting in the cubic
environment. The levels obtained in this way will be
split in the next step which involves lowering the sym-
metry from cubic to square one due to the surface.

For example, the 3F state gets split in the cubic en-
vironment into states with symmetry 3A2,

3T1, and 3T2.
These states are constructed by linear combinations of
the previously defined symmetry-adapted orbitals. Such

linear combinations of spherical functions, adapted to the cubic environment, are called
cubic harmonics. Using them, we describe the states in the cubic and square (surface)
environment. The presence of the surface with its square symmetry splits the states fur-
ther, one obtains the following set of two-hole surface states: 3E, 3A2,

3B2,
3E, and 3B1.

Splitting of all the two-hole states in consequent symmetry breaking is presented in the
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Table 3.1.
Level splitting due to lowering of the symmetry is governed by the rules of group theory.

In particular, it tells us that, for a cubic symmetry Oh, only representations of the order
up to three are possible. The highest order of representations which describe the surface
states (where the surface square lattice has symmetry C4v) is two. These conditions mark
the maximal orbital degeneracies. The particular assignment of the cubic harmonics to the
states in the cubic and square environments can be performed by careful analysis of the
symmetry properties of the harmonics and the representations.
The square symmetry-adapted wavefunctions for each of the surface two-hole states are
presented in Table 3.2.

Table 3.2: Two-hole wavefunctions adapted to surface symme-
try. The two 4s holes have been skipped in the notation. For the
triplets, only the ↑↑ state is shown, but the remaining ones can be
obtained easily.

Spherical
state

Surface state Wavefunction

1S 1A1

√
1
5
× (

[1, 10] − [3, 8] + [5, 6] + [4, 7] − [2, 9]
)

3P

A1

√
4
5
[1, 9] −

√
1
5
[3, 7]

Eα

√
2
5
[1, 7] −

√
3
5
[3, 5]

Eβ −
√

2
5
[3, 9] +

√
3
5
[5, 7]

1D

A1

√
2
7
[1, 10] +

√
1
14

[3, 8] −
√

2
7
[5, 6]+

−
√

1
14

[4, 7] −
√

2
7
[2, 9]

B1 −
√

1
7
[6, 9] −

√
3
14

[7, 8] +
√

1
7
[5, 10] +

√
1
7
[1, 6]+

−
√

3
14

[3, 4] −
√

1
7
[2, 5]

B2 −
√

1
7
[6, 9] −

√
3
14

[7, 8] +
√

1
7
[5, 10] −

√
1
7
[1, 6]+

+
√

3
14

[3, 4] +
√

1
7
[2, 5]

Eα

√
3
7
[1, 8] −

√
1
14

[3, 6] +
√

1
14

[4, 5] −
√

3
7
[2, 7]

Eβ

√
3
7
[4, 9] −

√
1
14

[6, 7] +
√

1
14

[5, 8] −
√

3
7
[3, 10]

continued on the next page
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continued from the previous page

3F

B1

√
1
2

(
[1, 5] − [5, 9]

)
Eα

√
1
8

(√
3[7, 9] +

√
3[1, 7] +

√
2[3, 5]

)
Eβ −

√
1
8

(√
3[1, 3] +

√
3[3, 9] +

√
2[5, 7]

)
B2 −

√
1
2

(
[1, 5] + [5, 9]

)
A2

√
1
5
[1, 9] +

√
4
5
[3, 7]

Eγ −
√

1
8

(√
5[1, 3] −

√
9
5
[3, 9] −

√
6
5
[5, 7]

)
Eδ −

√
1
8

(−√
5[7, 9] +

√
9
5
[1, 7] +

√
6
5
[3, 5]

)

1G

A1α

√
7
12

(√
1
70

[1, 10] +
√

8
35

[3, 8] +
√

18
35

[5, 6] −
√

8
35

[4, 7]+

−
√

1
70

[2, 9]
)

+
√

5
24

[9, 10] +
√

5
24

[1, 2]

A1β −
√

5
12

(√
1
70

[1, 10] +
√

8
35

[3, 8] +
√

18
35

[5, 6] −
√

8
35

[4, 7]+

−
√

1
70

[2, 9]
)

+
√

7
24

[9, 10] +
√

7
24

[1, 2]

B1 −
√

3
28

[6, 9] +
√

2
7
[7, 8] +

√
3
28

[5, 10] +
√

3
28

[1, 6]+

+
√

2
7
[3, 4] −

√
3
28

[2, 5]

A2

√
1
2
[9, 10] −

√
1
2
[1, 2]

Eα

√
1
8

(√
1
2
[7, 10] −

√
1
2
[8, 9] +

√
1
2
[1, 8] +

√
3[3, 6]+

−√
3[4, 5] −

√
1
2
[2, 7]

)
Eβ

√
1
8

(√
1
2
[2, 3] −

√
1
2
[1, 4] +

√
1
2
[4, 9] +

√
3[6, 7]+

−√
3[5, 8] −

√
1
2
[3, 10]

)
B2

√
1
2

(−√
3
14

[6, 9] +
√

4
7
[7, 8] −

√
3
14

[5, 10] −
√

3
14

[1, 6]+

−
√

4
7
[3, 4] +

√
3
14

[2, 5]
)

Eγ

√
1
8

(−√
1
14

[4, 9] −
√

3
7
[8, 9] +

√
3
7
[5, 8] +

√
1
14

[3, 10]+

+
√

7
2
[2, 3] −

√
7
2
[1, 4]

)
Eδ

√
1
8

(√
7
2
[7, 10] −

√
7
2
[8, 9] −

√
1
14

[1, 8] −
√

3
7
[3, 6]+

+
√

3
7
[4, 5] +

√
1
14

[2, 7]
)

Having determined the surface states, we need to obtain the corresponding energy
levels. For the levels resulting from the split 3F state, these energies are known from the
experiment [81] and presented in Table 3.3. In order to obtain the energies for the other
levels we use a ligand field approach.

First, we have to express all the surface states in terms of the square surface ligand
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parameters ε0, Dq, DS, and DU
30. This is done in a manner similar to the one described in

[78] for the cubic symmetry, but we have to account for the different (lower) symmetry of
the ligand field. The result is presented in Table A.5. An interesting remark is that setting
the surface-characteristic parameters DU and DS as equal to zero increases the degeneracy
of the states. The degeneracy is then characteristic to the cubic environment, as presented
in the second column of the Table 3.1. Setting also the cubic ligand parameters ε0 and Dq

to zero leads the levels back to the spherical symmetry.
In principle, knowing the position of the ligands for our particular material, and approx-

imating the ligands by either point charges or dipoles, we can calculate these parameters.
Instead, we use the experimental knowledge and fit these parameters so that the energies
of the states resulting from splitting of the 3F state are expressed correctly. We obtain the
following values for the parameters:

ε0 = 0.6699 eV (3.6)

Dq = −0.1633 eV

DS = 1.6542 eV

DU = 0.2633 eV

The parameters obtained in this way allow for determination
of the energy shifts caused by the symmetry breaking. The
level energies obtained in this way are presented in Table
A.5. They find a confirmation in experiments [82]. Along
with the energies determined in the previous subsection for
the spherically symmetric states, this gives us the full knowl-
edge about the eigenfunctions and eigenvalues of energy at
the surface of NiO.
Clearly, the ligand field parameters are smaller than the elec-
tron correlation parameter U (about 13.0 eV). Since the en-
ergy levels for two- and three-hole states are separated by U

3B1 0.0 eV
3E 0.65 eV
3B2 1.0 eV
3A2 1.3 eV
3E 1.44 eV

Table 3.3: Experimental values
of energy levels for the surface-
symmetry split 3F state [81].

(in the spherically symmetrical environment), we do not expect any overlap of these states
also in the lower symmetries.

In the next two sections we will use these functions and energies to calculate the nonlin-
ear optical spectra of NiO and to draw some conclusions about spin- and charge dynamics
in this material.

3.3 The Nonlinear Spectrum of NiO (001)

According to eq. (3.1), there are three components needed for our calculations of the nonlin-
ear susceptibility tensor elements: wavefunctions of our many-body eigenstates, transition
matrix elements between these states, and the energy levels of these states. The wave-
functions and the corresponding energies were derived in the previous sections. However,

30Among these parameters, ε0 describes the energy shift in the crystal field, Dq is the level splitting in
the cubic environment, DS and DU correspond to the level splitting in the octahedral and C4v symmetries,
respectively.
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Figure 25: Spectrum of the paramagnetic tensor element χzzz . Both magnitude and the argument of
the complex phase of the tensor element are presented separately.

the exact calculation of the transition matrix elements is very unreliable (transition metal
oxides constitute the most difficult case due to their strong electronic correlations) and
will not be performed within the framework of the current theory. Instead, we will use the
approximations for the transition matrix elements obtained by Hübner et al. [73], which
constitute the selection rules. Here, we present the spectra of two tensor elements: the pro-
totypic paramagnetic tensor element χzzz in Fig. 25 and the prototypic antiferromagnetic
tensor element χzxy in Fig. 26.

In the spectrum of χzzz, all the features fall within the gap, which we assume at 4.0 eV.
The dominant structure in the spectrum corresponds to the transitions from the ground
state to the states resulting from the split 3P state, which are all located near 3.0 eV.
The position of the peak, around 1.5 eV corresponds to the fact that the tensor describes
a two-photon process. Other, smaller peaks related to transitions between various states
are also present. Another important feature of the calculated spectrum is that the tensor
element is complex and its phase varies. This has important consequences for the absence
of time-reversal symmetry in the process of SHG, as already extensively discussed in Sec.
2.4.

The spectrum of the antiferromagnetic tensor element χzxy reveals similar main traits
as the previously discussed spectrum. However, we can observe an additional peak at
0.6 eV, with intensity much higher than the corresponding feature in the spectrum of the
paramagnetic tensor element χzzz. Consequently, this is the “antiferromagnetic” spectral
line which we suppose is especially suitable for nonlinear magneto-optics. Another inter-
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Figure 26: Spectrum of the antiferromagnetic tensor element χzyx. Both magnitude and the argument
of the complex phase of the tensor element are presented separately.

esting result is that both tensor elements are of similar magnitude. This is a favorable
condition for the antiferromagnetic domain imaging. Taking into account the magnitudes
of both tensor elements presented in this section, domain contrast should be as large as in
ferromagnets (where it is of the order of unity in SHG).

The results described here concern the process of static SHG, i.e. a measurement taken
on a sample close to thermodynamic equilibrium. In the next section, we will describe our
anticipations as to the dynamical (time-resolved) measurements of highly excited states in
nickel oxide.

3.4 Spin and Charge Dynamics

The area of dynamics of magnetic materials on femto-second timescales escaped scientifi-
cal investigations till very recently, both from theoretical and experimental point of view.
However, the importance of understanding the dynamics in view of new challenges for the
materials needed for storage and computer memory media becomes obvious. Only very
recently seminal experimental works have been performed in the sub-picosecond regime
for ferromagnetic materials [83, 84, 85, 86]. The very fact of the observed spin dynam-
ics at these short timescales fostered the development of appropriate theoretical models,
since the the spin-lattice relaxation processes, appearing at the timescales of several tens
to hundreds of picoseconds [87] cannot be responsible for the observed effect. The con-
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cept of different temperatures (charge, spin, and lattice temperature) used to explain the
results [83, 84] is not strictly valid, since at so short timescales it is impossible to define
a temperature, which is rather an equilibrium property. A proper models, dynamics of
complex populations, have been developed for both linear [88] and nonlinear [89] magneto-
optics from ferromagnets. However, the investigations of femtosecond spin-dynamics of
antiferromagnets is nonexisting so far.

Here, we describe the simulation of an SHG pump-and-probe experiment in NiO. During
such an experiment, the sample is excited by a strong laser pulse, and then (with a variable
delay of several tens to hundreds of femtoseconds) the second - probe - pulse is issued. The
SHG response of the sample to this second beam is measured and can reveal the dynamic
properties of the sample. In this section, we

• describe the theoretical model for the dynamics and

• present and discuss the results of the calculations.

3.4.1 Treatment of Pump-Probe Experiments

In our work we extend the theory for probing the femtosecond spin-dynamics by means
of nonlinear optics towards antiferromagnets. In fact, we choose the same approach as in
[89] and add the initial excited state preparation and the dynamics of complex populations
to our previously described theory of the static SHG response. The initial excitation is
infinitesimally short in time (the excitation pulse is already completed when our dynamics
starts) but its energy distribution follows a Gaussian profile, centered at 2 eV and with
the width of 20 eV (truncated at 0 eV, so that no negative energies appear). This width
of excitation allows us to probe the fast limit of the dynamics, since all the energy lev-
els (including the highest) are populated and consequently all the de-excitation channels
are open. The restriction of the Hamiltonian to electronic on-site interactions complies
with this limit. Consequently, the excitation populates all the many-body states of our
system, and then these states are left to evolve freely. Under these circumstances the
time-dependent tensor element χijk can be expressed as

χ
(2)
ijk(2q, 2ω) =

e3

2q3V

∑
k,l,l′,l′′

[
〈k + 2q, l′′|i|kl〉〈kl|j|k + q, l′〉〈k + q, l′|k|k + 2q, l′′〉 ×

×
p(Ek+2q,l′′ ,t)−p(Ek+q,l′ ,t)
Ek+2q,l′′−Ek+q,l′−~ω+i~α

− p(Ek+q,l′ ,t)−p(Ekl,t)

Ek+q,l′−Ekl−~ω+i~α

Ek+2q,l′′ − Ekl − 2~ω + 2i~α

]
, (3.7)

Here, p(Ekl, t) = 〈Ψ(t)|kl〉 = f(E) × e−
i
~
Ek,lt, and the rest of symbols are the same as in

Eq. (3.1). The time evolution of the system exclusively results from the presence of the
quantum phase factor. Broadening of many-body levels does not occur since the many-
body Hamiltonian is diagonal due to the choice of the appropriate symmetry-adapted basis
(as described in Sec. 3.2). Consequently, the effect described by us has a purely quantum
nature and cannot be explain within a classical theory. As previously, the band structure is
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neglected due to very small dispersion of the gap states which are involved in the described
process. In the next subsection we present the results of the numerical simulations of the
spin dynamics.

3.4.2 Relaxation of Excited States

In this subsection, we present for the first time the femtosecond dynamics of the antiferro-
magnetic order parameter, represented by the antiferromagnetic tensor element χzyx. As
it is clear from the Fig. 27a, there is no decay of the tensor element, like for the metallic
systems. The coherence is preserved for a long time (until phenomena neglected within
this framework take place, like phonon-magnon coupling), which manifests itself by beat-
ing repeated regularly every 50 fs. Fig. 27b presents a zoom into such a period of 50 fs,
it demonstrates that the spin dynamics takes place within femtoseconds, and thus is not
slower than in metals.

For comparison, we have also performed similar calculations for the paramagnetic tensor
element χzzz. The results are shown in Fig. 28. The basic features are very similar to the
dynamics of the antiferromagnetic tensor element described previously. The ultimate limit
of the charge dynamics lies also within several femtoseconds, as it can be seen in Fig. 28b,
and the coherence is preserved for a long time.

The coherence of the tensor elements determining the SHG response of the AF surface
may be destroyed by the phonons, which were neglected in the current framework. As
mentioned above, the phonon-magnon coupling intervenes within several tens of picosec-
onds. Consequently, the coherence times are four orders of magnitude longer than the
ultimate speed of the spin and charge dynamics. Additional interactions, like electron-
electron interactions of the nearest neighbors, band structure (hopping), or phonons, can
bring decoherence. The question if this decay really occurs when these effects are taken into
account remains open. However, by choice of a particular spectral line instead of the spec-
trally wide initial excitation described here one can make the coherence last longer (typical
widths of spectral lines in oxides are in the range of tens of µeV [5], which corresponds to
several picoseconds coherence times).

The situation where the elementary dynamics happens within femtoseconds and coher-
ence is preserved beyond hundreds of femtoseconds is very favorable for the magneto-optic
storage and quantum computing applications [90], since the spin dynamics determines the
write and readout speed. Till now, only semiconductors have been known to fulfill this
criterion, however the applications of those materials suffer from problems related to spin
injection [91]. In the antiferromagnetic oxides no spin injection is necessary since the
magnetic moments are already there.

This conclusion ends the description of the results of our femtosecond spin- and charge-
dynamics. In the last chapter of this dissertation, we will present other conclusions, pre-
ceded by a brief summary of our results.
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Figure 27: Dynamics of the antiferromagnetic tensor element χzyx on NiO (001) within 500 fs (a) and
50 fs (b). The incident photon energy of the probe pulse ~ω=1.44 eV. The graphs present the magnitude
of the complex tensor element.
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Figure 28: Dynamics of the paramagnetic tensor element χzzz on NiO (001) within 500 fs (a) and 50 fs
(b). The incident photon energy of the probe pulse ~ω=1.44 eV. The graphs present the magnitude of the
complex tensor element.
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Conclusions and Outlook

In this work, we have settled the theory for Second Harmonic Generation from antifer-
romagnetic interfaces. The importance of the antiferromagnetic oxide interfaces for the
modern technology and material science has been outlined in the Introduction. The main
conclusion of this work is that SHG possesses unique capabilities to address antiferromag-
netic interfaces. In particular, the symmetry analysis of the nonlinear magneto-optical
response, described in the Chapter 2 of this work, demonstrates the potential of SHG to:

• distinguish magnetic phases of the surface, in particular detect surface antiferromag-
netism,

• distinguish detailed spin configurations of the AF surface,

• indicate for the distortions of the lattice

• image the AF surface domains

As proposed by us in the Subsec. 2.3.8, these results can be experimentally obtained by the
appropriate choice of geometry. The analysis was applied both to stand-alone monolayers
and to double layers (which represent fully the semi-infinite material) and is thus complete.

In addition to the symmetry analysis of the nonlinear magneto-optics we have, for the
first time, discussed the validity of applying time-reversal symmetry to classify the SHG
response. Our results show that the presence of dissipation in the frequency space makes
the process of SHG dynamical and thus irreversible. Only the combination of SHG and
antiferromagnetism fully reveals the complications that time-reversal operation imposes in
nonlinear magneto-optics.

In the Chapter 3 of this work we have presented an electronic calculation which supports
the above mentioned conclusions. The quantitative result of this calculation is that we
expect the effect from the antiferromagnetic surfaces to be of the same order of magnitude
as SHG from ferromagnetic surfaces, which had been proven measurable. In an experiment,
one can exploit a spectral line specific for antiferromagnetism, visible even on top of a
ferromagnetic background.

An important outcome of our electronic calculation is the first ever presentation of
nonlinear magneto-optical spectra of NiO (Sec. 3.3). Using them, spectral lines favorable

71
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for the experimental nonlinear optics and magneto-optics can be determined. Although
the used approximations do not allow for quantitative predictions of the peak heights in
the spectrum, peak positions are reliable.

The results of the dynamics calculations (Sec. 3.4), simulating a time-resolved pump-
and-probe SHG experiment, allow to make some interesting assertions about the inves-
tigated systems. In antiferromagnetic oxides, the negligible dispersion of the gap states
(which are the most important ones contributing to the surface SHG) prohibits the de-
cay of the tensor elements, unlike for metallic systems. On the other hand, the fast limit
of the dynamics in our system is demonstrated to lie within a few femtoseconds. These
characteristics make the antiferromagnetic oxides ideal materials for modern applications
like quantum computing and magneto-optical storage, even more since no spin injection is
needed.

In conclusion, our work has demonstrated that antiferromagnetic oxides, in particular
NiO, have many interesting properties which will certainly draw even more attention to
this class of materials, and that SHG is a quite unique tool to address these properties.

Our theory, though it yields important and reliable results, is not yet complete. The
improvement of our analytic tools will go in the direction of obtaining more quantitative
results. For that purpose, a more realistic estimate of transition matrix elements will be
indispensable. Actually, a proper calculation of these transition matrix elements will make
our theory fully ab initio, but this will not be possible in the near future. An extension to
the current state of our theory which will be easier to implement but which is also quite
interesting will be taking into account the three- and four hole states. Their application
has already been prepared, since we have determined these states and their energies for
the spherically-symmetric environment. Another point which we intend to implement is
taking into account the band structure. The dispersion of the gap states, although very
small, can help us in determining the long-time limit of the coherence times.

These improvements will provide an even more complete description of nonlinear magneto-
optics from antiferromagnetic surfaces of nickel oxide.
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Tables

Table A.1: Symmetry-adapted linear combinations of two-hole products

symmetry-
adapted
state

linear combination of simple products

1S
√

1
5 [1, 10, 11, 12]−

√
1
5 [3, 8, 11, 12] +

√
1
5 [5, 6, 11, 12] +

√
1
5 [4, 7, 11, 12]−

√
1
5 [2, 9, 11, 12]

1D−2

√
2
7 [1, 6, 11, 12]−

√
3
7 [3, 4, 11, 12]−

√
2
7 [2, 5, 11, 12]

1D−1

√
3
7 [1, 8, 11, 12]−

√
1
14 [3, 6, 11, 12] +

√
1
14 [4, 5, 11, 12]−

√
3
7 [2, 7, 11, 12]

1D0

√
2
7 [1, 10, 11, 12]+

√
1
14 [3, 8, 11, 12]−

√
2
7 [5, 6, 11, 12]−

√
1
14 [4, 7, 11, 12]−

√
2
7 [2, 9, 11, 12]

1D1 −
√

3
7 [4, 9, 11, 12] +

√
1
14 [6, 7, 11, 12]−

√
1
14 [5, 8, 11, 12] +

√
3
7 [3, 10, 11, 12]

1D2 −
√

2
7 [6, 9, 11, 12]−

√
3
7 [7, 8, 11, 12] +

√
2
7 [5, 10, 11, 12]

1G−4 [1,2,11,12]
1G−3 −

√
1
2 [2, 3, 11, 12] +

√
1
2 [1, 4, 11, 12]

1G−2

√
3
14 [1, 6, 11, 12] +

√
4
7 [3, 4, 11, 12]−

√
3
14 [2, 5, 11, 12]

1G−1

√
1
14 [1, 8, 11, 12] +

√
3
7 [3, 6, 11, 12]−

√
3
7 [4, 5, 11, 12]−

√
1
14 [2, 7, 11, 12]

1G0

√
1
70 [1, 10, 11, 12] +

√
8
35 [3, 8, 11, 12] +

√
18
35 [5, 6, 11, 12]−

√
8
35 [4, 7, 11, 12]−

√
1
70 [2, 9, 11, 12]

1G1 −
√

1
14 [4, 9, 11, 12]−

√
3
7 [6, 7, 11, 12] +

√
3
7 [5, 8, 11, 12] +

√
1
14 [3, 10, 11, 12]

1G2 −
√

3
14 [6, 9, 11, 12] +

√
4
7 [7, 8, 11, 12] +

√
3
14 [5, 10, 11, 12]

1G3

√
1
2 [7, 10, 11, 12]−

√
1
2 [8, 9, 11, 12]

1G−4 [9,10,11,12]
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Table A.1: Symmetry-adapted linear combinations of two-hole products

symmetry-
adapted
state

linear combination of simple products

3P↑↑
−1

√
2
5 [1, 7, 11, 12]−

√
3
5 [3, 5, 11, 12]

3P↑↑
0

√
4
5 [1, 9, 11, 12]−

√
1
5 [3, 7, 11, 12]

3P↑↑
1 −

√
2
5 [3, 9, 11, 12] +

√
3
5 [5, 7, 11, 12]

3P↑↓
−1 −

√
1
5 [1, 8, 11, 12] +

√
3
10 [3, 6, 11, 12] +

√
3
10 [4, 5, 11, 12]−

√
1
5 [2, 7, 11, 12]

3P↑↓
0 −

√
2
5 [1, 10, 11, 12] +

√
1
10 [3, 8, 11, 12] +

√
1
10 [4, 7, 11, 12]−

√
2
5 [2, 9, 11, 12]

3P↑↓
1

√
1
5 [4, 9, 11, 12]−

√
3
10 [6, 7, 11, 12]−

√
3
10 [5, 8, 11, 12] +

√
1
5 [3, 10, 11, 12]

3P↓↓
−1

√
2
5 [2, 8, 11, 12]−

√
3
5 [4, 6, 11, 12]

3P↓↓
0

√
4
5 [2, 10, 11, 12]−

√
1
5 [4, 8, 11, 12]

3P↓↓
1 −

√
2
5 [4, 10, 11, 12] +

√
3
5 [6, 8, 11, 12]

3F↑↑
−3 [1,3,11,12]

3F↑↑
−2 [1,5,11,12]

3F↑↑
−1

√
3
5 [1, 7, 11, 12] +

√
2
5 [3, 5, 11, 12]

3F↑↑
0

√
1
5 [1, 9, 11, 12] +

√
4
5 [3, 7, 11, 12]

3F↑↑
1 −

√
3
5 [3, 9, 11, 12]−

√
2
5 [5, 7, 11, 12]

3F↑↑
2 [5,9,11,12]

3F↑↑
3 [7,9,11,12]

3F↑↓
−3

√
1
2 [2, 3, 11, 12] +

√
1
2 [1, 4, 11, 12]

3F↑↓
−2

√
1
2 [2, 5, 11, 12] +

√
1
2 [1, 6, 11, 12]

3F↑↓
−1

√
3
10 [2, 7, 11, 12] +

√
1
5 [4, 5, 11, 12] +

√
1
5 [3, 6, 11, 12] +

√
3
10 [1, 8, 11, 12]

3F↑↓
0 −

√
1
10 [1, 10, 11, 12]−

√
2
5 [3, 8, 11, 12]−

√
2
5 [4, 7, 11, 12]−

√
1
10 [2, 9, 11, 12]

3F↑↓
1 −

√
3
10 [3, 10, 11, 12]−

√
1
5 [5, 8, 11, 12]−

√
1
5 [6, 7, 11, 12]−

√
3
10 [4, 9, 11, 12]

3F↑↓
2 −

√
1
2 [5, 10, 11, 12]−

√
1
2 [6, 9, 11, 12]

3F↑↓
3 −

√
1
2 [7, 10, 11, 12]−

√
1
2 [8, 9, 11, 12]

3F↓↓
−3 [2,4,11,12]

3F↓↓
−2 [2,6,11,12]

3F↓↓
−1

√
3
5 [2, 8, 11, 12] +

√
2
5 [4, 6, 11, 12]

3F↓↓
0

√
1
5 [2, 10, 11, 12] +

√
4
5 [4, 8, 11, 12]

3F↓↓
1 −

√
3
5 [4, 10, 11, 12]−

√
2
5 [6, 8, 11, 12]

3F↓↓
2 -[6,10,11,12]

3F↓↓
3 -[8,10,11,12]
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Table A.2: Symmetry-adapted linear combinations of three-hole products

symmetry-
adapted
state

linear combination of simple products

2P↑
−1

√
2
35 [1, 4, 9, 11] +

√
16
105 [1, 5, 8, 11]−

√
8
35 [1, 3, 10, 11] +

√
1

105 [1, 6, 7, 11]+

+
√

2
35 [2, 3, 9, 11]−

√
9
70 [3, 4, 7, 11]−

√
9
70 [3, 5, 6, 11]−

√
5
21 [2, 5, 7, 11]

2P↑
0 −

√
8

105 [1, 5, 10, 11] +
√

35
105 [1, 6, 9, 11] +

√
9
35 [1, 7, 8, 11]−

√
8

105 [2, 5, 9, 11]+

−
√

9
35 [3, 4, 9, 11]−

√
1

210 [3, 5, 8, 11] +
√

2
105 [3, 6, 7, 11]−

√
1

210 [4, 5, 7, 11]

2P↑
1 −

√
2
35 [1, 8, 9, 11]−

√
16
105 [4, 5, 9, 11]

√
8
35 [2, 7, 9, 11]−

√
1

105 [3, 6, 9, 11]+

−
√

2
35 [1, 7, 10, 11]−

√
9
70 [3, 7, 8, 11]−

√
9
70 [5, 6, 7, 11]

√
5
21 [3, 5, 10, 11]

2P↓
−1

√
2
35 [2, 3, 10, 11] +

√
16
105 [2, 6, 7, 11]−

√
8
35 [2, 4, 9, 11] +

√
1

105 [2, 5, 8, 11]+

+
√

2
35 [1, 4, 10, 11] +

√
9
70 [3, 4, 8, 11] +

√
9
70 [4, 5, 6, 11]−

√
5
21 [1, 6, 8, 11]

2P↓
0 −

√
8

105 [2, 6, 9, 11] +
√

32
105 [2, 5, 10, 11]−

√
9
35 [2, 7, 8, 11]−

√
8

105 [1, 6, 10, 11]+

+
√

9
39 [3, 4, 10, 11]−

√
1

210 [4, 6, 7, 11] +
√

2
105 [4, 5, 8, 11]−

√
1

210 [3, 6, 8, 11]

2P↓
1 −

√
2
35 [2, 7, 10, 11]−

√
16
105 [3, 6, 10, 11]

√
8
35 [1, 8, 10, 11]−

√
1

105 [4, 5, 10, 11]+

−
√

2
35 [2, 8, 9, 11]

√
9
70 [4, 7, 8, 11]

√
9
70 [5, 6, 8, 11]

√
5
21 [4, 6, 9, 11]

2D↑
−2(1) − 1

2 [1, 2, 9, 11]− 1
2 [1, 3, 8, 11] +

1
2 [1, 4, 7, 11] +

1
2 [1, 5, 6, 11]

2D↑
−1(1) − 1

2 [1, 3, 10, 11] +
1
2 [2, 3, 9, 11] +

1
2 [3, 4, 7, 11] +

1
2 [3, 5, 6, 11]

2D↑
0(1) − 1

2 [1, 5, 10, 11] +
1
2 [2, 5, 9, 11] +

1
2 [3, 5, 8, 11]− 1

2 [4, 5, 7, 11]
2D↑

1(1)
1
2 [2, 7, 9, 11]− 1

2 [1, 7, 10, 11] +
1
2 [3, 7, 8, 11] +

1
2 [5, 6, 7, 11]

2D↑
2(1) − 1

2 [1, 9, 10, 11] +
1
2 [4, 7, 9, 11]− 1

2 [3, 8, 9, 11] +
1
2 [5, 6, 9, 11]

2D↓
−2(1)

1
2 [1, 2, 10, 11]− 1

2 [2, 4, 7, 11] +
1
2 [2, 3, 8, 11]− 1

2 [2, 5, 6, 11]
2D↓

−1(1) − 1
2 [2, 4, 9, 11] +

1
2 [1, 4, 10, 11]− 1

2 [3, 4, 8, 11]− 1
2 [4, 5, 6, 11]

2D↓
0(1) − 1

2 [2, 6, 9, 11] +
1
2 [1, 6, 10, 11] +

1
2 [4, 6, 7, 11]− 1

2 [3, 6, 8, 11]
2D↓

1(1)
1
2 [1, 8, 10, 11]− 1

2 [2, 8, 9, 11]− 1
2 [4, 7, 8, 11]− 1

2 [5, 6, 8, 11]
2D↓

2(1)
1
2 [2, 9, 10, 11] +

1
2 [3, 8, 10, 11]− 1

2 [4, 7, 10, 11]− 1
2 [5, 6, 10, 11]

2D↑
−2(2)

√
25
84 [1, 2, 9, 11]−

√
3
28 [1, 3, 8, 11]−

√
1
84 [1, 4, 7, 11] +

√
3
28 [1, 5, 6, 11]+

+
√

4
21 [2, 3, 7, 11] +

√
2
7 [3, 4, 5, 11]

2D↑
−1(2) −

√
3
28 [1, 3, 10, 11] +

√
4
21 [1, 4, 9, 11]−

√
2
7 [1, 6, 7, 11]−

√
1
84 [2, 3, 9, 11]+

+
√

2
7 [2, 5, 7, 11] +

√
1
84 [3, 4, 7, 11]−

√
3
28 [3, 5, 6, 11]

2D↑
0(2) −

√
3
28 [1, 5, 10, 11] +

√
2
7 [1, 7, 8, 11] +

√
3
28 [2, 5, 9, 11] +

√
2
7 [3, 4, 9, 11]+

−
√

3
28 [3, 5, 8, 11] +

√
3
28 [4, 5, 7, 11]

2D↑
1(2)

√
3
28 [2, 7, 9, 11]−

√
4
21 [1, 8, 9, 11] +

√
2
7 [3, 6, 9, 11] +

√
1
84 [1, 7, 10, 11]+

−
√

2
7 [3, 5, 10, 11] +

√
1
84 [3, 7, 8, 11]−

√
3
28 [5, 6, 7, 11]

2D↑
2(2)

√
25
84 [1, 9, 10, 11] +

√
3
28 [4, 7, 9, 11] +

√
1
84 [3, 8, 9, 11] +

√
3
28 [5, 6, 9, 11]+

−
√

4
21 [3, 7, 10, 11] +

√
2
7 [5, 7, 8, 11]
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Table A.2: Symmetry-adapted linear combinations of three-hole products

symmetry-
adapted
state

linear combination of simple products

2D↓
−2(2) −

√
25
84 [1, 2, 10, 11]−

√
3
28 [2, 4, 7, 11]−

√
1
84 [2, 3, 8, 11]−

√
3
28 [2, 5, 6, 11]+

+
√

4
21 [1, 4, 8, 11]−

√
2
7 [3, 4, 6, 11]

2D↓
−1(2) −

√
3
28 [2, 4, 9, 11] +

√
4
21 [2, 3, 10, 11]−

√
2
7 [2, 5, 8, 11]−

√
1
84 [1, 4, 10, 11]+

+
√

2
7 [1, 6, 8, 11]−

√
1
84 [3, 4, 8, 11] +

√
3
28 [4, 5, 6, 11]

2D↓
0(2) −

√
3
28 [2, 6, 9, 11]−

√
2
7 [2, 7, 8, 11] +

√
3
28 [1, 6, 10, 11]−

√
2
7 [3, 4, 10, 11]+

−
√

3
28 [4, 6, 7, 11] +

√
3
28 [3, 6, 8, 11]

2D↓
1(2)

√
3
28 [1, 8, 10, 11]−

√
4
21 [2, 7, 10, 11] +

√
2
7 [4, 5, 10, 11] +

√
1
84 [2, 8, 9, 11]+

−
√

2
7 [4, 6, 9, 11]−

√
1
84 [4, 7, 8, 11] +

√
3
28 [5, 6, 8, 11]

2D↓
2(2) −

√
25
84 [2, 9, 10, 11] +

√
3
28 [3, 8, 10, 11] +

√
1
84 [4, 7, 10, 11]−

√
3
28 [5, 6, 10, 11]+

−
√

4
21 [4, 8, 9, 11]−

√
2
7 [6, 7, 8, 11]

2F↑
−3

√
1
2 [1, 2, 7, 11]−

√
1
12 [1, 4, 5, 11]−

√
1
12 [1, 3, 6, 11] +

√
1
3 [2, 3, 5, 11]

2F↑
−2

√
1
3 [1, 2, 9, 11]−

√
1
12 [1, 3, 8, 11] +

√
1
12 [1, 4, 7, 11]−

√
1
2 [3, 4, 5, 11]

2F↑
−1 −

√
1
30 [1, 3, 10, 11] +

√
3
10 [1, 4, 9, 11]−

√
1
20 [1, 5, 8, 11] +

√
1
20 [1, 6, 7, 11]+

−
√

2
15 [2, 3, 9, 11]−

√
2
15 [3, 4, 7, 11] +

√
3
10 [3, 5, 6, 11]

2F↑
0 −

√
1
15 [1, 5, 10, 11] +

√
4
15 [1, 6, 9, 11]−

√
1
10 [1, 7, 8, 11]−

√
1
15 [2, 5, 9, 11]+

+
√

1
10 [3, 4, 9, 11] +

√
1
15 [3, 5, 8, 11]−

√
4
15 [3, 6, 7, 11] +

√
1
15 [4, 5, 7, 11]

2F↑
1

√
1
30 [2, 7, 9, 11]−

√
3
10 [1, 8, 9, 11] +

√
1
20 [4, 5, 9, 11]−

√
1
20 [3, 6, 9, 11]+

+
√

2
15 [1, 7, 10, 11]−

√
2
15 [3, 7, 8, 11] +

√
3
10 [5, 6, 7, 11]

2F↑
2

√
1
3 [1, 9, 10, 11] +

√
1
12 [4, 7, 9, 11]−

√
1
12 [3, 8, 9, 11]−

√
1
2 [5, 7, 8, 11]

2F↑
3

√
1
2 [3, 9, 10, 11] +

√
1
12 [5, 8, 9, 11] +

√
1
12 [6, 7, 9, 11]−

√
1
3 [5, 7, 10, 11]

2F↓
−3 −

√
1
2 [1, 2, 8, 11]−

√
1
12 [2, 3, 6, 11]−

√
1
12 [2, 4, 5, 11] +

√
1
3 [1, 4, 6, 11]

2F↓
−2 −

√
1
3 [1, 2, 10, 11]−

√
1
12 [2, 4, 7, 11] +

√
1
12 [2, 3, 8, 11] +

√
1
2 [3, 4, 6, 11]

2F↓
−1 −

√
1
30 [2, 4, 9, 11] +

√
3
10 [2, 3, 10, 11]−

√
1
20 [2, 6, 7, 11] +

√
1
20 [2, 5, 8, 11]+

−
√

2
15 [1, 4, 10, 11] +

√
2
15 [3, 4, 8, 11]−

√
3
10 [4, 5, 6, 11]

2F↓
0 −

√
1
15 [2, 6, 9, 11] +

√
4
15 [2, 5, 10, 11] +

√
1
10 [2, 7, 8, 11]−

√
1
15 [1, 6, 10, 11]+

−
√

1
10 [3, 4, 10, 11] +

√
1
15 [4, 6, 7, 11]−

√
4
15 [4, 5, 8, 11] +

√
1
15 [3, 6, 8, 11]

2F↓
1

√
1
30 [1, 8, 10, 11]−

√
3
10 [2, 7, 10, 11] +

√
1
20 [3, 6, 10, 11]−

√
1
20 [4, 5, 10, 11]+

+
√

2
15 [2, 8, 9, 11] +

√
2
15 [4, 7, 8, 11]−

√
3
10 [5, 6, 8, 11]

2F↓
2 −

√
1
3 [2, 9, 10, 11] +

√
1
12 [3, 8, 10, 11]−

√
1
12 [4, 7, 10, 11] +

√
1
2 [6, 7, 8, 11]

2F↓
3 −

√
1
2 [4, 9, 10, 11] +

√
1
12 [6, 7, 10, 11] +

√
1
12 [5, 8, 10, 11]−

√
1
3 [6, 8, 9, 11]

2G↑
−4 −

√
2
5 [1, 2, 5, 11]−

√
3
5 [1, 3, 4, 11]
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Table A.2: Symmetry-adapted linear combinations of three-hole products

symmetry-
adapted
state

linear combination of simple products

2G↑
−3 −

√
3
10 [1, 2, 7, 11] +

√
1
20 [1, 4, 5, 11]−

√
9
20 [1, 3, 6, 11] +

√
1
5 [2, 3, 5, 11]

2G↑
−2 −

√
3
35 [1, 2, 9, 11]−

√
27
140 [1, 3, 8, 11]−

√
3

140 [1, 4, 7, 11]−
√

12
35 [1, 5, 6, 11]+

+
√

12
35 [2, 3, 7, 11]−

√
1
70 [3, 4, 5, 11]

2G↑
−1 −

√
3
70 [1, 3, 10, 11]−

√
3
70 [1, 4, 9, 11]−

√
7
20 [1, 5, 8, 11] +

√
9

140 [1, 6, 7, 11]+

+
√

6
35 [2, 3, 9, 11] +

√
4
35 [2, 5, 7, 11]−

√
6
35 [3, 4, 7, 11]−

√
3
70 [3, 5, 6, 11]

2G↑
0 −

√
1
7 [1, 5, 10, 11]−

√
3
14 [1, 7, 8, 11] +

√
1
7 [2, 5, 9, 11]−

√
3
14 [3, 4, 9, 11]+

−
√

1
7 [3, 5, 8, 11] +

√
1
7 [4, 5, 7, 11]

2G↑
1

√
3
70 [2, 7, 9, 11] +

√
3
70 [1, 8, 9, 11] +

√
7
20 [4, 5, 9, 11]−

√
9

140 [3, 6, 9, 11]+

−
√

6
35 [1, 7, 10, 11]−

√
4
35 [3, 5, 10, 11]−

√
6
35 [3, 7, 8, 11]−

√
3
70 [5, 6, 7, 11]

2G↑
2 −

√
3
35 [1, 9, 10, 11] +

√
27
140 [4, 7, 9, 11] +

√
3

140 [3, 8, 9, 11]−
√

12
35 [5, 6, 9, 11]+

−
√

12
35 [3, 7, 10, 11]−

√
1
70 [5, 7, 8, 11]

2G↑
3 −

√
3
10 [3, 9, 10, 11]−

√
1
20 [5, 8, 9, 11] +

√
9
20 [6, 7, 9, 11]−

√
1
5 [5, 7, 10, 11]

2G↑
4 −

√
2
5 [5, 9, 10, 11]−

√
3
5 [7, 8, 9, 11]

2G↓
−4

√
2
5 [1, 2, 6, 11] +

√
3
5 [2, 3, 4, 11]

2G↓
−3

√
3
10 [1, 2, 8, 11] +

√
1
20 [2, 3, 6, 11]−

√
9
20 [2, 4, 5, 11] +

√
1
5 [1, 4, 6, 11]

2G↓
−2

√
3
35 [1, 2, 10, 11]−

√
27
140 [2, 4, 7, 11]−

√
3

140 [2, 3, 8, 11] +
√

12
35 [2, 5, 6, 11]+

+
√

12
35 [1, 4, 8, 11] +

√
1
70 [3, 4, 6, 11]

2G↓
−1 −

√
3
70 [2, 4, 9, 11]−

√
3
70 [2, 3, 10, 11]−

√
7
20 [2, 6, 7, 11] +

√
9

140 [2, 5, 8, 11]+

+
√

6
35 [1, 4, 10, 11] +

√
4
35 [1, 6, 8, 11] +

√
6
35 [3, 4, 8, 11] +

√
3
70 [4, 5, 6, 11]

2G↓
0 −

√
1
7 [2, 6, 9, 11] +

√
3
14 [2, 7, 8, 11] +

√
1
7 [1, 6, 10, 11] +

√
3
14 [3, 4, 10, 11]+

−
√

1
7 [4, 6, 7, 11] +

√
1
7 [3, 6, 8, 11]

2G↓
1

√
3
70 [1, 8, 10, 11] +

√
3
70 [2, 7, 10, 11] +

√
7
20 [3, 6, 10, 11]−

√
9

140 [4, 5, 10, 11]+

−
√

6
35 [2, 8, 9, 11]−

√
4
35 [4, 6, 9, 11] +

√
6
35 [4, 7, 8, 11] +

√
3
70 [5, 6, 8, 11]

2G↓
2

√
3
35 [2, 9, 10, 11] +

√
27
140 [3, 8, 10, 11] +

√
3

140 [4, 7, 10, 11] +
√

12
35 [5, 6, 10, 11]+

−
√

12
35 [4, 8, 9, 11] +

√
1
70 [6, 7, 8, 11]

2G↓
3

√
3
10 [4, 9, 10, 11]−

√
1
20 [6, 7, 10, 11] +

√
9
20 [5, 8, 10, 11]−

√
1
5 [6, 8, 9, 11]

2G↓
4

√
2
5 [6, 9, 10, 11] +

√
3
5 [7, 8, 10, 11]

2H↑
−5 [1,2,3,11]

2H↑
−4

√
3
5 [1, 2, 5, 11]−

√
2
5 [1, 3, 4, 11]

2H↑
−3

√
1
5 [1, 2, 7, 11] +

√
8
15 [1, 4, 5, 11]−

√
2
15 [1, 3, 6, 11]−

√
2
15 [2, 3, 5, 11]

2H↑
−2

√
1
30 [1, 2, 9, 11]−

√
1
30 [1, 3, 8, 11] +

√
3
10 [1, 4, 7, 11]−

√
3
10 [1, 5, 6, 11]+
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Table A.2: Symmetry-adapted linear combinations of three-hole products

symmetry-
adapted
state

linear combination of simple products

−
√

2
15 [2, 3, 7, 11] +

√
1
5 [3, 4, 5, 11]

2H↑
−1 −

√
1

210 [1, 3, 10, 11] +
√

8
105 [1, 4, 9, 11]−

√
4
35 [1, 5, 8, 11] +

√
9
35 [1, 6, 7, 11]+

−
√

3
70 [2, 3, 9, 11]−

√
1
35 [2, 5, 7, 11] +

√
32
105 [3, 4, 7, 11]−

√
6
35 [3, 5, 6, 11]

2H↑
0 −

√
1
42 [1, 5, 10, 11] +

√
2
21 [1, 6, 9, 11]−

√
1
7 [1, 7, 8, 11]−

√
1
42 [2, 5, 9, 11]+

+
√

1
7 [3, 4, 9, 11]−

√
2
21 [3, 5, 8, 11] +

√
8
21 [3, 6, 7, 11]−

√
2
21 [4, 5, 7, 11]

2H↑
1

√
1

210 [2, 7, 9, 11]−
√

8
105 [1, 8, 9, 11] +

√
4
35 [4, 5, 9, 11]−

√
9
35 [3, 6, 9, 11]+

+
√

3
70 [1, 7, 10, 11] +

√
1
35 [3, 5, 10, 11] +

√
32
105 [3, 7, 8, 11]−

√
6
35 [5, 6, 7, 11]

2H↑
2

√
1
30 [1, 9, 10, 11] +

√
1
30 [4, 7, 9, 11]−

√
3
10 [3, 8, 9, 11]−

√
3
10 [5, 6, 9, 11]+

+
√

2
15 [3, 7, 10, 11] +

√
1
5 [5, 7, 8, 11]

2H↑
3

√
1
5 [3, 9, 10, 11]−

√
8
15 [5, 8, 9, 11] +

√
2
15 [6, 7, 9, 11] +

√
2
15 [5, 7, 10, 11]

2H↑
4

√
3
5 [5, 9, 10, 11]−

√
2
5 [7, 8, 9, 11]

2H↑
5 [7,9,10,11]

2H↓
−5 [1,2,4,11]

2H↓
−4 −

√
3
5 [1, 2, 6, 11] +

√
2
5 [2, 3, 4, 11]

2H↓
−3 −

√
1
5 [1, 2, 8, 11] +

√
8
15 [2, 3, 6, 11]−

√
2
15 [2, 4, 5, 11]−

√
2
15 [1, 4, 6, 11]

2H↓
−2 −

√
1
30 [1, 2, 10, 11]−

√
1
30 [2, 4, 7, 11] +

√
3
10 [2, 3, 8, 11] +

√
3
10 [2, 5, 6, 11]+

−
√

2
15 [1, 4, 8, 11]−

√
1
5 [3, 4, 6, 11]

2H↓
−1 −

√
1

210 [2, 4, 9, 11] +
√

8
105 [2, 3, 10, 11]−

√
4
35 [2, 6, 7, 11] +

√
9
35 [2, 5, 8, 11]+

−
√

3
70 [1, 4, 10, 11]−

√
1
35 [1, 6, 8, 11]−

√
32
105 [3, 4, 8, 11] +

√
6
35 [4, 5, 6, 11]

2H↓
0 −

√
1
42 [2, 6, 9, 11] +

√
2
21 [2, 5, 10, 11] +

√
1
7 [2, 7, 8, 11]−

√
1
42 [1, 6, 10, 11]+

−
√

1
7 [3, 4, 10, 11]−

√
2
21 [4, 6, 7, 11] +

√
8
21 [4, 5, 8, 11]−

√
2
21 [3, 6, 8, 11]

2H↓
1

√
1

210 [1, 8, 10, 11]−
√

8
105 [2, 7, 10, 11] +

√
4
35 [3, 6, 10, 11]−

√
9
35 [4, 5, 10, 11]+

+
√

3
70 [2, 8, 9, 11] +

√
1
35 [4, 6, 9, 11]−

√
32
105 [4, 7, 8, 11] +

√
6
35 [5, 6, 8, 11]

2H↓
2 −

√
1
30 [2, 9, 10, 11] +

√
1
30 [3, 8, 10, 11]−

√
3
10 [4, 7, 10, 11] +

√
3
10 [5, 6, 10, 11]+

+
√

2
15 [4, 8, 9, 11]−

√
1
5 [6, 7, 8, 11]

2H↓
3 −

√
1
5 [4, 9, 10, 11]−

√
8
15 [6, 7, 10, 11] +

√
2
15 [5, 8, 10, 11] +

√
2
15 [6, 8, 9, 11]

2H↓
4 −

√
3
5 [6, 9, 10, 11] +

√
2
5 [7, 8, 10, 11]

2H↓
5 [8,9,10,11]
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Table A.3: Symmetry-adapted linear combinations of three-hole
products, produced by our orthogonalization procedure.

symmetry-
adapted
state

linear combination of simple products

4P↑↑↑
−1 −

√
3
5 [1, 3, 9, 11] +

√
2
5 [1, 5, 7, 11]

4P↑↑↑
0 −

√
1
5 [1, 5, 9, 11] +

√
4
5 [3, 5, 7, 11]

4P↑↑↑
1 −

√
3
5 [1, 7, 9, 11] +

√
2
5 [3, 5, 9, 11]

4P↑↑↓
−1 0.365148 [1,6,7,11] -0.447213 [1,4,9,11] -0.447213 [2,3,9,11] +0.365148 [2,5,7,11] +

+0.365149 [1,5,8,11] -0.447214 [1,3,10,11]
4P↑↑↓

0 0.516397 [3,5,8,11] -0.258199 [1,6,9,11] +0.516398 [3,6,7,11] +0.516397 [4,5,7,11] +
-0.258199 [1,5,10,11] -0.258199 [2,5,9,11]

4P↑↑↓
1 -0.447213 [1,7,10,11] +0.365148 [3,5,10,11] -0.447213 [1,8,9,11] +0.365148 [3,6,9,11] +

+0.365149 [4,5,9,11] -0.447214 [2,7,9,11]
4P↑↓↓

−1 0.365148 [2,5,8,11] -0.447213 [2,3,10,11] -0.447213 [1,4,10,11] +0.365148 [1,6,8,11] +
+0.365148 [2,6,7,11] -0.447213 [2,4,9,11]

4P↑↓↓
0 0.516397 [4,6,7,11] -0.258199 [2,5,10,11] +0.516397 [4,5,8,11] +0.516397 [3,6,8,11] +

-0.258199 [2,6,9,11] -0.258199 [1,6,10,11]
4P↑↓↓

1 -0.447213 [2,8,9,11] +0.365148 [4,6,9,11] -0.447213 [2,7,10,11] +0.365148 [4,5,10,11] +
+0.365148 [3,6,10,11] -0.447213 [1,8,10,11]

4P↓↓↓
−1 −

√
3
5 [2, 4, 10, 11] +

√
2
5 [2, 6, 8, 11]

4P↓↓↓
0 −

√
1
5 [2, 6, 10, 11] +

√
4
5 [4, 6, 8, 11]

4P↓↓↓
0 −

√
3
5 [2, 8, 10, 11] +

√
2
5 [4, 6, 10, 11]

4F↑↑↑
−3 [1,3,5,11]

4F↑↑↑
−2 [1,3,7,11]

4F↑↑↑
−1

√
2
5 [1, 3, 9, 11] +

√
3
5 [1, 5, 7, 11]

4F↑↑↑
0 −

√
4
5 [1, 5, 9, 11]−

√
1
5 [3, 5, 7, 11]

4F↑↑↑
1 −

√
2
5 [1, 7, 9, 11]−

√
3
5 [3, 5, 9, 11]

4F↑↑↑
2 -[3,7,9,11]

4F↑↑↑
3 [5,7,9,11]

4F↑↑↓
−3

√
1
3 [1, 4, 5, 11] +

√
1
3 [1, 3, 6, 11] +

√
1
3 [2, 3, 5, 11]

4F↑↑↓
−2

√
1
3 [1, 4, 7, 11] +

√
1
3 [1, 3, 8, 11] +

√
1
3 [2, 3, 7, 11]

4F↑↑↓
−1 0.365148 [1,4,9,11] +0.447213 [1,6,7,11] +0.447214 [1,5,8,11] +0.365148 [1,3,10,11] +

+0.365148 [2,3,9,11] +0.447214 [2,5,7,11]
4F↑↑↓

0 0.516398 [1,6,9,11] +0.516398 [2,5,9,11] +0.258199 [4,5,7,11] +0.516398 [1,5,10,11] +
+0.258199 [3,5,8,11] +0.258199 [3,6,7,11]

4F↑↑↓
1 -0.365148 [1,8,9,11] -0.447213 [3,6,9,11] -0.447214 [4,5,9,11] -0.365148 [2,7,9,11]

-0.365148 [1,7,10,11] -0.447214 [3,5,10,11]
4F↑↑↓

2 −
√

1
3 [3, 8, 9, 11]−

√
1
3 [4, 7, 9, 11]−

√
1
3 [3, 7, 10, 11]

4F↑↑↓
3 −

√
1
3 [5, 8, 9, 11]−

√
1
3 [6, 7, 9, 11]−

√
1
3 [5, 7, 10, 11]
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Table A.3: Symmetry-adapted linear combinations of three-hole
products, produced by our orthogonalization procedure.

symmetry-
adapted
state

linear combination of simple products

4F↑↓↓
−3

√
1
3 [2, 3, 6, 11] +

√
1
3 [2, 4, 5, 11] +

√
1
3 [1, 4, 6, 11]

4F↑↓↓
−2

√
1
3 [2, 3, 8, 11] +

√
1
3 [2, 4, 7, 11] +

√
1
3 [1, 4, 8, 11]

4F↑↓↓
−1 0.365148 [2,3,10,11] +0.447213 [2,5,8,11] +0.447213 [2,6,7,11] +0.365148 [2,4,9,11] +

+0.365148 [1,4,10,11] +0.447213 [1,6,8,11]
4F↑↓↓

0 0.516398 [2,5,10,11] +0.516398 [1,6,10,11] +0.258199 [3,6,8,11] +0.516398 [2,6,9,11] +
+0.258199 [4,6,7,11] +0.258199 [4,5,8,11]

4F↑↓↓
1 -0.365148 [2,7,10,11] -0.447213 [4,5,10,11] -0.447213 [3,6,10,11] -0.365148 [1,8,10,11] +

-0.365148 [2,8,9,11] -0.447213 [4,6,9,11]
4F↑↓↓

2 −
√

1
3 [4, 7, 10, 11]−

√
1
3 [3, 8, 10, 11]−

√
1
3 [4, 8, 9, 11]

4F↑↓↓
3 −

√
1
3 [6, 7, 10, 11]−

√
1
3 [5, 8, 10, 11]−

√
1
3 [6, 8, 9, 11]

4F↓↓↓
−3 [2,4,6,11]

4F↓↓↓
−2 [2,4,8,11]

4F↓↓↓
−1

√
2
5 [2, 4, 10, 11] +

√
3
5 [2, 6, 8, 11]

4F↓↓↓
0 −

√
4
5 [2, 6, 10, 11]−

√
1
5 [4, 6, 8, 11]

4F↓↓↓
1 −

√
2
5 [2, 8, 10, 11]−

√
3
5 [4, 6, 10, 11]

4F↓↓↓
2 -[4,8,10,11]

4F↓↓↓
3 [6,8,10,11]

The other half of the symmetry-adapted three-hole states is obtained from the states depicted in Tables
A.2 and A.3 by substituting the 4s hole [11] by the one of the opposite spin, i.e. [12].
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

1S(1) -0.316228 [1,3,8,10] +0.316228 [1,5,6,10] +0.316228 [1,4,7,10] -0.316228 [1,2,9,10] +
-0.316228 [3,5,6,8] -0.316228 [3,4,7,8] +0.316228 [2,3,8,9] +0.316228 [4,5,6,7] +

-0.316228 [2,5,6,9] -0.316228 [2,4,7,9]
1S(2) -0.207019 [1,5,6,10] -0.338062 [1,6,7,8] -0.338062 [3,4,5,10] +0.069006 [3,4,7,8] +

+0.338062 [3,4,6,9] +0.338062 [2,5,7,8] +0.207019 [2,5,6,9] +0.207019 [1,3,8,10] +
-0.276026 [1,4,8,9] -0.207020 [3,5,6,8] +0.207020 [4,5,6,7] -0.276026 [2,3,7,10] +
+0.207019 [2,4,7,9] +0.069007 [1,4,7,10] -0.345033 [1,2,9,10] +0.069007 [2,3,8,9]

1D−2(1) -0.377964 [1,3,4,10] -0.308607 [1,2,5,10] +0.308607 [1,3,6,8] -0.308607 [2,3,5,8] +
-0.377964 [3,4,5,6] -0.308607 [1,4,6,7] +0.308607 [2,4,5,7] +0.308607 [1,2,6,9] +

+0.377964 [2,3,4,9]
1D−1(1) -0.154303 [1,3,6,10] +0.154303 [1,4,5,10] -0.377964 [1,2,7,10] -0.154303 [3,4,5,8] +

-0.377964 [2,3,7,8] +0.377964 [1,5,6,8] -0.377964 [2,5,6,7] +0.377964 [1,4,7,8] +
+0.154303 [3,4,6,7] +0.377964 [1,2,8,9] +0.154303 [2,3,6,9] -0.154303 [2,4,5,9]

1D0(1) -0.154303 [1,3,8,10] +0.154303 [1,4,7,10] -0.617213 [1,2,9,10] +0.462910 [3,5,6,8] +
+0.308607 [3,4,7,8] +0.154303 [2,3,8,9] -0.462910 [4,5,6,7] -0.154303 [2,4,7,9]

1D1(1) -0.154303 [1,5,8,10] +0.154303 [1,6,7,10] -0.377964 [1,4,9,10] -0.154303 [3,6,7,8] +
-0.377964 [3,4,8,9] +0.377964 [3,5,6,10] -0.377964 [4,5,6,9] +0.377964 [3,4,7,10] +
+0.154303 [4,5,7,8] +0.377964 [2,3,9,10] +0.154303 [2,5,8,9] -0.154303 [2,6,7,9]

1D2(1) -0.377964 [1,7,8,10] -0.308607 [1,6,9,10] +0.308607 [3,5,8,10] -0.308607 [3,6,8,9] +
-0.377964 [5,6,7,8] -0.308607 [4,5,7,10] +0.308607 [4,6,7,9] +0.308607 [2,5,9,10] +

+0.377964 [2,7,8,9]
1D−2(2) 0.218218 [1,4,6,7] +0.218218 [1,2,6,9] -0.267261 [1,3,4,10] +0.534522 [3,4,5,6] +

+0.267261 [2,3,4,9] -0.218218 [1,2,5,10] +0.218218 [2,3,5,8] -0.218218 [1,4,5,8] +
+0.534523 [1,2,7,8] -0.218218 [2,3,6,7]

1D−1(2) -0.327327 [1,3,6,10] +0.267262 [1,5,6,8] +0.436436 [1,4,6,9] +0.218218 [3,4,5,8] +
-0.218218 [3,4,6,7] +0.436436 [2,3,5,10] -0.267262 [2,5,6,7] -0.327327 [2,4,5,9] +
-0.267261 [1,2,8,9] -0.109109 [2,3,6,9] -0.109109 [1,4,5,10] +0.267261 [1,2,7,10]

1D0(2) -0.267261 [1,6,7,8] -0.267261 [3,4,5,10] +0.436436 [3,4,7,8] +0.267261 [3,4,6,9] +
+0.267261 [2,5,7,8] -0.327327 [1,3,8,10] +0.218218 [1,4,8,9] +0.218218 [2,3,7,10] +
-0.327327 [2,4,7,9] +0.109109 [1,4,7,10] +0.436436 [1,2,9,10] +0.109109 [2,3,8,9]

1D1(2) -0.327327 [1,5,8,10] +0.436436 [1,6,8,9] +0.267262 [3,5,6,10] +0.218218 [3,6,7,8] +
-0.218218 [4,5,7,8] -0.267262 [4,5,6,9] +0.436436 [2,5,7,10] -0.327327 [2,6,7,9] +
-0.109109 [1,6,7,10] +0.267261 [1,4,9,10] -0.267261 [2,3,9,10] -0.109109 [2,5,8,9]

1D2(2) -0.267261 [1,7,8,10] -0.218218 [1,6,9,10] +0.218218 [3,6,8,9] +0.534522 [5,6,7,8] +
+0.218218 [4,5,7,10] +0.218218 [2,5,9,10] +0.267261 [2,7,8,9] -0.218218 [3,6,7,10] +

+0.534523 [3,4,9,10] -0.218218 [4,5,8,9]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

1F−3 0.273861 [1,4,5,6] +0.223607 [1,2,6,7] +0.273861 [1,3,4,8] -0.273861 [2,3,4,7] +
-0.223607 [1,2,5,8] -0.273861 [2,3,5,6] +0.547723 [1,2,3,10] -0.547723 [1,2,4,9]

1F−2 0.273861 [1,3,6,8] -0.091287 [1,4,6,7] -0.365148 [1,2,6,9] -0.223607 [1,3,4,10] +
+0.447214 [3,4,5,6] +0.223607 [2,3,4,9] +0.365148 [1,2,5,10] -0.091287 [2,3,5,8] +

+0.273861 [2,4,5,7] -0.182574 [1,4,5,8] -0.447214 [1,2,7,8] -0.182574 [2,3,6,7]
1F−1 0.353553 [1,5,6,8] -0.288675 [1,4,6,9] +0.288675 [3,4,5,8] -0.288675 [3,4,6,7] +

-0.288675 [2,3,5,10] -0.353553 [2,5,6,7] -0.353553 [1,4,7,8] +0.288675 [2,3,6,9] +
+0.288675 [1,4,5,10] +0.353553 [2,3,7,8]

1F0 − 1
2 [1, 6, 7, 8] +

1
2 [3, 4, 5, 10]− 1

2 [3, 4, 6, 9] +
1
2 [2, 5, 7, 8]

1F1 -0.288675 [1,6,7,10] +0.288675 [1,6,8,9] +0.353553 [3,4,7,10] -0.353553 [3,4,8,9] +
+0.288675 [2,5,7,10] -0.288675 [2,5,8,9] -0.353553 [3,5,6,10] -0.288675 [3,6,7,8] +

+0.288675 [4,5,7,8] +0.353553 [4,5,6,9]
1F2 -0.365148 [1,6,9,10] +0.447214 [3,4,9,10] +0.365148 [2,5,9,10] +0.223607 [1,7,8,10] +

+0.182574 [3,6,7,10] +0.091287 [3,6,8,9] +0.091287 [4,5,7,10] +0.182574 [4,5,8,9] +
-0.223607 [2,7,8,9] -0.273861 [3,5,8,10] -0.447214 [5,6,7,8] -0.273861 [4,6,7,9]

1F3 -0.547723 [1,8,9,10] +0.223607 [3,6,9,10] -0.223607 [4,5,9,10] +0.547723 [2,7,9,10] +
-0.273861 [3,7,8,10] -0.273861 [5,6,7,10] +0.273861 [5,6,8,9] +0.273861 [4,7,8,9]

1G−4(1) −
√

1
3 [1, 2, 3, 8] +

√
1
3 [1, 2, 5, 6] +

√
1
3 [1, 2, 4, 7]

1G−3(1) −
√

1
6 [1, 2, 3, 10] +

√
1
6 [1, 3, 4, 8] +

√
1
6 [1, 4, 5, 6]−

√
1
6 [2, 3, 5, 6]+

−
√

1
6 [2, 3, 4, 7] +

√
1
6 [1, 2, 4, 9]

1G−2(1) 0.436436 [1,3,4,10] -0.267261 [1,2,5,10] +0.267261 [1,3,6,8] -0.267261 [2,3,5,8] +
+0.436436 [3,4,5,6] -0.267261 [1,4,6,7] +0.267261 [2,4,5,7] +0.267261 [1,2,6,9] +

-0.436436 [2,3,4,9]
1G−1(1) 0.377964 [1,3,6,10] -0.377964 [1,4,5,10] -0.154303 [1,2,7,10] +0.377964 [3,4,5,8] +

-0.154303 [2,3,7,8] +0.154303 [1,5,6,8] -0.154303 [2,5,6,7] +0.154303 [1,4,7,8] +
-0.377964 [3,4,6,7] +0.154303 [1,2,8,9] -0.377964 [2,3,6,9] +0.377964 [2,4,5,9]

1G0(1) 0.207020 [1,3,8,10] +0.483046 [1,5,6,10] -0.207020 [1,4,7,10] -0.138013 [1,2,9,10] +
-0.138013 [3,5,6,8] +0.552052 [3,4,7,8] -0.207020 [2,3,8,9] +0.138013 [4,5,6,7] +

-0.483046 [2,5,6,9] +0.207020 [2,4,7,9]
1G1(1) 0.377964 [1,5,8,10] -0.377964 [1,6,7,10] -0.154303 [1,4,9,10] +0.377964 [3,6,7,8] +

-0.154303 [3,4,8,9] +0.154303 [3,5,6,10] -0.154303 [4,5,6,9] +0.154303 [3,4,7,10] +
-0.377964 [4,5,7,8] +0.154303 [2,3,9,10] -0.377964 [2,5,8,9] +0.377964 [2,6,7,9]

1G2(1) 0.436436 [1,7,8,10] -0.267261 [1,6,9,10] +0.267261 [3,5,8,10] -0.267261 [3,6,8,9] +
+0.436436 [5,6,7,8] -0.267261 [4,5,7,10] +0.267261 [4,6,7,9] +0.267261 [2,5,9,10] +

-0.436436 [2,7,8,9]
1G3(1) −

√
1
6 [1, 8, 9, 10] +

√
1
6 [3, 7, 8, 10] +

√
1
6 [5, 6, 7, 10]−

√
1
6 [5, 6, 8, 9]+

−
√

1
6 [4, 7, 8, 9] +

√
1
6 [2, 7, 9, 10]

1G4(1) −
√

1
3 [3, 8, 9, 10] +

√
1
3 [5, 6, 9, 10] +

√
1
3 [4, 7, 9, 10]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

1G−4(2) -0.639602 [1,3,4,6] -0.348156 [1,2,5,6] +0.639602 [2,3,4,5] -0.174078 [1,2,3,8] +
+0.174078 [1,2,4,7]

1G−3(2) 0.307729 [1,4,5,6] +0.452267 [1,2,6,7] -0.430820 [1,3,4,8] +0.430820 [2,3,4,7] +
-0.452267 [1,2,5,8] -0.307729 [2,3,5,6] -0.123091 [1,2,3,10] +0.123091 [1,2,4,9]

1G−2(2) -0.282038 [1,3,6,8] +0.040292 [1,4,6,7] +0.322329 [1,2,6,9] -0.164487 [1,3,4,10] +
+0.328976 [3,4,5,6] +0.164487 [2,3,4,9] -0.322329 [1,2,5,10] +0.040292 [2,3,5,8] +

-0.282038 [2,4,5,7] +0.241747 [1,4,5,8] -0.592157 [1,2,7,8] +0.241747 [2,3,6,7]
1G−1(2) -0.227922 [1,3,6,10] -0.302408 [1,5,6,8] +0.170940 [1,4,6,9] +0.284901 [3,4,5,8] +

-0.284901 [3,4,6,7] +0.170940 [2,3,5,10] +0.302408 [2,5,6,7] -0.227922 [2,4,5,9] +
-0.162835 [1,4,7,8] +0.465242 [1,2,8,9] +0.056980 [2,3,6,9] +0.056980 [1,4,5,10] +

-0.465242 [1,2,7,10] +0.162835 [2,3,7,8]
1G0(2) -0.291287 [1,5,6,10] +0.076448 [1,6,7,8] +0.076448 [3,4,5,10] -0.076448 [3,4,6,9] +

-0.076448 [2,5,7,8] +0.291287 [2,5,6,9] -0.124837 [1,3,8,10] +0.374513 [1,4,8,9] +
-0.291288 [3,5,6,8] +0.291288 [4,5,6,7] +0.374513 [2,3,7,10] -0.124837 [2,4,7,9] +
-0.249675 [1,4,7,10] -0.416125 [1,2,9,10] -0.249675 [2,3,8,9] +0.166450 [3,4,7,8]

1G1(2) -0.227922 [1,5,8,10] +0.170940 [1,6,8,9] -0.302408 [3,5,6,10] +0.284901 [3,6,7,8] +
-0.284901 [4,5,7,8] +0.302408 [4,5,6,9] +0.170940 [2,5,7,10] -0.227922 [2,6,7,9] +
+0.056980 [1,6,7,10] -0.465242 [1,4,9,10] +0.162835 [3,4,8,9] -0.162835 [3,4,7,10] +

+0.465242 [2,3,9,10] +0.056980 [2,5,8,9]
1G2(2) -0.164487 [1,7,8,10] -0.322329 [1,6,9,10] -0.282038 [3,5,8,10] +0.040292 [3,6,8,9] +

+0.328976 [5,6,7,8] +0.040292 [4,5,7,10] -0.282038 [4,6,7,9] +0.322329 [2,5,9,10] +
+0.164487 [2,7,8,9] +0.241747 [3,6,7,10] -0.592157 [3,4,9,10] +0.241747 [4,5,8,9]

1G3(2) -0.430820 [3,7,8,10] -0.452267 [3,6,9,10] -0.307729 [5,6,8,9] +0.307729 [5,6,7,10] +
+0.452267 [4,5,9,10] +0.430820 [4,7,8,9] -0.123091 [1,8,9,10] +0.123091 [2,7,9,10]

1G4(2) -0.639602 [5,7,8,10] -0.348156 [5,6,9,10] +0.639602 [6,7,8,9] -0.174078 [3,8,9,10] +
+0.174078 [4,7,9,10]

1I−6 [1,2,3,4]
1I−5

√
1
2 [1, 2, 3, 6]−

√
1
2 [1, 2, 4, 5]

1I−4 0.369274 [1,2,3,8] +0.738549 [1,2,5,6] -0.369274 [1,2,4,7] -0.301511 [1,3,4,6] +
+0.301511 [2,3,4,5]

1I−3 0.134840 [1,2,3,10] +0.495434 [1,2,5,8] -0.495434 [1,2,6,7] -0.134840 [1,2,4,9] +
-0.269680 [1,3,4,8] +0.404520 [1,4,5,6] -0.404520 [2,3,5,6] +0.269680 [2,3,4,7]

1I−2 0.220193 [1,2,5,10] +0.404520 [1,2,7,8] -0.220193 [1,2,6,9] -0.134840 [1,3,4,10] +
+0.440386 [1,4,5,8] -0.330289 [1,4,6,7] -0.330289 [2,3,5,8] +0.440386 [2,3,6,7] +
+0.134840 [2,3,4,9] -0.110096 [1,3,6,8] +0.269680 [3,4,5,6] -0.110096 [2,4,5,7]

1I−1 0.213201 [1,2,7,10] -0.213201 [1,2,8,9] +0.261116 [1,4,5,10] +0.426401 [1,4,7,8] +
-0.174078 [1,4,6,9] -0.174078 [2,3,5,10] -0.426401 [2,3,7,8] +0.261116 [2,3,6,9] +
-0.087039 [1,3,6,10] -0.213201 [1,5,6,8] +0.348155 [3,4,5,8] -0.348155 [3,4,6,7] +

+0.213201 [2,5,6,7] -0.087039 [2,4,5,9]
1I0 0.131590 [1,2,9,10] +0.296078 [1,4,7,10] -0.263181 [1,4,8,9] -0.263181 [2,3,7,10] +

+0.296078 [2,3,8,9] -0.197386 [1,5,6,10] +0.241747 [1,6,7,8] +0.241747 [3,4,5,10] +
+0.526361 [3,4,7,8] -0.241747 [3,4,6,9] -0.241747 [2,5,7,8] +0.197386 [2,5,6,9] +
-0.032898 [1,3,8,10] -0.197386 [3,5,6,8] +0.197386 [4,5,6,7] -0.032898 [2,4,7,9]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

1I1 0.213201 [1,4,9,10] -0.213201 [2,3,9,10] +0.261116 [1,6,7,10] -0.174078 [1,6,8,9] +
+0.426401 [3,4,7,10] -0.426401 [3,4,8,9] -0.174078 [2,5,7,10] +0.261116 [2,5,8,9] +
-0.087039 [1,5,8,10] -0.213201 [3,5,6,10] +0.348155 [3,6,7,8] -0.348155 [4,5,7,8] +

+0.213201 [4,5,6,9] -0.087039 [2,6,7,9]
1I2 0.220193 [1,6,9,10] +0.404520 [3,4,9,10] -0.220193 [2,5,9,10] -0.134840 [1,7,8,10] +

+0.440386 [3,6,7,10] -0.330289 [3,6,8,9] -0.330289 [4,5,7,10] +0.440386 [4,5,8,9] +
+0.134840 [2,7,8,9] -0.110096 [3,5,8,10] +0.269680 [5,6,7,8] -0.110096 [4,6,7,9]

1I3 0.134840 [1,8,9,10] +0.495434 [3,6,9,10] -0.495434 [4,5,9,10] -0.134840 [2,7,9,10] +
-0.269680 [3,7,8,10] +0.404520 [5,6,7,10] -0.404520 [5,6,8,9] +0.269680 [4,7,8,9]

1I4 0.369274 [3,8,9,10] +0.738549 [5,6,9,10] -0.369274 [4,7,9,10] -0.301511 [5,7,8,10] +
+0.301511 [6,7,8,9]

1I5

√
1
2 [5, 8, 9, 10]−

√
1
2 [6, 7, 9, 10]

1I6 [7,8,9,10]
3P↑↑

−1(1) -0.365148 [1,2,8,10] +0.447214 [1,4,6,10] -0.447214 [3,4,6,8] -0.365148 [2,5,6,8] +
-0.365148 [2,4,7,8] -0.447214 [2,4,6,9]

3P↑↑
0 (1) 0.258199 [1,4,8,10] +0.516398 [2,3,8,10] -0.516398 [2,5,6,10] +0.258199 [4,5,6,8] +

-0.516398 [2,4,7,10] -0.258199 [2,4,8,9]
3P↑↑

1 (1) 0.447214 [1,6,8,10] -0.365148 [3,4,8,10] -0.365148 [4,5,6,10] -0.447214 [4,6,7,8] +
-0.365148 [2,4,9,10] -0.447214 [2,6,8,9]

3P↑↓
−1(1) 0.316228 [1,3,6,10] +0.316228 [1,4,5,10] -0.258199 [1,2,7,10] -0.316228 [3,4,5,8] +

-0.258199 [2,3,7,8] -0.258199 [1,5,6,8] -0.258199 [2,5,6,7] -0.258199 [1,4,7,8] +
-0.316228 [3,4,6,7] -0.258199 [1,2,8,9] -0.316228 [2,3,6,9] -0.316228 [2,4,5,9]

3P↑↓
0 (1) 0.547723 [1,3,8,10] -0.365148 [1,5,6,10] -0.182574 [1,4,7,10] +0.182574 [3,5,6,8] +

+0.182574 [2,3,8,9] +0.182574 [4,5,6,7] -0.365148 [2,5,6,9] -0.547723 [2,4,7,9]
3P↑↓

1 (1) 0.316228 [1,5,8,10] +0.316228 [1,6,7,10] -0.258199 [1,4,9,10] -0.316228 [3,6,7,8] +
-0.258199 [3,4,8,9] -0.258199 [3,5,6,10] -0.258199 [4,5,6,9] -0.258199 [3,4,7,10] +
-0.316228 [4,5,7,8] -0.258199 [2,3,9,10] -0.316228 [2,5,8,9] -0.316228 [2,6,7,9]

3P↓↓
−1(1) 0.447214 [1,3,5,10] -0.365148 [1,3,7,8] -0.365148 [1,5,6,7] -0.447214 [3,4,5,7] +

-0.365148 [1,2,7,9] -0.447214 [2,3,5,9]
3P↓↓

0 (1) 0.258199 [1,3,7,10] +0.516398 [1,3,8,9] -0.516398 [1,5,6,9] +0.258199 [3,5,6,7] +
-0.516398 [1,4,7,9] -0.258199 [2,3,7,9]

3P↓↓
1 (1) -0.365148 [1,3,9,10] +0.447214 [1,5,7,10] -0.447214 [3,5,7,8] -0.365148 [3,5,6,9] +

-0.365148 [3,4,7,9] -0.447214 [2,5,7,9]
3P↑↑

−1(2) 0.239046 [1,4,6,10] -0.239046 [3,4,6,8] -0.358569 [2,4,5,10] +0.097590 [2,5,6,8] +
-0.487949 [1,2,8,10] -0.358569 [2,3,6,10] +0.390360 [2,4,7,8] +0.478092 [2,4,6,9]

3P↑↑
0 (2) -0.276026 [1,4,8,10] +0.507093 [3,4,6,10] +0.552052 [4,5,6,8] -0.069006 [2,4,7,10] +

+0.507093 [2,6,7,8] +0.069006 [2,3,8,10] +0.138014 [2,5,6,10] +0.276026 [2,4,8,9]
3P↑↑

1 (2) -0.478092 [1,6,8,10] +0.390360 [3,4,8,10] +0.097590 [4,5,6,10] -0.239046 [4,6,7,8] +
-0.487949 [2,4,9,10] -0.239046 [2,6,8,9] +0.358569 [2,5,8,10] +0.358569 [2,6,7,10]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

3P↑↓
−1(2) -0.084516 [1,3,6,10] +0.069007 [1,5,6,8] +0.507093 [1,4,6,9] -0.169030 [3,4,5,8] +

-0.169030 [3,4,6,7] -0.507093 [2,3,5,10] +0.069007 [2,5,6,7] +0.084516 [2,4,5,9] +
+0.276027 [1,4,7,8] -0.345032 [1,2,8,9] +0.084516 [2,3,6,9] -0.084516 [1,4,5,10] +

-0.345032 [1,2,7,10] +0.276027 [2,3,7,8]
3P↑↓

0 (2) -0.146386 [1,3,8,10] +0.358568 [1,6,7,8] +0.390361 [3,5,6,8] +0.358568 [3,4,6,9] +
+0.358568 [3,4,5,10] +0.390361 [4,5,6,7] +0.358568 [2,5,7,8] +0.146386 [2,4,7,9] +
+0.097589 [1,5,6,10] -0.243975 [1,4,7,10] +0.243975 [2,3,8,9] +0.097589 [2,5,6,9]

3P↑↓
1 (2) -0.084516 [1,5,8,10] -0.084516 [1,6,7,10] -0.345032 [1,4,9,10] -0.169030 [3,6,7,8] +

+0.276027 [3,4,8,9] +0.069007 [3,5,6,10] +0.069007 [4,5,6,9] +0.276027 [3,4,7,10] +
-0.169030 [4,5,7,8] -0.345032 [2,3,9,10] +0.084516 [2,5,8,9] +0.084516 [2,6,7,9] +

+0.507093 [2,5,7,10] -0.507093 [1,6,8,9]
3P↓↓

−1(2) 0.358569 [1,3,6,9] +0.097590 [1,5,6,7] -0.239046 [3,4,5,7] -0.239046 [2,3,5,9] +
+0.390360 [1,3,7,8] +0.358569 [1,4,5,9] -0.487949 [1,2,7,9] -0.478092 [1,3,5,10]

3P↓↓
0 (2) 0.069006 [1,3,8,9] +0.507093 [1,5,7,8] +0.552052 [3,5,6,7] +0.507093 [3,4,5,9] +

+0.276026 [2,3,7,9] -0.276026 [1,3,7,10] +0.138014 [1,5,6,9] -0.069006 [1,4,7,9]
3P↓↓

1 (2) -0.487949 [1,3,9,10] +0.239046 [1,5,7,10] -0.239046 [3,5,7,8] +0.097590 [3,5,6,9] +
+0.390360 [3,4,7,9] +0.478092 [2,5,7,9] -0.358569 [1,5,8,9] -0.358569 [1,6,7,9]

3D↑↑
−2 0.436436 [1,2,6,10] -0.545545 [1,4,6,8] +0.534522 [2,3,4,10] +0.327327 [2,4,5,8] +

-0.109109 [2,3,6,8] +0.327327 [2,4,6,7]
3D↑↑

−1 -0.109109 [1,4,6,10] -0.436436 [3,4,6,8] -0.327327 [2,4,5,10] -0.534522 [2,5,6,8] +
+0.534522 [1,2,8,10] +0.109109 [2,3,6,10] +0.327327 [2,4,6,9]

3D↑↑
0 -0.534522 [3,4,6,10] +0.327327 [1,4,8,10] -0.327327 [2,4,7,10] +0.534522 [2,6,7,8] +

-0.327327 [2,3,8,10] +0.327327 [2,4,8,9]
3D↑↑

1 0.327327 [1,6,8,10] -0.327327 [2,5,8,10] +0.534522 [4,5,6,10] +0.109109 [2,6,7,10] +
+0.436436 [4,6,7,8] -0.534522 [2,4,9,10] -0.109109 [2,6,8,9]

3D↑↑
2 0.327327 [3,6,8,10] +0.327327 [4,5,8,10] -0.534522 [2,7,8,10] -0.109109 [4,6,7,10] +

-0.436436 [2,6,9,10] -0.545545 [4,6,8,9]
3D↑↓

−2 -0.462910 [1,3,6,8] -0.154303 [1,4,6,7] +0.308607 [1,2,6,9] +0.377964 [1,3,4,10] +
+0.377964 [2,3,4,9] +0.308607 [1,2,5,10] +0.154303 [2,3,5,8] +0.462910 [2,4,5,7] +

-0.154303 [1,4,5,8] +0.154303 [2,3,6,7]
3D↑↓

−1 -0.377964 [1,5,6,8] +0.154303 [1,4,6,9] -0.308607 [3,4,5,8] -0.308607 [3,4,6,7] +
-0.154303 [2,3,5,10] -0.377964 [2,5,6,7] +0.377964 [1,2,8,9] +0.308607 [2,3,6,9] +

-0.308607 [1,4,5,10] +0.377964 [1,2,7,10]
3D↑↓

0 0.377964 [1,6,7,8] -0.377964 [3,4,5,10] -0.377964 [3,4,6,9] +0.377964 [2,5,7,8] +
+0.462910 [1,4,8,9] -0.462910 [2,3,7,10]

3D↑↓
1 0.308607 [1,6,7,10] +0.154303 [1,6,8,9] -0.154303 [2,5,7,10] -0.308607 [2,5,8,9] +

+0.377964 [3,5,6,10] +0.308607 [3,6,7,8] +0.308607 [4,5,7,8] +0.377964 [4,5,6,9] +
-0.377964 [1,4,9,10] -0.377964 [2,3,9,10]

3D↑↓
2 -0.377964 [1,7,8,10] +0.154303 [3,6,7,10] -0.154303 [3,6,8,9] +0.154303 [4,5,7,10] +

-0.154303 [4,5,8,9] -0.377964 [2,7,8,9] -0.308607 [1,6,9,10] +0.462910 [3,5,8,10] +
-0.462910 [4,6,7,9] -0.308607 [2,5,9,10]

3D↓↓
−2 -0.327327 [1,3,6,7] +0.534522 [1,3,4,9] +0.436436 [1,2,5,9] +0.545545 [2,3,5,7] +

-0.327327 [1,3,5,8] +0.109109 [1,4,5,7]
3D↓↓

−1 0.327327 [1,3,6,9] -0.534522 [1,5,6,7] -0.436436 [3,4,5,7] +0.109109 [2,3,5,9] +
-0.109109 [1,4,5,9] +0.534522 [1,2,7,9] -0.327327 [1,3,5,10]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

3D↓↓
0 -0.534522 [3,4,5,9] +0.327327 [1,3,8,9] +0.534522 [1,5,7,8] -0.327327 [2,3,7,9] +

-0.327327 [1,3,7,10] +0.327327 [1,4,7,9]
3D↓↓

1 0.327327 [1,6,7,9] -0.327327 [2,5,7,9] -0.109109 [1,5,8,9] +0.534522 [3,5,6,9] +
-0.534522 [1,3,9,10] +0.109109 [1,5,7,10] +0.436436 [3,5,7,8]

3D↓↓
2 -0.534522 [1,7,8,9] -0.327327 [3,6,7,9] -0.327327 [4,5,7,9] -0.436436 [1,5,9,10] +

+0.109109 [3,5,8,9] +0.545545 [3,5,7,10]

3F↑↑
−3(1) −

√
1
3 [1, 2, 4, 10]−

√
1
3 [2, 3, 4, 8]−

√
1
3 [2, 4, 5, 6]

3F↑↑
−2(1) −

√
1
3 [1, 2, 6, 10]−

√
1
3 [2, 3, 6, 8] +

√
1
3 [2, 4, 6, 7]

3F↑↑
−1(1) -0.447214 [1,2,8,10] -0.365148 [1,4,6,10] +0.365148 [3,4,6,8] -0.447214 [2,5,6,8] +

-0.447214 [2,4,7,8] +0.365148 [2,4,6,9]
3F↑↑

0 (1) -0.516398 [1,4,8,10] +0.258199 [2,3,8,10] -0.258199 [2,5,6,10] -0.516398 [4,5,6,8] +
-0.258199 [2,4,7,10] +0.516398 [2,4,8,9]

3F↑↑
1 (1) -0.365148 [1,6,8,10] -0.447214 [3,4,8,10] -0.447214 [4,5,6,10] +0.365148 [4,6,7,8] +

-0.447214 [2,4,9,10] +0.365148 [2,6,8,9]
3F↑↑

2 (1) −
√

1
3 [3, 6, 8, 10] +

√
1
3 [4, 6, 7, 10]−

√
1
3 [2, 6, 9, 10]

3F↑↑
3 (1) −

√
1
3 [5, 6, 8, 10]−

√
1
3 [4, 7, 8, 10]−

√
1
3 [2, 8, 9, 10]

3F↑↓
−3(1) −

√
1
6 [1, 2, 3, 10]−

√
1
6 [1, 3, 4, 8]−

√
1
6 [1, 4, 5, 6]−

√
1
6 [2, 3, 5, 6]+

−
√

1
6 [2, 3, 4, 7]−

√
1
6 [1, 2, 4, 9]

3F↑↓
−2(1) −

√
1
6 [1, 2, 5, 10]−

√
1
6 [1, 3, 6, 8]−

√
1
6 [2, 3, 5, 8] +

√
1
6 [1, 4, 6, 7]+

+
√

1
6 [2, 4, 5, 7]−

√
1
6 [1, 2, 6, 9]

3F↑↓
−1(1) -0.258199 [1,3,6,10] -0.258199 [1,4,5,10] -0.316228 [1,2,7,10] +0.258199 [3,4,5,8] +

-0.316228 [2,3,7,8] -0.316228 [1,5,6,8] -0.316228 [2,5,6,7] -0.316228 [1,4,7,8] +
+0.258199 [3,4,6,7] -0.316228 [1,2,8,9] +0.258199 [2,3,6,9] +0.258199 [2,4,5,9]

3F↑↓
0 (1) -0.182574 [1,3,8,10] -0.182574 [1,5,6,10] -0.547723 [1,4,7,10] -0.365148 [3,5,6,8] +

+0.547723 [2,3,8,9] -0.365148 [4,5,6,7] -0.182574 [2,5,6,9] +0.182574 [2,4,7,9]
3F↑↓

1 (1) -0.258199 [1,5,8,10] -0.258199 [1,6,7,10] -0.316228 [1,4,9,10] +0.258199 [3,6,7,8] +
-0.316228 [3,4,8,9] -0.316228 [3,5,6,10] -0.316228 [4,5,6,9] -0.316228 [3,4,7,10] +
+0.258199 [4,5,7,8] -0.316228 [2,3,9,10] +0.258199 [2,5,8,9] +0.258199 [2,6,7,9]

3F↑↓
2 (1) −

√
1
6 [1, 6, 9, 10]−

√
1
6 [3, 5, 8, 10]−

√
1
6 [3, 6, 8, 9] +

√
1
6 [4, 5, 7, 10]+

+
√

1
6 [4, 6, 7, 9]−

√
1
6 [2, 5, 9, 10]

3F↑↓
3 (1) −

√
1
6 [1, 8, 9, 10]−

√
1
6 [3, 7, 8, 10]−

√
1
6 [5, 6, 7, 10]−

√
1
6 [5, 6, 8, 9]+

−
√

1
6 [4, 7, 8, 9]−

√
1
6 [2, 7, 9, 10]

3F↓↓
−3(1) −

√
1
3 [1, 3, 5, 6]−

√
1
3 [1, 3, 4, 7]−

√
1
3 [1, 2, 3, 9]

3F↓↓
−2(1) −

√
1
3 [1, 3, 5, 8] +

√
1
3 [1, 4, 5, 7]−

√
1
3 [1, 2, 5, 9]

3F↓↓
−1(1) -0.365148 [1,3,5,10] -0.447214 [1,3,7,8] -0.447214 [1,5,6,7] +0.365148 [3,4,5,7] +

-0.447214 [1,2,7,9] +0.365148 [2,3,5,9]
3F↓↓

0 (1) -0.516398 [1,3,7,10] +0.258199 [1,3,8,9] -0.258199 [1,5,6,9] -0.516398 [3,5,6,7] +
-0.258199 [1,4,7,9] +0.516398 [2,3,7,9]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

3F↓↓
1 (1) -0.447214 [1,3,9,10] -0.365148 [1,5,7,10] +0.365148 [3,5,7,8] -0.447214 [3,5,6,9] +

-0.447214 [3,4,7,9] +0.365148 [2,5,7,9]
3F↓↓

2 (1) −
√

1
3 [1, 5, 9, 10]−

√
1
3 [3, 5, 8, 9] +

√
1
3 [4, 5, 7, 9]

3F↓↓
3 (1) −

√
1
3 [1, 7, 9, 10]−

√
1
3 [3, 7, 8, 9]−

√
1
3 [5, 6, 7, 9]

3F↑↑
−3(2) 0.707107 [1,2,6,8] +0.288676 [2,3,4,8] +0.288676 [2,4,5,6] -0.577350 [1,2,4,10]

3F↑↑
−2(2) 0.577350 [1,4,6,8] +0.707107 [2,3,4,10] -0.288674 [2,3,6,8] -0.288676 [2,4,6,7]

3F↑↑
−1(2) 0.365149 [1,4,6,10] +0.547722 [3,4,6,8] -0.547722 [2,4,5,10] -0.223607 [2,5,6,8] +

+0.365149 [2,3,6,10] +0.223607 [2,4,7,8] -0.182574 [2,4,6,9]
3F↑↑

0 (2) 0.258198 [1,4,8,10] +0.316228 [3,4,6,10] +0.316228 [2,6,7,8] +0.516398 [2,5,6,10] +
-0.258198 [2,4,8,9] +0.258199 [2,3,8,10] -0.516398 [4,5,6,8] -0.258199 [2,4,7,10]

3F↑↑
1 (2) 0.182574 [1,6,8,10] +0.223607 [3,4,8,10] -0.223607 [4,5,6,10] +0.547722 [4,6,7,8] +

-0.365149 [2,6,8,9] +0.547722 [2,5,8,10] -0.365149 [2,6,7,10]
3F↑↑

2 (2) 0.288676 [3,6,8,10] +0.288674 [4,6,7,10] -0.577350 [4,6,8,9] +0.707107 [2,7,8,10]
3F↑↑

3 (2) 0.288676 [5,6,8,10] +0.288676 [4,7,8,10] +0.707107 [4,6,9,10] -0.577350 [2,8,9,10]
3F↑↓

−3(2) 0.204125 [1,4,5,6] +0.500000 [1,2,6,7] +0.204125 [1,3,4,8] +0.204125 [2,3,4,7] +
+0.500000 [1,2,5,8] +0.204125 [2,3,5,6] -0.408248 [1,2,3,10] -0.408248 [1,2,4,9]

3F↑↓
−2(2) 0.204125 [1,3,6,8] +0.204123 [1,4,6,7] +0.500000 [1,3,4,10] +0.500000 [2,3,4,9] +

-0.204123 [2,3,5,8] -0.204125 [2,4,5,7] +0.408248 [1,4,5,8] -0.408248 [2,3,6,7]
3F↑↓

−1(2) 0.516398 [1,3,6,10] -0.158115 [1,5,6,8] +0.129099 [1,4,6,9] +0.387298 [3,4,5,8] +
+0.387298 [3,4,6,7] -0.129099 [2,3,5,10] -0.158115 [2,5,6,7] -0.516398 [2,4,5,9] +
+0.158113 [1,4,7,8] +0.129100 [2,3,6,9] -0.129100 [1,4,5,10] +0.158113 [2,3,7,8]

3F↑↓
0 (2) 0.365148 [1,3,8,10] +0.223607 [1,6,7,8] +0.223607 [3,4,6,9] +0.223607 [3,4,5,10] +

+0.223607 [2,5,7,8] -0.365148 [2,4,7,9] +0.365148 [1,5,6,10] +0.365148 [2,5,6,9] +
-0.365148 [3,5,6,8] -0.365148 [4,5,6,7]

3F↑↓
1 (2) 0.516398 [1,5,8,10] -0.129100 [1,6,7,10] +0.387298 [3,6,7,8] +0.158113 [3,4,8,9] +

-0.158115 [3,5,6,10] -0.158115 [4,5,6,9] +0.158113 [3,4,7,10] +0.387298 [4,5,7,8] +
+0.129100 [2,5,8,9] -0.516398 [2,6,7,9] +0.129099 [2,5,7,10] -0.129099 [1,6,8,9]

3F↑↓
2 (2) 0.204125 [3,5,8,10] +0.408248 [3,6,7,10] -0.408248 [4,5,8,9] -0.204125 [4,6,7,9] +

+0.204123 [4,5,7,10] +0.500000 [1,7,8,10] +0.500000 [2,7,8,9] -0.204123 [3,6,8,9]
3F↑↓

3 (2) 0.204125 [5,6,7,10] +0.500000 [4,5,9,10] +0.204125 [3,7,8,10] +0.204125 [4,7,8,9] +
+0.500000 [3,6,9,10] +0.204125 [5,6,8,9] -0.408248 [1,8,9,10] -0.408248 [2,7,9,10]

3F↓↓
−3(2) 0.288676 [1,3,5,6] +0.288676 [1,3,4,7] +0.707107 [1,2,5,7] -0.577350 [1,2,3,9]

3F↓↓
−2(2) 0.707107 [1,3,4,9] -0.577350 [2,3,5,7] +0.288676 [1,3,5,8] +0.288674 [1,4,5,7]

3F↓↓
−1(2) 0.547722 [1,3,6,9] -0.223607 [1,5,6,7] +0.547722 [3,4,5,7] -0.365149 [2,3,5,9] +

+0.223607 [1,3,7,8] -0.365149 [1,4,5,9] +0.182574 [1,3,5,10]
3F↓↓

0 (2) 0.316228 [1,5,7,8] +0.316228 [3,4,5,9] -0.258198 [2,3,7,9] +0.258198 [1,3,7,10] +
+0.516398 [1,5,6,9] +0.258199 [1,3,8,9] -0.516398 [3,5,6,7] -0.258199 [1,4,7,9]

3F↓↓
1 (2) 0.365149 [1,5,7,10] +0.547722 [3,5,7,8] -0.223607 [3,5,6,9] +0.223607 [3,4,7,9] +

-0.182574 [2,5,7,9] +0.365149 [1,5,8,9] -0.547722 [1,6,7,9]
3F↓↓

2 (2) 0.577350 [3,5,7,10] -0.288674 [3,5,8,9] -0.288676 [4,5,7,9] +0.707107 [1,7,8,9]
3F↓↓

3 (2) 0.707107 [3,5,9,10] +0.288676 [3,7,8,9] +0.288676 [5,6,7,9] -0.577350 [1,7,9,10]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

3G↑↑
−4 -0.774597 [2,3,4,6] -0.632456 [1,2,4,8]

3G↑↑
−3 -0.547723 [1,2,6,8] -0.223607 [2,3,4,8] +0.670820 [2,4,5,6] -0.447214 [1,2,4,10]

3G↑↑
−2 -0.585540 [1,2,6,10] -0.292770 [1,4,6,8] +0.119523 [2,3,4,10] +0.585540 [2,4,5,8] +

+0.146385 [2,3,6,8] -0.439155 [2,4,6,7]
3G↑↑

−1 -0.414039 [1,4,6,10] -0.207020 [3,4,6,8] +0.207020 [2,4,5,10] -0.253546 [2,5,6,8] +
-0.338062 [1,2,8,10] +0.414039 [2,3,6,10] +0.591608 [2,4,7,8] -0.207020 [2,4,6,9]

3G↑↑
0 -0.462910 [3,4,6,10] -0.377964 [1,4,8,10] +0.377964 [2,4,7,10] +0.462910 [2,6,7,8] +

+0.377964 [2,3,8,10] -0.377964 [2,4,8,9]
3G↑↑

1 -0.207020 [1,6,8,10] -0.591608 [3,4,8,10] +0.207020 [2,5,8,10] +0.253546 [4,5,6,10] +
+0.414039 [2,6,7,10] +0.207020 [4,6,7,8] +0.338062 [2,4,9,10] -0.414039 [2,6,8,9]

3G↑↑
2 -0.439155 [3,6,8,10] +0.585540 [4,5,8,10] -0.119523 [2,7,8,10] +0.146385 [4,6,7,10] +

+0.585540 [2,6,9,10] -0.292770 [4,6,8,9]
3G↑↑

3 -0.670820 [5,6,8,10] +0.223607 [4,7,8,10] +0.447214 [2,8,9,10] +0.547723 [4,6,9,10]
3G↑↑

4 0.774597 [6,7,8,10] +0.632456 [4,8,9,10]
3G↑↓

−4 -0.547723 [1,3,4,6] -0.547723 [2,3,4,5] -0.447214 [1,2,3,8] -0.447214 [1,2,4,7]
3G↑↓

−3 0.474342 [1,4,5,6] -0.387298 [1,2,6,7] -0.158114 [1,3,4,8] -0.158114 [2,3,4,7] +
-0.387298 [1,2,5,8] +0.474342 [2,3,5,6] -0.316228 [1,2,3,10] -0.316228 [1,2,4,9]

3G↑↓
−2 -0.103510 [1,3,6,8] -0.517549 [1,4,6,7] -0.414039 [1,2,6,9] +0.084515 [1,3,4,10] +

+0.084515 [2,3,4,9] -0.414039 [1,2,5,10] +0.517549 [2,3,5,8] +0.103510 [2,4,5,7] +
+0.207020 [1,4,5,8] -0.207020 [2,3,6,7]

3G↑↓
−1 -0.179284 [1,5,6,8] -0.439155 [1,4,6,9] -0.146385 [3,4,5,8] -0.146385 [3,4,6,7] +

+0.439155 [2,3,5,10] -0.179284 [2,5,6,7] +0.418330 [1,4,7,8] -0.239046 [1,2,8,9] +
+0.146385 [2,3,6,9] -0.146385 [1,4,5,10] -0.239046 [1,2,7,10] +0.418330 [2,3,7,8]

3G↑↓
0 0.327327 [1,6,7,8] -0.327327 [3,4,5,10] -0.327327 [3,4,6,9] +0.327327 [2,5,7,8] +

-0.534522 [1,4,8,9] +0.534522 [2,3,7,10]
3G↑↓

1 0.146385 [1,6,7,10] -0.439155 [1,6,8,9] -0.418330 [3,4,7,10] -0.418330 [3,4,8,9] +
+0.439155 [2,5,7,10] -0.146385 [2,5,8,9] +0.179284 [3,5,6,10] +0.146385 [3,6,7,8] +
+0.146385 [4,5,7,8] +0.179284 [4,5,6,9] +0.239046 [1,4,9,10] +0.239046 [2,3,9,10]

3G↑↓
2 -0.084515 [1,7,8,10] -0.207020 [3,6,7,10] -0.517549 [3,6,8,9] +0.517549 [4,5,7,10] +

+0.207020 [4,5,8,9] -0.084515 [2,7,8,9] +0.414039 [1,6,9,10] +0.103510 [3,5,8,10] +
-0.103510 [4,6,7,9] +0.414039 [2,5,9,10]

3G↑↓
3 0.316228 [1,8,9,10] +0.158114 [3,7,8,10] -0.474342 [5,6,7,10] -0.474342 [5,6,8,9] +

+0.158114 [4,7,8,9] +0.316228 [2,7,9,10] +0.387298 [3,6,9,10] +0.387298 [4,5,9,10]
3G↑↓

4 0.447214 [3,8,9,10] +0.547723 [5,7,8,10] +0.547723 [6,7,8,9] +0.447214 [4,7,9,10]
3G↓↓

−4 -0.774597 [1,3,4,5] -0.632456 [1,2,3,7]
3G↓↓

−3 0.670820 [1,3,5,6] -0.223607 [1,3,4,7] -0.547723 [1,2,5,7] -0.447214 [1,2,3,9]
3G↓↓

−2 -0.585540 [1,3,6,7] +0.119523 [1,3,4,9] -0.585540 [1,2,5,9] +0.292770 [2,3,5,7] +
+0.439155 [1,3,5,8] -0.146385 [1,4,5,7]

3G↓↓
−1 -0.207020 [1,3,6,9] -0.253546 [1,5,6,7] -0.207020 [3,4,5,7] +0.414039 [2,3,5,9] +

+0.591608 [1,3,7,8] -0.414039 [1,4,5,9] -0.338062 [1,2,7,9] +0.207020 [1,3,5,10]
3G↓↓

0 -0.462910 [3,4,5,9] -0.377964 [1,3,8,9] +0.462910 [1,5,7,8] +0.377964 [2,3,7,9] +
+0.377964 [1,3,7,10] -0.377964 [1,4,7,9]

3G↓↓
1 -0.207020 [1,6,7,9] -0.591608 [3,4,7,9] +0.207020 [2,5,7,9] -0.414039 [1,5,8,9] +

+0.253546 [3,5,6,9] +0.338062 [1,3,9,10] +0.414039 [1,5,7,10] +0.207020 [3,5,7,8]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

3G↓↓
2 -0.119523 [1,7,8,9] -0.585540 [3,6,7,9] +0.439155 [4,5,7,9] +0.585540 [1,5,9,10] +

-0.146385 [3,5,8,9] +0.292770 [3,5,7,10]
3G↓↓

3 0.447214 [1,7,9,10] +0.223607 [3,7,8,9] -0.670820 [5,6,7,9] +0.547723 [3,5,9,10]
3G↓↓

4 0.632456 [3,7,9,10] +0.774597 [5,7,8,9]
3H↑↑

−5 [1,2,4,6]
3H↑↑

−4 -0.774597 [1,2,4,8] +0.632456 [2,3,4,6]
3H↑↑

−3 -0.365148 [1,2,4,10] -0.447214 [1,2,6,8] +0.730297 [2,3,4,8] -0.365148 [2,4,5,6]
3H↑↑

−2 -0.365148 [1,2,6,10] -0.182574 [1,4,6,8] +0.447214 [2,3,4,10] +0.547723 [2,3,6,8] +
-0.547723 [2,4,5,8] +0.182574 [2,4,6,7]

3H↑↑
−1 -0.169031 [1,2,8,10] -0.207020 [1,4,6,10] +0.552052 [2,3,6,10] -0.276026 [3,4,6,8] +

-0.414039 [2,4,5,10] +0.507093 [2,5,6,8] -0.338062 [2,4,7,8] +0.069007 [2,4,6,9]
3H↑↑

0 -0.154303 [1,4,8,10] +0.308607 [2,3,8,10] -0.377964 [3,4,6,10] +0.617213 [2,5,6,10] +
+0.308607 [4,5,6,8] -0.308607 [2,4,7,10] -0.377964 [2,6,7,8] +0.154303 [2,4,8,9]

3H↑↑
1 -0.069007 [1,6,8,10] -0.338062 [3,4,8,10] +0.414039 [2,5,8,10] +0.507093 [4,5,6,10] +

-0.552052 [2,6,7,10] -0.276026 [4,6,7,8] -0.169031 [2,4,9,10] +0.207020 [2,6,8,9]
3H↑↑

2 -0.182574 [3,6,8,10] +0.547723 [4,5,8,10] +0.447214 [2,7,8,10] -0.547723 [4,6,7,10] +
-0.365148 [2,6,9,10] +0.182574 [4,6,8,9]

3H↑↑
3 -0.365148 [5,6,8,10] +0.730297 [4,7,8,10] -0.365148 [2,8,9,10] -0.447214 [4,6,9,10]

3H↑↑
4 0.632456 [6,7,8,10] -0.774597 [4,8,9,10]

3H↑↑
5 -[6,8,9,10]

3H↑↓
−5 −

√
1
2 [1, 2, 3, 6]−

√
1
2 [1, 2, 4, 5]

3H↑↓
−4 -0.547723 [1,2,3,8] -0.547723 [1,2,4,7] +0.447214 [1,3,4,6] +0.447214 [2,3,4,5]

3H↑↓
−3 -0.258199 [1,2,3,10] -0.316228 [1,2,5,8] -0.316228 [1,2,6,7] -0.258199 [1,2,4,9] +

+0.516398 [1,3,4,8] -0.258199 [1,4,5,6] -0.258199 [2,3,5,6] +0.516398 [2,3,4,7]
3H↑↓

−2 -0.258199 [1,2,5,10] -0.258199 [1,2,6,9] +0.316228 [1,3,4,10] -0.516398 [1,4,5,8] +
+0.516398 [2,3,6,7] +0.316228 [2,3,4,9] +0.258199 [1,3,6,8] -0.258199 [2,4,5,7]

3H↑↓
−1 -0.119523 [1,2,7,10] -0.119523 [1,2,8,9] -0.439155 [1,4,5,10] -0.239046 [1,4,7,8] +

-0.097590 [1,4,6,9] +0.097590 [2,3,5,10] -0.239046 [2,3,7,8] +0.439155 [2,3,6,9] +
+0.243975 [1,3,6,10] +0.358569 [1,5,6,8] -0.195180 [3,4,5,8] -0.195180 [3,4,6,7] +

+0.358569 [2,5,6,7] -0.243975 [2,4,5,9]
3H↑↓

0 -0.327327 [1,4,7,10] +0.327327 [2,3,8,9] +0.436436 [1,5,6,10] -0.267261 [1,6,7,8] +
-0.267261 [3,4,5,10] -0.267261 [3,4,6,9] -0.267261 [2,5,7,8] +0.436436 [2,5,6,9] +
+0.109109 [1,3,8,10] +0.218218 [3,5,6,8] +0.218218 [4,5,6,7] -0.109109 [2,4,7,9]

3H↑↓
1 -0.439155 [1,6,7,10] +0.097590 [1,6,8,9] -0.239046 [3,4,7,10] -0.239046 [3,4,8,9] +

-0.097590 [2,5,7,10] +0.439155 [2,5,8,9] +0.243975 [1,5,8,10] +0.358569 [3,5,6,10] +
-0.195180 [3,6,7,8] -0.195180 [4,5,7,8] +0.358569 [4,5,6,9] -0.243975 [2,6,7,9] +

-0.119523 [1,4,9,10] -0.119523 [2,3,9,10]
3H↑↓

2 0.316228 [1,7,8,10] -0.516398 [3,6,7,10] +0.516398 [4,5,8,9] +0.316228 [2,7,8,9] +
-0.258199 [1,6,9,10] +0.258199 [3,5,8,10] -0.258199 [4,6,7,9] -0.258199 [2,5,9,10]

3H↑↓
3 -0.258199 [1,8,9,10] +0.516398 [3,7,8,10] -0.258199 [5,6,7,10] -0.258199 [5,6,8,9] +

+0.516398 [4,7,8,9] -0.258199 [2,7,9,10] -0.316228 [3,6,9,10] -0.316228 [4,5,9,10]
3H↑↓

4 -0.547723 [3,8,9,10] +0.447214 [5,7,8,10] +0.447214 [6,7,8,9] -0.547723 [4,7,9,10]
3H↑↓

5 −
√

1
2 [5, 8, 9, 10]−

√
1
2 [6, 7, 9, 10]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

3H↓↓
−5 -[1,2,3,5]

3H↓↓
−4 -0.774597 [1,2,3,7] 0.632456 [1,3,4,5]

3H↓↓
−3 -0.365148 [1,2,3,9] -0.447214 [1,2,5,7] +0.730297 [1,3,4,7] -0.365148 [1,3,5,6]

3H↓↓
−2 -0.365148 [1,2,5,9] +0.447214 [1,3,4,9] -0.547723 [1,4,5,7] +0.182574 [2,3,5,7] +

+0.547723 [1,3,6,7] -0.182574 [1,3,5,8]
3H↓↓

−1 -0.169031 [1,2,7,9] -0.552052 [1,4,5,9] +0.207020 [2,3,5,9] +0.414039 [1,3,6,9] +
+0.507093 [1,5,6,7] -0.276026 [3,4,5,7] -0.338062 [1,3,7,8] -0.069007 [1,3,5,10]

3H↓↓
0 -0.308607 [1,4,7,9] +0.154303 [2,3,7,9] +0.617213 [1,5,6,9] -0.377964 [3,4,5,9] +

+0.308607 [1,3,8,9] -0.377964 [1,5,7,8] +0.308607 [3,5,6,7] -0.154303 [1,3,7,10]
3H↓↓

1 -0.414039 [1,6,7,9] -0.338062 [3,4,7,9] +0.069007 [2,5,7,9] +0.552052 [1,5,8,9] +
+0.507093 [3,5,6,9] -0.169031 [1,3,9,10] -0.207020 [1,5,7,10] -0.276026 [3,5,7,8]

3H↓↓
2 0.447214 [1,7,8,9] -0.547723 [3,6,7,9] +0.182574 [4,5,7,9] -0.365148 [1,5,9,10] +

+0.547723 [3,5,8,9] -0.182574 [3,5,7,10]
3H↓↓

3 -0.365148 [1,7,9,10] +0.730297 [3,7,8,9] -0.365148 [5,6,7,9] -0.447214 [3,5,9,10]
3H↓↓

4 -0.774597 [3,7,9,10] +0.632456 [5,7,8,9]
3H↓↓

5 -[5,7,9,10]
5D↑↑↑↑

−2 -[1,3,5,7]
5D↑↑↑↑

−1 -[1,3,5,9]
5D↑↑↑↑

0 -[1,3,7,9]
5D↑↑↑↑

1 -[1,5,7,9]
5D↑↑↑↑

2 -[3,5,7,9]
5D↑↑↑↓

−2 − 1
2 [1, 3, 5, 8]− 1

2 [1, 3, 6, 7]− 1
2 [1, 4, 5, 7]− 1

2 [2, 3, 5, 7]
5D↑↑↑↓

−1 − 1
2 [1, 3, 6, 9]− 1

2 [1, 4, 5, 9]− 1
2 [1, 3, 5, 10]− 1

2 [2, 3, 5, 9]
5D↑↑↑↓

0 − 1
2 [1, 3, 8, 9]− 1

2 [2, 3, 7, 9]− 1
2 [1, 3, 7, 10]− 1

2 [1, 4, 7, 9]
5D↑↑↑↓

1 − 1
2 [1, 5, 7, 10]− 1

2 [2, 5, 7, 9]− 1
2 [1, 5, 8, 9]− 1

2 [1, 6, 7, 9]
5D↑↑↑↓

2 − 1
2 [3, 5, 7, 10]− 1

2 [3, 5, 8, 9]− 1
2 [3, 6, 7, 9]− 1

2 [4, 5, 7, 9]
5D↑↓↑↓

−2 −
√

1
6 [2, 3, 5, 8]−

√
1
6 [1, 4, 6, 7]−

√
1
6 [1, 3, 6, 8]−

√
1
6 [1, 4, 5, 8]+

−
√

1
6 [2, 3, 6, 7]−

√
1
6 [2, 4, 5, 7]

5D↑↓↑↓
−1 −

√
1
6 [1, 4, 6, 9]−

√
1
6 [1, 3, 6, 10]−

√
1
6 [2, 3, 6, 9]−

√
1
6 [1, 4, 5, 10]+

−
√

1
6 [2, 4, 5, 9]−

√
1
6 [2, 3, 5, 10]

5D↑↓↑↓
0 −

√
1
6 [2, 3, 8, 9]−

√
1
6 [1, 3, 8, 10]−

√
1
6 [1, 4, 8, 9]−

√
1
6 [2, 3, 7, 10]+

−
√

1
6 [2, 4, 7, 9]−

√
1
6 [1, 4, 7, 10]

5D↑↓↑↓
1 −

√
1
6 [2, 5, 7, 10]−

√
1
6 [1, 5, 8, 10]−

√
1
6 [1, 6, 7, 10]−

√
1
6 [2, 5, 8, 9]+

−
√

1
6 [2, 6, 7, 9]−

√
1
6 [1, 6, 8, 9]

5D↑↓↑↓
2 −

√
1
6 [4, 5, 7, 10]−

√
1
6 [3, 6, 8, 9]−

√
1
6 [3, 5, 8, 10]−

√
1
6 [3, 6, 7, 10]+

−
√

1
6 [4, 5, 8, 9]−

√
1
6 [4, 6, 7, 9]

5D↑↓↓↓
−2 − 1

2 [2, 3, 6, 8]− 1
2 [2, 4, 5, 8]− 1

2 [1, 4, 6, 8]− 1
2 [2, 4, 6, 7]

5D↑↓↓↓
−1 − 1

2 [1, 4, 6, 10]− 1
2 [2, 4, 6, 9]− 1

2 [2, 3, 6, 10]− 1
2 [2, 4, 5, 10]

5D↑↓↓↓
0 − 1

2 [2, 3, 8, 10]− 1
2 [2, 4, 8, 9]− 1

2 [1, 4, 8, 10]− 1
2 [2, 4, 7, 10]
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Table A.4: Symmetry-adapted linear combinations of four-hole
products, produced by our numerical procedure.

symmetry-
adapted
state

linear combination of simple products

5D↑↓↓↓
1 − 1

2 [2, 5, 8, 10]− 1
2 [2, 6, 7, 10]− 1

2 [1, 6, 8, 10]− 1
2 [2, 6, 8, 9]

5D↑↓↓↓
2 − 1

2 [4, 5, 8, 10]− 1
2 [4, 6, 7, 10]− 1

2 [3, 6, 8, 10]− 1
2 [4, 6, 8, 9]

5D↓↓↓↓
−2 -[2,4,6,8]

5D↓↓↓↓
−1 -[2,4,6,10]

5D↓↓↓↓
0 -[2,4,8,10]

5D↓↓↓↓
1 -[2,6,8,10]

5D↓↓↓↓
2 -[4,6,8,10]

Table A.5: Corrections to the free-ion (spherical symmetry) energy
levels resulting from the surface ligand field.

free-ion
state

surface
state

ligand-field correction resulting en-
ergy [eV]

1S A1 2ε0 9.4113
3P A1 2ε0 +

14
5 DS 2.8150

E 2ε0 − 7
5DS 3.0565

1D A1 2ε0 +
6
7DS + 24

7 Dq 2.6999
B1 2ε0 − 6

7DS + 24
7 Dq +

20
7 DU 3.2499

B2 2ε0 − 6
7DS − 16

7 Dq − 20
7 DU 2.6784

Eα, Eβ 2ε0 − 3
7DS − 16

7 Dq 3.1052
3F B1 2ε0 + 2Dq − 5DU 0.0000

Eα, Eβ 2ε0 −DS + 2Dq +
15
4 DU 1.4400

B2 2ε0 + 12Dq + 5DU 1.0000
A2 2ε0 − 4

5DS − 6Dq 1.3000
Eγ , Eδ 2ε0 +

2
5DS − 6Dq − 15

4 DU 0.6385
1G A1α 2ε0 + 4Dq +

5
3DU 3.9453

A1β 2ε0 +
8
7DS + 4

7Dq − 5
3DU 3.5518

B1 2ε0 − 8
7DS + 4

7Dq +
15
7 DU 4.2851

A2 2ε0 + 4DS + 2Dq 3.5680
Eα, Eβ 2ε0 − 2DS + 2Dq +

5
4DU 4.1105

B2 2ε0 − 8
7DS − 26

7 Dq − 15
7 DU 3.8566

Eγ , Eδ 2ε0 +
4
7DS − 26

7 Dq − 5
4DU 3.8991
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[24] M. Fiebig, D. Fröhlich, and H-J. Thiele, Phys. Rev. B 54, R12681 (1996).

[25] S. Kielich and R. Zawodny, Optics Comm. 4, 132 (1971).

[26] J. Rosen, Symmetry in Science (Springer-Verlag Inc., New York, 1995).

[27] P. Argyres, Phys. Rev. 97, 334 (1955).

[28] W. F. Brown, S. Shtrikman, and D. Treves, J. Appl. Phys. 34, 1233 (1963).

[29] V. V. Eremenko and N. F. Kharchenko, Phys. Rep. 155, 379 (1987).

[30] I. Dzyaloshinskii and E. V. Papamichail, Phys. Rev. Lett. 75, 3004 (1995)

[31] S. Kielich and R. Zawodny, Acta Phys. Polonica A 43, 579 (1973).

[32] I. L. Lyubchanskii, Phys. Solid State 37, 387 (1995).

[33] S. B. Borisov, N. N. Dadoenkova, I. L. Lyubchanskii, and V. L. Sobolev, Sov. Phys.
Solid State 32, 2127 (1990).

[34] S. B. Borisov, N. N. Dadoenkova, I. L. Lyubchanskii, and V. L. Sobolev, Sov. Phys.
Solid State 33, 1061 (1991).

[35] N. N. Akhmediev, S. B. Borisov, A. K. Zvezdin, I. L. Lyubchanskii, and Yu. V.
Melikhov, Sov. Phys. Solid State 27, 650 (1985).

[36] V. N. Muthukumar, R. Valenti, and C. Gros, Phys. Rev. Lett. 75, 2766 (1995).

[37] Y. Tanabe, M. Muto, and E. Hanamura, Solid State Comm. 102, 643 (1997).

[38] F. Bassani and S. Scandolo, Phys. Rev. B 44, 8446 (1991).

[39] M. Trzeciecki, W. Hübner, unpublished.
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[74] P. Fulde, Electron Correlation in molecules and Solids, 3rd edit. (Springer, Heidelberg,
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Zusammenfassung

In dieser Arbeit wurde eine Theorie für die optische Frequenzverdopplung (SHG) an den
Oberflächen antiferromagnetischer Oxide entwickelt.

Die neuen Gebiete der Technologie, wie magnetische Speicherelemente oder Quanten-
computer, benötigen neue Materialien. Beispielsweise beruhen die für Anwendungen als
Computerspeicher vorgesehene TMR - tunneling magnetoresistance - Bauelemente auf
Dreifachschicht-Sandwiches, denen Mittelschicht ein Oxid beinhaltet. Die magnetischen
Eigenschaften dieses häufig antiferromagnetschen Oxids beeinflussen die Leistung des Ge-
rätes, ein Studium der magnetischen Struktur der Mittelschicht ist also von großer Bedeu-
tung. Eine bequeme Methode, solche “verborgenen” oxidischen Schichten zu untersuchen,
ist die SHG (second harmonic generation). Darum ist es von großer Bedeutung, die nicht-
lineare optische Antwort solcher Strukturen theoretisch zu studieren und Vorhersagen zu
gewinnen.

Es wurde schon experimentell bestätigt, dass SHG für Oberflächen sensitiv ist, weil eine
Grenzfläche die Inversionssymetrie bricht. Andererseits gibt es hervorragende experimen-
telle Ergebnisse über Domänenabbildung im Volumen antiferromagnetischer Materialien
die keine Inversionssymmetrie besitzen (Cr2O3). Dadurch entsteht die Frage, ob SHG die
Fähigkeit besitzt, die magnetische Struktur an Oberflächen inversionssymetrischer Antifer-
romagnete (wie z.B. Nickeloxid NiO) zu untersuchen. Die Frage wird in dieser Dissertation
beantwortet.

In ferromagnetischen Metallen wurden von mehreren experimentellen Arbeitsgruppen
mit verschiedenen zeitaufgelösten optischen Methoden ein Zerfall der Magnetisierung in
weniger als einer Pikosekunde sowie Abweichungen vom Fermiflüssigkeitsverhalten beob-
achtet, sodass die üblicherweise für Ummagnetisierungsprozesse erforderliche Beteiligung
und Erwärmung des Kristallgitters nur von untergeordneter Bedeutung sein kann. Es
ist zu erwarten, dass antiferromagnetische oxidische Grenzflächen aufgrund ihrer elektro-
nischen Struktur teils ähnliche, teils neuartige magnetische Effekte im Femtosekunden-
Bereich zeigen und besondere Relevanz für Anwendungen ultraschneller Prozesse in der
Magneto-Elektronik erlangen werden. Oxidische Grenzflächen eignen sich auch besonders
gut für Untersuchungen der Spin-Dynamik auf der Femtosekunden-Skala, da sie (i) über
ein reichhaltiges magnetisches Phasendiagramm, (ii) über ein stark korreliertes Elektonen-
system mit hoher Zustandsdichte und gleichzeitig großer Bandlücke verfügen und (iii) an
der Grenzfläche zu Metallsubstraten (Metall/Metalloxid-Grenzfläche mit jeweils demsel-
ben Metall) die Wärmeabfuhr der laserinduzierten Prozesse in das Gitter des Substrates
erfolgen kann, ohne das spindynamisch aktive Oxid zu beeinflussen.
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Deshalb haben wir ein Material gewählt, das eine einfache Kristallstruktur besitzt,
aber die Untersuchung der Oberflächenempfindlichkeit der SHG und der Korrelationseffekte
ermöglicht. Es ist wichtig zu bemerken, dass die in dieser Arbeit entwickelten Methoden
und erzeugten Resultate auch auf andere Oxide übertragen werden können.

Symmetrieanalyse: Der erster Teil der Arbeit (Kapitel 2) betrifft die gruppentheo-
retische Analyse der optischen Frequenzverdopplung an den Oberflächen antiferromagneti-
scher Oxide. Die bisher existierenden wichtigen Arbeiten zur gruppentheoretischen Klassi-
fizierung antiferromagnetischer Volumen-Spinstrukturen lassen eine gewisse konzeptionelle
Lücke zwischen den vorhergesagten Tensorelementen einerseits, und dem experimentell er-
warteten Ergebnis andererseits. Wenn man sich aber vor Augen führt, dass erst 1994 erst-
mals Volumen-Domänen in einem Antiferromagneten (dem Oxid Cr2O3) experimentell ab-
gebildet werden konnten und dass der zugrundeliegende Mechanismus noch nicht einmal in
seinem Symmetrie-Ursprung (geschweige denn elektronisch) voll verstanden ist, wird rasch
klar, dass selbst auf dem Niveau der Symmetrie-Analyse für antiferromagnetische oxidi-
sche Grenzflächen noch viele Fragen offen bleiben. Ein Teil davon wird in der vorliegenden
Arbeit beantwortet. Im Unterschied zur Analyse des Antiferromagnetismus in Volumen
konzentriert sich unsere Arbeit auf die niedrig indizierten Oberflächen kubischer Antifer-
romagnete und kann sich daher auf diejenige Beiträge zur optischen Frequenzverdopplung
beschränken, welche von elektrischen Dipolanteilen herrühren. Daher wenden wir die Grup-
pentheorie an, um die nicht-verschwindenden Elemente des Tensors χ

(2ω)
el für verschiedene

antiferromagnetisch geordnete Oberflächen zu bestimmen. Die Zahl der unterscheidbaren
Spinkonfigurationen ist verschieden je nach der Oberflächenorientierung. Darüber hinaus
betrachten wir Gitterverzerrungen des magnetischen und nichtmagnetischen Untergitters
und Einheitszellen mit zwei Arten magnetischer Atome. Letzterer Aspekt stellt eine wich-
tige Vorarbeit im Hinblick auf das (z. B. von den Hochtemperatur-Supraleitern) bekannte
nichtstöchiometrische Verhalten oxidischer Materialien (Sauerstoff-Verluste) dar.

Unsere Ergebnisse zeigen, dass in den verschiedenen antiferromagnetischen Spinkonfi-
gurationen oftmals unterschiedliche nicht-verschwindende Elemente des Tensors χ

(2ω)
el auf-

treten. Damit erlaubt die optische Frequenzverdopplung nicht nur die Unterscheidung
der antiferromagnetischen Phase von der para- oder ferromagnetischen Phase, sondern
gestattet darüber hinaus in vielen Fällen sogar die Identifikation der detaillierten antifer-
romagnetischen Spinkonfiguration. Die zuvor erwähnten Verzerrungen lassen sich ebenfalls
mittels SHG detektieren.

Ein weiteres wichtiges Resultat unserer Arbeit besteht darin, dass die optische Fre-
quenzverdopplung antiferromagnetische Oberflächendomänen an kubischen Oxiden abbil-
den kann, ohne auf einen externen Referenzstrahl zurückgreifen zu müssen (wie etwa bei
YMnO3). Unsere Methode beruht darauf, dass einige Tensorelemente beim Übergang von
einer Domäne zur anderen ihr Vorzeichen wechseln, während andere gleich bleiben. Da-
durch besitzt die Intensität des reflektierten SHG-Lichtes einen Interferenzterm, der zum
Domänenkontrast führt.

Ein wichtiger Beitrag zur Symmetrieklassifizierung der nichtlinearen Optik, der in die-
ser Arbeit entwickelt wurde, besteht aus der sorgfältigen Analyse der Rolle der Zeitumkehr.
Bisher wurde diese Operation oftmals als gleichbedeutend mit Magnetisierungsumkehr be-
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handelt. In vielen Arbeiten wurde das innere magnetische Feld der Probe anders betrach-
tet als das der elektromagnetischen Welle, und dadurch ging der Unterschied zwischen
Zeitumkehr-Symmetrie und Reziprozität verloren. Unsere Analyse zeigt jedoch, dass die
Nicht-Reziprozität sich aus der Tatsache ergibt, dass das Licht auf die magnetischen Mo-
menten verschiedener Orientierung verschieden wirkt, während aber die Zeitumkehr beide
Elemente, d.h. das Licht sowie die magnetische Ordnung der Probe beeinflusst. Diese Ur-
sache ist für die SHG an Antiferromagneten von großer Bedeutung, weil (i) Zeitumkehr den
Ordnungsparameter eines Antiferromagnets nicht notwendigerweise umkehrt und (ii) die
SHG keine Dissipation im Sinne eines Abzugs der Strahlungsenergie besitzt. Dagegen ist
eine andere Art der Dissipation, die einer Umverteilung der Frequenzen entspricht, in SHG
vorhanden und verursacht eine Zeitumkehr-Asymmetrie der SHG. Wir schließen daraus,
dass SHG einen dynamischen Prozess darstellt und Zeitumkehr nicht in dessen Analyse
verwendet werden darf.

Ferner führt die Anwendung des Zeitumkehr in der Symmetrieanalyse zu Aussagen
über die komplexe Phase eines Tensorelements. Diese Feststellungen (eine feste 90◦-
Phasendifferenz zwischen verschiedenen Tensorelementen) lassen sich aufgrund der elek-
tronischen Theorie nicht bestätigen und führen zu falschen Ergebnissen für die Domänen-
abbildung. Unsere Theorie leidet nicht an diesen Mängeln.

Elektronische Theorie: Von den Ergebnissen der Symmetrieanalyse ausgehend, ent-
wickeln wir eine elektronische Beschreibung der hochangeregten Zustände in NiO (Kapitel
3 der Dissertation). Dazu betrachten wir die elektronische Konfigurationen 3d8, 3d74s, und
3d64s2 von Nickel. Unsere Theorie, die auf die Einbeziehung der Korrelationen durch ein
Vielteilchenverfahren zielt, lässt sich auch für andere Elemente (z.B. CoO, FeO) anwenden,
so dass nur wenige Systeme, nämlich solche mit einer d5 Konfiguration oder mit offener
f-Schale (noch) nicht durch unsere Theorie erfasst werden können.

Wir betrachten die Bandlücken-Zustände von NiO und vernachlässigen deren Dispersi-
on.

Zuerst werden die Zwei-, Drei-, und Vierteilchenfunktionen bestimmt, die die angereg-
te Zustände eines Nickeliones beschreiben. Diese Funktionen bilden die Basis für unseren
Hamiltonoperator, der eine volle Kugelsymmetrie besitzt. Danach führen wir ein Ligan-
denfeld ein, damit die Symmetrie schrittweise auf kubische Symmetrie (Volumen des Ku-
bischen Kristalls) und Quadratsymmetrie (Oberfläche des Kristalls) reduziert wird. Die
Werte der Ligandenfeldparameter erhalten wir durch eine Anpassung an die experimen-
tellen Werte der Energie. Der Hamiltonoperator beschreibt dann die angeregten Zustände
einer NiO-Oberfläche und dient zur Ableitung der nichtlinearen Spektren dieses Materials.

Die Ergebnisse dieser Methode zeigen, dass die nichtverschwindenden Tensorelemente
linear im antiferromagnetischen Ordnungsparameter sind. Die Spektren weisen einige für
nichtlineare Optik günstige Linien auf, dazwischen auch solche, die für Magneto-Optik ge-
braucht werden. Die Tensorelemente sind von gleicher Größenordnung, was gute Möglich-
keiten zur Domänenabbildung bietet.

Antiferromagnetische Spindynamik: Die Weiterentwicklung dieser elektronischen
Beschreibung in Hinblick auf dynamische Phänomene ermöglicht die experimentelle “pump-
probe”-Methode der Laseroptik zu simulieren. Dazu präparieren wir das System in einem
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hoch-angeregten Anfangszustand. Dieser Anfangszustand entwickelt sich zeitlich gemäß
der Schrödingergleichung. Diese Entwicklung erfordert ein quantenmechanisches Verfahren.
Anschließend berechnen wir den nichtlinearen optischen und magnetischen Response für
jede feste spätere Zeit im Zeitfenster zwischen 0 und 500 fs.

Unsere Resultate beweisen eine schnelle Dynamik (innerhalb von Femtosekunden), ähn-
lich zu den früheren Ergebnissen für Metallen. Im Gegensatz zu jenen Ergenissen, dauert
die Kohärenz des angeregten Zustandes in NiO bis in den Pikosekunden-Bereich. Ein sol-
ches Verhalten wurde als charakteristischer Vorteil von Halbleitern angesehen. Die antifer-
romagnetischen Metalloxide zeigen den gleichen vorteilhaften Zeitverlauf, bedürfen jedoch
keiner Spin-Injektion, weil sie eine hohe permanente Ladungs- und Spindichte besitzen,
und können daher trotz langlebiger Kohärenz schneller als Halbleiter geschaltet werden.

Diese Ergebnisse lassen uns feststellen, dass antiferromagnetische Übergangsmetall-
Oxide viele reizvolle und für künftige Anwendungen wichtige Merkmale besitzen, und dass
die optische Frequenzverdopplung eine einzigartige Methode ist, um diese Merkmale zu
untersuchen.



Streszczenie

Niniejsza praca zawiera teoretyczny opis generacji drugiej harmonicznej fali świetlnej (SHG)
na powierzchni antyferromagnetycznych tlenków metali.

Nowe dziedziny technologii, jak magnetyczne pamiȩci komputerowe lub obliczenia kwan-
towe, wymagaja̧ nowych materia lów. Na przyk lad, element TMR (tunneling magne-
toresistance), przewidziany jako czȩść nowych pamiȩci komputerowych, jest zbudowany
z “kanapki” trójwarstwowej, gdzie warstwa środkowa sk lada siȩ z tlenku metalu. Magnety-
czne w laściwości tego (czȩsto antyferromagnetycznego) tlenku wp lywaja̧ na dzia lanie ca lego
elementu, zatem badanie magnetycznej struktury warstwy środkowej ma duże znaczenie.
Wygodna̧ metoda̧ do badania takich g lȩbiej po lożonych warstw tlenków jest optyczna gen-
eracja drugiej harmonicznej (SHG). W zwia̧zku z tym, bardzo ważne jest rozwiniȩcie teorii
opisuja̧cej to zjawisko i pozwalaja̧cej precyzyjnie przewidzieć wyniki przysz lych ekspery-
mentów na takich strukturach.

Fakt, że SHG zachodzi tylko na powierzchniach zosta l już potwierdzony doświadczalnie,
jako że powierzchnia materia lu  lamie symetriȩ środkowa̧. Z drugiej strony, pojawi ly siȩ
interesua̧ce prace eksperymentalne dotycza̧ce obrazowania domen antyferromagnetycznych
z objȩtości materia lów, które nie posiadaja̧ środka symetrii (Cr2O3). W zwia̧zku z tym
powstaje pytanie, czy SHG jest zdolna badać strukturȩ magnetyczna̧ powierzchni takich
antyferromagnetyków, które (jak np. tlenek niklu NiO) posiadaja̧ środek symetrii. Na to
pytanie odpowiada niniejsza praca.

Wiele eksperymentów na ferromagnetycznych metalach wykaza lo różnymi optycznymi
metodami zmniejszenie siȩ magnetyzacji w czasie krótszym niż pikosekunda, jak również
odstȩpstwa od zachowania przewidywanego przez teoriȩ cieczy Fermiego (zmiana magne-
tyzacji nie odbywa siȩ przy udziale sieci krystalicznej). Oczekuje siȩ, iż antyferrmagnety-
czne powierzchnie tlenków wykaża̧ równie interesuja̧ce zjawiska w zakresie femtosekund,
stosownie do spodziewanych zastosowań ultraszybkich procesów w magento-elektronice.
Powierzchnie tlenków nadaja̧ siȩ szczególnie do badania dynamiki spinów w skali fem-
tosekund, ponieważ: (i) maja̧ bogaty diagram fazowy, (ii) prezentuja̧ system o dużej
gȩstości stanów (przy istotnej roli korelacji elektronowych) i o dużej przerwie energety-
cznej, (iii) na granicy metal - tlenek może zachodzić odp lyw ciep la (generowanego przez
laser) z intensywnościa̧ wystarczaja̧ca̧ do tego, aby wzrost temperatury nie wp lyna̧ l na
w laściwości tlenku.

Dlatego wybralísmy materia l o prostej budowie krystalicznej, który jednakże umożliwia
studia nad zdolnościa̧ SHG do badania samej powierzchni oraz nad wp lywem korelacji.
Należy zaznaczyć, że metody przedstawione w tej pracy jak i wyniki w niej uzyskane moga̧
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zostać przeniesione na inne tlenki metali przej́sciowych.

Analiza symetrii. Pierwsza czȩść pracy (rozdzia l 2) poświȩcona jest analizie optycznej
generacji drugiej harmonicznej z powierzchni antyferromagnetycznych tlenków z punktu
widzenia teorii grup. Dotychczasowe prace dotycza̧ce klasyfikacji (z punktu widzenia
teorii grup) antyferromagnetycznych struktur spinowych w objȩtości kryszta lów zostawia-
ja̧ pewna̧ lukȩ koncepcyjna̧ miȩdzy przewidzianymi elementami tensora z jednej strony, a
oczekiwanymi rezultatami eksperymentalnymi z drugiej. Biora̧c pod uwagȩ, że domeny w
objȩtości antyferromagnetyka zosta ly zwizualizowane dopiero w 1994 roku, że pochodze-
nie kontrastu miȩdzy SHG z różnych domen nie zosta lo jeszcze wyjaśnione na gruncie
analizy symetrii (a co dopiero teorii elektronowej), staje siȩ jasne, że jeszcze wiele jest
otwartych pytań nawet na poziomie analizy symetrii antyferromagnetycznych powierzchni.
Na niektóre z tych pytań odpowiada niniejsza praca. W przeciwieństwie do dotychcza-
sowych analiz antyferromagnetyzmu w objȩtości kryszta lów, nasza praca koncentruje siȩ
na prostych powierzchniach sześciennych antyferromagnetyków. Używamy przybliżenia
dipola elektrycznego. Stosujemy metody teorii grup aby określić nieznikaja̧ce elementy
tensora χ

(2ω)
el dla różnych powierzchni o uporza̧dkowaniu antyferromagnetycznym. Liczba

odróżnialnych konfiguracji spinowych zależy od orientacji badanej powierzchni. Ponadto
uwzglȩdniamy zniekszta lcenia sieci krystalicznej atomów magnetycznych oraz niemagnety-
cznych, badamy też wp lyw obecności dwóch rodzajów atomów magnetycznych. Ten ostatni
aspekt ma zwia̧zek z przewidywanymi (na podst. eksperymentów z nadprzewodnikami
wysokotemperaturowymi) odstȩpstwami od stechiometrii w tlenkach metali przej́sciowych
(wakancje tlenowe).

Nasze wyniki wykazuja̧, że w różnych konfiguracjach spinowych wystȩpuja̧ różne nie-
znikaja̧ce elementy tensora χ

(2ω)
el . W ten sposób SHG umożliwia nie tylko odróżnienie

antyferromagnetycznej fazy materia lu od fazy para- lub ferromagnetycznej, ale również
(w wielu wypadkach) identyfikacjȩ dok ladnej struktury spinowej. Wspomniane zniek-
szta lcenia również daja̧ siȩ wykryć przy pomocy SHG.

Innym ważnym rezultatem naszej pracy jest przewidzenie możliwości wizualizacji domen
antyferromagnetycznych na powierzchni kryszta lów o strukturze sześcianu. Wizualizacja
ta może być dokonana bez udzia lu wia̧zki odniesienia, w odróżnieniu od materia lów jak
YMnO3. Zaproponowana przez nas metoda korzysta z faktu, iż niektóre elementy tensora
zmieniaja znak przy przej́sciu z jednej domeny do drugiej, podczas gdy inne elementy
pozostaja̧ bez zmian. To powoduje pojawienie siȩ sk ladnika interferencyjnego w odbitym
świetle SHG. Ta interferencja prowadzi do kontrastu miȩdzy domenami.

Ważnym przyczynkiem do klasyfikacji nieliniowej optyki z punktu widzenia symetrii,
przedstawionym w tej pracy, jest uważna analiza roli operacji odbicia czasu. Dotychczas
traktowano tȩ operacjȩ jako równoważna̧ odwróceniu magnetyzacji. W wielu wypadkach
wewnȩtrzne pole magnetyczne próbki bylo traktowane inaczej niż pole fali elektromagne-
tycznej przez nia̧ propaguja̧cej, przez to zosta lo utracone rozróżnienie miȩdzy “symetria̧
odbicia czasu” a “dwukierunkowościa̧” (reciprocity). Nasza analiza wykazuje, że brak
dwukierunkowości (non-reciprocity) jest skutkiem tego, iż świat lo oddzia lywuje różnie
na momenty magnetyczne o różnej orientacji, natomiast operacja odbicia czasu wp lywa
na oba elementy, tj. propagacjȩ świat la i magnetyczne uporza̧dkowanie próbki. Ten fakt jest
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szczególnie ważny dla SHG z antyferromagnetyków, gdyż (i) odbicie czasu nie koniecznie
odwraca parametr uporza̧dkowania antyferromagnetycznego oraz (ii) w SHG nie wystȩpuje
dyssypacja w sensie przekszta lcania energii promienistej w cieplna̧. Jednakże wystȩpuje
inny rodzaj dyssypacji, który odpowiada redystrybucji czȩstotliwości świat la, i to w laśnie
powoduje asymetriȩ odbicia czasu w SHG. Wnioskujemy z tego, że SHG jest procesem
dynamicznym i w jego analizie odbicie czasu nie powinno być stosowane.

Ponadto, stosowanie operacji odbicia czasu w analizie symetrii prowadzi do nieprawid-
 lowych wniosków odnośnie zespolonej fazy elementów tensora. Te wnioski (różnica fazy
miȩdzy magnetycznymi i niemagnetycznymi elementami równa 90◦) nie sa̧ potwierdzone
przez teoriȩ elektronowa̧ oraz fa lszuja̧ rozważania dotycza̧ce eksperymentalnej wizualizacji
domen. Nasza teoria nie posiada takich wad.

Teoria elektronowa. Bazuja̧c na wynikach naszej analizy symetrii rozwinȩlísmy for-
malizm do opisu stanów silnie wzbudzonych w NiO (rozdzia l 3 pracy). Bierzemy pod
uwagȩ elektronowe konfiguracje niklu 3d8, 3d74s, i 3d64s2. Nasza teoria, która uwzglȩdnia
korelacje elektronowe poprzez użycie stanów wielocza̧stkowych, może być  latwo przys-
tosowana także do innych substancji (np. CoO, FeO). Na obecnym etapie nasza teoria
nie daje siȩ zastosować do opisu nielicznej klasy materia lów, mianowicie tych w których
wystȩpuja̧ konfiguracje d5 oraz tych z otwarta̧ pow loka̧ f. Istnieja̧ jednak możliwości roz-
szerzenia tego opisu, aczkolwiek nie zajmujemy siȩ tym w niniejszej pracy.

Używamy stanów leża̧cych w przerwie energetycznej NiO, zaniedbuja̧c ich dyspersjȩ.

Najpierw określamy funkcje falowe dwu-, trzy-, i cztero-cza̧stkowe, które opisuja̧ stany
wzbudzone jonu niklu. Te funkcje tworza̧ bazȩ dla naszego Hamiltonianu, który posiada
pe lna̧ symetriȩ sferyczna̧. Nastȩpnie wprowadzamy pole ligandów, aby stopniowo zre-
dukować symetriȩ do sześciennej (objȩtość kryszta lu) i kwadratowej (powierzchnia krysz-
ta lu). Wartości parametrów pola ligandów otrzymujemy przez dopasowanie do doświad-
czalnych wartości energii. Wówczas Hamiltonian opisuje stany wzbudzone na powierzchni
tlenku niklu i s luży do otrzymania nieliniowego spektrum tego materia lu.

Wyniki tych obliczeń pokazuja̧, że nieznikaja̧ce elementy tensora sa̧ wprost propor-
cjonalne do antyferromagnetycznego parametru uporza̧dkowania. Spektra ukazuja̧ linie
widmowe przydatne dla optyki nieliniowej, w tym takie, które siȩ szczególnie nadaja̧
dla magneto-optyki. Elementy tensora sa̧ tego samego rzȩdu wielkości, co jest korzystne
dla wizualizacji domen antyferromagnetycznych.

Antyferromagnetyczna dynamika spinów. Rozwinȩcie wyżej przedstawionego
elektronicznego formalizmu w kierunku zjawisk dynamicznych umożliwia symulacjȩ metody
doświadczalnej zwanej “pump-probe”. W tym celu przygotowujemy stan silnie wzbudzo-
ny systemu w chwili pocza̧tkowej. Ewolucja tego stanu pocza̧tkowego zachodzi wed lug
równania Schrödingera, jest to wiȩc proces typowo kwantowo-mechaniczny. Nastȩpnie
obliczamy nieliniowa̧ magneto-optyczna̧ odpowiedź systemu dla każdej ustalonej chwili
miȩdzy 0 a 500 fs.

Nasze rezultaty potwierdzaja̧ szybka̧ dynamikȩ (zachodzi w cia̧gu femtosekund), podob-
na̧ do wcześniejszych wyników symulacji dla metali. W przeciwieństwie jednak do tamtych
wyników, koherencja odpowiedzi magneto-optycznej stanów wzbudzonych w NiO trwa aż
do reżimu pikosekund. Dotychczas takie cechy dynamiki by ly znane dla pó lprzewodników.
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Antyferromagnetyczne tlenki metali wykazuja̧ podobne, korzystne dla zastosowań cechy,
lecz dodatkowo nie wymagaja̧ iniekcji spinów, gdyż posiadaja̧ trwale wysoka̧ gȩstość spinów
i  ladunków.

Te wyniki pozwalaja̧ nam stwierdzić, iż antyferromagnetyczne tlenki metali przej́sciowych
posiadaja̧ cechy bardzo istotne z punktu widzenia przysz lych zastosowań, oraz że optyczna
generacja drugiej harmonicznej jest unikalna̧ metoda̧ do badania tych w laściwości.



Summary

This work contains the theoretical description of the optical Second Harmonic Generation
from antiferromagnetic oxide surfaces.

New technology fields, such as magnetic computer memories (MRAMs) or quantum
computing, require new materials. For example, a tunneling magnetoresistance (TMR)
element, proposed as a part of the new computer memories, has a trilayer structure. The
central layer consists of an oxide sandwiched between a soft and a hard magnetic layer.
Magnetic properties of this (often antiferromagnetic) oxide influence the performance of
the whole component, thus investigations of the magnetic structure of this layer are of
technological relevance. A useful method for investigation of such buried oxide interfaces
is optical Second Harmonic Generation (SHG). Consequently, development of a theory to
describe this phenomenon and to predict experimental response from such structures is of
importance.

Surface sensitivity of SHG has been experimentally proven, since the presence of a
surface breaks the inversion symmetry. On the other hand, there is a couple of experiments
showing the possibility of antiferromagnetic domain imaging in the bulk of the materials
without the center of inversion (Cr2O3). An important question is if SHG is also sensitive
to antiferromagnetism at surfaces of cubic antiferromagnets, where, due to the preserved
inversion symmetry in the bulk, SHG originates from surfaces only. An answer to this
question is provided by this work.

Many experiments on ferromagnetic metals show by different optical methods a mag-
netisation decay within times shorter than a picosecond. It is predicted that antiferro-
magnetic oxide interfaces show equally interesting behavior, relevant to their expected
applications in the magneto-electronic ultrafast processes. Oxide surfaces are particularly
suited for the investigations of femtosecond spin dynamics, since: (i) they have a rich phase
diagram, (ii) they exhibit high state density (with the important role of electronic corre-
lations), (iii) heat transfer through the metal-oxide interface can be intensive enough to
prevent the laser-generated heat from influencing the sample.

For these reasons we chose a material with a simple crystal structure which however
allows for studying applicability of SHG to surface antiferromagnetism. It is necessary to
point out that the methods used in this work as well as the results can be translated to
other transition metal oxides.

Symmetry analysis. The first part of this work (Chapter 2) is devoted to group
theoretical analysis of the SHG response from the surfaces of cubic antiferromagnets. Till
now, the group theoretical classification of the antiferromagnetic spin structures in the bulk
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leave a conceptual gap between the predicted tensor elements on one hand and expected
experimental results on the other.Taking into account that the antiferromagnetic bulk do-
mains were visualized only in 1994, and that the origin of the SHG domain contrast has
not been explained from the symmetry point of view (to say nothing about an electronic
description) it is clear that many questions on the level of the symmetry analysis remain
open. This work answers some of these questions. We concentrate on low index surfaces
of cubic antiferromagnets and restrict ourselves to the electric dipole approximation. We
use group theoretical methods to determine the nonvanishing elements of χ

(2ω)
el tensor for

various antiferromagnetically ordered surfaces. The number of distinguishable spin config-
urations depends on the surface orientation. Moreover, we take into account distortions of
the magnetic and nonmagnetic atom sublattices, we investigate also the influence of a sec-
ond kind of magnetic atoms. This is related to the predicted non-stoichiometries (oxygen
vacancies) in transition metal oxides.

Our results show that different spin configurations exhibit different nonvanishing el-
ements of χ

(2ω)
el tensor. In this way it is possible not only to distinguish the magnetic

phase of the surface, but in many cases to identify the particular spin structure. The
abovementioned distortions can be also detected by SHG.

Another important result of our work is the possibility of surface domain imaging.
This can be done without the refernce beam, in contrast to materials such as YMnO3.
The method proposed by us uses the fact that some tensor elements change sign from
one domain to another, while other tensor elements remain invariant. This reslults in an
interference component in the SHG response, which leads to the domain contrast.

An important contribution to the classification of the nonlinear optics form the symme-
try point of view is the analysis of the role of time-reversal operation. Till now this opera-
tion has been treated as equivalent to magnetisation reversal. In many cases, the internal
magnetic field of a sample has been treated differently than the field of the electromagnetic
wave propoagating through the sample. In this way a difference between “time-reversal
symmetry” and “reciprocity” has been lost. Our analysis shows that non-reciprocity results
from a different interaction of light with magnetic moments of a different orientation, while
the time-reversal operation influences both elements, i.e. beam propagation and magnetic
ordering of the sample. This fact is especially important for SHG from antiferromagnets,
since (i) time reversal does not necessarily revert the antiferromagnetic order parameter
and (ii) the dissipation in the meaning of convertion the radiative energy into heat is absent
in SHG. There exists another type of dissipation, however, corresponding to the irreversible
redistribution of optical frequencies, and exactly this causes the time-reversal assymmetry
in SHG. We conclude that SHG is a dynamical process and time-reversal operation should
be excluded from the analysis of this process.

Moreover, using time-reversal operation in the symmetry analysis leads to wrong con-
clusions concerning the complex phase of the tensor elements. These conclusions (complex
phase difference exactly 90◦ between magnetic and nonmagnetic tensor elements) cannot
be justified by an electronic calcuation and lead to false predictions with respect to domain
imaging. Our theory is free from these disadvantages.

Electronic theory. Based on the results of our symmetry analysis we developed a
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formalism for the description of highly excited states in NiO (Chapter 3 of the work). We
take into account Nickel electronic configurations 3d8, 3d74s, and 3d64s2. Our theory takes
into account correlations by use of many-body states and can be easily adapted to other,
similar substances (e.g. CoO, FeO). At the current stage or theory cannot be applied to
a limited class of materials, namely those with d5 configuration and those with the open f
shell. There are possibilities of extending our description, nevertheless our work does not
concern them.

We use the gap states of NiO and neglect their dispersion.
First we determine the two-, three-, and four-body wavefunctions which describe the

excited states of a Ni ion. These functions form a basis for our Hamiltonian, which exhibits
a full spherical symmetry. Next we introduce a ligand field to reduce the symmetry to
cubic (bulk material) and square (crystal surface). We fit the ligand field parameters to
the experimental energy values. Then the Hamiltonian describes excited states at the NiO
surface and allows for obtaining the nonlinear spectrum of the material.

The results show that the nonvanishing tensor elements are proportional to the an-
tiferromagnetic order parameter. Spectra show lines suitable for nonlinar optics, also for
magneto-optics. The tensor elements are of the same order of magnitude, which is favorable
for the antiferromagnetic domain imaging.

Antiferromagnetic spin dynamics. An extension of this formalism towards dynam-
ical phenomena allows for the simulation of a pump-probe experiment. For this purpose,
we prepare a highly excited state of the system at the time t=0. The evolution of this ini-
tial state is governed by the Schrödinger equation, thus it is a typical quantum-mechanical
process. Next, we calculate the nonlinear magneto-optical response for each fixed moment
between 0 and 500 fs.

Our results confirm a fast dynamics (within femtoseconds), similarly to the earlier
simulations for metals. In contrast to those results, however, the coherence of the magneto-
optical response from the excited states in NiO lasts till the picosecond regime. Till now,
these features have been known for semiconductors. Antiferromagnetic metal oxides show
similar, favorable for applications features, but additionally do not require spin injection,
since they possess a permanently high spin and charge density.

These results allow to conclude that antiferromagnetic transition metal oxides present
feature that are very important for the future applications, and that the optical Second
Harmonic Generation is a unique method to address these features.
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