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ABSTRACT 

Non-bonded interactions, such as hydrogen bonds, as well as hydrophobic and electrostatic 

interactions determine structure and dynamics of flexible molecules and multi-molecular 

assemblies. In single molecules, they selectively enable and stabilize rare, energetically unfavorable 

conformations which facilitate intramolecular chemical reactions or reaction with the solvent 

molecules. Such reactions often result in changes of surface charges with far-reaching effects on 

the molecular properties. Additionally, non-bonded interactions mediate the association of 

molecules to transient aggregates and stable complexes. The complementarity of interaction donors 

and acceptors on two molecular surfaces is the basis for their pairwise recognition. Selective 

recognition of distinct molecules or chemical groups within a single molecule is a fundamental 

aspect of cellular life as well as of artificial chemical systems.  

Experimental methods often measure the macroscopic consequences of non-bonded interactions 

instead of the interaction themselves. More elaborate techniques are expensive and error-prone 

and still only yield limited insight. An experimental means to assess molecular interactions with 

high spatial and temporal resolution has not yet been proposed. In recent years, with the rise of 

graphics processing units and the increase in easily available computing power, the theoretical 

Molecular Dynamics (MD) method has emerged as standard tool to investigate the time-resolved 

behavior of molecular structures and interactions. A cornucopia of condensed phase molecular 

systems has been to the subject of MD simulations, yet with varying rigor in preparation, force-

field selection, and quantitative analysis. Even though different questions require different 

analytics, an absence of comparable, generally applicable means to analyze and visualize non-

bonded interactions and their effects from MD trajectory data can be stated.  

In this work, dynamical aspects of non-bonded interactions as the basis for molecular selectivity 

and recognition are investigated by classical equilibrium and non-equilibrium MD simulation. With 

the aid of seven partially connected case studies on proteins and molecular layers, general 

conclusions on inter- and intramolecular non-bonded interactions are sought. For each system, 

customized MD-based workflows were developed and applied. The herein presented case studies 

encompass 1. the prediction of a small-molecule binding mode to a receptor protein, 2. the 

quantitative comparison of the protein-protein binding modes of two evolutionary divergent 

enzymes, 3. the site-resolved conformational analysis of N-glycans, 4. the site-selectivity of 

asparagine deamidation of two related proteins, 5. the aggregation of signaling lipids around an 

anchored peptide, 6. the phase transitions of the membrane anchoring components within mixed 

self-assembled monolayers (SAMs) and 7. the effects of such anchors on vesicles adsorbing to the 

mixed SAMs. 

The problems were investigated with experimental support and theoretical insight from different 

research labs. Highlights of the computational methodology include the development of a feasible 

NMR-guided ensemble docking workflow for weak binders, the compilation of a fully automated, 

multi-scale modeling, simulation, and analysis workflow for mixed SAMs and the benchmarking 

and application of an embedded torsion-angle clustering approach. In general, it showed that, while 

the investigated issues were different, the necessary trajectory analysis means were related and or 

of general applicability. Initially, the most persistent intermolecular or non-neighboring 

intramolecular interactions were identified. Such analysis was accompanied by a high-resolution 

(bond-wise) analysis of conformational and in some instances also orientational preferences. A key 



 
 

insight was that conformational analysis must be distribution-based to identify multimodality and 

avoid an artificial averaging. Instead, in MD trajectory analysis, quantile probabilities are the 

superior statistical means. Conformational clustering proved to be necessary to reveal the size of 

individual populations as well as unexpected statistical dependencies.  

The individual case studies yielded valuable understanding and contributions to their respective 

fields and highlighted the diversity of types and their effects of non-bonded interactions. For 

example, the binding or bile acids to the receptor protein was mediated mostly by hydrophobic and 

electrostatic interactions. The binding was weak as reflected by significant dynamics and the 

accessibility of multiple possible binding modes. Upon acid binding, the C-terminus of the receptor 

transitions from a protein-bound to a more solvent-exposed conformation. Such a transition might 

facilitate the multimerization of the receptor proteins which are stabilized by C-terminal 

interactions. RavD and OTULIN are bacterial and human DUB proteases that bind to identical 

substrates. In the bacterial RavD equivalent, one of the binding sites substituted electrostatic for 

weaker hydrophobic interactions, with the result of a reduced binding interface area and stability 

compared to human. Transient protein-glycan interactions in human erythropoietin protein induce 

significant, site of glycosylation-specific changes to the conformational spaces of the glycosylation 

root but not on the glycan itself. Asparagine 373 of a viral coat protein undergoes exceptionally 

fast post-translational deamidation reaction. This residue is positioned in a specific loop region, 

which is characterized by a presence of a nearby threonine that forms strong hydrogen bonds with 

two successive backbone hydrogens. In this loop, the amino acid backbone adopts a rare 

conformation that enables a short attack distance as well as an increased backbone hydrogen acidity 

and thus promotes the chemical reaction. Mixed SAMs are used to tether lipid bilayers by inclusion 

of long acyl anchor-carrying alkanethiols to gold surfaces. Such molecules are engaged in strong 

hydrophobic intermolecular interactions, which lead to long-living self-aggregation and a highly 

ordered configuration with a collective surface normal-parallel orientation. This special 

configuration of the aggregated tethering molecules showed to be advantageous for tethered-

bilayer preparations.  

Overall, the results show that MD is the prime method of choice to study molecular interactions 

and their effects on the conformational space. However, recent advancements regarding the 

availability of more powerful computational resources and the resulting possibility to increase the 

time covered and the conformational space sampled affords the accessibility of more robust and 

elaborate trajectory analysis means. Such are suggested and recommended in this work.  



 
 

  



 
 

  



 
 

ZUSAMMENFASSUNG 

Intermolekulare Wechselwirkungen z.B. Wasserstoffbrücken, hydrophobe und elektrostatische 

Wechselwirkungen bestimmen die Struktur und Dynamik von flexiblen Molekülen und 

Molekülkomplexen. In isolierten Molekülen sorgen sie u.a. für die Stabilisierung von seltenen, 

energetisch ungünstigen Konformeren, die intramolekulare chemische Reaktionen oder auch 

Lösungsmittelreaktionen ermöglichen. Solche Reaktionen führen häufig zu einer Änderung der 

Oberflächenladung, was weitreichende Folgen für die molekularen Eigenschaften mit sich bringt. 

Dazu kommt, dass diese Interaktionen die Assoziation von Molekülen zu kurzlebigen Aggregaten 

und stabilen Komplexen veranlassen oder diese regulieren. Die Basis für die gegenseitige 

Erkennung von Molekülen liegt in der Komplementarität der oberflächlichen lokalisierten 

Wechselwirkungspartner Die selektive Erkennung von bestimmten Molekülen oder chemischen 

Gruppen innerhalb eines Moleküls durch einen Bindungspartner ist eine grundlegende Eigenschaft 

von zellulärem Leben und technisch-chemischen Systemen. 

Experimente messen häufig lediglich die Resultate und zeitlichen Mittelwerte von nichtkovalenten 

Interaktionen anstatt der Interaktionen selbst. Aufwendigere Methoden sind teuer, eventuell 

fehleranfällig und meist limitiert auf wenige Atome oder Gruppen. Zurzeit gibt es kein Experiment, 

was in der Lage wäre, molekulare Wechselwirkungen mit hoher zeitlicher und räumlicher 

Auflösung darzustellen. Mit dem derzeitigen Aufstieg von Grafikprozessoren und dem damit 

verbundenem Wachstum von nutzbarer Computerrechenleistung, hat sich die theoretische 

Methode der Molekulardynamik (MD) zu einem Standardwerkzeug entwickelt. Die Technik wird 

regelmäßig benutzt, um die zeitliche Änderung von molekularen Strukturen und 

Wechselwirkungen zu untersuchen. Heute lässt sich aus einem Füllhorn verschiedenster 

Anwendungsbeispiele von MD schöpfen, wovon einige jedoch die nötige Fürsorge bei der 

Vorbereitung sowie der Auswahl von Kraftfeld-Parametern und Analysemethoden vermissen 

lassen. Es ist klar, dass verschiedene Fragestellungen auch verschiedene Techniken erfordern. 

Dennoch kann man feststellen, dass es zu wenige vergleichbare, allgemeinhin genutzte Ansätze für 

die Quantifizierung und Darstellung von intermolekularen Wechselwirkungen gibt. 

In dieser Arbeit werden sowohl Gleichgewichts- als auch Nicht-Gleichgewichts-MD Simulationen 

durchgeführt, um eine dynamische Sichtweise von nicht-kovalenten Bindungen und ihren 

Beiträgen hinsichtlich molekularer Selektivität und Erkennung zu entwickeln. Anhand von sechs 

teilweise aufeinander aufbauenden Fallstudien zu Proteinen und selbstorganisierten synthetischen 

Mono- und Doppelschichten sollen allgemeine Erkenntnisse gewonnen werden. Es wurden für 

jede Studie maßgeschneiderte Abläufe der Präparation, Simulation und Analyse entwickelt und 

benutzt. Die einzelnen Fallstudien beinhalten 1. Vorhersage der Bindungsmodi eines kleinen 

Moleküls an seinen Rezeptor, 2.  quantitativer Vergleich der Protein-Protein Bindungsstellen 

zweier analoger Proteine in einem bakteriellen und menschlichem Protein, 3. Analyse des 

Konformerenraums von protein-gebundenen N-Glykanen, 4. Dynamik-basierte Erklärung für die 

schnelle Deamidierung eines bestimmten Asparaginrests in zwei verwandten Proteinen, 5. 

Änderungen von Konformationen und Orientierungen von bestimmten langkettigen 

Komponenten einer gemischten selbstorganisierenden Monoschicht und 6. Auswirkungen der 

langkettigen Komponenten auf Vesikel, die an die Monoschicht adsorbieren. 

Die Fragestellung und Herangehensweise wurden durch Experimente und theoretische Einblicke 

von verschiedenen anderen Laboren unterstützt. Besonders bemerkenswerte computergeschützte 

Methoden waren die Entwicklung eines Ensemble-Docking Protokolls für schwach bindende 

Moleküle, die Zusammenstellung eines automatischen Modellierungs-, Simulations- und 

Auswertungsprotokolls für gemischte selbstorganisierte Monoschichten, sowie die Entwicklung 

und Anwendung eines eingebetteten Gruppierungsalgorithmus für Torsionswinkel. Grundsätzlich 



 
 

hat sich gezeigt, dass sich die nötigen Analysemethoden gleichen, auch wenn sich die untersuchten 

Probleme teils deutlich unterschieden. Dabei wurden zunächst langlebige inter- und 

intramolekulare Kontakte untersucht. Das wurde von einer genauen Analyse von Konformation 

und Orientierung verschiedener Bindungen begleitet.  

Grundsätzlich hat sich gezeigt, dass sich ähnliche Analyse-Ansätze als nützlich erwiesen haben, 

unabhängig von der untersuchten Fragestellung. Zunächst wurden die wesentlichsten 

intermolekularen und intramolekularen Wechselwirkungen identifiziert. Diese Untersuchung 

wurde begleitet von einer hochaufgelösten Analyse der molekularen Konformationen und 

Orientierungen. Eine wichtige Erkenntnis war, dass geometrische Parameter immer eine 

Verteilungs-basierte Analyse erfordern, um künstliche Mittelwertbildung bei unerkannten 

Multimodalitäten zu vermeiden. Stattdessen ist es angebracht, Wahrscheinlichkeitsverteilungen zu 

benutzen. Außerdem hat sich die Clusteranalyse als nützlich erweisen, um Populationsgrößen zu 

bestimmen und unerwartete Abhängigkeiten zu identifizieren.  

Aus den einzelnen Fallstudien konnten wertvolle Erkenntnisse und wissenschaftliche Beiträge 

abgeleitet werden. Außerdem wurde das Ausmaß der Unterschiede in Art und Wirkung von nicht-

kovalenten Interaktionen deutlich. Zum Beispiel ist die von hydrophoben und elektrostatischen 

Wechselwirkungen dominerte Bindung von Gallsäuremolekülen an ein virales Rezeptorprotein von 

einer deutlichen Dynamik beider Moleküle begleitet. Insbesondere wird der C-Terminus des 

Rezeptorproteins von der bindenden Gallsäure verdrängt und wechselt in eine eher 

wasserzugängliche andere Konformation. Das könnte einen Einfluss auf die Multimerisierung des 

Rezeptors haben, welche durch C-terminale Interaktionen stabilisiert wird. Die Protease-Enzyme 

RavD und OTULIN binden dasselbe Substratprotein. Jedoch nutzt bakterielles RavD dafür eher 

unspezifische hydrophobe Wechselwirkung anstelle von gerichteten, komplementären 

elektrostatischen Wechselwirkungen in menschlichem OTULIN, was sich in einer verringerten 

Grenzfläche und Bindungsstabilität widerspiegelt. Bei dem menschlichen Wachstumsfaktor 

Erythropoietin wurden kurzlebige Wechselwirkungen zwischen den N-Glykanen und dem Protein 

identifiziert. Sie induzieren eine Veränderung des Konformerenraums an den 

Glykosierungswurzeln aber nicht so sehr in den N-Glykanen selbst. Im einem viralen 

Hüllenprotein gibt es eine spezielle Asparagin-Stelle, die spontan und ausnahmslos schnell die 

intramolekular chemische Reaktion der Deamidierung eingeht. Das konnte damit erklärt werden, 

dass sich dieses Asparagin in einem besonderen Schleifenmotiv befindet, welches durch starke 

Wasserstoffbrückenbindungen zwischen einem zentralen Threonin und zwei Rückgrat-Aminen 

hervorgerufen wird. Dieses Muster führt zu einer verzerrten Rückgrat-Konformation, die mit einer 

geeigneten Angriffsgeometrie sowie einer erhöhten Azidität des Amin-Wasserstoffatoms 

einhergeht. Mehrkomponentige selbstorganisierenden Monoschichten werden genutzt, um darauf 

Lipidmembranen zu fixieren. Dabei werden Alkanthiole beigesetzt, die mit weiteren langen 

Alkylketten funktionalisiert sind, um in die aufgebrachte Lipidmembran einzudringen. Derartige 

Moleküle zeigen aufgrund ihrer starken hydrophoben Interaktionen eine stabile Aggregation, was 

zu einer deutlichen Phasenänderung von einem ungeordneten zu einem geordneten Zustand führt. 

Diese Änderung hat sich als vorteilhaft für die Herstellung von fixierten Lipidmembranen 

erwiesen. 

Zusammengefasst zeigen die Ergebnisse, dass Molekulardynamik Simulationen die Methode der 

Wahl zur Untersuchung der zeitlichen Entwicklung molekularer Wechselwirkungen bei 

konformationellen Änderungen ist. Jedoch haben jüngste Fortschritte in der Verfügbarkeit von 

zunehmender Hochleistungs-Rechenleistung dazu geführt, dass die zeitlichen 

Computersimulationstrajektorien deutlich an Simulationslänge gewonnen haben. Das wiederum 

erfordert robustere und geschicktere Analyse-Techniken, so wie sie in dieser Arbeit aufgezeigt und 

empfohlen werden. 
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1 INTRODUCTION 

Chemistry is often imaged as the science of chemical reactions in the sense of breakage and 

formation of covalent chemical bonds. In fact, per definition, chemistry studies the properties and 

the behavior of matter [1]. Generally speaking, any substance which has a mass and takes a volume 

can be considered as matter [2]. It can be of organic or inorganic origin, it can be present in different 

phases states such as solid, liquid, or gaseous, yet it will always be a composed of atoms which 

themselves are made of subatomic particles. The properties and behavior of matter is thus 

ultimately a consequence of the type of interactions – also called bonds - these atoms undergo with 

each other. The range of possible mutual interactions is restricted by the types of the involved 

atoms.  

The general types of chemical bonds are I. covalent bonds, II. ionic bonds, III. metallic bonds and 

IV. hydrogen bonds.  Covalent bonds form between atoms through sharing of electron pairs, which 

allows them to attain the equivalent of a full valence shell and thus a stable electronic configuration. 

Two or more atoms, which are connected via covalent bonds, are called molecules. Ionic bonds 

are based on electrostatic interactions and form between oppositely charged particles (atom or 

molecule ions) or between atoms with highly different electronegativity numbers. Assemblies of 

such particles are called salts. Metal bonds appear between atoms of the metal element groups and 

arise from electrostatic forces between ionized metal ions and conductible electrons. Finally, 

hydrogen bonds belong to the class of weak electrostatic interactions, which occur between a 

hydrogen covalently bound to a more electronegative atom and another nearby electronegative 

atom carrying a free pair of electrons (lone pair) [3]. 

In most of the substances surrounding us, multiple types of bonding come together to form most 

complex networks of interactions which explain their physical-chemical properties and their 

dependence on the physical environment (temperature, pressure). Water, for example, is basically 

only a 1:2 mixture of oxygen and hydrogen atoms. Nevertheless, it engages in various molecular 

interactions. Covalent binding of every oxygen to two hydrogen atoms defines the molecule’s shape 

and explains its high molecular polarity which allows it to undergo intermolecular hydrogen bonds 

with each other. The strong polarity and hydrogen bonding propensity of water are the main reason 

for its exceptional properties and its ability to support life on planet earth [4]. 

1.1 Structure and dynamics 

The undisputed importance of non-covalent interactions for biologic life [5, 6] but also technical 

advances [7] has led to a great wealth of structural data especially in the realm of proteins in which 

the global protein databank (RCSB PDB) might reach 200.000 entries by the end of the year 2022. 



2   Principles of molecular recognition 

 

Even if the crystal- and the recently emerging cryo-EM - structures are invaluable for research and 

education, they do not account for naturally occurring molecular motions, also known as dynamics. 

Such motions are restraint within a crystal lattice or at low temperature yet are crucial to explain 

highly relevant functional phenomena such as catalytic activity [8, 9], membrane transport [10, 11] 

or allosteric signaling [12, 13], to only name a few.  

Protein dynamics can be described as the harmonic or anharmonic deviation of atomic positions 

with respect to a reference state [14]. The reference state might be the energetic optimum or lowest-

energy state, also referred to as native state, which is best represented by the crystal structure. 

Another reference can be a theoretical average state which, however, is not necessarily physically 

existent. However, the best description of the conformational landscape can only be achieved by a 

set of molecular conformations, being called conformational ensemble. Unimolecular motions take 

place on various time and length scales (Figure 1.1), ranging from ps to h and from pm to µm [15]. 

Motions involving multiple large macromolecular complexes appear on even larger scales. With 

reference to a protein, one can distinguish between local dynamics, regional dynamics, and global 

dynamics. Local dynamics encompass bond vibrations or sidechain rotations. Regional motions 

concern intra-domain or concerted and interdependent multi-residue dynamics driven by hydrogen 

bonds and ionic bonds. Global motions affect the whole protein and be of various extent, for 

example unfolding and refolding or large-scale “breathing” motions (normal modes). 

1.2 Principles of molecular recognition 

In a confined chemical environment, e.g. a test tube, a living cell, a solvent covered surface, a 

reaction vessel, etc., a finite number of different molecules is present. Based on their Brownian 

motion (diffusion), these molecules will inevitably collide with each other and mutually exert forces, 

which are either repulsive or attractive and vary in their magnitude [16]. It is easy to imagine, that 

stronger attractive forces will lead to the formation of more stable complexes, whereas weakly 

attractive complexes will quickly dissociate [17]. Based on their shape and exposed interaction areas 

as acceptors and donators, different pairs of molecules have a different interaction strength, which 

is reflected by their lifetime and often called binding affinity. Hence, a certain molecule will 

discriminate between the other surrounding molecules by means of their pairwise binding affinity. 

The binding affinity, and in consequence the lifetime of the molecular complex, can vary by many 

orders of magnitude. This concept is called molecular selectivity [18]. Here, the term molecular 

recognition will refer to the description of the many pairwise, non-covalent interactions which form 

the underlying physical foundation for molecular selectivity.  
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Figure 1.1: Molecular motions occur on different time and length scales. A) Overview of the accessible time and 
lengths scales of various computational (ellipses) and experimental (rectangles) methods. QMMD: Quantum 
mechanics molecules dynamics, MD: molecular dynamics, MC: Monte Carlo, CGMD: Coarse-grained molecular 
dynamics, NMR: nuclear magnetic resonance, EM: electron microscopy, MS: mass spectrometry, smFRET: single 
molecule Förster resonance energy transfer, SAXS: small-angle X-ray scattering, AFM: atomic force microscopy. B) 
Examples of molecular motions: bond vibration, sidechain rotation, domain motion and folding. The figure is adapted 
from [19]. 

Molecular recognition plays central roles in biological systems, in which it enables important 

cellular molecules such as enzymes and substrates, antigens and antibodies, sugars and lectins, or 

RNAs and ribosomes to robustly find each other in the crowded environment of the cell. [20] In 

the framework of the research presented in this thesis, we will extent the classical concept of bi-

molecular recognition to a more generalized connotation which also allows interpretation of 

unimolecular (intramolecular) selectivity and multi-molecular selectivity in the context of molecular 

recognition.  

1.2.1 Recognition of small molecules by protein receptors 

Proteins are linear heteropolymers consisting of a genetically pre-determined sequence of amino 

acid that are linked by peptide bonds. In aqueous solvent and based on specific intramolecular 

interactions such as hydrogen bonds, ionic bonds, and hydrophobic interactions, that is, the 

desolvation of non-polar chemical groups through aggregation, the peptides locally adopt so called 

secondary structure elements such as alpha helices or beta sheets. Such elements further aggregate and 

form the tertiary structure of a protein domain. Aggregation of domains is called quaternary protein 
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structure. Each of the elements are connected by shorter or longer flexible segments called loops 

and random coils (Figure 1.2 A-D) [21]. 

 
Figure 1.2: Proteins exhibit several levels of organization. A) Linear sequence of amino acids linked by peptide 
bonds (primary structure) B) Secondary structure elements of beta sheet and alpha helix stabilized by intramolecular 
hydrogen bonds (black dashed lines, only visible ones are drawn) C) Ordered and disordered regions fold into the 
tertiary structure. D) Multiple subunits consisting of individual peptide chains pack tightly to form homo- and hetero-
oligomers (quaternary structure) E) A ligand binds to the recognition site (blue) so that the reactive chemical groups 
are in close contact with the catalytic residues (red). All images are generated from the PDB structure 1GUP. 

Proteins have evolutionary developed to fulfil various delicate cellular tasks. One of the earliest 

recognized and best characterized protein function is to serve as a biocatalyst to reduce the energy 

barrier of a chemical reaction. Such “molecular machines” are called enzymes and they form the 

basis for cellular metabolism and signaling. Enzymes exhibit at least two distinct regions which 

beget their function: I. the substrate recognition site and II. the active site with the catalytic center 

(Figure 1.2). The substrate recognition site ensures high selectivity for a certain substrates and 

orients and remodels the substrate into a position and conformation that enables close proximity 

of the reactive groups of substrate and catalytically active residues or complexed metal ions. The 

active site ultimately undergoes a catalytic cycle once productive substrate binding is achieved [22]. 

As early as 1894, Emil Fischer observed enzyme selectivity and proposed a selectivity model based 

on complementarity of geometric shapes [23], which is often referred to as “lock-and-key” model. 

While the model is able to explain selectivity, it has a major caveat: enzymes achieve their function 

of lowering the activation energy barrier by e.g. stabilization of the transition state via favorable 

molecular interactions. This means that the binding is the strongest in the transition state and not 
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before or after the chemical reaction. In this way the product will have a lower affinity to the 

enzyme than the substrate and thus quickly dissociate from the enzyme. Such plasticity in the 

protein-ligand interaction strength cannot be explained by the static lock-and-key model, which is 

why it was largely replaced by the improved “induced fit model” by Daniel Koshland in 1958 [24]. 

This model allows conformational changes of the protein and the ligand during the different stages 

of binding, catalysis, and unbinding (dissociation). In fact, the model suggests that certain 

conformational rearrangements within the protein’s active site appear only upon approaching of 

the ligand. However, as discussed in a recent article [25], advanced NMR and single-molecule 

spectroscopy experiments indicate that the conformational landscape of a protein is predetermined, 

and ligand-bound conformations can be adopted also without ligand. This observation suggests 

that a protein steadily transitions between its many possible conformations until the presence of a 

ligand stabilizes a certain conformation. In other words, the ligand enables the protein to stably 

adopt a conformation which was much more unlikely in absence of the ligand. This mechanism 

has been coined “conformational selection” [26]. 

A family of enzymes with tremendous current interest and exquisite selectivity are proteases, which 

selectivity recognize and cleave peptide or isopeptide bonds of distinct target peptides. Proteases 

play important roles in metabolism, cell signaling and protein homeostasis [27]. Additionally, they 

are frequently employed by pathogens to enable cell entry and immune escape [28]. One of such 

enzymes is the papain-like protease (PLPro) of the SARS-CoV-2 coronavirus, the cause for the 

coronavirus pandemic of 2019 and ongoing. Thus, it will be used here as an example to introduce 

protein-ligand interactions.  

The crystal structure of PLPro in complex with a newly developed inhibitor (GRL0617) was 

recently solved (Figure 1.3) [29]. An inhibitor is a molecule which exhibits a high affinity towards 

the enzyme, thus it competes with substrate for binding sites and consequently reduces the activity 

of the enzyme. It shows that the inhibitor has three-dimensional shape which is highly 

complementary to the substrate binding grove of the enzyme. Additionally, it undergoes a range of 

distinct interactions. The bi-aromatic naphthyl-group is sandwiched between two proline residues 

(247 and 248) and tyrosine 268 via pi-pi interactions between the aromatic moieties. Hydrogen 

bonds are formed between aspartate 164 and the central amide and between tyrosine 268 and the 

aniline amino group. The two methyl groups undergo hydrophobic interactions with threonine 

301, and leucine 162, respectively. Finally, the carbonyl oxygen on the inhibitor engages in a 

hydrogen bond with the backbone amide of glutamine 269. Comparison of the crystal structures 

of inhibitor-bound and free PLPro reveals the different conformations of the so called BL2 loop. 
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Upon binding, this loop, which comprises tyrosine 268 and glutamine 269, folds towards the 

protein core and covers a part of the ligand thus stabilizing the protein-ligand complex.  

 

 

Figure 1.3: Different representations of the SARS-Cov-2 papain like protease bound to the GRL0617 inhibitor. 
A) Cartoon representation with alpha helices in red, 1-3 helices in purple, beta sheets in yellow and the inhibitor in 
blue. B) Surface representation with color coding according to residue type: green: polar, blue: basic, red: acidic, yellow: 
hydrophobic. C) Close-up view on the binding pocket. D) Stick model of the inhibitor in the binding pocket with 
interacting protein residues.  

1.2.2 Specificity of protein-protein binding 

In the cell, specific tasks such as signal transmission or metabolism, are not carried out by single, 

free-floating enzymes but rather by large, dynamic complexes of different, interacting molecular 

species [30]. One striking example for such a molecular machinery are the so called Cullin-RING 

E3 ligases (CRLs, Figure 1.4), which fulfil the essential task to specifically recognize and bind 

excessive target proteins and tag them with ubiquitin moieties [31]. Ubiquitin is versatile, small, and 

highly abundant globular protein in the eukaryotic cell. The post-translational modification of 

ubiquitin conjugation leads to the degradation of the target protein via the proteasome complex 

[32]. Cullin-RING ligases are heteromeric multi-protein complexes generally consisting of Cullin 

protein scaffold, which on one end tightly associates with a RING box protein, which in return 

binds to ubiquitin-carrying and transmitting enzymes called E2 ligases. On the other end, the Cullin 

binds to a certain pair of an adaptor and substrate receptor proteins. Depending on the emerging 

target that must be eliminated, CRLs rapidly adopt their substrate receptor via a complex regulatory 

cycle [33]. The function, regulation and possibilities for therapeutic intervention and utilization of 

CRLs has fascinated investigators for a quarter of a century [34]. However, only with the emergence 

of the recent biophysical technique of high-resolution cryo-EM combined with molecular-

dynamics flexible fitting, the mechanism based on protein-protein interaction induced 

conformational transitions was finally elucidated [35]. Briefly, the conjugation of Nedd8 to the 

winged helix domain of Cullin leads to conformational rearrangement of the RBX-bound, 
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ubiquitin-carrying E2 ligase. Only this conformational transition allows the spatial vicinity of the 

ubiquitin and target protein, which is bound to the substrate receptor on the other site of the Cullin.  

  

 

Figure 1.4: Multi-protein recognition within CRLs. A) Assembled CRL2VHL in van-der-Waals representation 
(6TTU). B) Schematic representation of CRL activity regulation via the small modifier Nedd8. CUL: Cullin. SR: 
Substrate receptor. A: Adaptor. RBX: Really interesting new gene (RING) box: S: Substrate. Ub: Ubiquitin. E2: E2 
ubiquitin ligase. N8: Nedd8. 

The assembly and activation of CRLs is only one example on how protein-protein interactions 

control a majority of cellular tasks. It becomes apparent, that such interactions need to be highly 

specific and that a disruption thereof, for example by means of mutations, would dramatically affect 

cellular function. The interactions of small molecules with proteins and the interaction between 

two or more proteins generally follow the same physical principles and are driven by shape 

complementarity, as well as hydrogen bonds, electrostatic and hydrophobic interactions [36]. 

However, there are also striking differences. Whereas small molecules usually bind to distinct, 

spatially small yet deep pockets, protein-protein interfaces occupy large and shallow areas [37]. 

Small molecule binding is rather ensured by buried hydrogen bonds and hydrophobic interactions 

and to smaller extent by ionic bounds. Protein-protein interactions often rely on large hydrophobic 

patches surrounded or discontinued by complementarily charged areas. This is also the reason why 

the identification and development of small molecule drugs as protein-protein interaction 

inhibitors is challenging [38]. 
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Figure 1.5: The Barnase-Barstar complex. A) Barnase (gray) and Barstar (green) in surface representation. The top 
image shows the complex, the bottom image the two interaction sites. B) Barnase-Barstar ribbon model and selected 
molecular interactions.  

One example of an extraordinarily strong protein-protein interaction is the complex of the bacterial 

ribonuclease Barnase and its natural inhibitor Barstar (Figure 1.5) [39]. In the cell, Barnase would 

lethally dissect the bacterial plasmid, was it not always inhibited by its counterpart Barstar. The 

article by Guillet et al. elucidates the structural underpinnings for the highly stable protein-protein 

binding and can be considered as a prototype protocol for the quantitative description of such 

interactions. The authors identify 15 residues of Barnase being in close contact with one or multiple 

residues of Barstar, 14 distinct hydrogen bonds and a drastic decrease in solvent accessibility of 6 

patches on Barnase and 5 patches on Barstar. Similar to the small molecule inhibitor GRL0617, 

Barstar packs a tremendous number of interactions into a comparably small volume, which renders 

it an exquisite binder. 

1.2.3 Site-selectivity of intramolecular interactions 

The conformational flexibility of a molecule is mostly pre-determined by the number of rotatable 

bonds. The likeliness of different rotational states (rotamers) of a given molecule is then affected 

by steric, non-bonded interactions. In the case of butane, for example, the interaction energy of 

the syn (cis) conformation, which corresponds to a C-C-C-C torsion angle of 0°, is the highest due 

to steric repulsions of the two terminal methyl groups. As biological systems thrive to low energy 

states, this conformation would be the most unlikely. The opposite conformation, called anti or 

trans, with a torsion angle of 180° is sterically less hindered and thus most likely.  
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Figure 1.6: Energy diagram of the C-C-C-C dihedral rotation of butane. (Image by R. Mattern, 2020, CC BY 3.0, 
https://commons.wikimedia.org/wiki/File:Dihedral_angles_of_Butane.svg / cropped and removed axis scale) 

Even though the terminal methyl groups contribute a substantial proportion of the steric repulsion 

energy term, the hydrogen atoms do also affect the conformational space. Eclipsed conformations, 

where two or more atoms are in a 180° torsion angle conformation are disfavored over gauche 

conformations where the atoms are rotated by 60° (Figure 1.6). 

Similar consideration can be applied for the conformational space of e.g., protein sidechains or 

posttranslational modifications. Here, it frequently appears that the native conformational space is 

affected by intramolecular interactions of the sidechain atoms with the surrounding protein 

environment. A free, basic arginine sidechain for example might be fully exposed and highly solvent 

accessible and thus serve as an primer for protein-protein interactions [39]. Another arginine, with 

same chemical structure of course, could be in proximity of an acidic glutamate. The two amino 

acids would leave their native, extended conformation in favor of mutual electrostatic interactions 

and occupy an otherwise unlikely bond rotamers. Not only is the molecular conformation site-

dependent, but also the protonation state of the amino acid histidine, for example. Depending on 

surrounding the chemical environment with hydrogen bonding acceptors and donators, the 

histidine residue can either be neutral or positively charged [40]. 

https://commons.wikimedia.org/wiki/File:Dihedral_angles_of_Butane.svg
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Posttranslational modifications (PTM) of proteins are often mediated by enzymes, which 

specifically recognize certain consensus sequence motifs such as H-B-B-B-X-S (H: hydrophobic, 

B: basic, X: arbitrary, S: serine phosphorylation site) by the serine phosphatase AMPK [41], Asn-

X-Serine/Threonine for N-glycosylation [42] or the C-terminal sequences C-X-C and X-X-C-C on 

Rab proteins for the conjugation of a geranylgeranyl-group [43]. Additionally, there are PTMs, 

which do not require an enzymatic reaction but appear spontaneously if specific local conditions 

are fulfilled. In this case, reactions may be catalyzed by solvent molecules. One of such PTM is the 

deamidation reaction, which is thoroughly discussed in chapter 3. Another one is lysine 

carboxylation, which is estimated to concern about 1% of the larger proteins [44]. At basic pH and 

in presence of a CO2-containing solvent [45], the lysine residue can undergo carboxylation, in which 

a carboxyl group is added to the sidechain amino group. In consequence, the charge changes from 

+1 to -1 with possibly dramatic effects on protein structure and function. Computational analysis 

of lysine carboxylation sites in the protein data bank identified that reactive lysine residues are 

rather buried and not solvent accessible. Additionally, acidic residues (Asp, Glu) as well as metal 

ions were frequently found within a 0.5 nm radius around the carboxylation site [44]. 

1.2.4 Preferred interactions in two-dimensional molecular assemblies 

Amphiphilic molecules, that is, molecules with a polar and a non-polar part, are prone to interact 

with surfaces, interfaces or with each other and are thus considered surface-active. In a liquid phase, 

amphiphilic molecules such as phospholipids or detergents form micelles, vesicles and bilayers 

(Figure 1.7 A) [46]. At the interface between solvent and gas phase, they may assemble to give 

monolayers. This effect is amplified when e.g., alkanethiols interact with a gold surface. The 

interaction between the thiol groups and gold atoms is partly physical and partly chemical and 

remarkably stable (Figure 1.7 B) [40]. Thus, given enough time to assemble, alkanethiols form 

stable monolayers on top of gold surfaces, called self-assembled monolayers (SAMs) [47]. In the 

context of this thesis, lipid bilayer membranes and self-assembled monolayers are summarized 

under the term molecular layers.  

Bilayers and monolayers have a variety of characteristics in common. Both consist of one or 

multiple species of amphiphilic molecules, which carry long aliphatic moieties and polar terminal 

groups. The acyl chains arrange in a parallel fashion to shield a large fraction of the layer from the 

solvent. Additionally, the terminal groups form electrostatic interactions and hydrogen bonds with 

the aqueous solvent and each other. In case of a monolayer, the hydrophobic portion is pointing 

towards the interface surface, whereas a bilayer consists of two mirrored monolayers on top of 

each other. In the context of a bulky phase within a finite observation volume, molecular layers 

have a large lateral but only a small normal direction extent and can thus be considered two-
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dimensional. In contrast to SAMs, lipid bilayers are not confined to a surface but are liquid (or 

liquid-crystalline) and exhibit significant dynamics [48]. A bilayer can undergo undulations, wave-

like motions on different time and length scales. Additionally, the lipid molecules exhibit lateral, 

rotational and inter-layer diffusion [49]. The matrix, i.e. the alkanethiol region of SAMs, is rather 

rigid and their dynamics are limited to transient defects in the densely ordered packing, which is 

dominated by all-trans conformations. Such a packing is also possible in bilayers and termed liquid-

ordered phase which exists in contrast to the liquid-disordered phase [50]. 

In the case of mixed, multicomponent bilayers lateral diffusion can lead to formation of smaller or 

larger, transient or stable aggregates of certain lipid molecules. Additionally, certain molecules or 

aggregates might have preference for the liquid ordered or liquid disordered phase of the bilayer 

[51]. Furthermore, there are indications that such an ordering can be translated through the bilayer 

from one leaflet to the other [52]. Mixed SAMs are synthetic and designed to fulfil distinct 

functions, e.g. to support and tether a model lipid bilayer for research or analytical reasons. In this 

case, one component of the SAM consists of an alkanethiol portion, a tethering portion of 

hydrophilic polyethylene glycol (PEG) and an alkyl membrane anchoring portion to penetrate into 

the bilayer [53]. During the preparation of the mixed SAM, these moieties undergo interactions in 

the solvent phase or during the adsorption process, which may pre-determine the lateral 

distributions of the SAM components. Surface-exposed interactions of the PEG and alkyl portions 

of the assembled mixed monolayer further shape the surface properties of the monolayer [54, 55]. 

 

Figure 1.7: Architecture of layered assemblies. A) Schematic representations of a phospholipid molecule and 
assemblies. B) Schemes of an alkanethiol molecule and a self-assembled monolayer. Red beads: hydrophilic groups. 
Gray: hydrophobic acyl chains. Yellow beads: Thiol group. Gray and yellow rectangles: gold coated substrate.  

Micelle 
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1.3 Modeling molecular interactions 

Long before the rise of computers in the 1960s, scientists had acquired knowledge of three-

dimensional structures of molecules and physical molecular models were built form paper, wood, 

metal, glass and plastics (Figure 1.8). The first physical models of molecules date back to 1860 

when August von Hofmann built a ball-and-stick model for methane, which was planar and the 

hydrogens were larger than the central carbon. Later, when the concepts of stereochemistry 

emerged, van’t Hoff modeled the first three-dimensional, tetrahedral molecules. Arguably, one of 

the most iconic physical molecular model is the 1950s DNA double-helix model by Watson and 

Crick.  

As soon as computers became more and more widely available, the physical model gave way for 

the virtual molecular model, although physical toy models still have their place in chemical 

education and in the heart of many chemists. Interestingly, when computers allowed visualization 

of complex molecules in the late 1960s, first attempts of a mathematical description of molecules 

had already been made. In fact, most of the still used mathematical models have their origin in two 

communications of Terrell Hill from 1946 and 1948, where he suggests to calculate the energy of 

small organic molecules in dependence of their conformation using a sum of a few simple terms 

[56, 57]. Nowadays, the terms structural modeling, molecular mechanics modeling and molecular 

dynamics are summed up under the umbrella of molecular modeling and are often used in 

combination. Here, for the sake of a detailed, discriminating methodological introduction, the three 

concepts are explained individually, even though they share many physical fundamentals with each 

other. 

1.3.1 Structural modeling 

The generation and visualization of the three-dimensional structure (stereochemistry) based on a 

two-dimensional chemical formula can be considered structural modeling in the broadest sense. 

For small molecules, such considerations can be done with only pen and paper and resulted in 

common projection methods such as the Haworth projection, the Natta projection, or the 

Newman projection, to name only a few. For the visualization of large, complex macromolecules, 

however, 2D projections are not sufficient and 3D models must be generated. When faced with 

multiple rotatable bonds, an ab initio structure prediction becomes highly ambiguous. That is why 

investigators have always relied on restraints as posed by either one or several experimental 

techniques such as X-ray diffraction, NMR spectroscopy, electron microcopy, IR spectroscopy, 

single molecule FRET, etc. 
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Figure 1.8: Photographs of selected physical molecular models. A) Molecular model of methane, created by 
August Wilhelm von Hofmann (ca. 1860). The square planar structure depicted is now known to be incorrect. 
Photograph by Henry Rzepa under GNU license 
(https://commons.wikimedia.org/wiki/File:Molecular_Model_of_Methane_Hofmann.jpg) B) The six feet tall metal 
DNA model made by Watson and Crick in 1953. Courtesy of Cold Spring Harbor Archives 
(https://dnalc.cshl.edu/view/16430-Gallery-19-DNA-model-1953.html) C) Van’t Hoff disseminated his 
stereochemical ideas to leading chemists of the day by sending them 3-D paper models of tetrahedral molecules, like 
these now housed in the Leiden Museum, photograph By O. Bertrand Ramsay 
(https://www.sciencehistory.org/historical-profile/jacobus-henricus-vant-hoff)  

Of these, the value of X-ray crystallography for the development of the fields of structural 

chemistry and biology cannot be understated. It was pioneered in 1912 by Max von Laue and 

awarded with the Nobel Prize in physics in 1914. In has ever since delivered fascinating insights 

into the molecular world and plenty of further Nobel Prizes were awarded to studies involving X-

ray crystallography [58]. Very briefly, the technique is based on fact that the nuclei in molecular 

crystals are scattering X-ray radiation and the observation of diffraction patterns allow assertions 

about the molecular distances and angles in the crystal. Such information allows the construction 

of a 3D electron density map, into which the molecule of interest can be fitted. In the area of 

organic and biological molecules, the British chemist and Nobel Prize laureate Dorothy Hodgkin 

[59, 60] should not remain unnamed. She solved the structures of cholesterol, penicillin and vitamin 

B12 as well as that of insulin on which she worked for over 30 years. Theoretically, the size of 

molecules for X-ray diffraction is not limited. Instead, purification and crystallization of large 

https://commons.wikimedia.org/wiki/File:Molecular_Model_of_Methane_Hofmann.jpg
https://www.sciencehistory.org/historical-profile/jacobus-henricus-vant-hoff
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complexes of proteins or nucleic acids is a major bottleneck. Additionally, highly flexible molecules 

or regions within a protein can often not be resolved with X-ray crystallography. 

Another, currently still emerging technique, is cryogenic electron microscopy (cryo-EM), which 

overcomes the size limitation of X-ray crystallography and was awarded with the 2017 Nobel Prize 

in chemistry to Jacques Dubochet, Joachim Frank and Richard Henderson. Here, biological 

samples are dehydrated, shock-cooled below -150°C and subjected to electron microcopy. Electron 

micrographs from many different angle of macromolecular complexes in various orientations allow 

the computational reconstruction of an electron density map similar to X-ray crystallography [61, 

62]. 

The second major limitation of X-ray crystallography is conformational flexibility. Here, NMR 

spectroscopy has been shown to be a valuable tool investigate conformational ensembles of 

peptides and small proteins in solution. NMR is a spectroscopic technique, which observes the 

behavior of the local magnetic field around atom nuclei. Therefore, the magnetic nuclear spins are 

polarized via an external magnetic field and then perturbed by an oscillating magnetic field. The 

electromagnetic waves emitted by the perturbed atoms is detected. Of note, only certain isotopes 

such as 1H, 13C or 15N with a nuclear spin are accessible for NMR and proteins must be labeled 

accordingly. The signal measured by NMR gives the chemical shift δ in units of ppm. It is affected 

by a range of factors such as electron density and electronegativity of neighboring groups, among 

others. The chemical shift is specific for certain chemical groups. Thus, NMR spectroscopy is 

routinely used for the identification of molecular species in a sample. NMR-based structure 

determination affords the recording of multiple multidimensional spectra, which can be used to 

calculate distance and angle restraints within a protein. These restraints aid the computational 

generation of a structural ensemble [63]. 

All of the above-mentioned, expensive and challenging experimental approaches yield valuable 

insight, which is however limited to the one investigated molecular system. Using computational 

modeling approaches, it is possible to extent the results of one experiment to a variety of 

homologous systems. For example, mutations can be introduced to the protein or chemical groups 

of a bound ligand can be altered. There is also the possibility to model the sequence of a structurally 

unknown protein into the structure of one with sequence similarity, which is called homology 

modeling. An application for homology modeling is the prediction of the binding mode of small 

molecules or ligands to a structurally unresolved receptor (only when in case the structure of a 

homologous protein complex is known).  

The most frequently recurring problem in the field of structural modeling is the quantitative 

evaluation of the energy between different conformations i.e., the estimation of their macroscopic 
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probabilities. Such consideration ultimately leads to the calculation of energy differences between 

different conformational states of a molecule. This calculation can be undertaken on the electron 

level using quantum theory, i.e. the solution of the Schrödinger equation or one of its 

approximations such as the Hartree-Fock method or density functional theory [64]. Yet, given that 

the number of possible conformations of a linear molecule with N atoms and at least two rotamers 

per bond increases approximately by 2N, the expense of using quantum level of theory would 

quickly exceed most university computing clusters. Instead, investigators have developed a simple 

approximation method, which treats atoms as spheres and bonds as springs: molecular mechanics.  

1.3.2 Molecular mechanics 

Molecular mechanics is a concept or mathematical framework, which applies equations from 

classical mechanics to molecular systems with the aim to quantitatively predict the energy 

differences between conformational states. With molecular mechanics, the single point energy of a 

molecular system can be calculated as a function of only the atomic positions. Therefore, the total 

potential energy of the system is represented as a sum of many terms which can be separated into 

bonded and non-bonded terms. The bonded terms include the deformation energies induced by 

bond stretching, angle bending and torsional rotation. The potential terms for bond and angle 

deformations are mathematically modelled as harmonic potentials with a certain equilibrium value 

and scaled by a force constant. The dihedral rotation terms employ a cosine potential instead. The 

non-bonded terms include van-der-Waals and electrostatic interactions, where the former is 

modeled using a 12-6 Lennard Jones potential and the latter by a Coulomb potential.  

This mathematical modeling requires the definition of a large set of atom and chemical group 

dependent parameters for force constants, equilibrium geometries, partial charges, and van-der-

Waals radii. Such a set of parameters, together with the sometimes slightly adapted potential 

equations is termed “Chemical Force Field”. Various chemical force fields do exist, which vary in 

the way they were derived as well as their optimal areas of application. In the classical force fields, 

the parameters and topology, i.e., the type of covalent bonds, are predetermined and not 

conformation dependent. Yet, there are polarizable force fields, in which the partial charge of an 

atom can change depending on the surrounding chemical groups, as well as reactive force fields 

that allow formation and breaking of covalent bonds. Additionally, there are united-atom and 

coarse-grained force fields, in which multiple atoms are lumped together to larger interaction sites 

with the purpose of decreasing the computational expense at the cost of loss of accuracy. Some of 

the most commonly used force fields are summarized in Table 1.1. 
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Table 1.1. Non-exhaustive list of molecular mechanics and dynamics force fields 

Name  Description Ref. 

UFF Universal force field for small molecules in the gas phase [65] 

MMFF Merck molecular force field is general purpose force field for small 

molecules 

[66] 

OPLS Force field with optimized potentials for liquid simulations; is 

parameterized according to experimental bulk properties 

[67] 

CHARMM Additive molecular dynamics force field with parameters for a wide range 

of molecules 

[68] 

AMBER Molecular dynamics force field originally for proteins [69] 

BERGER Parameter set optimized for lipid bilayer simulations; compatible with 

AMBER  

[70] 

GLYCAM Force field for carbohydrates; compatible with AMBER [71] 

AMOEBA Polarizable force field  [72] 

GROMOS United atom force fields for biomolecular simulations [73] 

MARTINI Coarse-grained force field originally for lipid bilayer simulations [74] 

The choice of appropriate force field for the application is an important step in any molecular 

modeling effort. Therefore, many aspects must be considered. First and foremost, the force field 

should be accurate for the investigated molecular systems. Then, it must be supported by the 

molecular modeling or molecular dynamics software, which was chosen. When a new molecule 

needs to be parameterized, it is important that the parameterization method is consistent with the 

force field. Finally, the available computational resources and the size of the system further limit 

the choice of the force field. Furthermore, the selection of the solvent model plays a significant 

role for the accuracy and choice of the force field. In the framework of this research thesis plenty 

different molecular systems, ranging from small molecules, lipids and carbohydrates to proteins 

were investigated. For the sake of simplicity, comparability, and protocol transferability, it was 

decided to stick to the same force field for all different systems. Additionally, calculations with the 

coarse-grained MARTINI force field were performed, which was best supported by the 

GROMACS molecular modeling and simulation suite [75-81]. As force fields and the 

corresponding molecular modeling packages have always been developed in parallel and were 

mutually optimized, the transfer of one force field to a different modeling software is tedious and 

error prone. At the beginning of the thesis, both general molecular dynamics force fields AMBER 

and CHARMM were well-suited for the molecular systems of interest. However, based on the 

better transferability to GROMACS and the somewhat better accuracy for lipid bilayers [82], the 

CHARMM force field was chosen for all full-atomistic modeling efforts.  
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The CHARMM force field (and molecular mechanics engine), as initially developed by Nobel Prize 

laureate Martin Karplus and the 1980s, is an additive force field with parameter sets and equations 

for proteins [83], lipids [84],  carbohydrates [85], nucleic acids [86], and for small, drug-like 

molecules [87]. The early full-atomistic protein force field, CHARM22 [68], employs the potential 

function of equation 1, which is still used in newer implementations. The terms for bonds, angles, 

dihedrals and non-bonded interactions are canonical. Additionally, CHARMM employs improper 

potentials, which applies to non-successively bound quartets of atoms. The angle omega 

corresponds to the out-of-plane angle. The Urey-Bradley terms are so called cross-terms, as they 

model the distance between the outer two of three bonded atoms (1-3 cross-terms).  
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+ ∑ 𝑘𝑢(𝑢 − 𝑢0)
2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

+ ∑ (𝜖 ((
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

) +
𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗
)

𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑

 (1) 

As stated before, the way of solvent treatment is equally important as the choice of the force field. 

Some force fields have been parameterized with implicit solvation and others with explicit 

solvation. In any case, the solvent model is mostly chosen to reproduce the qualities of liquid water. 

Several water molecule models exist, which differ widely in their accuracy and computational cost, 

yet are mostly transferable between the different force fields. Here, it must be noted that the 

solvation model has a tremendous effect on the accuracy of the model and that, considering the 

model volume and the ratio of atoms between solvent and solute, most of the computational effort 

goes into the calculation of the solvent. The complexity of water models can be classified by the 

number of interaction sites. There are 3-site (SPC, TIP3P), 4-site (TIP4P) and 5-site (TIP5P) water 

models. Water models with more than 3 sites, employ so called dummy atoms to model the 

electronic properties more precisely. The 3-site water models achieve high computational efficiency 

with reasonable accuracy and are thus heavily used in molecular dynamics simulations. In the 

CHARMM force field, a modified version of the TIP3P water model is used, in which the hydrogen 

atoms have Lennard-Jones potentials. The traditional SPC water model only has Lennard-Jones 

parameters for the oxygen [88]. 

The accurate quantitative description of flexible molecules in solution is clearly driven by the aim 

to identify the minimum energy conformation, i.e. the native state. However, when the forcefield 
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equation is subjected to mathematical optimization methods (i.e., minimization) with the atomic 

coordinates as variables, the potential function only converges to the closest local minimum. The 

global minimum though is much more challenging to identify. This is why efficient sampling 

methods had to be developed, which allow the generation of various conformations of which the 

energies can be compared. The two predominating methods are Monte-Carlo sampling (stochastic) 

and Molecular Dynamics (deterministic).  It has been shown, that for gas-phase systems Monte-

Carlo sampling is favorable whereas condensed phase systems, such as the ones investigated here, 

are better sampled using Molecular Dynamics (MD). 

1.3.3 Molecular dynamics 

The previous section was describing the potential energy of a molecular system, which allows the 

determination of locally optimal conformations (potential energy minima). This approach is 

however severely flawed because a complex molecule or molecular system can have a large number 

of local minima. A wide range of mathematical methods do exist, which allow global optimization 

of complex, multivariate systems, e.g., evolutionary algorithms [89], Bayesian optimization [90] or 

simulated annealing [91].  These methods were however never successfully applied to complex 

biomolecular systems. Possible reasons are the large number of variables (three times the number 

of atoms) and the high degree of inter-variable dependencies (bonds) and physical constraints. 

Instead, it is assumed that when a molecular mechanics model is allowed to also incorporate kinetic 

energy, i.e. a finite temperature, it would begin to traverse the potential energy landscape and 

eventually discover the global minimum (Figure 1.9). The concept of translating the molecular 

mechanics potentials into forces, which induce acceleration to the particles according to Newton’s 

second law, is called Molecular Dynamics. Additionally, the method includes auxiliary algorithms 

to forward-integrate the atomic positions, to control temperature and pressure during the 

simulation, to deal with boundary conditions and to optimize computational efficiency. 
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Figure 1.9: Schematic representation of a two-dimensional potential energy surface. The red line and blue points 
are visualizations of Molecular dynamics (red) and Monte Carlo (blue) sampling. (Image by Qx8134, 2020, CC BY 4.0, 
https://commons.wikimedia.org/w/index.php?curid=94107414) 

To numerically integrate Newton’s equations of motion, i.e. approximate the atomic coordinates x 

and velocities v at a discrete future time step t+δt based on the current time step t, the Verlet 

algorithm can be used. It can be derived from the Taylor series expansion: 

𝑥𝑖(𝑡 + 𝛿𝑡) = 𝑥𝑖(𝑡) + 𝛿𝑡
𝑑𝑥𝑖

𝑑𝑡
+

1

2
𝛿𝑡2

𝑑𝑥𝑖(𝑡)
2

𝑑𝑡2
+

1

6
𝛿𝑡3

𝑑𝑥𝑖(𝑡)
3

𝑑𝑡3
+ ⋯ (2) 

The same  can be done for the backward integration: 

𝑥𝑖(𝑡 − 𝛿𝑡) = 𝑥𝑖(𝑡) − 𝛿𝑡
𝑑𝑥𝑖

𝑑𝑡
+

1

2
𝛿𝑡2

𝑑𝑥𝑖(𝑡)
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𝑑𝑡2
−

1

6
𝛿𝑡3

𝑑𝑥𝑖(𝑡)
3

𝑑𝑡3
+ ⋯ (3) 

Addition of the equations (2) and (3), solving for x(t+δt) and neglecting higher order terms yields: 

𝑥𝑖(𝑡 + 𝛿𝑡) = 2𝑥𝑖(𝑡) − 𝑥𝑖(𝑡 − 𝛿𝑡) + 𝛿𝑡2
𝑑𝑥𝑖(𝑡)

2

𝑑𝑡2
 (4) 

Equation (4) exhibits the accuracy of a third order Tayler approximation with terms of maximum 

second order. However, the Verlet algorithms has some striking downsides. The positions at the t-

δt time step need to be known, which is usually not the case for t=0 in MD simulations. Also the 

velocities need to be calculated separately and require knowledge of the positions at t+δt and t-δt, 

introducing a delay into kinetic energy (temperature) calculations, which introduces possible 

https://commons.wikimedia.org/w/index.php?curid=94107414
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instabilities into temperature coupling algorithms. Finally, equation (4) leads to numerical 

inaccuracies through the subtraction of two large terms.   

Thus, the Verlet algorithm is utilized in MD integration in an optimized variant, called Velocity-

Verlet algorithm. Therefore, in equation (3), t is substituted by t+δt: 

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 + 𝛿𝑡) − 𝛿𝑡
𝑑𝑥𝑖(𝑡)

𝑑𝑡
 + 𝛿𝑡2

𝑑𝑥𝑖(𝑡)
2

𝑑𝑡2
 (5) 

Then, equation (2) plus equation (5) yields the equation for the velocity v at t+δt: 

𝑑𝑥𝑖(𝑡 + 𝛿𝑡)

𝑑𝑡
=

𝑑𝑥𝑖(𝑡)

𝑑𝑡
 +

1

2
𝛿𝑡 (

𝑑𝑥𝑖(𝑡)
2

𝑑𝑡2
+

𝑑𝑥𝑖(𝑡 + 𝛿𝑡)2

𝑑𝑡2
) 

= 𝑣𝑖(𝑡 + 𝛿𝑡) = 𝑣𝑖(𝑡) +
𝛿𝑡

2
(𝑎𝑖(𝑡) + 𝑎𝑖(𝑡 + 𝛿𝑡)) 

(6) 

The new coordinates are then given as: 

𝑥𝑖(𝑡 + 𝛿𝑡) = 𝑥𝑖(𝑡) + 𝛿𝑡𝑣𝑖(𝑡)  + 𝛿𝑡2𝑎𝑖(𝑡) (7) 

Another way to eliminate the weaknesses of the original Verlet algorithm is the Leapfrog algorithm 

[92] which alternatingly calculates positions and velocities at different time points. Here it is 

noteworthy to point to out the importance of the selection of the time step δt. A too short time 

step will slow down the computation without increasing the accuracy. Oppositely, a too large time 

step might lead to uncontrolled atomic collisions, which result in extremely high velocities that 

technically displace atoms out of the simulation volume. The time step must be chosen as large as 

possible without risking such numerical instabilities. In classical molecular dynamics, time steps 

commonly reach from 1-5 fs.  

As mentioned earlier, the velocities of the particles are corresponding to the set finite temperature 

and introduce kinetic energy to the system, enabling it to cross energy barriers on the potential 

energy landscape. Yet, how are the initial velocities generated and how is the temperature controlled 

during the simulation? Initial velocities must fulfil two criteria: I. they need to refer to the desired 

temperature and II. the total momentum of the system must be zero. Therefore, they are often 

stochastically generated by from a Maxwell-Boltzmann probability distribution: 

𝑓𝑣(𝑣𝑥) = √
𝑚

2𝜋𝑘𝑇
exp(−

𝑚𝑣𝑥
2

2𝑘𝑇
)   (8) 
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In equation (8), f is the probability of a velocity magnitude v in direction x, m is the mass of 

corresponding atom, k is the Boltzmann constant and T the temperature. Another method is to 

slowly heat the system from 0 K to the target temperature by gradually increasing the temperature 

of the coupled thermostat. One of the pioneering and still widely used approaches to maintain a 

target temperature was suggested by Berendsen et al in 1984 [93]. The Berendsen thermostat 

applies rescaling (Tscaled = λTcurrent) to the particle velocities through a weak coupling with an external 

heat bath. The scaling factor λ in Berendsen coupling is defined as: 

𝜆2 = 1 +
𝛿𝑡

𝜏
(

𝑇0

𝑇(𝑡)
− 1) (9) 

Here, δt is the time step, τ is the coupling constant, T0 the bath temperature and T the systems 

temperature. The factor is based on a scaled temperature difference and allows a dampened 

(exponentially decaying) response. Hence, with Berendsen coupling, temperature fluctuations are 

explicitly possible. The coupling constant clearly plays a key role for the algorithm. If it is identical 

to the time step, the scaling appears immediately and not in a damped way. For the hypothetical 

case that τ becomes infinitely large, temperature coupling is disabled. Such a simulation would be 

called microcanonical or NVE, because the number of particles N, the phase volume V and the 

total energy E would remain constant. Finite Berendsen coupling constants yield an approximate 

but not a strict canonical (NVT) ensemble [94, 95]. For this reason, in recent years, Berendsen 

coupling was largely displaced by Parrinello-Rahman or Nose-Hoover temperature control. In a 

similar fashion to temperature control, the pressure can be controlled by scaling the simulation 

volume dimensions. In this case, the ensemble changes to NVP. A brief introduction to MD 

barostats is given in [96]. 

Whereas coupling algorithms decrease the performance of MD simulation, investigators have 

introduced many approximations to enhance it. In regard of short-range, non-bonded interactions, 

cutoffs are heavily employed in MD code and can even be considered part of the force field 

implementation. For example, CHARMM force field simulations frequently cut off Lennard-Jones 

and Coulomb interactions beyond distance of 1.2 nm because they elsewise converge zero 

asymptotically. To smoothen the transition from active Lennard-Jones potential to 0, a linearized 

switch function is implemented. Additionally, so called Verlet lists are employed, which encompass 

all neighboring atoms. These lists are only updated every couple of time steps. However, in 

biomolecular systems, long-range electrostatic interaction play important roles and cannot be 

neglected. This challenge is fortified by the fact, that biomolecular simulations heavily rely on 

periodic boundary conditions, in which the simulation volumes and the atoms therein are mirrored 

in all directions and distances are always measured between the closest mirror images. Thus, long-
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range interaction must also take the mirror image convention into account. To solve this problem 

of computational expense, Ewald summation or more specifically the Particle Mesh Ewald method 

(PME) is applied [97-99]. It based on the idea, that the direct summation of interaction potentials 

is replaced by double summation of the short-ranged potentials in real space and the long range 

potentials in Fourier space. The long-range interaction can then quickly be calculated using the 

numerical algorithm of Fast-Fourier transform. 

As the most important terms and concepts of MD simulation are introduced above, a general 

description of the MD workflow [100] will complete the chapter. Usually, MD begins with a 

structural model of the molecule of interest, which is taken from a structure database or, in the 

case of bulk liquids or two-dimensional assemblies, generated with a packing algorithm. In case of 

explicit solvation, solvent molecules are added to fill the desired volume. The volume must be 

chosen large enough to avoid interactions of the studied molecule with its replicates across the 

periodic boundaries. In biomolecular simulations, ions are added to neutralize the system and to 

avoid artifacts by an overly isolating medium. When all molecules (solvent, solute) are in place and 

the volume is defined, the system is subjected to minimization, mostly via the steepest descent 

algorithm. Is has the sole purpose to remove or at least highlight steric clashes and unphysical bond 

lengths which often occur when manual initialization is involved. When the energy has converged, 

initial velocities are assigned and the process of equilibration is initiated. During the first 

equilibration phase, the volume can remain fixed and only the temperature is equilibrated using a 

short time step of 0.5 – 1 fs. The temperature equilibration includes both the convergence of the 

average temperature toward the desired simulation temperature and a spatially isotropic 

temperature distribution. That is, no clusters of higher temperatures do exist. This phase usually 

takes no longer than a few ps. A second equilibration step is dedicated to the simulation box size, 

which is of course reciprocal to the density. Depending on the quality of the solvent packing, the 

pressure coupling algorithm and the simulated system (central solute vs bilayer), this phase can last 

from 0.5 to hundreds of ns. Temperature and volume equilibration can also be performed 

simultaneously. When temperature and volume have converged, final adjustments to coupling 

schemes and ensemble can be made and the production sampling can be started. In some cases it 

makes sense, to sample in NVT ensemble because it is slightly faster and the accuracy of results is 

not affected.  

The final remarks of this section will be dedicated to advanced sampling strategies. In classical MD 

sampling, the system will be sampled for a certain time and conclusion will be drawn from the 

generated ensembles. In case of rare events, which require the overpassing of high energy barriers, 

classical sampling might not yield reliable results and is too much dependent on the starting 
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configuration. In such cases it is worthwhile to introduce some kind of bias. Such a bias can be 

either statistical/stochastic or physical. The simplest way to enhance sampling is to perform several 

replicates with slightly different initial conditions (velocities) [101]. This way, one can reduce the 

effect of artifacts occurring when a trajectory gets trapped in a deep local minimum. The procedure 

can be accentuated by a smart choice of restart configurations. For example, a region close to a 

certain transition state can be sampled by restarting the simulation from its proximity. Such 

sampling is called adaptive sampling [102, 103] and can be automatized to e.g. lead to transition 

path sampling [104]. On the other hand, it is possible to change the potential landscape via the 

addition of external forces or biasing potentials. Such simulations are called steered MD [105] or 

in a different context meta-dynamics [106]. A third way to enhance sampling is to alter the total 

energy of the system through a higher temperature [107]. This concept has culminated in replica 

exchange methods, in which several replica simulations are conducted at different temperatures, 

and transitions between the temperatures are commenced [108]. 

1.4  Quantification of molecular selectivity 

A meaningful characterization and comparison with experiment of selective molecular recognition 

events can only succeed when a quantitative description is possible both from a macro- and a 

microscopic perspective. Furthermore, there must be a correlation between macroscopic and 

microscopic quantities. Here it is noteworthy, that physical, chemical, and biological 

experimentation rather yield macroscopic observables such as densities, energy differences or 

kinetic constants. The molecular simulations, on the other hand, yield trajectories (time series) of 

atomic positions and velocities. It is on the investigator to convert the microscopic state of the 

system into macroscopic quantities using principles of statistical mechanics and thermodynamics. 

In some cases, key quantities are directly accessible from both experimental measurements and 

ensembles of atomic coordinates. In others, the experimental observables are far beyond the time 

scales of MD simulation or require an ensemble of simulations with varying parameters.  

1.4.1 Binding constants 

In the area of biophysical chemistry, protein-protein or protein-ligand binding is usually quantified 

by either of the somewhat arbitrarily used terms affinity, binding energy and dissociation constant 

Kd [109]. But how are these terms derived? The aggregation of two molecules A and B into the 

complex AB can be described via the chemical reaction formula:  

𝐴 + 𝐵

𝑘𝑜𝑛

⇌
𝑘𝑜𝑓𝑓

𝐴𝐵 (8) 
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Here, the complex is in equilibrium with the free subunits. The association reaction appears with a 

rate constant kon, whereas the reverse reaction, the dissociation of the complex, happens with a koff 

rate constant. The association and dissociation rates would then be 

𝑟𝑜𝑛 = 𝑘𝑜𝑛[𝐴][𝐵] 

 𝑟𝑜𝑓𝑓 = 𝑘𝑜𝑓𝑓[𝐴𝐵] 
(9) 

where square brackets denote the concentration.  To fulfill the law of mass action, on- and off-rate 

must be equal: 

𝑘𝑜𝑛[𝐴][𝐵] = 𝑘𝑜𝑓𝑓[𝐴𝐵] (10) 

Hence, in thermodynamic equilibrium, the concentration ratio between dissociated and associated 

states is identical to the ratio of the rate constant, which is customarily lumped into the single 

dissociation constant KD: 

[𝐴][𝐵]

[𝐴𝐵]
=

𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
= 𝐾𝐷 (11) 

As the dissociation constant is an equilibrium constant, the general expression 

 Δ𝐺𝑏𝑖𝑛𝑑 = 𝑅𝑇 ln𝐾𝐷  (12) 

where R is the general gas constant and T the absolute temperature, can be applied. ΔG is then the 

change in free energy for the dissociation of the complex at constant temperature and pressure. 

Thus, when the equilibrium is on the site of the dissociated subunits, then koff>kon, KD>1 and ΔG 

> 0. That is, energy is necessary to bring the subunits together. In the opposite case, kon>koff leads 

to a KD<1 and thus ΔG < 0. Energy will be released upon complexation and the reaction will take 

place spontaneously. In biochemistry, the term affinity is based on the reciprocal of the dissociation 

constant – the association constant. In a quantitative sense, nowadays only the dissociation 

constant is used.  

The binding energy plays an essential role in various biochemical processes and is the driver for 

selectivity [110]. In fact, when a receptor A has an affinity for a ligand B, and an even higher affinity 

for a ligand C, ligand C is able to displace ligand B from the complex AB: 

𝐴𝐵 + 𝐶 ⇌ 𝐴𝐶 + 𝐵 (13) 
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In this common scenario, where for example a drug molecule displaces the natural ligand from a 

receptor and blocks the binding site to inhibit signal transduction, the equilibrium constant can be 

calculated from the dissociation constants of the elementary reaction: 

𝐾𝐵,𝐶 =
[𝐴𝐶][𝐵]

[𝐴𝐵][𝐶]
=

𝐾𝐴𝐶[𝐴][𝐵][𝐶]

𝐾𝐴𝐵[𝐴][𝐵][𝐶]
=

𝐾𝐴𝐶

𝐾𝐴𝐵
 (14) 

KB,C can hence be called selectivity coefficient.  

The theoretical considerations raise the questions of what orders of magnitude typical dissociation 

rates and binding energies have and how they can be determined experimentally and 

computationally. Depending on the molecular system, i.e., protein-protein or protein-small 

molecule, a range of qualitative, semi-quantitative and quantitative experimental methods are 

available. Common qualitative or semi-quantitative experimental approaches for protein-protein 

interaction elucidation include ELISA, pull-down and co-immunoprecipitation assays (or band 

shift assay for nucleic acid binding proteins) [111]. They work by immobilization of one protein, 

which is allowed to interact with its labeled or tagged binding partner. Upon interaction, a signal is 

released. On the other hand, a large array of quantitative methods are available as reviewed in [112]. 

The review classified the methods into separative methods, where the ligand is separated from the 

receptor and the equilibrium concentration of either is directly measured and non-separative 

methods. The latter relies on the detection of a change in a physical or chemical property induced 

upon binding. Among the separative methods are equilibrium dialysis, ultrafiltration, liquid 

chromatography or capillary gel electrophoresis. Common non-separative methods are based on 

spectroscopy, calorimetry or surface plasmon resonance.  

Dissociation constants span multiple orders of magnitude and ligands (protein or small molecules) 

are loosely classified as weak binding, moderate binding, strong binding, and very strong binding. 

Weak binders have dissociation constants in the millimolar (100-10-3 M) range. Moderate binding 

can be considered with micromolar (10-3-10-6 M) dissociation constants. Strong, high-affinity 

binding is present when the dissociation constant is nanomolar (10-6-10-9 M). Sub-nanomolar, i.e., 

picomolar binding is characterized by even smaller dissociation constant. It has to be noted, when 

determining KD with one of the above methods, the values of kon and koff are not necessarily co-

determined (except in SPR). Thus, a direct readout of the stability of the complex only based on 

Kd is not feasible. However, for most instances, the association of two species free roaming in 

solution is limited by diffusion. Such an upper limit for kon is often quoted to 109 M-1 s-1 [113, 114]. 

Depending on the environment, e.g. in a crowded cell or a lipid bilayer, it can be lower. In other 

cases, when strong, far-reaching, favorable electrostatic interaction between the binding partners 
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are present, the diffusion limit can also be surpassed [115]. Typical values are between 105 to 106 

M-1 s-1 [116]. Considering a complex with a KD of 21 pM, as for example recently reported for a 

bivalent ligand for a G-protein coupled receptor, and a kon constant of 105 M-1 s-1, koff value would 

be 2.1 x 10-6 s-1 [117], which translates into a complex half-life of 90 h. 

1.4.2 Computational estimation of binding constants 

The time scales of binding and unbinding events are usually far beyond the limits of equilibrium 

molecular dynamics sampling. Additionally, such experimental values are averages and are difficult 

to interpret on the single molecule scale as investigated via molecular simulations. For instance, 

one would either need a gigantic simulation volume with such a large number of receptor and 

ligand molecules, that they would reach the same concentration as the in the test tube, or one would 

have to simulate one receptor-ligand system long enough to sample multiple binding and unbinding 

events so that the complex half-life would eventually converge. Neither is possible even with recent 

high-performance computing nodes. Thus, two branches of developments can be distinguished to 

partially resolve this issue. On the one hand, enhanced ensemble free energy methods allow a 

reasonably accurate, ab initio estimation of the binding free energy of a distinct ligand to its receptor 

using a set of molecular dynamics trajectories. Such methods include thermodynamic integration 

[118], exponential averaging [119] (free energy perturbation [120]) or umbrella sampling [121]. On 

the other hand, there are fast, simplified and rather approximate methods for screening purposes. 

These methods include docking, MM-PBSA [122] or PRODIGY [123]. For prediction of especially 

kon there is e.g., the software SDA [124].  

In the case of umbrella sampling, the conformational space of a molecule along a reaction 

coordinate is sampled. The individual trajectories are generated by application of an additional 

potential which is able to drag a ligand out of a binding site or lipid out of a bilayer. From the 

unbinding trajectory, equidistant snapshots are used as initial configurations for subsequent 

umbrella sampling. Here, in each trajectory, the initial point in terms of the reaction coordinate is 

restrained by the same potential as previously used. The trajectories are finally subjected to the 

weighted histogram analysis method (WHAM) [125, 126] with the purpose to calculate the potential 

of mean force, i.e. the free energy difference along some reaction coordinate. Umbrella sampling 

can yield a reasonable unbinding trajectory, however it is not suitable to efficiently compare 

different ligands to or predict a binding mode.  

Thermodynamic integration allows the calculation of the free energy difference between two states. 

It is an alchemical method, which means that the system undergoes a non-physical transformation 

from one state to another. This is reasonable because the free energy difference is only dependent 

on the start and end states and not on the path itself. The alchemical path is characterized by its 
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path variable λ (0≤λ≤1), which is a scaling factor for the non-bonded interactions. Thus, λ allows 

to slowly couple and decouple a chemical group or a whole ligand from its surroundings. For 

example, to compare to the binding free energy difference of two ligands one might either decouple 

ligand A from the receptor and couple ligand B into the receptor, which would afford to simulate 

the (de)coupling of both ligands into (from) solvent, or to transform ligand A into ligand B (Figure 

1.10). The free energy difference is ultimately calculated from integrating the derivate of the λ-

dependent potential energy function with regard to λ over the whole λ-range from 0 to 1. The 

method is accurate yet expensive. The binding mode of the ligand must be known a priori.  

 

Figure 1.10: Thermodynamic path of two ligands binding and unbinding from the same receptor. The binding 
free energy difference between two ligands A and B can be modeled either by unbinding of A and binding of B or via 
morphing of A to B (FEP). 

As opposed to the molecular dynamics-based free energy methods, molecular docking is a 

technique which allows rapid screening of ligand position, orientation and conformation relative 

to a receptor protein. Due to its quick energy evaluation, docking is suitable for small-molecules 

ligands as well as proteins. Docking is used to predict the binding mode of a ligand as the best 

scoring pose of a generated ensemble. The score is usually a semi-empirical binding energy function 

which was derived in close reference to molecular mechanics force fields. A canonical equation 

[127] can be summarized as the sum: 

Δ𝐺𝑏𝑖𝑛𝑑 = Δ𝐺𝑠𝑜𝑙𝑣 + Δ𝐺𝑐𝑜𝑛𝑓 + Δ𝐺𝑖𝑛𝑡 + Δ𝐺𝑚𝑜𝑡𝑖𝑜𝑛 (15) 

Here, the binding energy, or more precisely the free energy difference between unbound and bound 

state, is the sum of the solvation (hydration) free energy ΔGsolv, the free energy difference of 

conformational changes in receptor and ligand ΔGconf, the interaction free energy ΔGint and the free 
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energy contribution from the change in mobility of receptor and ligand ΔGmotion. The quality of a 

docking pose can be assessed by calculating the difference in binding free energy relative to the 

experiment as well as by the average atomic deviation of the ligand from the crystalized complex. 

Benchmark studies have shown that recent docking software packages (Autodock [128], Vina [129], 

Glide [130], RosettaDock [131], GOLD [132]) are capable of predicting the correct binding pose 

and to predict binding energies with an error of around 50% [133]. The quality of a docking 

simulation depends heavily on the dynamics of the protein and the number of rotatable bonds of 

the ligand. Especially, because protein flexibility is only sparsely taken into account, the selection 

of protein receptor input conformation is of utmost importance [134, 135]. In the best-case 

scenario, the free protein is in the same conformation when bound to the ligand of interest. This 

however is only possible in screening efforts were the structure of a ligand-bound complex is 

known. In cases when the binding mode of the ligand is to be predicted, multiple receptor 

conformations should be employed. Such an approach is called ensemble docking. The 

conformational ensemble can be generated via crystallography, NMR or MD simulation [136]. 

A complementary theoretical method to compute especially protein-protein binding free energy is 

PRODIGY [123], which can also be used to rescore results from protein-protein docking. 

PRODIGY takes a protein-protein complex as input and predicts the binding free energy by 

calculating inter-residue contacts. It is based on a regression model of the number of certain classes 

of inter-residues contacts versus experimental binding free energies of a benchmark set of 81 

protein-protein complexes. The method is based on the observation that the correlation between 

binding free energy and certain inter-residue interactions (ICs) is higher than between the binding 

energy and differences in buried surface area. Thus, the final regression model only includes terms 

for inter-residue interactions and non-interacting surface area. The non-interacting surface area 

(NIS) is an important normalization term for taking the size of the interacting molecules into 

account. The resulting, optimized PRODIGY model is described as: 

𝛥𝐺𝑐𝑎𝑙𝑐 = 0.095 𝐼𝐶𝑠𝑄/𝑄 + 0.100 𝐼𝐶𝑠𝑄/𝑃 − 0.196 𝐼𝐶𝑠𝑃 𝑃⁄ + 0.227 𝐼𝐶𝑠𝑃 𝐴⁄  

− 0.187 𝑁𝐼𝑆𝐴 − 0.138 𝑁𝐼𝑆𝑄 + 15.94  
(16) 

The indices stand for Q: charged, P: polar and A: apolar. The model yields a correlation coefficient 

of -0.75 for rigid and -0.73 for flexible proteins. One recurring question in such calculations is the 

definition of an inter-residue contacts. In the development stages, it is customary to attempt various 

cutoffs e.g. heavy-atom minimum distances in the range of 0.5-0.8 nm. Other definitions are center-

of-mass distances or alpha or beta carbon distances. The choice heavily depends on the application 



Introduction   29 

 

and is of significant effect on the results. In the PRODIGY method, a distance threshold of 0.55 

nm was employed.  

Another method was suggested by Kolmann et al. in the late 1990s and combines molecular 

mechanics with the Poisson-Boltzmann equation and surface area solvation: MM-PBSA [137]. The 

Poisson-Boltzmann equation [138] and its commonly applied approximation, the linearized 

Poisson-Boltzmann equation allows the calculation of intermolecular interactions between 

molecules in an ionized solvent, such as NaCl dissolved in water. It is mostly used to compute the 

solvation free energy. The MM-PBSA method is based on the idea that the free energy of state G 

(not to be confused with free energy difference ΔG) can be estimated by: 

𝐺 = EMM + 𝐺𝑃𝐵𝑆𝐴 − 𝑇𝑆𝑀𝑀 (17) 

Here, EMM is the molecular mechanics potential energy (see force field equation), GPBSA is the 

solvation free energy from a Poisson-Boltzmann calculation and a surface area term [139], and 

TSMM is the entropy, which can be estimated e.g. with normal mode analysis [140]. Normal modes 

describe oscillating movements of biomolecules such as bond vibrations of collective motions of 

domains (see protein dynamics) and can be elucidated with molecular dynamics and normal mode 

analysis [141]. Anyway, based on eq. 17, one can calculate the free energy difference upon binding 

of a ligand to receptor via: 

Δ𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥 − 𝐺𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 − 𝐺𝑙𝑖𝑔𝑎𝑛𝑑 (18) 

In practice, the terms are evaluated on an ensemble of snapshots generated by MD sampling and 

subjected to averaging. Theoretically, it is advised that complex, receptor, and ligand would be 

simulated separately, however it has been shown that the loss of accuracy by only simulating the 

complex is small. In their original articles, the authors investigate the binding free energies of a set 

of six protein-ligand complexes which all were analogs biotin binding to avidin. They reached a 

strikingly high correlation coefficient of 0.92 between experimental and calculated binding free 

energies. Since, MM-PBSA and the tightly related method MM-GBSA, (GB: Generalized Born) 

were heavily used to estimate binding free energies of small molecule ligands as reviewed in [122]. 

The review also reveals the major downside of the approach: poor precision. The precision can 

however be increased by using many replicates of sufficiently long trajectories, which inevitably 

increases computational cost and limits the area of application. The accuracy for protein-protein 

complexes was assessed by Chen et al. [142] using 46 complexes. Their studied revealed 

experiment-simulation correlation coefficients between -0.375 and -0.523, rendering the method 

inferior to PRODIGY for protein-protein complexes.  
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1.4.3 Indirect quantification of binding  

From a molecular dynamics trajectory, or an ensemble thereof, many valuable information can be 

extracted. In the case of a complex of a protein and small molecule or protein ligand, the binding 

can most easily be characterized by the magnitude of the fluctuations of position and orientation 

of the ligand relative to the receptor. It can be imagined, that a ligand that binds tightly and stably 

to the receptor and retains its position and orientation throughout the trajectory, will most likely 

exhibit a high binding affinity. The one arguably most commonly used quantity for the quantitative 

comparison of molecular conformations is the root mean-square deviation (RMSD). Between two 

structures i and j, it is calculated as: 

𝑅𝑀𝑆𝐷(𝑖, 𝑗) = √
1

𝑁
∑ [(𝑥𝑘,𝑖 − 𝑥𝑘,𝑗)

2
+ (𝑦𝑘,𝑖 − 𝑦𝑘,𝑗)

2
+ (𝑧𝑘,𝑖 − 𝑧𝑘,𝑗)

2
]

𝑁

𝑘=1

 (19) 

Here, N is the total number of atoms of interest, and x, y and z correspond to the three spatial 

coordinates. To compare only the conformations by means of bonds, angles and torsions, global 

translational and rotational deviations must be removed. Therefore, the structure of interest j is 

structurally aligned to the reference i by least-square-fitting of the atomic coordinates under 

variation of the relative position and rotation. The Kabsch algorithm [143] can be used for the fast 

calculation of a starting structure for the superpositioning. For proteins, usually the alpha carbons 

atoms are used for fitting, whereas the backbone or whole protein can be used for the RMSD 

calculation. 

From MD simulations, the RMSD is routinely calculated and plotted as a function of the simulation 

time frame and relative to the initial frame or the crystal structure. The time-evolution of the RMSD 

allows to make statements on the stability and convergence of the simulation, the conformational 

space of the protein (molecule) as well as the discrepancy between different replicas. For 

trajectories of molecular complexes, it can be expressive to align the whole complex by the 

coordinates of only the receptor atoms, and to then calculate the time evolution of the RMSD for 

the ligand atoms. With such an approach, rotational and translational motions of the ligand relative 

to the receptor are explicitly taken into account. Hence, the stability of the ligand binding mode as 

an indirect measure for binding affinity can easily be spotted from a set of equilibrium MD 

simulations. Another application for the RMSD is the calculation of the pairwise RMSDs between 

various conformations as a distance metric for clustering and embedding algorithms (see section 

“Advanced statistical analysis”). Of similar routine-use is the root mean-square fluctuation (RMSF), 

which allows the localization of stable and dynamic regions within a molecule. The difference to 
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the RMSD is that the positional deviation is averaged over the ensemble (time frames) instead of 

over the number of atoms.  

 

Figure 1.11: Construction of the solvent-accessible surface for an arbitrary molecule. A peptide backbone is 
drawn as an example. The probe is drawn unusually small for clarity. The number of generated probe points determined 
the resolution and smoothness of the calculated solvent accessible surface.  

Of similar general interest and also as a quantitative means to evaluate molecular binding is the 

solvent accessible surface area (SASA) and its change upon complexation. The approach allows the 

calculation of a molecular hull or surface, which confines the molecule from the solvent and reveals 

the atoms at the boundary with frequent solvent interactions. It was first suggested by Lee and 

Richards in 1971 [145] and later mathematically optimized by Shrake and Rupley in 1973 [146]. It 

can be imaged as a surface generated by rolling a spherical probe over the Van-der-Waals surface 

of the molecule (Figure 1.11). The Shrake and Rupley algorithm employs the following steps: 1. 

Generation of a mesh of points at equidistant positions to the atoms. The distance is determined 

by the Van-der-Waals radii of the atoms and the probe radius. The probe radius is often set to 0.14 

nm, corresponding to the size of water molecule. An elegant way to place points on a sphere are 

the Fibonacci Sphere also known as Golden Spiral method [147]. 2. Test, which points are not 

within the Van-der-Waals plus probe radii of the other atoms. These points are considered solvent 

accessible and their fraction is proportional to the solvent accessible surface area. Precisely, it is the 

fraction of accessible points multiplied by the sum of the spherical areas around the atoms defined 

by the Van-der-Waals radii and the probe radius. Besides the Shrake-Rupley method, few other 

approximations for the SASA have been proposed and are frequently used such as the LCPO 

method [148] or the power diagram method [149]. 

In a protein, it makes sense to accumulate the areal contributions of the protein residues to show 

which residues are more or less solvent exposed. This, however, affords a normalization strategy 

because larger amino acids would naturally occupy a larger area. Thus, the term relative solvent 
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accessibility (RSA, also called solvent exposure) was established, which expresses the SASA of an 

amino acid relative to its maximum possible SASA. The maximum SASAs have been investigated 

in a range of theoretical and empirical studies by [144],[145] or most recently by [146]. They are 

usually based on theoretical considerations of G-X-G tripeptides. Earlier studies employed an 

extended peptide conformation to estimate the maximum SASAs, whereas the recent values use 

bent conformation such as found in alpha helices. Intuitively, the curved conformation allows even 

higher maximum SASAs. The RSA takes values between 0 for fully buried residues and 1 for 

residues, which are most solvent exposed. Particularly for protein-protein interactions, the change 

in solvent accessibility upon complexation is of high interest and is an indirect measure of binding 

strengths. The surface area, which is accessible in the single proteins and inaccessible in the 

complex is called buried surface [147]. Additionally, the identification of certain residues that 

undergo large changes (become buried) are often key drivers for the association and recognition. 

They can thus be considered binding hot-spot residues and may be targeted by small-molecule 

ligands [148].  

The analysis of the interface area can be accompanied by a thorough elucidation of the 

intermolecular interactions between receptor and ligand. The presence of a large number of 

stable, favorable interactions such as hydrogen and ionic bonds or hydrophobic interactions 

correlates with a high affinity [149, 150]. To quickly identify interactions within molecular dynamics 

trajectories, intermolecular contact occupation matrices or maps are frequently employed. [151] 

Therefore, initially the pairwise inter-residue distances are computed. As discussed before (see 

Chapter 1.3.4), the definition of inter-residue distance varies among the applications. For 

intramolecular residue-residue distances, alpha or beta carbon distances are used. For 

intermolecular distances, rather minimum-heavy-atom distances of the whole amino acid or only 

the sidechains are utilized. Center-of-mass or center-of-geometry distances are even further 

options. In a next step, for every residue-residue pair, the ratio of frames in the trajectory is counted, 

in which the pairwise distance is below a certain threshold. The threshold (also called cutoff) 

depends on the distance metric as well as the application. For a loose screen of possible 

interactions, a heavy atom minimum distance cutoff of 0.6 nm might be sufficient, for the 

identification of allosteric intramolecular networks an alpha carbon distance of cutoff 0.8 nm might 

be more expressive [152]. In the end, the contact matrix includes occupation values for each 

residue-residue pair based on the chosen threshold. It is obvious, that an extended cutoff will yield 

higher occupations and vice versa.  

The contact matrix includes information on both the receptor and the ligand. It is usually rather 

sparse, because the majority of residues will not be involved in the interactions. Thus, it is 
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customary to filter the contact by either an occupancy cutoff e.g. 0.75 or 0.9, or by complementary 

information such as solvent accessibility or buried area. Additionally, the matrix can be projected 

to either the site of the protein or the ligand. Therefore, the pairwise occupancies can be cumulated 

row- or column-wise to yield residue-wise contact occupancies. Apparently, the residue-wise 

contact occupancy can exceed the value of 1, when e.g. one receptor residue is frequently in contact 

with multiple ligand residues. As this can be misleading, the residue-wise occupancy may be limited 

to 1, or the residue contribution to the total contact occupancy might be used. In the latter case, 

the occupancy matrix is normalized by its overall sum. The pairwise, or residue-wise contact 

contribution matrix (vector, respectively) indicates the relative importance of certain residues to 

the binding energy and can be considered another theoretical hotspot identification approach.  

When the major interactions are identified, they can be further classified. For protein-protein 

interactions as investigated by MD simulations, it is feasible to roughly classify the interaction pairs 

based on the residue type. Amino acids are classically grouped into apolar (hydrophobic), polar 

(neutral), charged (basic and acidic) categories . The hydrophobic amino acids are characterized by 

aliphatic or aromatic sidechains with none or only weak hydrogen bonding capacities. This group 

includes alanine, valine, methionine, leucine, isoleucine, proline, tryptophan, and phenylalanine. 

Polar amino acids carry hydroxyl (thiol) or amino groups and can thus engage in hydrogen bonding. 

Tyrosine, threonine, glutamine, glycine, serine, cysteine and asparagine belong to this group. Lysine 

and arginine are protonated under physiological pH conditions and thus positively charged. 

Glutamate and aspartate carry carboxyl groups and are hence deprotonated and negatively charged 

at neutral pH. Histidine is an exception as its pKa is close to 7 but it is depending on the molecular 

environment and hydrogen bonds with neighboring residues [153]. Canonically, it is considered 

basic. It can, however, be positively charged in some instances. Considering protein-protein 

interactions which are mostly sidechain-mediated, the most favorable interactions occur between 

similar groups such as hydrophobic/hydrophobic, polar/polar or basic/acidic (acidic/basic, or 

more generally charged/charged). In particular, polar/charged interactions are also favorable, 

because charged groups can engage in so called short hydrogen bonds [154]. 

For a more detailed analysis, the presence and quality of hydrogen bonds must be explicitly 

investigated. In fact, the free energy contribution of a certain hydrogen bond towards the total 

binding free energy depends on multiple geometric and chemical properties and ranges between 2 

and 7 kcal/mol in most biomolecular systems. Various methods have been proposed to estimate 

the hydrogen bonding energy [155]. In general, a hydrogen bond is characterized by three atoms, 

the donor heavy atom with the bound donor hydrogen, and acceptor heavy atom. The donor and 

acceptor atoms are more electronegative than the hydrogen. The distance between donor heavy 
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atom and acceptor heavy atom is around 0.3 nm and shorter. The angle between the three atoms 

is close to 180°. Briefly, the shorter (up to a certain threshold, i.e. covalent bond distances) and the 

closer to  linear a hydrogen bond, the higher its dissociation energy [156]. Even though hydrogen 

bonds and their tremendous impact on biology and chemistry are known for many years, they are 

still subject of ongoing research and particular features remain a matter of debate [157]. 

1.5 Statistical analysis of conformational ensembles 

Complex formation between two proteins or a protein and small molecule ligand can induce 

conformational changes in both the receptor (protein) and the ligand via an induced fit or 

conformation selection mechanism. In enzymes, the ligand-induced conformational changes might 

directly affect the catalytic center and thus be substantial part of a selectivity mechanism [158]. 

Additionally, the catalytic cycle of an enzyme may encompass steps, in which, after catalytic 

reaction, the protein adopts a conformation that literately ejects the product from the binding site 

[159]. The conformational flexibility in the realm of biomolecular reactions is often based on bond 

rotations rather than bond stretching or angle bending. Thus, conformational analysis often 

includes dihedral angles.  

1.5.1 Dihedral angle analysis 

One of the earliest and most commonly conformational analysis of proteins is the Ramachandran 

plot [160]. It is a scatter or contour plot of the peptide backbone torsions angles ψ over φ (Figure 

1.12). ,The angle ω corresponds to the torsion angle over the planar peptide bond. In most 

structural biology applications, it remains 180° and is thus rarely explicitly considered. The position 

of a point in the 2D torsion angle map, which corresponds to the backbone conformation of a 

distinct amino acid, allows statements on the secondary structure of the protein at the position. 

Thus, the Ramachandran plot of a single protein yields insight on its global structure and degree if 

disorder. Ramachandran et al. realized that the torsion angular space of the protein backbone is 

constrained to distinct regions (fully allowed and outer limit regions) due to steric hindrance.  

In MD simulations, it can be revealing to monitor certain torsion angles of a single residue over 

the whole trajectory and to visualize the data in the same way as Ramachandran et al. Residues in 

a rigid region of a molecule will yield only points in a locally confined area of the plot, whereas 

flexible regions might occupy multiple, distinct areas. When sufficiently large ensembles of tens of 

thousands of conformations are available, it is customary to estimate the density of points at distinct 

positions by either binning or Kernel density estimation [161]. Naturally, the density of the points 

is then equivalent to the probability density of the conformation at the particular position. A 
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visualization of the point density or the probability density function over the conformational space 

(φ, ψ) is called probability map.  

Analog to equation 12, we can use the probabilities to construct a free energy map or free energy 

landscape 

Δ𝐺(1→2) = −𝑘𝑏𝑇 ln
𝑃1

𝑃2
  (20) 

where ΔG(1→2) corresponds to the free energy difference for the transition from conformation 1 

with the probability density P1 to the conformation 2 with the probability density P2. The factor kB 

is the Boltzmann constant with a value of 1.38 x 10-23 J/K and T is the absolute temperature. In 

practice, state 2 is frequently chosen as minimum energy state, i.e. the point of the highest density, 

and the free energy map is constructed relative to it [162].  
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Figure 1.12: Backbone torsion angles define predetermine secondary structure. A) Schematic representation of 
a protein backbone with annotated torsion angles φ and ψ. The Cα hydrogen is omitted for clarity. B) The original 1963 
Ramachandran diagram redrawn in modern aesthetics.  

 

1.5.2 Dimensionality reduction 

For one or two dimensions, the above considerations are easy to understand and mathematically 

implemented. However, in practice, often more than two torsion angles are necessary to describe 

the dynamics of a protein. The fact, that molecular torsion angles are often not statistically 

independent from each other, adds to complexity. Thus, the estimation of the joint probability 

must be performed in the high dimensional space. The number of bins increases exponentially with 

the number of dimensions and the density tensor becomes increasingly sparse. Kernel density 

estimation could theoretically be a reasonable alternative but suffers from numerical problems 

especially with infinite Kernels (such as Gaussian) or when fast Fourier transformation as applied 

to speed up the expensive calculation. Therefore, two approaches are increasingly employed 

individually  or in combination: dimensionality reduction and clustering. Here, it is important to 
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mention that torsion angles are periodic (circular) quantities. That means the two-dimensional flat 

reorientation of the Ramachandran plot is actually a distortion of the true topological space, which 

would be better reflected by a torus. This must be taken into account, when the above methods 

are applied. For low dimensions, it can be sufficient to transform angles φ into two-dimensional 

numbers z = (cos φ, sin φ) [163, 164]. 

Dimensionality reduction methods utilize the intrinsic structure of the high-dimensional data to 

generate a lower dimensional projection or embedding. The aim of dimensionality reduction 

techniques is to visualize the high-dimensional data under minimal loss of variance and maximum 

conservation of the pairwise differences. This would allow that points, that are pairwise similar (by 

whatever similarity metric) in the high-dimensions, are also mapped together in the low 

dimensional representation. Dimensionality reduction is nowadays considered a subfield of 

machine-learning, whereas it was traditionally considered multivariate statistics. One if not the most 

commonly employed technique is the principal component analysis with its many variations and 

generalizations [165]. Mathematically it is equivalent to singular value decomposition and based on 

the projection of the data along the vector of the highest variance. Considering the data is defined 

in n-dimensional Cartesian space and is standardized i.e. centered and normalized, the PCA 

algorithm is simple and robust. Initially, the covariance matrix is computed: 

 C = [

𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗) ⋯ 𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑛)

⋮ ⋱ ⋮
𝐶𝑜𝑣(𝑥𝑛, 𝑥𝑗) ⋯ 𝐶𝑜𝑣(𝑥𝑛, 𝑥𝑛)

]  (21) 

The vectors xi and xj (i,j≤n) correspond to columns or features of the data matrix X of shape (m,n) 

where m is the number of samples and n the number of features (dimensions). The covariance 

matrix is symmetrical and the main diagonal holds only the variances of the data because cov(xi, xi) 

= var(xi).  

Solving the eigenvalue problem 

𝐶𝑣 = 𝜆𝑣  (22) 

yields n eigenvalues λi and eigenvectors vi of the covariance matrix. The eigenvector corresponding 

to the largest eigenvalue yield the projection with smallest projection error and largest variance. 

The second eigenvector is orthogonal to the first one, and has the second largest variance, and so 

on. To project the data into e.g. two dimensions, the first two eigenvectors are multiplied with the 

original data X to attain the transformed data X*.  

𝑋∗ = [𝑣1, 𝑣2]
𝑇 ∗ 𝑋𝑇  (23) 
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PCA has for example been be employed to project torsion angle data of peptides and to calculate 

the free energy map in the projected space [162]. In this way, the conformational space of a 

molecule can be visualized in a two-dimensional map and free energy differences between distinct 

conformations can easily be estimated. The downside is, that especially when features are periodic, 

PCA is not able to separate point clouds in the projection and energy wells appear deeper than they 

actually are.  

Depending on the application, variants of PCA may be employed. Especially in the field of Markov 

state modeling, the time-lagged independent component is used. Markov state modeling is process 

of generating a Markov or hidden Markov state model by discretization of the state space and 

subsequent estimation inter-state transition rates. Markov state models are versatile tools to 

analyze, understand and visualize the dynamics of complex systems and have enjoyed a reasonable 

hype in the late 2010 years. However, their generation is tedious and accurate Markov state models 

afford extensive sampling. Additionally, the number of states and transitions should be humanly 

comprehensibly. Thus, traditional Markov state modeling is slowly replaced by elegant, self-

enforcing machine learning methods. The field of canonical Markov state models is nicely reviewed 

by Husic and Pande [166]. Anyway, time-lagged independent component analysis (tICA) still is of 

value to reveal slow transitions in molecular dynamics trajectories and is therefore utilized to 

identify collective variables for enhanced sampling methods [167, 168]. The advantage of tICA 

over PCA is that it includes time information via a lag parameter τ in a way that the eigenvalues 

and eigenvectors are not computed from the covariance matrix, but a time lagged covariance matrix 

[169]. 

Not a variant but rather generalizations of PCA are the manifold learning embedding methods t-

distributed neighbor embedding (tSNE) and its successor UMAP: uniform manifold 

approximation and projection for dimension reduction. The former was proposed in 2008 by Van 

der Maaten and coworkers [170] and has since seen extensive use in all fields of data science as well 

as in cell biology and molecular simulation. The method allows embedding and exploration of large 

high dimensional datasets with unprecedented conservation of local and global structure. The key 

idea of t-SNE is that it carries over probabilities distribution from the high dimensional data to the 

low dimensional embedding. This is in contrast to the most basic embedding approach 

(multidimensional scaling), which aims to reproduce the distances. The probability distributions 

are two dimensional and encode the pairwise similarities. The algorithm then minimizes the 

Kulback-Leibler divergence [171] between the high-dimensional and the embedded probability 

distribution. Briefly, for discrete distributions as in the above case, the Kulback-Leibler divergence 

is the expectation value of the logarithmic differences between two probability distributions. Ten 
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year later, the UMAP algorithm has been proposed [172] and quickly reached tremendous interest 

in especially the single cell community [173]. It is largely considered superior to t-SNE based on its 

better performance, lower memory consumption and better preservation of the global data 

structure. UMAP is centered on complex topological data analysis and a full derivation and 

description of the algorithm is beyond the scope of the thesis. Basically, the initial step is the 

generation of k-simplices by the high-dimensional data points. A k-simplex is the convex hull 

spanned by k+1 points, i.e. a line connecting two points or a triangle spanned by three points, etc. 

In the next step, the simplices are connected to a simplicial complex if they share a face. Comparing 

the simplicial complex with a nearest neighbor approach shows that most information is encoded 

in the 0- and 1- simplices. Thus, the topological problem of the simplices can be translated into a 

graph and the embedding converges to a graph layout problem which can traditionally be solved 

via spectral methods such as Laplacian eigenmaps or diffusion maps. The full algorithm is of course 

much more complicated to be able to deal with the complexity and diversity of real world data. For 

instance, mathematical finesses, such as locally varying metrics and fuzzy open sets are utilized.  

The three methods (PCA, t-SNE and UMAP) are exemplarily shown for a subset of the MNIST 

digit dataset. It contains 70.000 images of handwritten digits in 28x28 pixel resolution. Each image 

can be converted to a feature vector with a length 784 and entries between 0 and 1. (Figure 1.13 

A) In the two-dimensional projection by PCA, a weak separation of the different clusters can 

already be seen. This is significantly improved in the t-SNE and UMAP embedding. It shows that 

both the embedding methods still have difficulties to distinguish between 7 and 9 as well as between 

9 and 3. The clusters of 0 and 1 are well separated. (Figure 1.13 B) Anyway, the visualization 

highlights the huge advantage of embedding methods to visualize high-dimensional data in a low 

dimensional space.   
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Figure 1.13: Comparing different data dimensionality reduction approaches. A) A subset of the handwritten 
digits in the NIST digits dataset and B) corresponding two-dimensional representations by PCA, T-SNE and UMAP 
embedding (own calculations). 

1.5.3 Clustering 

Whereas dimensionality reduction methods largely fulfil data visualization purposes, clustering 

algorithms are highly useful to discretize the conformation space based on the structure of the data. 

From a machine learning perspective, clustering belongs to unsupervised learning methods and 

stands in opposition to classification, which is mostly supervised. In the case of classification, one 

aims to find a mathematical function, which allows to separate labeled data points based on a set of 

features. This mathematical function is called a classifier and, if well trained, is able to sort a new, 

unlabeled points into the previously learned classed. Classification is one of the most central 

problems of machine learning and plenty approaches such a logistic regression, k-nearest-neighbor, 

decision tree, random forest and deep learning, have emerged and are heavily used [174, 175]. In 

traditional trajectory analysis of molecular conformations, the data is rather unlabeled. Thus, 

classifiers cannot be trained via supervised learning methods and unsupervised clustering 

techniques are preferred. It has to be noted that, in some exceptional cases, large databases of 

orthogonal information, e.g.experimental binding constants or solubilities are available and 

supervised learning is possible and recommended.  

Anyway, analysis of the conformational space using clustering methods, also called conformational 

clustering, is a common and intuitive way to not only understand but also process molecular 

dynamics data in automatized workflows. It generally aims to identify groups of pairwise similar 

data points. Clustering can be combined with dimensionality reduction methods to help evaluation 
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of the clustering via visual inspection of the outcome on lower dimensional representation. To 

what extent clustering can be used in the embedded space is still a matter of debate. It appears 

intuitive to exploit the quality of the embedding to reduce the mathematical and computational 

requirements for the clustering algorithm. However, it is important to harmonize the applied 

metrics. That is, if the embedding preserves probability distribution and not distances, a distance-

based clustering in the embedded space might be misleading. The metric lies at the heart of every 

clustering algorithm and drastically affects quality and performance. It is the mathematical function 

used to quantify how similar or how different two points in the feature space are. Differences are 

also called distances and are defined in the range of 0 (identical) to infinity (very different). A matrix 

containing the pairwise distances between all points in the set is called the distance matrix. A metric 

is also called a norm because the distance between two points is the absolute of the connecting 

vector, and the vector can be normalized to unit length by dividing it by its length. In a low 

dimensional Cartesian space, e.g. spanned by the two H-O bond distances of water molecule, the 

Euclidean distance metric, also called standard norm or 2-norm is an intuitive and often expedient 

choice. The n-dimensional 2-norm is defined as 

𝑑(𝑖, 𝑗) = |𝑥𝑖 − 𝑥𝑗| = |𝑣𝑖,𝑗⃗⃗ ⃗⃗  ⃗| = (∑(𝑣𝑘 )2

𝑛

𝑘=1

)

1
2

  (24) 

where d(i,j) is the distance between the two points xi and xj, vi,j is the connecting vector, and k 

indexes the different dimensions (features). Such a norm is a representative of the so-called p-

norms, with p=2. It can be easily generalized by changing the value of the exponent p (p≥1). How 

the choice of p affects the outcome in higher dimensions was systematically investigated by 

Aggarwal et al. [176]. In their mathematical experiments, they draw points from an n-dimensional 

uniform distribution and calculate the distances to the closest and the farthest points from the 

origin. The normalized difference between such distances is measure for the contrast of the applied 

metric. Interestingly, with the Euclidean metric (2-norm), the contrast increases only initially with 

the number of dimensions. When the dimensions exceed of number of 10, the contrast only 

increases marginally. Thus, when points in e.g. a 20 dimensional space significantly differ in only a 

few of them, the Euclidean norm will not be able to distinguish between them. This observation 

has been coined “Curse of Dimensionality”. Fortunately, the magnitude of this effect can be 

reduced by employing a different norm, e.g. the extreme cases of the p-norm: the 1-norm also 

known as Manhatten or Cityblock metric or the infinity-norm, which is also called maximum norm. 

Besides the p-norms, a broad range of different metrics exist which are optimized for their specific 

fields of application. For example, the Haversine metric, also called great circle distance allows the 

calculation of the shortest path between two points on the surface of sphere given their longitude 
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and latitude values. It was not yet accomplished to generalize the Haversine formula into higher 

dimensions. Other examples are distance metrics for Boolean vectors such as the Jaccard distance 

also known as Tanimoto score. 

With the choice of an appropriate distance metric, the clustering can finally be performed. One of 

the most used and most intuitive clustering algorithm is k-means [177]. In contrast to other 

clustering algorithms, it operates with the actual data points and not only their pairwise distance 

matrix (Figure 1.14 A). The aim is to find a partitioning of the data points, so that the sum of the 

distances between points within a cluster and their mean is minimized. The number of clusters k 

is an input parameter for the clustering. The algorithm operates in three steps, of which 2 and 3 

are repeated until convergence is reached:  

1. Initialization: The first k “means” (seeds) are chosen  

2. Assignment: All data points are assigned to their nearest mean 

3. Update: The cluster means are re-calculated 

Convergence to the global minimum is not guaranteed. Hence, in practice multiple attempts with 

different initializations are performed and the sums of intracluster-distances to the centroids are 

compared. Apparently, the initialization method is key to find the global minimum. In an 

assessment of Celebi et al. [178], they figured that the k-means++ variant performs generally well. 

This approach was suggested by David and Vassilvitskii [179] and exploits the data structure to 

place the seeds in well separated areas.  

Another class of clustering algorithms is density-based clustering with one massively used 

representative being DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 

[180]. The number of clusters as well as the ratio of noise (unclustered data points) is determined 

by the algorithm based on the tuning parameters ε and min_samples (Figure 1.14 B). DBSCAN 

and derivatives are attractive for molecular dynamics trajectory data because the density is 

equivalent to the energy as described earlier. Thus, clustered conformations are likely to belong to 

the same energy minimum and not density-connected points are disconnected by high energy-

barriers. Popular extensions to DBSCAN are OPTICS [181] and HDBSCAN [182]. In the original 

approach, the density at each point is estimated by the number of points within its ε-environment. 

This information is readily available from the pairwise distance matrix, independent of the utilized 

metric. When a point has at least min_samples points in its ε-neighborhood, it is considered a core 

point. Every point that has less than min_samples points within ε but is within ε of another point 

is a bordering point. Every other point is considered noise. Finally, a reachability graph is 

constructed through connecting core points within ε-environments by edges. Pairwise reachable 

points are clustered together. Boundary points are assigned to the cluster of their connected core 
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point. DBSCAN reliable recognizes clusters with different shapes and sizes and filters noisy points. 

It has however difficulties to distinguish clusters with different densities. The latter topic is partially 

addressed by hierarchical DBSCAN (HDBSCAN). 

In general, hierarchical clustering is a family of distance-based cluster analysis, which can be further 

divided into agglomerative and divisive approaches. Both ways aim to build a hierarchy of clusters, 

traditionally visualized via dendrograms (Figure 1.14 C). The standard method is hierarchical 

agglomerative clustering. Here, each observation (point) starts in its own cluster. In each iteration, 

the most similar clusters are merged. The algorithms are often implemented recursively. In 

complete-linkage clustering, the distance between two clusters is the maximum of the distances 

between the points within the respective clusters. In single-linkage clustering, it is the minimum 

distance. Another popular linkage criterion is Ward’s minimum variance method [183]. In Ward’s 

method, the cluster distance is the sum of squared pairwise distances between the points of 

different clusters. 

   

Figure 1.14: Schematic representation of different clustering algorithms. A) A point cloud is clustered via k-
means (k=3) clustering. The assignment is chosen so that the distances of the points to their means (black x) is 
minimized. B) Visualization of a DBSCAN calculation for certain core point and a min_samples value of 13. C) 
Distribution of six points (a-f) and the corresponding dendrogram.  
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1.6 Physical characterization of thin molecular layers 

Molecular layers, such as self-assembled monolayers (SAM) and or lipid bilayers must be 

considered separately from globular molecules or a bulk phase, due to their confined, almost planar 

geometry. These almost two-dimensional assemblies form a distinct, clearly bounded phase. 

Physical characterization included the description of the phase as a whole as well as the 

conformations and motions of the molecules within.  

1.6.1 Global descriptors 

The distance between the two outer boundaries (phase boundaries) is called the thickness or in 

case of SAMs also the height of the layer. Experimentally, the thickness of lipid bilayers is often 

measured via NMR spectroscopy [184] whereas the height of SAMs is rather investigated by 

ellipsometry [185] or neutron scattering [186]. Depending on the experimental method, the results 

may differ. In NMR and neutron scattering, the relative position of the heavy atom nuclei is 

analyzed, whereas ellipsometry rather recognizes the interfacial boundaries. Computationally, both 

observables can be read off from normal direction density profiles. The density profile is generated 

from a molecular dynamics trajectory by dividing the simulation box into a number of horizontal 

slices and determining the mass-weighted atom number distribution. Therefore, it is customary to 

center the layer at a certain z-coordinate to avoid smearing of the density peaks due to normal 

directed motions of the whole layer. The density profile of a lipid bilayer has two significant peaks, 

which correspond to the positions of the phosphate groups and mark the position of the head 

groups. The distance between these peaks is the thickness (PO4-PO4 thickness) of the lipid bilayer. 

Interestingly, the closer towards the center of the bilayer, the density decreases which is a results 

of decreasing order and increasing flexibility of lipid tails.  

While the thickness describes the layer in normal direction, the lateral directions are characterized 

by the area per molecule, also known as molecular area or in the case of lipid bilayers lipid area. 

The lipid area is a measure of the areal density of the layer. In a molecular simulation, the molecular 

area can be obtained from the number of molecules in a layer divided by its lateral dimensions. 

This affords that the layer had enough time to sufficiently equilibrate in an NPT ensemble (flexible 

volume).  

A third experimentally and computationally observable figure is the bond order parameter [187, 

188]. It is usually investigated for the carbon-hydrogen bonds of the fatty acyl chains and indicates 

the degree of packing, or in other words, it quantifies if the molecules rather adopt liquid-crystalline 

(gel-like) conformations (order parameter is high) or if they are mostly disordered (order parameter 

low). The order parameters can accurately be measured via NMR and are geometrically defined as 
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𝑆𝐶𝐻 =
〈3 cos2𝜑−1〉

2
  (25) 

where φ denotes the angle between a bond vector and the layer normal. Triangular brackets 

represent time and ensemble average. In the case of a multi-molecular assembly, an ensemble is 

already present from the number of different molecules. Thus, in contrast to single-molecule 

simulations where the ensemble is generated via temporal sampling, here, an ensemble is generated 

by different instances of the same molecule plus temporal sampling. In some cases, it makes sense 

to distinguish between time and ensemble (molecule) averaging. Inspection of equation 25 is 

revealing. The angle φ range is between 0 and 180° (π). Hence, cos φ yields an almost linear 

projection of the angle to the range of [-1, 1]. The square raising, however, folds the negative values 

for φ>90° into the first quadrant and the distinction between values of below and above 90° is lost. 

Instead, the cos2φ shows how far the angle is away from 90 degree on a scale of 0 to1. Finally, the 

parameter is mapped to the range of -0.5 to 1, where 1 indicates a bond-normal angle of 90°, 0.5 

of 60°, 0 of 30° and -0.5 of 0°. The introduction of the order parameter and the consequent 

avoidance of directed angles only allows meaningful averaging. Thus, an average CH bond order 

parameter 0.3 and higher can only be achieved by a collectively similar conformation and 

orientation of many acyl chains, which corresponds to a gel like phase.  

It has to be noted that, the three descriptors thickness, area and order parameters are physically 

interdependent. A layer of molecules with for example 16 carbon acyl chains can adopt different 

phases: a gel- or wax-like, so-called lo liquid ordered lO phase or an amorphic, liquid disordered lD 

phase depending on the degree of saturation. In the liquid ordered phase, all tails are in a similar, 

extended conformation. The order is high, the lipid area is small and the thickness is also high. In 

the liquid disorder phase, the acyl tails are literally melted and cover a larger area. The thickness 

and order parameters decrease. Excitingly, both phases can coexist in a multi component layer. A 

liquid ordered phase within a liquid disordered bilayer for example is called lipid raft and can in 

cells serve as a docking, recognition and signaling platform [189]. 

1.6.2 Spatiotemporally resolved description 

In lipid bilayers, molecules underlie a slow lateral diffusion [190]. In contrast to a protein in water, 

the molecules of interest are solvated in their own kind and additionally constrained to the 

molecular layer. Interactions are mediated by head groups and the acyl chains. The acyl chain 

interactions are predominantly formed between saturated (more ordered) or between unsaturated 

(more disordered) chains and usually short-lived. Hence, a temporal average-based description 

must be employed for the quantification. One way is the spatiotemporal analysis of the bilayer 

properties. For example, it is possible to analysis the local density using a discretization-based 
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approach and elucidate the temporal averages over various lag times. Such an approach reveals 

transient, locally constrained, cholesterol-rich phases in model bilayers. When a distinct solute, such 

as a membrane protein peptide or protein, is of interest, radial or cylindrical distribution functions 

(cdf) might be revealing. They are constructed by counting representative atoms within spherical 

or cylindrical shells of increasing radii around the solute. For large radii, the cdf converges to the 

bulk (global layer) density. For small radii, i.e., first and second solvation shell, differences among 

the various molecules in the bilayer show preferential interaction partners.  

In SAMs, lateral diffusion is severely limited. Hence, the spatial arrangement of mixed SAMs is 

pre-determined by interactions in the solvent phase before the adsorption stage, or through 

interactions during the adsorptions. Unfortunately, the SAM are mostly probed after adsorption 

and earlier effects are neglected. In mixed SAMs, in which one component is functionalized with 

large moieties such as acyl chain anchors connected via a polyethylene glycol (PEG), interesting 

intermolecular interactions can be indirectly observed with spectroscopic methods. For example, 

the degree of order is proportional to the concentration of the anchor-carrying components 

because of pairwise stabilizing interactions. 

1.7 Structure and aims of the thesis 

In this research thesis, the computational technique of molecular dynamics simulation is critically 

assessed for its capabilities to quantitatively disclose the molecular fundamentals of macroscopic 

observations. However, it was decided that the work should not be conducted in a way of a 

benchmark study but as a set of applied molecular dynamics studies on recent, practical problems 

in the fields of biology and chemistry. Therefore, we collaborated with different labs who were 

interested in specific questions and in return shared their expertise and experimental insight. This 

way, we could study the MD method and its limitations, develop novel, integrated MD workflows, 

and thereby also perform fundamental biology and chemistry research. This work is truly 

interdisciplinary, as it combines theories from the fields of numerical mathematics, computational 

physics, machine-learning (multivariate statistics), programming, physical chemistry, and 

biochemistry. The interpretation of the results additionally affords knowledge in the fields of 

spectroscopy, preparative chemistry and systems biology. It is apparent, that in such an 

interdisciplinary framework, not all theories can be studied and described in extensive detail and 

some methods herein are applied and interpreted without a complete description and discussion 

of their physical or mathematical foundations.  

We have applied MD simulation to three classes of molecular systems, namely bimolecular, 

unimolecular, and multimolecular systems. The uni- and biomolecular systems can be considered 
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of biological interest, whereas the multimolecular systems are rather chemistry-oriented. The three 

classes make three blocks within the thesis, in which similar modeling and analysis methods are 

employed. However, each individual problem has its own chapter because it corresponds to a 

manuscript which has either been already published or is still in the final stages of preparation. 

The two bimolecular system chapters deal with the intermolecular interactions between a 

protein receptor with small molecule ligand and protein receptor with a substrate protein. The 

former receptor is the norovirus protruding domain which interacts weakly with putative allosteric 

modulators that a present in the human gastrointestinal system: bile acids.  The binding mode of 

the bile acids was not a priory known and was predicted using an ensemble docking workflow. 

Based on the prediction, the protein-ligand interactions were studied using MD simulation and 

compared to NMR chemical shift perturbation experiments. The results shed light on the bile acid 

recognition of human norovirus and deepen the understanding of the importance of 

conformational selection for docking approaches. In the latter system, selective binding of a 

diubiquitin protein substrate to a either a human or a bacterial isopeptidase enzyme, crystal 

structures of the complexes were available. MD simulations of the enzymes with and without the 

bound substrate proteins were performed and analyzed in unprecedented detail. The effect of 

substrate binding on the competence of the catalytic triad was assessed as well as the composition 

of protein-protein interactions at the two major binding surfaces. The results were contrasting 

some experimental conclusions and yielded the insight that an intentionally induced mutation in 

the substrate on the bacterial protein complex has led to a misleading interpretation of the crystal 

structure.  

The unimolecular systems are comprised of a single protein molecule within a solvent phase. One 

of these proteins is heavily-glycosylated human growth factor erythropoietin (EPO). Here, 16 

models of EPO were generated, each with a different glycosylation pattern. The mutual interactions 

between the glycosylation and protein were studied with the aim to understand how glycosylation 

alters the proteins biophysical properties and how the site of the glycosylation selectively affects 

the local protein and glycan conformational spaces. The other protein is the protruding domain (P-

domain) of the norovirus VP1 capsid protein. It was used to study the posttranslational 

modification of deamidation (auto-reaction of asparagine to aspartate or glutamine to glutamate), 

which is a key driver of protein degradation and reduces shelf lives of therapeutic proteins. Here, 

the P-domain is an exquisite model because only one residue selectively undergoes deamidation 

with especially high rate. We use extensive MD simulations and advanced statistical and geometrical 

analysis to study the conformational spaces of the various deamination candidates to allow a first 

dynamics-based deamidation prediction model. 
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In the third block, multimolecular, layered systems are studied. The initial, short chapter serves as 

a transition from biological to chemical systems and introduces the concept of coarse-graining and 

the MARTINI force field. It deals with the preferred interactions of membrane-bound peptide 

with the lipid molecules in the surrounding bilayer. The second part shows how the methods of 

coarse-grained bilayer and membrane anchor modeling were transferred to a new class of systems: 

self-assembled monolayers (SAMs). We have developed a novel and complete modeling, simulation 

and analysis workflow for SAMs based on coarse-grained representation, a hexagonal packing and 

a flat surface model. This automatized protocol allowed rapid computational screening of the 

variety of mixed SAMs and predicted physical properties with high accuracy. After resolution 

transformation to full-atomistic detail, analysis of intramolecular interactions and resulting changes 

in conformation and orientation rationalized molecule-specific differences in infrared reflection 

adsorption spectra. The simulations together with experimental spectra led to the conclusion that 

certain SAM components aggregate either in the solvent phase or during the adsorption stage, 

which leads to highly non-isotropic SAMs.  In the final chapter, the advantages of the novel SAM 

model are utilized to investigate interactions between such mixed SAMs and adsorbing lipid 

vesicles. The interactions occur during the preparation of tethered bilayer membranes, when lipid 

vesicles are titrated onto SAMs. At a certain vesicle concentration and with a correct SAM 

composition, the vesicles rupture and the released lipids aggregate into a bilayer. How the SAM 

composition affects the critical vesicle concentration is unclear. Steered, coarse-grained MD 

simulations were carried to initiate interactions of vesicle and SAM. In subsequent equilibrium 

simulations, the SAM-vesicle contacts were classified and quantified. Together with quartz crystal 

microbalance studies, the results indicate that SAM components with a proficiency to form 

aggregates, allow earlier vesicle rupture and more robust bilayer formation.  

The thesis is structured in a way that the individual research chapters are framed by statements on 

how they fit into the main topic of molecular recognition and comments on the accuracy and 

feasibility of the molecular dynamics method for the particular problems. The global aim of the 

thesis is to develop a generalized, dynamics-based perspective on selective molecular interactions 

and their effect on the macroscopically observable behavior.  
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2 NOROVIRUS RECOGNITION OF BILE ACIDS 

In this chapter, the binding of bile acid molecules to a norovirus capsid protein is investigated using 

molecular dynamics, docking, and NMR spectroscopy. The NMR experiments were performed by 

collaborators at the University of Lübeck. The developed workflow may be of general interest for 

the estimation of binding modes of low affinity binders. The chapter is published in [191].  

2.1 Introduction 

Norovirus infections are among the leading causes of infectious gastroenteritis [192, 193] and pose 

a major health threat for immunocompromised patients [194] and people in developing countries 

[195]. To enable infection, it is essential that the protruding domain (P-domain) of the norovirus 

capsid protein VP1 attach to presented histo-blood group antigens (HBGAs) of the host cells [196-

198]. Hence, the HBGA binding site has been employed as a target for the development of 

potential virus entry inhibitors [199-201], however with no clinical significance. Interestingly, recent 

successes in the development of norovirus cell culture systems [202, 203] yielded the insight, that 

besides HBGAs, bile acids function as important infection-promoting cofactors [204, 205]. 

For particular norovirus strains, bile acid bindings sites with micromolar affinity have been 

identified crystallographically [204, 206] and localized in proximity of the HBGA binding sites. 

Here it is to mention, that the VP1 protein appears as a dimer. Thus, the dimer carries two 

symmetrical pockets for HBGAs and bile acids. To our surprise, the dominant human disease-

causing norovirus strains GII.4 and GII.17 do not display bile acid binding to these pockets. Yet 

still, bile acids are essential (GII.17) or at least promotive (GII.4) for norovirus infection. In this 

chapter, microsecond scale molecular dynamics (MD) are employed in combination with NMR 

spectroscopy by collaboration partners to identify a novel bile acid binding site of GII.4 and GII.17 

P-domains and to predict the ligand binding mode. Such MD simulation can reveal transient ligand 

binding pockets [207], which are also referred to as sub-pockets, adjacent pockets, channel/tunnel, 

or allosteric pockets [208]. Small molecule ligands (such as bile acids) may selectively bind to one 

or to an ensemble of such pre-existing conformations [135]. The theoretical methods were guided 

and restrained by NMR experiments, which are described in the following section. 

The selective, yet low affinity binding bile acids by the norovirus P-domain dimer is an archetypical 

problem in the area of early-drug discovery, in which a drug candidate was identified through a 

screening experiment. This so-called hit would then be optimized using medicinal-chemistry or 

structure based approaches or a combination thereof. The aim of hit-to-lead optimization is to 

establish and to strengthen specific protein-ligand interactions by the introduction or alteration of 

chemical groups [209]. The chemical effort can be lowered by structure-guided restraints [210]. 
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However, co-crystal structures of the protein-ligand complex at this low-affinity binding stage are 

often impossible to generate[211]. Here, we show an NMR-driven ensemble-docking workflow as 

an alternative approach to estimate both binding site and mode of a low-affinity ligand.  

2.1.1 NMR spectroscopy  

Three classes of NMR experiments were conducted by R. Creutznacher to investigate bile acid 

binding to Norovirus P-dimers. 1H15N TROSY HSQC and methyl TROSY chemical shift 

perturbation (CSP) experiments were performed to identify the bile acid binding region (Figure 

2.1). Saturation-Transfer Difference (STD) NMR allowed the estimation of a binding epitope of 

cholic acid and NMR titration provides binding affinities for the various cholic acid species (Figure 

2.2).  

 

Figure 2.1: Chemical shift perturbation upon cholic acid binding to Norovirus P-dimer. A) 2D NMR spectra 
of selected residues in bound (red) and unbound (gray) state. B) Euclidean shifts of each residue. Orange bars are larger 
than the mean plus the standard deviation. Red bars are larger than the mean plus two times the standard deviation. 
C) Surface model of Saga P-Dimer with residues colored according to the  significance of chemical shifts. Colors 
identical to panel B. 

CSP NMR experiments allow the observation of the change in the NMR spectra of especially 

proteins upon complexation e.g. with a small molecule ligand. As the herein recorded spectra are 

two-dimensional (2H-15N and 2H-13C), the chemical shift perturbation is calculated as the 

Euclidean distance between the peaks. Usually, many of the NMR spectral peaks undergo a slight 

change in such experiments. Therefore, the significant CSPs are selected as the ones which are 
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larger than the average plus the standard deviation of all measured CSPs [212]. The CSP 

measurements require near-complete NMR peak-to-residue assignments of backbone and methyl 

groups. For the herein considered P-domains of the GII.4 Saga strain, this was previously achieved 

by Mallagaray et al [213]. In presence of 8 mM CA, the chemical shifts of the P-dimer are perturbed 

in a distinct region of the protein, which is on the opposite of the regular substrate binding pocket. 

The highest significant backbone TROSY CSPs are reported for Val508, Gly503, His505, Leu507, 

Asp506, Tyr514, Leu486, Leu249, Asn512, and Val234 (in order of decreasing CSP). Their CSPs 

are larger than the mean plus two standard deviations. For, Gln504, Ile509, Phe487, Gly252, 

Leu527, Asn479, Val478, Asp481, Asn522 and Gly264, the CSP were also significantly high, yet 

only higher than the mean plus one standard deviation. Most of the high-CSP residues form a large, 

continues patch on the protein surface and only Val234, Leu249, Gyl252 and Gly264 are in remote 

positions. In addition to the high backbone CSPs, Val478, Leu486 and Leu507 show also 

significantly high methyl TROSY CSPs. The c-terminal residues Leu527, Ala528, and Met530 have 

high CSPs exclusively in the methyl TROSY spectra.  

 

Figure 2.2: Epitope mapping of cholic acid. The red atoms receive high saturation (80-100%) and become most 
buried. Yellow atoms correspond to 60-80% received saturation. 

On the bile acid site, the binding can be explored by STD NMR. The highest saturation is achieved 

at the hydrogens of C3, C12, C18 and C19 which belong to the more hydrophobic site. However, 

also hydrogens at C7, C16, C16, C21, and C23 on the opposite site receive saturation from the 

protein. Additionally, dissociation constants KD of CA and GCDCA were determined using both 

CSP NMR and STD NMR titration. The KD of CA against GII.4 Saga P-dimers is in the order of 

10 mM, and around 4 mM against GII.4 virus like particles (VLPs). The affinity against VLPs and 

P dimers of other Norovirus strains is similar or lower with KD values ranging from 6 to 32 mM. 

GCDCA has slightly higher affinity to GII.4 Saga P dimers (1.5 mM).  
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2.2 Method 

2.2.1 Model generation 

Cholic acid was modeled using CHARMM-GUI ligand reader [78] with a coordinates from RCSB 

ligand expo [214]. The parameters were generated using CGenFF [87] as implemented in 

CHARMM-GUI. Cholic acid is structurally related to cholesterol, which is heavily studied in bilayer 

simulations as frequently performed using the CHARMM lipid force field [84, 215]. Thus, 

parameters for cholic acid were considered sound and reliable.  

The protein models were generated using the CHARMM-GUI PDB reader [216]. For the GII.4 

Saga strain, the crystal structure from PDB-ID 4OOX [217] was used. Histidine residues 292, 347, 

417, 460 and 501 were protonated at Ne position. Histidine residues 378, 396, 414, 490 employed 

the standard scheme: protonation at the delta nitrogen. Histidine 505 was double protonated and 

thus charged. Both subunits, i.e., the whole dimer was modeled. Both the termini were charged (R-

NH3+, R-COO-). Using the CHARMM-GUI quick MD simulator [218], the cubic simulation box 

was generated with at least 2 nm space in every direction from the protein. The box was filled with 

TIP3P water [219, 220] and ionized to 0.15 M NaCl using random ion placement. Protein topology 

files including CHARMM36 parameters were generated by CHARMM-GUI. To investigate 

possible further binding hotspots for cholic acid, five instances of the molecule were added to the 

simulation box. They did not undergo stable interactions with the protein or themselves and were 

thus neglected.  

The docking scores and poses were computed with AutoDock Vina [129] (ver. 1.12). Receptor 

(GII.4 P-dimer) and ligands (bile acids CA, DCA, CDCA, and GCDCA, Figure 2.3) were prepared 

for docking with AutoDock tools [128]. The protein was kept rigid, whereas all rotatable bonds of 

the bile acids were flexible. Gasteiger partial charges [221] were assigned to receptor and ligand. 

The cubic search space was set up to encompass all perturbed amino acids in the binding region 

(Figure 2.4 D). The search was performed with an exhaustiveness of 64. Based on the generated 

topologies for the P-dimer and cholic acid by CHARMM-GUI, the complex systems were solvated 

with TIP3P water, and ionized to 0.15 M NaCl using GROMACS tools ver. 5.1.5. While the whole 

complex was simulated, the bile acid was only bound to one monomeric subunit. The box size was 

identical to the initial protein conformational sampling.  
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Figure 2.3: Chemical structures of the herein studied bile acid species. The structures differ in the hydroxylation 
pattern and the tail group.  

2.2.2 Simulation protocol 

The simulations in this chapter employed the CHARMM36 force field [83]. Verlet cutoff scheme 

[222] was employed with neighbor list updates every 20 steps. The short-range neighbor list cutoff 

was 1.2 nm. Coulomb interactions were treated with the Particle Mesh Ewald method [98, 99, 223, 

224], where short range interactions were cutoff after 1.2 nm. Van-der-Waals interaction were 

cutoff via a force-switch modifier between 1.0 and 1.2 nm. The conformational sampling of the 

protein was achieved by an initial minimization for 5.000 steps using the steepest descent algorithm, 

followed by 100 000 steps NVT and 100 000 steps in NPT equilibration (time steps 0.01 and 0.02 

ps). Production sampling was generated for 1 µs using a 0.02 ps time step. Temperature coupling 

was achieved with the Nosé–Hoover method [225] (target temperature of 303.15 K, coupling 

constant of 0.4 ps during equilibration and 2.0 ps during production). Protein (plus the bile acid 

ligand, if present) and solvent (including water and ions) were coupled individually. The initial 

temperature distributions were generated according to a Maxwell–Boltzmann distribution at 293.15 

K. Pressure coupling was achieved by the Berendsen barostat [93] during equilibration and by 

Parrinello–Rahman [226] during production (both using a coupling constant of 2 ps and a reference 

pressure of 1 bar). Protein and ligand heavy atoms were restrained during equilibration. Hydrogen 

bonds were constrained, with constraints solved by LINCS [227, 228]. 
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2.2.3 Trajectory analysis 

Backbone RMSDs and RMSFs were calculated using GROMACS tools gmx rms and gmx rmsf. 

Translational and rotational displacements of the entire complex were removed by fitting the 

trajectory to the crystal structure. The differences in pocket volume was calculated with POVME 

3.0 [229]. The search space for cavities was set up manually as six spheres with varying radii to fully 

encompass the expected binding cavity. For the pocket volume and docking calculation, the 

trajectory was aligned using only the significantly perturbed residues (Figure 2.4 C-D). 

Based on the MD simulation of the cholic acid – P-domain complex, contact analysis was 

performed with MDTraj [230]. For each frame, for each amino acid, a contact was counted if at 

least one heavy atom of CA was in proximity of 0.6 nm or less to its backbone nitrogen. The 

contact occupancy of an amino acid is the number of counted contacts dived by the number of 

frames. The stability of the complex was assessed using the relative RMSD of cholic acid to the P-

dimer. Therefore, the complex was aligned by the P-dimer backbone coordinates and the RMSD 

of the cholic acid was computed. This RMSD included translational and rotational motions. The 

average of the last 10 ns were considered to make a decision on stability.  

2.3 Results 

2.3.1 Molecular dynamics sampling of the P-dimers  

The crystal structures of the GII.4 Saga P-Dimers [217] do not exhibit accessible binding pockets 

in the suggested bile-acid binding region. Thus, 1 µs molecular dynamics sampling of the P-dimers 

was conducted. The protein and binding site dynamics were monitored by means of backbone 

root-mean-square deviation (RMSD) and fluctuation (RMSF) relative to the crystal structure 

Additionally, the relative change in binding cavity volume was calculated for every time step. 

Furthermore, molecular docking of cholic acid toward conformational snapshots of the P-dimers 

throughout the dynamics simulation was performed, and the best docking scores were monitored 

(Figure 2.4 A-B). 
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Figure 2.4: Molecular dynamics sampling and pocket measuring of the Saga P-Dimer. A) RMSD, relative 
pocket volume and docking scores during the trajectory. Thin lines and scatter points represent the determined values 
at 0.1 ns (RMSD) and 1 ns (ΔV, score) sampling rate. The thick lines are the moving averages (N=50). B) Residue-
wise RMSF mapped onto the surface (left) and backbone (right) of the protein. C) Pocket search space (top) and 
occupancy isosurfaces for 0.5 and 0.9 pocket occupancies (bottom). D) Protein alignment to the significantly high CSP 
residues and docking search space.  

The RMSD in the first 200 ns is as low as 0.11 nm and then slowly increases to 0.2 nm during 300 

and 400 ns. The value of 0.2 nm is stable until 600 ns, after which the RMSD further increases to 

0.25 nm. The changes in the RMSD are low and show the absence of large structural 

rearrangements concerning the whole protein. However, the small increases in the RMSD are 

rather stepwise. Thus, the RMSD reflects small and localized conformational transitions. The 

RMSF is used to localize conformational flexibility. Most of the protein is rigid with RMSF values 

of 0.1 nm smaller. Typically, higher flexibility is localized in the loop regions and the termini. 
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Interestingly, though, the C-terminus is a major part of the suggested bile acid binding region. 

Upon alignment of the trajectory along the high CSP residues, the conformational space of the 

binding site becomes even more apparent. The protein backbone forms a large elliptic grasp with 

an open center. However, the center is partially blocked by the C-terminus. The outer scaffold is 

rather rigid and underlies only marginal fluctuations. The C-terminus on the other hand is highly 

flexible can adopt multiple conformations – both bound to the protein and mostly solvated.  

These conformational dynamics are well reflected by the relative change in cavity volume. It must 

be noted that the relative cavity volume is considered, because an absolute volume for such a 

shallow region is difficult to define [231]. Thus, changes in the volume of an arbitrary search space, 

defined as a set of spheres, are used instead [229] (see Method). The methodology allows not only 

the quantification of the pocket size but only detection of transient cavities, which are only rarely 

accessible. In the first 400 ns of the trajectory, it increased by 100 nm³ relative to the crystal 

structure. After the first conformational transition, it increases even further and deviates 200 nm² 

from the initial value. During and after the second conformational change, the relative cavity 

volume increase can even reach values of up to 400 nm². 

2.3.2 Ensemble docking of bile acids 

To assess the quality of the sampled pocket conformations to accommodate bile acid molecules, 

they were utilized in small-molecule docking. Each CA, DCA, GDCA and GCDCA were docked 

against each conformation of the sampled PP-dimer conformational ensemble. The bile acids were 

fully flexible, whereas the protein was rigid. Such an approach can be advantageous over flexible 

protein docking, when enough receptor conformations can be sampled [232]. Each of the best 

docking scores throughout the trajectory were averaged among the four bile acid molecules and 

monitored. Initially, when the pocket volume is small and the protein conformation is close the 

crystal structure, the scores are in the range of -5.5 kcal/mol. After 400 ns, however, they drop to 

-6.5 kcal/mol in average and can even achieve scores of -7 kcal/mol and lower. Interestingly, the 

best scores are not achieved when the pocket volume is maximum, but when it is around 200 nm² 

larger than in the crystal structure. Such a volume is realized by conformations in which the C-

terminus has moved away from the center of the pocket and towards the bottom. The five best 

average docking scores are subjected to further analysis by visual inspection of the binding poses.  



Norovirus recognition of bile acids   57 

 

 

Figure 2.5: P-domain bile acid binding site. X-ray structure (in absence of small molecules) and the five top-scoring 
poses resulting from dynamic docking of CA to MD snapshots of P dimers. The protein surface is color coded 
according to experimental CSPs. Backbone CSPs larger than μ+2σ are shown in pale red. CSPs larger than μ+σ from 
methyl TROSY experiments are yellow. CA is shown in blue with oxygen atoms highlighted in red and hydrogen atoms 
omitted for clarity. The numbers represent the average of all bile acid docking scores with the CA docking score in 

brackets (kcal mol−1). 

The docking poses of four molecules are broadly identical with only few exceptions (Figure 2.5). 

Thus, only the predicted binding modes of CA are discussed in detail. All poses have in common 

that the hydrophobic cavity around Leu507 is accessible due to the C-terminal residues being 

moved to the side or the bottom. This allows deep burial of the carboxylate group of the bile acid 

to form interaction with Leu527 and neighboring residues. Otherwise, the poses mostly differ by 
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their rotation around the sterol backbone. Here it is recapitulated that the sterol backbone is of 

rather flat geometry and structurally rigid. It has perpendicularly oriented methyl groups on the one 

face, and a number of hydroxyl groups on the opposite face. The number of hydroxyl groups 

determines the type of bile acid and its solubility. The hydroxyl group at C3 is common among all 

bile acids. Cholic acid, for instance, has two additional hydroxyl groups: one at C7 and one at C12. 

In pose 1, these hydroxyl groups are oriented towards top residues His505, Leu506 and Val508. In 

pose 2, these groups are facing in direction of the solvent. Pose 3 to 5 have the hydroxyl groups 

oriented towards Leu486 and Phe487. The docking score only included non-bonded interactions 

and not conformational distortion of the receptor protein. Thus, a conformation which allows a 

perfect fit for the ligand molecule, might be energetically unfavorable. The balance between ligand 

binding energy and energy of the conformational change determines the true quality of binding. 

Unfortunately, the energy of the conformational change is computationally difficult to assess. 

Instead, the docking will be further evaluated by molecular dynamics simulations of the protein – 

bile acid complexes. 

2.3.3 Resampling of protein-ligand complex dynamics 

The complexes of the top five poses were each utilized as initial configurations for ten replicates 

of 20 ns explicit solvent molecular dynamics simulations. The stability of the docking pose was 

assessed by means of ligand RMSDs (Figure 2.6). The ligand RMSD is computed as the RMSD 

of the ligand upon least-square fitting of the receptor-ligand complex by the CA atom of the 

receptor protein. It thus explicitly includes translational and rotational motions of the ligand relative 

to the protein. The average ligand RMSD of the last 10 ns is used to filter out stabilized trajectories. 

Depending on the pose as well as on the initial, randomly generated velocity distribution, the bile 

acid ligand may remain stable at the initial position (RMSD<0.3nm), it may rearrange and then 

stabilize (RMSD < 1nm) or it may dissociate (RMSD > 1 nm). For pose 1, ligand RMSDs of 0.9 

to 7.2 nm are reported and only one trajectory replicate (Rep. 9) stabilized at a RMSD of 1 nm or 

lower. Starting from pose 2, replicate 1 and 5 show RMSD of lower than 1 nm. The other 

trajectories have RMSD of either around 2 nm or 5 nm. For pose 3, the RMSDs arrange between 

0.8 and 5 nm. Rep. 5 is the only one replicate to converge with a RMSD below 1 nm. The RMSDs 

of the trajectory with pose 4 as initial configuration range between 0.5 and 4 nm. Three replicates 

remain RMSDs lower than 1 nm (Rep. 3, Rep. 4., and Rep. 8). Pose 5 yields RMSD between 0.2 

and 6 nm. The lowest RMSD replicate (Rep. 2) has the overall lowest value of 0.2 nm.  
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Figure 2.6: Outcome of refinement simulations. A) MD refinement of docked ligand poses of CA. Each point 
represents the mean RMSD of the final 10 ns of a 20 ns MD trajectory using the corresponding docking pose as initial 
coordinates. For each pose 1–5 ten independent simulations with varying initial velocity distributions were performed. 
Trajectories with RMSD<1 nm are highlighted as orange or dark red filled circles and were further analyzed for CA–
protein contacts. B) CA–protein contacts for the red filled circle trajectories are shown in the bottom panels in detail. 
Contact criterion is a distance ≤0.6 nm between the backbone N and at least one heavy atom of CA. Contact amino 
acids that exhibit significant CSPs are highlighted in red (backbone HSQC) and gold (methyl TROSY), respectively. 
Proline residues are not considered as they show no NMR signals. Only amino acids with an occupancy >0.02 are 
shown.  

The stabilized trajectories are subjected to a detailed contact analysis. Therefore, the inter-residue 

distances between the bile acid and the protein are calculated throughout the trajectory by means 

of minimum pairwise heavy-atom distances. The ratio of frames in which the inter-residue 

distances is below a threshold of 0.6 nm is considered the contact occupancy of this residue pair. 

In Pose 1 Rep. 9, cholic acid maintains only one persistent interaction with Phe487. It additionally 

forms weaker, and thus more short-lived contacts with a patch among Ala500, His501 and Thr502, 

and the residues Leu507, Val508, and Ile509. The cumulated number of interactions is low. The 

interactions in Pose 2 Rep. 5 are more numerous and stronger. Here, here cholic acid engages in 

highly persistent interaction with Phe487, Ala500, His501 and the c-terminal residues Ala528 and 

Met530. Considerable interactions are also observed between Thr502 and His505. Pose 2 Rep 1 

shows a similar interaction pattern as Pose 1 Rep 9, however the interactions around His501 are 

weaker and the around Val508 stronger. In Pose 3 Rep 6, the interaction pattern is similar yet more 
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distinct with few but persistent interaction with Leu486/Phe487 and Val508/Ile509. The 

interactions around His501 are negligible. In Pose 4 Rep, cholic acid only interacts persistently with 

Val508 and Ile509. Pose 4 Rep8 is the first trajectory in which considerable interactions with 

Thr482, Arg484, and Val485 are reported. Yet, the dominating binding interactions are mediated 

by Leu 486/Phe487 and they are supported by many weaker interactions around Val508. Pose 4 

Rep 3 yields distinct and stable interactions with Leu486/Phe487 and the trio of 

Leu507/Val508/Ile509. Additionally, Met530 exhibits a contact occupancy of 0.5. Pose 5 Rep 2, 

which was the most stable trajectory, has a unique interaction pattern. It bonds tightly with Phe487, 

Glu488, Cys489, Ala500, and His501. Additionally, it is involved in strong interactions with Val508, 

Leu527 and Ala528. 

2.3.4 Binding mode decision by MD and NMR 

Bile acids bind the norovirus P-domain only weakly with low affinities in the millimolar range. Such 

a binding must be considered transient and ambiguous. This is additionally reflected by the large 

spatial distribution of residues with significantly high CSPs as well as the general instability of the 

complexes in the MD. Thus, it must be assumed that bile acid binding is not limited to a single 

binding mode but an unspecific, flexible binding. Furthermore, it is even possible that bile acids 

bind not only as single molecules but as disordered aggregates or micelles. Based on the MD, a 

picture arises in which the bile acids compete with the c-terminus for the hydrophobic binding site 

center which consists mostly of the residue pairs Leu507/Val508 and Leu486/Phe487. When the 

C-terminus makes room to accommodate the bulky bile acid molecule, the binding is mostly driven 

by hydrophobic interactions with either or both these residue pairs. This is consistent in all the 

stabilized MD trajectories. Additional interactions might occur with the C-terminal residues Ala528 

and Met530. Such interactions are interesting because they suggest that the C-terminus may cover 

the tail-like portion of the bile acid molecule to bury some polar interactions and shield them from 

the solvent. The dominating interactions from the complex MD simulation are in excellent 

agreement with the measured CSPs. Especially the conformations sampled by Pose 3 Rep 6 and 

Pose 4 Rep 3 yield contacts exclusively with residues whose chemical shifts are significantly 

perturbed upon binding (Figure 2.7). Thus, they are considered the predominating binding modes. 

They are distinguished by a tight binding of the methyl groups into the pocket and the hydroxyl 

groups facing outwards. The carboxylate tail faces outwards to either His505 or Arg484, however 

these interactions are weak due to their high solvent accessibility.  
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Figure 2.7: Dynamic binding mode of cholic acid. Two representative snapshots of stable protein–CA complexes 
for Pose 3 Rep 5 (top) and Pose 4 Rep 3 (bottom). 

Not all the CSPs can be explained by contact occupancies as sampled via MD. CSPs reflect changes 

in the magnetic environment in proximity to the nuclei which depends on many variables such as 

nearby aromatic sidechains, charged groups, hydrogen bonding, etc. Hence, there is no unequivocal 

correlation between CSPs and inter-residue contacts. Especially, the absence of contacts with the 

polar residues surrounding the hydrophobic binding core (Gly503, Gln504, Asp506 and His505 on 

the one site and Asn470, Asp481 and Asn512 on the other) is eye striking. They are rarely touched 

by cholic acid; neither do they undergo large conformational changes. Possibly, a distinct electric 

field defines the chemical shifts in the unbound state, which would be clearly altered upon insertion 

of an amphoteric bile acid molecule. The methyl CSPs of Ala528 and Met530 are most likely not 

explained by contacts but by their conformational dynamics. The bile acids clearly displace these 

C-terminal residues from their native state. Finally, the predicted binding modes also agree well 

with the STD-NMR based epitope mapping. The hydrogens which receive the most saturation 

from the protein, are exactly the ones which are most buried in the complex.  

2.4 Discussion  

The prediction of the binding mode of small molecules to receptor proteins is an elemental step in 

every target-based drug discovery campaign[233]. It is the basis for the calculation of the binding 

affinity of the ligand which is important to recognize high-affinity binders in a large molecular 
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library. For novel targets, crystal structures might exist, however they show the protein only in its 

unbound native state. A targetable site might not be known yet or it might only become accessible 

through a conformational change which is only stabilized upon ligand binding (transient, or cryptic 

pocket) [234]. In such a scenario, a conformational ensemble of the target protein is indispensable 

[235]. Depending on the type of the protein, it can be acquired by high-throughput crystallography 

or NMR spectroscopy. Both experimental methods are however limited and costly. Molecular 

dynamics has proven its feasibility to sample protein conformations for decades [236]. Due to its 

high computational costs and the requirements of large computing clustering in the past, it took 

until the late 2010s years for it to be routinely employed in drug research labs[237].  

In this work, only four different molecules were studied. In a drug discovery effort, the number of 

molecules is frequently exceed the order of millions [238]. Thus, here the limiting factor was the 

sampling and not the docking. A large ensemble of receptor conformations was assessed, and the 

docking results were compared to conformation and binding site volume. Usually, the situation is 

the opposite, and the virtual screening, i.e., docking of a large library, is the most time-consuming 

step. Then, few receptor conformations must be pre-selected to cover a broad range of the 

conformational space. Such a selection is non-trivial and must be undertaken with care [239, 240]. 

The herein presented results highlight that the docking quality does not necessarily depend on 

pocket shape and volume or certain representative conformation of usually low energy. Thus, it is 

suggested that the conformation ensemble of the receptor should be as large as possible and 

importantly also cover higher energy states. Additionally, in the docking, sidechain flexibility should 

be taken into account [241]. 

To deal with the energy contribution of the deformed protein, the docking poses and energies 

alone are not sufficient for a ranking and further calculations must be performed. Especially when 

it comes to fragment docking to shallow binding sites as frequently the case in protein-protein 

interactions, MD simulations lead to dissociation of the complex. Thus, it is preferable to run plenty 

of replicates with different initial velocity distributions [101]. In the end, a small set of possible 

binding modes still remains, and a final decision must be made. Based alone on the stability of the 

MD and the number of contacts, probably a different binding mode would have been chosen. Only 

with the support of the NMR restraints, the binding mode could be narrowed realistically.  

2.5 Conclusion 

Thus, the key message is that prediction of a realistic binding mode of a weak binder is still 

challenging. This is probably due to the fact, that a weak binding cannot be abstracted by a single 

binding mode and dynamics must be taken into account [242]. The true binding mode might be an 
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equilibrium between various binding orientations. For a stronger binding with more distinct 

interactions and a deeper, less flexible pocket, the employed workflow might have yielded less 

ambiguous results. Nevertheless, with the aid of the NMR experiments, a detailed picture of bile 

acid binding to norovirus P-dimers has been provided. 

  



64   Conclusion 

 

  



Selective cleavage of linear poly-ubiquitin   65 

 

3 SELECTIVE CLEAVAGE OF LINEAR POLY-UBIQUITIN 

This chapter focuses on the structural and dynamical basis for the recognition of linear di-ubiquitin 

by two evolutionary divergent proteases. The herein performed molecular dynamics simulations 

and their interpretation built upon pre-existent, published crystal structures and biochemical 

experiments. The resulting data lead to a different conclusion than one of the original articles and 

highlight the drastic structural effects of seemingly insignificant mutations when introduced in 

critical protein regions. The chapter is published [243] and [244].  

3.1 Introduction 

Ubiquitinylation is among the most abundant prost-translational modifications (PTM) and has key 

regulatory functions in most cellular processes [32]. The reversible PTMs are widely recognized to 

target proteins for proteasomal degradation or regulation [245] and have emerged as critical signals 

in innate immune response [246, 247], in which they initiate inflammation, impede pathogen 

growth, and trigger cell death [248].  

Ubiquitinylation is achieved through the concerted action of specific E1 activating enzymes, E2 

conjugating enzymes and E3 ligases [249]. Multiple ubiquitin (Ub) units can be conjugated via (iso)-

peptide linkage of one of the exposed lysine residues (K6, K11, K27, K29, K33, K48, K63) or the 

N-terminal methionine (M1) of the proximal Ub with the C-terminus of the distal Ub [250]. This 

chemical bonding determines the fate of the ubiquitinylated protein, e.g., degradation, trafficking 

or signaling [251].  

The reverse process, i.e. the cleavage of ubiquitin chains, is performed by deubiquitinase enzymes 

(DUBs). There are ~100 human DUBs, which are categorized into seven different families based 

on structural and functional characteristics [252]. While most DUBs are cysteine proteases, the 

JAMM subfamily employs a Zn2+ ion in its catalytic center [253]. DUBs possess multiple factors of 

selectivity control regarding protein recognition and Ub-linkage type[252, 254]. Some members of 

the family of OTU DUBs are known for their high selectivity towards various types of ubiquitin 

linkages [255]. OTUD7B is highly selective towards K11 linkage [256], OTUB1 [257] and OTUD1 

[255] exclusively cleave K48- and K63-linkages, respectively, and OTULIN [258, 259] exhibits a 

unique activity against linear (M1-linked) polyubiquitin chains. Met1-linked ubiquitin chains are 

critical regulators of inflammation and immunity to pathogens [260]. Such a unique M1-selectivity 

requires a sophisticated multi-factorial mechanism involving multi-site recognition and substrate-

assisted catalysis [259]. This high-level control of selectivity can only be addressed by structural 

investigations [252, 255]. 
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Viral and bacterial pathogens have independently evolved numerous deubiquitinylating effector 

proteins to mimic host DUBs as a strategy to counteract innate immune response [28, 261-263]. 

Recently, the L. pneumophila effector protein RavD [264] was identified to cleave linear 

polyubiquitin chains and thus inhibit downstream M1-ubiquitinylation-dependent NF-B 

signaling. 

To extent the insight gained from available crystals structures and to put them mechanistically into 

perspective, molecular dynamics simulation of RavD, RavD in complex with mutant diubiquitin, 

RavD in complex with wildtype diubiquitin, and OTULIN in complex with wildtype diubiquitin, 

were performed. The MD trajectories were analyzed in regard of binding stability and energy, 

interaction residue number and composition as well as of conformational dynamics of the catalytic 

triad. The results are discussed under the aspect of how RavDs exquisite specificity for linear 

diubiquitin is structurally rationalized.  

3.1.1 Quantitative comparison of the crystal structures 

Protein crystal structures of RavD and OTULIN in absence and when in complex with substrate 

M1-di-ubiquitin (DiUb) are available but not conclusive in terms of structural control of selectivity 

and its link to the activation mechanism [259, 264]. For OTULIN, a substrate-assisted catalysis 

activation mechanism to bring the active site triad into a catalytically competent state was 

confirmed [259]. RavD, however, did not show the change in inter-residue distances as the 

substrate approaches the active state. In addition to the active site binding, the DUB interacts with 

the ubiquitins by forming protein-protein contact interfaces with the proximal (S1 binding site) and 

distal (S1’) ubiquitin molecules [259]. 

RavD is a papain-like deubiquitinylase with a Cys–His–Ser catalytic triad, exhibits an overall 

structure that is dissimilar to OTULIN and may be considered the founding member of a novel 

class of DUBs [265]. The binding mode of linear DiUb to RavD is, nonetheless, almost identical 

to the one in OTULIN (Figure 3.1). Different activation mechanism for RavD and OTULIN, 

however, were reported.  
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Figure 3.1: Comparison of M1-selective deubiquitinylases from L. pneumophila RavD and human OTULIN. 
(A) Surface representation of the DUBs plus ribbon diagram of the diubiquitin. The scissile bond of diubiquitin is 
labelled. (B) Annotation of the conserved catalytic triad residues.  

The prime criterion for a clear identification of a substrate-assisted enzymatic reaction mechanism 

is the analysis of the structural arrangement within the catalytic center of the unbound enzyme in 

comparison with the enzyme-substrate complex [164]. For example, human OTULINs exquisite 

M1-linkage specificity originates from two Ub-recognition sites S1 and S1’ and, on top, from a 

substrate-assisted catalysis, in which the catalytic triad is only activated upon tight substrate 

binding.[273] In particular, when the substrate is in a reactive conformation, the scissile bond 

comes as close as 4.0 Å to Cys, and the inter-residue distances for the catalytic triad residues 

decrease from 6.5 Å to 3.4 Å for Cys-His and from 8.3 Å to 3.1 Å for His-Asn residues (Figure 

3.2). Only this tight complex allows deprotonation of Cys by His and thereupon the activation of 

the catalytic triad to form the zwitterionic state. 

However, compared to OTULIN-DiUb, in the RavD-DiUb crystal structure, catalytic inter-residue 

distances are as large as 8.8 Å from the scissile bond to cysteine, and 7.1 Å (for Cys-His) and 2.7 Å 

(His-Ser). This is beyond a reactive distance for a cysteine protease [275]. The co-crystal of RavD-

DiUb was obtained when complexed with a non-hydrolysable DiUb substrate analogue, in which 

the two terminal glycine residues of the distal Ub are mutated to serine residues (referred to as 
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RavD-DiUbGGSS in the following). These changes may be responsible for a hindered substrate 

insertion into the catalytic groove, and hence the conformational change of the catalytic triad. 

Molecular dynamics simulations are able to give insight into the dynamics and accessible 

conformational ensembles of proteins and protein-protein complexes in aqueous solution and at 

finite temperature[148]. This information is complementary to that of static protein crystal 

structures in the solid form. We here also recover the physiological RavD-DiUbGG complex, 

which we refer to as ‘RavD-DiUb’ in the following. 

 

 

Figure 3.2: Comparison of structural parameters of catalytic triad residues in M1-specific DUBs (A) RavD 
(top) and (B) OTULIN (bottom). All distances to cysteine were measured from the Cβ atom for reasons of 
comparability with the OTULIN-DiUb crystal structure in which cysteine was mutated to alanine. 

 

3.2 Method 

3.2.1 Model generation 

Both RavD and OTULIN were modeled in their free, substrate-unbound state and in complex 

with diubiquitin. The models are based on the crystal structures of free RavD (6NII), diubiquitin-

bound RavD (6NJD), free OTULIN (3ZNV) and diubiquitin bound OTULIN (3ZNZ). The 

crystal structure of substrate bound RavD exhibits a double mutation in the substrate: G75S/G76S. 

The crystal structure of substrate bound OTULIN shows a mutation in the DUB: C13A. The 

OTULIN mutation was reversed and the OTULIN model resembled the wildtype OTULIN. For 

substrate bound RavD, two models were generated: I. the complex with the mutated substrate, and 

II. The complex with the wildtype substrate. Introduction of the re-mutations, as well as the 

addition of missing atoms (mostly hydrogen) and the protonation of the termini (R-NH3+, and R-

COO-) was achieved using the software PSFGEN within VMD ver. 1.9.3 [266]. Histidine residues 
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were protonated at the delta position. The simulation boxes were set to a size of 10x10x10 nm³. 

They were filled with TIP3P water and 0.15 M NaCl ions. CHARMM36 force filed parameters[83] 

were assigned.  

3.2.2 Simulation protocol 

Molecular mechanics and molecular dynamics simulations were carried out using openMM 7.4.1 

[267]. We used PME [97] for electrostatic interactions, a non-bonded cutoff of 1.2 nm and a switch 

distance of 1.0 nm. Covalent bonds to hydrogen atoms were constrained. The molecular system 

was initially minimized for 5000 steps. Equilibration was carried using Langevin integration [268] 

with a 300 K thermostat, a 1.0 ps-1 friction coefficient and 1 fs time step. During equilibration, all 

the CA atoms were restrained with a force constant of 500 kcal / mol nm². Initial velocities were 

set to suite a Maxwell distribution corresponding to 300 K. Production data were generated using 

the same integrator but with a time step of 2 fs. Additionally, a Monte-Carlo barostat [269] was 

engaged to maintain a constant pressure of 1 ATM. The barostat was coupled every 25 integration 

steps. Trajectory snapshots were saved every 0.2 ns. Four replicate simulations were performed 

with individual initial velocity distributions. Every replicate had a run time of 250 ns (500 ns for 

RavD-DiUb), cumulating to 1 µs (2 µs for RavD-DiUb) total sampling time for the various systems. 

In the case of RavD-DiUb, the protocol was adapted to consider large initial fluctuations of the 

proximal Ub. Here, we performed an initial 500 ns equilibration run from which the four replicates 

of 500 ns each were initiated (with new and varying velocity distributions). The integration was 

performed on Nvidia GTX1080 GPUs in single precision mode. 

3.2.3 Trajectory analysis 

For trajectory analysis, MDTraj 1.9.5 [230], MDAnalysis 0.20.1 [270, 271], NumPy 0.51.2 [272] and 

SciPy 1.2.1 [273] were used. Visualization was achieved with VMD 1.9.3 [266] and MatplotLib 3.0.2 

[274]. Ubiquitin RMSDs were calculated using the CA coordinates. For reference coordinates we 

used the initial model from the crystal structure. Before the RMSD calculation, the whole protein 

complex was aligned by the CA atoms of the DUB (RavD, or OTULIN respectively). For the 

computation of the RavD proximal Ub pairwise RMSD matrix, 10.000 frames where chosen (every 

200 ps). The binding energy was estimated using the PRODIGY[123] of multiple conformations 

extracted from the MD simulations. For RavD, 1.000 conformations and for OTULIN 1.000 

conformations (every 1 ns) were chosen. The interface areas were calculated from the differences 

in the solvent accessible surface areas (SASA), i.e. the sum of the SASAs of two proteins alone 

minus the SASA of the complex. For the SASAs of the proteins alone, also the complex trajectory 

was used. The per-residue SASAs were computed using the algorithm of Shrake and Rupley [275] 

with a probe radius of 0.14 nm and 512 sphere points. The residue-wise buried areas were 
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computed as the relative difference between SASA in the unbound and the bound forms. For 

intermolecular interactions, heavy-atom contacts were calculated with MDTraj, employing a 

distance cutoff criterion of 0.55 nm. The residue type contributions were calculated as the ratio of 

contacts of the single residues to the total contacts. The classification followed the standard 

convention. Histidine, cysteine, glycine, and proline were always considered polar. The free energy 

maps were constructed from the 2D joint probability distribution functions (PDF) of the 

interatomic distances of Cys-S:His-Nδ and HIS-Nε:Ser-Oγ (HIS-Nε:ASN-Oγ for OTULIN). The 

PDFs were estimated using binning to 50x50 bins. The free energy difference was calculated as the 

negative natural logarithm of the PDF. 

3.3 Results and Discussion 

3.3.1 Stability of diubiquitin binding 

The stability of a protein-protein complex in solution can give qualitative insight on its binding 

energy. Intuitively, a stable binding without large fluctuations would correspond to a high absolute 

binding energy. From four replicates of each 250 ns of the complexes RavD-Diubiquitin and 

OTULIN-diubiquitin, the relative ubiquitin RMSDs were calculated. In contrast to the standard 

RMSD of atomic coordinates, which is calculated after removing translational and rotational 

motions by least-square fitting to a reference conformation, the herein considered RMSDs include 

translation and rotation of the individual ubiquitin units (proximal and distal), relative to their 

bound DUB (RavD or OTULIN). This is achieved by fitting the whole complex by only the Cα 

atoms of the DUB. The high-frequency and low-amplitude fluctuations based on conformational 

dynamics can be removed from the RMSD by employing a low-pass filter. This way, the RMSD 

only reflects orientational contributions by means of relative translation and rotation away from 

the crystal structure. The RMSDs of the distal RavD-bound ubiquitin vary between 0.3 and 0.5 nm 

relative to crystal structure depending on the replicate (Figure 3.3 A). Every replicate RMSD has 

stabilized but still shows fluctuations in the order of 0.1 - 0.2 nm. For reference, the distal ubiquitin 

of the OTULIN-DiUb complex stabilized at a value of 0.2 - 0.3 nm relative to the crystal structure 

and fluctuations are only the order 0.05 to 0.1 nm. Thus, the initial distal ubiquitin binding mode 

as seen in the crystal structures is more dynamic in the RavD-DiUb complex than in the OTULIN-

DiUb complex. Similar can be observed at the proximal binding sites. On RavD, the ubiquitin 

RMSDs exhibit baseline values of 0.2-0.3 nm but show large fluctuations of up to 0.7 nm. The 

RMSDs of the OTULIN bound proximal ubiquitin stabilized to values of 0.2 nm and exhibit only 

minor fluctuations. Based on the RMSDs, the proximal binding of Ubiquitin to RavD is less stable 

than to OTULIN.  
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In addition to the RMSD analysis, binding affinities of large conformational ensembles (1.000 

snapshots) were estimated using an interaction-based method called PRODIGY [123, 276]. It 

approximates the binding energy using a regression model based on a benchmark set of 81protein-

protein complex with energies between –6 and –16 kcal/mol. The regression model mostly makes 

use of the numbers of the various possible types of inter-residue interactions (e.g. hydrophobic-

hydrophobic or charged-charged) and is among the most accurate methods for binding energy 

estimation. For the distal ubiquitin binding to RavD, dissociation constants KD were mostly in the 

order of 3 to 10 nM, and the whole ensemble covered values between 0.8 and 900 nM (Figure 3.3 

B). The distal ubiquitin binding to OTULIN is surprisingly slightly weaker. Sampled conformations 

yielded dissociation constants between 2 nM 800 nM with the highest probability density around 

10 and 20 nM. On the proximal site, the differences between RavD and OTULIN are much clearer. 

RavD binding of the proximal ubiquitin showed dissociation constants in the range of 70 nM to 5 

µM, with a peak between 300 and 600 nM. The dissociation constants computed for proximal 

ubiquitin binding to OTULIN are significantly lower. Most of the sampled conformations yield 

values of 7 nM and the whole sample exhibits a KD bandwidth of 2 to 20 nM. In summary, based 

on the KD prediction, the binding of the distal ubiquitin to RavD is as strong as to OTULIN. The 

distal and proximal binding sites of OTULIN are of similar strength. RavDs proximal site 

significantly weaker than its distal site and thus also significantly weaker than OTULINs proximal 

site.  

 

Figure 3.3 Comparing diubiquitin binding strength between RavD and OTULIN (A) Cα root mean squared 
deviation (RMSD) for the individual ubiquitin units relative to the DUB (see text for details). A moving average is 
drawn for clarity. Ubiquitin binding to the S1 site is given in purple in the top panels, proximal ubiquitin binding in 
blue in the bottom panels. (B) Calculated binding free energies for distal and proximal ubiquitin to RavD and OTULIN. 
The points represent individual results for 1.000 snapshots for each RavD and OTULIN. The filled curves represent 
the probability density functions estimated from 50 equidistant (log space) bins. 
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Putting the estimated binding affinities into perspective is difficult because such data is not available 

for deubiquitinase-ubiquitin complexes. However, the dissociation constants between ubiquitin 

and various ubiquitin-binding domains are frequently in the micromolar range [286, 287]. 

Micromolar binding can be considered transient whereas high-nanomolar binding, as predicted for 

the proximal ubiquitin to RavD, is more stable yet still not permanent but dynamic [288]. 

Another means to assess the quality of protein-protein binding is the identification residues which 

bury deeply into the interface upon binding. Usually, this can be achieved by comparing the solvent 

exposed area of residues in the free and complexed state. However, such a computation is not 

straightforward because the solvent accessible area of a residue depends on its size and flexibility 

as well as its position within the protein. Here, the relative reduction of the solvent accessible area 

upon binding is considered sufficient (Figure 3.4 A-B). This way, the distal ubiquitin residues 

Gly47, Ile44, Val70, Leu8 and Thr7 were identified to bury more than 80% of their surface area 

into the protein-protein interface when complex with RavD. OTULIN on the other hand enables 

deep burial of Ile44, Val70, Leu8 as well as Leu73 and Gly75. Whereas the RavD-bound ubiquitin 

residues form one large patch, they are spatially more distributed in distal the OTULIN binding. 

This is also reflected by somewhat smaller interface area of the OTULIN-DiUb complex of 22 

nm² relative to the distal RavD-DiUb interface of 23 nm². It is striking, however, that OTULIN 

deeply buried the c-terminal ubiquitin residues whereas RavD did not, or at least not to a 

significantly lower extent. On the proximal site, OTULIN buries a large, continues and distinct 

patch stretching over residues Gln78, Met77, Ala93, Glu92, Lys105, Asp108, and Lys109. This 

patch forms most of the interface area with a size of 17 nm². RavD accommodates broadly identical 

proximal ubiquitin residues but fewer residues are deeply buried (only Ala93 and Asp108). The 

interface area is smaller and has a median size of 12 nm² (Figure 3.4 C).  

The buried residue analysis yields the picture that both RavD and OTULIN have developed 

binding surfaces to recognize identical patches on their specific ubiquitin units (distal or proximal). 

The quality of the distal binding site is similar but RavD seems to put more focus on the 

hydrophobic ILE44 patch whereas OTULIN also includes the C-terminus. The interface area on 

the distal site is similar yet slightly larger on RavD. Its size fluctuates considerably in the simulation 

on both RavD and OTULIN and despite its large size, only few ubiquitin residues are fully buried. 

Compared to OTULIN, the proximal binding site of RavD is substantially smaller, more dynamic 

and buries fewer residues. The binding is weak and mediated by only few strong interaction 

anchors. This leads to orientational tumbling and temporal solvent accessibility of the other 

residues.  
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The total interface size of the distal binding sites in the order 22-23 nm2 is large as compared to 

other single-patch protein-protein complex interfaces which are commonly in the order 15 nm2 

[277]. Others have described that the standard interface size is between 12 to 20 nm2 [278]. Smaller 

patches in the order 11.5 – 12 nm2 indicate short-lived, low-stability complexes [279]. This fits well 

to the low RMSD stability, and the high nanomolar affinity of the proximal ubiquitin to RavD, 

which has exhibits an interface area of 12.5 nm2. The largest interface areas are reported for 

proteases and their highly specific inhibitors. Such areas can attain values between 20 and 46.6 nm2. 

The total binding interface area of OTUIN-diubiquitin is 40 nm2 [280], and is thus among the 

largest interfaces. It must be noted, that OTULIN of course belongs to the class of proteases. 

RavDs total interface area with diubiquitin is 35 nm2, which can still be considered very large. In 

conclusion, both protein RavD and OTULIN will engage in tight and stable complexes with their 

linear linked diubiquitin substrate. After bond cleavage though, the OTULIN would still stably 

bind both ubiquitin moieties, whereas for RavD it is likely that the proximal Ubiquitin would 

dissociate.  

 

Figure 3.4: Buried residues and interface areas. Changes in protein solvent-accessible surface area (ΔSASA) upon 
DiUb binding to RavD and OTULIN are shown in perecent. DUB binding to (A) distal and (B) proximal ubiquitin. 
The boxplot (C) shows the total protein-protein interface areas. Whiskers show lowest and highest sampled areas of 
the entire ensemble. The box length represents the interquartile range (50% of data). The central line is the median. 
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3.3.2 Inter-residue interactions 

For the identification of key interaction residue pairs and the quantitative comparison of binding 

interfaces, it is useful to count all inter-residue contacts throughout the MD trajectory. On the 

molecular scale, a contact is not unambiguously defined, and different contact criteria lead to 

different results. In here, a contact between two residues is count, when at least one of the pairwise 

heavy-atom distances was shorter than 0.55 nm. All heavy atoms, sidechain and mainchain, were 

considered. It frequently appears that a residue of the one protein is in contact with more than one 

of the other. In this case, multiple contacts were counted. The number of contacts can be expressed 

as the contact contribution by normalizing the residual number of contacts by the total number of 

contacts. This representation allows a direct discrimination of important drivers of the protein-

protein interaction. Based on the contributions of all monitored inter-residue interactions and the 

residue types (charged, polar, apolar) the contribution of the interaction types can be calculated 

and used to assess how favorable the protein-protein interaction is. The results are presented in 

Figure 3.5. 

On the distal interfaces, in total average, RavD engages in 78 inter-residue contacts and OTULIN 

in 81. The S1 site of RavD recognizes the distal ubiquitin by four sites. The first resolves around 

Leu8 and Thr9, which together contribute to 15% of the total contacts. A second patch belongs to 

the c-terminal residues of Leu73, Arg74 and Gly75, together contributing 20% of the total contacts. 

The Ile44 hydrophobic patch contributes less to the total number of contacts. A fourth binding 

patch is recognized at Glu34. Interestingly, OTULIN binds essentially identical residues with only 

marginal differences. The patch at Leu8 is locally more constrained, the Glu34 patch is slightly 

weaker, and the C-terminal patch is stronger and more extended towards the last residues Gly75 

and Gly76. Analysis of the types of the involved residues yields a similar picture for RavD and 

OTULIN. About 19%, respectively 17%, of the interactions belong to the favorable group of 

apolar-apolar, i.e., hydrophobic interactions. Each 12% are charged-charged interaction, and 12% 

and 16%, respectively, belong to polar-polar interactions. Both RavD and OTULIN exhibit 19% 

charged-polar interactions at the distal binding interface. The total amount of less favorable apolar-

polar and apolar-charged interactions is 37% for RavD and OTULIN. Thus, the composition of 

interaction types is similar between RavD and OTULIN and the majority of interactions is 

favorable. 
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Figure 3.5: Analysis of persistent DUB-DiUb interactions. (A) RavD and OUTLIN residues interaction with the 
distal and proximal ubiquitin molecules. Key protein-protein contact residues of DiUb are given by their residual 
contribution to the total number of inter-residue interactions in percent (see Method for details). (B) Snapshots of 
distal Ub binding to the S1 sites of RavD and OTULIN and inter-residue interactions between charged (Q), polar (P) 
and apolar (A) DUB S1 residues with their distal Ub counterparts. (C) Snapshots of proximal Ub binding to the S1’ 
sites of RavD and OTULIN and inter-residue interactions between charged (Q), polar (P) and apolar (A) S1’ DUB 
residues with their proximal Ub counterparts. 

On the proximal site, the total number of interactions is much lower on RavD (39) relative to 

OTULIN (71). However, the residues of ubiquitin which come into contact with the DUBs are, 

again, identical, yet with slightly different contributions. The biggest drivers of the interactions are 

Glu92 with about 10% contribution and Asp108/Lys109 with 25% and 20% contribution for 

RavD and OTULIN, respectively. A third recognition site for Lys139 is identified on both RavD 

and OTULIN. Surprisingly and in stark contrast to the distal binding site, the residue and 

interaction composition of RavD and OTULIN are widely different. OTULIN exposes more than 

50% charged residues, of which 70% are engaging in favorable charged-charged interactions. The 

amount of apolar residues is as low as 12 % and not a single hydrophobic interaction was 

monitored. RavD employs a mere 2% charged residues for the protein-protein interaction. Instead, 
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the charged residues of ubiquitin are overwhelmingly often (44%) bound to polar residues and to 

27% to apolar residues. Such an interactions pattern is much less favorable than the one at the 

OTULIN binding site and explains why RavD does not manage a stable proximal ubiquitin binding 

and why the binding affinity is so low. On the other hand, it is surprising, that RavD accommodates 

Glu92 and Asp108/Lys109 so well. The role of Glu92 in OTULIN is special: it binds close to the 

active site and stabilizes the competent conformation of the catalytic triad [259]. It is thus a crucial 

part of the substrate catalytic mechanism of OTULIN. 

3.3.3 Substrate binding and catalytic triad 

In contrast to OTULIN, a substrate assisted activation of the catalytic triad was disregarded for 

RavD. This assumption was based on a low RMSD between diubiquitin-bound and unbound 

RavD. Such a criterion is not a sufficient, and distances between catalytic residues must be 

considered in the different states. Molecular dynamics allows sampling of various conformations 

and the quantification of the free energy differences between them (Figure 3.6). For diubiquitin 

bound OTULIN, most of the sampled conformations had cysteine-histidine distances of 0.4 nm 

and cysteine-asparagine distances of 0.25 nm. A second population with a histidine-asparagine 

distance of 0.8 nm is two order is two orders of magnitude less likely. Such close distances allow 

proton transfer from cysteine to histidine to activate the catalytic triad. In unbound RavD, the 

catalytic distances show large flexibility, and many conformations are accessible without high 

energy barriers between them. There are two shallow energy wells: one at cysteine-histidine of 0.9 

nm and histidine-serine of 0.3 nm, and one at cysteine-histidine of 0.9 nm and histidine-serine of 

0.9 nm. Both energy wells would not lead to a competent catalytic triad. Upon binding of 

diubiquitin however, the energy landscape changes, and the energy minima shift towards shorter 

cysteine-histidine distances. Only when diubiquitin is bound, a substantial number of sampled 

conformations would allow deprotonation of cysteine. This observation is consistent for the 

binding of mutated and wildtype diubiquitin. However, the effect is more pronounced for wildtype 

diubiquitin. Thus, binding of diubiquitin to RavD clearly leads to a stabilization of the catalytic 

triad as well as a facilitation of short cysteine-histidine distances. To be even more precise, the 

catalytic triad of RavD is inactive in the unbound, and at least partially active in the substrate bound 

state. However, the probability for an active catalytic triad arrangement is still one order of 

magnitude lower in substrate bound RavD compared to substrate bound OTULIN.  
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Figure 3.6: Diubiquitin binding induces partial catalytic triad activation. Free energy maps (A) of relevant inter-
residue distances of catalytic residues for unbound RavD, and substrate-bound RavD and OTULIN (see text for 
details). The area in which the catalytic triad is in a catalytically competent state is marked. The free energy landscapes 
were clipped at the highest sampled energy. (B) Representative MD snapshots of catalytically active and inactive states 
based on the energy wells of unbound RavD and RavD-DiUb. 

3.3.4 Conclusion 

The bacterial effector protein RavD hydrolyses linear polyubiquitin chains with high selectivity. 

Therefore, it has developed a highly specific distal binding site which is in every aspect comparable 

to that of OTULIN. Such a S1 binding sites selectively binds ubiquitin in an orientation in which 

the ubiquitin C-terminus is positioned into the catalytic grove. This however does not yield linkage 

selectivity because the distal binding mode is identical independent of the polyubiquitin linkage and 

the C-terminus is always the “substrate” which holds the bond to be cleaved. Thus, OTULIN for 

example employs a second, highly specific binding site for the proximal ubiquitin to be oriented so 

that Met1 (M77 in case of diubiquitin) comes close to the active site. In OTULIN this is achieved 

by three distinct recognition sites to selectively bind ubiquitin residues Glu92, Asp108 and Lys139. 

RavD has also developed a second ubiquitin binding site to accommodate exactly the same 

residues. However, the proximal binding site on RavD is substantially weaker. It makes fewer 

contacts, it buries a smaller area, and it engages in less favorable interaction types. Thus, the 

selectivity and activity of RavD towards linear linkages would be significantly lower than of 

OTULIN. As this is not reported and RavD performs similar to OTULIN, another factor must be 

considered: substrate-assisted catalysis. It was originally disregarded for RavD, but it is inevitable 

to explain its selectivity. Additionally, it is clearly suggested by the molecular dynamics simulation. 

The question arises why the substrate-assisted catalysis is not clearly seen in the crystal structures.  

The reasons for this misconception are to be sought in the mutation of the substrate. The mutation, 

a double exchange of glycine by serine at both the c-terminal residues of the distal ubiquitin, was 

necessary to avoid hydrolysis and hence allow crystallization of the wildtype protein with a full 

diubiquitin. However, as only the glycine-glycine motif is small enough to bury into the active site, 

the serine-serine motif remained outside of the binding grove and engaged in s few superficial 
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interactions. The C-terminus and initial residues of the N-terminus are of sufficient flexibility, so 

that the absence of a tight central binding, did not interfere with the remote binding of distal and 

proximal ubiquitin. Anyway, the absence of a close approaching of the substrate towards the 

catalytic center inhibited the conformational transition within the catalytic triad to the activated 

state. This lead the original authors to the assumption that substrate assisted catalysis would not 

take place. In the MD simulation, the effect of the proximity of the substrate on the dynamics of 

the catalytic triad can clearly be seen. Only the final transition, in which the substrate buries into 

the catalytic grove and fully stabilizes the active catalytic state is not achieved within sampling time. 

To be clear, such a transition is impossible for the mutant substrate because it is too large to fit 

into the tight grove. It is possible, though, for the wild type substrate, but could not be sampled 

within the cumulated sampling time of 1 µs.  

To summarize, the mutation of the substrate lead to an artificial binding mode, in which both the 

protein-protein recognitions sites for distal and proximal ubiquitin are correct, but not the 

positioning of C-terminus and thus the arrangement of the catalytic triad. Based on this artificial 

crystal structure, the author came to the wrong conclusion about the activation mechanism of 

RavD which lead to large ambiguities in the structure-selectivity relation. Here, molecular 

simulation was employed to sort out this discrepancy by showing that RavD activation must be 

substrate-assisted. 
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4 GLYCAN CONFORMATION AND GLYCOSYLATION SITES 

Complex N-glycans are commonly considered highly flexible and disordered. In this chapter, the 

site-specific, intramolecular protein-glycan interactions are investigated and their effect on the 

degree of disorder is quantified. Therefore, an embedded clustering workflow based on the 

glycosidic torsion angles was developed, tested on artificial data and employed on large molecular 

dynamics ensembles. The workflow allowed the identification of more than 100 conformational 

clusters within the glycan conformational space. Whereas the adopted conformations were broadly 

identical, the glycosylation site had a significant effect on the abundance of certain conformations. 

The results highlight that protein N-glycosylation are not fully disordered, but transition quickly 

between many distinct conformational states, some of which are stabilized by specific protein-

glycan interactions. 

4.1 Introduction  

Protein glycosylation presents a posttranslational modification that occurs in all domains of life 

[281] and is characterized by its tremendous diversity and abundance [282]. Glycosylation is mostly 

defined as the concerted enzymatic conjugation of one or more glycan moieties (carbohydrates) to 

either asparagine (N-glycosylation) or serine/threonine (O-glycosylation). Common glycosylation 

types are shown in Figure 4.1. The posttranslational modification takes place in the endoplasmic 

reticulum and Golgi system and affects over 85% of secretory proteins by N-glycosylation [283] 

and a majority of nuclear and cytoplasmic proteins by additional O-glycosylation [284].  



80   Introduction 

 

 

Figure 4.1: Overview of common N- and O- glycans. N-glycans are conjugated to asparagine, O-glycans to serine 
residues. The shown moieties represent only a small subset of the most commonly occurring sugars. Symbols and 
nomenclature according to https://www.ncbi.nlm.nih.gov/glycans/snfg.html. 

On the molecular scale, glycosylation of proteins is important for folding, quality control, stability, 

function and transport [285]. On the cellular level, the roles of glycans comprise, among others, 

cell-adhesion, ligand binding, effector function and receptor dimerization [282]. Frequently, 

pathogens specifically recognize glycosylation motifs on host cells (e.g. norovirus, see Chapter 2) 

or produce host-mimetic glycoconjugates to evade immune response [286]. Proteome-wide 

glycosylation patterns are often disturbed in disease and can be used as diagnostic and prognostic 

markers [287]. Recent reviews summarize the mutual effects of glycosylation and cancer [288] and 

auto-immune diseases [289].  

Structurally, glycosylation and especially N-glycosylation underlies a certain microheterogeneity, 

which is based on the somewhat unregulated enzymatic cascaded in the ER and the Golgi [290]. 

Thus, in vivo glycoproteins exist as a population of different variants, so called glycoforms, which 

exhibit glycosylation site-dependent distributions of different glycan types. Development of 

methods for the site-resolved, quantitative analysis of different glycosylation motifs is subject of 

ongoing research [291, 292] [293]. Such heterogeneity and the obstacles in both analysis and 

preparation of pure glycoproteins pose a major challenge for experimental structural studies. Thus, 

in the protein data bank (PDB), structures containing glycans are heavily underrepresented [294].  

Theoretical methods, such as molecular modeling and simulation, historically played and still play 

an important role in the field of structural glycobiology [295-297]. Especially in the recent years 

during the Corona virus pandemic (2019 and ongoing), computational, structural glycobiology 
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regained tremendous interest because of the heavy glycosylation of the SARS-COV-2 spike protein 

[298-300]. However, a thorough understanding of the conformational landscape of complex 

glycans remains largely elusive. Recent experimental advancements enable insight to structurally 

well-defined glycans using an imaging method [301] or in the gas phase via IR spectroscopy[302]. 

Hence, molecular simulation is still the method of choice to investigate conformational ensembles 

of complex carbohydrates. It is, however, limited by three key factors: sampling, force-field 

accuracy, and data analysis. Especially ring puckering is a challenge for MD simulation, as with 

current force fields it happens on very slow time scales in the order 0.07 per microsecond [303]. 

With current computing resources, such sampling can only be achieved for small oligosaccharides 

and not for large glycoproteins. Additionally, in the case of complex carbohydrates with many 

interdependent degrees of freedom, data analysis of the trajectory is tedious and a gold standard 

does not exist. Thus, it is unclear if and how intramolecular interactions would mutually affect 

protein and glycan conformation.  

In this research, multi-microsecond scale sampling of complex a bi-antennary, sialylated complex 

N-glycan attached to human erythropoietin (EPO) as a model glycoprotein is achieved (Figure 4.2 

A). The mutual effects of the protein core of EPO and its glycan shield are studied. Here, the 

effects of the glycosylation on the molecular properties are probed. Additionally, the effect of the 

local protein environment on the structure and dynamics of complex glycans at the three 

glycosylation sites is examined. The second task revolves around an unprecedentedly detailed 

analysis of the conformational space of the glycan. Therefore, a dimensionality reduction and 

clustering workflow was developed, tested and employed.  

4.2 Method 

4.2.1 Glycoprotein modeling 

To understand site-specific effects and allow site-specific conformational analysis, 16 different 

EPO glycol-isoforms (Figure 4.2 C) were structurally modeled and each subjected to 3 x 150 ns 

molecular dynamics sampling. The simplest model contains no glycosylation at all. At the N-

glycosylation sites, a complex-type, bi-antennary, double sialylated, and fucosylated glycan was 

added (Figure 4.2 B). At the O-glycosylation, a standard core 2 type O-glycosylation was 

conjugated. Every permutation of the 4 glycosylation sites: Asn24, Asn38, Asn83 and Ser126 was 

modeled. The corresponding N-glycan was selected from the database of the glycosciences.de [304] 

webserver and in silico glycosylated to the structural model of human EPO. The initial glycosidic 

torsion angles were chosen to avoid atomic overlap. The EPO model was based on the crystal 

structure 1EER [305]. It was subjected to 10 ns molecular dynamics simulation in the non-

glycosylated form. To enable in silico glycosylation, the relative solvent accessibilities of Asn24, 
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Asn38 and Asn83 were monitored and a snapshot with high accessibility of all three residues was 

selected. The resulting PDB files were parsed for the CHARMM-GUI glycan reader [306] by 

removing empty lines and adjusted TER statements and chain IDs. This way, CHARMM-GUI 

[307] could be used for solvation and ionization of the glycoprotein models as well as parameter 

assignment with the CHARMM36 [83 and CHARMM carbohydrate force field, 85, 308]. 

Additionally, CHARMM-GUI glycan modeler [306] was utilized to manually add O-glycosylation 

to Ser126.  

 

Figure 4.2: Structural models of fully glycosylated recombinant human EPO. A) Surface model of EPO with 
annotated N- and O-Glycosylation sites and the herein investigated glycans in licorice representation (colored by 
residue type) B) Schematic representation of the complex N-glycan with glycosidic bond annotation. Residue type is 
coded by shape and color according to conventional glycan nomenclature 
(https://www.ncbi.nlm.nih.gov/glycans/snfg.html). C) Schematic representation of the 16 modeled EPO glycol-
isoforms with the color coding corresponding to the number of glycan modifications. 

4.2.2 Simulation protocol 

MD simulations followed a standard protocol of 5000 steps steepest descent minimization, 25000 

steps of NVT equilibration with a short 0.001 ps time steps followed by and 150 ns production 

sampling with a 0.002 ps time step and NPT ensemble. Three replica of production runs were 

performed for each system. All simulation were carried using GROMACS ver. 5.1.5 [75-77, 80, 81, 

309]. In all instances, a Verlet cutoff scheme with a neighbor list update step of 20 was employed. 

Short range interactions were cut off after 1.2 nm. Van-der-Waals interactions used a force-switch 

modifier between 1.0 nm and 1.2 nm. Long range electrostatic interactions were treated with the 

particle mesh Ewald method [97-99]. Temperature coupling was achieved with a Nose-Hoover 

thermostat [225, 310], in which the glycoprotein and the solvent were coupled separately. The 

coupling constant was 1 ps and the reference temperature was set to 298.15 K. Initial velocities 

were assigned to fit a Maxwell-Boltzman distribution at a temperature of 298.15 K. Bonds to 
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hydrogen atoms were constrained via LINCS [311]. Center of mass motions were removed. During 

minimization and equilibration, the backbone and sidechain atoms were restrained using force 

constants of 500 kJ/mol nm and 50 kJ/mol nm respectively. In the production phase, isotropic 

Parrinello-Rahman pressure coupling [312, 313] with reference pressure of 1 ATM, a coupling 

constant of 5 ps and a compressibility of 4.5e-5 was used. 

4.2.3 Trajectory analysis 

The global glycoprotein properties were elucidated using GROMACs tools. The backbone RMSD 

was computed with gmx rms after least square fitting of only the protein backbone coordinates. The 

radius of gyration was determined with gmx rgyr and the considered the whole glycoprotein 

molecules. The number of all intramolecular H-bonds were computed with gmx hbonds and a 

minimum heavy atom distance of 0.3 nm and a minimum angle of 150°. The total solvent accessible 

area was monitored with gmx sasa and a probe radius of 0.14 nm. Translational diffusion coefficients 

were estimated from linear fitting of the mean squared displacement functions using gmx msd. The 

dipole moments of whole molecules were computed with gmx dipole. More localized effects were 

assessed using the residue-wise descriptors of relative solvent accessibility and backbone RMSF. 

The values were calculated via gmx sasa (probe radius of 0.14 nm) and gmx rmsf (alignment via 

protein backbone atoms). The data were pooled from all trajectory replicas and models and 

averaged. The differential values were calculated for all glycosylated proteins with respect to the 

non-glycosylated protein. Furthermore, the residue-wise protein contact occupancy with the glycan 

with a heavy-atom minimum distance criterion of 0.6 nm were calculated using MDtraj Ver 

1.9.3.[230] The interactions of the N-glycans with their protein were analyzed similarly.  Here, the 

contacts were resolved individually for the different glycosylation sites and categorized by protein 

residue type. The software MDTraj was also used to compute the glycosidic torsion angle 

distributions of the N-glycans. Therefore, list files containing the atom indices according to figure 

31 A were generated and utilized. In total, 26 glycosidic and 3 root asparagine sidechain torsion 

angles were analyzed. For clustering and embedding, they were transformed into the cosine, sine 

space via the transformation z(φ) = [cos(φ), sin(φ)]. Pairwise circular correlation coefficients were 

calculated using instructions by Johnson et al. [314] Embedding was performed with UMAP[172, 

173]. Clustering was achieved with HDBSCAN [182] within the embedded space. Different 

combinations of parameters were investigated and can be found in the results section. Generation 

of figures and structural render images as utilized with Matplotlib [274] and VMD ver 1.9.3 [266] 

respectively.  
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4.3 Results and discussion 

4.3.1 Global effects of N-glycosylation 

Molecular dynamics simulation of the above given 16 different EPO glycoforms were carried out 

in order to systematically investigate the effect of glycosylation on global protein properties such 

as backbone RMSD, radius of gyration, number of intramolecular hydrogen bonds, solvent 

accessible surface area, translational diffusion coefficient and electric dipole moment (Figure 4.3). 

The overall backbone RMSD is between is 0.24 ± 0.02 nm for the non-glycosylated EPO protein. 

Upon glycosylation, the backbone RMSD is always between 0.20 and 0.27 nm for all glycosylated 

models of EPO independent of site, number and type of glycosylation. The differences between 

the glycosylated models is only marginally larger than the differences between the replicates of each 

system. This shows that glycosylation does not affect the overall protein backbone RMSD and 

there are no larger conformational changes upon glycosylation. A RMSD of 0.3 nm or below is 

common for small globular proteins. 

 
Figure 4.3: MD simulations yield structural descriptors for 16 different EPO glycoforms. The black circles 
represent the individual values of three replicas, the vertical lines the averages and the colored rectangles the standard 
deviations. The panels from left to right and top to bottom present the average equilibrated backbone root-mean-
squared-deviation RMSDBB, the radius of gyration rgyr, the number of hydrogen bonds between protein and glycan nH-

bonds, the total solvent accessible surface area of the glycoprotein SASA, the lateral diffusion coefficient of the 
glycoprotein Dtrans and the dipole moment of the glycoprotein M.  
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The radius of gyration, which is a measure of the effective molecular size in solvation, increases 

from 1.5 nm for the non-glycosylated EPO to 1.7 nm for the fully glycosylated model. O-

glycosylation does not significantly increase the radius of the protein in solution. This is indicative 

of a glycan orientation remarkably close to the protein surface. Interestingly, N-glycosylation at the 

ASN38 position appears to have the strongest effect as it leads to increased radii as compared to 

its isoform group, i.e. models with same number of glycosylations but at different sites. This 

indicates a more extended conformation of the glycan at ASN38 position as compared to the 

ASN24 and ASN83 positions.  

From Figure 4.3, it becomes clear that the number of intramolecular hydrogen bonds is 

determined by the number of glycans rather than their positions. Every N-glycosylation adds 

between 5 and 10 more hydrogen bonds, which are found both between the glycans and between 

the glycans and the protein. The number of hydrogen bonds upon ASN38 glycosylation is not 

significantly lower than for its isoforms, leading to the conclusion that the conformational 

differences are not governed by the formation/absence of hydrogen bonding. 

The SASAs are reproducible in all the three replica and critically dependent on the number of 

glycans added but less so on the site of glycosylation. A first, N-glycosylation is most prominent 

and increases the SASA by around 20 nm² to the proteins SASA starting from 100 nm² in the non-

glycosylated form. O-glycosylation increases the molecular SASA by an additional 5 to 10 nm². The 

second N-glycosylation only adds around 15 nm², indicating only weak interactions between 

neighboring glycans. The fully glycosylated protein has a SASA of 165 nm².  

Upon glycosylation, the translational diffusion coefficient decreases with increasing molecular 

weight due to glycosylation. This decrease depends more on the number of glycosylations than on 

a particular site. The computed diffusion coefficient of non-glycosylated EPO is around 2.5 x 106 

cm²/s, which is in good agreement with other proteins of similar size. It decreases to 1.7 x 106 

cm²/s with one N-glycosylation, and to 1.2 and 1 for two, respectively three N-glycans. O-

glycosylation does not seem to influence the protein diffusion coefficient.  

The electrical dipole moment on the other hand is clearly dependent on the position of 

glycosylation. Whereas an N-glycan at the ASN24 position does not alter the moment, an N-ylycan 

at the ASN83 position almost increases the dipole moment by a factor of two (by 200 D). In most 

models, the effect of the O-glycan is negligible. An exception is the fully glycosylated form, where 

it reduces the moment by 70 D.  

To summarize the above observation, protein RMSD, number of hydrogen bonds, SASA, and 

translational diffusion are rather determined by the number of glycosylations and not the position. 



86   Results and discussion 

 

Only the radius of gyration and the electrical dipole moment are significantly glycosylation site-

dependent. Apart from the diffusion coefficient, the standard deviation between the three 

replicates indicates the how much that property is based on the conformational flexibility of the 

glycans. This demonstrates the complexity of glycan torsional flexibility and the challenge of a full 

conformational space sampling. We note in passing, that all of the aforementioned properties 

influence the bio- and physicochemical behavior of the glycosylated protein such as aggregation, 

solubility, receptor-affinity and kinetics of binding as well as complex formation. 

4.3.2 Intramolecular protein-glycan interactions and effect on protein structure 

We have shown how N- and O-glycosylation alters the global protein properties. In this section, 

the localized effects of the glycan on certain amino acids are discussed. The results of all 16 

simulations are summarized in the single figure Figure 4.4, which visualizes the effect of glycan 

contacts on residual RMSF and relative SASA. The backbone RMSF is altered in a range from -0.1 

to 0.3 nm. Interestingly, residues that show a high increase in RMSF fo more than 0.5 nm never 

show any contact with the carbohydrate. In fact, further investigation revealed that these residues 

are mostly N- and C-terminal and thus naturally more flexible. Looking at the residues with a 

decreased RMSF, we note an accumulation of frequently contacted residues. However, most 

residues can be found close to an RMSF change of 0, independent of glycan contact frequency. As 

compared to the non-glycosylated form, the difference in relative SASA ranges between -0.4 and 

0.3, where most of the residues are normally distributed around 0. Only one isle of residues is eye-

strikingly off-centered. Namely the residues with a SASA reduction of more than -0.3, and a high 

glycan contact frequency. Unsurprisingly, these residues correspond to the glycan attachment sites 

ASN24, ASN38, ASN83 and SER126 and neighboring residues. This leads to the conclusion, that 

at least in the case of EPO and most likely also for other globular proteins, glycosylation does not 

alter solvent accessibility and fluctuation of residues unless they are close to the glycosylation root. 

In this case, the solvent accessibility and RMSF are decreased. 
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Figure 4.4: Effect of glycan contacts on residual RMSF and relative SASA relative to non-glycosylated EPO. 
The scattered points represent the amino acids pooled from all the 15 simulations including glycans (averages from 
the three replica). The abscissa is the difference in relative SASA as compared to the non-glycosylated EPO. The 
ordinate is the difference in RMSF as compared to the non-glycosylated EPO. Every point is colored according to the 
contact frequency of the amino acid with any glycan residue.  

Even though protein-glycan interactions did not introduce drastic changes to structure and 

dynamics of the amino acids, the interaction partners on the carbohydrate site were further 

itemized. The number of contacts of each glycan residue with the protein were monitored and 

classified by amino acid residue types (Figure 4.5). The total number of contacts and the residue 

types are largely consistent among the glycosylation sites with only minor differences. The most 

contacts are mediated by the glycan core residues N-acetylglucosamine (GlcNac) and fucose (Fuc). 

The interaction residue types resemble the local protein surface composition. The number of 

glycan-protein interactions is highly decreased for the second GlcNac, the b-mannose (bMan) as 

well as both the a-mannoses (aMan). Only the sialic acid (Neu5Ac) of the 3-arm and the galactose 

(Gal) and Neu5Ac of the 6-arm show frequent contacts with the proteins. Thus, in most instances, 

the 6-arm folds towards the protein, whereas the 3-arm remains in solvation. The 6-arm contributes 

about 2000 contacts throughout the trajectories - a quarter of the number of contacts of the core 

GlcNac, which is in contact with protein all the time. Thus, the protein-glycan interaction between 

the two terminal residues of the 6-arm is significant. Surprisingly, the interactions are not only of 

the charged type between acidic Neu5Ac and basic protein residues but also between polar and 

hydrophobic residues. The composition of the interactions is quite similar also for the terminal 

glycan-protein interactions. Systematically, the number of contacts mediated by the glycan at the 

38 position is slightly larger as compared to the other two sites. Additionally, only the glycan at the 

24 position is enabled to form persistent interactions via the 3-arm. However, in total the 

differences between the various glycosylation sites are inconspicuous.  
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Figure 4.5: Amino acid type composition of residues in contact with the glycan. The stacked bars represent 
ASN24, ASN38 and ASN83, distinguished either by core (GlcNac, Fuc, GlcNac, Bman) and arm (3-arm: AMan, 
GlcNac, Gal, Neu5Ac and 6-arm: Aman, GlcNac, Gal, Neu5Ac) domain of sugar moieties. Results are averaged over 
all simulations. 

4.3.3 Conformational analysis 

Even though the site-specific differences in the intramolecular protein-glycan interactions are 

small, significant contacts could be identified, especially by the terminal Gal and Neu5Ac residues 

of the 6-arm. It thus is of interest, if and how such interactions interfere with the conformational 

space of the glycans. This is a tedious task though, because glycans are considered highly flexible 

and the mathematical descriptions affords many variables. In the case of the herein examined 

complex N-glycans, 29 torsion angles are necessary to fully describe their conformational state 

(Figure 4.6 A). Three of them belong to the root connection of GlcNac to asparagine, 26 are 

glycosidic bond torsion. The three root bonds are conformationally flexible and each exhibit two 

states. Thus, a major contributor to the flexibility of a glycosylation arrives from the glycan-protein 

linkage alone. The glycosidic linkages are in fact broadly rigid and many of them only populate a 

single conformational state with a low conformational variance. The highest contributors to the 

conformational variance are the linkages to the carbon 6 as located at the core fucose, the mannose 

of the second antenna (6-arm) and the sialic acid residues. Such bonds were found to exhibit up to 

three conformational populations (Figure 4.6 B). While these bonds contribute to large amounts 

of conformational variance, they are easy to identify and to distinguish. In other bonds, the torsion 

angles are only slightly distorted and dragged in one or the other direction. In the histograms, this 

shows as two closely overlapping or one broad peak.  

All of the above is reflected by the circular variance (Figure 4.6 C) which can take values between 

0 and 1. For the torsion angle distributions, three classes of values are identified: I. large circular 

variance with a value above 0.2, which corresponds to two or three clearly distinct populations; II. 

Slightly increased values between 0.05 and 0.2 that indicate broadened or heavily overlapping 

distributions, and III. Low values below 0.05 to show single populations. Thus, when it comes to 
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the identification and classification of conformations, the bond torsion angles with large circular 

variance will be more important than the lower ones. Or, in other words, some bond torsion angles 

are negligible in the conformational analysis because they are constant. Additionally, the analysis of 

the pairwise circular correlation matrix (Figure 4.6 D-E) reveals a low degree of statistical 

interdependence. The correlation coefficients are largely close to zero, and correlation is only 

reported for consecutive torsion angles, that is angles of same glycosidic bond. 

 

Figure 4.6: Torsion angle sampling of the N-glycans. A) Atom numbering and annotated investigated torsion 
angles. B). Histograms of all sampled torsion angles for each bond. Histograms are wrapped around a circle to 
emphasize on their periodicity. Axes tick labels are only drawn on the last panel for clarity and are identical for all 
histograms. C and D) Circular correlation coefficients between all torsion angles and their distribution. E) Circular 
variance of the different glycan torsion angles.  
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4.3.4 Conformational embedded clustering 

To discriminate different conformational states, the torsion angles were utilized as features for a 

density-based clustering method. As the numbers of features is high, and the data is constrained to 

a circular manifold, the clustering method was benchmarked using an artificial dataset. This dataset 

is supposed to resemble the real data. Thus, an assumption for the origin of the real data was 

thought out. The basic idea was, that a molecular conformation corresponds to an energy minimum 

in a high dimensional energy landscape. If the conformation changes in any of the dimension, its 

energy increases. Thus, the closer the conformation is to the minimum energy conformation, the 

more likely it is. This way, it can be imagined that conformations of a molecule are drawn from 

high-dimensional normal probability distribution functions, in which the marginal distributions 

correspond to single features, such as torsion angles. The dimensions (features) might be pairwise 

correlated for example due to favorable non-bonded interactions such as hydrogen bonds or steric 

hindrance. Additionally, it is possible that certain features have multiple local energy minima so 

that one multi-dimensional Gaussian is not sufficient to describe the whole conformational space. 

Then, a mixture of such Gaussians must be employed to model all the different conformations. 

Here, mixtures of increasing numbers of Gaussians and dimensions were generated to sample large 

artificial dataset to mimic molecular conformations. These datasets were subjected to a 

combination of density-based clustering and dimensionality reduction by means of nonlinear 

embedding. For the clustering, different distances were probed.  

Briefly, it could be shown that a combination of an initial UMAP embedding, combined with 

hierarchical density-based clustering is well suitable to re-separate up to 265 Gaussians as long as 

they differ in at least one of 32 dimensions (Figure 4.7). In terms of accuracy, it did not make a 

great difference, if cos-sin transformation or a periodic city-block metric was employed. However, 

cos-sin transformation was computationally much more efficient. While this is well in the limits of 

the real data, we still decided to split torsion angle space into two categories: One for the root 

connection between Asn and the glycan, and one for the glycan itself. This is feasible because the 

torsional angles do not significantly correlate with each other (Figure 4.6 D). Additionally, the 

distinction is of interest to understand if the glycan conformation or only orientation as defined by 

the root torsion angles is affected by the protein. Furthermore, it is supportive for the algorithm 

by a drastic reduction of the number of clusters. Due to the statistical independence of the different 

torsion angles, the probability for the joint clusters could later be calculated via simple 

multiplication.  
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Figure 4.7: Benchmark of the lower dimensional embedding and clustering approach. The scatter plots show 
the 2D embedding of 20.000 16- (two left columns) or 32- (two right columns) dimensional artificial data points. The 
points are drawn from a mixture of 8, 16, 32, 64, 128, and 256 Gaussian probability distributions. The embedded 
points are clustered using HDBSAN and colored accordingly. The estimated density of the 2D embedding is drawn as 
black contours. The 1st and 3rd column employ a periodic Cityblock metric, whereas the 2nd and 4th column use a 
cosine-sine extension and Euclidean distances.  
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Concerning the conformational space of the asparagine sidechains which conjugate the N-glycans, 

nine clusters of different sizes were identified (Figure 4.8 A). The shape of clusters in the 

embedding differs widely from the artificial data. This indicates that the model to generate the 

artificial data was too simple and the real data are based on more complex probability density 

functions. However, with the proposed approach it is possible to algorithmically determine distinct 

conformational states. The largest clusters, i.e. the most likely conformational states correspond to 

cluster 4 and 3 with each about 30% contribution. Clusters 1 and 0 each contribute 10% to the 

total conformational space. The other clusters are significantly smaller.  

The initial question was how the conformational clusters distribute over the three glycosylation 

sites (Figure 4.8 B). The most conformational variability is reported at Asn24, which adopts 

conformations from five of the clusters (0, 1, 2, 3, 5). Asn38 adopts only the one exclusive 

conformation of cluster 4. Asn83 adopts similar conformations as Asn24 yet with a different 

composition. Approximately, six conformational states are visited with some exclusive to certain 

glycosylation sites. The conformation of the glycosylation root has tremendous effects on the 

overall shape of the glycan because it determines its orientation. Thus, the apparent flexibility of 

the glycan is heavily influenced by the asparagine-GlcNac linkage. The root connection at Asn38 

is the most rigid, which is reflected by the high propensity of the glycan to interact with the protein.  

 

Figure 4.8: Clustering of the Asn-Glycan torsion angles within the 2D embedded space. A) UMAP 2D 
embedding of the three bond torsion angles between Asn and glycan. The points are colored according to HDBSCAN 
clustering. The cluster ID is plotted at the average cluster coordinates. B) Cluster contribution at the different 
glycosylation sites. 
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The molecular representations of conformational states as distinguished by the clustering prove 

the quality of the method to identify and classify molecular conformations (Figure 4.9). 

Additionally, they highlight the flexibility induced by the Asn sidechain which incorporates two 

rotatable bonds. Another rotatable bond appears through the linkage with GlcNac. One key feature 

that is common among most of the clusters is that the glycan root bents to engage in protein-glycan 

interaction via the fucose residue on the one site or the acetylamino-group on the other. The 

direction of bending depends on the local protein environment. A fully upright and well solvated 

conformations is also possible (Figure 4.9, cluster 3), however fewer variability of such 

conformations exists.  

 

 

Figure 4.9: Representative conformations of the glycosylation root. The 50 best cluster representatives are 
overlaid in licorice representation. The Asn backbone is oriented similarly for all clusters.  
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As the glycosylation roots showed significant differences in their conformational space, it is of 

interest if the glycan itself is similarly affected by the protein conjugation site. In the UMAP 

embedding 77 clusters were identified via HDBSCAN clustering (Figure 4.10 A). The largest 

conformational clusters correspond to the numbers 3, 13, 20, 54, 67, 74 and 75. All the larger 

clusters are present at all glycosylation sites (Figure 4.10 B). The contribution of each cluster to 

the whole conformational space is similar for the different sites. Only cluster 3 and cluster 75 at 

the Asn38 site are larger as compared to Asn24, and Asn83. On the other hand, the number of 

sampled conformations within cluster 54 is decreased at the 38 position. However, in general, the 

differences are small.  

The cluster representative conformations are identified as the conformation which is closest to the 

cluster arithmetic mean (medoid). Comparing the representatives of the 7 largest clusters reveals 

that the major source for variability are the two arms (Figure 4.11). Here, the arms themselves can 

fold back toward the glycosylation root to form a parallel arrangement with the core GlcNac 

residues. Only one arm can fold down at the same time and this is preferentially the 6-arm (Cluster 

54). Additionally, the arm itself can bend around an “elbow” composed of GlcNac, Gal, and 

Neu5Ac. Conformations with a bent elbow are most likely, whereas an extended elbow is the 

exception. In cluster 3, the 6-arm is bent down towards the protein and the 3-arm is bent upwards 

towards the solvent. Both elbows are in folded conformation. Cluster 13 has both arms in upward 

conformation and both elbows bent. Cluster 20 is similar to cluster 3 yet with different rotations 

around the elbows. In cluster 67, the 3-arm is facing upwards and the 6-arm takes a mediocre 

orientation between down- and upfolded. Both elbows are bent. Cluster 75 is the exception were 

the 3-arm is downfolded and the 6-arm is oriented towards the solvent. Cluster 75 is similar to 

cluster 13 but with a clearly more extended 6-arm.  
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Figure 4.10: Clustering of glycan conformations. A) 2D UMAP embedding of the glycosidic bond torsion anlges 
of the N-glycans pooled from all replicates, glycoforms and sites. The points are colored according to HDBSCAN 
clustering in the embedded space. Black points mark noise. B) Cluster contribution at the three different glycosylation 
sites. Clusters with a contribution of more than 5% are annotated. 

 

 

Figure 4.11: Representative glycan conformations of the 7 largest clusters. The glycan is shown in licorice 
representation with the residue type color coding corresponding to the SNFG nomenclature (Fuc: red, GlcNac: blue, 
Man: green, Gal: yellow, Neu5Ac: magenta) Asn is always at the bottom, the central branching mannose is in the center 
of the view and the 6-arm is oriented to the right.  
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It is interesting to compare the molecular conformations with the relative positions of their clusters 

in the 2D embedding. Visually similar conformations are mapped to much different areas in the 

embedding because they do not share neighbors. However, a large distance in the embedding does 

not necessarily mean a large conformational difference, but rather a large energy barrier between 

conformations because transitions were not sampled. Additionally, it must be noted that the high 

dimensional local density of the points is not preserved. Instead, points with high likeliness to be 

neighbors are embedded at a predefined minimum distance. Thus, a cloud of nearly identical points 

in the high dimensional space would not stack on top of each other in the embedding but rather 

form a large, extended cluster. To further improve the information gained from the clustering, the 

next logical step would be to model a Markov state model based on the transition frequencies 

between the clusters. This however requires even more sampling and does not reveal much more 

information regarding the conformational space. 

4.4 Conclusion 

The site-specific, mutual effects of protein-glycan interactions were analyzed in unprecedented 

detail using in silico methods. Global glycoprotein properties were generally more affected by the 

number of glycosylations than the glycosylation sites. Only in the case of gyration radius and dipole 

moment, the glycosylation site was of similar significance. The overall effect of the glycosylation 

was most notable on the SASA, lateral diffusion and dipole moment. Full glycosylation increased 

the SASA by 60%. The diffusion was reduced by a factor of 3 and the dipole moment was doubled. 

Interestingly, the O-glycosylation is able to significantly reverse the effect of N-glycosylation on 

the dipole moment by up to 20%. The RMSD of the protein is not significantly or systematically 

touched by the introduction of glycans. The same was observed for differences of RMSF and SASA 

of protein residues which interact with glycan. Only the few residues, to which the glycosylation is 

conjugated to, are substantially effect. For other residues, the protein-glycan interactions are short-

lived. This is underlined by the observation that the major contributors to the protein-glycan 

contacts are the root GlcNac and Fuc. Further interactions are only mediated by the terminal Gal 

and Neu5Ac of the 6-arm and to lesser extent also by the 3-arm. The ratio between root and arm 

interactions is about 4:1. The glycosylation site where the most protein interactions were monitored 

is Asn38. The small amount of protein-glycan interactions as well as the undisturbed protein lead 

to the question if the glycan is still conformational affected by the local protein environment.  

Thus, a novel conformational clustering workflow based on a lower dimensional embedding of the 

glycoside torsion angles and hierarchical density-based clustering was composed and proved its 

feasibility on an artificial dataset. The workflow revealed an expectedly large conformational space 

with 77 distinct clusters. The contributions of each cluster to the local, site-specific conformational 
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space were broadly similar. We conclude that the conformational space of the complex N-glycan 

is only marginally influenced by protein-glycan interactions. Oppositely, and identified with the 

same method, the conformations of the connection between Asn and the glycan differs heavily 

from site to site. Nine conformational states were identified, two of them exclusive to certain sites. 

This insight will simplify further conformational studies on glycosylation because such differences 

in the glycosylation site-dependent behavior might be general. Hence, it is recommended to start 

conformational analysis of the glycan with the sidechain torsions of the Asn it is conjugated to. 

The workflow produced exceptionally well separated clusters in a short computation time and 

should generally be employed for clustering of high-dimensional torsion angle data. 
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5 SITE SPECIFICITY OF ASPARAGINE DEAMIDATION 

Besides the already covered post-translational modification of ubiquitination and glycosylation, 

which afford enzymes for their conjugation, deamidation of asparagine and glutamine residues 

appears spontaneously. It is considered the main driver for in vitro protein degradation and short 

shelf lives of protein drugs. Interestingly, only few residues in highly specific protein 

microenvironments show fast deamidation. Understanding and prediction of such deamidation 

sites is of tremendous interest for highly value pharmaceutical compounds such as antibodies. 

Interestingly, some pathogenic proteins undergo deamidation to escape immune response. For the 

GII.4 strain Norovirus protruding domain of the VP1 protein, fast deamidation was reported by 

Mallagaray and coworkers using NMR spectroscopic methods. A rationalization for these 

observations in regard of sequence- and structure-based prediction methods was not possible, 

though. In this chapter, extensive molecular dynamics sampling and thorough analysis of inter- and 

intramolecular interactions in proximity to potential deamidation sites were conducted. The data 

allow the conclusion that favorable attack geometries are common among solvent exposed 

asparagine residues and are insufficient predictors. Instead, backbone hydrogen acidity and peptide 

bond deformation appear to be the discriminating quantities. The NMR and chromatography 

experiments of the full size proteins were conducted by R. Creutznacher from Lubeck University. 

Additioanlly, M. Schubert from the University of Salzburg synthesized peptides of identical primary 

sequence as the Norovirus deamidation site and observed them over weeks with NMR 

spectroscopy.  

5.1 Introduction 

Deamidation is a spontaneous posttranslational modification of the protein backbone, in which 

the asparagine sidechain carbonyl of asparagine (or glutamine) undergoes an intramolecular 

reaction with the backbone nitrogen of the succeeding residue [315]. Thereby, asparagine 

(glutamine) is converted to aspartate or iso-aspartate (iso-glutamate) under formation of a 

succinimide intermediate and dissociation of ammonia (Figure 5.1) [316]. Such a reaction is 

considered the most abundant driver of protein degradation, especially of monoclonal antibodies 

[317-319]. Opposite examples, where deamidation induces protein function, are the activation of a 

fibronectin-integrin binding site [320] or the cellular stability of the bacterial pyruvate transferase 

MurA [321].  

Despite plenty observed instances of deamidation on the protein and peptide level, complete 

understanding of the factors facilitating deamidation has not been achieved. Clearly, the 

physicochemical microenvironment in terms of neighboring amino acids and solvent accessibility 
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has principal effects on site and rate of deamidation. Most importantly, the Asn side chain must be 

able to adopt a suitable, reactive conformation which enables a short attack distance between the 

nucleophile backbone nitrogen of the residue N+1 and the electrophilic sidechain carbonyl carbon 

[322]. Thus, that the reaction rate must be dependent on the secondary and tertiary structure of the 

protein. These conformational restraints are often neglected or only indirectly attributed by 

sequence-based prediction methods, which are mostly regression models based on experimental 

deamidation rates of peptides [323, 324]. Other prediction attempts explicitly incorporate protein 

tertiary structure using physics-based [325], or data-based [326, 327] methods, some of them even 

with quantum level detail [328]. Ugur et al. also employed structural dynamics to address the 

deamidation rates of two asparagine residues of triosephosphate isomerase [329]. However, even 

within two decades of deamidation prediction efforts, the array of deamidation descriptors 

remained largely identical and includes the type of the succeeding amino acid, solvent accessibility, 

nucleophilic attack distance, as well as backbone and sidechain torsion angles [322] [325, 330].  

 

 

Figure 5.1: Reaction scheme for asparagine deamidation. The reaction is initiated by nucleophilic attack of N+1 
backbone nitrogen at the N sidechain carbonyl carbon. Under release of ammonia, a succinimide intermediate is 
formed, which is reversibly converted to aspartate or iso-aspartate. 

Interestingly, especially the recent work of Delmar and colleagues [327] reveals the flaw of 

machine-learning and structure-based prediction methods. There appear to be two distinct 

population of deamidation residues: one for which the regression models are predictive over a wide 

range of half-lives, and one that is characterized by very fast deamidation and is not well captured 

by the models. This leads to the assumptions, that the models are trained too much on the slower 

deamidation events, which might be easier to predict (large attack distance, buried residues). 

Nevertheless, Delmar et al reach a fantastic quantitative prediction accuracy of over 93% for their 

benchmark set of asparagine half-lives. However, they leave out molecular rationalizations on why 

especially the weights for the N+1 residue type and torsion angles are so high. 
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Recently, Mallagaray and colleagues discovered that the P-dimers of the GII.4 Saga Norovirus 

strain undergo fast, and site specific deamidation at the asparagine 373 (N373) position [213]. A 

molecular explanation was however not yet sought out. This residue N373 is highly conserved 

among GII.4 NoV strains and deamidation is also observed for P-domains of other GII.4 strains 

[331]. N373 is only one of an abundance of asparagine residues within the P-domains (Figure 5.2 

A), some of which are predicted to be prone for fast deamidation (glycine as N+1 residue). 

However, the fact that deamidation is only observed for N373, raises the question of what makes 

N373 so special. Analysis of the crystal structure did not yield any exclusive topological properties 

of N373. Thus, we set out to perform dynamics-based analysis via extensive microsecond scale 

molecular dynamics (MD) simulations. Here, we describe how the combination of experimental 

data from protein NMR spectroscopy, ion exchange chromatography and quantitative analysis of 

MD trajectories lead to a rational and physics-based explanation for site-selective deamidation in 

GII.4 Saga and V387 NoV capsid proteins and selected point mutants. 

5.1.1 NMR spectroscopy and kinetic modeling 

N373 of the P-domain of GII.4 Saga undergoes fast spontaneous deamidation. N373 is located at 

the outward-facing part of the NoV capsid, at the tip of the P-domain homodimers (Figure 5.2 

A). Deamidation of N373 does not result in the expected mixture of aspartate and iso-aspartate. 

Instead, only formation of the iso-aspartate product has been observed. In addition, the fact that 

the 15N TROSY-HSQC NMR spectra of N373iD do not change over time suggests that it cannot 

interconvert into the aspartate form N373iD (Figure 5.2 B). Based on cation exchange 

chromatograms, R. Creutznacher developed a kinetic model for the deamidation of the P-domains. 

Of note, introduction of a dimer association and dissociation terms increased the quality of the 

kinetic model. Global least-square fitting of the model to the experimental data yielded a 

deamidation rate constant for the SAGA P-domain of 4.5 x 10-7 s-1. Interestingly, it was also 

recognized that acidic buffer conditions drastically increase the half-life of N373. In order to dissect 

a possible influence of the primary amino acid sequence on the deamidation rate of N373 from 

structural, through-space effects, M. Schubert synthesized a 13-mer model peptide for GII.4 Saga 

P-domains comprising the entire sequence of the deamidation site loop. Notably, this peptide 

contains a second Asn residue allowing us to probe the selectivity for deamidation of N373 as well 

as the corresponding reaction kinetics. To this end, we monitored 2D NMR spectra of the peptides 

under the same experimental conditions as applied to the P-dimers, except for the temperature. In 

contrast to the P-dimers, all Asn residues in the peptides deamidate over time and both, isoAsp 

and Asp reaction products are detected with a ratio of ca. 4:1. We find that even at higher 

temperature, Asn deamidation at the position corresponding to N373 is significantly slower than 

in the P-dimer, i.e., 61 d at 37°C for the Saga peptide compared to 1.6 d for the protein [191].  
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Figure 5.2: Deamidation of the SAGA P-dimer. a) Crystal structure of the SAGA P-Dimer (PDB 4X06) in ribbon 
representation. All asparagine residues are explicitly shown as well as the natural HBGA type b ligand. Asn373 is 
annotated. b) 2D 1H15N NMR spectrum with annotation of the peak shifts upon deamidation of N373 to iso-aspartate 
(N373iD) and aspartate (N373D). 

The Asn residue at the position corresponding to N380 deamidates even slower with a half-live of 

100 d. As deamidation in the model peptide is neither fast nor exclusive for N373, we conclude 

that fast deamidation of N373 of Saga P-dimers is primarily caused by conformational effects. 

5.1.2 Deamidation of the related strain VA387  

Selection pressure of the host immune system causes considerable sequence variation within the 

outward facing parts of the capsid NoV [332], including the loop containing N373. High 

conservation (64%) of N373 among GII.4 strains suggests a functional advantage of asparagine in 

this position. Therefore, we investigated the impact of sequence variation in neighboring positions 

on the deamidation behavior of a natural GII.4 NoV variant, the VA387 strain. P-domains from 

the Saga and VA387 strain are remarkably similar in terms of primary sequence (94% identity) and 

3D structure (0.4 Å RMSD). However, some amino acid substitutions can be identified close to 

the critical position 373 (R297H and E372N), allowing us to study deamidation in the context of 

two naturally occurring protein homologs (Figure 5.3 A). The same changes in the NMR spectra 

characteristic for N373 deamidation in Saga P-domains were observed, demonstrating that site-

specific deamidation is conserved among the two GII.4 NoV strains. Likewise, for both P-dimers 

only iso-aspartate (iD) was detected as reaction product. A model peptide of the VA387 loop 

containing N373 did neither reflect specific nor fast deamidation. A half-life of 27 days at 20°C 

was measured for the N373 VA387 P-dimers compared to 9 days at 20°C for GII.4 Saga P-dimers 

(Figure 5.3 B). To probe differences in local conformations of the loop that could account for 

this divergence, we determined the dissociation constant KD for binding of methyl α-L-

fucopyranoside to VA387 P-dimers. It is known that D374 is critical for binding to L-fucose 

containing glycans, and, therefore, such conformational changes may reflect on binding affinity. 

However, NMR spectroscopy yielded a dissociation constant KD of 21 mM which is almost 

identical to the value previously determined for GII.4 Saga P-dimers [191].  
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Figure 5.3: Deamidation of GII.4 VA387 P-domains. a) Structural alignment of GII.4 VA387 P-domain dimers 
(green) with GII.4 Saga P-domains (PDB 2OBT, 4X06). The deamidation site and nearby amino acid substitutions are 
highlighted. b) P-domain incubation at 25 °C and subsequent IEX chromatography yield N373 half-life times t1/2. 
Deamidation of Saga P-domains is three times faster than that of VA387 P-domains. Mutating VA387 amino acids 
close to N373 into their Saga counterparts reveals a strong influence of R297 on the deamidation rate of N373.  

This suggests that the local fucose recognition site is not affected by the deamidation. Additionally, 

point mutants were created to further scrutinize the cause for the observed difference in 

deamidation rates, which can be considered intermediates between SAGA and VA387. The two-

point mutants are E372N and H297R relative to SAGA. Both mutations substantially increased 

the deamidation rates. Surprisingly, the H297R mutant alone almost fully restored the fast 

deamidation kinetics of the Saga strain, clearly indicating that deamidation of N373 is partially 

controlled by an interaction with a neighboring surface loop. As expected, the behavior of the 

VA387 H297R N372 double mutant closely resembles that of the Saga wild type protein. 

5.2 Method 

To understand how the experimental observations are structurally rationalized, extensive molecular 

dynamics of the two P-dimers was conducted and assessed via elaborate geometrical and statistical 

analysis. 

5.2.1 Molecular dynamics sampling 

Theoretical conformational sampling was achieved using explicit-solvent, full-atomistic equilibrium 

molecular dynamics. Two molecular systems were subjected to molecular dynamics integration: 1. 

the P-protein dimer from strain GII.4 SAGA, and 2. the P-protein dimer from strain VA387. For 

both systems, data were collected from five trajectory replica of 1 µs length each, which were 

individually equilibrated using different initial velocity distributions. One Saga MD 1 μs trajectory 

was used previously to sample protein conformations for ensemble docking to the bile acid binding 

grove [191].  
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For the SAGA P-dimer, the molecular simulation tasks were performed with GROMACS 5.1.5 

[75-77, 80, 81, 309] using CHARMM36 force field parameters [83]. Modeling of the initial system 

was attained with CHARMM-GUI solvation builder [307] using the X-ray structure PDB 4OOX 

[217]. CHARMM-GUI was also used for solvation with TIP3P water and ionization to 0.15 M 

NaCl. The periodic simulation box was set to a cubic shape of 9.3x9.3x9.3 nm³ volume, 

corresponding to 2 nm water layers in each direction around the central protein dimer. Prior to 

dynamics integration, the system was minimized for 5000 steps using a steepest descent algorithm. 

Dynamics were initiated by assigning velocities according to a Maxwell-Boltzmann distribution at 

303.15 K, followed by NVT equilibration for 100 ps (time step 0.002 ps) using Nose-Hoover [95, 

225, 310] temperature coupling (coupling constant 0.4 ps-1, reference temperature 303.15 k). 

Protein and solvent are coupled to individual baths. To relax the box volume, 100 ps of NPT (time 

step 0.002 ps) sampling using an isotropic Berendsen coupling [93, 94] with a reference pressure 

of 1 ATM and a compressibility of 4.5e-5 ATM-1 were attached. The box volume was adjusted 

every 0.5 ps. During minimization and equilibration, the backbone atoms were restrained by 400 

kJ/mol/nm and the sidechain atoms by 40 kJ/mol/nm. For the 1 µs of unrestrained production 

(time step 0.002 ps), Parinello-Rahman pressure coupling [312, 313] was applied instead and the 

temperature coupling constant was increased to 2 ps. Snapshots were stored every 20 ps. During 

all the steps, covalent bonds to hydrogen atoms were constraint using LINCS [227, 228] as a solver. 

Coulombic interactions were computed using the PME method [97-99] and a cutoff of 1.2 nm. 

Van-der-Waals interactions had a cutoff 1.2 nm with a force-switch modifier starting at 1.0 nm. 

Center of mass movement of the whole system was removed every 100 steps.  

The simulation protocol was only marginally updated for the VA387 P-dimer MD calculations. In 

particular, we here used GROMACS 2018.3 and discarded the NPT equilibration step because the 

long simulation time renders the initial few nanoseconds of box size equilibration negligible. 

However, we increased the initial NVT equilibration by 25.000 steps. Additionally, we applied 

restraints to the protein dihedrals during the equilibration (4.0 kJ/mol/deg). Also, the solvation 

box size was slightly smaller (9.2x9.2x9.2 nm³). Additionally, we note that the SAGA calculations 

were performed on multiple CPU nodes, whereas the VA387 simulations were achieved using 

single CUDA GPU nodes. However, we do not expect the adjustments to affect the overall 

outcome of our calculations. Regarding the length of the trajectories and the substantial 

computational effort, we justify the adjustments by a better utilization of compute resources.  

5.2.2 Trajectory analysis 

Data analysis and visualization were carried out with GROMACS tools and the Python libraries 

NumPy [272, 333], MDTraj [230]and MatPlotLib [274]. The root mean squared fluctuation (RMSF) 
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was computed using gmx rmsf. Only the backbone atoms C, N, CA and O were considered. 

Rotational und translational motions were removed using least-square super positioning of the 

backbone atoms. The per-residue solvent accessible surface area (SASA) was computed with gmx 

sasa and probe radius of 0.14 nm and 24 dots. To calculate the relative surface accessibility of the 

Asn residues, we divided their absolute SASA by 1.95 nm², corresponding to the theoretical 

maximum SASA for Asn [146]. The sidechain torsion angles of the Asn residues, as well as the 

distances from the Cγ atoms of Asn to the backbone nitrogen atoms of the subsequent amino acids 

were computed with MDTraj. The Asn torsion angles are defined as: φ: Ci-1-Ni-Cai-Ci, ψ: Ni-Cai-Ci-

Ni+1, χ1: N-Ca-Cb-Cc, and χ2: Ca-Cb-Cc-Od (Figure 5.4 A). The free energy maps were constructed 

from the 2D probability densities as estimated by binning the data to 100 x 100 bins of 2π/100 

widths. The relative free energies in units of kBT are computed as the negative natural logarithm of 

the probability density. Clustering was performed in the cosine-sine feature space spanned by the 

transformation of the four torsion angles z(φ)=[cos (φ), sin(φ)]. Hierarchical density-based 

clustering was calculated using the HDBSAN [182] algorithm with cluster selection alpha value of 

0.5, a minimum sample size of 100 and a minimum cluster size of 100 (other parameters were 

default).  

The Burgi-Dunitz (BD) [334] and Flipping-Lodge (FL) [335] angles were calculated to better 

describe the nucleophilic attack geometry (Figure 5.4 B). They are based on a coordinate 

transformation that centers the carbonyl carbon to the origin and the carbonyl plane onto the XY-

plane. Then, the BD angle is defined as the angle between the vectors connecting the carbonyl 

carbon with carbonyl oxygen and the carbonyl carbon with nucleophile. It can be described as the 

as altitude angle of the nucleophile when the electrophile (carbonyl carbon) is the reference. It is 

between 0 and 180°. The FL angle can be imaged as the inclination angle of the nucleophile relative 

to the normal of the carbonyl plane. Here, it is calculated as the pseudo-torsion angle between the 

carbonyl plane normal vector, the carbonyl carbon to carbonyl vector and the carbonyl carbon to 

nucleophile angle. It defined in a way that it is positive for a rotation towards the Cβ and negative 

towards Nδ2. Its range is between -180° and 180°.  
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Figure 5.4 Attack geometry and key conformational descriptors. a) φ: CAsn-1-NAsn-CαAsn-CAsn, ψ: NAsn-CαAsn-CAsn-
NAsn+1, χ1: NAsn-CαAsn-CβAsn-CγASN, χ2: CαAsn-CβAsn-CγASN-OδASN b) Representation of d and BD and FL angles in the 
CG-centered coordinate system.  

5.3 Results and discussion 

5.3.1 Solvent accessibility and flexibility 

To extend structural information of the crystal structures to a conformational ensemble of the 

protein in solution, extensive molecular dynamics simulations (MD) were conducted. From the 

MD ensembles, initially, relative solvent accessible areas (SASA) and backbone flexibilities by 

means of alpha carbon root-mean squared fluctuations (RMSF) were calculated (Table 5.1). The 

RMSF values of the various Asn residues values range from 0.05 nm to 0.2 nm. The highest 

flexibility with an RMSF of 0.2 nm is located at Asn307, Asn309 and Asn310. Asn373 is slightly 

less dynamics and shares a RSMF of 0.15 with Asn412. The highest relative solvent accessibility 

(ranging from 0: fully buried to 1: fully exposed) is observed for Asn412 (rel. SASA = 0.8). Asn309, 

Asn373, Asn398 exhibit a similarly high solvent exposure of 0.6. Asn282, Asn309, Asn415 and 

Asn512 are slightly less, yet still well solvent accessible (rel. SASA = 0.5).  

5.3.2 Conformational space and attack geometry 

MD allows sampling of many conformational states. In the case of an intramolecular reaction such 

as the cyclization step of the deamidation, the conformation dictates the geometry of the attack 

trajectory. Whereas the residue conformation is sufficiently described by the backbone torsion 

angles φ and ψ and the side chain torsion angles χ1 and χ2, the attack geometry is more precisely 

defined by the attack distance, and the two nucleophilic attack angles αBD (Bürgi-Dunitz) and αFL 

(Flippin-Lodge). It is important to note, that backbone conformation and sidechain conformation 

can be mechanistically dependent and may not be interpreted separately. The attack distance and 

angles directly follow from the backbone and sidechain torsion angle and may be explicitly 

expressed using geometric transformations. Here, however, we calculated the attack trajectory 

directly from the Cartesian coordinates of the atoms.  



Site specificity of asparagine deamidation   107 

 

 
Figure 5.5: Backbone torsion φ, ψ free energy landscapes of all Asn residues of the Saga P-domains. Data was 
pooled from the 5x1 µs simulations and both P-domain monomers. The color scale applies to all panels.  

Intuitively, Asn residues with large backbone RMSF also populate more conformations in the φ,ψ 

free energy landscape (Figure 5.5). Most of the sampled conformations can be attributed to the 

common Ramachadran regions, with high propensities for beta sheet like (φ, ψ = -90°, 90°) and 

alpha helical conformations (φ, ψ = -90°, 0°). Some residues, such as Asn373, Asn398 and Asn412, 

also exhibit energy minima in proximity to the left-handed helix region (φ, ψ = 45°, 45°). 

Interestingly, the backbone torsion free energy map of Asn373 is outstanding, and only weakly 

matched by the one of Asn398. Particularly, Asn373 exhibits the shallowest free energy landscape 

with three distinguishable minima, each belonging to the before mentioned Ramachadran regions. 

However, the population of the alpha-helical region is significantly shifted from φ ≈ -90° towards 

φ ≈ -180° with ψ remaining 0°. Hereafter, this unique backbone conformation, which is almost 

exclusively accessible to Asn373 will be referred to as ‘anti/syn’ conformation. 
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Figure 5.6: Sidechain torsion χ1, χ2 free energy landscapes of all Asn residues of the SAGA P-domains. Data 
was pooled from the 5x1 µs simulations and both P-domain monomers. The color scale applies to all panels. 

Among the Saga asparagine residues, the sidechain conformational space of Asn373 is not unusual 

(Figure 5.6). All well solvent-exposed Asn sidechains exhibit significant dynamics and transition 

between various conformational states, which are similar among all Asn residues. The χ1 angle has 

energy minima at -180°, -60° and 60°. At χ1= -180°, χ2 is mostly around 30° or -120°, whereas at 

χ1= -60°, it is rather close to 120° or -30°. When χ1 becomes 60°, χ2 is mostly 0° or 90°. The energy 

barriers between the different rotational states of χ2 are low (ΔG < 3 kcal/mol), whereas transition 

states between different χ1 angles were rarely sampled (ΔG > 8 kcal/mol). The sidechain of Asn373 

populates all the six minima. However, the contribution of conformations with χ1 around 60° is 

comparably high and only matched by Asn307, Asn310, Asn398 and Asn522. 
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Figure 5.7: Attack distance d in dependence of backbone conformation φ, ψ. The points are ordered in a way, 
that the lowest distances are plotted to the top. Data was pooled from the 5x1 µs simulations and both P-domain 
monomers. The color scale applies to all panels. 

 
Figure 5.8: Attack distance d in dependence of sidechain conformation χ1, χ2. The points are ordered in a way, 
that the lowest distances are plotted to the top. Data was pooled from the 5x1 µs simulations and both P-domain 
monomers. The color scale applies to all panels. 
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Regarding attack distances, it is apparent that the χ1 torsion angle is of key importance because it 

describes the rotation of the Ca-Cb bond and largely determines if the sidechain amide is oriented 

towards or away from the backbone nitrogen (Figure 5.8). A stark effect of the carbonyl group 

rotation χ2 on the attack distance is not reported (Figure 5.8). Interestingly, also the backbone 

angles appear to have a significant effect on the attack distance (Figure 5.7). Within the sampled 

conformational space of all Saga P-dimer Asn residues, short attack distances can be achieved by 

two distinct sets of conformations. In the first, χ1 is close to 180° (+/-30°) and the backbone is in 

a φ/ψ = -90°/120° (beta-sheet) conformation. In such an arrangement, χ2 is often free to rotate, 

without having a dominant impact on the attack distance. The second set is characterized by narrow 

χ1 angles between 45° and 90°, and a right-handed alpha helical conformation of the backbone (φ/ψ 

= -90°/0°). Again, the impact on χ2 on the attack distance is negligible. However, χ2 is of high 

importance for the reaction because it determines the attack geometry by means of the FL angle. 

The distribution of attack angles is similar throughout most Asn residues (Figure 5.9 and Figure 

D.1). Two distinct populations are present: I. a higher distance, non-reactive population (d>0.4 

nm), in which the Asn carbonyl is folded away from the backbone and αFL is centered around 90° 

and αBD around 120°; and II. a close distance (d<0.4 nm), crescent-shaped population, in which 

the FL angle is dependent on the BD angle. When αBD becomes smaller toward 45°, αFL centers 

around 90°. This corresponds to conformations, in which the carbonyl folds over the backbone in 

way that the backbone N+1 nitrogen is close to the carbonyl oxygen and thus far away from an 

ideal attack trajectory. However, when αBD increases to 90° and above, the FL angles diverges to 

either 0° or 180° degree. Such conformations appear highly favorable for nucleophilic attack and 

are accessible to a variety of Asn residues and are not restricted to ASN373. 
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Figure 5.9: Attack distance d in dependence of the attack angles αBD, αFL. The points are ordered in a way, that 
the lowest distances are plotted to the top. Data was pooled from the 5x1 µs simulations and both P-domain 
monomers. The color scale applies to all panels. The corresponding free energy maps can be found in Figure D.1 
(appendix). 

To further accentuate how the conformational states (φ, ψ, χ1, χ2) translate into attack trajectory, 

conformational clustering was employed (Figure 5.10). It shows once more that χ1 torsion angles 

between -90° and -45° always yield to the higher-distance populations in the BD-FL space at 

around 135°/90°. Such a sidechain conformation is strongly favored by a beta-sheet like backbone 

with φ/ψ =-90°/90°. Some Asn residues, however, also populate the same sidechain conformation 

with backbone of φ/ψ = -90°/0° or even 90°/0°. The crescent-shape population in the BD-FL 

space frequently allows short distances and favorable, possibly reactive geometries. Conformational 

clustering reveals, that such attack geometries result from Asn sidechains with χ1 torsion angles of 

180°. In this case, the top arm with FL angles of 45° and higher correspond to χ2 angles ≥ -45°. 

The opposite, bottom arm thus belongs to χ2 angles ≤ -45°. The χ2 = 180° conformations are highly 

common among the different Asn residues and often realized by backbone conformation of φ/ψ 

= -90°/90° or -90/0°. Additionally, the crescent-shape population is based on sidechain χ1 angles 

of 60°. Then, the boundary χ2 angle for the lower and upper arm in the BD-FL space is 0°. This 

conformation is more unlikely and not accessible to all Asn residues. Interestingly, for some 

residues, the conformation yields a slight increase in the FL angle. At Asn309, Asn310 and Asn522, 

the sidechain conformation is based on a backbone with φ/ψ angles of -90°/90°. At Asn307, 

Asn373 and Asn398, the corresponding backbone adopts a rare state with φ angles of -90° and 

below with a psi of 0°.  
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Figure 5.10: Clustering of 
the Asn conformations. The 
HDBSCAN clustering was 
performed in the four-
dimensional torsion angle 
space (φ, ψ, χ1, χ2). The results 
of the clustering are separately 
shown in the a) backbone 
torsion angle space, b) 
sidechain torsion angle space, 
and c) attack angle space. The 
color map represents the 
identified conformational 
clusters and is consistent 
throughout a-c and all panels 
therein.  
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5.3.3 Backbone acidity 

The acidity of the backbone amide hydrogen is affected by bonded and non-bonded interactions. 

It has been calculated in two recent, independent studies using quantum mechanical methods that 

the hydrogen affinity decreases when the backbone adopts a syn conformation, i.e. ψ angles close 

to 0 and φ angles close to 180°. The order of magnitude of this decrease is reported to 24 kcal/mol 

by [329] and 18 kcal/mol by [336]. Such backbone conformations can only be reported for a few 

Asn+1 residues of the Saga P-Dimer (Figure 5.11 and Table 5.1). Additionally, the propensity to 

release the hydrogen is increased by hydrogen bonding acceptors in proximity. The probability of 

the hydrogen to be involved in hydrogen bonds is around 0.5 or higher for a broad array of Asn 

residues (Table 5.1). Furthermore, we have resolved the attack distance distribution in dependence 

of the presence of the backbone hydrogen bond. However, significant changes dependent on the 

hydrogen bonding state are only observed for Asn307 and Asn398 (Figure D.2). The joint 

probability to adopt a anti/syn-backbone conformation (φ=180°, ψ=0°) and to simultaneously 

undergo hydrogen bonding is only above zero for Asn373 and Asn309. It is noteworthy that the 

relative contributions of backbone conformation and hydrogen bonding to the acidity of the 

backbone amide hydrogen cannot be accurately quantified from only one “training” system.  

 

Figure 5.11: Backbone torsion free energy landscape of N+1 residues. In the panels, the Asn residues are 
annotated, however the torsion angles of the succeeding residues are shown. The contour lines indicate areas with 
increased backbone acidity. The central ellipses have the highest acidity. Data was pooled from the 5x1 µs simulations 
and both P-domain monomers. The color scale applies to all panels. 
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The results for all asparagine residues within the Saga P-domains are summarized in Table 5.1 in 

term of RMSF, relative solvent accessibility, and probabilities to adopt certain conformations. The 

conformational probabilities are categorized into attack geometry and N+1 hydrogen acidity. Based 

on the previous structural-geometrical considerations, we decide that a favorable attack geometry 

is present, when the attack distance is shorter than 0.4 nm, the BD angle is between 45° and 135°, 

and the FL angle is close to 0° or 180° (each ± 45°). We have additionally calculated the joint 

probabilities. The N+1 hydrogen acidity is quantified by its capacity to undergo hydrogen bonds 

with neighboring residues as well as is backbone conformation. The hydrogen bonding criteria 

were chosen to a maximum 0.33 nm heavy-atom distance between donor and acceptor and an 

angle of 120° or larger. Acidic backbone conformation were chosen to resemble the quantum 

chemistry results of [329]. They reported high hydrogen acidity when ψ is between -45° and 45° 

and φ is between 120° and 240°. Here, again a joint probability was computed.  

Table 5.1: RMSF, SASA and probabilities to adopt conformations favorable for nucleophilic reaction of Saga. 
The employed intervals for the angles αBD, αFL, ψ and φ are 90° ± 45°, 0° ± 45° (or 180° ± 45°), 0° ± 45° and 180° ± 
60°, respectively. The criteria for hydrogen bonds are a maximum distance between N and O of 0.33 nm and an angle 
N-H-O of at least 120°.  

   Attack geometry N+1 hydrogen acidity 

Residue RMSF   rel. SASA d<0.4  αBD≈90° αFL≈0°|180° joint HB ψ≈0° φ≈180° joint 

N239 0.048 0.001 1.000 0.985 0.101 0.101 0.018 1.000 0.007 0.001 

N263 0.048 0.001 0.001 1.000 0.000 0.000 0.266 0.840 0.000 0.000 

N282 0.058 0.084 0.001 0.993 0.006 0.000 0.280 0.000 0.014 0.000 

N298 0.102 0.496 0.007 0.954 0.003 0.001 0.837 0.000 0.470 0.000 

N302 0.064 0.187 0.313 0.873 0.062 0.050 0.956 0.000 0.001 0.000 

N307 0.183 0.346 0.314 0.974 0.036 0.018 0.905 0.920 0.007 0.000 

N309 0.183 0.481 0.094 0.822 0.023 0.014 0.101 0.066 0.007 0.003 

N310 0.188 0.583 0.221 0.745 0.120 0.105 0.118 0.025 0.029 0.000 

N373 0.143 0.584 0.119 0.879 0.085 0.026 0.551 0.719 0.037 0.004 

N380 0.080 0.226 0.070 0.827 0.037 0.032 0.895 0.000 0.836 0.000 

N398 0.109 0.561 0.332 0.938 0.195 0.125 0.487 0.000 0.841 0.000 

N412 0.145 0.825 0.023 0.972 0.029 0.012 0.461 0.000 0.432 0.000 

N415 0.103 0.509 0.015 0.942 0.002 0.002 0.018 0.000 0.670 0.000 

N446 0.058 0.106 0.552 0.981 0.008 0.006 0.047 0.992 0.045 0.000 

N479 0.123 0.089 0.921 0.995 0.006 0.006 0.000 0.969 0.000 0.000 

N512 0.126 0.478 0.005 0.984 0.011 0.002 0.690 0.000 0.001 0.000 

N522 0.121 0.302 0.647 0.858 0.301 0.279 0.261 0.837 0.000 0.000 
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We note that the selection of the criteria is of striking importance on the calculated probabilities. 

Such criteria are challenging to define, especially for the attack geometries as well as hydrogen 

bonds and conformation-based hydrogen acidity. Here, it would be necessary to model explicit free 

energy functions based on the geometric variables. However, the computational effort to calculate 

such energies is beyond the scope of this research item. Such endeavor could indeed be accelerated 

by machine learning techniques to avoid extensive mathematical modelling. 

Nevertheless, the calculated probabilities with the somewhat arbitrary defined boundaries are still 

reasonable indicators for the deamidation of Asn373. They do not clearly reveal why it so exclusive 

to Asn373, though. It shows that Asn373 is among a small set of residues that fulfill all the 

necessities: solvent-accessibility, a chance to adopt favorable attack geometry and additionally an 

acidic N+1 backbone. Here, we must declare, that we also calculated the joint probability of 

favorable attack geometry and backbone N acidity. It was zero for all Asn residues. This is however 

quite reasonable. Assuming the two events favorable attack geometry and hydrogen acidity are 

statistical independent, the joint probability can be calculated as the product probability. The 

theoretical, independent probability for Asn373 would then be 0.0001. This is too small to be 

sampled within the 5 µs of MD simulation. We have to bear in mind that the half-life of Asn373 

on Saga P-domains is in the order of days. Thus, it would naturally be very unlikely to observe a 

large population of fully reactive configurations. Additionally, the assumption is flawed. We 

monitored a significant effect of the backbone torsions at Asn373 position on the attack distance 

and in proteins it is known that at least the neighboring residues mutually affect their backbone 

conformations. Thus, the backbone conformation of the N+1 residue and the N sidechain 

conformation (attack geometry) must be at least to some extent allosterically connected.  

5.3.4 The VA387 protruding domain dimer 

Extensive MD simulations of VA387 P-dimers show that both solvent accessibility and flexibility 

of N373 alone are insufficient descriptors to explain its fast deamidation (Table 5.2), as described 

above for Saga P-dimers. We calculated the same structural observables for VA387 (Figures D.3-

D.6) The probability to adopt a favorable attack geometry is slightly lowered as compared to Saga 

Asn373 but the hydrogen acidity is increased. Compared to other Asn residues within the VA387 

P-domains, Asn373 is one of two residues that show significant probabilities for both attack 

geometry and hydrogen acidity. Interestingly, the second residue is Asn372. It has significantly 

higher probabilities for both events. Yet, it does not show fast deamidation in the NMR 

experiments.  

These results confirm previous considerations. The accomplished microsecond scale sampling 

might still not suffice to fully equilibrate all probability distributions and sampling of the rarer 
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conformations might not have been fully converged. Additionally, we were not able to learn enough 

about the geometric criteria for the two different aspects attack geometry and hydrogen acidity. 

Finally, we do not know to what extent the different descriptors contribute to the deamidation. 

For example, one of the attack angles could be much less significant than the other. Hydrogen 

bonding could be more important than backbone conformation for the acidity or the opposite 

could be true. Such points must be addressed in further research by either physics driven 

assessment of the energetic contributions or data-structure based screening of more deamidating 

proteins with the herein presented methods.  

Table 5.2: RMSF, SASA and probabilities to adopt conformations favorable for nucleophilic reaction of 
VA387. The employed intervals for the angles αBD, αFL, ψ and φ are 90° ± 45°, 0° ± 45° (or 180° ± 45°), 0° ± 45° 
and 180° ± 60°, respectively. The criteria for hydrogen bonds are a maximum distance between N and O of 0.33 nm 
and an angle N-H-O of at least 120°.  

   Attack geometry N+1 hydrogen acidity 

Residue RMSF  rel. SASA d<0.4 αBD~90 αFL~0/180 joint HB ψ~0 ψ~180 joint 

N239 0.056 0.000 1.000 0.994 0.181 0.181 0.026 1.000 0.012 0.002 

N263 0.052 0.001 0.003 0.999 0.000 0.000 0.311 0.824 0.001 0.001 

N282 0.067 0.037 0.001 0.984 0.013 0.000 0.349 0.000 0.021 0.000 

N302 0.069 0.221 0.218 0.834 0.037 0.030 0.967 0.000 0.000 0.000 

N307 0.223 0.428 0.236 0.975 0.040 0.014 0.833 0.880 0.052 0.002 

N309 0.216 0.626 0.076 0.834 0.019 0.012 0.072 0.019 0.006 0.000 

N310 0.212 0.482 0.234 0.778 0.121 0.107 0.077 0.000 0.021 0.000 

N372 0.202 0.556 0.084 0.849 0.034 0.018 0.422 0.693 0.130 0.026 

N373 0.181 0.401 0.140 0.890 0.034 0.010 0.382 0.815 0.069 0.009 

N380 0.079 0.138 0.087 0.868 0.056 0.051 0.955 0.000 0.886 0.000 

N393 0.244 0.605 0.084 0.952 0.044 0.021 0.133 0.070 0.085 0.000 

N394 0.215 0.566 0.143 0.824 0.040 0.028 0.081 0.115 0.199 0.003 

N397 0.121 0.360 0.193 0.941 0.131 0.087 0.498 0.000 0.776 0.000 

N406 0.065 0.184 0.164 0.852 0.005 0.002 0.726 0.971 0.002 0.001 

N414 0.129 0.309 0.047 0.911 0.009 0.006 0.036 0.000 0.682 0.000 

N445 0.073 0.193 0.677 0.988 0.028 0.026 0.114 0.884 0.023 0.000 

N447 0.073 0.146 0.041 0.848 0.028 0.022 0.929 0.000 0.576 0.000 

N478 0.124 0.211 0.929 0.998 0.006 0.006 0.000 0.983 0.000 0.000 

N511 0.139 0.214 0.014 0.981 0.015 0.006 0.679 0.000 0.001 0.000 

N521 0.129 0.435 0.659 0.876 0.294 0.272 0.204 0.778 0.000 0.000 
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5.4 Conclusion  

The probability for Asn373 to adopt favorable attack geometries is 0.026, which ranks it at the 6th 

position after Asn522 (0.279), Asn398 (0.125), Asn310 (0.105), Asn302 (0.05), and Asn380 (0.032).  

Thus, clearly, attack geometry alone is not a sufficient to explain deamidation. The likeliness for 

the succeeding residue of Asn373 to undergo backbone amide hydrogen bonding is 0.55, for 

Asn522 0.26, for Asn398 0.487, for Asn310 0.118, for Asn302 0.956 and for Asn380 it is 0.895. 

Only when accounting for N+1 backbone conformation, Asn373 becomes among the top 

candidates for deamidation.  

 
Figure 5.12: Snapshot of a productive conformation of the Asn373 loop. The two torsion angles ψN and ψN+1 are 
annotated as well as the attack distance, the two stabilizing hydrogen bonds and the carbonyl oxygen to backbone 
hydrogen distance.  

Furthermore, the likeliness for the N+1 backbone hydrogen bond is slightly reduced. N373 of both 

Saga and of VA387 P-dimers is part of a type II' ST turn 35. These loops are characterized by a 

hydrogen bond between the side chain OH-group of Ser or a Thr residue i-3, and the backbone 

NH of residue i+2. The ST turn motif is associated with the backbone dihedral angle of residue 

N+1 of 0°, i.e., a syn orientation. In crystal structures of the P-dimers, residues T371, E372, and 

N373 in the case of Saga29, and T371, N372, and N373 in the case of VA387 28 form a ST turn 

with a hydrogen bond between the side chain OH of T371 and the backbone NH of N373. 

Interestingly, T371 is not only engaged in hydrogen bonding as part of the ST turn but at the same 

time forms a hydrogen to the backbone NH of D374, which is only possible with N373 residing 

in a syn conformation. This leads to two consecutive syn backbone orientations of residues E/N372 

and N373 (Figure 5.12). 

Thus, Asn373 is the only solvent accessible residue that can attain the generally highly unfavorable 

conformation of a double anti/syn backbone orientation at the N and N+1 position with 

simultaneous productive sidechain placing and stable hydrogen bonding of the N+1 backbone 
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hydrogen. However, it is not clear yet if such a cause for fast deamidation is a general feature or if 

it is exclusive to norovirus P-dimers.  



Membrane recruitment of PI3P   119 

 

6 MEMBRANE RECRUITMENT OF PI3P 

Protein-protein complexes often show nanomolar affinities based on a range of electrostatic and 

hydrophobic interactions as well as hydrogen bonds. The interaction partners diffuse in a 3-

dimensional environment and are surrounded by highly polar water molecules. The relative 

unlikeliness of prolific collisions is compensated by high-affinity binding, long-lived complexes and 

fast diffusion driven by the aqueous environment. The environment of a lipid bilayer membrane is 

fundamentally different. The diffusion is limited to two dimensions, which increases the probability 

of collisions. The medium in the center of the bilayer is apolar and hydrogen bonding acceptors 

and donators are largely absent. Hence, interactions between two discrete molecules are weak and 

short-lived, and interaction studies afford the presence of multiple molecules of a certain species 

as well as sufficient sampling and adequate analysis. Most frequently, interactions within a bilayer 

are not limited to the central fatty acid region, but also happen between the solvent exposed 

chemical groups. In this chapter, the mutual effects of a membrane anchored peptide with its 

surrounding lipid molecules are investigated using coarse-grained molecular dynamics. The coarse-

grained MD simulation were performed in parallel to full-atomistic simulations by E. Münzberg 

and are published in [337] and are partially discussed in her dissertation thesis [338].  

6.1 Introduction 

The Rab5 protein is a member of the Rab-GTPase family and has important roles in the regulation 

of endosomal trafficking [339]. As a peripheral membrane protein, it is anchored to the endosomal 

membrane via two subsequent geranylgeranyl posttranslational modification at the Cys212 and 

Cys213 positions. The C-terminal geranylgeranylation sites are part of a hypervariable region, which 

flexibly links the Rab5 GTPase domains with the bilayer [340] The early endosome membrane as 

well as the plasma membrane are a mixture of plenty different molecules including lipids and 

proteins [52, 341]. In general, the lipid composition is highly dynamics, asymmetric between inner 

and outer layer and largely depends on the cellular localization of the membrane [342]. On early 

endosomes, the anchoring point for Rab5, the membrane composition is accentuated by the 

presence of the signaling lipid PI3P [343, 344].  

It is of interest if the intersection of Rab5 and PI3P signaling can be structurally rationalized by the 

formation of nanoscale membrane domains. To test this hypothesis, coarse-grained MD 

simulations were carried out using the MARTINI force field, which proved valuable for long- and 

large-scale simulations of lipid bilayers [52, 74, 345, 346]. Therefore, it was pragmatic to truncate 

the C-terminal Rab5 peptide with the membrane anchors instead of simulating the whole protein. 

At the time when this research was carried out, no coarse-grained parameters for the 
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geranylgeranyl-cysteine were available. They were thus newly developed by comparison to the full 

atomistic simulations of E. Münzberg. With the new parameters, the interactions between the 

lipidated peptide and surrounding membrane compounds were sampled and quantified using radial 

density distributions. Five different model membranes with increasing complexity were assessed 

(see Method) by five µs MD simulations each to ensure thorough mixing of the membrane.  

6.2 Method 

6.2.1 Coarse-grained system setup 

The coarse-grained model of the double geranylgeranylated peptide was generated using the 

MARTINI software martinize [347, 348] on the full-atomistic model generated by E. Münzberg 

[337]. The c-terminal peptide of Rab5 has the following sequence 205-QPTRNQCCSN-215. The 

geranylgeranyl moieties were covalently linked to the cysteine residues 212 and 213. Thus, for the 

MARTINI modeling, geranylgeranyl-cysteine was added as another amino acid. No secondary 

structure by means of an elastic dynamic network was assigned to the peptide, i.e., it was fully 

flexible. The termini were charged.  

Three different, symmetric lipid bilayers were modeled: 1. A ternary mixture of 40 mol% palmitoyl-

oleoyl-phosphocholine (POPC), 20 mol% palmitoyl-sphingomyelin (PSM) and 40 mol% 

cholesterol; 2. A mixture of POPC, cholesterol, PSM, palmitoyl-oleoyl-phosphoethanolamid 

(POPE), palmitoyl-oleoyl-phosphoserine (POPS); 3. A mixture of POPC, Cholesterol, PSM, 

POPE, POPS, and phosphatidylinositol-3-phospaht (PI3P). The bilayers were modeled to a size 

of 10x10 nm using the insane software [349]. The software was extended to include PI3P. The 

geranylgeranylated peptide was introduced to the center of the bilayer patch in a way that the 

membrane anchors were at the same height as the alkyl group particles of the lipid molecules. The 

spatial distribution of the lipids was randomized with every lipid having a uniform probability 

distribution. Also with the insane software, the bilayers were solvated with standard MARTINI 

water (a 9:1 mixture of MARTINI water particles and MARINI anti-freeze particles) and ionized 

to 0.15 M NaCl. The topology files with the force-field parameters were downloaded from the 

MARTINI website cgmartini.nl. The non-polarizable MARTINI 2.0 parameters were used [74, 

345]. The topology for PI3P was generated as a combination of the available topologies “PAPI” 

and “POP1”. For PSM, the topology “DPSM” was used. 

6.2.2 Coarse-grained MD simulations 

The coarse-grained simulations all were performed with the GROMACS [75-77, 80, 81, 309] ver. 

5.0.7 and recent MARTINI input parameters. In all simulations, a Verlet cutoff scheme [222] was 

employed with a neighbor list update at every 20 steps. Periodic boundaries were employed in all 

http://cgmartini.nl/index.php/force-field-parameters/lipids
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directions. Van-der-Waals interactions were cutoff at 1.1 nm using a potential shift Verlet modifier. 

Coulomb interactions were treated using a reaction field with a cutoff of 1.1 nm. The dielectric 

constant was set to 15. Temperature coupling was achieved with the velocity rescaling algorithm 

[350] and a coupling constant of 1 ps. If not described otherwise, temperature coupling was 

performed individually for solvent and bilayer/monolayer. During equilibration, Berendsen 

pressure coupling was employed [93] to realize fast box volume convergence. For production, 

Berendsen coupling was replaced by Parrinello-Rahman [312] coupling. Reference pressure was 1 

ATM. Berendsen coupling had a coupling constant of 5 ps and Parrinello Rahman of 12 ps. In all 

cases, the pressure coupling was semi-isotropic, i.e., different in lateral and normal directions. For 

the bilayers the compressibility was 4.5e-4 in both directions. In all instances, the modeled systems 

were initially minimized using a steepest descent algorithm [351] of 1.000 steps. Velocities are 

assigned to suite a Maxwell-Boltzmann distribution of the target temperature. The bilayer 

simulations were conducted at a temperature of 310 K. NVT equilibration had length of 0.5 ns 

with a 10 fs time step. The box was relaxed for 30 ns with a 20 fs time step. Production sampling 

was generated over 5 µs with a 20 fs time step.  

6.2.3 Trajectory analysis 

To assess the local lipid bilayer composition around the anchored peptide, the GROMACS tool 

gmx select was employed. The local concentration of a lipid species within a certain cutoff around 

the peptide was calculated as the number of molecules of a certain species divided by the total 

number of lipids. A lipid was considered as within the cutoff, if any pairwise atom-atom distance 

between lipid and anchored peptide was closer than the cutoff. Only lipids of the upper leaflet, in 

which the peptide was anchored, where considered. The calculation took periodic boundary 

conditions into account. For the lateral density profile, the trajectories were preprocessed to center 

the peptide in the box. With the transformed coordinates the 2D lateral density of PI3P was 

calculated and averaged over the whole 5 µs trajectory using the GROMACS tool gmx densemap.  

6.3 Results and discussion 

To investigate the pairwise effects between the Rab5 lipid anchor and the local membrane 

environment, three multi-microsecond coarse-grained MD simulations of the anchor within three 

model bilayers were performed. The double-geranylgeranylation was attached to the 10-residue C-

terminal peptide of Rab5. The model bilayers were pure POPC, a ternary mixture (4:4:2) of POPC, 

PSM and cholesterol, and an early endosome model membrane consisting of POPC, POPE, POPS, 

PSM, Cholesterol and PI3P (see Method section for details). Coarse-grained parameters of the lipid 

molecules were available or easily accessible through simple recombination of existing parameter 

sets. 
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6.3.1 Coarse-grained force field development 

Coarse-grained parameters and mapping of the geranylgeranyl anchor were newly developed and 

optimized against full-atomistic simulations by E. Münzberg [337]. The bead mapping and typing 

defines the non-bonded parameters. It is recommended to map distinct chemical groups of 4-5 

atoms together [345]. In the case of geranylgeranyl-cysteine, this was achieved by mapping the 

amino acid backbone atoms, the sidechain atoms, and each isoprenoid group into single beads 

(Figure 6.1). The bead types of the backbone (P3) and sidechain (Na) were predetermined due to 

restrictions of the force field [347]. The choice of C3 as the bead type for the prenyl-group beads 

was finally rationalized by free energy estimation using umbrella sampling [352] and weighted 

histogram analysis[126]. Optimum bonded parameters in the MARTINI force field are always a 

compromise between accuracy and long time-step stability. Thus, for long alkyl chains it 

unnecessary and even disadvantageous to use dihedral angle potentials. Thus, the geranylgeranyl 

anchor was parameterized by only bond length and angle parameters, which are displayed in (Table 

6.1). 

 

Figure 6.1. Chemical structure and coarse-grained mapping of the double geranylgeranylated peptide. The 
top image represents the three dimensional structure of the geranylgeranyl-cysteine residues in full-atomistic detail in 
sticks representation. The peptide is represented as a ribbon. The resulting coarse-grained beads are shown as circles 
around their respective chemical groups. The bottom scheme shows the coarse-grained mapping and assigned bead 
names in more detail. 
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Table 6.1. Developed coarse-grained parameters for geranylgeranyl cysteine. The stared variables are the 
equilibrium values and F the force constants.  

Bond r* / nm Fr Angle φ* / ° F φ 

BB-SC 0.31 20.000 BB-SC-PR1 135 20 

SC-PR1 0.37 10.000 SC-PR1-PR2 115 25 

PR1-PR2 0.46 7.500 PR1-PR2-PR3 105 20 

PR2-PR3 0.46 7.500 PR2-PR3-PR4 100 20 

PR3-PR4 0.46 7.500    

 

With the developed coarse-grained parameters, the bond length distributions in solution of the full-

atomistic model could be reproduced very well (Figure 6.2). The angles distributions were also 

well reproduced. However, minor differences between the two geranylgeranylations were not 

captured and both moieties behaved identically. It is unclear if the bond angle differences are a 

cause of insufficient sampling or unexpected intermolecular interactions. As the inaccuracies were 

so small, the issue was not further investigated. The torsion angle distributions were not accurately 

reproduced as they were not explicitly parametrized. However, there is a clear tendency in both 

coarse-grained and full-atomistic simulation, that the BB-SC-PR1-PR2 and SC-PR1-PR2-PR3 

dihedrals favor an angle of 180°. The full-atomist torsion between the four prenyl-units also has 

significant population at 0°, which however was not covered by the coarse-grained simulations. 

Overall, the coarse-grained parameters were considered sufficient.  

 

Figure 6.2: Validation of the bonded parameters. The top row represents the bond length, the central row the 
bond angle and the third row the bond dihedral distributions. The sampled values from the coarse-grained simulations 
are colored red, and the all atom values blue. The solid lines correspond to the first geranylgeranyl anchor at the 212 
position, and the dashed lines to the second one at the 213 position. The full atomistic distributions were computed 
from identical groups using the center-of-mass of the atoms which correspond to a coarse-grained particle. 
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6.3.2 Lipid enrichment and domain formation 

The twofold geranylgeranyalted C-terminal Rab5 peptide was placed in the center of each coarse-

grained membrane model and subjected to dynamics simulation. The lateral radial distribution 

function (see method) of each lipid species and cholesterol were calculated over the whole 

trajectory (Figure 6.3). In the ternary bilayer, cholesterol was significantly enriched in proximity to 

the peptide (55% in a 1 nm radius relative to 40% in the bilayer composition). POPC and PSM 

concentrations close to the anchor were decreased. In the second shell (2-3 nm radius), the 

cholesterol concentration is slightly reduced whereas POPC is enriched. In the early endosome 

membrane model without PI3P, again cholesterol is enriched in the first shell and depleted in the 

second. Here, PSM is the dominating lipid and is slightly enriched in the second shell. In the early 

endosome model membrane with PI3P, the signaling lipid is substantially enriched in proximity to 

the anchored peptide. It is, in fact, four times more likely to find PI3P close to the peptide than 

anywhere else in the bilayer.  

The enrichment of certain molecular species around the anchor can be attributed to both 

interactions within core region of the bilayer and head group region in solvent phase or a 

combination thereof. For the enrichment of cholesterol in close proximity to the anchored peptide, 

it is most likely that the missing head group of cholesterol was decisive. The peptide was sitting in 

the head group region and displaced neighboring phospholipids. Thus, the space under the peptide 

could only be occupied by cholesterol. The PI3P enrichment can be explained by two mechanisms. 

I. Carbohydrate head groups show a high tendency to self-aggregate as observed in vivo and in vitro 

especially for gangliosides [353]. II. Electrostatic interactions between acidic lipid head group 

(phosphate) and basic arginine residues on the peptide allow the formation of a stable microdomain 

as also experimentally observed for PI2P [354]. In the case of PI3P, such an accumulation aids the 

recruitment of effector proteins such as Vps34 [355]. The coarse-grained simulation results yield a 

molecular rationalization of biological observations which were not accessible using full-atomistic 

simulations. The enrichment of PI3P may be the initial step for the formation of an effector protein 

recognition platform.  
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Figure 6.3: Lipid enrichment around the anchored peptide. A-C) Radial distribution functions of lipids around 
the anchor in the ternary bilayer (A), the early endosome model bilayer without PI3P (B) and the early endosome 
model bilayer (C). The distribution function is expressed as the relative lipid composition. Only the leaflet is considered 
in which the peptide was anchored. Lipid types are colored as follows: POPC (blue), cholesterol (yellow), PSM (dark 
green), POPE (light green), POPS (violet), and PI3P (red). D) Lateral distribution function of PI3P sampled over 5 
µs. The anchored peptide was centered before the calculation. 

6.4 Conclusion 

In this research, a coarse-grained model for geranylgeranyl-cysteine was developed and its effects 

for the membrane segregation of the Rab5 C-terminal peptide were probed. The coarse-grained 

model allowed multi microsecond sampling of the peptide embedded in four different model 

bilayers. Such long simulation times were necessary to sufficiently sample mixing and allow 

convergence of radial distribution functions. The coarse-grained modeling approach using 

insane.py packing software proved to be robust, simple, and fully automatable. All atom 

conformation distributions were reproduced with high accuracy. The coarse-grained simulation 

revealed a significant aggregation of the PI3P signaling lipid in proximity of the Rab5 peptide. 

However, the effects could be attributed to superficial electrostatic interaction between the 

negatively charged head group of PI3P and the positively charged arginine residues on the peptide. 

A phase segregation by means of separation of liquid ordered and liquid disordered phases was not 

observed. The interactions between the fatty acyl tails were thus insignificant. Nevertheless, the 

coarse-grained modeling approach was considered highly feasible for the modeling and 

equilibration of molecular layers, so that further research projects were inspired.  
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7 MONOLAYER PHASE SEGREGATION AND TRANSITION 

Coarse-grained simulations are frequently employed to study molecular interactions within a lipid 

bilayer. As self-assembled alkanethiol monolayers (SAMs) share a substantial amount of properties 

with lipid bilayers, it can be assumed that coarse-grained modeling and simulation strategies for 

bilayers can also be utilized for SAMs. In this chapter, the development and application of such an 

approach is described for two specific binary SAMs. The studied SAMs consist of a matrix of C16 

alkanethiols adsorbed on a Gold(111) surface. The alkanethiols are functionalized with 

hydroxyethyl groups conjugated via amide linkages to the alkane chains. Additionally, some of the 

matrix compounds are replaced by anchoring compounds, which tether either C8 or C16 alkyl 

groups to the alkanethiols via oligoethylenglycol (OEG) polymer chains. The application for such 

mixed SAMs lies in the tethering of protein-carrying lipid bilayers for pharmaceutical research. 

However, spectroscopic analysis of the mixed SAMs reveal unexpected interactions between only 

the C16 alkyl-anchor compounds. As the structural basis of these interactions could not be fully 

resolved by experiments, coarse-grained and full-atomistic simulation were conducted. 

Experiments were performed by Martynas Gavutis and colleagues at the Center for Physical 

Sciences and Technology in Vilnius. The experimental and theoretical results are published in the 

two separate articles [356] and [55]. The following sections and figures are reprinted with 

permission from Schulze, E. and M. Stein, J Phys Chem B, 2018. 122(31): p. 7699-7710. Copyright 

2018 American Chemical Society. 

7.1 Introduction 

The phenomenon of an adsorbing (self-assembling) monolayer (SAM) onto a metal surface was 

first observed more than 80 years ago by Bigelow and co-workers, [357] and it later regained interest 

as a model system to investigate the fundamentals of intermolecular interaction and adsorption. 

[358] The ability to modify both the head and tail groups of the layering molecules makes SAMs 

excellent systems to probe the numerous competing effects such as hydrophilicity versus 

hydrophobicity and order versus disorder. Apart from silanes or fatty acid derivatives on 

hydroxylated surfaces, a large number of publications are devoted to the studies of 

organothiol/disulfide assemblies on semiconductor or metal surfaces, in particular gold (for 

relevant reviews, see [358] or [116]). 

The high degree of control and reproducibility of SAM formation make them an ideal model system 

to design a controllable microenvironment in nanotechnology and biology. For example, SAMs 

with properly designed terminal groups (herein referred to as “anchor”’ groups) serve as an 

excellent starting point for the development of tethered bilayer lipid membranes (tBLMs) [359]. 
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Such tethered bilayers prepared by the fusion of liposomes [360] can be regarded as a first-order 

“synthetic” model of a biological cell membrane [361] as they can provide a close-to-native and 

protective environment for membrane-associated proteins [362]. For a review article about the 

structure and function of supported BLMs, see [363]. Highly reproducible and standardizable 

protocols are available, which turn SAM–tBLMs [364] into an attractive platform for the structural 

and functional characterization of membrane proteins and also for the screening of drug candidates 

targeting these proteins [365, 366]. For example, tBLMs have proven to be useful for monitoring 

the dynamics of a ternary cytokine receptor protein complex [367]. In addition, SAMs and tBLMs 

on solid support are also well-suited for an extensive characterization using established surface 

analytical techniques such as surface plasmon resonance spectroscopy, X-ray and neutron 

reflectometry, contact angle goniometry, infrared (IR) spectroscopy, fluorescence microscopy, 

scanning probe microscopy, atomic force microscopy, and electrochemistry, to mention only a few 

[368, 369]. 

Organothiol SAMs are typically prepared by immersing a gold substrate overnight in a dilute 

ethanolic solution of the alkanethiol compound. The alkanethiol can be functionalized with soluble 

polymer/oligomer moieties, for example, oligo ethylene glycols (OEGs), and such SAMs have been 

extensively used for fundamental protein adsorption studies [370-372]. OEG–alkanethiols (as a 

matrix compound) also have been proposed to function as a soft cushion for tBLMs by Lee et al. 

[373]. In this case, the matrix compound is mixed with a longer intercalating molecule that serves 

as an anchor for the lipid bilayer (Figure 7.1). 

 

Figure 7.1: Schemes and nomenclature of the mixed self-assembled monolayers. The orange box represents the 
gold-coated surface. The molecules represent the different compounds. In all cases, the yellow spheres correspond to 
the adsorbing thiol groups and the red spheres to the terminal or OEG oxy-ethylene groups. The gray, green and blue 
spheres represent alkyl chains of the matrix, C8-anchoring and C16-anchoring compounds, respectively. The mixed 
SAMs are composed of matrix with either C8- or C16-anchoring compounds.  

  



Monolayer phase segregation and transition   129 

 

Molecular dynamics (MD) simulations can provide deep insight into the structure and dynamics of 

SAMs in atomic detail. In the past, it led to a clearer understanding of the architecture of the 

monolayers of alkanethiol chains with different terminal groups [374, 375]. Also, large-scale MD 

simulations of the alkanethiol self-assembled monolayers have been performed to study the effects 

of temperature and packing density on the structural parameters [376]. Sufficient sampling and 

convergence to equilibrium configurations are difficult to achieve because of slow molecular 

reorientations, and for the reproduction of lateral diffusion, advanced conformational sampling 

algorithms are required [377, 378]. The accuracy of the different force fields varies to a great extent, 

especially in the reproduction of chain length-dependent tilt and twist angles [379]. Nevertheless, 

MD is the appropriate tool to study the SAM structure and dynamics at high spatial and temporal 

resolution. To overcome the complexity and the necessity of long equilibration periods, especially 

in systems involving membranes or vesicles, the MARTINI coarse-grained (CG) force field has 

recently been of extensive use [380]. Its application on phospholipid bilayers [52, 349] and 

polymers, [381], PEGylated lipids [373] and alkanethiol-covered nanoparticles [382] demonstrate 

the feasibility of this CG force field for molecular systems comparable to ours. 

Although many of the previous MD studies focused on single-component matrix molecule 

monolayers, we here present a novel approach for the systematic simulation of a multitude of 

mixed monolayers at different mole fractions of different anchoring molecules using various 

representations and a concise transformation between them. Our simulations are most helpful to 

complement the experiments because they can probe mixed concentrations and mole fractions that 

are experimentally hard or impossible to access. In this article, we address for the first time the 

structure and dynamics of mole fraction-dependent orientational and conformational transitions 

of the alkyl anchor compounds in a matrix environment attached to a gold (111)-like surface. We 

here show that structural parameters such as lattice constant and tilt angle are almost independent 

of the type of anchoring molecule. The anchor alkyl-chain orientation, however, is critically 

controlled by the composition and its chemical nature. Although the short-chain C8 anchor 

molecules adopt a random, disordered conformation at low anchor densities and transition into a 

more ordered conformation with increasing anchor density, the C16 anchors already adopt highly 

ordered conformations at low anchor densities, which reoccur in the monolayers of higher anchor 

density. The results of our large-scale, two-step, multiscale procedure are in excellent agreement 

with the recent experiments by Lee et al. and explain the observed spectral features. Finally, our 

newly composed modeling procedure forms the basis for future computational investigations on 

SAM–tBLMs and SAM-tethered lipid vesicles of various anchoring molecules and monolayer 

compositions. 
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7.1.1 Experimental characterization of mixed SAMs 

Binary mixed SAMS with the purpose to tether lipid bilayer membranes, consist of matrix 

compounds and anchor compounds (Figure 7.2). Both compounds share a common alkanethiol 

backbone. The anchor compounds additional exhibit terminal aliphatic moieties. The alkyl anchors 

are not directly conjugated with the alkanethiol backbone but rather flexibly tethered via 

oligoethylenglycol (OEG) chains. The central OEG portion is bound to the aliphatic portions via 

amide bonds. The amide bonds allow the formation of hydrogen bonding network to further 

stabilize the SAM. To investigate the systematic structural effects of the mixed SAM composition, 

Lee et al. [54] have synthesized SAMs with increasing anchor compound concentration. 

Furthermore, two different anchor compounds with varying alkyl chain lengths of 8 and 16 carbon 

atoms, with the chemical formulas HS(CH2)15CONH((CH2)2O)6CH2CONH(CH2)7CH3 and 

(HS(CH2)15CONH((CH2)2O)6CH2CONH(CH2)15CH3), respectively, were investigated. The authors 

determined the surface hydrophobicity by means of contact angle goniometry, as well as the layer 

thickness via ellipsometry. To subject the monolayers to IRRAS, the anchoring alkyl portions were 

deuterated to distinguish them from the matrix.  

Contact angle measurements allow assessments of the hydrophobicity of the surface, i.e., the 

amount of favorable surface-solvent interactions. Two angles are determined, the advancing and 

the receding contact angle. Generally, larger angles correspond to a more hydrophobic surface. 

Low angles are achieved at hydrophilic, well wetting surfaces. Angles larger than 90° are considered 

hydrophobic, and smaller than 20° rather hydrophilic. For example, polystyrene yields a contact 

angle of 85-92° [383, 384], whereas a clean gold surface yields values below 10° [385]. In the case 

of pure a SAM of the before mentioned matrix compound, contact angles of 30°/40° 

(advancing/receding) were measured. The pure anchor monolayer had contact angles of 105°/115° 

independent of anchor length (C8 or C16).  
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Figure 7.2: Chemical structures of the three monolayer compounds. The coarse-grained mapping is shown as 
colored circles. The matrix part is identical in both anchor compounds. The colors correspond to the utilized 
MARTINI particle types. Yellow: C5, Gray: C1, Blue: P5, Red: SN0, Purple: SP2. 

In case of the mixed monolayers, it must be mentioned that only the concentration of the 

compounds in the supernatant are truly known. The composition of the adsorbed SAM deviates 

from the supernatant due to different adsorption isotherms [386] which result mostly from 

different solubilities. Thus, a supernatant C16 anchor mol fraction of 0.5 for example, results in an 

assembled monolayer with an anchor mol fraction of 0.1-0.2. This behavior is weaker for the C8 

anchor (mol fraction of 0.5 in solution leads to 0.4 in SAM). It shows however, that high anchor 

mol fractions are experimentally not accessible and thus demonstrating on the importance of 

molecular simulations. Anyway, the contact angles increase with increasing anchor mol fractions. 

Interestingly, the contact angle hysteresis is much higher for the C16 anchor monolayers, which 

suggests a higher roughness on the molecular scale [387]. The magnitude of the contact angles 

appears higher for the C8 anchor SAMs (60°/70° at 0.5 supernatant mol fraction vs. 30°/50° for 

C16). This however is most likely the consequence of the worse adsorption of the long anchor 

compounds. Instead, the contact angles should increase linearly and with about the same incline 

for C8 and C16 anchoring chain length. The ellipsometric monolayer thickness is also more 

meaningful for the pure SAMs than for the mixtures. The matrix-only SAM has a thickness of 25 

Å, the pure C8 anchor SAM of 49 Å, and the pure C16 anchor SAM of 58 Å.  

Interestingly, the IRRAS spectra (Figure 7.3) of the deuterated anchor portions reveal significant 

differences between the two anchor compounds of different lengths. Due to the polarization of 

the radiation source, IRRAS spectra show the absorption of certain chemical bond vibration in 

dependence of their orientation. Thus, the band intensity is not only determined by the abundance 

of the bond but also additionally their tilt against the surface normal so that IRRAS spectra allow 

statements about molecular conformations. The IRRAS spectra of the matrix region show peaks 

at 2918 cm-1 and 2850 cm-1 which correspond to asymmetric and symmetric C-H stretching of alkyl 
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chains in highly ordered, densely packed, all-trans arrangement. In the pure anchor SAMS, the 

OEG linker portion can be seen in the IRRAS spectra as an additional band at 2890 cm-1, it 

corresponds to asymmetric C-H stretching and only appears when the ethylene glycol elements 

form a helix which is orientated along the surface normal. The band is not visible in the mixed 

SAMS. The spectra of the anchor portions are similar to the matrix spectra but naturally at lower 

wavenumbers. The C16 anchor monolayer has a high peak at 2193 cm-1 and a smaller on close by 

at 2216 cm-1. The second major peak is at 2090 cm-1 with a neighboring, smaller peak at 2074 cm-

1. The major peaks correspond to CD2 asymmetric and symmetric stretching, whereas the smaller 

peak show the CD3 vibrational modes. For the C16 anchor, the CD2 bands are higher than CD3 

bands also for lower anchor concentrations. For the C8 anchor, though, The CD3 peaks are higher 

than the CD2 peaks. The spectra of the C16 anchors indicate highly ordered, perpendicularly 

oriented d-alkyl chains [395], even for anchor molar fractions of < 0.5. The C8 SAM spectra are 

rather similar to bulk d-hexane, and thus indicate partial disorder especially for lower anchor 

fractions. 

All in all, the experimental examination of the mixed SAMs yields the hypothesis that the long alkyl 

anchor compounds form domains of unknown size, in which the anchor alkyl chains pack tightly 

and orient perpendicular to the surface. Thus, the spectra of low anchor mol fractions are similar 

to the pure anchor monolayer spectra. Additionally, the larger contact angle hysteresis of the C16 

anchor monolayers would be explained by such a rough surface of spatially clustered anchor 

domains [396] versus a flatter surface of spatially equally distributed anchors. Molecular modeling 

and simulation can help the visualization of such effects on the nanoscale and favor or disfavor the 

hypothesis. 

 

Figure 7.3. IRRAS spectra of the deuterated alkyl anchors. a) C16 anchor mixed SAMS. b) C8 anchor mixed 
SAMS. Various supernatant anchor molar fractions are shown. Reprinted with permission from Lee et al. J Phys Chem 
B, 2018. 122(34): p. 8201-8210. Copyright 2018 American Chemical Society. 
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7.2 Method 

7.2.1 Initial configuration 

To model SAMs, the insane software [349] was repurposed. The asymmetry option was exploited 

to only build a single layer. The packing procedure of the molecules was rewritten so that the lipids 

are placed into a hexagonal instead of a rectangular grid. Therefore, the initially generated 

rectangular grid point coordinates were transformed using the following equations.  

𝑦ℎ𝑒𝑥 =
√3

2
𝑦𝑟𝑒𝑐𝑡 

(26) 

𝑥ℎ𝑒𝑥 = {

𝑥𝑟𝑒𝑐𝑡 , 𝑥 𝑚𝑜𝑑 2 = 0

 
1

2
𝑥𝑟𝑒𝑐𝑡 , 𝑥 𝑚𝑜𝑑 2 = 1

 (27) 

All the MARTINI particles were initially put to identical x and y coordinates. The initial z-

directional distance between two standard sized particles was set to 1.5 nm, for small particles to 

1.0 nm. To model molecular aggregates, a stochastic algorithm was developed. The algorithm takes 

an additional input argument: the target domain size. Initially, it estimated the number of cluster 

seeds as the number of clustered molecules divided by the target domain size. In a second step, it 

randomly samples 10.000 seed coordinates and calculates the pairwise distances, taking periodic 

boundaries into account. The configuration in which the pairwise distances are maximized is 

employed for molecular placement. A molecule, which is to be positioned into clusters, occupies 

each seed positions. Then additional molecules of the same kind are added one after another until 

the target concentration is reached. The molecules are placed in the nearest neighborhood positions 

of a random occupied spot in each cluster. What exact positions are occupied is decided randomly 

using a uniform probability distribution. The algorithm is supposed to loosely resemble the 

selective adsorption of molecules only in the neighborhood of their own kind, or the collective 

adsorption of aggregates that pre-formed in solution. Example configurations are presented in 

Figure 7.4.  

With the adapted insane software [349], a broad range of monolayers was modeled. For the coarse-

grained only simulation 20x20 nm2 binary SAMs with anchor and molar fraction of 0, 0.05, 0.1, 

0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 were modeled. The SAMs consisted of the matrix 

compound mixed with either of the C8 or C16 anchor compound. For each anchor type, all molar 

fractions were probed. To enhance sampling, each SAM was built in three replicates with different 

randomizer initiations. The 20x20 nm2 SAMs were all in a randomized spatial configuration (no 

clusters) using a uniform probability density function. SAMs with the purpose of resolution 

transformation to full atomistic detail, were built to a lateral dimension of 10x10nm2. They had 

anchor molar fractions of 0, 0.05, 0.1, 0.2, 0.5, and 1.0. The mixed SAMs were modeled each in 
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randomized and in aggregated configuration. In the aggregated case, only a single central domain 

was modeled. For each concentration, and each spatial arrangement, SAMs with C8 and C16 

anchors were generated. The boxes were filled with polarizable MARTINI water [388].  

7.2.2 Coarse-grained simulations 

The coarse-grained simulation protocols largely followed recent suggestions by de Jong et al. [389] 

and were conducted with GROMACS [75-77, 80, 81, 309]  ver. 5.1.4. We used a Verlet neighbor 

list scheme [390] (updated every 20 steps) with short cutoffs of 1.1 nm for Van-der-Waals and 

Coulomb interactions. For long range electrostatic interaction, a reaction field potential with an 

infinite permittivity constant and a dielectric constant of 2.5 was employed [391]. Periodic 

boundaries were applied in all direction. Minimization was performed over 5.000 steps. A 

temperature of 298.15 K was initially set according to Maxwell-Boltzmann distribution and 

controlled by velocity rescaling [350]. Solvent and monolayer were independently coupled with 

coupling constants of 1.0 ps. NVT equilibration was achieved within 10 ps with 10 fs time step. 

NPT equilibration was performed for 10 ns with 20 fs time step. Production simulations were run 

for 60 ns with a 30 fs time step. Semi-isotropic Berendsen [93, 94] pressure coupling was only 

applied in z-direction by setting the lateral compressibility to 0 and the normal one to 4.5e10-5 bar-

1. Additionally, the thiol-group particles were restraint to their initial positions by harmonic 

potentials with force constant of 5.000 kJ mol-1 nm-1. The restraint was only applied in z-direction 

and lateral movement was allowed. The reference coordinates were scaled according to box size 

fluctuations. For production, we switched to Parrinello-Rahman [226] coupling with 12 ps coupling 

constant. The SAM simulations were conducted in triplicates where each system was individually 

modeled, minimized, and equilibrated.  

 

Figure 7.4: Initial packing of mixed SAMs. A) Random arrangement of C8-anchors. B) Clustered arrangement of 
C16 anchors. Water particles are left out for clarity. Color coding according to MARTINI bead type as in Figure 7.2. 
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7.2.3 Full-atomistic simulations 

Before dependable full-atomistic conformations can be sampled, the initial back-mapped 

configuration must be refined. Therefore, the protocol as proposed by Wassenaar et al [392] was 

satisfied: I. 5.000 steps steepest descent minimization of only the bonded interactions, II. 5.000 

steps steepest descent minimization with all interactions, III. 1.000 molecular dynamics steps with 

0.1 fs time step including Nose-Hoover temperature coupling [225] to a 298.15 K bath with a 1 ps 

coupling constant (SAM and solvent coupled separately), and IV. 1.000.000 MD steps with a 1 fs 

time step with Berendsen [93] pressure coupling (coupling constant 5 ps, reference pressure 1 bar, 

normal direction compressibility 4.5e-5 bar-1). Finally, production sampling was performed for 

10.000.000 MD steps with a 2 fs time step. Parrinello-Rahman pressure coupling [226] was 

employed in normal direction with a coupling constant of 12 ps. All H-bonds were constrained. 

LINCS [227, 228] constraint solver was utilized. The full atomistic SAMs were simulated with 

GROMACS ver. 5.1.4. The full-atomistic topologies were generated via CHARMM-GUI [79, 307] 

and its CGENFF [87] implementation. The CGENFF-based parameters were identical to expected 

parameters from the CHARMM lipids force field and yielded penalty scores of 32 (charges) and 42 

(bonded).  

7.2.4 Trajectory analysis 

Of each SAM molecule, the distances between its thiol group bead (sulfur atom, in case of all atom 

simulation) to all the other thiol group beads were computed taking mirror images into account. 

The average of the six shortest distances was monitored as molecular lattice parameter. The lattice 

constant was determined as the time and ensemble average of the molecular lattice parameters. The 

distances were calculated with MDTraj ver. 1.9.3.[230] The collective tilt angle of the monolayer 

was calculated as the time and ensemble average of the molecular tilt angle. The molecular tilt angle 

was measured as the angle between the first principal axis of the matrix alkyl chains with the surface 

normal. The principal axis was determined as the first principal component eigenvector as 

calculated by scikit-learn ver. 0.22.2 [393]. The thickness is determined from time average normal-

direction density profiles of the SAMs and the surrounding solvent. The density profiles were 

computed with GROMACS tool gmx density, in which the box was divided in 50 slabs for the coarse-

grained simulations and 100 slabs for the all-atom simulations. From the density profiles, the 

intercepts between SAM profile and solvent profile were numerically determined. The distance 

between these intercepts was considered the SAM thickness. The surface hydrophobicity was 

estimated from the solvent accessible area of the alkyl group beads (alkyl carbon and hydrogen 

atoms) of the anchors relative to the total solvent accessible area of the SAM. The solvent accessible 

areas were computed with GROMACS gmx sasa using a 0.14 nm probe size. The MARTINI particle 

Van-der-Waals radii were 0.26 nm and 0.23 nm for standard and small particles, respectively.  
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Carbon-carbon bond order parameters [188] were calculated using equation 24. In case of the 

molecular portion analysis, bond order distributions are shown to avoid artifacts from average over 

multimodal distributions. Elsewhere, they are shown as ensemble averages. Conformations of 

distinct parts of the matrix and anchor molecules were determined by certain torsion angles. For 

the alkyl chains the C-C-C-C torsion angles were determined and the fraction of angles with 

absolute values of 150° or more is considered the trans fraction [394]. In the OEG portion, the 

helicity is determined as the number of consecutive, same-directed O-C-C-O bond in gauche 

orientation normalized by the total number of O-C-C-O dihedrals (here 5). Gauche orientation 

corresponds to absolute torsion angle between 50° and 150° [394]. Graphics were generated with 

MatPlotLib [274] and molecular images were rendered with VMD ver. 1.9.3. [266]. 

7.3 Results 

7.3.1 Coarse-grained force field parameters  

To minimize the systems and to perform dynamics calculations, force field parameters need to be 

assigned. In the case of the SAM molecules (matrix and anchor compounds), most parameters 

could be taken over from already published MARTINI lipid [74, 345], protein [347] and polymer 

[373] force fields. Thus, the mapping was also mostly predetermined (Figure 7.2). C5 beads were 

used for the thioethyl head groups and C1 beads for the n-butyl groups. The acetamide groups 

were modeled by P5 beads and the oxyethylene groups of the OEG chain were mapped into SN0 

beads (SN2 in case of terminal ethanol groups at the matrix compounds). If note, SN0-SN0 and 

SN0-P4 non-bonded interactions were made more attractive (to the level of Nda particles). As 

many of the bonded interactions could be re-applied from the literature, only the amide linkage 

between alkyl and OEG chain were newly parametrized. Here, the coarse-grained simulations were 

optimized against united-atom simulation with the GROMOS 53A force field [374, 395]. The final 

parameters are summarized in Table E.1 in the appendix. To ensure stability at long integration 

time steps, dihedral parameters were not employed. To overcome the general unavailability of 

physically correct gold parameters, the surface was modeled implicitly using a flat surface model 

[374]. Therefore, the thiol head groups are restrained to a flat plane using a harmonic potential. 

The utilized force constant of 5000 kJ mol-1 nm-2 proved to be the best compromise between 

stability and correct packing. 
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Figure 7.5: Coarse-grained parameter optimization of the anchor amide linkage. The top row corresponds to 
the parameters at the matrix portion, the bottom row to the anchor portion. The four panels to the left show the bond 
distance distributions. A and C: amide-alkyl, B and D: amide-hydroxy ethylene. The six panels to the right show the 
angle distributions. A and D: alkyl-alkyl-amide, B and E: alkyl-amide-hydroxy/oxyethylene, C and F: amide-
oxyethylene-oxyethylene.  

The established coarse-grained parameters yielded good agreement of the mapped distances and 

angles as compared to the united atom calculations (Figure 7.5). The bond distances were well 

reproduced. Of the angles, only the one between the amide, and the two succeeding oxyethylene 

groups produces slightly too small values even when the force constant is chosen high. Here, 

consistency with the other parameters was considered more important than accuracy, which is in 

line with MARTINI design principles. 

7.3.2 Coarse-grained sampling  

To assess the accuracy of new coarse-grained model, 20 x 20 nm² monolayers of increasing anchor 

mol fractions and both types (C8 and C16) were sampled in triplicates for 60 ns, of which first 10 

ns were discarded as equilibration. Structural characteristics, such as lattice constant, tilt angle, 

thickness and surface hydrophobicity were calculated (Figure 7.6). The lattice constant is in fact 

directly modeled in terms of packing and then effectively restrained by disallowing lateral box size 

fluctuations. However, lattice constant and tilt angle are correlated in way that a larger pinning 

distance result in a larger tilt angle [396, 397]. The coarse-grained force-field with its large spherical 

beads for butyl groups is not capable to accurately reproduce both a lattice constant of ~4.9 nm 

[396] and a tilt angle of ~30°. Thus, it was decided that the reproduction of the tilt angle antecedes 

a correct lattice constant, and the molecules were placed with an initial distance of 5.4. This way a 

mean tilt angle of around 24° for all compositions was realized, which is in good agreement with 

experimental findings of 20°-35° [398, 399]. 
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For the pure matrix compound monolayers, the CG simulations yield a thickness of 23 Å (Figure 

7.6 C). The pure C8 anchor SAM has thickness of 46 Å and the pure C16 anchor SAM a thickness 

of 56 Å. The thickness values are in good agreement to the experiments (25 Å, 49 Å, and 59 Å 

[54]) and systematically about 3 Å too small. The small discrepancy might be the results of the 

missing gold substrate. As expected, the thickness increases with increasing anchor mole fraction 

and is mostly higher for the C16 anchors. Interestingly, for small anchor coverages (x<0.2), the 

thickness increases slowly, linearly, and similarly for both anchor types. After x=0.2, the thickness 

soars until it levels out around x=0.8. The slow initial increase followed by a rapid rise can be 

explained by hydrophobic interactions of the anchor moieties. At low coverages, they lie flat on 

the SAM surface to minimize water contacts and to be able to interact over long distances. Once a 

critical concentration is reached, the alkyl chains are allowed to pack side-by-side in a surface-

perpendicular orientation. This behavior is resembling that of an assembling monolayer [400]. 

Interestingly, the aggregating and re-orienting anchor alkyl chains at mol fractions of 0.3 and higher 

form small islets and domains of larger thickness (Figure 7.7). However, the differences between 

C8 and C16 anchors in their ability to form domains are too small to explain the larger contact 

angle hysteresis of the C16 anchor and the differences in the IRRAS spectra. Therefore, the 

partitioning would need to be much more prominent. 

 

Figure 7.6: Structural characteristics of the mixed SAMs as sampled by coarse-grained MD. A) Lattice constant 

⟨a⟩, B) tilt angle ⟨θ⟩, C) thickness ⟨d⟩, and D) surface hydrophobicity ⟨η⟩ of SAMS with C8 and C16 anchoring 
compounds as functions of molar fraction. Orange filled circles: C8 anchors; purple filled triangles: C16 anchors. The 
shaded area is the standard deviation from the mean of three replicate trajectories. 
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C D 
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Figure 7.7: Spatial distribution of the monolayer thickness. Results are shown inn Å for increasing anchor mole 
fractions (from left to right) and the two anchor compounds. Top: C8, bottom: C16.  

To compare the wetting or surface hydrophobicity to the contact angles measurements, the solvent 

exposure of different chemical groups was calculated (Figure 7.6 D). The ratio of solvent 

accessible area, which belongs to the alkyl group beads relative to the total solvent accessible area 

is taken as measure for hydrophobicity. The hydrophobicity of the C16 anchor monolayers is 

systematically higher than that of the C8 anchors. It is however identical for the pure anchor 

monolayers. The hydrophobicity increases linearly with the anchor mol fraction. The CG model 

here is in line with experimental observation and intuition. It however cannot capture the contact 

angle hysteresis. There are methods to simulate contact angles using a water droplet on top of a 

surface [410-412]. Unfortunately, the polarizable MARTINI force field water model is not suitable 

for such an approach because the particles do not form stable droplets. To sum up, the coarse-

grained results are broadly in good agreements with experimental findings. Tilt angles, layer 

thickness and hydrophobicity are of the pure monolayers are well reproduced. For the mixed SAMs 

experimental data is sparse and ambiguous because the true monolayer composition is difficult to 

determine. The accuracy and reliability of the molecular model can be increased by transforming it 

to full atomistic representation. 

7.3.3 Full-atomistic refinement 

For resolution transformation from the coarse-grained representation to full atomistic resolution 

(Figure 7.8), the atoms must be placed at the position of the corresponding coarse-grained 

particles. This is initially done in a crude way, in which bond distances, angles and dihedrals are just 

approximated based on the coarse-grained coordinates. The coordinate transformation is followed 

by a multistep minimization protocol, in which initially only bonded potentials are considered and 

non-bonded potentials are nullified. This way, bond lengths, angles and dihedrals can relax before 
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non-bonded atoms will start interacting which each other. Finally, the non-bonded interactions are 

slowly ramped up [392].  

 

Figure 7.8. Resolution transformation of the SAM model. Shown are snapshots of an xC16 = 0.1 monolayer before 
(A) and after (B) resolution transformation in Van-der-Waals representation. The anchor compound carbon atoms 
(beads) are colored green.  

Again, the structural features of the modeled pure and mixed monolayers were calculated (Figure 

7.9). The lattice constant shows only minor deviations from the experimentally reported value of 

4.97 Å. The tilt angle is decreasing slightly from 27° to 26° with increasing anchor mol fraction 

based on stark interactions of the anchor alkyl chains. The thickness values of the full-atomistic 

SAMs resemble the ones of the coarse-grained systems. This highlights the accuracy of the coarse-

grained model. The pure matrix compound SAMs have a thickness of 25 Å, the pure anchor 

monolayers of 51 Å and 61 Å, respectively, for C8 and C16. Oppositely to the coarse-grained 

model, the full atomistic model slightly overestimates the thickness relative to the experiment, 

which can be attributed to the decreased helicity of the OEG portion, as described in the next 

section. Interestingly, the difference in the slope of the thickness over the anchor concentration 

between C8 and C16 anchor is even more pronounced in the full atomistic model. The thickness 

of both anchor types is similarly small up to an anchor concentration of 0.1. At higher 

concentrations, the C16 anchor forms monolayers with a significantly larger thickness compared 

to the C8 anchor. The interactions between the C16 anchors are stronger so that they can form 

upright standing aggregates at lower concentrations. Additionally, due to the longer chain length, 

they are more likely to encounter each other at low concentrations. Similar deviations from a linear 

increase can be seen for the surface hydrophobicity. Initially, at low anchor concentrations, the 

values are identical for C8 and C16 anchor compounds. At a mol fraction of 0.2 however, the effect 

of the C16 anchor becomes stronger. The pure anchor monolayers are both fully covered by 

aliphatic moieties.  
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Figure 7.9: Structural characteristics of the mixed SAMs as sampled by all-atom MD. A) Lattice constant ⟨a⟩, 
B) tilt angle ⟨θ⟩, C) thickness ⟨d⟩, and D) surface hydrophobicity ⟨η⟩ of SAMS with C8 and C16 anchoring compounds 
as functions of molar fraction. Orange circles represent the C8 anchors and purple triangles the C16 anchors. 

Compared to the coarse-grained model, the full atomistic simulations further increase the accuracy 

of the simulation procedure and reveals small additional differences and details. In particular, 

because of the full atomistic refinement, the lattice parameter decreased from 5.35 to 4.97 Å, the 

tilt angles increased from ∼24° to ∼26°, and the thickness systematically increased by 2–5 Å 

depending on the anchor mole fraction, whereas the hydrophobicity of the monolayer surface is 

not affected. 

7.3.4 Conformation and orientation 

The outcome of the full atomistic sampling is in such a good agreement to the literature and recent 

experiments of Lee et al. [54], that the bond orientations of the matrix, OEG and anchor portion 

should be comparable with the IRRAS spectra. Thus, bond order parameters for the whole 

molecules were calculated. The bond order parameter is a measure of the average angle between a 

certain chemical bond and the surface normal. Due to its mathematical description, it maps the 

angle to a range between 1.0 and –0.5, where 1.0 corresponds to parallel to surface normal (0°) and 

–0.5 to perpendicular (90°). The bond order parameters are frequently used to compare atomistic 

models of proteins and lipid bilayers to NMR experiments. Here, it is used to visualize order and 

orientation of the different molecular portions.  

A B 

D C 
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Bond order parameters are exemplarily discussed for a 5% C16 anchor SAM (Figure 7.10). Here, 

in the matrix portion, the C-C bonds have order parameters alternating between 0.1 and 0.6. This 

means, that the average angle of the even C-C bonds relative to the surface normal is 25°, and the 

average angle of the uneven bonds is 50°. This corresponds to a defect-free packing of all-trans 

alkyl chains with a molecular tilt angle of around 30°. In the OEG region, the order parameter 

decreases but the alternating behavior is maintained for 8 bonds. Afterwards it depends if the 

anchors are in random or clustered spatial arrangement. In the random arrangement, the order 

parameter stays as low as –0.1 until the end of the molecule. Such a value might correspond to an 

average angle of 60° relative to the surface normal but is also an indicator for disorder and thus a 

broad distribution of bond orientations. The clustered arrangement, however, leads to an increase 

of the bond order after the 32nd bond and the re-appearing of the alternating behavior. The anchor 

alkyl chains show an order parameter pattern similar to the matrix alkyl chains, yet less distinct. 

The example stresses, that while the order parameter is good indicator for the orientation as well 

as order and disorder, it still suffers the flaws of an arithmetic mean of possibly multimodal or 

skewed distributions. Therefore, it is advisable to explicitly look at the probability density functions 

of the bond-normal angles or bond order parameters.  

The distributions of CC bond order parameters for the different molecular portions (matrix, OEG 

and anchor) were calculated from the full atomistic MD sampling and contrasted by anchor length 

(C8, C16) and spatial distribution (uniform random, clustered). The results are presented in Figure 

7.120. In the matrix region, the order parameter has two distinct population with means of 0.8 and 

–0.1 corresponding to the odd- and even-numbered bonds. The populations are well separated, 

especially for the pure monolayers. In the mixed SAMs, there is a small amount of disorder, which 

is reflected by smaller broader peaks, which may slightly overlap. For random spatial distribution, 

the amount of disorder is highest at low anchor coverage, whereas it is reversed in clustered 

arrangement. Possibly, the interaction of OEG and even more of anchor alkyl portions induce 

stress (“pull”) at the matrix alkanethiols and thus locally change tilt angle and dihedrals. The effect 

is however small and can be neglected. Generally, the matrix region order parameters show a highly 

ordered monolayer with a collective tilt angle of 25° and thus alternating bonds of 10° and 70° 

relative to the surface normal.  
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Figure 7.10: Bond order parameters of the C16 anchor at 5% coverage. Solid: clustered configuration. Dashed: 
random configuration. Background colors represent the molecular areas. Gold and yellow: Surface and thiol group. 
Gray: alkyl chains. Blue: Amide linkage. Red: OEG. 

In the OEG region, disorder is dominant. The distribution are much broader and clear peaks can 

only be seen in the pure anchor SAMs or the SAMs, in which the anchor coverage is over 50% and 

the anchors are arranged in a local cluster. For low anchor concentrations and random spatial 

distributions, the order parameters are uniformly distributed with a slight increase in probability 

density for order parameters close to –0.5. This is consistent for both the C8 and the C16 anchor. 

The formation of the peak at 0.5 with increasing anchor mol fraction is indicative of a phase 

transition from disordered to ordered. The phase transition begins as with 20% anchor coverage 

when the anchors are locally aggregated. For the random distributed anchors, the initiation occurs 

only at coverages of over 50% (not probed with MD).  

The order parameter distributions of the anchor alkyl chains are the pure anchor monolayers are 

similar to the ones of the matrix compounds. They exhibit to peaks, one at 0.8 and a second at –

0.1. The single peaks of the C16 anchors are even more separated than the matrix compound peaks. 

The C8 anchor order parameter distribution of the pure anchor SAM shows more disorder than 

the C16 anchors. In the mixed SAMs with random distribution, the order parameters are centered 

around a value of –0.5 and follow an approximately uniform distribution elsewhere. The likelihood 

for higher order parameters close to 1 is lower. It however increases with increasing anchor molar 

fraction. This effect is identical between the two anchors. Some variety between the order 

parameters of the monolayers with clustered anchor compounds is noticeable. The 5% clustered 

C8 anchor SAM has broad distribution with a flat peak at 0.6, which splits into two peaks at higher 

anchor concentrations. The peaks are at 0.8 and –0.1, similar to matrix compounds. The clustered 

C16 anchor monolayers exhibit two overlapping populations at 5% coverage, which merge to a 

single peak at an order parameter of 0.5 for 10% coverage and then separate again at 50% coverage 

to two peaks at 0.9 and –0.25.  
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Figure 7.11: Violin plot of CC bond order parameter distributions. The distributions show the different modules 
of the SAMs depending on the anchor molecule chain length (C8: orange, C16: purple), spatial distribution (random: 
darker colored left-hand side; clustered: bright colored right-hand side) at various molar fractions. 

While the order parameters reveal much about orientation of the bonds, they still leave ambiguities 

regarding the conformations of the molecules. Thus, torsion angle distributions were monitored 

for the three molecular portions and the ratio of trans and helix conformations were computed 

(Figure 7.132). For both spatial arrangements, the matrix alkyl chains are virtually in all-trans 

conformations, with a trans ratio of 98% independent of anchor molar fraction. The helicity of the 

OEG portion decreases with increasing anchor coverage. For both random and clustered spatial 

distributions as well as both anchors, it is around 0.5 at low coverages < 20% and decreases to 0.3 

for the pure anchor SAMs. The decrease is linear for random distribution and asymptotic for the 

clustered distribution. Thus, the minimum helix ratio of 0.3 is already reached at an anchor mol 

fraction of 0.5 for the clustered anchor SAMs. Helical conformations of PEG chains stabilized by 

intramolecular hydrogen bonds have been confirmed in earlier experimental [401, 402] and 

quantum chemical [403] studies. Helical elements in the OEG chain of the anchoring compounds 

are strongly pronounced in the IRRAS spectral by Lee et al. Similar is observed for the trans ratio 

of the anchor aliphatic moieties. It raises linearly in the random distribution SAMs with a slightly 

higher slope for C16 anchors. In the clustered C16 monolayers, the anchor trans ratio is over 0.9 

already at 5% coverage. For the clustered C8 anchors it is systematically lower.  



Monolayer phase segregation and transition   145 

 

 

Figure 7.12: Molecular conformations of the different molecular regions. Top: matrix region, middle: OEG, 
bottom: anchor molecules. C8 orange. C16 purple. 

7.4 Discussion 

A central part of any computational theoretical approach is the repetitive comparison with 

experiments. The known variables must be reproduced so that the prediction of the unknown is 

rationalized. In case of the SAMs, which were initially modeled in coarse-grained representation, 

subjected to resolution transformation to full atomistic detail and finally sampled for a large 

ensemble of conformations, such variables are intramolecular conformation and orientation 

relative to the surface normal. They are experimentally well accessible for the pure SAMs (matrix 

and anchors) but not for the various mixtures, especially of higher anchor concentration.  

The molecular architecture of the matrix region is characterized by highly ordered, densely packed, 

collectively tilted alkyl chains which attain an all-trans conformation, as proven by the two 

dominating IRRAS bands at 2918 and 2859 cm-1. In the MD ensemble, only 2% of the dihedrals 

deviated from trans conformation and the bonds were either oriented in 10° or 70° relative to 

surface normal. As this is only possible for collectively tilted alkanethiols, the modelling of the 

matrix portion can be considered to excellently agree with experiment. Orientation and 

conformation of the matrix compounds are only weakly disturbed by the superficial interactions 

of OEG and anchors, further highlighting their tight packing and stability.  
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For the OEG portion, a phase transition can be seen upon increasing anchor molar fraction in 

both simulation and experiment. In the IRRAS spectra, the OEG portion C-H stretching band at 

2890 cm-1 s only evident in the pure anchor SAMs, but not in the mixed SAMs. Thus, a 

conformational and orientational transition must happen which only allows this bond to absorb 

the polarized light. In the MD ensemble, the transition is twofold. While the helicity decreases from 

0.5 to 0.3, the orientation changes from recumbent to upright. Only in the upright orientation, the 

helical packing can be seen as a number of bands in the IRRAS at 2890, 1464, 1346, 1244, 963, and 

115 cm-1, even if the number of helical elements is reduced. Additionally, the helical elements might 

be more pronounced in experiments because they are measured in the gas phase. Here, the helical 

conformation of OEG is favored because surrounding water molecules cannot disturb the 

intramolecular hydrogen bonding network of such an arrangement. This is also reflected in the 

slightly underestimated monolayer thickness at higher anchor concentrations. The reason for the 

decrease in helical elements at high anchor concentration are steric clashes. The anchor moieties 

pack so tightly, that the OEG elements must adopt a more extended conformation. Favorable 

intramolecular interactions that were the driving force for the helical arrangement are displaced by 

intermolecular interactions. 

The IRRAS spectra of the deuterated alkyl anchors yielded substantial differences between the long 

C16 and the short C8 anchor. In the pure C8 anchor SAMs, the CD2 asymmetric and symmetric 

stretching bands are weaker than the CD3 asymmetric and symmetric stretching bands. The order 

parameter distributions show two peaks for both C8 and C16 anchor monolayers. However, the 

peaks are significantly more separated for the C16 anchors and more overlapping for the C8 

anchors. Thus, both IRRAS and MD reveal a substantial amount of disorder only in the pure C8 

SAM and not in the C16 SAM. For anchor molar fractions of 0.5 and below the anchoring chains 

are disordered independent of the length. This can be seen in the broad distribution of order 

parameters and the low trans ratio. In the IRRAS spectra the effect is reflected by the relative band 

intensities of the CD2 and CD3 bands, which become more alike with lower anchor concentration. 

Most striking are the differences between C8 and C16 for the clustered, mixed SAMs. While the 

clustered C8 anchors are still substantially disordered, and phase transition begins only at molar 

fraction of 0.5, the C16 anchors already begin to reorient at a molar fraction of 0.5. At a molar 

fraction of 0.1, the order parameter distribution becomes unimodal, which is only possible if the 

anchors are oriented parallel to the to the surface normal, and both odd- and even-numbered bonds 

exhibit an identical absolute angle (relative to the surface normal). With higher anchor 

concentration, the distribution broadens and separates, because the anchors begin to collectively 

tilt.  This early-onset phase transition, only of the clustered C16 anchors and not the C8 anchors, 

strongly favors the hypothesis that domain formation is exclusive to the C16 anchors (Figure 7.13).  
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Figure 7.13: Representative snapshots of C8 and C16 monolayers at xA = 0.1 after 20 ns full atomistic 
simulations. Only a 1 nm slab is shown in this representation. Molecules are displayed as licorice. Hydrogen atoms 
are omitted for clarity. The matrix compound is displayed with gray and the anchor compound with green carbon 
atoms.  

7.5 Conclusion 

SAMs provide an ideally suitable and well-controllable microenvironment for the incorporation 

and immobilization of large biomolecules. Matrix molecules and long-chain anchoring components 

consisting of OEG (here 6 units) and C8 and C16 long alkyl chains provide the possibility for 

tethering phospholipid bilayers and vesicles. The design and setup of a consistent simulation 

protocol for full atomistic simulations of mixed self-assembled monolayers on flat model surfaces, 

based on previous CG initialization, modeling, and equilibration, were developed. The results of 

both the CG and the full atomistic models agree well with the experimentally reported structural 

parameters of the self-assembled monolayers. We demonstrate the feasibility of a CG model to 

bring any mixed SAM system including the membrane-anchoring compounds into thermodynamic 

equilibrium to start subsequent full atomistic simulations. By simulating diverse types of C8 and 

C16 anchor monolayers over the complete range of molar fractions, significant differences in 

packing and interactions can be observed. The structural parameters such as lattice constant and 

tilt angle are almost independent of the type of the anchoring molecule. The anchor alkyl-chain 

orientation, however, is critically controlled by the composition and its chemical nature. Although 

the short chain C8 anchor molecules adopt a random, disordered conformation at low anchor 

densities and undergo a transition into a more ordered conformation with increasing anchor 

density, the C16 anchors already adopt highly ordered conformations at low anchor densities, 

which reoccur in the monolayers of higher anchor density. The results from our MD simulations 

are in excellent agreement with current experiments by Lee et al. and explain the observed spectral 

features. In addition, the simulations are able to probe mixed concentrations and mole fractions 
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that are experimentally hard to access. Complementing the experimental IRRAS measurements, 

our simulations results provide additional insights into the arrangement and degree of ordering of 

the anchoring compounds in the monolayer. Depending on the initial spatial anchor compound 

distribution, we find distinct orientational and conformational phase transitions. Our simulations 

support the hypothesis that the C16 anchor compound exclusively forms self-aggregates, whereas 

the C8 anchor compound scatters randomly in the matrix.  
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8 MONOLAYER-VESICLE AFFINITY 

One method to prepare tethered bilayer membranes is to adsorb lipid vesicles on mixed self-

assembled monolayers (SAMs), which will rupture upon reaching a critical concentration and form 

a lipid bilayer. In this approach, the composition of the SAM is critical. Without any anchoring 

compounds the lipid molecules are not able to form stable interactions with the SAM and are 

washed away. With an overly high number of anchoring compounds, on the other hand, 

hydrophobic interactions are so dominant that lipid molecules will form another monolayer, in 

which the fatty acid tails in are in contact with the exposed anchor alkyl chains. Only with the 

adequate anchor compound density, a bilayer will assemble where the anchor alkyl chains 

intercalate with the phospholipid tails in bottom leaflet. The adequate density is also affected by 

the anchor chain length and the spatial distribution of anchor molecules. In this chapter we employ 

the previously developed coarse-grained model for mixed SAMs to investigate differences in the 

vesicle adsorption as consequence of the SAM composition. The chapter is the result of a joint 

work of the Department of Nanoengineering at the Center for Physical Sciences and Technology 

in Vilnius, Lithuania with main experimental contributions by Martynas Gavutis and the Group 

for Molecular Simulation and Design at the Max-Planck-Institute, Magdeburg. Our contributions 

are the design, execution, analysis, and discussion of the MD simulations. The chapter is prepared 

for publication to Journal of Physical Chemistry C with M. Gavutis and E. Schulze-Niemand as 

shared first authors. 

8.1 Introduction 

Lipid bilayer membranes and membrane proteins are experimentally challenging to study because 

they are difficult to isolate and stabilize [404]. Existing biophysical techniques include lipid nano-

discs [405-407], unilammellar vesicles [408, 409], black lipid membranes [410, 411] and supported 

lipid bilayers [363, 412, 413], all of which are accessible to different analytical methods. Lipid nano-

discs are mostly used to study membrane proteins by means of Cryo-EM [414], NMR [415] and 

SAXS [416] but do not allow extensive insight on the bilayer itself. Unilammellar vesicles vary in 

size between tens of nanometers and several micrometers and can be prepared in large quantities 

[417]. They are frequently studied via NMR [418] and flow cytometry [419]. Black lipid membranes 

are useful for electrochemical surveys to study membrane proteins such as ion channels [420, 421]. 

However, they are usually short lived and not suitable for necessary long-time experiments. 

Supported bilayers are flat layers that sit on top of a solid surface and are thus highly stable and 

resistant to high flow rates and vibrations (unlike black lipid membrane) [422, 423]. In fact, they 

are feasible to use in experiments that last even weeks to months. Furthermore, pore formation 

does not destroy the bilayer [363]. Supported bilayers can be well studied using surface chemistry- 
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and physics-based methods such as AFM [424], IRRAS [425], and QCM [426], as well as surface 

plasmon resonance and TRIF [368, 369]. Therefore, the bilayer membrane is attached to artificial 

thiol-lipids which adsorb onto a gold surface [361]. In some instances, the gold surface is fully 

covered by a self-assembled monolayer of alkanethiols, which are partially functionalized with 

membrane anchors [373]. The bilayer will then self-aggregate on top of the monolayer with the 

membrane anchoring portions intercalating into its fatty acid regions (Figure 8.1). In practice, this 

is achieved by flooding the SAM with vesicles that will rupture upon a critical concentration is 

reached. This process is also called vesicle fusion [427, 428]. Even though this method is central 

for tBLM formation, literature is scarce. Naturally, kind of SAM and the degree of 

functionalization, i.e., the concentration of anchoring molecules, will have a tremendous effect on 

the bilayer in terms of formation but also stability and equilibrium properties such as curvature, 

thickness, lipid area and lateral diffusion coefficients.  

While global characteristic of the SAM and bilayer, as well as the architecture of the tethered bilayer 

membrane can be well studied experimentally, a molecular-scale description at the interfaces: 

solvent-anchors, anchor-anchor and membrane-anchor remain elusive. With current developments 

such as surface functionalization, the SAM molecules become more complex and dynamic. SAM-

SAM as well as SAM-solvent interactions affect the structure and often lead to unexpected 

experimental observations [54].  Thus, the number of articles featuring MD simulations of SAMs 

steadily increased in the past decade [374, 376, 429-432]. MD aids the understanding especially of 

structural dynamics of solvent exposed, functional groups. The accuracy of developed coarse-

grained modeling and simulation protocol for mixed SAMs [55] proves its feasibility for further 

extensions such as a tethered lipid bilayer membrane. Even more so, the initial adsorption of a 

vesicle to a mixed SAM can be well modeled using the coarse-grained protocol.  

 

Figure 8.1: Schematic representation of the formation of tethered bilayer by vesicle adsorption and fusion.  
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Here, a comparison of a lipid vesicle attachment and equilibrium anchor dynamics yields valuable 

insight into the formation of tethered bilayers as well as the response of a lipid vesicle to physical 

stress due to deformation. Different SAM composition may be probed to theoretically optimize 

the tethered bilayer formation protocol in terms of duration and bilayer stability and comparability 

to a non-tethered, supported lipid membrane. The aim of the present study is to elucidate the 

interactions between model lipid vesicles and the linear tethers in the process of tBLM formation. 

For this purpose, we chose a tandem of two complementary techniques: quartz crystal 

microbalance with dissipation monitoring (QCM-D) and molecular dynamics (MD). The first 

technique reveals the events related to the mass of the adsorbed material and probes the lipid states 

on the substrate. While QCM-D allows monitoring real time events at a scale of seconds and 

minutes, the molecular level information about the immediate tether-vesicle interactions can be 

efficiently derived from MD simulations. In combination, the experimental model surface system, 

the QCM-D analysis, and the computational means provide new insights into small unilammellar 

vesicle (SUV) interactions with membrane-supporting molecular assemblies. 

8.1.1 QCM-D Studies 

Experimentally, the vesicle adsorption and fusion process can be monitored using QCM-D [433]. 

With the method, lipid vesicles and lipid bilayers can be well distinguished. Here, the molecular 

mass affects the frequency of the crystal, and the viscosity is reflected in the dissipation. Generally, 

during the formation of a bilayer membrane from vesicles, the frequency will initially rise from zero 

to a maximum, then decrease until a plateau is reached. The dissipation follows a similar pattern. 

However, the onset is earlier, and the curve is flatter. The initial increase corresponds to the loading 

of vesicles until rupture. Then, the free lipid molecules are washed away, and the tethered bilayer 

remains. It is of interest how the SAM composition in term of anchor concentration and length 

(and thus spatial distribution), will affect peak height, which corresponds to the critical vesicle 

concentration and the time it takes to reach it. Such studies were recently performed by M. Gavutis 

and colleagues using mixed alkanethiol SAMs which include different concentrations of membrane 

tethering/anchoring compounds with two chain length herein called EG6AC8D and EG6AC16D 

(Figure 8.3 A).  
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Figure 8.2: System components and SAM packing. A) Molecular structures of the included molecules and 
subsequently used color coding. B and C) Top view on the employed SAMs with the EG6AC8D and EG6AC16D 
tethered, respectively.  

The titrated vesicles are composed of 1-stearoyl-2-olyeolyphosphatidylcholin (SOPC). Their QCM-

D sensograms are shown in Figure 8.3. Interestingly, at the anchorless SAM, the vesicle fusion 

peak is never reached. Thus, without anchors the vesicles do not rupture. For anchor compound 

molar fractions of 0.01, 0.05 and 0.1, the maximum frequencies are 65, 50, and 35 Hz and it takes 

800, 500 and 450 s to reach them. After rupture, the frequency stabilizes to 30 Hz, indicating the 

formation of similar bilayers. For 0.15 anchor molar fraction, the peak is absent, and the vesicles 

do not accumulate excessively and only few lipid molecules are washed away. At even higher anchor 

coverages, the final frequency of 30 Hz is not reached, and it is likely that bilayer formation is 

aggravated. Instead, the lipid molecules form a monolayer on top of the hydrophobic anchors, 

which cover a substantial amount of the SAM. The same appears for the pure anchor monolayer, 

however, due to the flow, the supported monolayer is unstable, and a high proportion of the lipids 

are washed away. While a dynamic structural modeling of vesicle attachment, rupture and bilayer 

formation is not accessible- even in the coarse-grained resolution, valuable information may be 

gathered from equilibrium simulations of the vesicle anchored to the mixed SAM. 
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Figure 8.3: QCM-D sensograms of vesicle fusion to the mixed SAMs. The data for the EG6AC8D tethers are 
shown in panels a, b, c, d. Panels e, f, g, h show the results for the EG6AC16D tethers. a, c, e, g present sensograms, 
b, d, f, h show the peak and terminal values of the corresponding sensograms.  

8.2 Method 

Details regarding the experimental studies will be published in our joint article. The computational 

methods are given below.  

8.2.1 System setup and configuration 

The lipid vesicles interacting with the mixed SAMs were computationally modelled and subject to 

long time-scale coarse-grained (CG) molecular dynamics (MD) simulations, each consisting of  a 

30 nm diameter SOPC vesicle and three different compositions of  the SAMs. An overview of  all 

the modeled and simulated systems with molecule numbers and simulation times is given in Table 

8.1. The vesicle model was generated using the CHARMM-GUI MARTINI maker [434]. Of  note, 

the vesicle employed the palmityol-oleolyl-phosphatidylcholin (POPC) coarse-grained lipid 

definitions which would be identical to the ones of  SOPC and only the one for POPC does exist. 

The mixed SAMs were modeled using our protocol as introduced in the mixed SAM study [54] 

(see chapter 7), where the SAM-forming molecules are positioned on a hexagonal grid and the 

tethering compounds can initially be placed either in a random spatial distribution or into domain-

like aggregates (Figure 8.2 B).  
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Table 8.1: Overview of simulated systems. F is the force constant with which the vesicle was dragged towards the 
SAM.  

ID Name F / kJ  

mol-2 nm-2  

Matrix 

molecules 

EG6AC8D 

Tethers 

EG6AC16D 

Tethers  

SOPC Lipids Simulation 

time / ns 

1 Tetherless 100 7020 0 0 7532 500 

2 Tetherless 1000 7020 0 0 7532 500 

3 5% C8 100 6669 351 0 7532 500 

4 5% C8 1000 6669 351 0 7532 500 

5 5 % C16 100 6669 0 351 7532 500 

6 5% C16 1000 6669 0 351 7532 500 

 

The first of the modeled systems consists of an anchorless SAM (formed by EG1H), the second 

one is enriched with 5 mol % of the EG6AC8D tether compounds in a random spatial distribution, 

and the third one is enriched with 5 mol % of EG6AC16D tether compounds in a clustered 

configuration. These correspond to the experimentally observed configurations of the matrix and 

the EG6AC8D and EG6AC16D tethering molecules. The self-assembling monolayers were modeled 

to a cover a lateral area of 42 x 42 nm². Both constituents (SUV, SAMs) were independently 

solvated with a MARTINI polarizable water model [405] and concatenated in the z-dimension. 

The initial distance between the vesicular center and the monolayer surface was set to 24 nm in the 

z-direction. We note that the lipid vesicle, especially the number of lipids per leaflet, was fully 

relaxed before simulation of the entire system. The vesicle relaxation protocol was adopted from 

Hsu and coworkers [455]. For subsequent simulations, we use the standard polarizable MARTINI 

mappings and parameters [75, 359, 363]. For the SAM molecules, the previously optimized 

parameters were used [55]. 

8.2.2 Molecular Dynamics Simulations 

After merging the lipid vesicle (SUV) and the SAM of the chosen composition, the entire system 

was carefully minimized and equilibrated according to the following protocol. First, 10 steps of the 

steepest descent minimization were conducted without domain decomposition for improved 

stability. Second, 500 steps minimization using the steepest descent algorithm with regular domain 

decomposition were performed. Third, a short equilibration for 100.000 steps in an NVT ensemble 

with a time step of 0.01 ps was conducted. Fourth, an NPT ensemble equilibration (Berendsen 

coupling [93], coupling constant: 5 ps, compressibility: 4.5e-5 bar-1) for 200.000 steps with a 0.02 

ps time step was connected. In the NPT simulations, the pressure coupling was only allowed in z-

dimension to follow closely the SAM simulation protocol [54], which is based on a fixed lateral 

area. The initial velocities were generated according to a Maxwell-Boltzmann distribution at 303.15 

K. The temperature was controlled with velocity rescaling [350] using a coupling constant of 1 ps. 
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Vesicle, SAM and solvent were each coupled independently. Other parameters were set according 

to recent suggestions [389]. If not stated otherwise, we applied reaction field electrostatics [435].  

After equilibration, the vesicle was gently pulled toward the SAM by applying a constant, periodic 

(wrapped around box limits) external force between the PO4 beads of the phospholipids and the 

THIO beads along the monolayer normal direction. The force constant was set to 100 kJ mol-1 nm-

2 or 1000 kJ mol-1 nm-2, respectively. For the steering part, 4.000.000 steps (time step: 0.025 ps) 

were simulated. Pressure coupling was realized with the Parrinello-Rahman [226, 313] method 

using a 12 ps coupling constant. Finally, the external force was released, and the vesicle was allowed 

to relax for 500 ns (20.000.000 steps with a 0.025 ps time step). All simulations were conducted 

with GROMACS version 5.1.5 [75-77, 80, 81, 309]. 

8.2.3 Trajectory analysis 

During the simulation, we carefully monitored the vesicle particle sphericity and two sets of SAM-

vesicle contacts. The vesicular sphericity is calculated for the inner and outer leaflets and then 

averaged. We here define the leaflet sphericity as:  

𝑠𝑙𝑒𝑎𝑓𝑙𝑒𝑡 = 1 −
𝜎(𝑟𝑃𝑂4

)

𝜇(𝑟𝑃𝑂4
)
 (28) 

where σ is the standard deviation, μ the mean, and r are the radial distances of the leaflet PO4 beads, 

i.e., the distance from the center of geometry of the vesicle. This way, the value would only become 

one if all PO4 beads were perfectly spherically distributed. As distance and interaction criteria for 

the vesicle approaching the SAM, two classes of contact intermolecular constants were monitored. 

The first set corresponds to the hydrophilic vesicle-SAM contacts and is defined as the number of 

interactions between the SOPC head group beads (PO4 and NC3) and the terminal beads of the 

matrix compound molecules. The second set is a measure for hydrophobic vesicle-SAM contacts 

and is calculated as the number of contacts between the SOPC phospholipid tail beads and the 

tether alkyl chain beads. The number of contacts were computed using the GROMACS tool gmx 

mindist with a distance cutoff of 0.6 nm. Visualization and rendering was performed with VMD ver. 

1.9.3. [266].  

8.3 Results 

8.3.1 Vesicle adsorption 

We have employed molecular dynamics simulation to rationalize the findings regarding the effect 

of the tether length and coverage (surface density) on the vesicle rupturing kinetics. Computational 

resource restraints disallow modeling of the entire process of the multiple-vesicle adsorption until 

their rupture upon critical mass attainment. Thus, a steered MD workflow was developed in which 
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the steady state of a tethered vesicle was approximated from two directions. The steady state here 

corresponds to the amount of tether alkyl chains that are inserted into the vesicle. In one set of the 

simulations, the vesicle is only weakly directed toward the surface of the SAM (steered MD force 

constant k=100 kJ/mol), so that the insertion of the tether must happen spontaneously in the 

subsequent equilibrium MD (k=0 kJ/mol). In the second set of the simulations, the vesicle is force-

squeezed (k=1000 kJ/mol) onto the SAM, so that more tethers are inserted than in the steady state 

(Figure 8.4). Thus, here, the tethers must extract from the vesicle spontaneously in the equilibrium 

MD. After infinite sampling both approaches should yield the same equilibrium. However, as the 

transitions are extremely slow, it is expected that such a perfect sampling cannot be reached. 

During steered attachment and relaxation phase, the vesicle shape in terms of sphericity, as well as 

the number of hydrophilic and hydrophobic interactions were monitored. Hydrophilic interactions 

are superficial interactions between the phosphocholine head group and the oligoethylenglycol and 

terminal ethanol group particles of the SAM. Hydrophobic interactions are only achieved by 

penetration of the anchor alkyl chain into the vesicle bilayer fatty acyl core. Expectedly, depending 

on the initial attachment force, the outcome after the relaxation is different. Thus, both force 

constants can only approximate the true vesicle binding mode. 

 

Figure 8.4: Vesicle adsorption and relaxation protocol. A) Low pulling force constant (100 kJ mol-1 nm-1). B) High 
pulling force (100 kJ mol-1 nm-1) Left to the dotted line: After pulling (begin of relaxation). Right to the dotted line: 
After 500 ns relaxation. Top: anchorless SAM. Center: 5% C8 tether SAM. Bottom: 5% C16 tether SAM. 
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In the case of the tetherless SAM, the SOPC vesicle stays in proximity to the SAM surface after 

adsorption independent of the attachment force constant. After the release of the force, it quickly 

relaxes to nearly perfect sphericity (Figure 8.5 A). In equilibrium, the SOPC vesicle adsorbs only 

weakly on the tetherless SAM surface, as shown by few transient interactions mediated by the 

headgroups of the lipids and SAM surface (Figure 8.5 B-C).  

 

 

Figure 8.5: Vesicle shape and interactions during adsorption and relaxation. Two different force constants are 
shown: left column: 100 kJ/mol nm, right column: 1000 kJ/mol nm. A) shows the sphericity. B) shows the polar 
interactions of lipid head groups and SAM OEG and ethanol terminal groups and C) the apolar (hydrophobic) 
interactions of anchors and lipid tails. The color corresponds to the nature of the SAM. Gray: anchorless. Blue: 5% 
C16 anchors. Red: 5% C8 anchors. 
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Upon adsorption of the vesicle on the randomly distributed EG6AC8D tethers (χEG6AC8D= 5 mol%,), 

the initial deformation is identical to the tetherless and the EG6AC16D SAM. Using the weak force 

constant for attachment, no tethers are integrated into the vesicle fatty acid region (Figure 8.5 B). 

With the high force constant, however, already 1500 pairwise interactions are monitored until the 

end of the attachment step. Upon release of the force, the weakly attached vesicle begins to deform 

by spontaneous insertion of increasing amounts of EG6AC8D tethers. The sphericity converges to 

a decreased value of 0.96 whereas the number of hydrophobic contacts increases to 900. Similarly, 

the hydrophilic contacts between the surface beads of the SAM and PO4 beads of the vesicle 

increase to a value of 140. Thus, the insertion of more tethers drives a deformation of the vesicle, 

however, only until a certain equilibrium is reached. At this point, the favorable energy contribution 

of desolvation of the hydrophobic tethers is identical to the unfavorable energy induced by vesicle 

shape distortion (surface tension).  

Starting the equilibrium MD from the forcefully attached vesicle (k=1000 kJ/mol) yields an even 

more squeezed vesicle with a sphericity of 0.94, which remains stable during the simulation. The 

number of polar interactions immediately decreases after release of the steering force and stabilizes 

to a value of 200. The number of hydrophobic interactions, which is a measure of inserted tether 

moieties, slowly decreases after the force release to a value of 1300. Thus, the achieved equilibria 

are slightly different (sphericity 0.96 vs. 0.94, polar contacts 140 vs. 200, hydrophobic contacts 900 

vs. 1300). However, the tendency suggests they would converge into each other with further 

sampling. Thus, we conclude that insertion and extraction of randomly distributed, single 

EG6AC8D tethering molecules would happen spontaneously and is only limited by the surface 

tension of the spherical vesicle. 

As mentioned above, our previous data suggests a clustered spatial distribution of the EG6AC16D 

tethers in the mixed SAMs. Interestingly, on the SAM presenting the χEG6AC16D= 5 mol% surface 

density of the EG6AC16D tether, the vesicle behaves significantly different as compared to the 

EG6AC8D SAM. After a weak initial attachment, it quickly relaxes to its spherical shape. The 

number of polar interactions stays low – even lower as in the case of the tetherless SAM. At the 

end of this attachment phase, one of the EG6AC16D tether domains is inserted, leading to 400 

contacts between the alkyl chains of the tether and SOPC, respectively. This number of contacts 

is stable until the end of the trajectory. Thus, no further tether domains get spontaneously inserted. 

The discrepancy between the hydrophobic and polar contacts leads to the conclusion that the 

vesicle is elevated by the EG6AC16D tethers. This way, it is stably tethered in a distance from the 

SAM and superficial interactions between the SAM and vesicle are absent. When the vesicle is 

forcefully squeezed onto the EG6AC16D SAM, it shows features similar to those on the EG6AC8D 
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SAM. The number of the inserted EG6AC16D tethers is initially high, and then decreases after force 

release. One peripheral EG6AC16D domain was spontaneously extracted from the vesicle. The 

differences between the equilibria at the EG6AC16D SAM are even more pronounced than at the 

EG6AC8D SAM. Apparently, the energy barrier of penetration of the large EG6AC16D tether 

domains through the hydrophilic headgroup region of the vesicle is much higher. Additionally, the 

ratio between solvent accessible surface and volume of a tether domain is lower than for individual 

tethers. Thus, the energy gain through desolvation is lower as compared to the EG6AC8D tethers. 

8.3.2 Vertical architecture 

Further insight on the equilibrium vertical architecture of the SAM-tethered lipid vesicles can be 

gained from the normal direction density profiles (Figure 8.6). Here, we use the simulations with 

the high force constant because they established a larger interface area between SAM and vesicle. 

The density profiles reveal that the architecture of the matrix region is identical for all three SAMs 

and the thickness is 2 nm. The first solvent peak, corresponding to the first layer of interface water 

is most pronounced for the tetherless SAM and most ambiguous for the EG6AC8D SAM. The 

second solvent layer is noticeable for all three SAMs, yet it is significantly less clear as compared to 

the first solvent layer. The third solvation layer is only identified at the tetherless SAM. This can be 

explained by the small interface area, which leads to a largely undisturbed SAM surface. In any 

instance, the total interface water layer thickness is around 1.5 – 2 nm. The density profiles also 

yield insight about the anchor penetration depth. The C8 anchor enters the bilayer to 1 nm, whereas 

the C16 anchor penetrates as deep as 2 nm. Hence, the long anchor affects the bilayer structure on 

both leaflets. The density profile of the SOPC vesicle is the most difficult to interpret because the 

vesicle is partially spherical, and the SAM-tethered lipid layer cannot be distinguished from the rest 

of the vesicle. The density profile of the spherical vesicle at the tetherless SAM indicates that the 

normal direction density linearly increases with z until ring like cuts through the vesicle are present, 

for which the density remains constant. This observation is different at the mixed SAMs. Here, the 

density profile resembles that of bilayer, with a SOPC density peak at the inner leaflet boundary. 

At the outer leaflet, interestingly, no such peak is reported. Anyway, the differences in the solvent 

and SOPC density profiles between the EG6AC8D and EG6AC16D tethers are marginal.  

The results from the normal-direction density profile are well reflected by close-up snapshots of 

the interface after 500 ns relaxation. The vesicle at the tetherless SAM remains spherical and the 

superficial water layer is undisturbed. For both the tethered bilayers, the vesicles were forced onto 

the bilayer, which results in a planar geometry in proximity in top of the SAMs.  
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Figure 8.6: SAM-vesicle interface characterization. A) Surface normal direction density profiles. Solid lines: SAM. 
Dotted lines: water. Dashed lines: vesicle. Gray: anchorless. Red: 5% C8 anchors. Blue: 5% C16 anchors. B) interface 
snapshots.  

8.4 Discussion 

The QCM-D data show that that tethered lipid bilayer formation through vesicle fusion is robust 

to small deviation in the SAM composition. Bilayers do form at SAMs with EG6AC8D tether 

coverages of 5-20 mol% and EG6AC16D concentration of 3-10 mol%. For smaller concentrations, 

vesicle rupture is not observed. For larger concentrations, the final mass on the microbalance is 

smaller and a reverse monolayer is formed. Our data indicate that with EG6AC16D tethers, vesicle 

fusion appears at lower vesicle concentration and with lower tether coverage. This can be 

rationalized by various observations from the molecular simulations. 

On the tetherless SAM, hydrogen bonds are the predominant interaction type. They are mostly 

formed between the terminal hydroxyl groups of the SAM and the phosphate group of the lipids. 

The transient interactions lead to localized deformation of the vesicle (flattening) only at the 

interaction site. The vesicle is separated from the SAM by a continuous water layer, which is locally 

disconnected by a small number of direct SAM-vesicle contacts. The incorporation of EG6AC8D 

tether molecules leads to an increased SAM-vesicle interface area and more pronounced planar 

distortion of the vesicle. The tether alkyl chains penetrate the outer leaflet of the local phospholipid 

bilayer zone but do not advance into the inner layer. The tether amide groups largely intercalate 

with the phosphate groups of the lipids due to favorable polar interactions (hydrogen bonds). In 

total, the number of polar interactions between the SAM and vesicle is higher as compared to the 

tetherless SAM. However, visual inspection of the interface suggests that the spatial density of such 
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interactions is similar and the increased number results from the larger interface area. Thickness 

and continuity of the interfacial water layer appear slightly decreased as compared to the tetherless 

SAM.  

The EG6AC16D alkyl chain tethers penetrate much deeper into the phospholipid bilayer and locally 

interfere with both the outer and the inner layer. The interface area is of comparable size as of the 

vesicle adsorbed onto the EG6AC8D tether SAM. The water layer is of similar thickness but more 

continuous. Insertion of the EG6AC16D tether clusters was only observed when a 1000 kJ/mol nm 

external force constant is applied. A spontaneous insertion was not observed. An explanation for 

such an outcome is that for the insertion of a tether cluster, a large number of lipids must be 

displaced in the membrane. This is confirmed by the QCM-D data that clearly shows stable 

tethering of the bilayer on the clustered EG6AC16D SAM.  

In the case of randomly (homogeneously) distributed assemblies containing EG6AC8D tethers, the 

MD simulations show their insertion into the vesicle upon contact. The numerous insertions 

observed during the simulation are suggesting that the energy of the thermal motion is sufficient 

for the insertion to happen. It is noteworthy that in biological membranes the docking step of the 

palmitoylated proteins is guided by enzymes and requires energy. For example, experimental studies 

showed that each methylene group of a lipidated peptide contributes 3.3 kJ/mol to the free energy 

of membrane binding [436]. Thus, palmitoylated peptides would exhibit a free energy of binding 

of approximately 53 kJ/mol. In comparison, a geranylgeranyl peptide chain showed a free energy 

difference of 50 kJ/mol [437]. Previous full atomistic MD simulations of a single and double 

geranylgeranylated peptide yielded bilayer extraction free energies of 69 kJ/mol and 119 kJ/mol 

[337]. Our corresponding coarse-grained model slightly underestimated the experimental results 

and yielded 30 kJ/mol for the single geranylgeranyl peptide. Thus, for the EG6AC8D tethers, a 

binding free energy of 26 kJ/mol and for the EG6AC16D of 52 kJ/mol can be expected. However, 

in the coarse-grained model, such energies might be slightly underestimated. The accuracy of 

partition energies in MARTINI is discussed in several articles, e.g. [438-440]. 

Deformation of the SAM-tethered vesicles was quantified as a reduction of sphericity from 0.98 

(untethered, loosely attached vesicle) down to 0.93. The increasing deformation of the vesicles can 

be seen in the dissipation signals of the QCM-D sensograms. At the EG6AC8D SAMs, the tethering 

i.e., the insertion of membrane anchor acyl chains into the bilayer, appears spontaneously in the 

MD which is reflected by simultaneous peaks of both frequency and dissipation signals. At the 

EG6AC16D SAMs, the peak of the dissipation signal comes before the peak of the frequency signal. 

This suggests that the insertion of the clustered tethered happens only on the time scale of seconds. 

This is reflected by the absence of tether insertions in the equilibrium parts of the simulations. One 
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contribution of the frequency and dissipation signals in QCM-D sensogram is attributed to water 

molecules. Trapped water molecules are characterized by increasing frequency and decreasing 

dissipation signals [441]. The trapped water layer can be clearly seen in the tethered portion of the 

vesicle in the MD density profiles.  

8.4.1 Conclusion 

In this chapter, we have investigated specific interactions of a small unilammellar vesicle on 

differently composed SAMs using a non-equilibrium MD approach combined with QCM-D 

measurements. To our knowledge, such a methodic tandem is reported for the first time. Thus, we 

had to identify (semi-)quantitative intersection points between MD and QCM-D. These are found 

in the tether insertion kinetics and subsequent deformation of the vesicle, which is reflected on the 

temporal shift between frequency and dissipation signals. Furthermore, the number of trapped 

atoms between tethered bilayer and SAM is quantitatively accessible by MD and QCM-D. However 

more structural insight for example by neutron reflectometry is necessary to fully understand how 

the QCM-D signals and the layer thickness correlate.  

The MD models reveal different adsorption mechanism depending on the SAM composition. The 

key driver for the tethering is the incorporation of tether acyl chains into the SAMs. This happens 

quickly and spontaneously for the EG6AC8D tethers upon vesicle-SAM contact. The insertion of 

the longer and clustered EG6AC16D tethers affords overcoming a much higher energy barrier. An 

increase in tether density reduces the critical vesicle density which is based on the increasing 

deformation of the vesicles. Curiously, the results show that stable membrane tethering can be 

achieved with only 2-3 mol% of the EG6AC16D tethers.  

The novel, coarse-grained, non-equilibrium workflow is well suited to model tethered bilayer 

systems. A stronger initial attachment force is favored because it generates a more realistic number 

of inserted tethers. However, in future attempts, the succeeding relaxation phase sampling should 

be extended to at least 1 µs. We note again that the simulation of attachment and anchor insertion 

is necessary to avoid artifacts by deleting lipids from the bilayer as commonly done in other 

approaches. Further development of the approach could include the truncation of the vesicles to 

induce membrane fusion. Alternatively, it might be possible to drag a bilayer patch onto the SAM. 

In the global context of the dissertation thesis, the work shows the proficiency of the MARTINI 

force field to reliable sample layered systems with large portions of linear acyls over long time 

scales. The differences of the interaction modes and tethering energies between the vesicle and the 

different SAMs can clearly be seen and agrees with experimental observations.   
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9 CONCLUSION 

In this work, we accomplished to yield valuable insights into the fields of infection biology 

(norovirus bile acid binding and Legionella protease RavD), protein stability (deamidation and 

glycosylation), and surface nanotechnology (SAMs and tethered bilayer membranes) and thereby 

assessed the limitations of the molecular dynamics simulation method and suggested approaches 

for their overcoming. Thanks to the application of MD to a range of different molecular systems, 

we were able to identify generally feasible methods for trajectory analysis. Furthermore, as all the 

studied problems revolve around the pairwise comparison of multiple similar molecular systems, 

we put great store in the development and automatable, algorithmic, modeling, and quantitative 

analysis.  

9.1 Contributions to the fundamental sciences 

The bile acid binding study revealed the weakness of small molecule docking to rigid receptor 

structures. Especially, when the receptor conformation does not include a ligand or substrate in 

the proposed binding site, docking and virtual screening approaches are doomed to fail. A variety 

of methods to select few conformations from a large ensemble such as conformational or pocket 

shape-based clustering do exist, yet in our case did not yield the best docking results. In the case 

of the weakly binding bile acid molecules, the best ranking poses were identified A. after multiple 

100s of nanoseconds of sampling, and B. in rather inconspicuous protein conformations. This led 

to the conclusion that the ligand may not only select metastable conformations of higher energy 

than the native state but even highly transient states that only become local minima through the 

ligand-induced remodeling of the conformational energy landscape. Anyway, our developed 

ensemble-docking workflow based on MD sampling of the receptor, rigid body docking, and MD 

refinement, predicted a small ensemble of reasonable binding modes, of which two were in 

agreement with the NMR chemical shift perturbation experiments. Due to the weak affinity, we 

suggest that binding is on the tip of being non-selective and the binding itself is conformationally 

and orientationally dynamic. A second explanation is binding of two or more bile acid molecules 

at the time, because bile acid micelle formation can occur at the observed concentrations.  

In the purely computational study on the two highly selective isopeptidases RavD (bacterial) and 

OTULIN (human), mechanisms for selectivity and activation were compared based on dynamics 

molecular descriptors. The results confirmed earlier statements on OTULIN yet challenged the 

conclusions regarding RavD. In particular, we designed a detailed survey to quantitatively compare 

the two recognition sites for the identical substrate (linear di-ubiquitin) of RavD and OTULIN, 

based on orientational fluctuations, buried surfaces areas, intermolecular residue-residue 
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interactions, and induction of catalytic competency. We found that RavD and OTULIN employ 

largely different primary sequences to achieve identical binding modes for di-ubiquitin. In terms of 

binding stability, interface area and interaction residue composition, one binding site was almost 

identical between the two proteins from the different phylogenetic domains. The second binding 

site was shown to be highly disjunct. As the RavD interface area was smaller, it showed high 

fluctuations of the substrate binding mode and the composition of inter-residue interactions was 

less favorable and specific. It also appeared that in OTULIN, substrate binding induced a transition 

of the catalytic triad towards a competent state (substrate-assisted catalysis). In the crystal structures 

of RavD, such a transition was not apparent. Moreover, even in the substrate -bound structure of 

RavD, the catalytic triad was incompetent, and the substrate was too far from a reactive distance. 

We understood that this discrepancy was intentionally induced by the original investigators by 

introducing  a double mutation into the substrate protein to avoid cleavage. In the MD sampling 

with the re-mutated, wild-type substrate, the transition towards the active state was indicated but 

could not be completely sampled. Thus, our theoretical considerations reveal an uncommented 

inconsistency in the original research to RavD, which led to the most likely false conclusion that 

RavD does not undergo substrate-assisted catalysis. Instead, we have strong indication that the 

reported high selectivity and activity of RavD can only be rationalized by substrate-induced catalytic 

priming of the catalytic triad.  

In the study on the glycosylation of human erythropoietin (EPO) the reciprocal effects between 

the protein and its complex N-glycans are investigated. Therefore, at that time, a complex multi-

stage modeling workflow based on multiple webservers and parsing steps had to be employed. It 

revealed the need for automatable glycoprotein modeling tools which only appeared during the 

compilation of the thesis. Global physical properties of the glycoprotein showed to be rather 

dependent on the number and not the site of the glycosylation. Such a statement can be generalized 

to further small globular proteins but would need to be re-evaluated for larger, more polarized 

proteins. Inter-residue interaction analysis yielded transient contacts between the glycan and the 

protein mostly mediated by the glycosylation root and the fucose but also the terminal sialic acid 

moieties. The interaction did not significantly alter protein solvent accessibility and flexibility with 

the apparent exception of the glycosylated residues. To address the conformational space of the 

complex N-glycans, an embedded clustering workflow had to be developed and benchmarked with 

an artificial dataset. The workflow only became successful with the release of UMAP embedding 

and HDBSCAN clustering. In its final, optimized form, it was able to reliably separate and cluster 

up to 256 Gaussian populations in a 32-dimensional space. This outcome was considered sufficient 

for the workflow to be employed on the MD-generated conformational data set of glycosidic 

torsion angles. It showed that one major and distinct contributor for the conformational flexibility 
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of N-Glycans is the asparagine sidechain. Conformational dynamics in this area are reflected on 

the orientation of the entire N-Glycan. On the other hand, the conformational space of the glycan 

itself is relatively similar and identical conformational clusters are identified independent on the 

glycosylation site. Also, their individual contributions to the total conformational space are 

remarkably comparable. The conformational clusters of the asparagine sidechains, however, are to 

some extent site-specific. Thus, the well-accepted opinion that proteins and glycan do not mutually 

affect their conformations in a significant manner is right and wrong at the time. Apparently, the 

intrinsic conformational dynamics of the glycan are not affected by the protein, however the global 

dynamics of the complex N-glycan are, and this even in a site-specific manner. The results might 

be of interest for the design principles of novel glycoconjugate drugs, even though it has to be 

decided in case-specific manner if a folded glycan with many protein interactions, or a more 

extended, solvent accessible glycan is to be preferred.  

The combined NMR and MD study on site-selective deamidation of asparagine 373 (N373) of the 

norovirus P-dimer yielded exceptionally deep insight into the distortion of the conformational 

space of asparagine residues within the structurally constrained environment of a protein. 

Interestingly, even though we could identify and quantify specific and distinct combined backbone 

and sidechain conformational populations, the processing of molecular conformation to 

nucleophilic attack geometry did not reveal a clear association between attack probability and 

deamidation rate. Instead, only with the additional assessment of the conformations and inter-

residue interactions of the succeeding N+1 residue, a tendency for the preferential deamidation of 

N373 becomes apparent. A few earlier studies indicated the effect of the backbone conformation 

on the acidity of the backbone amide hydrogen. Strikingly, the N+1 residue of N373 is among the 

few residues that can adopt such a syn backbone conformation. Furthermore, the backbone amide 

at the 374 position undergoes extensive hydrogen bonding with neighboring hydrogen bond 

acceptors, which further facilitates hydrogen dissociation. Our MD study shows that only the 

combined examination of solvent accessibility, preferential attack geometry and backbone amide 

acidity allows the rationalization of fast deamidation rates. We evaluated if our results are feasible 

for predictions, by determining the same criteria for the P-dimer of a closely related strain. In this 

protein, the approach indicated a significant likeliness for N373 to be deamidated but did not 

identify this residue as the most likely. Such an outcome is not surprising, though, because 

assessment of one molecule alone does not allow tuning of the relative impotencies (weights) of 

the different involved factors. Additionally, the model is based on quantiles of multivariate, joint 

probability distributions (e.g., attack distance < 0.4 nm and attack angle > 90°). The definition of 

such plays a significant role for the predicted deamidation probability and must be carefully 
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optimized. This can only be achieved when a larger number of proteins has been assessed. 

Nevertheless, the MD model clearly rationalizes how the fast deamidation of N373 is possible.  

The combined full-atomistic and coarse-grained simulation study on the membrane anchored Rab5 

peptide led by E. Münzberg formed the basis for the subsequent studies on mixed self-assembled 

monolayers and tethered lipid bilayer membranes. Especially the simplicity of the employed 

method for the automated packing of lipid bilayers as well as the low computational costs of the 

coarse-grained simulations paired with the reasonable accuracy of the MARTINI force field were 

pivotal for the decision to further develop into the field of molecular layers. Additionally, the 

simulations revealed an aggregation of PI3P signaling lipid in proximity to the Rab5 C-terminal 

peptide due to electrostatic interactions, which are selective of membrane-anchored proteins of the 

Ras and Rab family. This outcome was meaningful for the interpretation of other full-atomistic 

results and the suggestion of an improved Rab5 signaling model.  

The tethering lipid bilayer membrane (tBLM) to functionalized self-assembled monolayers (SAMs) 

is an emerging approach to investigate lipid bilayers and associated or inserted membrane proteins. 

The technique has tremendous potential for surface nanotechnology and drug research. Hence, a 

thorough understanding on the molecular processes taking place during the preparation of SAM-

tBLMs is crucial. In the mixed SAM study, we developed a novel multi-scale modeling and 

simulation approach for the mentioned molecular systems. The simulations yielded new insight in 

the structure and dynamics of membrane anchors (also called tethers) when incorporated into a 

SAM. The simulations show a conformational dependence on the anchor acyl chain lengths, which 

is based on unexpected intermolecular interactions. The sampled alkyl chain and oligoethylenglycol 

conformations are in good agreement with experimental investigations from infrared reflection 

absorption spectroscopy (IRRAS). However, the anchor density dependent conformational 

transition (phase transition) as seen in IRRAS, afford a clustered spatial distribution of a one anchor 

species and an equal spatial distribution of the other. If the clusters form already in the solvated 

phase, during the adsorption or even within the SAM awaits further studies. However, it is most 

likely that they anchoring compounds selectively associate with each other during adsorption 

because lateral diffusion within SAMs is extremely limited and the ethanol-water mixture solvent 

should be able to solvate such amphiphilic molecules. Hence, the simulations suggest a preferential, 

clustered adsorption of the anchoring compounds based on specific intermolecular interactions. 

Such an observation is important because it allows an optimized preparation protocol for tethered 

bilayers depending on target properties. 

The above protocol was employed to study the initial step of tBLM formation by vesicle fusion in 

a combined molecular dynamics and quartz crystal microbalance with dissipation monitoring 
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(QCM-D) study. The non-equilibrium simulations show the intermolecular interactions between 

different SAMs and a small unilammellar vesicle (SUV). It shows that a SUV on tetherless SAM is 

weakly adsorbed via hydrogen bonds and its shape is undistorted. On a SAM decorated with short 

tethering compounds in uniform spatial distribution, the SUV becomes increasingly distorted 

through spontaneous insertion of the tether acyl chains. On SAMs with clustered, long-acyl chain 

tethered, spontaneous insertion does not occur on the timescale of the simulations. Thus, the 

energy barrier must be orders of magnitude higher. The short tethers only penetrate one layer, 

whereas the long tethers penetrate both. The interface water layer is slightly more ordered when 

the bilayer is tethered to longer, clustered tethers. The results are line with the QCM-D results, 

which show an earlier vesicle fusion for the longer tether acyl chains. Additionally, it shows that 

with an unexpectedly small density of clustered, long tethers, stable adsorption can be achieved. 

Yet, it remains an open question if this will be advantageous for the insertion of membrane 

proteins.  

9.2 Considerations on molecular dynamics 

In this thesis, we have employed classical molecular dynamics to a range of different molecular and 

are thus in the position to make general statements on practical and technical issues and on 

limitations. First and foremost, it is crucial to understand that the quality and validity of an MD 

simulation depends on the initial configuration (packing). The packing is guided by experimental 

insight and/or other complementary methods. In some applications, an experimentally determined 

structural model is available. In these cases, the initial structural model must be carefully assessed 

and possible sources for artifacts must be identified. Especially in proteins, these are 

conformational alteration induced through mutations or the presence or absence of ligands or 

cofactors. When no structural model is available, it must be generated using protein structural 

modeling. Here, the output of the MD is heavily dependent on the model quality. For layered 

systems, such as bilayers or monolayers, the initial packing is mostly achieved by software. 

However, the software is not aware of preferential intermolecular interactions and the possibility 

of clusters. Thus, random uniform packing is already biased. The better the initial model, the more 

accurate the MD sampling becomes. However, unphysical starting structures might be overcome 

by extensive sampling. In this work we encountered plenty of initial configuration bias problems. 

The docking models of the bile acids mostly yielded unstable complexes and dissociated from their 

docked mode. This was overcome by using an ensemble of initial configurations from which we 

started a set of MD simulations with different initial velocity distributions. Only through such 

extended sampling, we were able to achieve stable complexes. In the RavD-di-ubiquitin 

simulations, a mutation in the substrate led to an artificial conformation of the substrate close to 
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the binding site, which was not able to induce the necessary activation of the catalytic triad. It was 

so stable, that extensive equilibrium MD simulation in the microsecond scale were not able sample 

the transition to the true binding mode. In the case of the SAMs, the true molecular structure was 

not known. Hence, different models were generated, sampled and compared to experiments. It 

shows that in practice, the initial model is often flawed, and MD is explicitly used to transition the 

configuration to a more physical representation. So, the aim of molecular dynamics is actually 

twofold: A. sampling of other conformations in local minima besides the global minimum (e.g., 

protein dynamics based on X-ray structure) and B. recovery of the native state starting from an 

artificial configuration (e.g. refinement of a docking pose).  

The most discussed limitations of MD are force field inaccuracies and incomplete sampling. Both 

limitations are in a way interdependent because a higher-accuracy description of the systems affords 

more computational resources. In fact, force field inaccuracies can often be minimized, only by 

choice of the correct force field for the application in question. Sometimes, it will thus be necessary 

to use polarizable force fields, or a hybrid quantum-chemistry based description. On the other 

hand, when large systems are to be investigated, a coarse-grained force-field might suffice. Recent 

force fields offer a large array of parameters for most common bonded interactions and offer 

methods to generate topologies for new molecules based on analogies. De-novo parameterization 

is rarely necessary and is mostly limited to a few specific parameters. For investigators, the most 

urgent task is to find the optimum balance between force field accuracy and necessary time scales 

for the molecular problem. If the preferred combination is suitable for the available hardware, the 

simulations can be performed. If not, classical MD is not the method of choice and enhanced 

sampling MD must be performed. In this thesis, we mostly stuck to the CHARMM36 force field 

which proved to be accurate for proteins, carbohydrate and bilayers and achieved a satisfactory 

performance and usability with the free and open-source MD software suites GROMACS and 

OpenMM.  

Only in the case of the SAMs and tethered bilayer, we employed the coarse-grained MARTINI 

force field for which a set of new bonded parameters were developed. The MARTINI force field 

was initially designed for phospholipid bilayer membranes but was later extended to basically all 

kinds of molecules – with varying success. Naturally, MARTINI works well for polymers. The 

extension to proteins is widely used even though it requires the user to fixa the secondary structure 

using an elastic network model. Thus, a key intrinsic attribute of proteins - conformational 

dynamics – is neutralized. Yet, MARTINI still shines as a tool to model large scale polymeric and 

alkyl-chain heavy molecular systems. Thanks to its flat energy landscape and the long possible 
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integration step, it is highly feasible to bring a large-scale artificial model to a near-physical state. 

The model can then be subjected to resolution transformation for further full-atomistic sampling.  

Considering that the MD user had reasonable starting structure, chose a suitable force field, and 

has simulated long enough to sample the meaningful transitions and conformational states, they 

ultimately face the issue on how to analyze their MD trajectories. This question is even more 

significant in recent times when multi-microsecond sampling in multiple replica simulations is 

generated. Nevertheless, initial trajectory visualization should under no circumstances be avoided. 

However, it is often sufficient so reduce the trajectory to a few equidistant snapshots of the 

important solutes. The visual inspection should focus on the box dimensions, unexpected 

association, or dissociation, and overly stable of dynamic regions. The main analysis is of course of 

quantitative nature.  

For proteins, the obligatorily calculated root mean squared deviation gives initial insight on stability 

and conformational sampling as well as convergence. It is implemented in all MD analysis software 

and should always be elucidated. However, it is lacking details. More insight is given by the root-

mean square fluctuation, which allows localization of flexible regions. It is especially helpful when 

comparing several proteins with only minor differences (mutations, ligands). Its downside is, that 

the RMSF mostly confirms the secondary structure and rarely uncovers interesting dynamics. The 

relative solvent accessibility is another standard analysis means and, in light of this thesis, is a highly 

recommended and valuable observable. It shows which residues are at the outer boundary of the 

protein and indicates if they are in extended or folded conformation. It can reveal the competency 

of the catalytic triad as well as interacting residues in bimolecular systems. Assessing the residue 

type of solvent exposed residues can be used to identify hydrophobic surface patches. Finally, it 

can be used to quantify interface areas.  

In our opinion, one of the most detailed and worthwhile trajectory analysis means is the pairwise 

inter-residue contact occupancy (contribution) matrix. It is a non-standard method and is not 

readily implemented in most analysis suites. The matrix allows quick assessment of all contacts and 

their probability, which of course can be translated into free energy. The data can be quickly 

projected to either partner of the interacting molecules and can be easily visualized. Furthermore, 

the interaction pairs can be classified according to the residue types which enables quick 

comparison of even structurally different complexes. Finally, interesting long-lasting interactions 

can be further monitored for hydrogen bonds or salt bridge formationss. The contact analysis is 

more meaningful for intermolecular complexes. Intramolecular contact analysis is less expressive 

because it often only reveals the secondary structure and interaction of neighboring or bonded 

residues. However, it can be adapted for both cases by using appropriate distance criteria.  
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For intramolecular questions, geometric descriptors are often most informative. These are 

distances between non-bonded atoms as well as torsion angles of the sidechains and backbone. 

Other descriptors, such as attack angles, do exist. As a protein is usually heavily interconnected, 

geometric descriptors are interdependent. Furthermore, a full description affords the assessment 

of an entire range of descriptors. To add to the complexity, interesting regions in molecules are 

characterized by dynamics. That is the presence of multiple metastable states between which the 

system transitions. The presence of multiple states implies multimodal distributions of the sampled 

geometric descriptors. Thus, averaging must be done with extreme care and the distributions must 

always be examined. All these consideration yield to problems of multivariate statistics, which 

should not be discouraging. Instead, recent dimensionality reduction methods should be utilized 

to visualize the multidimensional in a two-dimensional scatter plot or free energy map. Manual 

selection of automated clustering allows the identification of different conformational states of 

which molecular representation can be generated.  

To conclude on the technique of MD, it must be noted that the method of the atomic position 

integration itself is already highly optimized and not much further development can be expected. 

The same is true for the molecular force fields. Besides some minor improvements for specific 

molecules, the quality of empirical force fields is, in our opinion, exhausted. Novel developments 

go into the direction of machine-learned force fields, polarizable, or hybrid quantum mechanics-

based dynamics. While accessible sampling times as long as milliseconds become accessible, they 

typically still do not suffice to sample biologically relevant processes such as folding or ligand 

binding and dissociation. Thus, currently and in the foreseeable future, investigators should focus 

on improved approaches for initial modeling. This has partially been fulfilled with deep-learning 

based protein structure prediction methods such as AlphaFold or RoseTTAfold and ongoing 

studies on the prediction of protein complex binding modes. Such models, followed by extensive 

MD simulations as a validation and refinement will be at the heart of many future computational 

structural research projects.  

We cannot close this section without commenting on the utmost importance of experimental data 

for MD simulations. Unclear or unexplainable experimental results often are the motivation for 

MD simulations. Experimental structures and data must be frequently used to check the validity of 

the simulation. As a rule of thumb, it can be noted that an MD simulation must first confirm certain 

experimental observations before any MD based prediction can be taken seriously. A good 

constellation is a combined and iterative experimental and MD study, in which observations from 

both worlds can drive hypotheses and adjust the direction of further progression.  
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9.3 Final remarks 

For several fundamentally different molecular questions, we revealed how type, number, longevity 

and exclusivity of non-bonded interactions shape the global behavior. In all instances, the presence 

or absence of distinct non-bonded interactions were accompanied by local conformational 

changes. In turn, such conformational alterations were the reason for experimental observations. 

Our studies give a general guideline for applied and experiment-oriented MD simulation efforts 

and their statistical analysis. The recommendation is that analysis of interactions must always be 

conducted hand-in-hand with analysis of the conformational space. For screening purposes, 

interactions can easily be expressed as inter-residue contacts maps. The conformational space is 

most directly described as a set of torsion angles. We showed that the mathematically challenging 

n-toroidal space can be embedded into a two-dimensional Euclidean plane and conformational 

clustering in the embedded space is feasible. In some cases, e.g., when inter- or intramolecular 

chemical reactions are involved, distances and angles of the involved atoms must be included in 

the analysis.  

All in all, in this research thesis, we have gathered comprehensive insight on the pivotal roles on 

non-bonded interactions for structure and dynamics of molecules and molecular assemblies. The 

interactions and their effects were assessed from various perspectives and via tailored MD-centered 

workflows. The thorough description and discussion of the herein developed workflows and 

analytical method will serve as a basis for future efforts by us and the community. The results in 

their entirety amplify the significance of the reciprocal effects of conformational dynamics and 

non-bonded interactions. A complete understanding of a molecular system can only be achieved 

when both these aspects are thoroughly elucidated. As of today, therefore, classical molecular 

dynamics simulation, especially when accompanied by physical, chemical, and biological 

experimentation as well as complementary theoretical means for the pre- and post-production, still 

is among the most suitable and versatile methods.  
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A NOROVIRUS RECOGNITION OF BILE ACIDS 

 

Figure A.1: Docking scores of DCA, CDCA, and GCDCA to 2.000 snapshots of the 1 μs MD 
trajectory of GII.4 Saga P-dimers. The solid line represents a moving average of each 40 points. 



III 
 

 

 

Figure A.2: Snapshots of the top five scoring protein-ligand docking poses for each of the 4 bile 
acids (CA, DCA, CDCA, GCDCA). Protein is shown as solvent-accessible surface. Ligands are 
drawn in blue licorice representations with the hydrogens omitted for clarity. Colored surface 
patches denote amino acids with significant CSPs (pink for 1 H 15 N and yellow for 1 H 13 C 
CSPs). The surface is slightly translucent so the ligand behind the C-terminus becomes visible. 



IV 
 

 

Figure A.3: CA ligand RMSDs in nm over simulation time in ns of all the ten replicate simulations 
for the five initial geometries (docked complexes). The eight trajectories with lowest averages 
RMSD (last 10 ns) are framed with a red border. The RMSD of only the ligand is considered, with 
the trajectory being previously fitted to the protein backbone atoms. 
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B SELECTIVE CLEAVAGE OF LINEAR POLY-UBIQUITIN 

 

Figure B.1: Snapshots of L. pneumophila RavD-DiUb with high RMSD from crystal structure. 
Position and orientation of DiUb relative to the initial model. 

 

 

Figure B.2: RMSD / nm, RMSF /nm and relative SASA /nm2 of the simulated DUBs RavD and 
OTULIN in absence and in complex with 
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Figure B.3: Structural criteria for a catalytic competent conformation. Probability of occurrence of 
close contacts (<0.6 nm) between 

 

 

Figure B.4: Structural complementarity of proximal Ub recognition to the Asp108 (D108) patch in 
RavD (A) and OTULIN (B). 
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C GLYCAN CONFORMATION DEPENCY ON GLYCOSYLATION 

SITE 

 
Figure C.1: RMSD over simulation for all simulations. From top to bottom: ngEPO, ASN24, 
ASN38, ASN83, ASN2438, ASN2483, ASN3883, ASN243883. Left column are only N-
glycosylated, right column also carry O-glycosylation at Ser126.  

 

Code 1: UMAP embedding and HDBSCAN clustering 

  neigh_frac = 0.001 # fraction of points considered as neighbors for UMAP 
  neighs = int(c_all_cossin.shape[0]*neigh_frac) # absolute number of neighboring points 
   
  reducer = umap.UMAP(metric='euclidean', n_neighbors=neighs,  
                      min_dist=1, n_components=2, random_state=29) 
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D SITE SPECIFICITY OF ASPARAGINE DEAMIDATION 

 

Figure D.1: Free energy maps of the Burgi-Dunitz and Flipping Lodge angles.  

 

Figure D.2: Distributions of the attack distances in absence (gray) and presence (red) of a N+1 
hydrogen backbone hydrogen bond.  
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Figure D.3: Backbone torsion angle free energy landscapes of VA387 P-domains 

 

Figure D.4: Sidechain torsion angle angle free energy landscapes of VA387 P-Domains 



X 
 

 

Figure D.5: N+1 Backbone torsion angle free energy landscapes of VA387 P-domains 

 

Figure D.6: Attack angle free energy landscapes of VA387 P-domains 
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E MONOLAYER PHASE SEGREGATION AND TRANSITION 

Table E.1: Coarse-grain MD simulation parameters for the matrix compound 

 

Table E.2:  Further and additional coarse-grain parameters for the C8 anchor compound 
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Table E.3:  Additional coarse-grain parameters for the C16 anchor compound 
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Figure E.1: Tilt angle (left axis, blue circles, dotted line) and lattice parameter (right axis, red 
triangles, dashed line) dependence on the initial packing. The here considered system is a pure 
anchor compound monolayer. The simulations were performed in three replicates. The standard 
deviation is plotted as a shaded area. 

 

 

Figure E.2: Time evolution of coarse-grained simulation monolayer properties (blue) together with 
10 block averages (red circles) during the production phase 
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Figure E.3: Final frame snapshots of the coarse-grained production simulations of different SAMs 
with different molar fractions of anchoring compounds. Matrix compound alkyl chains are 
depicted in gray, anchoring alkyl chains in green. The OEG part is shown in red, the amide linkages 
cyan, the thio-propyl group bead is yellow. The molecules were re-constituted for the snapshots. 



XV 
 

 

 

Figure E.4: Time evolution of all-atom MD simulation monolayer properties (blue) together with 
10 block averages (red circles) during the production phase. 

 

 

Figure E.5: Exemplarily normal direction density profiles of a full atomistic (blue) and a coarse 
grained (red) xC8 = 0.2 monolayer. Full lines represent the monolayers, dashed lines the solvent 
molecules. The calculated intercepts between monolayer and solvent profiles are marked with 
circles. The profiles are normalized to the position of the thio-propyl beads (CG) i.e. the sulfur 
atoms (AA). 
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