

Otto-von-Guericke University Magdeburg

Faculty of Computer Science

Dissertation

Efficient Interactive and Automated Product-Line
Configuration

Author:

Sebastian Krieter

22.03.2022

Reviewers:

Prof. Dr. rer. nat. habil. Gunter Saake
Otto-von-Guericke University, Magdeburg, Germany

Prof. Dr.-Ing. Thomas Leich
Harz University of Applied Sciences, Wernigerode, Germany

Univ.-Prof. Mag. Dr. Rick Rabiser
Johannes Kepler University, Linz, Austria

Krieter, Sebastian:
Efficient Interactive and Automated Product-Line Configuration
Dissertation, Otto-von-Guericke University Magdeburg, 2022.

Contents

Abstract vii

Zusammenfassung ix

List of Publications xi

1 Introduction 1
1.1 Goals and Contributions . 4
1.2 Structure . 5

2 Background 7
2.1 Problem Space . 7

2.1.1 Feature Model . 8
2.1.2 Configuration . 11
2.1.3 Feature Model Analysis . 13

2.2 Solution Space . 15
2.2.1 Implementation Artifacts . 16
2.2.2 Presence Conditions . 16

2.3 Configuration Process . 18
2.3.1 Manual Configuration Process 19
2.3.2 Semi-Automated Configuration Process 19
2.3.3 Fully-Automated Configuration Process 21

2.4 Summary . 24

3 Modal Implication Graphs 25
3.1 Motivation . 26
3.2 Structure of Modal Implication Graphs 26

3.2.1 Strong and Weak Edges . 27
3.2.2 Strong and Weak Paths . 29
3.2.3 Completeness and Minimality Property 30

3.3 Applications of Modal Implication Graphs 32
3.3.1 Decision Propagation . 33
3.3.2 Feature Model Analysis . 37

3.4 Construction of a Modal Implication Graph 39
3.4.1 Basic Build Process . 39
3.4.2 Advanced Build Process . 41

3.5 Incremental Modal Implication Graphs 42
3.5.1 Computing the Feature Model Change 43

iv Contents

3.5.2 Computationally Expensive Building Steps 44
3.5.3 Modified Building Steps . 45

3.6 Evaluation . 47
3.6.1 Setup of Experiments . 48
3.6.2 Results of Experiments . 53
3.6.3 Threats to Validity . 60

3.7 Summary . 62

4 Advanced T-Wise Interaction Sampling 63
4.1 Motivation . 64
4.2 Parameters of YASA . 65

4.2.1 Feature Model . 66
4.2.2 Interaction Size . 66
4.2.3 Initial Sample . 67
4.2.4 Feature Subset . 67
4.2.5 Resampling Limit . 68

4.3 Constructing a Configuration Sample 69
4.3.1 Basic Sampling Process . 69
4.3.2 Building the List of Interactions 70
4.3.3 Covering an Interaction . 71
4.3.4 Resampling the Sample . 72

4.4 Optimization and Adaptation of YASA 73
4.4.1 Advanced Covering Strategy 73
4.4.2 Alternative Completion Strategies 76

4.5 Evaluation . 77
4.5.1 Setup of Experiments . 77
4.5.2 Results of Experiments . 80
4.5.3 Threats to Validity . 86

4.6 Summary . 87

5 Presence-Condition Sampling 89
5.1 Motivation . 90
5.2 Presence Condition Coverage . 93

5.2.1 Presence Condition Interactions 93
5.2.2 Presence Condition Coverage Criterion 94

5.3 T-Wise Presence Condition Sampling 95
5.3.1 Extracting Presence Conditions 96
5.3.2 Preprocessing Presence Conditions 97
5.3.3 Building the List of Combined Presence Conditions 98
5.3.4 Covering Presence Conditions 100

5.4 Evaluation . 102
5.4.1 Setup of Experiments . 103
5.4.2 Results of Experiments . 109
5.4.3 Discussion . 115
5.4.4 Threats to Validity . 116

5.5 Summary . 117

6 Related Work 119

Contents v

6.1 Fully-Automated Configuration Process 119
6.2 Semi-Automated Configuration Process 121
6.3 Variability Analysis Techniques . 122

7 Conclusion and Future Work 125
7.1 Summary . 125
7.2 Conclusion . 127
7.3 Future Work . 128

List of Figures 131

List of Tables 133

List of Algorithms 135

List of Code Listings 137

List of Symbols 139

Bibliography 141

Abstract

Modern, highly-configurable systems comprise an enormous number of variants that
are created from a common code base and tailored to specific user requirements.
Managing this amount of variability poses challenges for users and developers of
these systems alike. Users must correctly configure a system, keeping in mind all
of its dependencies, in order to get their desired variant. Developers must ensure
that every correctly configured variant does not contain any faults and behaves
according to its specifications. Both of these activities are challenging, because
testing or even considering all possible combinations of configuration options is
unfeasible for most systems. In this thesis, we address these issues by investigating
tool assistance for fully-automated and semi-automated configuration processes of
configurable systems. In particular, we introduce modal implication graphs (MIGs),
a type of a knowledge compilation technique to speed up the configuration process
by making information about dependencies between configuration options easily
accessible. We find that MIGs can help to speed up the configuration process for
users and automated techniques and also increases performance of other common
variability analyses. Further, we introduce a new sampling algorithm for automatically
generating variants for t-wise interaction coverage, which can be adapted to specific
properties of a system. We extend our sampling algorithm to enable our new concept
of t-wise presence condition coverage, which aims to facilitate product-based testing
by taking presence conditions of implementation artifacts into account. With t-wise
presence condition coverage and our corresponding sampling algorithm, we are able
to compute sets of variants (i.e., samples) that are more effective for testing than
samples from state-of-the-art algorithms. Furthermore, we are able to produce
samples faster and with fewer variants, which decreases the overall testing effort
for a system. In summary, we facilitate the fully-automated and semi-automated
configuration process with a focus on improving the effectiveness and efficiency of
testing and analyzing configurable systems.

Zusammenfassung

Moderne, hochgradig konfigurierbare Systeme umfassen eine enorme Anzahl von
Varianten, die aus einer gemeinsamen Codebasis erstellt und auf spezifische Be-
nutzeranforderungen zugeschnitten werden. Die Verwaltung und Benutzung dieser
hohen Variabilität stellt sowohl die Benutzer als auch die Entwickler dieser Systeme
vor Herausforderungen. Die Benutzer dieser Systeme müssen in der Lage sein unter
Berücksichtigung aller Abhängigkeiten eine korrekte Konfiguration zu erstellen, um
ihre gewünschte Variante zu erhalten. Die Entwickler müssen hingegen sicherstellen,
dass jede korrekt konfigurierte Variante keine Fehler enthält und sich entsprechend
ihrer Spezifikationen verhält. Beides ist eine Herausforderung, da es für die meisten
Systeme nicht möglich ist, alle möglichen Kombinationen von Konfigurationsoptionen
zu testen oder auch nur zu berücksichtigen. In dieser Arbeit betrachten wir diese
Probleme, indem wir Werkzeugunterstützung für automatische und halbautomatische
Konfigurationsprozesse von konfigurierbaren Systemen untersuchen. Konkret füh-
ren wir modale Implikationsgraphen (MIGs) ein, eine Art von Wissensaufbereitung,
die den Konfigurationsprozess beschleunigen, indem sie Informationen über Abhän-
gigkeiten zwischen Konfigurationsoptionen leicht zugänglich machen. Wir können
beobachten, dass MIGs dazu beitragen, den Konfigurationsprozess für Benutzer und
automatisierte Techniken zu beschleunigen und auch die Leistung anderer gängiger
Variabilitätsanalysen zu erhöhen. Darüber hinaus stellen wir einen neuen Sampling-
Algorithmus zur automatischen Generierung von Varianten für t-wise interaction
coverage vor, der an die spezifischen Eigenschaften eines Systems angepasst wer-
den kann. Wir erweitern unseren Sampling-Algorithmus, um unser neues Konzept
der t-wise presence condition coverage umsetzen zu können, das darauf abzielt,
produktbasiertes Testen durch die Berücksichtigung von Presence Conditions für
Implementierungsartefakte zu verbessern. Mit t-wise presence condition coverage und
unserem entsprechenden Sampling-Algorithmus können wir Mengen von Varianten
(d.h. Stichproben) berechnen, die ein effektiveres Testen ermöglichen als Stichproben
von anderen State-of-the-Art-Algorithmen. Darüber hinaus sind wir in der Lage,
Stichproben schneller und mit weniger Varianten zu erstellen, was den Gesamttest-
aufwand für ein System verringert. Zusammenfassend lässt sich sagen, dass wir den
automatischen und halbautomatischen Konfigurationsprozess erleichtern und dabei

x Zusammenfassung

den Schwerpunkt auf die Verbesserung der Effektivität und Effizienz des Testens und
der Analyse konfigurierbarer Systeme legen.

List of Publications

In the following, we list the publications contributing to this thesis. We differentiate
between main publications on which the main contributions of this thesis are based
and other publications that only partly contribute to this thesis. The thesis share
material with the main publication, which we also state this at the beginning of the
corresponding chapters. Furthermore, we list additional publications that developed
in parallel to our core research.

Main Publications Contributing to the Thesis

1. Sebastian Krieter, Thomas Thüm, Sandro Schulze, Sebastian Ruland, Malte
Lochau, Gunter Saake, Thomas Leich: T-Wise Presence Condition Coverage
and Sampling for Configurable Systems. arXiv:2205.15180 [cs.SE] https://
arxiv.org/abs/2205.15180, 2022

2. Sebastian Krieter, Rahel Arens, Michael Nieke, Chico Sundermann, Tobias
Heß, Thomas Thüm, Christoph Seidl: Incremental construction of modal
implication graphs for evolving feature models. SPLC (A) 2021: 64-74

3. Sebastian Krieter: Large-scale T-wise interaction sampling using YASA.
SPLC (A) 2020: 29:1-29:4

4. Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, Thomas
Leich: YASA: yet another sampling algorithm. VaMoS 2020: 4:1-4:10

5. Sebastian Krieter: Enabling efficient automated configuration generation
and management. SPLC (B) 2019: 93:1-93:7

6. Sebastian Krieter, Thomas Thüm, Sandro Schulze, Reimar Schröter, Gunter
Saake: Propagating configuration decisions with modal implication graphs. ICSE
2018: 898-909

https://arxiv.org/abs/2205.15180
https://arxiv.org/abs/2205.15180

xii List of Publications

Other Publications Partly Contributing to the Thesis

1. Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau,
Ina Schaefer: Product sampling for product lines: the scalability challenge.
SPLC (A) 2019: 14:1-14:6

2. Thomas Thüm, Sebastian Krieter, Ina Schaefer: Product Configuration in
the Wild: Strategies for Conflicting Decisions in Web Configurators. ConfWS
2018: 1-8

3. Thomas Thüm, Thomas Leich, Sebastian Krieter: Feature Modeling and
Development with FeatureIDE. Modellierung 2018: 297-298

4. Elias Kuiter, Sebastian Krieter, Jacob Krüger, Kai Ludwig, Thomas Leich,
Gunter Saake: PClocator: a tool suite to automatically identify configurations
for code locations. SPLC 2018: 284-288

5. Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, Gunter
Saake: IncLing: efficient product-line testing using incremental pairwise sam-
pling. GPCE 2016: 144-155

6. Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, Reimar Schröter,
Thomas Thüm, Thomas Leich, Gunter Saake: Tool demo: testing configurable
systems with FeatureIDE. GPCE 2016: 173-177

7. Juliana Alves Pereira, Sebastian Krieter, Jens Meinicke, Reimar Schröter,
Gunter Saake, Thomas Leich: FeatureIDE: Scalable Product Configuration of
Variable Systems. ICSR 2016: 397-401

8. Sebastian Krieter, Reimar Schröter, Thomas Thüm, Wolfram Fenske, Gunter
Saake: Comparing algorithms for efficient feature-model slicing. SPLC 2016:
60-64

Additional Publications

1. Elias Kuiter, Sebastian Krieter, Jacob Krüger, Gunter Saake, Thomas Leich:
variED: an editor for collaborative, real-time feature modeling. Empir. Softw.
Eng. 26(2): 24 (2021)

2. Tobias Pett, Sebastian Krieter, Thomas Thüm, Malte Lochau, Ina Schaefer:
AutoSMP: an evaluation platform for sampling algorithms. SPLC (B) 2021:
41-44

3. Chico Sundermann, Tobias Heß, Dominik Engelhardt, Rahel Arens, Johannes
Herschel, Kevin Jedelhauser, Benedikt Jutz, Sebastian Krieter, Ina Schaefer:
Integration of UVL in FeatureIDE. SPLC (B) 2021: 73-79

xiii

4. Tobias Pett, Sebastian Krieter, Tobias Runge, Thomas Thüm, Malte Lochau,
Ina Schaefer: Stability of Product-Line Sampling in Continuous Integration.
VaMoS 2021: 18:1-18:9

5. Sofia Ananieva, Sandra Greiner, Thomas Kühn, Jacob Krüger, Lukas Lins-
bauer, Sten Grüner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lönn,
Sebastian Krieter, Christoph Seidl, S. Ramesh, Ralf H. Reussner, Bernhard
Westfechtel: A conceptual model for unifying variability in space and time.
SPLC (A) 2020: 15:1-15:12

6. Jacob Krüger, Sebastian Krieter, Gunter Saake, Thomas Leich: EXtracting
product lines from vAriaNTs (EXPLANT). VaMoS 2020: 13:1-13:2

7. Joshua Sprey, Chico Sundermann, Sebastian Krieter, Michael Nieke, Ja-
copo Mauro, Thomas Thüm, Ina Schaefer: SMT-based variability analyses in
FeatureIDE. VaMoS 2020: 6:1-6:9

8. Alexander Knüppel, Stefan Krüger, Thomas Thüm, Richard Bubel, Sebastian
Krieter, Eric Bodden, Ina Schaefer: Using Abstract Contracts for Verifying
Evolving Features and Their Interactions. 20 Years of KeY 2020: 122-148

9. Elias Kuiter, Sebastian Krieter, Jacob Krüger, Thomas Leich, Gunter Saake:
Foundations of collaborative, real-time feature modeling. SPLC (A) 2019: 36:1-
36:8

10. Sebastian Krieter, Tobias Thiem, Thomas Leich: Using Dynamic Software
Product Lines to Implement Adaptive SGX-enabled Systems. VaMoS 2019:
9:1-9:9

11. Juliana Alves Pereira, Pawel Matuszyk, Sebastian Krieter, Myra Spiliopoulou,
Gunter Saake: Personalized recommender systems for product-line configuration
processes. Comput. Lang. Syst. Struct. 54: 451-471 (2018)

12. Vasily A. Sartakov, Nico Weichbrodt, Sebastian Krieter, Thomas Leich,
Rüdiger Kapitza: STANlite - A Database Engine for Secure Data Processing
at Rack-Scale Level. IC2E 2018: 23-33

13. Sebastian Krieter, Jacob Krüger, Nico Weichbrodt, Vasily A. Sartakov,
Rüdiger Kapitza, Thomas Leich: Towards secure dynamic product lines in the
cloud. ICSE (NIER) 2018: 5-8

14. Juliana Alves Pereira, Jabier Martinez, Hari Kumar Gurudu, Sebastian
Krieter, Gunter Saake: Visual guidance for product line configuration using
recommendations and non-functional properties. SAC 2018: 2058-2065

15. Elias Kuiter, Jacob Krüger, Sebastian Krieter, Thomas Leich, Gunter Saake:
Getting rid of clone-and-own: moving to a software product line for temperature
monitoring. SPLC 2018: 179-189

16. Thomas Thüm, Sebastian Krieter, Thomas Leich: Clean your variable code
with FeatureIDE. SPLC 2018: 299

xiv List of Publications

17. Sebastian Krieter, Jacob Krüger, Thomas Leich: Don’t Worry About it:
Managing Variability On-The-Fly. VaMoS 2018: 19-26

18. Juliana Alves Pereira, Sandro Schulze, Sebastian Krieter, Márcio Ribeiro,
Gunter Saake: A Context-Aware Recommender System for Extended Software
Product Line Configurations. VaMoS 2018: 97-104

19. Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, Gunter
Saake: Compositional Analyses of Highly-Configurable Systems with Feature-
Model Interfaces. Software Engineering 2017: 129-130

20. Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christo-
pher Sontag, Thomas Thüm, Thomas Leich, Gunter Saake: FeatureIDE: Em-
powering Third-Party Developers. SPLC (B) 2017: 42-45

21. Jacob Krüger, Sebastian Nielebock, Sebastian Krieter, Christian Diedrich,
Thomas Leich, Gunter Saake, Sebastian Zug, Frank Ortmeier: Beyond Software
Product Lines: Variability Modeling in Cyber-Physical Systems. SPLC (A)
2017: 237-241

22. Juliana Alves Pereira, Pawel Matuszyk, Sebastian Krieter, Myra Spiliopoulou,
Gunter Saake: A feature-based personalized recommender system for product-
line configuration. GPCE 2016: 120-131

23. Jens Meinicke, Thomas Thüm, Reimar Schröter, Sebastian Krieter, Fabian
Benduhn, Gunter Saake, Thomas Leich: FeatureIDE: taming the preprocessor
wilderness. ICSE (Companion Volume) 2016: 629-632

24. Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, Gunter
Saake: Feature-model interfaces: the highway to compositional analyses of
highly-configurable systems. ICSE 2016: 667-678

25. Thomas Thüm, Thomas Leich, Sebastian Krieter: Clean your variable code
with FeatureIDE. SPLC 2016: 308

1. Introduction

Configurable systems, such as software product lines, allow users to adapt the behavior
of a software system to their particular requirements. To this end, a configurable
system comprises a common code base with multiple configuration options that are
mapped to corresponding implementation artifacts [Apel et al., 2013; Czarnecki and
Eisenecker, 2000]. A user can provide a configuration that defines the state of each
configuration option in order to create their desired variant of the system [Apel
et al., 2013; Czarnecki and Eisenecker, 2000]. Modern configurable systems can offer
thousands of configuration options, which results in an enormous number of different
possible variants [Berger et al., 2010, 2013a; Hubaux et al., 2012; Sundermann et al.,
2020]. Typically, configuration options have complex interdependencies stemming
from their relationships defined in a variability model and interactions of their
respective implementation artifacts [Knüppel et al., 2017; Nadi et al., 2015].

The high amount of variability and complex interdependencies pose challenges for
the developers of modern configurable systems, as well as for their users [Batory
et al., 2006; Ye and Liu, 2005]. Users of a configurable system have to perform a
configuration process to derive a variant suitable fo their needs. During this process
they must keep in mind all relevant dependencies between their chosen configuration
options in order to derive a working system variant. For instance, some options may
be mutually exclusive or require a specific setting of another option. This can make
the configuration process very tedious and error-prone, as some combinations of
configuration options can be impossible or introduce undesired effects [Batory et al.,
2006]. For developers this issue is even more complex, because they have to make
sure that every configurable variant behaves according to its specifications and does
not contain any unforeseen interactions or faults. Simply inspecting every possible
variant is unfeasible due to the enormous number of configurations of a system. Thus,
developers must reason about all possible interactions by other means. Solving these
issues for modern configurable systems requires automated analyses and tool support
during the development and configuration process. In this thesis, we take a look at
tool support specifically for the configuration process and try to improve its efficiency
and effectiveness in creating configurations for users and developers.

2 1. Introduction

The configuration process is one of the fundamental tasks for developers and users of
configurable systems. In order to generate a working variant a configuration needs
to be valid (i.e., define a non-conflicting combination of configuration options) [Apel
et al., 2013; Czarnecki and Eisenecker, 2000]. There exist many different possibilities
to facilitate this process by means of automation. Tool support can be used to enable
a semi-automated configuration process to assist users during their decision making.
For instance, an algorithm can recommend to set certain configuration options [Pereira
et al., 2018], set configuration options that are implied by previous decisions (i.e.,
decision propagation) [Batory, 2005], auto-complete a partial configuration, or repair
errors that cause a configuration to be invalid [Hubaux et al., 2012]. These techniques
mitigate the risk of creating invalid configurations and decrease the manual effort for
users, while still providing them sufficient control over their created configurations.
A semi-automated configuration process also supports developers in analyzing the
variability of a system, testing variants, and optimizing parameters.

Tool support can also enable a fully-automated configuration process, in which,
configurations are generated entirely by an algorithm based on certain input speci-
fications. For instance, an algorithm can generate random configurations (e.g., for
testing purposes), configurations that satisfy a certain coverage criterion (e.g., t-wise
interaction coverage), or configurations that are similar to previously created configu-
rations (e.g., for parameter optimization) [Oh et al., 2017]. While a fully-automated
configuration process requires no manual effort for creating a configuration, users
have only limited control over the created configurations, as these entirely depend
on the chosen algorithm and input data. Thus, a fully-automatic process is often
more useful for testing, parameter optimization, and evaluation of a system, rather
than creating a single user configuration. In our thesis, we identify and address
current short comings within the tool support for both, the semi- and fully-automated
configuration process, such as increasing the scalability and effectiveness of certain
techniques. In particular, we consider facilitating decision propagation, as it is one of
the most helpful techniques for the semi-automatic configuration process and can also
be used in automated analyses and algorithms for a fully-automatic configuration
process. Regarding the fully-automated configuration process, we consider improving
sampling algorithms with a focus on creating configurations for testing purposes.

In an interactive configuration process it is often critical for users to know the
consequences of their decisions immediately, in order to avoid unwanted effects
later on. For example, a configurable system may offer a configuration option for
compatibility with an operating system and a configuration option for compatibility
with a file system. These options can have interdependencies, for instance the file
system NTFS only works for Windows and the file system EXT only works for Linux.
If a user is unaware of these dependencies and decides to use EXT as file system and
Windows as operating system, the resulting variant will be faulty. Considering that
real-world systems can contain thousands of interdependent configuration options,
manually finding such contradictions within a configuration is infeasible. Decision
propagation determines all configuration options that must be set, because they are
implied by previous user decisions, and thus informs users about all consequences of
their decisions at any point during the configuration process [Batory, 2005; Hubaux
et al., 2012; Janota, 2008; Mendonça, 2009]. This effectively prevents users from

3

making contradictory decisions and reduces the amount of decisions a user has to
make. When employing decision propagation in our example, the user would be
unable to configure a incompatible file and operating systems, because as soon as
they select EXT, Linux would be selected as well.

While decision propagation provides helpful assistance in an interactive configuration
process, it is also a computationally expensive algorithm, because the underlying
problem of finding valid assignments for interdependent Boolean variables (i.e.,
the Boolean satisfiability problem) is NP-complete [Cook, 1971]. The open-source
tool FeatureIDE uses decision propagation in its configuration tool [Meinicke et al.,
2017]. In practice, we experienced no performance issues when configuring small
and medium-sized variability models with FeatureIDE. However, when applied to
industrial systems with more than 10,000 configuration options, propagation of a
single decision took us over 20 seconds on average on modern consumer hardware.
The total time spend on decision propagation for creating a single configuration for
this system summed up to 13 hours, which does not include the time required for
a user to reason about decisions and to interact with the configuration tool. Thus,
decision propagation can be a bottleneck within an automated configuration process,
such as sampling [Al-Hajjaji et al., 2016a; Johansen et al., 2012a]. For this reason, we
aim to improve the performance of decision propagation using novel data structures.

A fully-automated configuration process by means of sampling is a valuable technique
for testing configurable systems. Testing itself is an important task within the
development process in order to detect faults and ensure correct behavior [Ammann
and Offutt, 2016; McGregor, 2010]. However, exhaustive testing of configurable
systems is often impossible, because of their high number of possible variants [En-
gström and Runeson, 2011; Lee et al., 2012; Sundermann et al., 2020]. One testing
method that addresses this issues is to generate a small but representative list of
configurations (i.e., sampling) and execute the test cases of a system for each variant
from the sample [Thüm et al., 2014a; Varshosaz et al., 2018]. There exist a number of
different sampling strategies for generating representative samples [Varshosaz et al.,
2018]. One promising sampling strategy is t-wise interaction sampling, which aims
to generate a minimal sample that covers all possible interactions of t configura-
tion options (e.g., all selected, none selected, only one selected, etc.) [Cohen et al.,
2008; Marijan et al., 2013; Oster et al., 2010; Perrouin et al., 2010]. Even for small
values of t (i.e., t ∈ {2, 3}) t-wise interaction sampling produces effective samples
for testing [Abal et al., 2018; Kästner et al., 2009; Marijan et al., 2013]. However,
regarding highly-configurable systems with thousands of features, even when using
small values of t and a state-of-the-art sampling algorithm, sampling can take an
infeasible amount of time (i.e., sampling time) and produce samples containing a high
amount of configurations (i.e., sample size) [Pett et al., 2019]. Therefore, we look into
increasing the efficiency of t-wise interaction sampling algorithms by improving its
general performance and introducing additional parameters to fine-tune a sampling
process for a given configurable system.

Another issue when using t-wise interaction sampling is that it works purely on the
dependencies defined by the variability model of a configurable system. This means,
that t-wise interaction sampling does not take into account the implementation
artifacts of a system, such as source code, models, and test cases. This can lead to

4 1. Introduction

unnecessary large samples and high sampling time. Furthermore, we suspect that the
resulting samples may not accurately represent actual interactions of implementation
artifacts, and thus are less effective, when used for testing. Within our thesis, we aim
to address this issues by introducing a new coverage criterion for a t-wise coverage
algorithm to create a more efficient and effective sample.

1.1 Goals and Contributions

Our main goal of the thesis is to improve the tool support for the configuration
process of configurable systems. To this end, we introduce three new techniques
to facilitate the semi-automated and fully-automated configuration process. First,
we introduce modal implication graphs (MIGs), a new data structure based on im-
plication graphs. With MIGs, we make information about dependencies between
configuration options more easily accessible, which we utilize to speed up the deci-
sion propagation, sampling techniques, and other variability analyses. Second, we
introduce a new sampling algorithm for efficiently generating samples for for t-wise
interaction coverage. Our new sampling algorithm YASA aims to reduce sampling
time and sample size compared to current state-of-the-art algorithms by using MIGs
and other optimizations. Further, we allow the adaption of YASA by means of
runtime parameters and a modular architecture. This results in users having more
control over sampling time and sample size, as well as over other properties of a
sample, such as similarities between configurations within a sample, and thus are
able to fine-tune samples for a given system. Third, we present the coverage criterion
t-wise presence condition coverage, which we use to create better samples for testing
configurable system. Rather than counting only interactions between configuration
options, our new criterion considers interactions of actual implementation artifacts.
We extend our sampling algorithm YASA for t-wise presence condition coverage,
such that we can generate samples that are more effective for testing than samples
from state-of-the-art algorithms that use t-wise interaction coverage. Furthermore,
we aim to produce samples faster and with fewer variants, which decreases the overall
testing effort for a system.

With our contributions and their evaluation in this thesis, we aim to answer multiple
research questions. First, we want to know, can we increase the efficiency of configu-
ration generation in an interactive and automated configuration process using MIGs?
Second, can we control the initial build costs and effectiveness of a MIG by modifying
its build process? Third, can we increase the efficiency of configuration generation in
an automated configuration process using YASA? Fourth, can we control the sample
size and sampling time of YASA with its parameter settings? Fifth, can we increase
the testing efficiency or testing effectiveness by employing t-wise presence condition
coverage?

In summary, we contribute the following:

• We introduce modal implication graphs (MIGs) to represent and efficiently
access dependencies between configuration options.

– We propose an algorithm to propagate decisions utilizing MIGs.

1.2. Structure 5

– We present a build process for creating MIGs and an incremental build
process for updating MIGs after evolution of a configurable system.

• We propose YASA, a configurable sampling algorithm for t-wise interaction
sampling.

• We introduce the coverage criterion t-wise presence condition coverage for
creating more effective samples for testing.

– We extend YASA to support t-wise presence condition sampling.

• We evaluate all our contributions using multiple real-word configurable system
in different versions.

– We provide our developed algorithms as part of the open-source framework
FeatureIDE1.

– We publish the data from our experiments2.

1.2 Structure
We structure the remainder of our thesis as follows. In Chapter 2, we explain the
foundations necessary to comprehend our following concepts and contributions. In
Chapter 3, we introduce modal implication graphs (MIGs), including a regular and
incremental build process to create MIGs and the application of MIGs in decision
propagation in a semi-automated configuration process. In Chapter 4, we present our
flexible and efficient sampling algorithm YASA for t-wise interaction sampling. In
Chapter 5, we propose our new coverage criterion t-wise presence condition coverage
and a corresponding algorithm for t-wise presence condition sampling, which is an
extension of YASA. In Chapter 6, we present work related to our concepts. In
Chapter 7, we conclude our findings and provide an outlook on potential future
research.

1https://featureide.github.io/
2https://github.com/skrieter/evaluation-phd

https://featureide.github.io/
https://github.com/skrieter/evaluation-phd

2. Background

In this chapter, we present all foundations on the problem and solution space of con-
figurable systems that are necessary to understand the concepts and technical details
in the remainder of our thesis. The problem space describes all valid configurations
of a configurable system, while the solution space describes all actual variants that
can be build from that system [Czarnecki and Eisenecker, 2000]. In our thesis, we are
concerned with improving variability analyses and the configuration process, which
are concerned with the configuration space, and with improving product testing,
which is mainly focused on the solution space.

In the following, we define the fundamentals and our terminology of problem and
solutions space and give more details on relevant concepts and techniques that we
use in the remainder of our thesis. First, we present fundamentals of the problem
space with a special focus on variability modeling, configurations, and feature model
analyses (see Section 2.1). Second, we present fundamentals of the solution space
and describe our notion of presence conditions for implementation artifacts (see
Section 2.2). Third, we give more details on the configuration process (see Section 2.3),
which lays the foundation for our contributions in the following Chapters 3–5.

2.1 Problem Space
A configurable system uses configuration options to enable the creation of different
variants of itself. All possible settings of these configuration options make up the
problem space of a configurable system [Czarnecki and Eisenecker, 2000]. The process
of determining the configuration options and all valid combinations of their settings
(i.e., configurations) is called variability modeling [Clements and Northrop, 2001].
The result of this process is a variability model, which then defines the problem space
of a configurable system [Apel et al., 2013; Clements and Northrop, 2001; Pohl et al.,
2005].

Variability modeling can be done in a number of forms either implicitly through the
internal architecture of a system or explicitly with a concrete variability modeling tech-
nique. For explicit variability modeling, there are multiple different technique, such

8 2. Background

as feature models [Apel et al., 2013; Kang et al., 1990], decision models [Dhungana
et al., 2007], orthogonal variability models [Pohl et al., 2005], textual- [Sundermann
et al., 2021] and UML-based variability models [Gomaa, 2004], and other open-source
or proprietary approaches. In this thesis, we focus on variability modeling with
feature models, because they are a popular and commonly used technique in academia
and industry [Apel et al., 2013; Kang et al., 1990]. Note that, for many of the above
mentioned techniques there exists methods for transforming any of them into any
other [Feichtinger et al., 2021]. Thus, if there is an operation or analysis based on
one particular variability modeling technique it is likely that the same or a similar
analysis or operation can be used on a different technique as well. In the following,
we first, go into detail on feature models and their representations, as well as the
concrete formalism we use throughout our thesis. Second, we present details of
configurations for feature models and how we formalize them in our thesis. Finally,
we describe existing analysis for feature modeling that are used to detect anomalies
within a given feature model.

2.1.1 Feature Model

A feature model is a variability modeling approach that defines a list of features and
a list of constraints to describe a problem space [Apel et al., 2013; Kang et al., 1990].
Features correspond to configuration options and constraints describe dependencies
between features, which impose restrictions on the problem space.

Features

The term feature has many different, but similar definitions throughout the litera-
ture [Apel and Kästner, 2009]. We use the definition of Kang et al. and define a
feature as a “prominent or distinctive user-visible aspect, quality, or characteristic
of a system” [Kang et al., 1990]. We have to differentiate the meaning of a feature
within the problem space and the solution space. In the problem space, a feature
can be seen as a variable that can be assigned a value (i.e., configured) by a user. In
the solution space, a feature can be mapped to one or more concrete implementation
artifacts, which, when properly combined, can form a variant. Most commonly,
features are of a Boolean nature, meaning that they can either be assigned the
value true (i.e., selected) or false (i.e., deselected) in a configuration [Czarnecki and
Eisenecker, 2000]. However, in general, features may also allow for ternary (e.g.,
kconfig [Community, 2018]) or even n-ary values [She et al., 2010]. It is also possible
to have an infinite range of values for a feature, such as a real number [She et al.,
2010]. Nevertheless, in this thesis, we focus on Boolean features as these are by far
the most commonly used type of features. Note that, for features with a finite range
of values it is always possible to construct a feature model containing only Boolean
features that resembles the same problem space. Thus, almost all techniques we
present in this thesis may be applied to feature models with non-Boolean features as
well.

In Figure 2.1, we show the feature model of our running example Server system.
The feature model is represented as a feature diagram and defines the ten features
Server, File System (FS), Operating System (OS), Logging (Log), NTFS, HFS, EXT,
Windows (Win), MacOS (Mac), and Debian (Deb). All feature in this feature model

2.1. Problem Space 9

Server

File System

NTFS HFS EXT

Operating System

Windows MacOS Debian

Logging

NTFS ⇔ Windows HFS ⇔ MacOS

Legend:

Optional

Mandatory

Or Group

Alternative
Group

Figure 2.1: Feature diagram of the example system Server

are Boolean, and thus can be set to either true or false. In the remainder of the
thesis, we use the provided abbreviations of the feature names to ease the readability
of all propositional formulas using these features.

Constraint

A constraint describes the relationship between features and thereby effectively limits
the valid problem space (i.e., excludes particular configurations of features) [Czarnecki
and Eisenecker, 2000]. The nature of a constraint is dependent on the type of feature
used within the feature model. For Boolean features, a constraint can be expressed
as a propositional formula [Batory, 2005]. This form is also sufficient when using
features with a finite range of values. For non-Boolean features, constraints may also
be expressed in first-order logic [Mannion, 2002]. As stated above, in this thesis, we
focus on Boolean features, and thus use propositional formulas as constraints. A
feature model can contain multiple constraints that are in conjunction. That means
all constraints must be fulfilled by a configuration for that feature model in order to
describe a valid variant of a configurable system.

The feature model in Figure 2.1 defines multiple constraints. Most constraints of the
feature model are implicitly defined via the tree structure of the feature diagram. For
example, each feature in the tree implies its parent feature. As the feature FS is the
parent of the feature NTFS the feature diagram defines the constraint NTFS ⇒ FS.
Other constraints arise from the usage of different types of edges and groups in the
diagram. Additionally, the feature diagram defines the two cross-tree constraints
NTFS ⇔ Win and HFS ⇔Mac, which are displayed beneath the feature tree and
are explicitly stated as propositional formulas.

Representation

There are many different representations for a feature model. Most notably, feature
diagrams [Czarnecki and Wąsowski, 2007; Schobbens et al., 2006], propositional
formulas [Batory, 2005], and textual representations like the universal variability
language (UVL) [Sundermann et al., 2021]. With feature diagrams, a feature model
can be presented in a human-readable way. For storing a feature model within
persistent memory, often a textual representation is used. In contrast, for most
automated analysis techniques a propositional formula is needed.

10 2. Background

All of these representations represent a feature model and by this describe its
corresponding problem space. However, some representations may also provide
additional information, such a feature hierarchy, feature properties, descriptions, and
so on. For describing the problem space, each representation is sufficient, and thus,
each representation can be transformed into any other without losing information
on the problem space [Feichtinger et al., 2021]. Nevertheless, some of the additional
information that can be expressed in one representation are difficult or even impossible
to represent in another one, and thus might be lost during a transformation. A
common example is the feature hierarchy in a feature diagram, which is lost, when it
is transformed into a propositional formula. Still, all dependencies of the features
remain unchanged. Within our thesis, we do not focus on any additional information,
and are therefore using some representations interchangeably depending on the
situation. We visualize feature models with the help of feature diagrams, as this
type of representation is more intuitive for most people. For all other purposes and
especially for our formalization, we rely on propositional formulas and set notation.

The feature diagram in Figure 2.1 consists of a feature tree and additional cross-tree
constraints at the bottom. The feature tree contains all features of the feature model
and partly describes their relationships. The feature Server is the root of the feature
tree and represents the common part of all variants of the configurable system. The
features File System (FS) and Operating System (OS) are both mandatory children
of Server, which means each variant that contains Server must also contain FS and
OS. By contrast, the feature Logging (Log) is an optional child of Server and is not
required if Server is part of a variant. The children of FS (i.e., NTFS, HFS, and
EXT) are part of an or-group, which means that at least one of them must be part of
a variant that contains FS. The children of OS (i.e., Windows (Win), macOS (Mac),
and Debian (Deb)) are part of an alternative, which means that if OS is part of a
variant, exactly one of them must be present too. Additionally, the feature model
contains two cross-tree constraints, a bi-implication between NTFS and Win and a
bi-implication between HFS and Mac.

Formalism

Our formal definition of feature model, which we use in the remainder of this thesis,
is based on its representation as a propositional formula. Moreover, we use the
conjunctive normal form (CNF) of propositional formulas. Any propositional formula
can be transformed into CNF using standard Boolean algebra.Thus, for any feature
model formula, there is at least one equivalent formula in CNF. Practically, this
means that every constraint consists of one or multiple clauses in the CNF, which
each is a disjunction of literals. Finally, the formula represented by the feature model
is a conjunction of all clauses.

Definition 2.1 Feature Model. We define a feature model M = (F ,D) as a
tuple, consisting of a set of features F and a set of dependencies (also referred to as
constraints) D over F .

• Let F be the universe of all possible feature variables.

• The feature set F = {f1, . . . , fn} ⊂ F is a finite set, containing all features of
the feature model with n being the total number of features.

2.1. Problem Space 11

• Based on F, we define the universe of literals L, which represents all possible
assignments of all feature variables in F.

– We define the functions ϕ+ : F→ L with ϕ+(f) = f and ϕ− : F→ L with
ϕ−(f) = ¬f that respectively return the positive and negative literal for a
feature (i.e., both possible assignments for a Boolean feature).

– Note that the following expressions are equivalent:

∗ l ≡ ¬¬l, (l ∈ L)
∗ ϕ+(f) ≡ ¬ϕ−(f), (f ∈ F)
∗ ϕ−(f) ≡ ¬ϕ+(f), (f ∈ F)

– Further, we define the function L : M→ 2L with L(M) = {ϕ+(f) | f ∈
F(M)} ∪ {ϕ−(f) | f ∈ F(M)} that maps a feature model to a set of
literals such that for each feature f ∈ F , it contains a corresponding
positive and negative literal.

• The set of dependencies D = {d1, . . . , dm} ⊆ 2L is a finite set, containing all
dependencies (i.e., constraints) of the feature model with m being the total
number of constraints.

– Every dependency d is a subset of the set of literals L(M) and represents
a disjunction of the contained literals.

– To convert a clause d to its propositional formula we define the function∨
: 2L → P with

∨
(d) =

∨
l∈d l.

– Further, we define the function ϕ : M→ P with ϕ(M) =
∧

d∈D(M)(
∨
(d))

that maps a feature model to a propositional formula in CNF such that
the formula is a conjunction of all dependencies in D and describes the
valid problem space.

• We denote the set of features for a given feature model M with F(M) and the
set of dependencies for the model with D(M).

2.1.2 Configuration

A configuration describes a product (i.e., variant) of a configurable system. It stores
all values assigned to the feature variables of a feature model. For Boolean features
this mean that they can either be assigned the value true (i.e., selecting the feature)
or false (i.e., deselecting the feature). From a configuration, a corresponding variant
can be derived using the variability mechanism of the system [Apel et al., 2013;
Clements and Northrop, 2001; Pohl et al., 2005]. In order to derive a valid variant,
all assigned values must be in accordance with the dependencies described in the
feature model.

Formalism Our formal notation of configurations is based on the set of literals
L(M) that can be derived from a feature model.

12 2. Background

Definition 2.2 Configuration. We define a configuration as set of literals c =
{l1, . . . , lk} ⊂ L, where k is the number of literals contained in the configuration.

• Iff a configuration c assigns the value true to a feature variable f , it contains
the positive literal of f (i.e., ϕ+(f) ∈ c).

• Analogous, iff a configuration c assigns the value false to a feature variable f ,
it contains the negative literal of f (i.e., ϕ−(f) ∈ c).

• A configuration c may never contain more than one literal of any feature variable
(i.e., ∀ f ∈ F : {ϕ+(f), ϕ−(f)} ̸⊆ c).

• A configuration is compatible with a given feature model M iff it only contains
literals from that feature model (c ⊂ L(M)).

• We define the function
∧

: 2L → P with
∧
(c) =

∧
l∈c l to map a configuration

to a propositional formula that is a conjunction of all its contained literals.

Completeness Property In order to derive a variant from a configuration, the
configuration must assign a value to every feature variable of the feature model.
However, during the configuration process, a configuration can be in a state, where
it does not assign a value to every feature variable, yet. We call such a configuration
partial. Otherwise, if all features are defined by a configuration, we call it complete.
Formally, we define this property with the function:

complete(c,M) =

{
true |c| = |F(M)|
false otherwise

Validity Property If a configuration is complete, every feature variable has an
assigned value, and thus we can check, whether this complete assignment satisfies
the feature model formula. Given a feature model formula M, if a configuration
contains at least one literal from a clause in D(M), it satisfies this clause. Contrary,
if a configuration contains all complementary literals of a clause, it contradicts
this clause, and hence the entire feature model formula. Thus, we call a complete
configuration valid, if it satisfies all clauses of a feature model If a configuration
is incomplete or contradicts at least one clause, we call it invalid. We express this
property with the following function:

valid(c,M) =

{
true complete(c,M) ∧ ∀d ∈ D(M) : c ∩ d ̸= ∅
false otherwise

We denote the set of all valid configurations of a feature modelM with C(M).

Satisfiability Property According to our definition above, only a complete
configuration can be valid, a partial configuration is always invalid. However, there is
a difference between a partial configuration that can lead to a valid configuration by
including more literals until it is complete and a partial configuration that already

2.1. Problem Space 13

contradicts a feature model formula. In order to differentiate these cases, we rely on
the satisfiability property. We call a partial configuration satisfiable, if it is a subset
of a valid configuration. In contrast, if every complete configuration that is a super
set of a partial configuration is invalid, we call the partial configuration unsatisfiable.
We express this property with the following function:

satisfiable(c,M) =

{
true ∃c′ ⊇ c : valid(c′,M)

false otherwise

2.1.3 Feature Model Analysis

A feature model may contain a number of anomalies, such as dead features or
redundant constraints [Benavides et al., 2010]. An anomaly within a feature model
may indicate that the problem space described by the model is not in accordance with
the intentions of the modeler. For instance, the model could contain a contradiction,
resulting in an empty problem space.

In order to find anomalies within a feature model, there are several automated rea-
soning techniques (i.e., feature model analyses) [Benavides et al., 2010]. Throughout
this thesis we use and improve several of these analyses. Thus, in the following, we
provide a brief overview of the most important feature model anomalies and how
an analyses can be implemented based on our presented formalism. To this end,
we show how each analysis can be reduced to one or more instances of the Boolean
satisfiability problem (SAT), which determines whether a propositional formula has
at least one solution. This reduction makes it possible to shift the complex part of
any analysis to the same standard problem, for which there are efficient algorithms
for solving it (i.e., SAT solvers) [Benavides, 2007; Eén and Sörensson, 2004; Janota,
2008; Le Berre and Parrain, 2010; Mendonça, 2009].

Detecting Void Feature Models We call a feature model void, if it has no
valid configuration. This can be the case if one or more of the constraints or a
combination of them are a contradiction. In this case the feature model describes an
empty problem space, which makes it useless for most applications. We formalize
this anomaly with the following expression:

void(M) =

{
true ∄c : valid(c,M)

false otherwise

Determining whether a feature model is void using the satisfiability problem is quite
straight-forward. A feature modelM is void if and only if the representing formula
is unsatisfiable (i.e., SAT (ϕ(M)) = false).

Detecting Core and Dead Features A feature variable of a feature model
is called core if there is no valid configuration for the model in which the feature
variable is assigned the value false. Analogous, a feature variable is called dead if
there is no valid configuration for the model in which the feature variable is assigned
the value true. As an example, consider the feature model from Figure 2.1. The

14 2. Background

three feature variables Server, OS, and FS must be true in every valid configuration.
Thus, these three feature variables are core.

We use the following two expressions to formalize both anomalies:

core(f,M) =

{
true ∀c ∈ {c | valid(c,M)} : ϕ+(f) ∈ c

false otherwise

dead(f,M) =

{
true ∀c ∈ {c | valid(c,M)} : ϕ+(f) /∈ c

false otherwise

Whether a single feature variable f is core can be reduced to an instance of SAT.
For this, we start by constructing a new formula ϕ(M) ⇒ ϕ+(f). Assuming that
the feature model is not void (i.e., SAT (ϕ(M)) = true), iff this new formula is a
tautology, then every valid configuration of the feature model formula implies that
f is true, which means that there is no valid configuration where f is false, and
therefore f must be core. Unfortunately, we cannot directly show that a formula is a
tautology using SAT. However, we can show that the complement of a formula is a
contradiction, which is equivalent. Therefore, we apply SAT to the complement of
our constructed formula:

¬(ϕ(M)⇒ ϕ+(f))

≡ ¬(¬ϕ(M) ∨ ϕ+(f))

≡ ϕ(M) ∧ ¬ϕ+(f)

≡ ϕ(M) ∧ ϕ−(f)

Consequently, iff SAT (ϕ(M) ∧ ϕ−(f)) = false then f is core. For determining
whether a feature variable is dead, we can apply a similar reasoning. A feature
variable f is dead iff SAT (ϕ(M) ∧ ϕ+(f)) = false.

Finding Atomic Sets An atomic set is a set of feature variables that cannot
be assigned a value independently from each other in any valid configuration. For
instance, the two feature variables NTFS and Win in our example in Figure 2.1
have the dependency NTFS ⇔ Win. Thus, the value assigned to NTFS is always
dependent on the value assigned to Win and vice-versa. If we assign the value true
to NTFS then we must also assign true to Win. In this case NTFS and Win are
in the same atomic set. We express whether two feature variables f and f ′ are in
the same atomic set with the following formula:

atomic(f, f ′,M) =

{
true ∀c ∈ {c | valid(c,M)} : ϕ+(f) ∈ c⇔ ϕ+(f ′) ∈ c

false otherwise

The set of all atomic sets of a feature model is a partition of the set of all literals
L(M). As a consequence, we could replace all occurrences of a feature variable in a
feature model formula with any other variable in the same atomic set.

2.2. Solution Space 15

Analogous to the determination of core and dead features, we can reduce the
question of whether two feature variables are in the same atomic set to the solving
of a SAT instance for a newly constructed formula. In this case, two features
f and f ′ are in the same atomic set iff the following formula is a contradiction
ϕ(M) ∧ ¬(ϕ+(f)⇔ ϕ+(f ′)).

Finding Redundant Constraints A redundant constraint is a constraint that
can be removed from the feature model without changing its valid problem space.

redundant(d,M) =

{
true ϕ(M) ≡

∧
d′∈D(M)\{d}(

∨
(d′))

false otherwise

We can imply a similar reasoning as for the other analyses to determine whether a
constraint d is redundant using SAT. If we construct a new formula consisting of
a conjunction of all constraints except d and this formula still implies d, then d is
redundant. More formally, a constraint d is redundant iff SAT (

∧
d′∈D(M)\{d}(

∨
(d′))∧

¬
∧
(d)) = false.

We further differentiate between internally and externally redundant clauses. A clause
is internally redundant, if it is itself a tautology. Thus, the redundancy of the clause
is not dependent on other clauses. For instance, the clause EXT ∨ Log ∨ ¬Log is a
tautology, because it contains the literal Log and its complement ¬Log. Externally
redundant clauses are no tautologies, but are only redundant in context with other
clauses. For example, the clause ¬FS∨EXT ∨HFS∨NTFS is externally redundant
with regards to the clause EXT ∨HFS ∨NTFS.

2.2 Solution Space

The problem space is mapped to the solution by a variability mechanism. This
mechanism creates a variant by combining a list of implementation artifacts that
is derived from a particular configuration [Apel et al., 2013]. The solution space
of a configurable system comprises all variants that can be build from combining
its implementation artifacts for any valid configuration. Within our thesis we are
interested in the configuration process that leads to a valid configuration. For this
we also consider the variability of implementation artifacts, which can be used in the
configuration process. Specifically, we consider presence conditions that determine
when a particular implementation artifact is included in a variant.

16 2. Background

1 // #if Log
2 public c lass Logger {
3 public void log(String message) {
4 System.out.println(message);
5 }
6
7 public void logOS() {
8 StringBuilder sb = new StringBuilder ();
9 sb.append("OS = ");

10 // #if Deb
11 sb.append("linux");
12 // #endif
13 // #if Win
14 sb.append("windows");
15 // #endif
16 log(sb.toString ());
17 }
18 }
19 // #endif

Listing 2.1 Class Logger of the example system Server

2.2.1 Implementation Artifacts

An implementation artifact is any component of a configurable system that is used as
a part of a variant. These can be, for instance, source code, textual data, model files,
and audio and video data. Similar to features, there are mandatory implementation
artifacts that form the common code base of a system and optional implementation
artifacts that are conditionally dependent on a specific configuration. For example,
regarding our feature model in Figure 2.1, an optional implementation artifact may
be the class Logger in Listing 2.1, which implements some logging functionality for
the server system. The inclusions of the class in a variant should be dependent on
the selection of the feature Logging.

Each configurable system employs at least one variability mechanism which is
responsible for combing implementation artifacts into a final variant. Popular
variability mechanism are, for instance, preprocessors [Liebig et al., 2010; Medeiros
et al., 2013; Munge Development Team, 2011; Stallman and Weinberg, 1987], plug-in
frameworks [Acher et al., 2014], and runtime-variability [Hallsteinsen et al., 2008].
For instance, when employing preprocessors, such as the C preprocessor [Stallman
and Weinberg, 1987], implementation artifacts are annotated with expressions that
specify whether to include an artifact under a given configuration or not. If a given
configuration fulfills the annotated expression of an implementation artifact the
artifacts is included and otherwise it is ignored.

2.2.2 Presence Conditions

Whether and how an implementation artifact is used in a variant is dependent on the
employed variability mechanism. However, it is possible to abstract the description of

2.2. Solution Space 17

the variability of a particular implementation artifact from the concrete mechanism by
using the notion of presence conditions. A presence condition is a logical formula that
describes whether a particular implementation artifact is considered in a variant given
a configuration. We call a presence condition active under a given configuration, iff
the configuration satisfies the formula of the presence condition and inactive otherwise.
For instance, in Listing 2.1, the class Logger contains preprocessor annotations that
enable its variability. The annotations #if Log in Line 1 and #endif Log in Line 19
specify that everything between these two annotations (i.e., the entire class) is only
included in variants in which the feature Logging is selected. Thus, the formula for
the presence condition of the class Logger is Log. The class will be present in all
variants that are derived from a configuration that defines Log as true and the class
will not be present for any other configuration.

Presence conditions are independent from the concrete variability mechanism(s)
employed by the configurable system. They can be determined regardless of how
artifacts are combined, simply by comparing the configurations that contain an
artifact with the configuration that do not. This means that presence conditions are
a representation of the variability of an implementation artifact and do not have
to be stated explicitly in the code (unless this is required by the variability mecha-
nism). Thus, in theory, presence conditions can be determined for any deterministic
variability mechanism.

Within our thesis, we consider presence conditions to comprehend the variability of
single statements within the source code. For each statement in the source code,
we can identify a presence condition. If the formula of a presence condition is
satisfied by a given configuration, this statement will be part of the variant resulting
from that configuration. In contrast, if the presence condition is not satisfied the
statement will not be part of the variant. For instance, the presence condition of
Line 11 of Listing 2.1 consists of the formula Log∧Deb due to the nested annotations
within the source code. In contrast, the presence condition of Line 14 consists of
the formula Log ∧Win and formula of Line 9 is simply Log. The configuration
c = {Server, FS,OS, Log,NTFS,Win,¬HFS,¬EXT,¬Mac,¬Deb} will lead to
a variant that contains the Lines 9 and 14, but not the Line 11.

Formalism We base the formal notation of presence conditions on their propositional
formulas in disjunctive normal form (DNF). In order to include an artifact in a
variant, at least one clause of a DNF must be satisfied, which means that all of its
literals must be selected within a configuration. The DNF representation for presence
conditions has the advantage that all combinations of literals that satisfy it can be
immediately identified.

Definition 2.3 Presence Condition. We define a presence condition as set of
clauses P = {d1, ..., dn}, where n is the number of clauses.

• A clause d ⊆ L(M) represents a conjunction of literals that would satisfy the
presence condition.

• The disjunction of all clauses in P forms the propositional formula of the
presence condition in DNF.

18 2. Background

• We define the function
∧

: 2L → P with
∧
(d) =

∧
l∈d l that maps a clause of a

presence condition to a conjunction of its containing literals.

• Further, we define the function ϕ : 22
L → P with ϕ(P) =

∨
d∈P(

∧
(d)) that

maps a presence condition to a propositional formula in DNF.

For example, the presence conditions for the Lines 9, 11, and 14 from Listing 2.1 are
written as P9 = {{Log}}, P11 = {{Log}, {Deb}}, and P14 = {{Log}, {Win}}.

Activity Given a valid configuration the propositional formula of a presence
conditions can be either satisfied, in which case we call the presence condition active
or unsatisfied in which case we call it inactive. We describe this property with the
following expression:

active(P , c,M) =

{
true valid(c,M) ∧ ∃d ∈ P : d ⊆ c

false otherwise

2.3 Configuration Process

The configuration process is a process that creates one or more valid configurations
for a configurable system. For the purpose of our thesis, we differentiate between
three different types of configuration processes, the manual, semi-automated, and
fully-automated process. In the manual configuration process the configuration is
done by hand by one or more users. On the other end of the spectrum lies the fully-
automated configuration process. Here a configuration is automatically generated by
an algorithm. The user can choose the algorithm and provide suitable parameters,
but the actual configuration is done by the algorithm without any intervention from
the user. Examples include the random generation of a configuration, the search for
an optimized solution, and general sampling [Al-Hajjaji et al., 2016a; Carmo Machado
et al., 2014; Lopez-Herrejon et al., 2014; Perrouin et al., 2010; Tartler et al., 2014].
Between these two extremes for creating a configuration is the semi-automated
configuration process, which is a combination of automatically deriving parts of a
configuration and using interact input from a user. Depending on the degree of
the automation, this process can be seen rather as a manual configuration process
facilitated by tool support or as an automated process that interacts with the user.
The actual interaction and tool-support of this process can take many different
forms. However, it always aims to guide a user towards a valid configuration by
easing their mental effort. In the following, we provide more details on all three
types of configuration processes. Nevertheless, we especially focus on the semi- and
fully-automated configuration process, as these two play a major roll in the remainder
of our thesis.

2.3. Configuration Process 19

2.3.1 Manual Configuration Process

In a manual configuration process a user sets a value for each feature by hand. This
can be done one feature at a time or in a batch containing multiple features. During
this process, there is no automation, tool-support, or analysis. In the end, the result
of the process is a complete configuration. As there is no mechanism involved that
checks or even enforces the validity of the configuration, the final configuration may
be invalid. This means that the user must take care of verifying the validity of
the configuration themselves at the end of the process either by hand or with a
downstream validity analysis. Consequently, an invalid configuration must also be
fixed by the user manually. The fact that this process is error-prone and involves
much manual effort makes this type of configuration process only feasible for small
projects or systems that involve no complex constraints. Since we are interested in
facilitating the configuration management of large-scale configurable systems, the
manual process is therefore of limited interest within our thesis.

2.3.2 Semi-Automated Configuration Process

The semi-automated configuration process involves some degree of automation in
the form of automated analyses or automated (de)selection of features. We look a
the semi-automated configuration process from the perspective of an enhancement
over the manual configuration process. It adds some form of tool-support, which is
supposed to guide the user to a desired and valid configuration and overall reduce
the manual effort required to arrive at a complete configuration.

There are several techniques that may facilitate the configuration process. On a
high level, we can differentiate between techniques for information management,
that show additional information to the user or hide irrelevant information from the
user and configuration manipulation, which automatically assign values to features
under specific circumstances. Information management can for example include
visual guidance [Martinez et al., 2014; Nestor et al., 2008], hiding already defined
features, providing explanations of conflicts, showing whether a partial configuration
is still satisfiable, and presenting recommendations [Pereira et al., 2016b]. These
presented information can enable a user to make discussions more efficiently and
less error-prone. On the other hand, configuration manipulation may alter a partial
configuration by, for example, resolving conflicts [Benavides et al., 2007; Ochoa
et al., 2015; White et al., 2008], assigning values implied by the current state of the
configuration (i.e., decision propagation), assigning default values, random values, or
values based on a user’s preference (i.e., auto-completion). The motivation behind
configuration manipulation is to avoid conflicts and by this invalid configurations and
to speed up the configuration process by reducing the number of manual decisions a
user has to make.

In our thesis, we mainly focus on some of these techniques from configuration
manipulation in order to improve their efficiency or effectiveness. Especially, we are
interested in decision propagation and auto-completion. Thus, in the following we
provide fundamental details on these two techniques.

20 2. Background

Decision Propagation

Decision propagation is a technique to infer implied values for currently undefined
features from a satisfiable partial configuration [Batory, 2005]. A decision can, for
example, consist of assigning a value to one or multiple feature variables, adding a
dynamic constraint, or any kind of action that leads to a partial configuration or a
restriction of the current configuration space. In this work, we focus on decisions
that consist of assigning a value to a single feature variable, as this is the most basic
and direct way to manipulate a partial configuration. Every time a user makes a
decision, decision propagation determines all features that are implicitly defined (i.e.,
conditionally core and dead features) and assigns corresponding values for these
features in the current configuration. For instance, when creating a configuration
for the feature model in Figure 2.1, the decision to assign the value true to the
feature variable NTFS would also imply that the feature variable Windows must be
assigned the value true. In addition, the feature variables Mac, HFS, and Deb must
be set to false. As there is no other possibility for setting these feature variables, if
NTFS is true, it is reasonable to automatically assign the corresponding values in
the configuration.

Besides speeding-up the configuration process by reducing the number of necessary
manual decisions, decision propagation solves one major problem from the manual
configuration process. When making decision, it is possible that users unknowingly
assign contradictory values to the feature variables and than later have to backtrack
their steps to undo one or more of their decisions. This can be confusing and cum-
bersome to the user, especially if this occurs multiple times during the configuration
process [Thüm et al., 2018]. Assuming that a user makes their decision one-at-a-time,
employing decision propagation completely solves this problem. As every implied
value is automatically assigned, it is not possible to assign a contradictory value.
Thus, a partial configuration will always be satisfiable and a complete configuration
will always be valid. Effectively, decision propagation avoids backtracking, meaning
that users never have to revoke their decisions in order to obtain a valid configuration.

Auto-Completion

Given a partial configuration auto-completion assigns values to currently undefined
features, such that afterwards the configuration is complete [Mendonça et al., 2009a;
Pereira et al., 2016a]. Similarly to decision propagation, this technique tries to
reduce the amount of manual decision a user has to make, and by this speed-up
the configuration process. There exists many different strategies to automatically
assigning values. Two of the most basic strategies are to assign a default value
(e.g., false) or a random value to all undefined features. For both strategies the
resulting configuration can be invalid, which is unsuitable for most applications.
Thus, a more advanced strategy is to interlace automatically assigning values with
decision propagation. After each automatic assignment decision propagation is
applied. Analogous to regular decision propagation, the complete configuration will
be valid, assuming that the given partial configuration is satisfiable. For this strategy,
it does not matter whether we assign random or default values. Another strategy is
to use a logic solver to compute a valid solution (i.e., configuration) [Janota, 2008;
Mendonça, 2009]. The resulting configuration will be valid, but is dependent on the
internal behavior of the used solver.

2.3. Configuration Process 21

2.3.3 Fully-Automated Configuration Process

A fully-automated configuration process does not involve any user interaction aside
from providing initial parameters for the process. An automated configuration process
can produce one or more configurations. Although there exists many different kinds
of automatically creating a configuration, in this thesis we are mainly concerned
with different kinds of configuration sampling. Configuration sampling is a process
that produces a set of complete configurations (i.e., a sample), that is supposed
to resemble the variability of the feature model [Medeiros et al., 2016]. A sample
can then be used to run analyses against each contained configuration or test the
corresponding variants using single-system testing frameworks. It also allows to
measure non-functional properties, such as memory footprint, energy consumption,
execution time, etc.

A straight-forward testing strategy for configurable systems is product-based testing.
For this purpose, a set of products is derived from a set of different configurations and
then test cases are run on each selected product respectively [Thüm et al., 2014a]. As
testing every possible configuration in a product-based manner is usually not feasible
due to an enormous configuration space, sampling strategies have been defined to
generate a small yet representative set of configurations to test (i.e., a configuration
sample). One such sampling strategy is t-wise interaction sampling, which aims to
generate a preferably small sample that covers all possible interactions of features of
degree t [Cohen et al., 2008; Marijan et al., 2013]. Using t-wise interaction sampling,
developers can ensure that all interactions of at most t features (e.g., all selected, none
selected, only one selected, etc.) are indeed contained in at least one configuration
in the generated sample. T -wise interaction sampling has shown to be a feasible
trade-off between testing effectiveness and testing efficiency, as for small values of
t (i.e., t ∈ {2, 3}) it usually returns a relatively small sample, while also achieving
reliable test results [Abal et al., 2018; Kästner et al., 2009; Marijan et al., 2013].

There are many different types of configuration sampling [Medeiros et al., 2016;
Varshosaz et al., 2018]. In the following, we focus on random sampling and optimiza-
tion sampling.

Random Sampling

Random sampling creates a sample consisting of randomly chosen or generated
configurations [Varshosaz et al., 2018]. In most cases, the user defines the size of
the random sample beforehand and also whether the sample is allowed to include
duplicates. There are many different algorithms are able to create a random con-
figurations [Varshosaz et al., 2018]. We briefly introduce the three most popular
algorithms. One method of creating a random configuration is to randomly assign
a value to every feature. This process can be iterated as many times as necessary
to generate new configurations. The major drawback of this method is that due
to the constraints of the feature model, many configurations generated in this way
can be invalid, and thus must be removed from the sample. Another method is
to employ a logic solver (e.g., a SAT solver) that is able to create a configuration
from a feature model [Munoz et al., 2019; Oh et al., 2017; Pereira et al., 2016a]. By
manipulate the internal state of the solver (e.g., randomizing the order of features

22 2. Background

or the strategy of assigning values) is is possible to produce random configurations.
This method has the disadvantage that the generated configuration are dependent
on the internal behavior of the employed solver. In most cases, the resulting sample
will not be uniformly distributed over the problem space, which can be a problem for
some applications. Finally, another method is to enumerate all valid configurations
and then choosing a random subset of the enumeration with the desired size. This
method has the advantage that it is guaranteed to be uniformly distributed over the
problem space. However, unfortunately, it is unfeasible to enumerate all configuration
for almost any larger system as the configuration space tends to grow exponentially
with the number of features [Engström and Runeson, 2011; Halin et al., 2019; Lee
et al., 2012].

Optimization Sampling

Optimization sampling tries to create a sample that optimizes one or more proper-
ties [Meinicke et al., 2014; Varshosaz et al., 2018]. What properties are considered
heavily depends on the desired purpose of the sample. For instance, if a sample is
used for product-based testing it is useful to maximize the fault-exposing potential
of the variants that can be generated from the configurations in the sample. For
measuring non-functional properties, the diversity of the variants of a sample should
be maximized. However, some of these properties are hard to measure or hard to
predict, especially, when generating multiple configurations. Thus, often other, more
easily measurable metrics are used that act as an indicator for the actual property
the should be optimized. Popular metrics are, for example, the similarity between
configurations in a sample, used feature combinations, code coverage of variants, and
testing coverage of variants. In our thesis, we are mainly focused on testing, and
thus, we go into detail about some relevant metrics for sampling techniques with
this purpose in mind. This includes, coverage of feature combinations (i.e., t-wise
interaction coverage), code coverage, and testing coverage.

General Coverage Metrics All following metrics, are metrics hat are based on
coverage criteria. This allows us to describe the common aspects of these coverage
metrics together. In general, coverage metrics measure the degree of coverage of a
certain basic set of some elements. In context of configurable system, the basic set
contains elements that can be derived from the set of all valid configurations of a
feature model, such as lines of code included in a variant and selection of features.
For each configuration a coverage set can be determined that is a subset of the basic
set:

cov(S) =
⋃
c∈S

cov(c)

cov(M) =
⋃

c∈C(M)

cov(c)

2.3. Configuration Process 23

The union of all coverage set for all configuration within a sample is the coverage
set of the sample. The degree of coverage is the ratio between the coverage set of a
sample and the basic set:

cov ◦(S,M) =
|cov(S)|
|cov(M)|

The goal for most coverage-based sampling techniques is to maximize the degree of
coverage for a given coverage criterion (i.e., achieve 100% coverage), while simultane-
ously minimizing the number of configurations within the generated sample.

T-Wise Interaction Coverage T-Wise interaction coverage is a coverage criterion
based on the problem space [Lopez-Herrejon et al., 2015; Varshosaz et al., 2018].
It considered all valid combinations of all subsets of features with the size t. For
example, one-wise interaction coverage considers all features individually (i.e., subsets
with a size of one). In order to achieve 100% coverage, every feature variable that is
neither core nor dead must be assigned the value true in at least one configuration
and also must be assigned the value false in at least one configuration. For instance,
the three configuration C1, C2, and C3 in the following table achieve a 100% one-wise
interaction coverage for the Server system from Figure 2.1:

Feature Configurations
C1 C2 C3

NTFS ✓ × ×
HFS × ✓ ×
EXT × × ✓
Win ✓ × ×
Mac × ✓ ×
Deb × × ✓
Log ✓ × ×

In contrast, two-wise interaction coverage considers the combination of every pair of
features. For each combination, there are four ways to select two feature variables a

and b (i.e., a ∧ b, ¬a ∧ b, a ∧ ¬b, ¬a ∧ ¬b). Thus, in total, there are 4 · n · (n− 1)

2
possible combinations, where n is the number of features. However, only valid
combinations (i.e., combinations that appear in at least one valid configuration) are
of interest.

This can be generalized to t-wise interaction coverage where t represent an arbitrary
natural number. The general formula, for calculating the total number of possible
combinations is 2t ·

(
n
t

)
. This number scales polynomial with the number of features

n and t as exponent and exponentially with the parameter t. Thus, selecting a
high t results in high number of combinations to cover. There is no known efficient
algorithm for finding the minimal set of configurations even for a feature model that
solely contains optional features [Hartman, 2005].

24 2. Background

2.4 Summary
In this chapter, we introduced the fundamentals for problem and solution space,
including feature models, configurations, implementation artifacts, and presence
conditions. We presented the formalism that we use throughout our thesis. Further,
we presented the different types of configuration processes, with a special focus on
decision propagation for the semi-automated configuration process, which we build
upon in Chapter 3, and sampling as a form of the fully-automated configuration
process, which we extend in Chapter 4 and Chapter 5.

3. Modal Implication Graphs
This chapter introduces the concept of modal implication graphs. It shares
material with the following two publications: Propagating Configuration
Decisions with Modal Implication Graphs (ICSE’18) [Krieter et al., 2018]
and Incremental Construction of Modal Implication Graphs for Evolving
Feature Models (SPLC’21) [Krieter et al., 2021]. First ideas and preliminary
evaluations on modal implication graphs were also presented in the master’s
thesis Efficient Configuration of Large-Scale Feature Models Using Extended
Implication Graphs [Krieter, 2015].

In this chapter, we introduce a novel data structure called modal implication graph
(MIG) that aims to reduce the computational effort of certain SAT-based analyses.
A MIG stores useful information about feature dependencies in an easily accessible
way, which facilitates any analyses that rely on these information. As it requires
some computational effort to build a MIG, effectively they can be considered as
trade of some initial computational effort for increased performance of all following
analyses that employ a MIG. We find that a MIG is a helpful data structure for a
semi-automated configuration process, such as an interactive configuration process
that uses decision propagation, which we present in this chapter. In addition, a
MIG can facilitate a fully-automated configuration approach, such as our basic
and advanced sampling concept, which we describe in Chapter 4 and in Chapter 5.
Furthermore, a MIG is beneficial in other feature model analyses as well, which
discuss to some extend in Chapter 7.

In the following sections, we first give a brief motivation on why a MIG is useful (see
Section 3.1). Second, we explain the structure of a MIG and what it represents (see
Section 3.2). Third, we explain how a MIG can be used to facilitate feature model
analyses (see Section 3.3). Fourth, we introduce a build process that can construct a
MIG from a feature model (see Section 3.4). Fifth, we describe optimizations to the
build process to enable incremental updates to a MIG (see Section 3.5). Finally, we
evaluate the performance of a MIG within feature model analysis and the overhead
introduced by the regular and incremental build process (see Section 3.6). This
chapter is mainly based on two publications that introduce the original concept of

26 3. Modal Implication Graphs

MIGs [Krieter et al., 2018] and present an incremental build process to speed up the
construction of MIGs for evolving feature models [Krieter et al., 2021]. However,
beyond these publications, we also present novel ideas regarding the application of
MIGs in feature model analyses (see Section 3.3.2) and further details on the regular
and incremental build process of MIGs (see Section 3.5 and Section 3.4).

3.1 Motivation
Many of the typically employed analyses, such as finding dead features and redundant
constraints, are NP-hard problems, which means that currently there is no known
algorithm that is able to solve them efficiently. Still, we attempt to perform analyses
on feature models in feasible time by utilizing two of their properties. First, most
feature model analyses can be solved by reducing them to multiple instances of
the satisfiability problem (SAT) [Mendonça, 2009] or other well-known problems,
such as the constraint satisfaction problem (CSP) or the sharp satisfiability problem
(#SAT). For instance, determining all dead features of a feature model can be done
by constructing and solving a SAT problem for each feature. This reduction allows
us to strip the complex part of an analysis and solve it with an optimized solver.
Second, when reducing analyses of many real-world feature models the resulting
SAT instances are relatively easy to solve [Mendonça et al., 2009b]. In summary,
SAT-based analysis solves multiple instance of SAT using a state-of-the-art SAT
solver and interpret the results to answer the actual question of the analysis. Thus,
a potential efficiency improvement for these analyses lies in decreasing the number
of SAT instances necessary to find an answer. With our work, we try to build on
this fact and increase the efficiency of SAT-based analyses.

When we consider the SAT reductions used in state-of-the-art SAT-based analyses,
we can see that the resulting SAT instances often represent similar problems. For
example, regarding our example in Figure 2.1 (on Page 9), if we want to know
whether the feature File System (FS) is a dead feature, we transform it to the
SAT problem ¬SAT (ϕ(M) ∧ ϕ+(FS)). Analogous, if we want to know whether the
feature Operating System (OS) is a dead feature, we transform it to the similar
SAT problem ¬SAT (ϕ(M) ∧ ϕ+(OS)). Due to the similarities between such SAT
instances, in most cases the corresponding solving processes share many redundancies,
even to a point where one SAT instances can be answered simply by reusing an
intermediate result from a previous one. Similarly, there can be questions that are
transformed into a SAT instances, but are in fact trivial to answer, which results in
unnecessary computational effort. By modeling the relationships between features
within a MIG, we attempt to address both of these issues.

3.2 Structure of Modal Implication Graphs
A MIG is a directed graph that represent the relationships between the assignments
of feature variables of a feature model. It is based on a regular implication graph,
but extends it by adding an additional type of edge. This new edge type represent a
relationship between two features that is not a direct implication. A regular implica-
tion graph is only capable of representing implications between two features. Thus,

3.2. Structure of Modal Implication Graphs 27

when we construct an implication graph for a feature model, all other relationships
between features would not be represented within it. In contrast, the extension of a
regular implication graph to a MIG enables us include all relationships between all
features defined in a feature model within the graph. Thus, a MIG is able to store
all information of a feature model formula.

3.2.1 Strong and Weak Edges

The structure of a MIG consists of a set of vertices and two sets of directed edges.
A MIG can be constructed for every non-void feature model. For such a feature
model, the vertices of a corresponding MIG represent all valid assignments of its
feature variables (i.e., all literals). For each Boolean feature, the graph contains
two vertices, one that represent a positive literal and one that represent a negative
literal. Note that features that are either core or dead can only have one valid
assignment (i.e., true for core features and false for dead features). For this reason,
it is unnecessary to put them into relation to other features. Thus, there are no
vertices in the graph that refer to features that are core or dead. An edge between
two vertices in a MIG describes a (potential) implication between two literals and
is based on some propositional formula that can be derived from the constraints
of a feature model. There are two types of edges, strong and weak. A strong edge
represents a direct implication between two literals. The relationship that a strong
edge (v, v′) represents can be expressed as the propositional formula v ⇒ v′. A weak
edge represents a potential implication between two literals, which means there is
an implication between both literals under some additional condition. A potential
implication can also be expressed as a propositional formula in the following form:
ϕ⇒ (v ⇒ v′), where ϕ = (l1 ∧ ... ∧ lk) is some conjunction of literals with k ≥ 1. If
no feature variable has an assigned value, the condition of a weak edge is usually
not satisfied, which means that an inclusion of v in a configuration does not imply
an inclusion of v′. However, if a partial configuration assigns values to some feature
variables such that the condition of a weak edge is satisfied, then the implication
of that weak edge is no longer potential. In this case, an inclusion of v in the
configuration does imply an inclusion of v′.

Formally, we define a MIG as follows:

Definition 3.1 Modal Implication Graph. A modal implication graph G =
(V ,DU ,DS,DW) is a 4-tuple consisting of a set of vertices V, a set of unit clauses
DU , a set of 2-clauses ES, and a set of complex clauses DW .

• V contains all vertices of the graph. Each vertex represents a literal of the
corresponding feature model.

• DU contains all literals that represent core and dead feature variables in the
corresponding feature model. Note that:

– No core or dead feature variable is represented by a regular vertex
(i.e., V ∩ DU = ∅)

– A feature can be either core or dead, but not both
(i.e., ∄v ∈ DU : ¬v ∈ DU).

28 3. Modal Implication Graphs

Figure 3.1: MIG for the Server feature model from Figure 2.1 (on Page 9)

• DS contains all clauses of the corresponding feature model that contain exactly
two literals. All strong edges can be derived from DS:

– A strong edge e = (v, v′) with v, v′ ∈ V , v ̸= v′ is a directed edge between
two vertices of the graph.

– The set of all strong edges ES(G) is implicitly inferred from DS as follows:
ES(G) = {(¬v, v′) | {v, v′} ∈ DS,¬v ̸= v′}.

• DW contains clauses with three or more literals from the corresponding feature
model. All weak edges can be derived from DW :

– A weak edge w = (v, v′) with v, v′ ∈ V, v ̸= v′ is a directed edge between
two vertices of the graph.

– The set of all weak edges EW (G) is implicitly inferred from DW as follows:
EW (G) = {(¬v, v′) | {v, v′, ...} ∈ DW ,¬v ̸= v′}.

In Figure 3.1, we show a depiction of a MIG for our example feature model in
Figure 2.1. Each feature has two vertices in the MIG, a vertex representing its
positive literal and a vertex representing its negative literal. The features Server,
Operating System, and File System are an exception. They do not appear in the
MIG as regular vertices, because they are core features. Thus, they are part of the
set DU . There are multiple strong edges, for example from the vertex Deb to the
vertex ¬Win and from NTFS to WIN and vice-versa. This means that if a valid
configuration contains the literal Deb (i.e., the feature variable Deb is assigned the
value true) then it must also contain the literal ¬Win (i.e., the feature variable Win
must be assigned the value false). There are also multiple weak edges, for instance
from ¬Win to Deb and ¬Deb to Win. This means that if a configuration contains
the literal ¬Win then under some condition it must also contain the literal Deb.
In this case, the condition is satisfied for all partial configurations that contain the
literal ¬Mac. This can also be expressed as ¬Mac⇒ (¬Win⇒ Deb).

3.2. Structure of Modal Implication Graphs 29

3.2.2 Strong and Weak Paths

In addition to directed edges, we can also define relationships of literals via paths
within the graph. Formally, we define a path in a MIG as follows:

Definition 3.2 MIG Path. A path p = (e1, . . . , ek) within a MIG G is a finite,
non-empty sequence of k edges with p ∈ (ES(G) ∪ EW (G)k, in which each edge occurs
at most once and for which there is a sequence of vertices (v1, . . . , vk+1) ∈ V(G)k+1

such that ∀i ∈ [1, k] : ei = (vi, vi+1). Further, we define the following properties of a
path:

• Let p = (e1, . . . , ek) and e1 = (v1, v2) and ek = (vk, vk+1), then we call v1 the
source vertex and vk+1 the target vertex of the path p.

• A strong path is a path that consists of only strong edges (i.e., ∀e ∈ p : e ∈
ES(G)). We denote the set of all strong paths within a MIG with PS(G).

• A weak path is a path that contains at least one weak edge (i.e., ∃e ∈ p : e ∈
EW (G)). We denote the set of all weak paths within a MIG with PW (G).

A path between two vertices represents the same type of relationships between two
literals as edges. To this end, we can partition all paths into two categories, strong
paths and weak paths. A strong path is a path between two vertices that consists
of only strong edges. It has the same effect as a strong edge. If the source vertex
of a strong path is included in a configuration, the target vertex of the path must
also be included in that configuration. This is due to the transitivity of implications
(i.e., if v1 ⇒ v2 and v2 ⇒ v3 then v1 ⇒ v3). For instance, in Figure 3.1, there is a
strong edge from Deb to ¬Win and a strong edge from ¬Win to ¬NTFS. Thus,
there is a strong path p = ((Deb,¬Win), (¬Win,¬NTFS)) from Deb to ¬NTFS,
which translates into the propositional formula Deb⇒ ¬NTFS.

In contrast, a weak path is a path that contains at least one weak edge. A weak
path is analogous to a weak edge, meaning that it represents a potential implication
between two literals. This potential implication is also dependent on a condition,
which is the conjunction of the conditions of all weak edges contained in a weak
path. If the condition is satisfied, then the inclusion of the literal represented by the
source vertex implies the inclusion of the literal represented by the target vertex. For
example, in Figure 3.1, there is a weak path p = ((¬NTFS,¬Win), (¬Win,Deb))
from ¬NTFS to Deb. This is the opposite traversal direction from our previous
example, but in this case the edge (¬Win,Deb) is weak, and thus the entire path is
also weak. The potential implication represented by this path is ¬NTFS ⇒ Deb,
which is true under the condition ¬Mac. As this path contains only one weak edge
the condition is the same as the condition from this edge.

Furthermore, if there is no path between two given vertices it means that their corre-
sponding literals have no relationship at all and can always be included independently
from each other. For example, the vertices Log and ¬Log are disconnected from
all other vertices in the MIG, and thus unreachable from any other vertex via any
combination of edges. Therefore, the feature Log can be configured independently
from any other feature. Another less obvious example is that the vertex Win is
not reachable from the vertex EXT . Thus, the literal Win can be included in any

30 3. Modal Implication Graphs

configuration independently from whether the literal EXT is included in the same
configuration or not.

In general, if we want to determine whether there is an implication from one given
literal v to another literal v′ under some partial configuration c, we can follow the
following procedure: First, we check whether there is any path at all that leads from
v to v′. If there is no path, then v is independent from v′. Otherwise, there is a
non-empty set of paths, which all lead from v to v′. Second, we check whether the
set of paths contains at least one strong path. If this is the case, then v ⇒ v′ is true.
Otherwise, all paths from v to v′ are weak. Third, we check whether there is a weak
path for which its condition is satisfied by c. If there is any, then v ⇒ v′ is true.
Otherwise, v is independent from v′ in c. The iterative application of this procedure
is the basis for using a MIG to facilitate the process of decision prorogation, which
we explain in the detail in the following section.

3.2.3 Completeness and Minimality Property

In Figure 3.1, we show a correct MIG for the feature model in Figure 2.1. We can
use this MIG to determine the implication between two literals, as we described
above. However, the effectiveness of a MIG during its application may be increased
by optimizing its sets of edges. In general, we consider a MIG to be more effective the
more strong paths and the fewer weak paths it contains. One of the main applications
of a MIG is to find vertices that are connected to a given vertex by traversing along
the edges. When traversing along weak paths, this may results in solving a SAT
instance in order to check whether the condition of a weak path is met. Thus, the
effort of traversal can be simplified by reducing the number of weak and increasing
the number of strong edges in the MIG.

The reduction of weak edges accomplishes two things. First, the branching degree
and thereby the total number of paths is reduced, which speeds up traversal. Second,
the number of weak paths is reduced, which reduces the potential number of SAT
instance that need to be solved. The increase of strong edges accomplishes a similar
goal. If the inclusion a new strong edge creates a strong path between two vertices
that were previously only connected via weak paths, it again reduces the potential
number of SAT instance. For example, in Figure 3.1 the edges of the MIG are not
optimized. There is a weak path from Deb to EXT (e.g., via ¬Win, Mac, HFS,
and ¬NTFS). Although there is no strong path between both vertices the statement
Deb⇒ EXT is always true due to the other clauses in the feature model formula.
Thus, there exists an implicit strong edge from Deb to EXT that is not yet part of
the MIG. If we add this strong edge to the MIG, there is no SAT instance required
to check whether Deb implies EXT , because this implication would be explicitly
represented by the strong edge. For the MIG in Figure 3.1 one other implicitly strong
edge from ¬EXT to ¬Deb can be derived.

Completeness To express whether a MIG is optimized, we define the two properties
completeness and minimality for a MIG. The completeness property of a MIG regards
its set of strong edges. A modal implication graph G is complete if each direct
implication that can be inferred from the underlying feature modelM is represented

3.2. Structure of Modal Implication Graphs 31

as a strong edge (i.e., ES(G) = {(v, v′) ∈ V(G)2 | TAUT (ϕ(M)⇒ (v ⇒ v′))}). If a
MIG is complete, it means that there is no implicit strong edge that is not explicitly
contained in its set of strong edges. As we have shown, the MIG in Figure 3.1
contains such implicit strong edges, and thus it is not complete. We can measure
the degree of completeness of a MIG by computing the ratio between the size of its
set of strong edges and the number of all implications that can be inferred from the
feature model formula. We express this with the following function:

E∗S = {(v, v′) ∈ V(G)2 | TAUT (ϕ(M)⇒ (v ⇒ v′))}

completeness(G,M) =


1 if |E∗S| = 0

|ES(G)|
|E∗S|

otherwise

The function completeness returns a rational value between 0 and 1, where a value
of 1 means that the MIG is complete and a value of 0 means that all strong edges
that could be inferred from the feature model are missing. A complete MIG means
that there is no implicit strong edge that is not explicitly contained in the set of
strong edges. Note that, if there are no strong edges that could be inferred from a
given feature model, we consider the corresponding MIG as complete.

Minimality While the property of completeness is an indicator of whether the
set of strong edges is optimized, the property of minimality is an indicator for an
optimized set of weak edges. We define a modal implication graph to be minimal
if each of its weak edges has a corresponding clause that is implied by the feature
model formula (i.e., EW (G) = {(v, v′) ∈ V(G)2 | ∃d : d = (¬v ∨ v′ ∨ v′′ ∨ . . .) ∧
TAUT (ϕ(M)⇒ (

∨
(d)))}). For examples, the MIG in Figure 3.1 is minimal. The

weak edge (¬HFS,EXT) can be derived from the clause d = HFS∨EXT ∨NTFS
and d is implied by the feature model formula (i.e., ϕ(M) ⇒ (

∨
(d))). This is

true for every weak edge in the MIG. Contrary, if the MIG would contain a weak
edge (¬EXT,Log), there would exists no clause d′ = {EXT,Log, ...} for which
TAUT (ϕ(M)⇒ (

∨
(d′))) is true, and thus the MIG would not be minimal. Analogous

to the degree of completeness, we define the degree of minimality of a MIG as the
ratio between all pairs of literals for which a clause exists that is implied by the
feature model formula and the size of its set of weak edges:

E∗W = {(v, v′) ∈ V(G)2 | ∃d : d = (¬v ∨ v′ ∨ v′′ ∨ . . .) ∧ TAUT (ϕ(M)⇒ (
∨

(d)))}

minimality(G,M) =


1 if |EW (G)| = 0

|E∗W |
|EW (G)|

otherwise

The function minimality returns a rational value between 0 and 1, where a value
of 1 means that the MIG is minimal and a value less than 1 means that there are
unnecessary weak edges in the MIG that could be removed or replaced with a strong
edge. A value of 0 means that a MIG contains weak edges, but only needs to contain

32 3. Modal Implication Graphs

Figure 3.2: Complete MIG for the Server feature model from Figure 2.1 (on Page 9)

strong edges. In this case, a MIG could be expressed as a regular implication graph.
Note that, if a MIG contains no weak edges at all, we consider it to be minimal.

In Figure 3.2, we depict a complete and minimal version of the MIG in Figure 3.1. We
can see that this MIG has numerous transitive strong edges, which were not present
in the previous MIG. For instance, the edge (HFS,¬Deb) is a transitive strong edge
that can be derived from the strong path ((HFS,Mac), (Mac,¬Deb)). The new
MIG also contains the two implicit strong edges (¬EXT,¬Deb) and (Deb,EXT).
In addition, there is no weak edge in the new MIG that could be removed without
affecting its correctness with regard to its corresponding feature model.

Both, the degree of completeness and the degree of minimality, serve as an indicator for
the effectiveness of a MIG in its applications. The smaller the degree of completeness
and minimality of a MIG the lower its effectiveness. If a MIG is both, complete and
minimal, its potential effectiveness is maximized.

3.3 Applications of Modal Implication Graphs

In our work, we consider multiple applications for MIGs. Originally, we designed
MIGs to facilitated the process of decision propagation in an interactive configuration
process. However, the information on feature relationships that are exposed by MIGs
are beneficial for other applications as well. For instance, we can utilize MIGs for
configuration sampling in an automated configuration process. Furthermore, we
can use MIGs for some feature model analyses, such as finding atomic sets and
operations that modify a feature model (e.g., feature model decomposition and
feature model slicing). In this section, we focus on the originally intended usage
of MIG to facilitated decision prorogation. We present some more details on the
utilization of MIGs within these operations in the next chapters (Chapters 4–7).

3.3. Applications of Modal Implication Graphs 33

Algorithm 3.1 Naïve decision-propagation algorithm
Require:

M – Feature Model
ccurrent – Current Configuration

Return:
cnew – New Configuration

1: function decisionPropagation(M, ccurrent)
2: csolution ← sat(M, ccurrent)
3: if csolution = ∅ then
4: return ∅
5: cnew ← ccurrent
6: for all ltest ∈ L(M) do
7: ctemp ← cnew ∪ {ltest}
8: csolution ← sat(M, ctemp)
9: if csolution = ∅ then

10: cnew ← cnew ∪ {¬ltest}
11: return cnew

3.3.1 Decision Propagation

In this thesis, we employ decision propagation (cf. Section 2.3.2) in an interactive
configuration process. An interactive configuration process consists of a sequence of
decisions made by user. Starting with an empty configuration, each decision assigns
a value to a feature variable, which leads to a partial and eventually to a complete
configuration. Thus, each decision further restricts the current valid problem space
until only one valid configuration remains.

For example, we take an empty configuration c = ∅ for the server system in
Figure 2.1 and make the decision to assign the value true to the feature vari-
able Win, which results in the partial configuration c′ = {Win}. We then ap-
ply decision propagation, which computes the following new partial configuration
c′′ = {Win, Server, FS,OS,NTFS,¬HFS,¬Mac,¬Deb}. The literals Server, FS,
and OS are included, because the corresponding feature variables are core. The
literal NTFS is implied by the inclusion of Win through the cross-tree constraint
Win⇔ NTFS. The inclusion of the literals ¬Deb and ¬Mac are a result of the al-
ternative group with Win. The literal ¬HFS is included, because ¬Mac is included
and the cross-tree constraint Mac⇔ HFS must be satisfied.

Naïve SAT-Based Decision Prorogation

In general, decision propagation can be reduced to multiple SAT problems, similar
to determining dead and core features. If we want to determine whether a given
feature variable f can still be assigned the value true under a partial configuration c,
we solve the SAT problem SAT (ϕ(M) ∧

∧
(c) ∧ ϕ+(f)). Analogous, for the value

false, we solve the problem SAT (ϕ(M) ∧
∧
(c) ∧ ϕ−(f)). In Algorithm 3.1, we show

a naïve algorithm that implements decision propagation by applying this principle.
The algorithm takes two arguments, a feature modelM and a (partial) configuration

34 3. Modal Implication Graphs

Algorithm 3.2 Advanced decision-propagation algorithm
Require:

M – Feature Model
ccurrent – Current Configuration

Return:
cnew – New Configuration

1: function decisionPropagation(M, ccurrent)
2: csolution ← sat(M, ccurrent)
3: if csolution = ∅ then
4: return ∅
5: Lunknown ← {l ∈ L(M) | l /∈ csolution ∧ ¬l /∈ ccurrent}
6: cnew ← ccurrent
7: for all ltest ∈ Lunknown do
8: ctemp ← cnew ∪ {ltest}
9: csolution ← sat(M, ctemp)

10: if csolution = ∅ then
11: cnew ← cnew ∪ {¬ltest}
12: else
13: Lunknown ← Lunknown \ csolution
14: return cnew

ccurrent for M and then computes a new (partial) configuration cnew that is an
extension of ccurrent containing all implicitly implied literals. As a first step, the
algorithm calls the function SAT, which attempts to find a satisfying assignment
forM under the assumption of all assignments defined by ccurrent (Line 2). If the
function returns no satisfying assignment, then ccurrent is already invalid and decision
propagation cannot be applied (Lines 3–4). Otherwise, the algorithm continues by
creating an initial version of cnew by copying all literals from ccurrent (Line 5). In the
next step, the algorithm checks for every possible literal whether it conflicts with
ccurrent or not. For each literal in L(M), the algorithm constructs a new temporary
configuration ctemp by adding ltest to cnew (Line 7). Then, the algorithm calls SAT to
find a satisfying assignment ofM under the assumption of ctemp (Line 8). If there is
no satisfying assignment, then ltest conflicts with cnew and consequently with ccurrent.
As we use Boolean features, we know that if ltest is conflicting with ccurrent, then its
complement ¬ltest must be implied by ccurrent (Lines 9–10). Therefore, the algorithm
adds ¬ltest to cnew. In case that SAT finds a satisfying assignment csolution, we know
that ltest does not conflict with ccurrent, but we cannot infer that it is also implied
by ccurrent. Finally, after all literals in L(M) were processed, the algorithm returns
cnew, which now contains all implied literals (Line 11).

Advanced SAT-Based Decision Prorogation

The naïve algorithm uses two SAT queries for every feature variable, and thus
requires a high amount of computational effort. In Algorithm 3.2, we show an
advanced version of this algorithm, which uses the solution of any solved SAT query
to drastically reduce the total amount of SAT queries. The general structure of the

3.3. Applications of Modal Implication Graphs 35

algorithm is the same as before, it also takes two arguments, a feature model M
and a (partial) configuration ccurrent and computes a new (partial) configuration
cnew. Again, the first step of the algorithm is to call the function SAT forM under
the assumption of ccurrent (Line 2). There are two possibilities, either there is no or
at least one satisfying assignment. If the function returns no assignment (i.e., ∅),
then ccurrent is invalid and the algorithm stops (Lines 3–4). Otherwise, the function
returns a satisfying assignment as a set of literals csolution, which is then used in
the following steps. Next, the algorithm constructs a set Lunknown that contains
all literals for which it is unclear whether they conflict with ccurrent (Line 5). As
we know that csolution is satisfiable and that ccurrent ⊆ csolution, we know that all
literals in csolution are definitely not conflicting with ccurrent. Analogous, we know
that the complements of all literals in ccurrent definitely do conflict with ccurrent. For
all other literals it is not immediately clear whether they have a conflict with ccurrent,
Consequently, Lunknown contains all literals from L(M) minus all literals of csolution
and minus all complementary literals from ccurrent. In the next step, the algorithm
creates the initial version of cnew by copying all literals from ccurrent (Line 6). Then,
the algorithm tests each literals from Lunknown individually and within each iteration
may modify cnew and Lunknown (Line 7). Again, the algorithm constructs a new
temporary configuration ctemp by adding ltest to cnew (Line 8) and uses this temporary
configuration in a SAT query (Line 9). If SAT cannot find a satisfying assignment
then ltest conflicts with cnew and consequently with ccurrent. The algorithm adds ¬ltest
to cnew (Lines 10–11). In case that SAT does find a satisfying assignment csolution,
we know that ltest does not conflict with ccurrent. Furthermore, we can use csolution
to reduce the set Lunknown. Because csolution is a satisfying assignment with ccurrent
⊆ csolution, every assignment in csolution is definitely not conflicting with ccurrent and
we can remove them from Lunknown without further testing (Lines 12–13). Finally,
after all literals in Lunknown were processed, the algorithm returns the modified cnew
(Line 14).

The algorithm described above attempts to reduce the amount of SAT instance
that are needed to solve during its execution. However, applying this algorithm
after each decision still requires much computational effort, because it still requires
solving multiple NP-complete problems. By employing a MIG, we want to improve
on this algorithm by reducing the total amount of required SAT instances even
further. The basic idea of a MIG-assisted algorithm is to traverse along the strong
and weak paths of the MIG in order to determine directly implied and potentially
implied literals. One improvement is to avoid SAT instances that test literals that are
obviously implied by another literal (i.e., are connected by a strong path). Another
improvement is to avoid SAT instances that test literals that are independent of the
current decision (i.e., no reachable by any path). We can easily identify these cases
using a MIG, and thus potentially reduce the amount of SAT queries necessary for
the a complete decision propagation. In our scenario of an iterative configuration
process, a decision is the assignment of a value to a single feature variable. We can
map every decision to a literal that we add to the current configuration. Further, we
know that there is a vertex in a MIG that represents this literal. Starting from this
vertex, we can traverse the graph using a standard graph searching algorithm (e.g.,
breadth-first search) to find all strong paths to other vertices. This way, we find
all literals that are directly implied by the current decision without employing any

36 3. Modal Implication Graphs

Algorithm 3.3 MIG-assisted decision propagation algorithm
Require:

M – feature model
G – modal implication graph
ccurrent – current configuration
lnew – literal of most recent decision

Return:
cnew – new configuration

1: function decisionPropagation(M, ccurrent)
2: G ← updateGraph(G, ccurrent)
3: Lstrong ← {l ∈ L(M) | ∃(ltest, l) ∈ S}
4: cnew ← ccurrent ∪ Lstrong

5: Lunknown ← {l ∈ L(M) | ¬l /∈ ccurrent ∧ ∃(lnew, l) ∈ W}
6: if Lunknown ̸= ∅ then
7: csolution ← sat(M, ccurrent)
8: if csolution = ∅ then
9: return ∅

10: Lunknown ← Lunknown \ {l | ¬l ∈ csolution}
11: for all ltest ∈ Lunknown do
12: ctemp ← cnew ∪ {¬ltest}
13: csolution ← sat(M, ctemp)
14: if csolution = ∅ then
15: G ← updateGraph(G, ctemp)
16: Lstrong ← {l ∈ L | ∃(ltest, l) ∈ S}
17: cnew ← cnew ∪ {¬ltest} ∪ Lstrong

18: Lunknown ← Lunknown \ Lstrong

19: else
20: Lunknown ← Lunknown \ csolution
21: return cnew

SAT instances. In addition, we can perform another graph traversal along all weak
paths to find all vertices that are potentially implied by the current decision. The
literals represented by these vertices we have to check using SAT instances, however
every other literal can be ignored, because it is not reachable via a strong or weak
path, and thus independent from the current decision. Effectively, we split the set of
all literals that are not part of the current configuration into three disjoint subsets.
First, the set of literals that are represented by vertices that are reachable via a
strong path. Second, the set of literals that are represented by vertices that are only
reachable via a weak path. Third, the set of literals that are represented by vertices
that are not reachable. The first set we can infer directly without using any SAT
instances. The third we can ignored as they have no relationship with the current
selection. Only for the second set we must resort to employing SAT instances.

MIG-Assisted Decision Prorogation

We depict our MIG-assisted decision propagation algorithm in Algorithm 3.3. Again,
the general structure of this algorithm is similar to the naïve and advanced algorithm.

3.3. Applications of Modal Implication Graphs 37

However, it requires two additional parameters, a MIG G and a literal lnew that
represents the latest decision in the configuration process (i.e., the most recent
variable assignment). The first step of the algorithm is to update G by checking
whether the condition of any weak edge is fulfilled, which is then treated as a strong
edge (Line 2). This can happen because we assign concrete values to feature variables
during the configuration process and also during the decision propagation. Therefore,
if the condition of a weak edge is fulfilled by the current partial configuration, the
edge no longer indicates a potential but a direct implication (i.e., becomes strong).
In the second step, the algorithm traverses G along all strong paths, starting from
the vertex of lnew, to find the set of all literals Lstrong that are directly implied by
the current decision (Line 3). The algorithm then constructs cnew by copying all
literals from ccurrent and adding all literals from Lstrong (Line 4). Next, the algorithm
traverses G along all weak edges, starting from the vertex of lnew, to determine the
set of all potentially implied literals Lunknown that are not already contained in cnew
(Line 5). In case that Lunknown is empty, the algorithm has nothing more to do and
simply returns cnew (Lines 6, 21). Otherwise, the algorithm continues by performing
an initial SAT query on M under the assumption of cnew (Line 7). If this SAT
query cannot find a satisfying assignment, ccurrent was already conflicting and the
algorithm stops by returning an empty set (Lines 8–9). Otherwise, the algorithm
uses the resulting satisfying assignment csolution to reduce Lunknown. Every literal
in csolution is not conflicting with ccurrent, because ccurrent ⊆ csolution. Therefore, the
complement of each literal in csolution cannot be implied by ccurrent. Consequently, the
algorithm removes the complement of each literal in csolution from Lunknown (Line 10).
Then, the algorithm iterates over every remaining literal ltest in Lunknown to test
each individually as follows. The algorithm creates a temporary configuration ctemp

that is a union of cnew and the complement of ltest (Line 12). Next, the algorithm
calls SAT with ctemp (Line 13). If there is a satisfying assignment csolution, then the
algorithm uses it again to reduce Lunknown by removing the complement of every
literal in csolution from Lunknown (Line 20). In this case, also ltest is not implied by
ccurrent, because its complement does not conflict with ccurrent. In contrast, if SAT
cannot find a satisfying assignment, the complement of ltest does conflict with ccurrent,
and thus ltest is implied by ccurrent. The algorithm updates G using ctemp (Line 15).
Afterwards, it traverses the updated MIG along its strong edges, starting from the
vertex representing ltest. The set of all strongly connected literals Lstrong are implied
by ltest, and thus also by ccurrent. The algorithm adds ltest and all literals in Lstrong

to cnew (Line 17) and removes all literals in Lstrong from Lunknown (Line 18). Finally,
after the algorithm processed all literals of Lunknown, it returns cnew (Line 21).

With the MIG-assisted algorithm, we can enabled the utilization of MIGs in decision
propagation. We expect that the usage of a MIG speeds up the decision propagation
compared to the naïve and advanced SAT-based algorithms.

3.3.2 Feature Model Analysis

Another application for MIGs is to increase the performance of certain feature model
analyses. In particular, analyzing the set of strong and weak paths can reveal some
information about the relationship between two features, which is useful for any
analysis that relies on these information. This makes it especially helpful for analyses

38 3. Modal Implication Graphs

such as detecting void feature models, detecting unsatisfiable configurations, and
finding atomic sets.

Detecting Void Feature Models Technically, we cannot create a MIG for a void
feature model, because the resulting MIG would contain one or more contradictions.
In addition, such a MIG would not be useful, as it cannot describe relationships
between literals, if the underlying feature model formula is not satisfiable However,
for detecting whether a feature model is void, we can attempt to create a MIG
and during its construction check whether we include any contradictions. If we add
a strong edge e = (v,¬v) the graph contains a contradiction (i.e., v ⇒ ¬v) and
therefore the feature model must be void. If we added all strong edges without
detecting such a contradiction, we can traverse the MIG along its strong edges to
find contradicting strong paths. Any strong path where the source vertex represents
the complement of the literal of the target vertex also represents a contradiction,
and thus a void feature model. While this technique works in theory, its practical
applications are limited. The existence of a contradictory strong edge or path is a
sufficient, but not a necessary condition. A contradiction within a feature model
may also be caused by a combination of complex clauses.

Detecting Unsatisfiable Configurations A more useful technique than detecting
a void feature model is the related analysis of checking whether a given partial
configuration is satisfiable. This technique works with the same principle as detecting
void feature models by checking whether there exists a contradiction within the
MIG. Given a partial configuration c for a feature modelM and a MIG G forM,
we first update G as we do in our MIG-assisted decision propagation algorithm (cf.
Section 3.3.1). The assigned values in c may satisfy the conditions of some weak
edges in G, and thus the updated MIG G ′ may contain more strong edges. We then
traverse along the strong edges of G ′ to find any strong path with a source vertex v
and a target vertex ¬v. If we find any such path, the conjunction of the feature model
M and the partial configuration c contains a contradiction. Thus, assuming that
M itself is satisfiable, c must be unsatisfiable. Similar to the detecting void feature
model, the existence of such an edge or path is a sufficient, but not a necessary
condition. A configuration can be unsatisfiable without the existence a contradictory
strong edge or path.

Finding Atomic Sets A more complex analysis is to find the atomic sets of a
feature model (cf. Section 2.1.3). When using a SAT-based approach, this analysis
requires much computational effort. However, whether two features are in the same
atomic set can be efficiently determined in a complete MIG (cf. Section 3.2.3). To this
end, we iterate over all strong edges of a complete MIG. If there exists a strong path
from a vertex v to another vertex v′ and also from v′ to v, then we know that v ⇒ v′

and that v′ ⇒ v, and consequently that v ⇔ v′. In this case, the corresponding
features of v and v′ must be in the same atomic set. Analogous, if there is no strong
path from v to v′ or from v′ to v, then the corresponding features of v and v′ must
be in different atomic sets.

3.4. Construction of a Modal Implication Graph 39

3.4 Construction of a Modal Implication Graph

A MIG can be constructed from any non-void feature model. As long as the feature
model is not changed a corresponding MIG can be used indefinitely in any application.
Thus, any computation effort to construct a MIG may be amortized over time, when
it is frequently used. However, it is still desirable to have an efficient building process
to construct a MIG from a feature model. In the following, we describe the details of
the basic build process and a collection of optimizations that enables a faster build
process at the cost of losing some effectiveness of the resulting MIG. To this end, we
also explain the property of completeness and minimality for a MIG and show how
this relates to a MIG’s effectiveness and its required build time.

3.4.1 Basic Build Process

The basic build process of a MIG consists of two phases, analyzing the input feature
model and constructing vertices and edges. In the first phase, we prepare the input
feature model formula by analyzing it and removing certain anomalies. In particular,
there are three possible anomalies that we need to identify, a void feature model,
core and dead features, and internally redundant clauses. A void feature model does
not have any valid configurations, and thus it is not reasonable to build a MIG
for this model at all. As core and dead feature variables can only be assigned one
value, it is not reasonable to create vertices for them, but to ignore them and only
create vertices for configurable feature variables. Internal redundancies in clauses
may increase the number of total clauses or the number of literals within a clause,
which can affect the derivation of strong and weak edges later. Thus, we remove
these redundancies to simplify the remaining build process. In the second phase,
we derive the MIG graph structure from the modified feature model formula in two
steps. First, we derive the vertices from the set feature variables. Second, we derive
the edges from the clauses of the feature model formula. In the following, we describe
the steps od all phases in detail.

Detecting Void Feature Model Formulas First, we analyze whether the feature
model formula is void by performing the corresponding analysis (cf. Section 2.1.3).
For a given feature model formula ϕ(M), we solve the SAT instance SAT (ϕ(M)).
If we cannot find a satisfying assignment cvoid, then the formula is void and we stop
the build process. Otherwise, we proceed and use the found satisfying assignment
cvoid in the upcoming analysis for dead and core feature variables.

Detecting Core and Dead Feature Variables Second, we compute the set of
core and dead feature variables using the a slightly modified version of the analysis
we described in Section 2.1.3. The analysis detects core and dead feature variables
by solving multiple SAT instances. A minor change to the standard analysis is that
we can use the satisfying assignment cvoid from the void analysis of the previous step.
Thus, we can omit solving the initial SAT instance of the standard analysis. As a
result, the analysis returns a set of literals that represent all core and dead feature
variables. This set is equivalent to the set DU of a MIG.

40 3. Modal Implication Graphs

Detecting Internal Clause Redundancies Third, we detect internally redundant
clauses and fix them accordingly. This step creates a new feature model formula
ϕ′, which is equivalent to the original formula ϕ(M), but without any internal
redundancies. We detect internal redundancies for each clause in the feature model
formula individually by iterating over the set of clauses. A clause is internally
redundant if it contains a literal and its complement (cf. Section 2.1.3). In this case,
we remove the entire clause from the feature model formula, because it is an obvious
tautology. In addition, we also remove duplicate literals from each clause. After
processing all clauses, we continue the build process with the new formula ϕ′.

Deriving Vertices Fourth, we derive the set of vertices V . To this end, we iterate
over all configurable feature variables from the feature model formula. For each
configurable feature variable f , we add two vertices to V , which each represents one
of the two possible assignments of the feature variable (i.e., ϕ+(f) and ϕ−(f)).

Deriving Edges Fifth, we derive the set of 2-clauses DS and the set of complex
clauses DW . To this end, we iterate over all clauses of the feature model formula.
For each clause, we differentiate whether it contains one literals, two literals, or more
than two literals. First, if a clause contains exactly one literal (i.e., a unit clause),
the corresponding feature variable is either core if the literal is positive or dead if
the literal is negative. Since we determined the set of core and dead features DU

in the previous step, we can ignore unit clauses in this step. Second, if a clause
contains exactly two literals we add it to DS. Each 2-clause can be converted into
an implication between two literals, which translates into a strong edge. In fact,
every 2-clause a ∨ b is equivalent to two different implications, ¬a⇒ b and ¬b⇒ a.
Consequently, for each 2-clause a ∨ b, we infer two strong edges e1 = (¬a, b) and
e2 = (¬b, a). For example, in Figure 2.1, we add the clauses ¬Win ∨NTFS to DS

and infer the two strong edges (Win,NTFS) and (¬NTFS,¬Win) (cf. Figure 3.1).
Third, if a clause contains more than two literals we add it to the set of complex
clauses DW . All weak edges can be inferred from DW . Storing complex clauses
rather than weak edges directly has two advantages. First, as each clause translates
two multiple weak edges, we reduce the storing of redundant information. Second,
in addition to deriving weak edges themselves, we can also derive the condition
under which they are true. For each clause in DW with k unique literals that is
not a tautology or contradiction, we can infer k · k − 1 weak edges. Every clause
d = l1 ∨ . . . ∨ ln can be written as ¬li ⇒

∨
1≤j≤n,j ̸=i lj for each literal li in the clause.

Thus, for each pair of literals within a clause d = l1 ∨ . . . ∨ ln, two weak edges can
be inferred, such that ei,j = (¬li, lj) and ej,i = (¬lj, li) for all 1 ≤ i < j ≤ n. For
instance, the clause a∨ b∨ c∨d translates into 12 weak edges. In Table 3.1, we list all
weak edges that result from this clause, their respective condition, and an equivalent
propositional formula that explains and visualized the weak edge and its condition.
Regarding our example in Figure 2.1, for the clause Deb∨Win∨Mac, the following six
weak edges are added: e1,2 = (¬Deb,Win), e2,1 = (¬Win,Deb), e1,3 = (¬Deb,Mac),
e3,1 = (¬Mac,Deb), e2,3 = (¬Win,Mac), and e3,2 = (¬Mac,Win) (cf. Figure 3.1).

The basic build process does not optimize the constructed MIG. Thus, it is likely that
this MIG is neither complete nor minimal. To achieve both properties, we introduce

3.4. Construction of a Modal Implication Graph 41

Table 3.1: All 12 weak edges and their conditions derived from the clause a∨ b∨ c∨d

Equivalent Formula Condition Weak Edge

(¬a ∧ ¬b)⇒ (¬c⇒ d) ¬a ∧ ¬b (¬c, d)
(¬a ∧ ¬b)⇒ (¬d⇒ c) ¬a ∧ ¬b (¬d, c)
(¬a ∧ ¬c)⇒ (¬b⇒ d) ¬a ∧ ¬c (¬b, d)
(¬a ∧ ¬c)⇒ (¬d⇒ b) ¬a ∧ ¬c (¬d, b)
(¬a ∧ ¬d)⇒ (¬b⇒ c) ¬a ∧ ¬d (¬b, c)
(¬a ∧ ¬d)⇒ (¬c⇒ b) ¬a ∧ ¬d (¬c, b)
(¬b ∧ ¬c)⇒ (¬a⇒ d) ¬b ∧ ¬c (¬a, d)
(¬b ∧ ¬c)⇒ (¬d⇒ a) ¬b ∧ ¬c (¬d, a)
(¬b ∧ ¬d)⇒ (¬a⇒ c) ¬b ∧ ¬d (¬a, c)
(¬b ∧ ¬d)⇒ (¬c⇒ a) ¬b ∧ ¬d (¬c, a)
(¬c ∧ ¬d)⇒ (¬a⇒ b) ¬c ∧ ¬d (¬a, b)
(¬c ∧ ¬d)⇒ (¬b⇒ a) ¬c ∧ ¬d (¬b, a)

an advanced build process that extends the basic build process by three steps with
the goal to increase the effectiveness of the MIG.

3.4.2 Advanced Build Process

The goal of the advanced build process is to optimize the sets DS(G) and DW (G),
such that the set of weak edges is minimized and the set of strong edges is complete.
To this end, the advanced build process extends the basic build process by adding
three more steps: detecting external clause redundancies, finding implicit strong
edges, and building the strong hull. We add the first additional step at the end of
the first phase of the basic build process (i.e., analyzing the input feature model). It
further analyzes the input feature model formula and removes an additional type of
anomalies (i.e., externally redundant clauses). The other two steps we add at the
end of the second phase of the basic build process (i.e., constructing vertices and
edges). Both steps refine the initial structure of the graph by modifying the sets of
weak and strong edges. It is important to note that, none of these three additional
steps modifies the sets DS(G) and DW (G) in such a way that the correctness of the
MIG is affected. In the following, we present each step in more detail.

Detecting External Clause Redundancies In this step, we detect externally
redundant clauses within the formula (cf. Section 2.1.3) resulting from the first three
steps of the basic building process. The goal of this step is to increases the degree of
minimality of the resulting MIG by removing redundant clauses, which would lead
to unnecessary weak edges. To this end, we construct a new feature model formula
by starting with an empty formula ϕ′′ and then iteratively adding each clause of the
current feature model formula ϕ′ one-by-one. Before we add a clause d to ϕ′′, we first
check whether it is already implied by ϕ′′ (i.e., whether SAT (ϕ′′ ∧ ¬(

∨
(d))) is false).

If d is not implied by ϕ′′, it is not redundant and we add it to ϕ′′. Otherwise d is not
added to ϕ′′. We then continue the build process using the clauses from the newly

42 3. Modal Implication Graphs

constructed formula ϕ′′. While this step effectively removes any redundancies in the
set of dependencies, it also computationally expensive, because for each clause we
check, we must solve a SAT instance.

Finding Implicit Strong Edges After we built the initial graph structure of a
MIG in the basic build process, there still can be implicit strong edges that are not
contained explicitly in the MIG. We show this in our example in Section 3.2.3. In
this step, we detect implicit strong edges and add them to the MIG. Therefore, we
increases the degree of completeness of the MIG with this step.

To find implicit strong edges, we employ a breadth-first search that investigates all
pairs of weakly connected vertices. We start the search with an arbitrary vertex a
and consider each vertex b that is weakly connected to it. For each vertex b, we then
solve the SAT instance SAT (ϕ(M) ⇒ (a ⇒ b)) to determine whether a implies b.
In that case, we add a strong edge from a to b and continue the search. We repeat
the search with all possible starting vertices until we checked every pair of weakly
connected vertices.

Building the Strong Hull As a last step, we build the strong hull of the MIG.
This means that we compute all transitive strong edges and add them to the existing
set of strong edges. By doing this, we facilitate traversing along strong paths and
also increase the degree of completeness of the MIG. In fact, if we performed the
previous step and added all implicit strong edges, after building the strong hull, the
MIG is now guaranteed to be complete. Finding all transitive strong edges can be
done efficiently by traversing the graph along its strong edges. For each vertex in the
graph, a breadth-first search finds all other vertices that are reachable via a strong
path. If there exists such a path, but no direct strong edge from the start to the end
vertex (i.e., a transitive strong edge), this edge is added to the graph.

3.5 Incremental Modal Implication Graphs
While a once built MIG can be reused an unlimited number of times in any feature
model analysis and configuration processes, it must be specifically tailored to encode
the configuration logic of a particular feature model, which can entail significant
computational cost. This can be an issues when a feature model, for which we
built a MIG, evolves. Feature model evolution may change a feature model or
its constraints and, subsequently, invalidate an existing MIG that then represents
outdated configuration logic. For feature models that evolve frequently, it is costly
to perform the advanced build process to fully rebuild a complete MIG after each
evolution step. Thus, in the light of frequent feature model evolution, reusing the
benefits of a MIG for interactive configuring or sampling configurations is, currently,
severely hampered if not outright infeasible. In addition to the basic and advanced
build process, we present an incremental build process to create a MIGs for an
evolving feature model. The core idea of the incremental build is to reuse information
on anomalies from an older version of the MIG and the information on the feature
model change to reduce the number of SAT instances. To this end, we first explain
how we compute the feature model change and how it is helpful in speeding up

3.5. Incremental Modal Implication Graphs 43

certain analysis during the build process. Then, we reason about which are the most
computationally expensive building steps in the advanced build process and what
potential options we have to increase their performance in the incremental build
process. Finally, we describe the modified building steps in the incremental build
process in more detail and reason about how these modifications affect the MIG
properties of completeness and minimality.

3.5.1 Computing the Feature Model Change

For the incremental build process, we first infer the change ∆ between the two feature
modelsM (i.e., before the evolution) andM′ (i.e., the current version).

Definition 3.3 Feature Model Change. The feature model change between two
feature models M and M′ is described by a tuple ∆(M,M′) = (F+,F−,D+,D−)
consisting of four sets.

• The set of added feature variables F+ = F(M′) \ F(M) contains all features
that are only contained in M′, but not in M. Compared to M these features
are newly introduced in M′.

• The set of removed feature variables F− = F(M) \F(M′) contains all features
that are only contained in M, but not in M′. Compared to M these features
have been removed in M′.

• The set of added dependencies D− = D(M) \ D(M′) contains all dependencies
that are only contained in M′, but not in M.

• The set of removed dependencies D+ = D(M′)\D(M) contains all dependencies
that are only contained in M, but not in M′.

The change ∆(M,M′) between two feature models can be computed by comparing
their sets of features and dependencies, respectively. In our work, we compute the sets
of changed feature variables F+ and F− by comparing the feature names in F(M)
and F(M′). We infer the set of removed clauses and added clauses by computing
D− = D(M) \ D(M′) and D+ = D(M′) \ D(M). For this, we take into account
renamings of feature variables, if this information is available. If a feature variable
was renamed as part of the feature model evolution, we treat it as the same variable
as before, instead of considering it to be a removed and an added variable. Similarly,
if a clause contains one or more renamed variables, but is otherwise unchanged, we
treat it as the same clause.

From ∆(M,M′), we can reason about the type of change that is necessary to
update the MIG. In particular, we characterize ∆(M,M′) depending on the contents
of the sets of changed dependencies D− and D+. A feature model evolution can
either do no change (i.e., D− = D+ = ∅), add constraints (i.e., D− = ∅ and
D+ ̸= ∅), remove constraints (i.e., D− ̸= ∅ and D+ = ∅), or replace constraints (i.e.,
D− ̸= ∅ and D+ ̸= ∅). For the characterization, we do not consider the sets F+

and F−, as changing the set of features does not change the relationships between
existing features. Naturally, adding or removing features to a specific feature model

44 3. Modal Implication Graphs

representation, such as a feature diagram, also changes related constraints. However
this is then also reflected in the sets of changed dependencies D− and D+. When
the set of features changes, it suffices to update the MIG by adding and removing
the respective vertices, which is part of the second building step deriving vertices
and edges. Adding constraints to D(M) may cause new anomalies within a feature
model, but will not remove existing ones. Removing constraints from D(M) may fix
old anomalies, but will never cause new ones. Replacing constraints can be seen as
simultaneous addition and removal of constraints to a feature model, and thus may
introduce and fix anomalies.

In addition to the feature model change ∆(M,M′), we also require information on
anomalies of the previous feature modelM. We determine the set of anomalies from
the feature model formula and MIG ofM. Core and dead feature variables, as well
as implicit strong edges, are saved within a MIG, and, thus, we can access them
without further computation. We derive the set of previously externally redundant
clauses by comparing the set of clauses in the CNF with the edges in the MIG. If
there is a clause with no corresponding edge, it was redundant.

3.5.2 Computationally Expensive Building Steps

The advanced build process consists of many single building steps. However, only
certain steps of are computationally demanding. In fact, all building steps that rely
on solving SAT instances (i.e., the detection of void feature model, core and dead
features, external clause redundancies, and implicit strong edges) are among the
most time-consuming building steps, as these analyses solve (multiple) NP-complete
problems. A notable outlier within these steps is the detection of void feature models,
as this analysis requires only a single SAT query, which is relatively fast for most
feature models [Mendonça et al., 2009b]. Thus, we focus on the other three building
steps. In the following, we discuss the potential options to improve the efficiency of
these steps either directly or with the help of the additional information provided by
the feature model change. All three steps are similar in nature, as they all analyze
employ multiple similar SAT instances. This allows us to reason about potential
efficiency improvements of these three steps together. In summary, we see two
possible improvements: reducing the amount of SAT instances and entirely skipping
the build step.

Reducing SAT Queries One way to speed up a building step is by reducing the
number of overall SAT instances as these are the most expensive parts. Each SAT
instances in every step can be mapped to exactly one particular anomaly (i.e., a
core feature, dead feature, redundant clause, or implicit strong edge). If we knew or
could estimate these anomalies in advance (e.g., whether a feature is core or a clause
redundant), we could avoid the respective SAT queries. Regarding the additional
information from the incremental build, we can think of two ways of achieving this.
First, we can reason about whether and how the set of anomalies for the previous
feature model has changed. Second, given the feature model change, we can use
heuristics to estimate whether a new anomaly will occur.

3.5. Incremental Modal Implication Graphs 45

Given a feature model and corresponding MIG of the previous version, we can derive
its core and dead features, redundant clauses, and implicit strong edges. Then, by
analyzing the feature model change, we can determine whether these anomalies will
change. Adding constraints to the feature model can add more anomalies, but does
not remove existing anomalies. This includes new core and dead features, redundant
clauses, and implicit strong edges. In contrast, removing constraints may only remove
existing anomalies, but never adds new ones.

Instead of investigating all features and constraints for anomalies, by using a heuristic,
we can test only the ones that are most likely to be affected by a change (e.g., by
considering only features that appear in added or removed constraints). Testing only
a subset of features and constraints decreases the number of SAT instances. However,
using heuristics introduces the risk of decreasing completeness of a computed MIG,
i.e., that the graph contains fewer strong edges than possible and more weak edges
than necessary. In turn, this may decrease the MIGs effectiveness in terms of
facilitating decision propagation.

Skipping Operations Another options is to skip an entire operation during the
build process. Similar to using heuristics, this can also reduce the completeness
and minimality of the MIG. Based on the usage scenario, it may or may not be
reasonable to skip operations. For instance, if a MIG (version) is created only once
and it is used for many thousands of configuration processes, the additional effort to
not skip the operations may pay off in the long term. In contrast, if a MIG (version)
is only used for few configuration processes, it pays off to skip them. With the basic
build process, we already have the option to partially skip building steps compared
to the advanced build process, which may result in an incomplete and non-minimal
MIG, which can be less effective during its application. Thus, we resort to skipping
operations in the incremental build process as well.

3.5.3 Modified Building Steps

To apply an incremental build process instead of the basic or advanced one, there
must be a MIG built for a feature model and a new version of this feature model
(e.g., stemming from evolution). The incremental build process is based on the
advanced build process and follows the same major structure, but uses a modified
variant of the most time-consuming building steps. As the creation of the initial
graph structure (i.e., adding vertices and edges) is a fast building step operation, we
rebuild the graph from scratch. This simplifies the implementation compared to an
implementation that needs to be able to add and remove edges and vertices to and
from a graph. In the following, we describe only the modifications to three steps
detecting core and dead features, detecting external clause redundancies, and finding
implicit strong edges.

Detecting Core and Dead Features Detecting core and dead features, is
based on solving multiple SAT instance. However, it is orders of magnitudes faster
compared to the following two steps. This is due to the re-use of already found SAT
solutions to substantially reduce the number of SAT queries [Mendonça, 2009]. For
this reason, we make only small adaptions to this step for the incremental build

46 3. Modal Implication Graphs

process. A central change is that we split the step into two parts: First, we check
whether the core and dead features from the previous MIG are still core or dead.
Second, we check whether any previously configurable features are now core or dead.
This allows us to avoid unnecessary SAT instances, if constraints were only added or
only removed. We execute the first part only if ∆ is removing or replacing constraints
and execute the second part only if ∆ is adding or replacing constraints. If ∆ makes
no change to the constraints at all, we can skip both parts.

We do not consider using any heuristics for this operation or skipping it entirely,
for two reasons. First, the operation is by far the fastest compared with the other
operations that solve SAT instance. Second, an inaccurate result from this operation
could severely harm the graph structure as it could add vertices that cannot be part
of a valid configuration (i.e., false negative) or neglect vertices that are necessary
(i.e., false positive).

Detecting External Clause Redundancies Similar to the detection of core and
dead features, we split this step into two parts, checking whether the old externally
redundant clauses are still redundant and checking whether there are new externally
redundant clauses. Iff ∆ removes or replaces constraints, it is necessary to check
whether old redundant clauses are still redundant. Checking redundancy of previously
redundant clauses is mandatory. If a former redundant clause is now required and is
not added to the MIG, the resulting MIG would be incorrect.

Checking whether previously non-redundant clauses have become redundant is
optional, as it does not impact the correctness of the MIG, but only increases its
number of edges. Therefore, we consider three different options if ∆ adds or replaces
constraints. First, checking all previously non-redundant clauses for redundancy.
Second, using a heuristic to test only a subset of the previously non-redundant clauses.
In this case, a clause is checked for redundancy only if it contains at least one feature
from any clause in the set of added constraints D+. Third, skipping the second part
of the operation and do not check any previously non-redundant clauses. Clearly,
only the first option guarantees completeness for finding all externally redundant
clauses. However, it also does not have any performance improvement compared to
the advanced build process. Thus, we favor the second and third option, which both
may introduce redundancy to the new MIG. In our evaluation, we test performance
and potential loss of completeness of both options.

Detect Implicit Strong Edges For this step, we make very similar adaptions as
for the step of detecting external clause redundancies for the same reasons. We split
the step into two parts, checking if previously implicit strong edges are still valid
and checking if we can derive new implicit strong edges. If ∆ removes or replaces
constraints, we must check whether every previously implicit strong edge is still valid.
If ∆ adds or replaces constraints, we again consider the three options of running the
entire second part of the operation, using a heuristic to investigate only a subset
of weak edges, or skip the second part of the operation altogether. For the second
option, we use a similar heuristic as for detecting redundancies. In particular, we
only test weak edges that contain at least one feature from any clause in D+. Again,
the first option does not have any performance benefits, but is the only one that

3.6. Evaluation 47

leads to completeness of the resulting MIG. Thus, we evaluate the performance and
loss in completeness of the second and third option in our evaluation.

3.6 Evaluation
By using a MIG-assisted decision propagation algorithm, we effectively split the
process of decision propagation into two phases, an initial offline phase, in which
the MIG is constructed and a repeatable online phase, in which the configuration
process is performed. With MIGs, we aim to speed-up the online phase of decision
propagation by doing further computations during the offline phase (i.e., building
the MIG). Therefore, we need to evaluate the performance of different algorithms for
decision propagation. We compare the offline and online execution time of decision
propagation with differently built MIGs against SAT-based decision propagation (cf.
Section 3.3.1). In particular, we aim to answer the following research questions:

RQ1 Does the choice of a decision propagation algorithm affect the execution time
of the offline phase?

RQ2 Does the choice of a decision propagation algorithm affect the execution time
of the online phase?

RQ3 Given a number of configuration processes, which decision propagation algo-
rithm is superior to others in terms of overall execution time and memory
consumption?

Further, we presented an incremental build process for MIGs that aims to improve
the performance overhead of the offline phase for frequently evolving feature models
(cf. Section 3.5). To evaluate whether the concept for incrementally building MIGs
is able to decrease the performance overhead, we compare it to the advanced build
process. In particular, we pose three more research questions that enable us to
assess the incremental build process. First, we examine whether the incremental
build process improves the MIG build time compared to the advanced build process.
Second, as the incremental build process uses some heuristic analysis, we are also
interested in whether usage of an incrementally built MIG is less efficient than a MIG
built with the advanced build process. Third, considering this potential trade-off
between build time and completeness, we investigate under which circumstances it is
suitable to use the incremental instead of the advanced build process. In particular,
we want to know whether there is an indicator within the change information that
lets us reason about the suitability of the incremental build process. In summary, we
aim to answer the following additional research questions:

RQ4 Does the incremental build process perform faster compared to the advanced
build process?

RQ5 Does the loss in completeness of an incrementally built MIG affect its effective-
ness in analyses?

RQ6 Can the usefulness of an incremental build process be inferred by the charac-
teristics of a feature model change?

48 3. Modal Implication Graphs

3.6.1 Setup of Experiments

To answer our research questions, we perform three experiments in total. The first two
experiments regard the potential performance increase of decision propagation and
the initial performance overhead when using a MIG built with the basic or advanced
build process. In these two experiments, we compare four different algorithms for
decision propagation using 120 real-world systems. In addition to execution time, we
measure the memory consumption of the derived modal implication graph for each
feature model. Our third experiment regards the performance of incremental build
process and the resulting MIG. In this experiment, we use the evolution histories of
four real-world systems to build a MIG for many different feature-model versions
with the advanced and the incremental build process. Then, we use the resulting
MIGs in decision propagation analysis to examine their performance.

In the following, we describe which configurable systems and decision-propagation
algorithms we consider, how we designed the individual runs, and what values we
measure during a single run. First, we present our subject systems and their respective
evolution histories. Second, we explain the different algorithms and parameters we
use in our experiments. Third, we explain the design of our experiments. We describe
which are the relevant variables we measure in order to answer our research questions.
Lastly, we provide relevant details on our implementation of the incremental build
process and the evaluation environment.

Subjects Systems

For our first two experiments, we use the feature models of 120 real-world config-
urable systems with varying sizes and complexity, which have been used in prior
studies [Berger et al., 2013b; Knüppel et al., 2017]. The majority of these feature
models (117) contain between 1,166 and 1,397 features. Of these 117 models, 107
comprise between 2,968 and 4,138 cross-tree constraints, while one has 14,295 and
the other nine have between 49,770 and 50,606 cross-tree constraints. The remaining
three models contain an even higher number of features. The feature models from
the systems Automotive01, Automotive02, and Linux contain 2,513, 18,616, and
6,889 features and 2,833, 1,369, and 80,715 constraints, respectively.

In the remaining experiments, we require feature models in different versions over
time. For this, we use the version histories of four real-world systems. For each
system, we have one feature model per version in the configurable system’s history.
Busybox (500 – 700 features) and Linux (16,000 features) are software systems from
the operating system domain. The evolution history of Linux contains 14 versions,
ranges from November 2013 to December 2013, and has short and long times between
versions (i.e., within a day and within a month). In case of Busybox, we have two
version histories from May 2007 to May 2010 for the same system that differ in the
time between versions. For Busybox (Commits), each of its 187 versions corresponds
to the state of the system after a commit in its version control system that changed
the feature model. In contrast, the history of Busybox (Monthly) contains 37 monthly
snapshots of the system. FinancialServices01 (500 – 700 features) comes from the
financial domain and represents a family of financial products rather than software.
Its evolution history spans from May 2017 to March 2019 and contains 20 monthly

3.6. Evaluation 49

snapshots. Automotive02 (14,000 – 19,000 features) is a cyber-physical system from
the automotive domain. Its evolution history contains 6 monthly snapshots.

Evolution Histories

In order to perform an incremental build, at least one MIG from a previous version
is required. For each of our subject systems, we have an evolution history that
contains multiple consecutive versions (i.e., H⃗ = (V1, ..., Vn)). For any pair of versions
(Va, Vb), we can use the MIG of the first version Va to incrementally build the MIG
for the second one Vb. Note that it is not necessary to use the MIG from the directly
preceding version, but any preceding version.

To see the impact of different evolution steps, we test different scenarios that lead to
a different list of version pairs. The most natural approach would be to evaluate the
incremental build process with regard to all consecutive feature model versions (i.e.,
V1 and V2, V2 and V3, and so on). However, this would require that a regular MIG
is available for each version, which is then used to incrementally build the MIG for
the next version. Thus, we also consider the scenario that there is only one regular
MIG from the first version of a model. In particular, we consider three different
lists of version pairs derived for any given evolution history, namely consecutive,
accumulative, sequential.

Consecutive With the consecutive version pair list, we aim to show the im-
pact of building an incremental MIG for every new version based on the MIG of
the directly preceding version. For a given evolution history, we construct ver-
sion pairs, such that each version is combined with its direct predecessor (i.e.,
(V1, V2), (V2, V3), ..., (Vn−1, Vn)). For incrementally building a MIG for any version,
we use the regular MIG from the preceding version as input.

Accumulative With the accumulative version pair list, we aim to demonstrate
the impact of only using an incremental build process over several consecutive
versions. We use the same version pairs as for the consecutive version pair list (i.e.,
(V1, V2), (V2, V3), ..., (Vn−1, Vn)). However, instead of using the regular MIG from the
preceding version, we use an incrementally built MIG as input. Only for the first
pair (V1, V2), we use the regular MIG of V1.

Sequential With the sequential version pair list, we aim to show the impact of
skipping some versions. For a given evolution history, we construct version pairs, such
that each version is combined only with the initial version (i.e., (V1, V2), (V1, V3), ...,
(V1, Vn)).

50 3. Modal Implication Graphs

Decision-Propagation Algorithms

In the first two experiments, we compare the following algorithms for decision
propagation:

Short Name Name

NSAT Naïve SAT-based
ASAT Advanced SAT-based
IMIG MIG-assisted using an incomplete MIG
CMIG MIG-assisted using a complete MIG

To ensure a fair comparison of all algorithms, we employ a white-box evaluation,
where each algorithm uses the same base implementation as described in Section 3.3.1.

Each algorithm performs certain tasks during its offline phase. Both SAT-based
algorithms determine the core and dead features (i.e., initial decision propagation).
In addition to computing core and dead features, both MIG-assisted algorithms (cf.
Section 3.3.1) derive a modal implication graph. While CMIG derives a complete
and minimal MIG using the advanced build process, IMIG derives an incomplete
and non-minimal MIG using the basic build process. The modal implication graph
is implemented as an adjacency list, due to reasons of memory efficiency. It is stored
to and loaded from persistent memory using Java’s serialization mechanism.

During their online phase, all algorithms calculate implied literals, as described in
Section 3.3.1. While the SAT-based algorithms solely query the SAT solver, the
MIG-assisted algorithms additionally traverse through a MIG to avoid SAT queries.

Parameters of the Incremental Build Process

As stated in Section 3.5, we can choose different options for the two most time-
consuming operations of detecting external clause redundancies and implicit strong
edges. These options influence the execution time of the build process and the
completeness of the resulting MIG. For the advanced build process, we have two
options for each operation, either performing it (✓) or skipping it entirely (×). For
the incremental build process, the options depend on the advanced build process. If
we skip an operation in the advanced build process (×), we also have to skip this
operation in the incremental build as well (×). This is due to the fact that we use
the result of the operations from the MIG of an earlier version and if an operation
was skipped the required information is missing. If we performed the operation in
the advanced build process (✓), we have two options, using a heuristic to speed
up the second part of the operation (heuristic) or skipping the second part of the
operation entirely (skip). Combining the different values for these options, results in
the following five parameter settings that we use for our experiments:

ID Original Incremental

Redundancy Strong Redundancy Strong

1 × × × ×
2 ✓ × skip ×
3 ✓ × heuristic ×
4 ✓ ✓ heuristic heuristic
5 ✓ ✓ skip skip

3.6. Evaluation 51

Offline Phase (Experiment 1)

In our first experiment, we measure the execution time for each algorithm’s offline
phase. As stated above, the offline phase of each algorithm consists of all tasks after
receiving the CNF of a feature model and before starting the actual configuration
process. As the process of creating a CNF is independent from the chosen algorithm,
we do not include it as part of the offline phase, but use the CNF as initial parameter
for each algorithm. To avoid computational bias and calculate a representable mean
value for each feature model and algorithm, we repeat the experiment 200 times.
Furthermore, we compensate for the warm-up effect of the Java virtual machine
(JVM) by performing an initial execution without any measurement.

In order to be able to draw meaningful conclusions, we formulate the following
null hypotheses from RQ1: HRQ1

0 : The execution time of the offline phase is the
same for all investigated decision-propagation algorithms. To test our hypotheses we
use a paired Wilcoxon-Mann-Whitney test with a confidence interval of 95%. Our
expectation is that the offline phase of both SAT-based algorithms is faster than the
offline phase of the MIG-assisted algorithms, but that they perform worse during
the online phase. This is due to the difference in effort of the algorithms during the
offline phase. NSAT and ASAT do the least amount of precomputations, while IMIG
additionally derives an incomplete modal implication graph and CMIG even derives
a complete modal implication graph. This means that, during the online phase,
CMIG can access more information than IMIG, while IMIG has more information
than ASAT and NSAT. Hence, we expect that for the offline phase NSAT and ASAT
are faster than IMIG, which is again faster than CMIG.

Online Phase (Experiment 2)

In our second experiment, we measure the execution time for each algorithm’s online
phase. We simulate a configuration process by using random decisions, as we cannot
know which decisions users would make in their configurations and want to avoid
relying on false assumptions. The simulated configuration process consists of the
following steps:

1. Start with an empty configuration
2. Randomly choose an undefined feature
3. Randomly define the feature (i.e., select or deselect)
4. Apply decision propagation
5. Repeat 2–4 until all features are defined

We measure the execution time for each individual application of decision propagation.
In the experiment, we neglect the time that a user would need to make configuration
decisions (i.e., reasoning and input), as these values highly depend on the user
and, thus, would bias our results. Furthermore, this is not an issue for automated
configuration processes, such as t-wise sampling [Al-Hajjaji et al., 2016a; Johansen
et al., 2012a].

We use a pseudo random generator, which has the advantage that we can fix the
random seed for each iteration of the experiment. Therefore, we ensure that all

52 3. Modal Implication Graphs

algorithms get the same series of random decision and, thus, that the resulting
configurations are equal. To get meaningful results, we repeat the experiment 200
times with different random seeds. Analogous to Experiment 1, we compensate for
the JVM warm-up effect.

Analogous to experiment 1, we formulate the following null hypotheses from RQ2:
HRQ2

0 : The execution time of the online phase is the same for all investigated decision-
propagation algorithms. For the online phase, we expect that the fastest algorithm is
CMIG, followed by IMIG, ASAT, and NSAT, in that order.

Build Incremental MIGs (Experiment 3)

In our third experiment, we measure two different variables: the time to build a MIG
and the time of a decision propagation using the built MIG. In the first part of each
run, we build a MIG using the advanced build process and an incremental MIG for
a given feature model version of a subject system. We separately measure how much
time it takes for both build processes to finish.

In the second part of each run, after building both MIGs, we use each MIG in a series
of decision propagations to measure if there is any difference in their performance. To
this end, we choose 200 random literals from the feature model and perform a decision
propagation with each of the chosen literals as a starting point (i.e., including it in
an empty configuration). We measure the time it takes for each decision propagation
to finish and sum up the results for each MIG. We do not allow duplicates in the
random literal list and use the same literals for every MIG on the same version of a
feature model.

Implementation

We base our implementation on the open-source framework FeatureIDE [Krieter
et al., 2017; Meinicke et al., 2017]. The implementation is written in Java and uses
Sat4J (Version 2.3.5) [Le Berre and Parrain, 2010] as a SAT solver. With Sat4J, we
are able to employ incremental SAT solving. For each feature model we create a
separate solver, which is able to deduce new clauses while solving one query and reuse
these clauses in subsequent queries. In order to ensure a fair comparison between
different algorithms, we base all decision propagation algorithms and MIG build
process are based on the same basic implementation and make sure that they use
the same underlying software framework (e.g., for loading feature models and using
decision propagation with a MIG).

Evaluation System

We run our first two experiments on a notebook with the following specifications:

• CPU : Intel Xeon E3-1505Mv5 (2.80GHz)
• Physical Memory : 64GB
• JVM Max Memory : Xmx: 4GB
• OS : Windows 7
• JVM : JRE 1.8.0_121 (64-Bit)

3.6. Evaluation 53

Table 3.2: Offline and online time of evaluated algorithms for a selection of feature
models (mean value over 200 experiments)

Feature Model #Features #Clauses MIG Mem- Offline time in s (∅)
ory (Byte)

ASAT IMIG CMIG

FreeBSD 8.0.0 1,397 14,295 243,168 0.04 0.42 6.89
Automotive01 2,513 2,833 1,098,248 0.07 0.70 11.60
Linux 2.6.28.6 6,889 80,715 2,157,320 0.27 16.75 399.98
Automotive02 18,616 1,369 5,088,720 2.30 42.47 296.73

All models (∅) – – – 0.03 0.62 6.99

For our third experiment, we use the following hardware:

• CPU : Intel Core i7-5500U (2.4GHz)
• Physical Memory : 16GB
• JVM Max Memory : Xmx: 4GB
• OS : Linux 5.10.23-1-MANJARO
• JVM : OpenJDK 64 Bit 15.0.2

3.6.2 Results of Experiments

In the following, we present and analyze our evaluation results and answer our
research questions.

Offline Phase (Experiment 1)

In Table 3.2, we give an excerpt of the aggregated evaluation results for a selection
of our subject systems. For brevity, we do not list the results from all feature models.
For each feature model, we list its number of features and constraints, memory
consumption of the MIG, and aggregated measurements of our experiments. We
show the execution time that each algorithm needs during its offline phase. All
shown results represent the mean value over the 200 conducted experiments. We also
show the mean of all values over all feature models and conducted experiments at
the bottom of the table. However, we omit the results of NSAT, as its offline phase
is equal to ASAT and its online phase execution time is orders of magnitude larger
than all other algorithms (e.g., over 100 times larger compared to ASAT).

We display the results of our first experiment in Figure 3.3 in the first diagram for
most feature models. We excluded the four largest feature models (i.e., Automotive01,
Automotive02, FreeBSD, and Linux) from the diagram, as they are visually hard
to compare to the other models due to their size. Nevertheless, we state the results
for these models in Table 3.2. Each data point represents the offline time of a
particular algorithm and feature model. On the y-axis, we show the execution time
in milliseconds and on the x-axis, the number of features in the feature model. Our
data reveals that the execution times from the different algorithms differ in orders

54 3. Modal Implication Graphs

Sat−Based (ASAT) Graph−Assisted (IMIG) Graph−Assisted (CMIG)

1160 1240 1320 14001200 1280 1360

0

200

400

600

800

1000

1200

1400

1600
Offline Phase

T
im

e
in

 m
s

Number of Features
1200 1280 13601240 1320

Online Phase

1160 1240 1320 14001200 1280 1360

Offline + Online Phase

●●●●
●●●●
●●●●
●●●●

●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●

0.1

1.0

10.0

100.0

300.0

0.3

3.0

30.0

300.0

 IMIG
ASAT

CMIG
ASAT

CMIG
 IMIG

Number of Online
Phases to
Break Even

Figure 3.3: Execution time of offline (1), online (2), and combined offline and online
phase (3) of all algorithms for multiple feature models (sorted by size). Break-even
point (4) of two algorithms indicates the number of online phases one algorithm’s
overall execution time becomes faster than another (e.g., CMIG is faster than ASAT
for two or more online phases)

of magnitude. For instance, for the feature model Automotive01, ASAT required
67 ms, IMIG 696 ms, and CMIG 11,596 ms for the offline phase. In terms of memory
consumption, the additional memory required to store a modal implication for IMIG
and CMIG lies between 0.25 MB for the feature model FreeBSD and 5.1 MB for
Automotive02 with a mean value of 0.9 MB over all 120 feature models.

In Table 3.3, we show the p-values of the Wilcoxon-Mann-Whitney test for all
pairwise combinations of algorithms. In all cases, we received a p-value of less than
10−15 and, thus, we can reject our null hypothesis HRQ1

0 . For all feature models
ASAT needs significantly less time for its offline phase than the two MIG-assisted
algorithms. Likewise, IMIG needs significantly less time than CMIG.

RQ1 Therefore, we can answer RQ1: Yes, there is a significant difference in the
time required for the offline phase of the different algorithms. These results are
expected, as the algorithms’ offline phases differ in the amount of precomputations.
While ASAT only detects core and dead features, IMIG has to derive an incomplete
modal implication graph in addition. Moreover, CMIG does all of the above and
also computes implicit strong edges within the modal implication graph to make it
complete.

Online Phase (Experiment 2)

We depict the aggregated results of our second experiment in Figure 3.3 in the second
diagram for most feature models. We provide the results for the remaining feature
models in Table 3.4. Analogous to the diagram for the offline time, each data point
represents the mean execution time over 200 experiments for a particular algorithm
to define 100% of the variant features of one feature model. We show the execution
time of the online phase when 3%, 10%, and 100% of variant features were defined.
On the y-axis, we show the execution time in milliseconds and, on the x-axis, the
number of features in the feature model. From our data we can see that for every
feature model ASAT requires more online time than both MIG-assisted algorithms.

3.6. Evaluation 55

Table 3.3: Pairwise comparison of algorithms

Attribute ASAT / IMIG ASAT / CMIG IMIG / CMIG

p-value HRQ1
0 < 10−15 < 10−15 < 10−15

p-value HRQ2
0 < 10−15 < 10−15 < 10−15

Table 3.4: Offline and online time of evaluated algorithms for a selection of feature
models (mean value over 200 experiments)

Feature Model
∑

Online time in s for relative number of defined features (∅)
3% 10% 100%

ASAT IMIG CMIG ASAT IMIG CMIG ASAT IMIG CMIG

FreeBSD 8.0.0 0.21 0.05 0.04 0.44 0.07 0.05 1.82 0.10 0.08
Automotive01 1.54 0.36 0.35 3.10 0.56 0.54 6.05 0.76 0.74
Linux 2.6.28.6 11.78 5.75 4.24 26.98 8.39 5.63 80.67 10.07 6.66
Automotive02 329.29 38.08 37.84 535.70 58.77 58.45 821.48 68.03 67.68

All models (∅) 2.98 0.38 0.36 4.96 0.58 0.55 8.10 0.68 0.64

In contrast, there is no big difference in the time required by both MIG-assisted
algorithms. Nevertheless, using CMIG indicates slight improvements over IMIG.

To illustrate the results of the second experiment in more detail, we depict the
execution time for each individual decision propagation for the feature model of
Linux in Figure 3.4. Each data point originates from one of the 200 conducted
experiments and represent the execution time of decision propagation by a particular
algorithm. On the y-axis, we depict the time in milliseconds and, on the x-axis, the
number of defined variant features before decision propagation was executed. The
regression curves indicate the mean execution time over 200 experiments. For ASAT
the data points for a particular x-value spread wide around the regression curve.
However, most data points lie above the data points from CMIG and IMIG. While
CMIG shows slightly better results than IMIG, the difference between both is mostly
in the range of a few milliseconds. It is also notable that, for both MIG-assisted
algorithms, there are many data points that are close to zero.

We list the results from the Wilcoxon-Mann-Whitney test for Experiment 2 in
Table 3.3. Again, we can reject our null hypothesis HRQ2

0 as we received a p-value
of less than 10−15 for each algorithm combination. ASAT needs significantly more
time than IMIG and CMIG, whereas CMIG is faster than IMIG to a significant, but
rather small degree.

RQ2 Therefore, we can answer RQ2: Yes, there is a significant difference in the
execution time of decision propagation for the different algorithms. These results
correspond to our expectations, as all algorithms can access a different amount of
information during their online phase. CMIG traverses a complete modal implication
graph, while IMIG uses a graph that might lacks some strong edges. By contrast,
ASAT does not use any additional data structure and has to infer all needed feature

56 3. Modal Implication Graphs

0 700 1400 2100 2800 3500 4200 4900 5600 6300 7000

0

20

40

60

80

100

120

140

160

180

200

Number of Defined Features

T
im

e
in

 m
s

Sat−Based (ASAT)
Graph−Assisted (IMIG)
Graph−Assisted (CMIG)

Exexution Time of Decision Propagation

Sat−Based (SAT)
Graph−Assisted (IMIG)
Graph−Assisted (CMIG)

Regression Curve for Mean Execution Time

Figure 3.4: Execution time during online phase with ASAT, IMIG, and CMIG for
the feature model of Linux

dependencies on-the-fly. The low performance increase of CMIG over IMIG is due to
the small number of implicit strong edges that can be derived in the offline phase.

Comparison of Offline and Online Phase

As the number of configuration processes and changes to the feature model might
differ for each configurable system, we are interested in the combined cost of offline
and online phase. For a better comparison of execution times for offline and online
phase, we present the diagrams for both results side by side in Figure 3.3 with both
diagrams sharing the same y-axis. Moreover, we visualize the combined cost of offline
and online phase in the third diagram of Figure 3.3. In this diagram, we add the
time needed for the offline phase to the time required to execute the online phase
once. Again, we depict the result of the algorithms for all but the largest feature
models. We visualize the number of online phases necessary for each algorithm to
break even with the other algorithms in the fourth diagram of Figure 3.3.

The visualization clearly indicates that IMIG needs less time than ASAT even for
just one iteration of the online phase. Regarding CMIG, we see that its higher offline
time compared to ASAT is amortized after two iterations of the online phase. In our
evaluation, we experienced only two exceptions of this observation for the feature
models FreeBSD (three iterations) and Automotive02 (five iterations) (cf. Table 3.2).
As the online time for both MIG-assisted approaches only differs slightly, CMIG
needs many more online phases in order to amortize its initial costs when compared

3.6. Evaluation 57

Table 3.5: Absolute and relative build and usage times for all systems and parameter
settings

System Parameter Build Time Usage Time
Orig (s) Inc (s) Ratio Orig (s) Inc (s) Ratio

∅ ∅ Min ∅ Max ∅ ∅ Min ∅ Max

Busybox 1 0.002 0.003 0.478 0.823 1.690 0.034 0.034 0.771 0.997 1.052
(Commits) 2 0.012 0.004 0.311 3.176 6.333 0.034 0.034 0.662 0.997 1.050

3 0.012 0.006 0.275 2.416 5.266 0.034 0.034 0.959 1.002 1.070
4 0.086 0.018 0.283 12.732 32.996 0.034 0.034 0.955 1.000 1.204
5 0.086 0.004 0.301 21.094 47.502 0.034 0.034 0.948 1.001 1.191

Busybox 1 0.003 0.003 0.589 0.766 0.919 0.040 0.040 0.973 0.999 1.026
(Monthly) 2 0.013 0.004 1.998 2.981 4.226 0.040 0.040 0.972 0.999 1.031

3 0.013 0.008 0.911 1.990 3.490 0.040 0.040 0.970 0.997 1.021
4 0.102 0.025 1.296 8.614 26.702 0.041 0.041 0.966 1.014 1.058
5 0.102 0.005 10.534 19.867 37.456 0.041 0.040 0.986 1.034 1.056

Financial- 1 0.161 0.165 0.925 0.977 1.031 0.198 0.197 0.929 1.006 1.069
Services01 2 0.345 0.182 1.336 1.913 2.348 0.195 0.197 0.934 0.988 1.030

3 0.341 0.333 0.841 1.038 1.392 0.196 0.197 0.956 0.995 1.049
4 18.809 13.218 0.969 1.604 2.992 0.195 0.193 0.963 1.009 1.060
5 18.837 6.792 0.853 9.975 23.033 0.195 0.192 0.974 1.017 1.051

Auto- 1 3.109 3.535 0.822 0.882 0.958 7.490 7.502 0.992 0.999 1.005
motive02 2 8.583 3.873 1.672 2.120 3.395 7.451 7.499 0.985 0.994 0.999

3 8.561 9.120 0.690 1.080 1.616 7.447 7.458 0.993 0.998 1.005
4 2090.844 1547.998 1.069 4.244 13.733 7.353 7.365 0.992 0.998 1.005
5 2095.159 4.270 110.037 424.784 1221.410 7.362 7.471 0.977 0.986 1.001

Linux 1 29.326 29.446 0.829 0.998 1.127 15.686 15.677 0.992 1.001 1.010
2 2218.864 132.196 15.514 16.806 18.269 15.667 15.664 0.993 1.000 1.004
3 2228.968 2845.951 0.748 0.783 0.815 15.671 15.665 0.993 1.000 1.008

to IMIG. In detail, we measured between 112 and 801 necessary iterations, with a
mean value of 185 over all feature models.

RQ3 Considering the observations, we made from the evaluation results, we can
answer RQ3: While IMIG and CMIG need more offline time than ASAT, this extra
initial cost is amortized relatively quickly. Regarding IMIG, it is already faster
than ASAT for even one complete configuration process. Only when considering an
incomplete online phase (i.e. creating only a partial configuration) ASAT is faster
than IMIG due to its fast Offline Phase. Thus, in most cases (i.e., for less than 112
online phases), IMIG seems to be preferable over the other three algorithms, as it
provides a good trade-off between the time required for offline and online phase.
ASAT and CMIG are superior over other algorithms in some extreme cases. When
the feature model evolves more frequently than the configurations, ASAT can be
superior, due to its efficient offline phase. In case that configurations are updated
frequently while the feature model does not evolve for a longer period of time, CMIG
can be superior as its online phase requires less time than ASAT and IMIG. Regarding
memory consumption, in our experiments we found that the memory required to
store a modal implication graph was at maximum 5.1 MB, which is relatively small
compared to the available main memory on modern hardware. Thus, the additional
memory consumption can be neglected for most applications.

58 3. Modal Implication Graphs

0.0 0.5 1.0

100

0.0 0.5 1.0

100

101

0.0 0.5 1.0

100

0.0 0.5 1.0

100

101

0.0 0.5 1.0

100

101

102

103

0.0 0.5 1.0

100

0.0 0.5 1.0

100

101

0.0 0.5 1.0

100

0.0 0.5 1.0

100

101

0.0 0.5 1.0

100

101

102

103

0.0 0.5 1.0

100

6 × 10−1

0.0 0.5 1.0

100

101

0.0 0.5 1.0

100

0.0 0.5 1.0

100

101

0.0 0.5 1.0

100

101

102

103

Normalized Version Index

R
a
ti

o
 o

f
O

ri
g

in
a
l
to

 I
n
cr

e
m

e
n
ta

l
B

u
ild

 T
im

e
Busybox(Commits) Busybox(Monthly) FinancialServices01 Automotive02 Linux

Figure 3.5: Build time ratio (regular/incremental) for all systems and versions
(X: Normalized versions difference; Y: Ratio; Columns: Parameters 1–5; Rows:
Consecutive, Accumulative, Sequential)

Incremental Build Process (Experiment 3)

In Table 3.5, we show an overview of our measurements in our third experiment
for all four subject systems and all parameter settings. All values in the table are
aggregated over all version pairs. We show the mean time in seconds for building
MIGs with the advanced build process and incremental MIGs and the mean time
in seconds for executing decision propagation with the regular and the incremental
MIGs. In addition, we show the ratio between regular and incremental MIG for
the build and usage time. For the ratio, we state the min, mean, and max values,
respectively. Note that, we omit the data for the system Linux with parameter
settings 4 and 5, because these runs did not finish within 24 hours.

In addition to Table 3.5, we show a more detailed plot of the build time ratio in
Figure 3.5. The figure contains one scatter plot per parameter setting (columns) and
version pair list (rows). Each plot contains the data of all measured values for the
particular parameter setting and version pair list. The y-axis shows the ratio on a
log scale (i.e., the higher the more time was saved by the incremental build). The
x-axis shows the index of the used version divided by the number of versions in the
evolution history of the system. This normalization is done in order to evenly space
out all systems over the x-axis. Additionally, each plot contains a regression curve
per system to visualize any trend in the data.

From our data table and plots we can make three observations. First, the differences
in the data for different version pair lists are relativity small. All plots in a column
roughly show the same behavior with the exception of the sequential version pairs
(third row) for parameter settings 3 and 4. We can see that the performance
improvement of the incremental build process is better if the versions are closer
together. For example, for parameter setting 4, Busybox (Commits) (V1, V2) has a

3.6. Evaluation 59

Figure 3.6: Aggregated usage time ratio (regular/incremental) for all systems

speed-up of factor 10, in contrast to factor 2 for (V186, V187). Second, for parameter
setting 1, we can see no benefit of using an incremental build process over the
advanced one. There is even a small overhead (i.e., factor 0.76 – 0.99 on average)
that increases the overall build time. This can be explained by the time it takes the
incremental build process to compute the feature model change. Further, none of the
two most time-consuming operations that were modified in the incremental build can
be utilized as they are skipped for both build processes. Third, there is a moderate
improvement for parameter settings 2 and 3 (i.e., factor 0.78 – 16.8 on average) and a
high improvement for parameter settings 4 and 5 (i.e., factor 1.6 – 424.78 on average).
This is expected as settings 2 and 3 enable the detection of externally redundant
clauses and settings 4 and 5 also enable the detection of implicit strong edges. Both
operations are partially skipped during the incremental build process. There is also
a clear difference between skipping the second part of the respective operations and
using a heuristic. When using a heuristic, it substantially decreases the build time
improvement of the incremental build compared to skipping (e.g., from factor 4.24
to factor 424.78 for Automotive02).

In Figure 3.6, we show the ratio of the usage time of an MIG built with the advanced
build process and an incremental MIG aggregated for each system. The y-axis shows
the ratio and the x-axis the system. We aggregated the data, as there is almost no
difference in the data distribution for different parameter setting and version pair
lists. These results lead us to the following observation. The difference in usage time
for regular and incremental MIGs is almost non-existent. Although, we can see some
relative differences for Busybox and FinancialServices01 however in absolute terms
the difference is within a few milliseconds (e.g., the maximum time difference for
Automotive02 is 109 ms). Both the ratio and the actual difference are negligible for a

60 3. Modal Implication Graphs

single configuration process. The practical difference in the MIG’s completeness also
seems to be independent from the chosen parameter settings and version distance.

RQ4 The incremental build process is able to drastically outperform the advanced
build process. This is dependent on the concrete parameter settings, though. When
using the basic build process that does not detect redundancies or implicit strong
edges, and thus computes an incomplete MIG, the incremental build process has
no benefit. Only when the advanced build process aims for a complete MIG, the
incremental build process is able to achieve substantially lower building times (varying
from a factor of 10 to 400 on average). In these cases, it seems to be more efficient
to not rely on a heuristic, but skipping entire parts of certain operations within
the incremental build, as this always improves the performance (e.g., in case of
Automotive02 from factor 4 to factor 400 on average).

RQ5 The incremental build process does barely affect the resulting MIGs effec-
tiveness within decision propagation. An incremental MIG cannot be guaranteed
to be complete regardless of the considered parameter settings. Thus, there is a
theoretical loss in completeness for the incremental build process. However, the
practical performance impact when using an incremental MIG compared to a com-
plete MIG is almost not noticeable in our experiments (within a factor of 1.01 on
average). This is in line with our findings from our first paper on MIGs, where we
found that a complete MIG only slightly improves decision propagation compared to
an incomplete MIG [Krieter et al., 2018].

RQ6 The difference in usage time between complete, incomplete, and incremental
MIGs is relatively small. On the other hand, the build time varies dramatically for
different parameter settings and whether an advanced or incremental build process
is used. Thus, it makes sense to use the incremental build frequently to keep build
times low and to use incrementally built MIGs as input for the next incremental
build process. One could argue that it is more beneficial to only use incomplete
MIGs all together (i.e., using the advanced build process with parameter setting 1) as
this results in the fastest build process and only small loss in effectiveness. However,
there are circumstances, where the incremental build process is still superior, for
instance, when a complete MIG is already present (e.g., from other analyses). In this
case, using an incremental build is more suitable than rebuilding an (in)complete
MIG from scratch. Overall, for the incremental build process shows a substantial
speed-up for all parameter settings (except 1) without noticeable loss in effectiveness,
even for large evolution steps.

3.6.3 Threats to Validity

In the following, we reason about possible threats to validity within our evaluation
and explain what we did to mitigate any potential biases. To this end, we categorize
the possible threats into internal and external threats to validity.

3.6. Evaluation 61

Internal

A number of issues might threaten the internal validity of our results. The results
could be biased in favor of our proposed algorithms. This is due to the fact, that we
implemented all evaluated algorithms by ourselves. However, we use the same base
implementation for all algorithms and, for each algorithm, we only do the necessary
modifications as described in Section 3.3.1.

Random input data might lead to unrepresentative results. To simulate a configura-
tion process, we used a series of random decisions, which might not correspond to a
real-world configuration. This may result in random bias, where we by chance only
picked features that result in certain corner cases of decision propagation. However,
a randomized approach gave us the capability to efficiently do multiple iterations
with distinct random seeds and, thus, gather more data. To avoid random bias, we
evaluate each setting with 200 repetitions. Further, we made sure that every MIG is
tested against the same list of features.

There may be several causes for a computational bias. First, the JVM may influence
the required time for consecutive runs due to just-in-time compilation. To tackle
this issue, we performed warm-up computations prior to the first measurement.
Second, Java regularly frees the memory of not referenced objects by means of
garbage collection. To mitigate this effect, we instructed the JVM to run the
garbage collector before building and using a MIG. Third, there may be a general
computational bias, which can cause minor differences in measured execution times.
To reduce the mitigate this bias, we performed three repetitions for each computation
and used the median of those.

For the entire empirical evaluation, we use the CNF transformation implemented in
FeatureIDE. As both, the advanced and incremental build process, rely on a CNF
input, using a different CNF may change the internal structure of a MIG, and thus
may influence measured execution times.

Bugs in our implementations might cause wrong results. We mitigate this issue by
deploying unit tests to test each algorithm individually. Furthermore, we compared
the resulting configurations of all algorithms and found no difference during all
conducted experiments. Additionally, we use matured open-source tools such as
Sat4J to further reduce the possibility of bugs.

External

There are some threats that may affect the generalizability of our results. Our results
might not transfer to real configuration applications. Our simulated configuration
process is likely to be different from a manual configuration by a user with domain
knowledge. In addition, starting with a partial configuration may mitigate the
problem of a slow initial decision propagation (cf. Figure 3.4). However, a manual
configuration process strongly depends on the particular user, which could bias the
results as well.

62 3. Modal Implication Graphs

The tested feature models might not be representative of feature models used in
practice. Similarly, our evaluation results may not be generalized for evolution
histories of other configurable systems. There are only very few histories of industrial
systems publicly available and we limited ourselves to such systems (contrary to
artificial ones) for more expressive results on real-world scalability. To mitigate this
issue, we tested 120 real-world feature models with a varying number of features and
constraints that have been used in prior studies [Berger et al., 2013b; Schröter et al.,
2016]. We also include the largest real-world feature models referenced in literature
at the moment. Furthermore, we evaluated the history of four systems from very
different domains that are widely used for empirical evaluations [Nieke et al., 2018;
Pett et al., 2019, 2021; Schröter et al., 2016].

In our implementation, we only employ Sat4J as SAT solver. However, we use Sat4J
as a black-box, such that other solvers (e.g., SAT, CSP, BDD, MDD) could also be
plugged-in. As we shift SAT calls from the online to the offline phase, faster solvers
should improve both, online and offline computation.

3.7 Summary
In this chapter, we presented our graph-based data structure Modal Implication
Graph (MIG) for storing and accessing information about relationships of all pairs of
features within a feature model. We gave a brief motivation to highlight the benefits
of using a MIG. We then demonstrated the usage of MIGs within decision propagation.
Further, we explained the process of building a MIG and described the possibilities
to customize the build process in order to trade-off build time for completeness
and minimality of the resulting MIG. Additionally, we presented an incremental
build process to enable the efficient updating of an existing MIG after feature model
evolution. We evaluated how the performance of decision propagation is affected,
when using different algorithms with an with a MIG. Further, we evaluated the
efficiency of our different build processes and the effectiveness of the resulting MIGs
and then argued about the feasibility of building a MIG under different circumstances.
We find that MIGs are able to significantly increase the performance of the semi-
automated configuration process compared to pure SAT-based approaches. For most
use case scenarios, even an incomplete MIG is sufficiently effective, which can be
efficiently build and updated after a feature model evolution. Thus, we are able
to facilitate the semi-automated configuration process by providing a MIG-assisted
decision propagation algorithm and an efficient build process to create the required
MIG. In addition, MIGs can also be used in an automated configuration process,
such as t-wise sampling, which we describe in Chapter 4 and Chapter 5. Furthermore,
we discuss additional applications of MIGs in Chapter 7.

4. Advanced T-Wise Interaction
Sampling
This chapter introduces the concept of an adaptable sampling algorithm.
It shares material with the following two publications: YASA: yet another
sampling algorithm (VaMoS’20) [Krieter et al., 2020] and Large-scale
T-wise interaction sampling using YASA (SPLC’20) [Krieter, 2020].

In this chapter, we present an efficient and flexible t-wise sampling algorithm called
YASA (Yet Another Sampling Algorithm). YASA is a general purpose algorithm
for creating t-wise configuration samples, which is aims to be more efficient and
flexible than state-of-the-art algorithms. We plan to employ YASA in multiple
different application scenarios with different requirements on sampling time and
properties of the resulting sample. For instance, we use YASA as sampling algorithm
for computing our new coverage criterion presence condition coverage, which we
introduce in Chapter 5. To facilitate the adaptability of YASA to different scenarios,
we enable its customization by means of multiple parameters. To this end, YASA is
capable of handling of partial samples and partial configurations as input and output,
ignore specific feature interactions, use different covering strategies for individual
interactions, and provides some control over sample size and sampling time. Within
in YASA, we employ Modal Implication Graphs (MIGs), which we introduced in
Chapter 3, to improve its performance when checking for valid interactions.

In the following, we first, give a brief motivation of our new sampling algorithm (see
Section 4.1). Second, we present all input parameters of YASA and explain their
influence on the sampling process and the resulting sample (see Section 4.2). Third,
we explain the main algorithm for creating a sample (see Section 4.3). Fourth, we
discuss several optimizations and possibilities to adapt YASA for optimizing sampling
time and sample size (see Section 4.4). Finally, we evaluate the efficiency of YASA
by comparing it to existing algorithms in generating samples for feature models from
multiple real-world systems (see Section 4.5). The content of this chapter is mainly
based on two publications, the first introduction of YASA [Krieter et al., 2020] and its
application in a challenge of the Software Product Line Conference in 2020 [Krieter,

64 4. Advanced T-Wise Interaction Sampling

2020]. In addition to these publications, we present more details on the parameters
of YASA (see Section 4.2) and the possibilities to adapt the algorithm for different
application scenarios (see Section 4.4).

4.1 Motivation
In the last chapter, we presented an approach for a semi-automated configuration
process. This approach is well suited for the creation of configurations by a user.
However, many scenarios require a fast and automated generation of one or more
configurations. One important scenario is software testing of configurable systems.
Software testing in general is an important task in software engineering to increase
software quality and to check intended software behavior [Ammann and Offutt, 2016;
McGregor, 2010]. However, extensive testing can be quite costly and binds resources
that could be used in other phases of development. This is especially an issue for
testing of highly-configurable systems. As the problem space for configurable systems
typically grows exponentially with the number of features [Engström and Runeson,
2011; Lee et al., 2012]. For example, the feature model in Figure 4.1 is an excerpt of
the feature model for the system Busybox. This subset of the entire feature model
has only 9 features, but already represents 85 valid configurations.

A straight-forward testing strategy for configurable systems is product-based testing,
in which the test cases of a system are executed for different configurations [Thüm
et al., 2014a]. As testing every possible configuration is usually not feasible, sampling
strategies, have been developed to generate a small but representative set of products
to test [Oster et al., 2010; Perrouin et al., 2010]. One such sampling strategy is
t-wise interaction sampling, which aims to generate a small set of configurations
that covers all possible interactions of t configuration options (e.g., none selected,
only one selected, all selected, . . .) [Cohen et al., 2008; Marijan et al., 2013]. Using
t-wise interaction sampling, developers can ensure that each possible combination
of t configuration options is indeed contained in at least one configuration in the
generated sample.

T-wise interaction sampling is a promising approach, because even when using small
values for t (i.e., t ∈ {2, 3}) it achieves effective results with a relatively small
sample [Abal et al., 2018; Kästner et al., 2009; Marijan et al., 2013]. However, even
when using small values of t and a state-of-the-art sampling algorithm, sampling
can take an infeasible amount of time, especially regarding large-scale systems with
thousands of features [Pett et al., 2019].

In this chapter, we want to tackle the scalability problem of t-wise interaction sam-
pling for large-scale systems. To this end, we introduce YASA, a t-wise interaction
sampling algorithm that aims to be efficient and more scalable and flexible than
existing approaches. For this, we focus on three improvements compared to existing
approaches. First, we employ many optimizations in YASA, such as applying heuris-
tics, caching, and using MIGs (cf. Chapter 3), to increase the sampling performance.
Second, we introduce additional parameters to adapt some of our used heuristics
to enable more control over the trade-off between sampling time and sample size.
These parameters also allow to incorporate domain knowledge of a system in the
sampling process to make it more efficient and the resulting sample more suitable for

4.2. Parameters of YASA 65

BUSYBOX

TFTPD

GET PUT DEBUG BLOCKSIZE

UNLZMA

LZMA FAST

Legend:

Optional

Figure 4.1: Excerpt of BusyBox feature diagram

the desired purpose. Third, we enable further modifications of the algorithm in order
to adapt it to specific scenarios and give the user even more control over sampling
time and properties of the final sample.

Throughout this chapter, we use the feature model in Figure 4.1 as an example to
demonstrate our sampling approach. The feature model is an excerpt of the feature
model for the system Busybox. It consists of the nine features BUSYBOX, TFTPD
(T), GET (G), PUT (P), DEBUG (D), BLOCKSIZE (B), UNLZMA (U), LZMA
(L), and FAST (F). For all following propositional formulas using these features, we
use their provided abbreviated names.

4.2 Parameters of YASA

YASA consists of a basic algorithm that starts with an empty sample and then
iterates over all t-wise interactions one at a time. For each valid interaction, it
either adds a new partial configuration with the literals of the interaction to the
sample or it adds the literals to an existing configuration. We enhance this basic
algorithm by applying different heuristic and caching methods that aim to improve its
sampling time. We explain the details of the sampling in algorithm in Section 4.3 and
Section 4.4. In the following, we start by describing all available input parameters of
YASA. These can be used to affect the properties of the resulting sample as well as
the sampling time.

In total, there are five parameters that can be given to YASA as input, a feature
model, an interaction size (i.e., a value for t), an initial sample, a feature subset, and
a resampling limit. The first two parameters are mandatory, and thus have to be
specified in order for the algorithm to run. They are also common to other t-wise
interaction sampling algorithms, as they provide the basic information for creating a
t-wise sample (i.e., the set of features, their interdependencies, and a value for t). In
contrast, the remaining three parameters are optional, which means that they do
not have to be specified and we will use a fixed default value in that case. These
three parameters enable us to fine-tune YASA for a given configurable system, such
that it produces suitable samples in a reasonable time. In the following, we explain
every parameter in more detail.

66 4. Advanced T-Wise Interaction Sampling

4.2.1 Feature Model

With the feature model, we specify the set of features and all of their interdependen-
cies, which in turn defines the set of all valid configurations and interactions. If no
set of expressions is specified (see Section 4.2.4), then the feature set is used as basis
for building the set of interactions, which are covered by the resulting sample. From
the feature set F(M), we can derive the set of literals L(M), which represents all
values for each feature. If we then construct all sets of size t containing the literals
of different features, we get the list of all t-wise feature interactions I⃗. Typically,
some interaction from I⃗ cannot be covered, as they conflict with the dependencies
D(M) from the given feature modelM. Analogues to configurations, we call these
interactions invalid. An interaction i is invalid, if there exists no valid configuration c
for the feature model, which contains i (i.e., ∄c ∈ C(M) : valid(c)∧ i ⊆ c). Thus, the
set of dependencies D(M) from the feature model defines the set of valid interactions,
which is a subset of I⃗. Furthermore, the feature modelM is also used to compute
a MIG (cf. Chapter 3), which facilitates the detection of invalid interactions (see
Section 4.3).

4.2.2 Interaction Size

The parameter t defines the interaction size (i.e., how many features are considered
in an interaction). For example, a value of t = 2 considers all pair-wise interactions.
For two Boolean features a and b the following four interactions are considered:
i1 = {¬a,¬b}, i2 = {a,¬b}, i3 = {¬a, b}, and i4 = {a, b}. In the resulting sample all
valid interactions of all combinations of two features are covered, such that for each
valid interaction i, the sample S contains at least one configuration that contains
i (i.e., ∃c ∈ S : i ⊆ c). In a three-wise sample all three combinations of three
features are considered and so on. Note that a complete t-wise sample covers all
interactions of size t and also all interactions with a size smaller than t. For instance,
a three-wise sample covers all valid three-wise, pair-wise, and one-wise interactions.
For most applications, a larger value for t means that the resulting sample has a
greater effectiveness. For example, in testing, typically a three-wise sample is able to
detect more faults than a pair-wise sample, because more interactions are tested.

In theory, YASA allows to set any integer value greater than zero for t. Practically
however, the value of t is limited by the sampling time, which increases drastically
for higher values of t, and the sample size, which also increases with higher values of
t. Increasing the value of t directly increases the number of interactions (i.e., I⃗) that
have to be considered. The size of I⃗ can be computed with the following formula,
where n is the number of features:

|I⃗| = 2t ·
(
n

t

)
Thus, increasing t will increase the number of interactions exponentially. While
raising the number of features leads to a polynomial growth that also depends on the
value of t. A larger set of interactions means two things. First, the time required for
checking and covering all interactions increases. In order to guarantee that a sample
has a 100% t-wise coverage, we have to make sure that every valid interaction is

4.2. Parameters of YASA 67

present in at least one configuration, which means we have to look at every interaction
at least once during the sampling process and either cover it in a configuration or
show that it is invalid. Thus, we assume a linear correlation between interaction size
and sampling time, which means than the sampling time also increases exponentially
with the value of t. Second, to cover more and also larger interactions requires more
configurations. Thus, by increasing the value of t, we also increase the sample size.

4.2.3 Initial Sample

YASA is able to use a predefined initial sample during the sampling process. The
initial sample is used as a basis of the final sample. It is not required to meet any
specific degree of coverage beforehand and may even contain partial configurations.
Instead of starting with an empty sample, YASA takes into account all interactions
that have been covered by the initial sample and will complete the sample by adding
new configurations and completing any partial ones. As this is an optional parameter,
it can omitted and, in this case, the default value is simply an empty sample.

There are many scenarios, in which providing an initial sample can be useful. It allows
to include certain configurations in the final sample (e.g., user-defined configurations
or all-yes and all-no configurations) and is a way to decrease the sampling time.
Furthermore, it enables us to interrupt the sampling process resulting in a partial
sample and than later continue the sampling process with this partial sample. It also
allows us to update an already computed sample after a feature model evolution.
In such a case, the old sample can be kept to a certain degree (i.e., such that no
conflicts with the evolved feature model are present) and can than be used as a
starting point for a new sample [Pett et al., 2021]. Another possibility is to use a
sample from a different sampling algorithm, which does not guarantee a 100% t-wise
coverage, as input for YASA. This makes it possible to combine YASA with other
sampling algorithms, such as random sampling or any evolutionary approach for
t-wise sampling.

4.2.4 Feature Subset

Typically, t-wise interaction sampling algorithms consider interactions between all
features of a feature model. YASA allows to ignore certain features and only consider
combinations between features within a subset of the entire set of features. With this
parameter, we can provide a set of features F∗, which is a subset of F(M). Instead
of combining every feature from F(M) with each other, YASA only constructs all
t-sized subsets from F∗ to build the list of interactions I⃗. Again, this parameter is
optional and can be omitted. In this case, the feature set from the feature model is
used to build the set of interactions (cf. Section 4.2.1).

Specifying a feature subset can make sense in large systems, where many features
may not interact at all, maybe because they belong to different subsystems or maybe
because there is no data or control flow between them. In case that users are
aware of such circumstances, it can be helpful to ignore the combinations between
these features for sampling, as it can save sampling time and reduce the sample
size. Furthermore, this parameter allows us to divide the entire feature set of a
feature model into multiple feature subsets and create a sample that considers only

68 4. Advanced T-Wise Interaction Sampling

interactions resulting between feature in the same subset and does not have to
consider any interaction between features in different subsets. For this, we combine
this parameter with the possibility to specify an initial sample (cf. Section 4.2.3).
We run YASA repeatedly with different feature subsets and use the sample from a
previous run as initial sample for the next run. To this end, YASA is able to return
a sample containing partial configurations (see Section 4.4).

For instance, regarding our example in Figure 4.1, we might be aware that the features
from the subtrees TFTPD and UNLZMA are not interacting. In this case, we can
divide the feature set into the two smaller subsets F∗

1 = {BUSYBOX , T,G, P,D,B}
and F∗

2 = {BUSYBOX , U, L, F}. Note that it is possible for the subsets to overlap.
We then run YASA once with F∗

1 as feature subset. Then, we run YASA a second
time with F∗

2 as feature subset and the sample from the first run as initial sample for
the second one. The final sample contains all interactions resulting from F∗

1 and F∗
2 .

The actual distribution of features into subsets must be derived from domain knowl-
edge about the system or through source code analyses (e.g., data flow analysis).
Naturally, this parameter increases the risk of missing actual interactions that were
not anticipated, and thus are then overlooked, for instance during testing. However,
when applied carefully, providing one or more feature subsets has the potential to
drastically reduce the amount of interactions that need to be covered, which decreases
sampling time as well as sample size. We further generalize the concept behind this
parameter in Chapter 5.

4.2.5 Resampling Limit

In YASA, we include a mechanism for refining the resulting sample by removing
and resampling some configurations (cf. Section 4.3.4), which can be controlled
with an additional parameter m. As YASA is a greedy algorithm and employs
heuristics, the resulting sample size is most likely not minimal. To further decrease
the sample size, we integrate a mechanism into our algorithm to refine the sample by
removing configurations that only cover a small amount of interactions. Afterwards,
we reiterate over all interactions that are now uncovered and complete the sample
again (cf. Section 4.3.4). We can repeat the process of removing and resampling
several times to improve the overall result. However, increasing the number of
iterations also increases the sampling time significantly. During the development
and testing of our algorithm, we noticed that increasing the number of iterations
above a certain point no longer yields substantial improvements on the sample size.
Though, how many iterations are reasonable, depends on the sampled product lines.
Thus, we included the parameter m to set a limit on the number of iterations for
sampling. Users can choose for themselves by how much they are willing to increase
the sampling time in order to reduce the sample size. If no value for m is provided,
YASA uses the value m = 1, which means that after the initial sampling, there is no
resampling at all.

4.3. Constructing a Configuration Sample 69

Algorithm 4.1 Main sampling algorithm of YASA
Require:

M – Feature Model
t – Interaction Size
Sinit – Initial Sample (Default : Sinit = ∅)
F∗ – Feature Subset (Default : F∗ = F(M))
m – Resampling Limit (Default : m = 1)

Return:
S – Configuration Sample

1: function createSample(M, t, Sinit, F∗, m)
2: S ← Sinit
3: G ← createMIG(M)
4: LI ← getLiterals(F∗, G)
5: S ← sample(M, G, t, S, LI)
6: for 1 to m do
7: S ← trim(S)
8: S ← sample(M, G, t, S, LI)
9: S ← autocomplete(S)

10: return S

11: function sample(M, G, t, S, LI)
12: I⃗ ← combine(LI , t)
13: for i ∈ I⃗ do
14: S ← cover(i,S,M,G)
15: return S

4.3 Constructing a Configuration Sample
In the following, we describe the basic process of our sampling algorithm. In the next
sections, we go into detail of the functions getLiterals and combine for building
the list of interactions, cover for covering a single interaction in the sample, and
trim for resampling. Further, we explain certain optimizations to this basic process
and how it can be adapted to specific scenarios in Section 4.4.

4.3.1 Basic Sampling Process

We depict the basic outline of our algorithm in pseudo code in Algorithm 4.1. We
start by initializing the sample S, the MIG G and a set of literals LI . We set the
sample S to the value provided with the parameter Sinit or to an empty set if the
parameter is omitted (Line 2). We create a MIG G for the feature model using our
basic build process (cf. Section 3.4). The MIG is used to build the set of interactions
and during the coverage of each interaction (Line 3). The set LI contains literals
corresponding to the features in the feature subset F∗ or to the features in the entire
feature set F(M) if this parameter is omitted (Line 4). It serves as basis for building
the list of interactions I⃗. We create LI by calling the function getLiterals, which
we describe in more detail in Section 4.3.2. After these initializations, we create the
sample by calling the function sample (Line 5). In this function, we create an ordered

70 4. Advanced T-Wise Interaction Sampling

list of interactions I⃗, which contains subsets of LI with size t, by calling the function
combine on the set LI (Line 12). Then, we iterate over every interaction i ∈ I⃗ and
try to cover it in the function cover (Lines 13–14). We explain the details of this
function below in Section 4.3.3. Once every interaction is processed, all interactions
are covered within the sample S.

After creating the first sample, we repeat the sampling process m− 1 times to reduce
the number of configurations in the sample (Line 6). If no value for m is provided
or its value is one than the resampling is skipped entirely. For the resampling, we
first call the function trim that removes all configurations from S that cover only
a few interactions (Line 7). We explain the details of this process in Section 4.3.4.
Then, we call the function sample again using the trimmed sample (Line 8). Finally,
we complete any partial configurations in S by calling the function autocomplete.
For each partial configuration in S, this function assigns a value to each feature
variable that is currently undefined such that the complete configuration is valid.
We describe this function in more detail in Section 4.4.2.

4.3.2 Building the List of Interactions

We create the list of interactions I⃗ in two steps. In the first step, we create a set
of literals LI , which represents every assignment for the features in the feature set.
Then, in the second step, we list all subsets of LI with a size of t to create the list of
interactions I⃗.

We create the set of literals LI in the function getLiterals. First, we filter out
all core and dead feature variables in the feature set. A core feature is always
selected in any valid configuration, thus any interaction that contains the positive
literal of a core feature will be covered automatically by any configuration in the
sample. For instance, regarding our example in Figure 4.1, the three-wise interaction
i = {BUSYBOX , B, T} contains the positive literal of the core feature BUSYBOX .
Thus, any valid configuration that contains the literals B and T also contains
BUSYBOX , and thus covers i. As there are other interaction that contain B and
T , such as i′ = {B, T,G}, there will be configurations in the sample that cover i′,
and thereby also i. On the other hand, any interaction that contains the negative
literal of a core feature variable must be invalid, as there is no valid configuration
that deselects a core feature. Therefore, we can ignore all core feature variables in
the set LI . Analogous, we can also ignore all dead feature variables for a similar
reasoning. If an interaction contains the negative literal of a dead feature variable,
it will be automatically covered in some configuration in the sample and if an
interaction contains the positive literal of a dead feature variable, it is invalid.
Thus, we can also ignore all dead feature variables for LI . We can retrieve the
set of literals representing the core and dead features variables DU(G) from the
MIG we computed earlier without any further analysis. For each remaining feature,
we add its positive and negative literal to LI . For example, assume that we call
YASA for our example feature model in Figure 4.1 with the two feature subsets
F∗

1 = {BUSYBOX , B, T,G, P,D,B} and F∗
2 = {BUSYBOX , U, L, F}. For this,

we create the literal sets LI1 = {¬T,¬G,¬P,¬D,¬B, T,G, P,D,B} and LI2 =
{¬U,¬L,¬F,U, L, F}.

4.3. Constructing a Configuration Sample 71

Algorithm 4.2 Basic covering strategy of YASA
Require:

i – Interaction
S – Configuration Sample
M – Feature Model
G – MIG forM

Return:
S – Configuration Sample

1: function cover(i, S,M, G)
2: ci ← i
3: if ∄c ∈ S : ci ⊆ c then
4: if ¬satisfiable(ci,M) then
5: return S
6: for c ∈ S do
7: c′ ← c ∪ ci
8: if satisfiable(c′,M) then
9: S ← (S \ {c}) ∪ {c′}

10: return S
11: S ← S ∪ ci
12: return S

With the function combine, we list all subsets of LI with a size of t to create the
list of interactions I⃗. For a large set LI or higher values of t, this list can be quite
long. To avoid any memory issues, rather than creating the entire list and store it
in memory, we create an iterator, that sequentially generates every interaction in a
defined order. By default the iterator uses a lexicographical ordering. However, by
modifying the iterator it is also possible to use another ordering, such as an random
order. Continuing our example from before, for t = 2 we would create the lists of
interactions I⃗1 = ({¬T,¬G}, {¬T,¬P}, ...) and I⃗2 = ({¬U,¬L}, {¬U,¬F}, ...).

4.3.3 Covering an Interaction

YASA processes all interactions in I⃗ sequentially with a specific covering strategy
implemented in the function cover. For each given interaction, the applied covering
strategy determines how the interaction is processed. In total, there are four possible
outcomes for each given interaction. The interaction is either already covered, invalid,
coverable in an existing configuration, or coverable in a new configuration. The
function cover processes an interaction by trying to cover it in the sample. It takes
four parameters, a single interaction i, the current sample S, the feature modelM,
and a MIG G. To demonstrate the concept of using a covering strategy, we first
describe our basic covering strategy, which is similar to the established algorithm
IPOG for combinatorial interaction coverage [Lei et al., 2007]. However, in YASA,
we enable the usage of a customized covering strategy, which can affect the sampling
time and sample size. Thus, we enable the fine-tuning of the sampling process to
specific needs. In the implementation we use in our thesis, we employ an advanced
covering strategy that is based on the basic covering strategy, but has been mostly

72 4. Advanced T-Wise Interaction Sampling

optimized for decreasing sampling time. We further describe this advanced covering
strategy and its optimization compared to the basic covering strategy in Section 4.4.1.

We depict our basic covering strategy in pseudo code in Algorithm 4.2. First, we
check whether there exists a configuration c in the sample S that already covers the
given interaction i (Line 3). In that case, we do not modify the sample and return,
continuing with the next interaction to cover (Line 12). Otherwise, we check if i is
valid by computing whether it conflicts with the feature model using a SAT solver
(Line 4). If i is invalid, we return without modifying the sample (Line 5). In contrast,
if i is valid, we iterate through each configuration c in S and check whether c would
still be satisfiable when adding the literals from i (Line 8). In case that we find
such a configuration c, we add the literals of i to c and return S with the modified
configuration in it (Line 10). If there is no configuration in S that is able to cover i,
we create a new configuration ci containing only the literals from i and add this new
configuration to S (Lines 11, 12).

The basic covering strategy is able to process any given interaction and either cover
it in a configuration of the sample or determine that it is invalid. When we apply
this covering strategy to every interaction in I⃗, we compute a complete sample with
100% interaction coverage.

4.3.4 Resampling the Sample

The resampling process aims to reduce the sample size of an already computed
sample. It consists of two steps, trimming and recomputing the sample. Within the
function trim, we take a complete sample and remove certain configurations from it.
Then, we complete the now partial sample by calling the function sample again to
covering any missing interactions.

To determine which configurations to remove, we compute a score for each con-
figuration in the current sample by considering their number of uniquely covered
interactions. In detail, we use the following formula to give every configuration c ∈ S
a score:

score(c,S) = |{i ∈ L(F
∗)t | i ⊆ c,∀c′ ∈ S \ {c} : i ̸⊆ c′}|

|c|t

For each configuration c ∈ S we count the number of interactions that are only
covered by this configuration and none other. As the sample may contain partial
configurations, we also factor in the number of defined features for each configuration.
A configuration that defines more features has a higher chance of covering an
interaction. Thus, for each configuration, we divide its unique interaction count by
its number of defined features to the power of t. After calculating a score for every
configuration in S, we compute the arithmetic mean of all scores. Then, we remove
all configurations that have a score less than this mean value.

After trimming the sample, we repeat the sampling process to complete the sample.
For every repetition of the sampling process, we use a different random ordering
for iterating over the interactions. During our experiments, we found that having a

4.4. Optimization and Adaptation of YASA 73

different ordering every time helps in finding a good distribution for the interactions
within the configuration sample. However, recomputing the sample means that it
is also possible for the sample size to increase instead of decrease. To solve this
problem, we always remember the smallest sample achieved so far and return it in
the end. In case there are more than one smallest samples, we return the first one
we found.

After we apply the resampling process as often as specified by the resampling limit
parameter, we get a refined sample. Because this latest sample may still contain
some partial configurations, we finish the sampling process by calling the function
autocomplete, which then computes the final sample.

4.4 Optimization and Adaptation of YASA

In Section 4.3, we present the general sampling process of YASA. This sampling
process produces a complete sample and can be fine-tuned using its five parameters.
However, we aim to make YASA even more adaptable to other application scenarios, in
which certain properties of a sample, such as the similarities or order of configurations
in the sample, are important. For instance, this can be the case for regression testing
or measuring non-functional properties of a configurable system. To this end, we
choose a modular architecture that lets us alter two strategies for building the sample,
the covering strategy and the auto-completion strategy. For this, we must replace
the implementation of the functions cover and autocomplete, respectively. In the
following, we present alternative strategies for both functions.

4.4.1 Advanced Covering Strategy

A modification of the covering strategy can affect the sampling time and properties
of the resulting sample, such as sample size. For instance, a covering strategy may
attempt to complete as many configurations as soon as possible in the sample or may
try to balance the size of each configuration in a sample. In our thesis, we aim for
an efficient covering strategy. Thus, here, we propose an advanced covering strategy
that is based on the basic covering strategy, we presented earlier. In the following,
we highlight all the changes we made compared to the basic covering strategy. In
Algorithm 4.3, we show our advanced strategy in pseudo code.

The most potential for decreasing sampling time lies in the check for validity of an
interaction and the check whether a configuration is still satisfiable when including a
given interaction. For both, we have to check the validity of partial configurations by
solving a SAT instance, which is an expensive operation. Therefore, one optimization
is to restructure the order of operations. We move the more expensive operations to
the end of the algorithm, because it is sometimes possible to cover an interaction
before needing to check its validity using a SAT solver. In addition, we create a
filtered sample S ′ by filtering all configurations that clearly contradict the given
interaction, because they contain at least one complementary literal (Line 3). Thus,
we do not iterate through every configuration, which reduces the amount of SAT
instances we need to solve.

74 4. Advanced T-Wise Interaction Sampling

Algorithm 4.3 Advanced covering strategy of YASA
Require:

i – Interaction
S – Configuration Sample
M – Feature Model
G – MIG forM
CHistory – Configuration History

Return:
S – configuration sample

1: function cover(i, S,M, G)
2: if ∄c ∈ S : i ∈ c then
3: S ′ ← {c ∈ S | c ∩ {¬l | l ∈ i} = ∅}
4: for c ∈ S ′ do
5: if isValid_NoSAT(c ∪ i, CHistory) then
6: S ← (S \ {c}) ∪ {c ∪ i}
7: return S
8: if ¬ isValid_NoSAT(i, CHistory) then
9: if isInvalid_MIG(i, G) then

10: return S
11: if ¬ isValid_SAT(i,M, CHistory) then
12: return S
13: for c ∈ S ′ do
14: ci ← c ∪ i
15: if ¬ isInvalid_MIG(ci, G) then
16: if isValid_SAT(ci,M, CHistory) then
17: S ← (S \ {c}) ∪ {ci}
18: return S
19: ci ← i
20: ci ← decisionPropagation(ci,M, G)
21: S ← S ∪ {ci}
22: return S

23: function isInvalid_MIG(c, G)
24: G ′ ← updateGraph(G, c)
25: return ∃p ∈ PS(G) : p = ((v, ...), ..., (..,¬v))

26: function isValid_NoSAT(c, CHistory)
27: return ∃c′ ∈ CHistory : c ⊂ c′

28: function isValid_SAT(c,M, CHistory)
29: csolution ← SAT(M, c)
30: if csolution = ∅ then
31: return false
32: else
33: CHistory ← CHistory ∪ csolution
34: return true

4.4. Optimization and Adaptation of YASA 75

Storing a Configuration History As another optimization, we store a config-
uration history CHistory that contains configurations computed by any SAT solver
query. Whenever we find that a SAT instance is solvable, the corresponding solver
will return a matching configuration, which we add to our history (Line 33). We
use the configuration history in the new function isValid_NoSAT (Lines 26–27).
This function takes a partial configuration c and return either true, if there is a
configuration c′ ∈ CHistory that is a super set of c or false, if no such configuration
exists in CHistory. If a partial configuration or an interaction is unsatisfiable the
function will always return false, otherwise it may return true. We use this function
two times in the advanced covering strategy. First, we iterate over every configuration
c in the current sample S and check whether isValid_NoSAT return true for the
combination of c and the current interaction i (Lines 4–5). If such a configuration c
exists, we add the literals of i to c, update c in S, and return (Lines 6–7). Second,
before determining the validity of an interaction with a SAT solver, we first use
isValid_NoSAT to check whether it occurs in any configuration in CHistory (Line 8).
In that case, we can skip the SAT solver call (Line 11).

Using a MIG In order to avoid even more SAT instances, we employ a MIG to
check whether a given interaction is invalid. The function isInvalid_MIG takes a
partial configuration c and a MIG G and returns true if c leads to a contradiction in
G (Lines 23–25). For this, the function first creates an updated MIG version G ′ using
c (cf. Section 3.3.1). Then, it checks whether G ′ contains a strong path leading from
a vertex v to the complementary vertex ¬v. In that case, c must be unsatisfiable and
the function returns true. If no contradiction can be found, then the function returns
false. If a partial configuration or an interaction is satisfiable, the function will always
return false, otherwise it may return true. We use the function isInvalid_MIG two
times. First, we try to determine whether an interaction is invalid, before using a
SAT solver (Line 9). Second, we try to determine whether a configuration including
the current interaction leads to a contradiction before checking it with a SAT solver
(Line 15).

Applying Decision Propagation Yet another optimization for reducing the
number of SAT instances is to increase the amount of already covered interactions.
We try to increase this number by applying decision propagation on every new
configuration. That means that we compute the literals that are implied by the
literals already contained in a new partial configuration. As decision propagation
is itself an expensive operation we only apply it to new configurations, instead of
applying it whenever a configuration is modified. Furthermore, we use a lightweight
version of decision propagation that only relies on a MIG and does not use a SAT
solver. Thus, this lightweight version does not determine every implied literal, but
only a subset (i.e., strongly connected vertices) (cf. Section 3.3.1). Nevertheless, it
helps to complete new partial configurations and consequently reduces the number
of SAT instances for checking the validity of partial configurations and interactions.

76 4. Advanced T-Wise Interaction Sampling

4.4.2 Alternative Completion Strategies

The automated completion of partial configurations in the final sample is controlled
by the chosen completion strategy. Employing a specific completion strategy can
be useful to affect the properties of a sample. For instance, a sample may contain
rather similar or dissimilar configurations depending on this strategy. In YASA, we
enable the following completion strategies: default, random, all-yes, all-no, or none.
The default strategy uses a SAT solver to compute a complete configuration using a
partial one. All partial configurations in the sample are satisfiable (cf. Section 2.1),
thus for each configuration c ∈ S a SAT solver computes a complete configuration c′

that is a super set of c. The actual values assigned to currently undefined features
are dependent on the internal behavior of the employed SAT solver. Although
this strategy uses a SAT solver call per partial configuration, it is relatively fast.
Finding a satisfying assignment for a given satisfiable partial configuration is more
efficient than computing a valid configuration for a feature model, because the partial
configuration already defines values, which satisfy some clauses of the feature model
formula. Furthermore, if we use a configuration history in our covering strategy,
we can also use it here to find already computed configurations that can complete
a given partial configuration, and thus save a SAT solver call. Thus, this is the
recommended strategy, if the the concrete configurations in the sample do not matter
for the application scenario.

Another strategy is to randomly assign values to each partial configuration. This
method is similar to the default method, as we use a modified SAT solver to compute
a random configuration given a partial configuration as input. Although the modified
SAT solver creates a random configuration, the result is still dependent on its internal
behavior. Therefore, the configurations that are randomly generated in this way
are not uniformly distributed over the valid problem space. Still, the final sample
contains much more dissimilar configurations than with the default strategy and
is thus suited for application scenarios that require most dissimilar configurations
within a sample (e.g., for regression testing). Another possible strategy would be
to employ a solver able to produce uniformly distributed random configurations.
However, currently, running these solvers is more computationally expensive and
would increase the sampling time significantly.

The strategies all-yes and all-no try to complete a partial configuration by selecting
as many or as few features as possible, respectively. This strategy is comparable with
solving a Max-SAT or Min-SAT problem for each partial configuration, although
we do not compute an exact solution of these problems, but only an approximation.
The execution time of both is similar to the random strategy. Depending on the
application scenario, it can be useful to either create a sample that represents
products with a small code base (e.g., for faster compile times) or products with a
larger code base (e.g., for testing).

Another possible strategy is to disable auto-completion entirely. This is the fastest
method, as the sample is returned as is, potentially containing partial configurations.
This strategy can be useful if the application scenario does not require complete
configurations. We also uses this method when we sample multiple times for multiple
feature subsets, as we described above (cf. Section 4.2).

4.5. Evaluation 77

4.5 Evaluation
With YASA we aim to provide an efficient and flexible sampling algorithm that scales
even to large systems. Thus, we test how YASA behaves for highly-configurable
systems. Further, we evaluate YASA by comparing it with other t-wise sampling
algorithms and itself with different parameter settings with regard to the following
metrics:

• Sample size (i.e., the number of configurations in a sample)
• Sampling time (i.e., the time required to compute a sample)

In particular, we aim to answer the following research questions:

RQ1 Does the choice of a sampling algorithm affect the sampling time?
RQ2 Does the choice of a sampling algorithm affect the sample size?
RQ3 Is there a limit for the scalability of YASA?

We want to investigate, whether our advanced covering strategy in YASA affects the
sample size compared to other approaches, as our hypothesis is that our approach is
at least as efficient as other sampling strategies. Even more, we hypothesize that we
can achieve a similar sample size as other approaches with shorter sampling time,
and thus increasing sampling efficiency.

4.5.1 Setup of Experiments
In our evaluation for YASA, we run two experiments. First, we compare YASA to
other state-of-the-art t-wise interaction sampling algorithms by computing samples
for multiple configurable systems. We use the data of this experiment to answer
our first two research questions. Second, we use YASA to sample a set of highly
configurable systems. With this experiment we aim to answer our third research
question. In the following, we describe the setup for our experiments. First, we
present the subject systems, for which we generate samples. Second, we introduce the
algorithms, which we compare against each other. Finally, we describe our measuring
methods for our two evaluation criteria, sampling time and sample size.

Subject Systems

We use multiple subject systems in our evaluation from different sources with varying
sizes. In Table 4.1, we list the systems together with their number of features. In
detail, we use 11 small to middle-sized systems from FeatureIDE, which have between
27 and 366 features. Using the tool Kclause [Oh et al., 2019], we extracted feature
models from 5 real-world systems that employ Kconfig as a configuration tool. These
feature models range from 71 to 1,018 features. Furthermore, we use a selection
of 39 feature models from subsystem of the eCos system provided by Knüppel et
al. [Knüppel et al., 2017] ranging from 1,165 to 1,267 features. In addition, we use a
feature model for FreeBSD with 1,396 features and for the Linux kernel with 6,888
features provided by She et al. [She et al., 2011]. Finally, we use the feature models
of three real-world systems in different versions provided by Pett et al. in their 2019
SPLC sampling challenge [Pett et al., 2019].

78 4. Advanced T-Wise Interaction Sampling

Table 4.1: Subject systems for the evaluation of YASA

Source System Name #Features

FeatureIDE Example gpl 27
FeatureIDE Example dell 46
FeatureIDE Example berkeleyDB1 53
FeatureIDE Example SmartHome22 60
FeatureIDE Example violet 88
FeatureIDE Example berkeleyDB2 99
FeatureIDE Example BattleofTanks 144
FeatureIDE Example BankingSoftware 176
FeatureIDE Example eShopFIDE 192
FeatureIDE Example eShopSplot 287
FeatureIDE Example DMIE 366
Kconfig Project fiasco 71
Kconfig Project axtls 95
Kconfig Project uclibc-ng 270
Kconfig Project toybox 323
Kconfig Project busybox-1_29_2 1,018
Knüppel et al. eCos Subsystems 1,165 – 1,267
She et al. FreeBSD 8.0.0 1,396
She et al. Linux Kernel 2.6.28 6,889

Pett et al. FinancialServices01 (10 Versions) 1,001 – 1,148
Pett et al. Automotive02_V1 14,010
Pett et al. Linux_2013-11-06 49,247

Algorithms

We use several state-of-the-art algorithms for t-wise interaction sampling as compar-
ison, which were also used in previous evaluations [Al-Hajjaji et al., 2016a, 2019;
Johansen et al., 2012a], namely Chvátal [Chvatal, 1979], ICPL [Johansen et al.,
2011, 2012a], and IncLing [Al-Hajjaji et al., 2016a]. The implementation of these
algorithms is provided within the FeatureIDE framework [Al-Hajjaji et al., 2016b;
Meinicke et al., 2017], which we employ in our evaluation. Consequently, we imple-
mented YASA in Java and integrated it into the FeatureIDE library as well. Within
the implementation of YASA, we employ the SAT solver Sat4J [Le Berre and Parrain,
2010] to check for validity of configurations and interactions.

Not all algorithms support all values for t. IncLing is designed as a strict pair-wise
interaction coverage algorithm, and thus only works for t = 2. ICPL supports values
for t up to 3 and Chvátal up to 4. In theory, we can run our algorithm with any
value for t. However, due the restrictions of the other algorithms for the parameter t,
in our experiments, we use t = 2.

Regarding YASA, we use the following parameters. We test multiple values for the
resampling limit m to evaluate its impact. In particular, we choose the values 1, 5,

4.5. Evaluation 79

and 10. In order to ensure a fair comparison of the sample sizes, we neither use an
initial sample nor any feature subsets. As covering strategy, we use our advanced
covering strategy (cf. Section 4.4.1).

In summary, we compare results from the following algorithms:

Short Name Name Supported t

Chvatal Chvátal [Chvatal, 1979] 1 ≤ t ≤ 4
ICPL ICPL [Johansen et al., 2011, 2012a] 1 ≤ t ≤ 3
IncLing IncLing [Al-Hajjaji et al., 2016a] t = 2
YASA_1 YASA with m = 1 t ≥ 1
YASA_5 YASA with m = 5 t ≥ 1
YASA_10 YASA with m = 10 t ≥ 1

Evaluation System

For a fair comparison, we run all algorithms for our first experiment on the same
hard- and software:

• CPU : Intel(R) Core(TM) i5-8350U
• Physical Memory : 16GB
• JVM Max Memory : Xmx: 14GB
• OS : Manjaro (Arch Linux)
• JVM : OpenJDK 1.8.0_222

For our second experiment, we use the following system:

• CPU : AMD Ryzen 7 3700X
• Physical Memory : 32GB
• JVM Max Memory : Xmx: 16GB
• OS : Manjaro (Arch Linux)
• JVM : OpenJDK 14.0.1

Measurement Process

Sample Size Regarding the sample size, we count the number of configurations
in each sample computed by each algorithm. To this end, we count partial and
complete configurations within a sample.

Sampling Time For measuring sampling time, we take the time that is needed
for generating a sample with each algorithm. To be precise, we use the Java method
System.nanoTime() to get a timestamp in nanoseconds directly before calling a
sampling algorithm and use the same method to get a timestamp directly after the
algorithm returns. We then compute the difference between both timestamps and
derive the elapsed time in milliseconds. Additionally, we set a timeout of 24 hours for
every sampling process. If a sampling algorithms fails to return within this period,
we cancel the computation.

80 4. Advanced T-Wise Interaction Sampling

0 100 200 300 400
Number of Features

S
a

m
p

lin
g

 T
im

e
 (

s)

0

10

20

30

40

50

60 Algorithms

YASA_1
YASA_5
YASA_10
ICPL
Chvatal
IncLing

Figure 4.2: Sampling times for systems with a number of features less than 1,000

Memory Consumption Measuring the precise memory consumption of a JVM is
more complex than measuring execution time. We measure memory consumption
using the Java command Runtime.getRuntime().totalMemory(), which returns
the currently allocated memory of the JVM. This is different from the actual used
memory and can be seen as an upper bound. In detail, we called the method
every second and stored the highest value returned. This gives us a fairly accurate
approximation on an upper bound of used memory of the JVM.

4.5.2 Results of Experiments

We structure our findings according to our two experiments. For each experiment,
we analyze and discuss our results and answer the corresponding research questions.

Experiment 1 (Comparing Sampling Times and Sample Sizes)

In Figure 4.2 and 4.3, we depict the absolute sampling time for all systems for t = 2.
On the y-axis we show the sampling time in seconds (s). We relate the values to
the number of features within each feature model, which is shown at the x-axis. In
order to achieve a better scaling, we present the values in two diagrams with different
scales for the y-axis. In Figure 4.2, we show all values for feature models with less
than 1,000 features and in Figure 4.3 all values for feature model with more than
1,000 features. Note that, the data in Figure 4.3 is plotted on a logarithmic scale.
Additionally, we show the result for Linux in Table 4.2.

For small systems the sampling time of most algorithms lies below 10 s for our setup.
An exception is Chvátal, which takes up to 60 s for some feature models. For larger

4.5. Evaluation 81

Figure 4.3: Sampling times for systems with a number of features larger than 1,000

Table 4.2: Results for Linux 2.6.28 with t = 2

System Name Algorithm Sample Size Sampling Time

Linux 2.6.28 YASA_1 545 36m 21s
Linux 2.6.28 YASA_5 489 2h 23m 03s
Linux 2.6.28 YASA_10 487 4h 43m 20s
Linux 2.6.28 ICPL 482 4h 00m 14s
Linux 2.6.28 Chvatal – timeout
Linux 2.6.28 IncLing 781 1h 50m 39s

systems we can see a clearer distinction of the sampling times. Chvátal is the slowest
algorithm for all feature models with sampling times between 774 s and 2,418 s. ICPL
is the second slowest for almost all models, but is already substantially faster with
sampling times ranging from 114 s to 264 s. YASA_10 requires between 50 s and
109 s of sampling time. YASA_5 (26 – 61 s) and IncLing (7 – 64 s) have relatively
similar sampling times for most models, while YASA_1 is distinctively faster with
sampling times ranging from 6 s to 20 s.

In Figure 4.4, we show the sampling times for YASA_5, YASA_10, ICPL, Chvátal,
and IncLing relative to YASA_1 (i.e., YASA_1 is 100%). With this figure, we
visualize the differences in runtime for the different algorithms. Note that, the data
is plotted on a logarithmic scale. While there are some cases where YASA_1 is
outperformed by IncLing, on average all other algorithms require more sampling
time. Using the Mann-Whitney test, we can see that this is significant with p-values
all < 10−7 (i.e., comparing YASA_1 with all other algorithms). Chvátal requires

82 4. Advanced T-Wise Interaction Sampling

YASA_5 YASA_10 ICPL Chvatal IncLing

1
0

0
1

0
0

0
1

0
0

0
0

Algorithms

S
a

m
p

lin
g

 T
im

e
 R

e
la

ti
v
e

 t
o

 Y
A

S
A

_
1

 (
%

)

Figure 4.4: Aggregated sampling times relative to YASA_1 (m = 1)

the most sampling time and, on average, takes more than 200 times longer than
YASA_1. ICPL is much faster than Chvátal, but still, on average, takes about 20
times longer than YASA_1. The sampling time of IncLing is close to YASA_5, but
is still out performed by YASA_1 by factor 5. We can see that the parameter m has
a clear influence on the sampling time. The higher the value of m, the higher the
sampling time.

RQ1 While with YASA we mostly aimed for a more efficient sampling, we also
were able to produce relatively small samples for most systems. Thus, we can answer
our research questions, as follows. Regarding RQ1, we found out that our approach
is at least as efficient as other state-of-the-art algorithms and can even outperform
them. This however, depends on the value of parameter m. We are able to lower
the sampling time significantly by decreasing the parameter m, although this has a
negative effect on the sample size. In theory, by dividing the feature set into smaller
subsets we could decreases the sampling time even further. Nevertheless, we showed
that our approach has indeed the potential to efficiently generate samples.

We depict the sample size for most systems in Figure 4.5 and 4.6. On the y-axis
we show the sample size. Again, we show the number of features of each feature
model on the x-axis. Analogous to the sampling time, in Figure 4.2 we show all
values for feature models with less than 1,000 features and in Figure 4.3 all values for
feature models with more than 1,000 features. We depict the sample size for Linux
in Table 4.2.

From both diagrams we can see that the sample size varies greatly for every system
and also for the different algorithms. However, for larger systems we can also see a

4.5. Evaluation 83

0 100 200 300 400

0

10

20

30

40

50

60

70

80

Number of Features

S
a

m
p

le
 S

iz
e

 Algorithms

YASA_1
YASA_5
YASA_10
ICPL
Chvatal
IncLing

Figure 4.5: Sample size for systems with a number of features less than 1,000

1000 1100 1200 1300 1400
Number of Features

S
a

m
p

le
 S

iz
e

35

45

55

65

75

85

95

105

115

125 Algorithms

YASA_1
YASA_5
YASA_10
ICPL
Chvatal
IncLing

Figure 4.6: Sample size for systems with a number of features larger than 1,000

correlation between sample size and the number of features throughout all algorithms.
Surprisingly, YASA_10, and even YASA_5, produce mostly smaller samples than

84 4. Advanced T-Wise Interaction Sampling

YASA_1 YASA_5 ICPL Chvatal IncLing
Algorithms

S
a

m
p

le
 S

iz
e

 R
e

la
ti
v
e

 t
o

 Y
A

S
A

_
1

0
 (

%
)

80

100

120

140

160

180

200

220

Figure 4.7: Aggregated sample size relative to YASA_10 (m = 10)

all other algorithms. When applying the Mann-Whitney test, we find that this is
significant with p-values all < 10−8 (i.e., comparing YASA_5 and YASA_10 with
all other algorithms).

We visualize the sample size of all algorithms relative to YASA_10 in Figure 4.7.
In the diagram, we can see by how much the samples of YASA_10 are smaller
compared to all other algorithms. Both, ICPL and Chvátal generate samples that
are on average about 10% larger than the samples from YASA_10. We can see a
larger difference for IncLing, which generates samples that are on average about
30% larger. As expected, an increase of the value for m decreases the sample size of
YASA. However, the average sample size of YASA_5 is close to the average sample
size of YASA_10, confirming that a further increase of m yields only little benefit.

RQ2 Regarding RQ2, we found that we are able to produce smaller samples
compared to other tested algorithms. Again, this depends on the value of parameter
m. Having a low value for m increases the size of the sample, but increasing m up
to a certain point can decrease the sample size by at least 10% compared to m = 1.

Experiment 2 (Scaling to Highly Configurable Systems)

In Table 4.3, we show our results for creating pair-wise samples for the system
FinancialServices01. For this system, we encountered no scalability issues during
the sampling process and were able to create samples for all versions of this system.
Both, sampling time and memory consumption seem feasible for the practical usage
of YASA. On the other hand, the sample sizes seem to be quite high and might be

4.5. Evaluation 85

Table 4.3: Results for FinancialServices01 with t = 2

Version Sample Size Time (s) Memory (MB)

2017-05-22 402 12 125
2017-09-28 3,193 45 209
2017-10-20 3,190 46 197
2017-11-20 3,184 46 281
2017-12-22 3,188 48 281
2018-01-23 3,184 47 281
2018-02-20 3,647 64 528
2018-03-26 3,559 72 528
2018-04-23 4,422 81 528
2018-05-09 4,405 79 528

too large for testing. However, it is difficult to reason about the feasibility of the
sample size as this is highly depended on the actual test suite and the testing process
for an SPL.

In addition to the feature models of FinancialServices01, we also attempt to sample
the systems Automotive02_V1 and Linux_2013-11-06. Unfortunately, the sampling
time for both systems was too high, which is why we aborted the sampling process
for both. However, we can still would report some insights on the challenges during
sampling process of these two systems and reason about potential approaches for
generating samples faster.

The main problem with both feature models is their high number of features (i.e.,
14,010 and 49,247, respectively). As we already discussed, this leads to a high
number of interactions and more computationally expensive SAT instances. For
example, creating a pair-wise sample for Automotive02_V1 requires to consider
392,532,180 interactions. In addition, due to the large SAT instance for such a
large-scale feature model, we were only able to handle about 400 interactions per
second. In comparison, in the latest version of FinancialServices01, we were able
to handle about 20,000 interactions per second. After five days, we aborted the
generation of a sample for Automotive02_V1, which was about 50% done (i.e., 50%
of interactions were processed). At this point, the sample contained 2 complete and
23,015 partial configurations. The algorithm would have eventually terminated, but
probably would have run for at least 5 more days.

For Linux, this problem is even worse, since the number of features in the feature
model is artificially increased. This is due to the usage of the Tseytin transforma-
tion [Tseytin, 1983] to transform the given feature model into a conjunctive normal
form (CNF). A CNF is necessary for most SAT solvers. However, computing a
CNF can be an expensive operation in terms of both, memory consumption and
transformation time, because the number of CNF clauses that are created from
applying the law of distribution can grow exponentially for some formulas. To this
end, techniques such as the Tseytin transformation allow to create an equisatisfiable
CNF by introducing new auxiliary variables, which prevents an exponential growth

86 4. Advanced T-Wise Interaction Sampling

of clauses. We tried to tackle this problem for Linux by using a feature subset that
omits all auxiliary variables for the construction of the interactions, as these are not
present in an actual product, and thus cannot interact. Auxiliary variables for the
Linux feature model can be easily identified in the corresponding Dimcas file, as
they have no associated name in the comments section. With this feature subset,
we are able to reduce the number of features from 49,248 down to 14,781. However,
although we are able to reduce the number of interactions, we still need to take the
auxiliary variables into account for every SAT instance. Thus, we were only able
to handle about 200 interactions per second for this particular model, which again
makes the sampling time infeasible.

RQ3 To answer RQ3, currently, we see a limit for the scalability of YASA regarding
its sampling time for feature models with more than 10,000 features. At the moment,
we think that a promising solution could be to further reduce the size of the feature set
in the feature model by applying domain knowledge to reason about the interactions
between certain features. It may also help to facilitate SAT instances by reducing
the size of a CNF by applying feature slicing [Krieter et al., 2016].

4.5.3 Threats to Validity

The results of our evaluation and their generalizability may be influenced by some
threats to validity. In the following, we list possible internal or external threats to
validity and explain how we attempt to mitigate any potential biases.

Internal

Due to the long execution times of some algorithms, we were only able to conduct
our experiments with a single repetition. Thus, our results for the sampling time
from these experiments may vary, if we would repeat the them. Given the absolute
sampling times, we measured in our experiments, especially for the larger feature
models, we argue that any small difference in the sampling time does not invalidate
our overall findings.

As we implemented YASA and our evolution environment by ourselves, there is a
chance that we might have faults in the implementation that may bias our results.
To mitigate the risk of a faulty implementation, we use automated unit tests to check
the samples computed by any algorithm in our evolution. In particular, we ensure
that all computed samples reach a t-wise coverage of 100% and contain only valid
configurations.

External

In practice, there exist many different feature models of all complexities and size. In
our evaluation, we are only using a comparably small number of different feature
models. Thus, the results could be different for other systems, which may hamper the
generalizability of our results. To mitigate this potential bias, we reused multiple real-
world feature models from different sources. In addition, these feature models come
from different domains and highly differ in their number of features and constraints,
which makes them quite diverse. By using this diverse set of feature model, we
expect to see varying results, which are sufficient to infer general trends.

4.6. Summary 87

A similar issues, concerns the number of evaluated sampling algorithms. In total,
we included four different algorithms in our evaluation. However, there exist many
more algorithms for performing t-wise interaction sampling. We have chosen these
algorithms, because of their good availability and reputation in the research field.
Thus, we are confident that the algorithms we run in our experiment reflect the
current state-of-the-art and are well suited for a comparison.

4.6 Summary
In this chapter, we presented our approach YASA for efficiently building a flexible
t-wise sample using an automated configuration process. We explained the details
of the sampling process and how a sample is created for a given feature model. We
explained all parameters of YASA that can affect the sample properties and the
sampling time. Further, we discussed multiple optimizations and possibilities to
adapt YASA in order to decreasing sampling time or sample size. Within YASA,
we use our data structure MIG, which we introduced in Chapter 3, to increase the
performance of finding invalid interactions during the sampling process. In our
evaluation, we made a comparison with other sampling algorithms and demonstrated
the current limits of our approach. We find that YASA is able to outperform all
state-of-the-art algorithms in most cases, in terms of sampling time and sample size,
depending on its parameter settings. We showed that we can use the parameters
YASA to either reduce the sample size or its sampling time, whichever is more
suitable for a given scenario. However, although we find YASA to be efficient for
most feature models, we also demonstrated that it still has limitations regarding its
scalability, as for large system with more than 10,00 feature variables its sampling
time can be infeasible. In conclusion, we developed an adaptable and efficient t-wise
sampling algorithm that improves upon the state-of-the-art algorithms. We further
extend and use YASA in the following Chapter 5.

5. Presence-Condition Sampling

This chapter introduces the concept of presence conditions coverage and
extends the sampling algorithm from the previous chapter. It shares material
with the following publication: T-Wise Presence Condition Coverage and
Sampling for Configurable Systems (arXiv 2022) [Krieter et al., 2022].

In this chapter, we propose a new coverage criterion t-wise presence condition coverage
with which we aim to facilitate the creation of effective samples for product-based
testing in an automatic configuration process. To this end, we combine t-wise
interaction coverage with presence condition coverage of implementation artifacts to
create a coverage criterion that increases the fault-detection rate of a sample. For
this new coverage criterion, we present an extension of our sampling algorithm YASA
from Chapter 4 that enables t-wise presence condition sampling, which generates
samples with a 100% t-wise presence condition coverage for a given configurable
system and a value of t. This sampling algorithm works independently from the
employed variability mechanisms, such as preprocessors, build systems, or plug-in
systems.

We structure this chapter as follows. First, we give a motivation on t-wise presence
condition coverage by providing a problem statement on the current limitations
of t-wise interaction coverage (see Section 5.1). Second, we describe the details of
t-wise presence condition coverage (see Section 5.2). Third, we present a sampling
algorithm for achieving t-wise presence condition coverage for a given system (see
Section 5.3). Fourth, we investigate the testing effectiveness, testing efficiency, and
sampling efficiency of our sampling algorithm and coverage criterion compared to
traditional t-wise interaction sampling algorithms (see Section 5.4).

90 5. Presence-Condition Sampling

5.1 Motivation
Testing is an important task in software engineering to detect faults and to check
intended behavior [Ammann and Offutt, 2016; McGregor, 2010]. However, exhaustive
testing may be impossible and binds resources that could be used in other phases of
development. This is especially an issue when testing highly configurable systems.

Using t-wise interaction sampling, developers can ensure that all interactions of at
most t features (e.g., all selected, none selected, only one selected, etc.) are contained
in at least one configuration in the generated sample and can thus be tested. A
property of t-wise interaction sampling is that this automatic configuration process
works purely on the problem space of a configurable system. Thus, it is a black-
box approach that does not take into account the mapping between features and
actual implementation artifacts, such as source code, models, and test cases. This
can lead to some issues. First, a traditional t-wise interaction sampling algorithm
may create samples containing configurations that result in similar products, when
build. Having many similar products can lower the overall testing efficiency of a
sample. Second, t-wise interaction sampling may consider some irrelevant feature
combinations, which do not interact in the implementation at all. This can yield an
unnecessarily large sample, which again leads to a lower testing efficiency. Third,
t-wise interaction sampling may not be sufficient to reliably detect a fault resulting
from an interaction of a degree larger than the provided value for t. Typically,
t-wise interaction sampling does not scale well for higher values of t, as the number
of possible feature interactions grows exponentially with t. Thus, developers are
incentivized to choose a low value for t, such as t = 2 or t = 3, in order to keep the
testing effort feasible. However, some faults may require a feature interaction of a
high degree to be included in a configuration, and thus may not be reliably included
in a sample, which potentially decreases testing effectiveness. In summary, due to
the black-box nature of t-wise interaction sampling, it may not reveal certain faults
resulting from feature interaction beyond t or requires too many configurations to
even reach a certain code coverage or fault-detection rate.

There exist some approaches that attempt to address the mentioned issues. Tartler
et al. [2014] propose statement coverage, a white-box approach that considers presence
conditions (i.e., the selection of features for which an artifact is included in a product)
to ensure that every artifact is present in at least one configuration in the sample and
gets a chance of being tested. However, simply including an implementation artifact
in a product does not guarantee that is indeed being tested. Therefore, Ruland et al.
[2018] argue that, in addition to including each artifact, at least one test case must
also cover each artifact in order to properly test it. While the approach of Tartler et al.
[2014] can generate a relatively small sample, the approach of Ruland et al. [2018]
produces a relatively large sample, but guarantees that each artifact will indeed be
tested. We aim to find a reasonable trade-off between both approaches by building on
the idea of Tartler et al. [2014] and try to increase testing effectiveness by combining
it with t-wise interaction sampling. In particular, we propose the coverage criterion
t-wise presence condition coverage, which combines t-wise interaction coverage with
presence condition coverage of implementation artifacts. Rather than counting only
interactions between features, our new criterion considers interactions of presence
conditions of implementation artifacts.

5.1. Motivation 91

...
053 #include "libbb.h"
054 #include <syslog.h>
055
056 # i f GET || PUT // G ∨ P
...

621 # i f TFTP // T
622 int tftp_main(int argc , char **argv) {
...

625 # i f BLOCKSIZE // B
626 const char *blksize_str=TFTP_BLKSIZE_DEFAULT;
...

649 int blksize = tftp_blksize_check(blksize_str , 65564);
650 i f (blksize < 0)
651 return EXIT_FAILURE;
652 # endif
...

670 # i f DEBUG // D
671 printf("blksize = %d\n", blksize); // changed
672 # endif
...

690 }
691 # endif
...

827 #endif

Listing 5.1 Excerpt of the file tftp.c adopted from BusyBox

In the following, we use an example to describe the potential problems with current
approaches for t-wise interaction sampling and motivate our solution. In Listing 5.1,
we show a slightly edited code snippet from the system BusyBox, which uses the
C preprocessor [Stallman and Weinberg, 1987] to implement its variability [Liebig
et al., 2010]. The example is taken from the file tftp.c, which handles client-server
communication via tftp. We show an excerpt of the corresponding BusyBox feature
model in Figure 4.1. The code snippet contains five features from the feature model,
TFTP (T), GET (G), PUT (P), BLOCKSIZE (B), and DEBUG (D), which each can be set
to either true or false. The other features of the feature model do not appear in the
code snippet. In comparison to the original code, we changed a statement in Line 671
such that a compilation error occurs for certain products. The variable blksize
is declared in Line 626, which is dependent on the feature B. Then, blksize is
used in Line 671, which is dependent on the feature D. Thus, if D is selected in a
configuration, but B is not, the generated product will be syntactically incorrect.

Efficiency of Sample-Based Testing In product-based testing, we run the all test
cases of a system once per sampled configuration. To this end, the total testing effort
is dependent on the number of tested configuration of a systems. This is because the

92 5. Presence-Condition Sampling

variant for each configuration must be generated, complied, and run against all of its
test cases. Although the execution time and number of the test cases may differ from
configuration to configuration, in general, there exists a linear correlation between
the number of configurations in a sample (i.e., the sample size) and the total testing
effort. If the sample size increases, the overall testing effort increases as well. Thus,
analogous to other research [Ruland et al., 2018; Varshosaz et al., 2018], we consider
the testing of smaller samples to be more efficient (i.e., testing efficiency). Applying
pair-wise interaction sampling to our running example considers every interaction
between two features. For instance, in Listing 5.1, for the features P and G, all
four possible interactions are considered. However, the three interactions (P,¬G),
(¬P,G), (P,G) all lead to the same product, as all of them satisfy the expression in
Line 056. Thus, it is sufficient to consider only two interactions (e.g., (¬P,¬G) and
(P,G)) for this code snippet. In the table below, we show the sample generated from
the t-wise interaction sampling algorithm ICPL [Johansen et al., 2011, 2012a], which
consists of six configurations:

Feature Configurations
c1 c2 c3 c4 c5 c6

T × ✓ × ✓ ✓ ×
G × ✓ ✓ × ✓ ×
P × ✓ × × ✓ ✓
D × × ✓ × ✓ ✓
B × ✓ ✓ × × ✓

All four interactions of P and G are included. Including such unnecessary interactions
can lead to a larger sample, and thus to a lower testing efficiency.

Effectiveness of Sample-Based Testing We consider a sample to be more
effective, the more faults could be detected using its derived products. Analogous to
other research [Ruland et al., 2018; Varshosaz et al., 2018], we refer to this as testing
effectiveness. Although the fault in Listing 5.1 apparently involves only two features,
it is in fact a feature interaction of degree four. To actually generate a product
that contains the error, the corresponding configuration must have the feature B
deselected and the features T , D, and G or P selected. Below, we show the sample
generated by the pair-wise sampling algorithm IncLing [Al-Hajjaji et al., 2016a]:

Feature Configurations
c1 c2 c3 c4 c5 c6 c7

T ✓ × ✓ × × × ✓
G ✓ × × ✓ × × ✓
P ✓ × × ✓ × ✓ ×
D ✓ × × × ✓ ✓ ×
B ✓ × ✓ × ✓ × ×

5.2. Presence Condition Coverage 93

Although the interaction (D,¬B) is covered in configuration c6, the actual fault will
not be included in the product, as the feature T is not selected and the preprocessor
will remove the entire code block. As a result this sample has a lower testing
effectiveness than the previous sample. In particular, this sample is not sufficient to
find the fault in Listing 5.1.

5.2 Presence Condition Coverage
In the following, we define our coverage criterion for t-wise presence condition
coverage, based on the presence conditions and feature model of a configurable
system and a value for the parameter t. To this end, we describe interactions between
presence conditions and how our coverage criterion is calculated for a given sample
and t value.

5.2.1 Presence Condition Interactions

An interaction between two presence conditions (i.e., between their implementation
artifacts) is similar to interactions between features. However, the key difference is
that a presence condition can be an arbitrary propositional formula. In a complete
configuration, a feature can either be selected, if its corresponding positive literal
is included in the configuration, or deselected, if its negative literal is included. In
contrast, a presence condition may be active or inactive for several different literal
combinations (cf. Section 2.2.2). Thus, an interaction between t presence conditions
must include all possible union sets of these literal combinations.

Inactive Presence Conditions

In order to account for the interactions between present and absent implementation
artifacts, we must consider the interactions between active and inactive presence
conditions. For this reason, we construct the complement of each presence condition,
which is itself a presence condition and represents all literal combinations, for which
the original presence condition is inactive. To this end, we negate the formula of a
presence condition and convert it back into a DNF. As an example, consider the
presence condition ϕ(P+

626) = (G ∧ T ∧B) ∨ (P ∧ T ∧B) for Line 626 of Listing 5.1.
We process this formula as follows:

ϕ(P−
626) = ¬ϕ(P+

626)

= ¬((G ∧ T ∧B) ∨ (P ∧ T ∧B))

De Morgan′s Law ≡ (¬G ∨ ¬T ∨ ¬B) ∧ (¬P ∨ ¬T ∨ ¬B)

Distributive Law ≡ (¬G ∧ ¬P) ∨ (¬G ∧ ¬T) ∨ (¬G ∧ ¬B)

∨ (¬T ∧ ¬P) ∨ (¬T ∧ ¬T) ∨ (¬T ∧ ¬B)

∨ (¬B ∧ ¬P) ∨ (¬B ∧ ¬T) ∨ (¬B ∧ ¬B)

simplify ≡ (¬G ∧ ¬P) ∨ (¬T) ∨ (¬B)

⇒ P−
626 = {{¬G,¬P}, {¬T}, {¬B}}

After negating the formula, we apply De Morgan’s law to get a CNF and then apply
the distributive law to convert it back into a DNF. From the new presence condition

94 5. Presence-Condition Sampling

P−
626, we see that if a configuration either contains the literal ¬T , ¬B, or both, ¬G

and ¬P , the resulting product will not include Line 626.

For a given system, we construct a single set PC that contains all presence conditions
from all lines of the system and their corresponding complements. To construct all
t-wise interactions for a system, we can then generate all t-wise combinations of PC
by constructing the Cartesian product for the given t (i.e., PCt).

Combined Presence Condition

For each interaction of t presence conditions, we can build a new combined presence
condition P∗ that is satisfied if and only if all individual presence conditions are
active or inactive, respectively. To this end, we conjoin the DNFs of all presence
conditions involved in a given interaction and convert the resulting expression back
to a DNF. For each presence condition that is active in the given interaction we
use its original DNF and for each presence condition that is inactive we use its
complementary DNF. For instance, consider the DNFs for excluding Line 626 (P−

626)
and including Line 671 (P+

671) of Listing 5.1:

Line 626: ϕ(P−
626) = (¬G ∧ ¬P) ∨ (¬T) ∨ (¬B)

Line 671: ϕ(P+
671) = (G ∧ T ∧D) ∨ (P ∧ T ∧D)

We build the combined presence condition for the interaction (i.e., P∗) by conjoining
the literals of each pair-wise clause combination:

ϕ(P∗) = ϕ(P−
626) ∧ ϕ(P+

671)

Distributive Law ≡ ((¬G ∧ ¬P) ∧ (G ∧ T ∧D)) ∨ ((¬G ∧ ¬P) ∧ (P ∧ T ∧D))∨
((¬T) ∧ (G ∧ T ∧D)) ∨ ((¬T) ∧ (P ∧ T ∧D))

((¬B) ∧ (G ∧ T ∧D)) ∨ ((¬B) ∧ (P ∧ T ∧D))

simplify ≡ (¬B ∧G ∧ T ∧D) ∨ (¬B ∧ P ∧ T ∧D)

⇒ P∗ = {{¬B,G, T,D}, {¬B,P, T,D}}

After merging, we further simplify the combined DNF by removing contradictions
and redundant clauses. In case of our example, this results in the simplified DNF
(¬B ∧G ∧ T ∧D) ∨ (¬B ∧ P ∧ T ∧D). Thus, if a configuration either contains the
literals ¬B, G, T , and D or ¬B, G, T , and P , Line 671 will appear in the resulting
product, but not Line 626.

5.2.2 Presence Condition Coverage Criterion

We introduce the coverage criterion t-wise presence condition coverage based on the
coverage of presence condition interactions. Given a set of presence conditions PC,
a value for t, the feature model M of a configurable system, and a configuration
sample S for the same system, we can determine a value for our coverage criterion
t-wise presence condition coverage. To this end, we define the function I that returns
the set of all presence condition interactions covered by a given set of configurations:

I(t,PC,M,S) = {I ∈ PCt | ∃c ∈ S, ∀P ∈ I : satisfiable(c,M) ∧ active(P , c)}

5.3. T-Wise Presence Condition Sampling 95

We define t-wise presence condition coverage as the ratio between the number of
t-wise presence condition interactions that are covered by S and the number of valid
t-wise presence condition interactions forM.

coverage(t,PC,M,S) = |I(t,PC,M,S)|
|I(t,PC,M, C(M))|

We can apply the t-wise presence condition coverage criterion to evaluate a sample
computed by any sampling algorithm. The higher the degree of t-wise presence
condition coverage of a sample, the more likely is the sample to contain a faulty
interaction, which can be detected by a test case. As this coverage criterion takes
into account the solution space by considering interactions between concrete imple-
mentation artifacts, we expect that it is more suited as indicator for the testing
effectiveness of a sample than regular interaction coverage. Thus, given a value for
t, a sample that achieves 100% t-wise presence condition coverage can potentially
detect more faults than a sample that achieves 100% t-wise interaction coverage,
but not a 100% t-wise presence condition coverage. Naturally, with t-wise presence
condition sampling we aim to compute a sample that achieves a coverage of 100%.

In our running example, there are five different presence conditions and their five
complements.

true, false,

(G) ∨ (P), (¬G ∧ ¬P),

(G ∧ T) ∨ (P ∧ T), (¬G ∧ ¬P) ∨ (¬T),
(G ∧ T ∧B) ∨ (P ∧ T ∧B), (¬G ∧ ¬P) ∨ (¬T) ∨ (¬B),

(G ∧ T ∧D) ∨ (P ∧ T ∧D), (¬G ∧ ¬P) ∨ (¬T) ∨ (¬D)

In total, there are 11 valid combinations. Considering the sample from IncLing in
Section 5.1, there are two interactions that are not covered by any configuration in the
sample: (G∧T ∧B∧¬D)∨(P ∧T ∧B∧¬D) and (G∧T ∧¬B∧D)∨(P ∧T ∧¬B∧D).
Thus, the number of interactions covered by the sample is 9, which results in a
pair-wise presence condition coverage of approximately 82%.

5.3 T-Wise Presence Condition Sampling
Based on our new coverage criterion t-wise presence condition coverage, we introduce
a sampling algorithm that enables the generation of samples that achieve 100% t-wise
presence condition coverage. To this end, we extend our t-wise sampling algorithm
YASA from Chapter 4. In total, we make three major changes to YASA in order to
enable it to cope with presence conditions and t-wise presence condition coverage.
First, we add two additional steps before running the actual sampling algorithm. In
these steps, we extract a list of presence conditions from the source code of a given
configurable system and preprocess this list to prepare it as input for our sampling
algorithm. Second, we adapt the creation of the list of interactions I⃗, as we need
to build the combined presence condition for each interaction. Third, we adapt the
advanced covering strategy to enable covering presence conditions (i.e., arbitrary
propositional expressions) in a sample. Note that, running our extended sampling

96 5. Presence-Condition Sampling

algorithm with t = 1 will yield a sample that achieves 100% of the coverage criterion
of Tartler et al. [2014]. Every variable code block will be included by at least one
configuration in the sample. In addition, every variable code block will also be
excluded by at least one configuration in the sample, which is not a requirement
of the original coverage criterion. Thus, in terms of testing effectiveness, one-wise
presence conditions sampling will perform at least as good or even better than the
approach of Tartler et al. [2014].

5.3.1 Extracting Presence Conditions

As a first step, we have to extract a set of presence conditions from the target
system. This step is highly dependent on the specifics of the given system, such
as the programming language, the variability mechanism, and the configuration
mechanism. In our thesis, we focus on the handling of extracted presence conditions,
and therefore do not discuss a general approach for the extraction process. In fact,
both processes, extracting presence conditions and testing products, are independent
from our sampling approach and can be adapted to other variability mechanism,
programming language, and testing framework. We did however implement an
algorithm for extracting presence conditions from systems that use the languages
C/C++ and the C preprocessor as a variability mechanism. The algorithm is based
on the tool PCLocator [Kuiter et al., 2018], which is able to parse C files and analyze
preprocessor annotations. The basic procedure from this algorithm would also work
for other preprocessor implementations, such as Antenna for Java, but would of
course require a different parser implementation. In the following, we describe the
general logic behind the algorithm. We give some more details for our particular
implementation in our prototype YASA in Section 5.4.1.

In general, the algorithm parses a C file and determines a presence condition for
each line. As a result, the algorithm returns a list of presence conditions for each file.
The C preprocessor annotations that are used to implement a variability mechanism
always form a block around variable code artifacts. Each block begins with an
annotation, such as #if or #ifdef and ends with an annotation, such as #else or
#endif. The first annotation specifies the condition for which the code block is
included in the final product. Annotated blocks can be nested, as we illustrate in
our example in Listing 5.1. Consequently, for each line in a C file, the algorithm
determines all C preprocessor blocks that surround the line. This is done by pushing
each annotation that begins a block on a stack and removing the latest pushed
annotation whenever an annotation is encountered that ends a block. Thus, for
each line the stack contains all beginning annotations from its surrounding blocks.
The presence condition of the line is then constructed by the conjunction of the
conditionals of the surrounding blocks.

Regarding our example in Listing 5.1, we extract the following list of presence
conditions (for brevity, we only show presence conditions from the lines visible in
the code snippet):

5.3. T-Wise Presence Condition Sampling 97

Line Formula

053 true
054 true
055 true
056 G ∨ P
621 (G ∨ P) ∧ T
622 (G ∨ P) ∧ T
625 (G ∨ P) ∧ T ∧B
626 (G ∨ P) ∧ T ∧B
649 (G ∨ P) ∧ T ∧B

Line Formula

650 (G ∨ P) ∧ T ∧B
651 (G ∨ P) ∧ T ∧B
652 (G ∨ P) ∧ T ∧B
670 (G ∨ P) ∧ T ∧D
671 (G ∨ P) ∧ T ∧D
672 (G ∨ P) ∧ T ∧D
690 (G ∨ P) ∧ T
691 (G ∨ P) ∧ T
827 G ∨ P

5.3.2 Preprocessing Presence Conditions

The result from our extraction algorithm is a list of arbitrary propositional formulas.
To prepare the set of presence conditions PC that we use as input for our sampling
algorithm, we need to further refine this list. In particular, we need to remove
all duplicates and convert each propositional formula to DNF. We perform the
preprocessing of the list in three steps. First, we make a syntactical comparisons of the
original formulas to remove all identical formulas. This step is of low computational
effort and filters out all syntactic duplicates in the list. Naturally, there may be
formulas in the list that are syntactically different but are semantically equivalent.
Second, in order to filter out more possibly redundant presence conditions and for a
simpler sampling process later on, we convert all remaining formulas to DNF. For
the conversion to DNF, we use an algorithm based on standard boolean algebra.
Note that we do not need to convert a presence condition from CNF to DNF, but
directly convert the propositional formula extracted from the source code, which
typically contains only a small set of features and no complicated formulas. Third,
we again make a syntactical comparisons of all DNFs to remove identical formulas.
The syntactical comparison we use in this step is indifferent to different orderings of
literals and clauses within a DNF. For instance, the formula (G ∧ T) ∨ (P ∧ T) is
equal to the formula (T ∧ P)∨ (T ∧G). Thus, we are likely to find and remove most
redundant formulas in the set. Nevertheless, it is still possible that two semantically
equivalent formulas have different DNFs. For instance, (G ∧ T) ∨ (P ∧ T) ∨ (T) is
equal to (T) when simplified. However, a complete semantical comparison requires
much more computational effort and is unlikely to reduce the current set much
further. As a result of the preprocessing, we get a set of DNFs PC representing all
presence conditions of the target system.

The preprocessed list of presence conditions for our example in Listing 5.1 is the
following

First Line Original Formula DNF Formula

053 true true
056 G ∨ P (G) ∨ (P)
621 (G ∨ P) ∧ T (G ∧ T) ∨ (P ∧ T)
625 (G ∨ P) ∧ T ∧B (G ∧ T ∧B) ∨ (P ∧ T ∧B)
670 (G ∨ P) ∧ T ∧D (G ∧ T ∧B) ∨ (P ∧ T ∧D)

98 5. Presence-Condition Sampling

Algorithm 5.1 Main sampling algorithm of YASA adapted for presence conditions
sampling
Require:

M – Feature Model
t – Interaction Size
Sinit – Initial Sample (Default : Sinit = ∅)
PC – Presence Conditions (Default : PC = {{f} | f ∈ F(M)})
m – Resampling Limit (Default : m = 1)

Return:
S – Configuration Sample

1: function createSample(M, t, Sinit, F∗, m)
2: S ← Sinit
3: G ← createMIG(M)
4: PC+/− ← getExpressions(PC, G)
5: CHistory ← ∅
6: S ← sample(M, G t, S, PC+/−, CHistory)
7: for 1 to m− 1 do
8: S ← trim(S)
9: S ← sample(M, G t, S, PC+/−, CHistory)

10: S ← autocomplete(S)
11: return S

12: function sample(M, G t, S, PC+/−, CHistory)
13: P⃗∗ ← combine(PC+/−, t)
14: for P∗ ∈ P⃗∗ do
15: S ← cover(P∗,S,M,G, CHistory)
16: return S

Splitting our algorithm in a preprocessing and a sampling part allows us to flexibly
determine the input for the actual sampling algorithm. Similar to the the feature
subsets used in the regular YASA (cf. Section 4.2.4), we can also build subsets of
PC and only consider interactions between these. To this end, we run the sampling
algorithm once for each subset and iteratively add configurations to S. Using such
subsets, we can, for example, group presence conditions for single files or folders of
a system, and thereby limit the number of possible interactions and the resulting
sample size.

5.3.3 Building the List of Combined Presence Conditions

After preparing the set of presence conditions, we start with constructing the sample.
We show the general algorithm for t-wise presence condition sampling in Algorithm 5.1,
which is an extension of our sampling algorithm YASA from Chapter 4. In this
chapter, we only go into detail on the modifications we did to the original algorithm
(cf. Section 4.3).

The basic algorithm differs from the regular YASA mainly in the parameter PC, which
replaces the feature subset F∗. PC contains the set of presence conditions in DNF.

5.3. T-Wise Presence Condition Sampling 99

Similar to the set of literals LI in regular YASA, we create a list of expressions PC+/−

that represents all active and inactive presence conditions (cf. Section 5.2.1). For this,
we call the function getExpressions (Line 4), which simplifies the expressions in
PC, removes obvious tautologies and contradictions, and computes the complement
of each presence condition. With the help of the MIG G, we remove all core and
dead features variables from the clauses in DNF. A DNF clause that contains the
positive literal of a dead feature variable or the negative literal of a core feature
variable always evaluates to false, and thus, we can remove the entire clause from
the DNF. If the resulting DNF is empty, then the entire DNF is a contradiction
and the corresponding presence condition is always inactive. Thus, we do not need
to consider an interaction with other presences conditions, analogous to core and
dead feature variables (cf. Section 4.3.2). Similarly, if a DNF clause contains the
negative literal of a dead feature variable or the positive literal of a core feature
variable this literal always evaluates to true, and thus, we can remove the literal
from the clause. If the resulting clause is empty, then the entire DNF is a tautology
and the corresponding presence condition is always active. Again, in this case, we do
not need to consider an interaction with other presences conditions. Based on this
reasoning, we simplify all DNFs and remove any tautologies or contradictions, we
find. Afterwards, we compute the complements of all presence conditions in PC to
account for interactions with inactive presence conditions (cf. Section 5.2.1).

Regarding our example in Listing 5.1, the resulting set PC+/− contains the following
formulas:

DNF Complement

(G) ∨ (P) (¬G ∧ ¬P)
(G ∧ T) ∨ (P ∧ T) (¬G ∧ ¬P) ∨ (¬T)
(G ∧ T ∧B) ∨ (P ∧ T ∧B) (¬G ∧ ¬P) ∨ (¬T) ∨ (¬B)
(G ∧ T ∧B) ∨ (P ∧ T ∧D) (¬G ∧ ¬P) ∨ (¬T) ∨ (¬D)

The remaining algorithm is again similar to YASA. We start with the initial sample
Sinit (Line 2) and then iterate over all t-wise interactions one at a time (Lines 14–15).
For each, we either add a new partial configuration to the sample or the literals of
one clause of the interaction’s presence condition to an existing configuration. To this
end, we compute the combined presence condition P∗ of an interaction as outlined
in Section 5.2.1 (Line 13) and use it in our covering strategy. Due to the nature of
this algorithm, we are guaranteed to check every possible combination of the given
presence conditions exactly once. For each combination of presence conditions, we
either include it in at least one configuration in the sample or determine that it
cannot be covered by any valid configuration. Since there are finitely many possible
combinations (i.e., 2t ·

(
n
t

)
with n being the number of presence conditions), the

algorithm will eventually terminate and guarantees that a presence condition coverage
of 100% is achieved by the computed sample. This, of course, assumes that the
system executing the algorithm has enough memory and can run for as long as
necessary.

100 5. Presence-Condition Sampling

Algorithm 5.2 Advanced presence condition covering strategy for YASA
Require:

P∗ – Combined Presence Condition
S – Configuration Sample
M – Feature Model
G – MIG forM
CHistory – Configuration History

Return:
S – Configuration Sample

1: function cover(P∗, S,M, G, CHistory)
2: if ∄c ∈ S : ∃d ∈ P∗ : d ⊆ c then
3: for d ∈ P∗ do
4: S ′ ← {c ∈ S | ∄l ∈ d : ¬l ∈ c)}
5: for c ∈ S ′ do
6: if isValid_NoSAT(c ∪ d, CHistory) then
7: S ← (S \ {c}) ∪ {c ∪ d}
8: return S
9: P ′ ← ∅

10: for d ∈ P∗ do
11: if isValid_NoSAT(i, CHistory) then
12: P ′ ← P ′ ∪ {d}
13: else if ¬ isInvalid_MIG(i, G) then
14: if isValid_SAT(i,M, CHistory) then
15: P ′ ← P ′ ∪ {d}
16: if P ′ = ∅ then
17: return S
18: for d ∈ P ′ do
19: for c ∈ S ′ do
20: ci ← c ∪ d
21: if ¬ isInvalid_MIG(ci, G) then
22: if isValid_SAT(ci,M, CHistory) then
23: S ← (S \ {c}) ∪ {ci}
24: return S
25: ci ← min(P ′)
26: ci ← decisionPropagation(ci,M, G)
27: S ← S ∪ {ci}
28: return S

5.3.4 Covering Presence Conditions

In Algorithm 5.2, we present our modified version of the advanced covering strategy
(cf. Section 4.4.1) for covering a combined presence condition P∗. This modified
covering strategy uses the same optimizations, we described before in Section 4.4.1.
However, we need to adapt it to enable the handling of presence conditions in DNF.
In contrast to an interaction with a single literal set, a presence condition is active
if any of its clauses is satisfied. Thus, instead of considering the entire combined
presence condition P∗, we iterate over each of its clauses d (Lines 2, 3, 10, 18) .

5.3. T-Wise Presence Condition Sampling 101

First, we check whether any clause is already covered by at least one configuration
in the sample (Line 2). If not, we check whether any configuration in CHistory is able
to cover the current interaction (Lines 3–8). In that case, we add the respective
clause of the presence condition to the corresponding configuration in the sample
and return. Otherwise, we check the validity of all clauses in P∗ and create a new
filtered set P ′ that only contains valid clauses (Lines 10–15). We use the filtered set
to iterate over all configurations in our current sample and check, whether we can
add the literals of any d ∈ P ′ to it without causing a contradiction (Lines 10–15).
If we find any such clause d and configuration c, we add all literals of d to c (i.e.,
covering the interaction) and continue with the next interaction. Otherwise, if we
cannot find any suitable configuration for any clause in P ′, we use one clause from P ′

to build a new configuration that we add to our sample (Lines 25–28). For this, we
run a stable sorting algorithm to sort all clauses in P ′ by their number of literals in
ascending order and then use the first clause (i.e., with the least amount of literals)
for the new configuration.

As an example, we describe some iterations of the algorithm for Listing 5.1. In the
first iteration we consider the interaction of (G∨P) and (¬G∧¬P), which is converted
into the combined presence condition P∗ = {{G,¬G}, {P,¬P}}. As there is no
configuration yet in S, we continue with checking the validity of P∗. Both clauses
in P∗, d1 = {G,¬G} and d2 = {P,¬P} are invalid and are therefore not considered
for inclusion into a configuration. Thus, we continue with the next iteration. In the
second iteration, we get the interaction of (G ∨ P) and ((G ∧ T) ∨ (P ∧ T)), which
results in P∗ = {{G, T}, {P, T}}. There is still no configuration in S, which may
cover this interaction. Both clauses d1 = {G, T} and d2 = {P, T} are valid, but there
is no configuration yet to which they could be added. Thus, both of them are added
to P ′. Next, the smallest clause in P ′ is added to a new configuration ci in S. As both
clauses have the same size, we use the first one, resulting in S = {{G, T}}. In the
third iteration, we get the combined presence condition P∗ = {{G, T,D}, {P, T,D}}.
Both clauses are valid and can be added to the existing configuration in S. We use
the first clause, which results in S = {{G, T,D}}. In the fourth iteration, we get
the combined presence condition P∗ = {{G, T,¬D}, {P, T,¬D}}. Both clauses are
valid, but conflict with the existing configuration in S. Thus, a new configuration is
added, resulting in S = {{G, T,D}, {G, T,¬D}}.

After the algorithm terminated, the complete sample S consists of five configurations:

Feature Configurations
c1 c2 c3 c4 c5

T ✓ ✓ ✓ × ×
G ✓ ✓ ✓ ✓ ×
P ✓ ✓ ✓ ✓ ×
D ✓ × ✓ × ✓
B ✓ ✓ × × ✓

102 5. Presence-Condition Sampling

When comparing this sample to the sample generated by IncLing in Section 5.1, we
see that, in contrast, it contains a configuration that covers the fault in the example
(i.e., c3). This corresponds to an increase in testing effectiveness. Compared to the
sample produced by ICPL in Section 5.1, we can see that it contains only the two
real interactions of P and G, and thus requires only five configurations instead of
seven, which is an increase in testing efficiency.

5.4 Evaluation

With t-wise presence condition coverage we aim to generate samples for a novel
coverage criterion, which we expect to increase the chance of detecting faults in
product-based testing. We are interested in the degree of testing effectiveness and
testing efficiency of the t-wise presence condition coverage criterion and our algorithm
for t-wise presence condition sampling. Therefore, we evaluate whether samples
generated with t-wise presence condition sampling can detect more faults than
samples generated with t-wise interaction sampling. We also evaluate what degree of
t-wise presence condition coverage can be achieved by existing algorithms for t-wise
interaction sampling. Further, we evaluate the sample size (i.e., testing efficiency)
and sampling time (i.e., sampling efficiency) of our extended algorithm YASA. In
summary, we aim to answer the following research questions:

RQ1 Does t-wise presence condition coverage indicate the fault detection potential
better than t-wise interaction coverage for the same value of t?

RQ2 Can algorithms for t-wise interaction sampling achieve complete t-presence
condition coverage?

RQ3 Does the usage of t-wise presence condition sampling affect the sample size
(i.e., testing efficiency) compared to t-wise interaction sampling?

RQ4 Does the usage of t-wise presence condition sampling affect the sampling time
(i.e., sampling efficiency) compared to t-wise interaction sampling?

Within our experiments, we compute several samples for different systems using
our algorithm YASA and a selection of different state-of-the-art t-wise interaction
sampling algorithms and compare the samples with respect to our evaluation criteria.
In the following, we describe the setup for our experiments and our evaluation results.
First, we introduce the algorithms that we compare against each other. Second, we
present the subject systems, for which we generate samples. Third, we describe our
measuring methods for our four evaluation criteria, fault detection, coverage, sample
size, and sampling time. Fourth, we analyze and discuss our results. Finally, we
discuss potential threats to the validity of our evaluation.

5.4. Evaluation 103

5.4.1 Setup of Experiments

Algorithms

We use several state-of-the-art algorithms for t-wise interaction sampling as com-
parison for testing efficiency and effectiveness, which were also used in previous
evaluations [Al-Hajjaji et al., 2016a, 2019; Johansen et al., 2012a]. First, we employ
Chvátal [Chvatal, 1979], ICPL [Johansen et al., 2011, 2012a], and IncLing [Al-Hajjaji
et al., 2016a] as pure t-wise interaction sampling algorithms. Second, we use YASA
as a pure t-wise interaction sampling algorithm, which only uses the feature model
as input (YASA-FM). All of these algorithms compute complete t-wise samples
for certain values of t using different methods. Third, we use a random sampling
algorithm [Al-Hajjaji et al., 2016b]. Instead of aiming for a certain coverage criteria
it generates a fixed number of valid random configurations. Fourth, we include the
algorithm PLEDGE [Henard et al., 2014b], which does not try to achieve a certain
t-wise interaction coverage, but is based on an evolutionary algorithm to optimize
a sample of fixed size such that its contained configurations are as dissimilar as
possible. By increasing dissimilarity, the sample’s t-wise interaction coverage should
also increase. Although this approach does not guarantee a complete t-wise interac-
tion coverage, it aims to increase sampling and testing efficiency while maintaining
a reasonably good testing effectiveness. Fifth, we use YASA to compute samples
based on presence conditions (YASA-PC). Finally, we run YASA-PC with t = 1
(YASA-PC-1) to compute a sample that is comparable to the approach of Tartler
et al. [2014] (cf. Section 5.3). The sample produced by this algorithm will most likely
be different from a sample produced the original algorithm of Tartler et al. [2014].
However, it is guaranteed to achieve 100% the coverage criterion of Tartler et al.
[2014].

Implementation Details The implementation of these algorithm is provided by
multiple open-source Java libraries, which we employ in our evaluation. Chvátal
and ICPL are implemented in the SPLCATool [Johansen et al., 2012a]. IncLing
and Random are implemented in FeatureIDE [Al-Hajjaji et al., 2016b; Meinicke
et al., 2017]. PLEDGE is implemented in a library of the same name [Henard et al.,
2014b]. For all other sampling algorithms we use YASA, for which we employ our
own implementation.

We extended our existing implementation of YASA for t-wise presence condition
sampling. It includes an algorithm for extracting presence conditions from systems
that use the C preprocessor and the kbuild build tool. Both, the extraction algorithm
and the extension of YASA are written in Java and employ several other Java
libraries to implement its functionality, including FeatureIDE [Al-Hajjaji et al.,
2016b], Sat4J [Le Berre and Parrain, 2010], PCLocator [Kuiter et al., 2018], and
KClause [Oh et al., 2019].

For parsing C files and identifying preprocessor statements, we use the tool PCLoca-
tor [Kuiter et al., 2018], which combines several C parsers, such as SuperC, TypeChef,
and FeatureCoPP to achieve more accurate results. This tool computes a presence
condition for each line in a source file. To this end, we analyze every C file (i.e., files
with the file extensions .c, .h, .cxx, and .hxx) in the source directories of the target

104 5. Presence-Condition Sampling

system. For this, we exclude special directories that do not contribute to the actual
implementation of the system, but contain examples, configuration logic, or header
files of system libraries. As result, we get a list containing propositional formulas
for each line within a C project. We use this list as input for the t-wise presence
condition sampling. Thus, in our evaluation, we focus on C projects that use the C
preprocessor and kbuild as build system to enable variability. During the extraction
process, we warn the user, if we find presence conditions that contain features that
are not on the feature model and vice versa. For our evaluation, we only consider
features that we can find in both, the feature model and the source code.

Within our sampling algorithm, we use the satisfiability solver Sat4J [Le Berre
and Parrain, 2010] to check for validity of configurations and presence conditions.
Furthermore, we use KClause [Oh et al., 2019] to extract a feature model for C
projects that use Kconfig as configuration tool.

Regarding the random sampling, we use the default random sampling algorithm
of FeatureIDE [Al-Hajjaji et al., 2016b]. Their implementation is based on Sat4J
as well and generates configurations by asking the satisfiability solver for a valid
configuration using a randomized feature order. While this algorithm does not
generate uniformly distributed random samples, as it is biased by the internal
structure of the solver, it is an efficient way to generate a high number of valid
configurations. Note that it is possible for this algorithm to generate a sample that
contains duplicate configurations. However, considering the enormous configuration
space of larger system, such duplicates are unlikely to occur.

Parameter Details As we employ a variety of sampling algorithms in our
evaluation, the required parameters differ for most of them. The only common
parameter for every algorithm is the feature model, which specifies the feature
dependencies. Naturally, all algorithms always use the same feature model as input.

Regarding the parameter t, not all algorithms support the same values. IncLing is
designed as a strict pair-wise interaction coverage algorithm, and thus only works
for t = 2. ICPL supports values for t up to 3 and Chvátal up to 4. We can run
our algorithm for t-wise presence condition sampling with any value for t. However,
YASA currently has a technical limitation that allows to process only up to 231

interactions. To enable a fair comparison, we set the value of t to t = 2 for all
algorithms.

As Random and PLEDGE do not try to achieve a certain t-wise coverage, but just
generate a set of valid configurations, it is not possible to set a value for t. Instead,
they require to set the size of the sample in advance. In order to ensure a fair
comparison, for PLEDGE, we set the sample size equal to the size of the largest
sample computed by any variant of YASA (i.e., either YASA-FM, YASA-PC, or
YASA-Concrete, which ever returned the largest sample). For Random, we set several
sample sizes for each system, ranging from the smallest to the largest sample size
produced for every system by any algorithm.

PLEDGE also requires to set a time limit for the evolutionary algorithm. We decided
to compare two different limits, the maximum and minimum time that any variant

5.4. Evaluation 105

of YASA needs to compute a sample for a particular model (i.e., either YASA-FM,
YASA-PC, or YASA-Concrete, which ever requires the least and most amount of
time).

For YASA, we also have to specify additional parameters beside t. We are able to
specify which expressions should be considered for interaction (cf. Section 5.3). Thus,
we test the following settings: YASA-FM considers all t-wise interactions within a
feature model, and thus behaves like other pure t-wise interaction sampling algorithms.
YASA-PC considers all t-wise interactions between all presence conditions of a system.
Finally, YASA-Concrete considers t-wise interactions between features, but only
includes features that appear in at least one presence condition (i.e., concrete
features).

Summary We compare results from the following algorithms:

Short Name Name

Chvatal Chvátal [Chvatal, 1979]
ICPL ICPL [Johansen et al., 2011, 2012a]
IncLing IncLing [Al-Hajjaji et al., 2016a]
PLEDGE-Min PLEDGE using minimum run time [Henard et al., 2014b]
PLEDGE-Max PLEDGE using maximum run time [Henard et al., 2014b]
YASA-FM YASA with all features of a model (cf. Section 4.3)
YASA-PC-1 YASA with all presence conditions of a system for t = 1

(cf. Section 5.3)
YASA-PC YASA with all presence conditions of a system (cf. Section 5.3)
YASA-Concrete YASA with all concrete features of a system (cf. Section 4.3)
Random Random [Al-Hajjaji et al., 2016b]

Subject Systems

Currently, YASA can extract presence conditions from C preprocessor statements.
Thus, we selected real-world open-source systems that use the C preprocessor as
a variability mechanism. In particular, we reused 21 systems from the study of
Medeiros et al. [2016], which also compared different sampling algorithms in terms of
testing effectiveness. However, most of these systems do not have a separate feature
model, which prevents us from taking their feature dependencies into account. For
this reason, we include six real-world open-source systems that use the C preprocessor
and the Kconfig tool, namely, fiasco (latest), axtls (latest), uclibc-ng (latest),
toybox (latest), BusyBox (version 1.29.2), and Linux (version 2.6.28). For Linux,
we use a feature model for version 2.6.28 provided by She et al. [She et al., 2011].
For all other systems, we extracted the feature models from their Kconfig files using
the tool KClause [Oh et al., 2019].

In Table 5.1, we provide an overview of the all systems. At the top we show the 6
systems for which we have a feature model and at the bottom the 21 systems from
the study of Medeiros et al. [2016]. For each respective feature model, we show its
number of features (#F), concrete features (#CF) (i.e., features that appear in
at least one presence condition), and dependencies (#D). Regarding the extracted

106 5. Presence-Condition Sampling

Table 5.1: Subject systems for the evaluation of t-wise presence condition sampling
— features (#F), concrete features (#CF), dependencies (#D), presence conditions
(#PC), and the number of clauses (#C) and literals (#L) over all presence conditions

System (Version) Feature Model Presence Conditions
#F #CF #D #PC #C #L

fiasco (latest) 71 7 120 9 12 14
axtls (latest) 95 32 190 90 126 162
uclibc-ng (latest) 270 104 1,561 225 315 406
toybox (latest) 323 8 90 14 14 14
BusyBox (1.29.2) 1,018 507 997 1,020 1,475 1,975
Linux (2.6.28.6) 6,888 1,696 80,715 3,512 5,494 8,767

totem (2.17.5) – – – 223 278 332
gnome-vfs (2.0.4) – – – 253 313 373
irssi (0.8.15) – – – 318 369 428
lua (5.2.1) – – – 324 496 714
xfig (3.2.4) – – – 378 802 1,969
libssh (0.5.3) – – – 393 663 962
gnome-keyring (3.14.0) – – – 453 539 631
lighttpd (1.4.30) – – – 567 875 1,219
dia (0.97.2) – – – 606 708 810
bison (2.0) – – – 695 1,161 1,871
fvwm (2.4.15) – – – 777 1,482 4,075
xterm (224) – – – 796 1,302 1,859
cherokee (1.2.101) – – – 1,128 1,589 2,077
cvs (1.11.17) – – – 1,495 2,491 3,785
gnuplot (4.6.1) – – – 1,546 2,720 4,145
libpng (1.5.14) – – – 1,752 3,937 7,421
apache (2.4.3) – – – 1,814 2,915 4,360
libxml2 (2.9.0) – – – 2,420 4,423 6,757
busybox (1.23.1) – – – 3,278 5,046 7,281
bash (4.2) – – – 3,659 6,577 10,262
vim (6.0) – – – 3,888 8,714 16,613

presence conditions, we show the total number of conditions (#PC), and the number
of literals (#L) and clauses (#C) over all presence conditions. These numbers refer
to the set of presence conditions after the preprocessing step (cf. Section 5.3.2).

Measuring Fault Detection

To answer our first research question, we reuse some artifacts from the study
of Medeiros et al. [2016]. In the study the authors report known faults in mul-
tiple systems and the respective condition for which a fault is present in a variant
(i.e., fault condition)1. If the fault condition of a fault is true under a given con-
figuration, it means that the fault will be present in the corresponding variant. In

1http://www.dsc.ufcg.edu.br/~spg/sampling/

http://www.dsc.ufcg.edu.br/~spg/sampling/

5.4. Evaluation 107

Table 5.2: Overview of fault conditions of faults used from Medeiros et al. [2016]

Degree Count Example

1 34 !ENABLE_FEATURE_SYSLOG

2 11 ENABLE_FEATURE_EDITING && !ENABLE_HUSH_INTERACTIVE

3 4 ENABLE_FEATURE_GETOPT_LONG
&& !ENABLE_FEATURE_SEAMLESS_LZMA
&& !ENABLE_FEATURE_TAR_LONG_OPTIONS

4 2 !FEAT_GUI_W32 && !PROTO && !FEAT_GUI_MOTIF
&& !FEAT_GUI_GTK

5 1 !FEAT_GUI_W32 && !FEAT_GUI_GTK && !FEAT_GUI_MOTIF
&& !FEAT_GUI_ATHENA && !FEAT_GUI_MAC && FEAT_GUI∑

52

total, the study presents a list of 75 unique fault conditions. However, 23 of these
conditions contained features that do not occur in the actual source code. This can
be due to abstract features, features that are only used during the build process (e.g.,
in Makefiles), or due to features that have a different name in the configuration tool
than in the source code. Therefore, we only used the remaining 52 fault conditions
in our evaluation. Most of these fault conditions represent interaction of degree
one, which means that the selection or deselection of a single feature is enough to
make them active. However, the list also contains fault conditions that represent
interactions of degree two, three, four, and five. We show the distribution of fault
conditions in Table 5.2 together with an example for each degree of interaction. Note
that, five of the 52 fault conditions also have multiple clauses in their DNF. For such a
case, we consider the number of literals in the smallest clause as degree of interaction
for that fault condition. This is because the smallest clause will be always be covered
by any t-wise sampling with a value for t that is greater or equal to the number of
its literals. For instance, the following fault condition represent an interaction of
degree three, because it can be satisfied by the (de)selection of three features:

(SHUTDOWN_SERVER && NO_SOCKET_TO_FD && START_RSH_WITH_POPEN_RW) ||
(NO_SOCKET_TO_FD && !SHUTDOWN_SERVER && START_RSH_WITH_POPEN_RW)

This fault condition can be satisfied by any configuration the includes either the literals
SHUTDOWN_SERVER, NO_SOCKET_TO_FD, and START_RSH_WITH_-
POPEN_RW or the literals NO_SOCKET_TO_FD, ¬SHUTDOWN_SERVER,
and START_RSH_WITH_POPEN_RW. Thus a complete three-wise interaction
coverage would guarantee to find this fault. All in all, the study includes a wide
variety of interaction faults with varying degrees of complexity.

We use the list of fault conditions to check whether samples generated for theses
systems do cover each fault in at least one configuration. To this end, we generate
samples for each of these systems with YASA-PC (i.e., presence condition coverage)
and YASA-Concrete (i.e., interaction coverage) for t = 1 and t = 2. We then count
how many reported faults are covered by each sample. To determine whether a fault

108 5. Presence-Condition Sampling

is covered, we check if there exists at least one configuration in the sample that
satisfies the corresponding presence condition of the fault.

Both algorithms are susceptible to the order of features and order of presence
conditions that are provided as input, meaning that they will produce different
results for different feature orders. Thus, we evaluate both algorithms using multiple
iterations with a randomized feature order. In detail, we execute all algorithms 100
times, each time shuffling the feature order. To enable a fair comparison we use the
same 100 randomized feature orders for each algorithm. A number of 100 iterations
is an empirical value for our evaluation that provides a good trade-off between effort
and accuracy.

Note, that we do not use any of the other algorithms in this experiment, as we do
not have feature models for these systems. The lack of a feature model for a system
also means that the configurations within a sample may be invalid according to the
feature dependencies of the system. However, without a feature model we are not
able to verify whether a configuration is invalid.

Measuring Coverage

We compute the coverage achieved by every sample with regard to two different cov-
erage criteria, pair-wise interaction coverage (FM) and pair-wise presence condition
coverage (PC). We consider a sample and, consequently, its sampling algorithm to
be more effective the higher its coverage, as it potentially exposes more faults in the
code.

Similar to the previous experiment, all used sampling algorithms are susceptible to
the feature order in a feature model. Thus, again, we execute all algorithms 100
times, each time shuffling the feature order. In addition, we execute Random 10
times for each feature order, which results in 1,000 iterations for each system. For
Linux, we only use 5 iterations of the experiment, as most algorithms take several
hours to compute just one sample.

Measuring Sample Size

Regarding testing efficiency, we count the number of configurations in each sample
computed by each algorithm. We do not consider the time required to run any actual
test cases of a particular system. We do not consider the time required to run any
test cases of a particular system, as this time is depended on the actual test cases for
each product and the general testing approach. Nevertheless, we can assume that
the testing time increases with the number of configuration in a sample, and thus, in
general, a smaller sample will lead to a smaller testing time. Analogous to measuring
coverage, we execute each algorithm, except Random, 100 times and randomize the
feature order. Random is again run 1,000 times for each sample size.

Measuring Sampling Time

For measuring sampling efficiency, we take the time that is needed for generating
a sample with each algorithm. Each experiment runs on an own JVM, in order to
mitigate any side effects (e.g., just-in-time compilation). As our algorithm requires
additional information from the source code (i.e., the presence conditions), we
differentiate between the time needed to extract the presence conditions from the
source code and the time to actually generate the sample. This is relevant, as the

5.4. Evaluation 109

Table 5.3: Faults covered across all 21 systems from Medeiros et al. [2016], including
aggregated sample size and sampling time over all systems

Algorithm t Size Time (s) Faults Covered
∅ Min Max ∅ Min Max Yes No

YASA-PC 1 7.5 4 14 0.3 0.2 0.6 41 11
YASA-Concrete 1 2.0 2 2 0.3 0.2 0.4 36 16
YASA-PC 2 65.7 22 167 5.6 0.3 38.8 51 1
YASA-Concrete 2 16.7 12 24 0.9 0.2 3.7 47 5

extraction process only needs to be run once for each system. Though it takes some
time to analyze the source code, the resulting presence conditions for each file can
be saved for later reuse. For instance, if we compute samples for different values of t,
we only need to run the extraction process once.

Evaluation System

We run all algorithms on the same evaluation system, with the following specifications:

• CPU : Intel(R) Core(TM) i5-8350U
• Physical Memory : 16GB
• JVM Max Memory : Xmx: 14GB
• OS : Manjaro (Arch Linux)
• JVM : OpenJDK 15.0.2

5.4.2 Results of Experiments

For brevity, we primarily present figures showing aggregated data over our measure-
ment results. All data and a tabular overview can be found online.2 We structure our
findings according to our four research questions, that is fault detection, coverage,
testing efficiency, and sampling efficiency. Afterwards, we analyze and discuss our
results.

Faults Covered

We present the results of our first experiment in Table 5.3. For each algorithm and
value for t, we show the number of faults that are covered or not covered by the
produced samples across all systems. The number of covered faults is the minimum
number over all 100 iterations, meaning that if none of the 100 samples for a system
was able to cover a particular fault it is not counted as covered. Analogous, the
number of not covered faults is the maximum number over all 100 iterations. In
addition, we report the aggregated sample size and sampling time over all systems.
For both values, we report its minimum, maximum and average over all 21 systems
and 100 iterations.

2https://github.com/skrieter/evaluation-pc-sampling/tree/master/results

https://github.com/skrieter/evaluation-pc-sampling/tree/master/results

110 5. Presence-Condition Sampling

Table 5.4: Relative mean sample size, mean sampling time, and mean coverage
aggregated over all six systems with a feature model

Algorithm ∅Time (%) ∅Size (%) ∅Coverage (%)
FM PC

YASA-FM 100.0 100.0 100.0 98.6
YASA-PC 59.3 73.9 79.1 100.0
YASA-PC-1 38.8 12.6 57.1 69.7
YASA-Concrete 36.1 16.6 61.7 62.9
ICPL 319.5 132.7 100.0 97.9
Chvatal 1,046.7 131.3 100.0 98.0
IncLing 53.6 153.7 100.0 99.3
PLEDGE-Min 51.5 122.0 98.8 97.1
PLEDGE-Max 118.2 122.0 98.8 97.1

Of the 52 faults, which we investigated, we see that for both values of t YASA-PC is
able to detect more faults than YASA-Concrete (i.e., 36 vs. 31 for t = 1 and 51 vs.
47 for t = 2). Only a single fault could not always be covered by YASA-PC with
t = 2. The corresponding fault condition is the following:

ENABLE_HUSH_CASE && ENABLE_FEATURE_EDITING_SAVE_ON_EXIT
&& ENABLE_HUSH_INTERACTIVE && !ENABLE_FEATURE_EDITING

This fault condition is of degree four, and thus, when using t-wise interaction sampling,
is only guaranteed to be found with t ≥ 4.

On the other hand, we can also see that on average YASA-PC produced larger
samples than YASA-Concrete (i.e., 7.5 vs. 2.0 for t = 1 and 65.7 vs. 16.7 for t = 2).
Thus, the higher fault detection may also be a result of the larger sample sizes.
However, as we pointed out before, we do not use a feature model for this experiment.
Therefore, there are no restrictions on the configuration space, which can lead to a
lower sample size. Furthermore, as we see in later experiments, a feature model, which
may also include abstract features, leads to a larger sample size than considering
only concrete features.

Achieved Coverage

In Table 5.4, we show a comparison of the coverage for different criteria for all
algorithms. These values are aggregated over all systems and all experiments using
the arithmetic mean. We show a more detailed plot of the coverage criterion PC
over all systems and experiments in Figure 5.1 using boxplots. In addition, we
performed paired t-tests to test whether the difference in achieved coverage by the
different algorithms is significant. We present the results of the statistical tests in
Table 5.5. In this table, we compare the coverage of all three variants of YASA with
the coverage of all other algorithms for the two coverage criteria FM and PC with
t = 2. The symbol = indicates that there is no significant difference (i.e., p > 0.05)
in the achieved coverage between both algorithms. The symbol – indicates that the
coverage achieved by the variant of YASA is significantly lower than the coverage
of the other algorithm (i.e., p < 0.001). Analogous, the symbol + indicates the
coverage of YASA is significantly higher (i.e., p < 0.001).

5.4. Evaluation 111

Figure 5.1: Pair-wise presence condition coverage aggregated over all systems

Table 5.5: Results of the paired t-tests for difference in FM and PC-coverage
between YASA and other algorithms. Symbols: = indicates no significant difference;
– indicates a significantly lower coverage of YASA compared to the other algorithm;
+ indicates a significantly higher coverage of YASA

Algorithm ICPL Chvatal IncLing PLEDGE YASA-PC-1
Min Max

FM-Coverage
YASA-FM = = = + + +
YASA-PC – – – – – +
YASA-Concrete – – – – – +

PC-Coverage
YASA-FM + + – + + +
YASA-PC + + + + + +
YASA-Concrete – – – – – –

Regarding the coverage criterion FM, we can see that only the t-wise interaction
sampling algorithms (Chvátal, ICPL, IncLing, YASA-FM) are able to achieve a
100% coverage. Both, YASA-PC and YASA-Concrete achieve a significant lower
FM coverage. On the other hand, only YASA-PC is able to achieve a 100% PC
coverage. All other algorithms produce samples with a significant lower PC coverage
on average. Still, many algorithms (Chvátal, ICPL, IncLing, PLEDGE, YASA-FM)
achieve a rather high average PC coverage of over 97%.

Sample Size

In Table 5.4, we show a comparison of the sample sizes for all algorithms. Again,
the values are aggregated over all systems and all experiments using the arithmetic
mean. As the actual sample size is dependent on the subject system, we normalized
the sample size for every experiment using the sample size of YASA-FM as 100%. In
Figure 5.2, we depict the sample size for all algorithms in more detail using boxplots.
Additionally, we show the absolute values of the mean sample size per system for

112 5. Presence-Condition Sampling

Table 5.6: Results of the paired t-tests for sample size difference between YASA
and other algorithms. Symbols: – indicates a significantly lower coverage of YASA
compared to the other algorithm; + indicates a significantly higher coverage of YASA

Algorithm ICPL Chvatal IncLing PLEDGE YASA-PC-1
Min Max

YASA-FM – – – – – +
YASA-PC – – – – – +
YASA-Concrete – – – – – +

Figure 5.2: Sample size relative to YASA-FM for all six systems with a feature model

YASA-FM and YASA-PC in Table 5.7. Furthermore, we performed paired t-tests
to test whether the difference in sample size computed by the different algorithms
is significant and show the results in Table 5.6. In this table, we compare the
sample size of all three variants of YASA with the sample size of all other algorithms.
The symbol – indicates that the sample size computed by the variant of YASA is
significantly smaller than the sample size of the other algorithm (i.e., p < 0.001).
Analogous, the symbol + indicates the sample size of YASA is significantly greater
(i.e., p < 0.001).

We can observe that on average all algorithms that consider the solution space (i.e.,
YASA-PC, YASA-Concrete, and YASA-PC-1) produce significantly smaller samples
than algorithms that only use the feature model. An exception is the system BusyBox,
for which YASA-PC produces samples that are about two times larger than the
sample of YASA-FM.

Correlation Between Coverage and Sample Size

To illustrate the correlation between sample size and testing effectiveness, we show,
in Figure 5.3, a comparison of the coverage criterion PC with t = 2 for all algorithms

5.4. Evaluation 113

Table 5.7: Absolute mean sample size and mean sampling time for YASA-FM and
YASA-PC for all 6 systems with a feature model

System ∅Size ∅Time (s) ∅Extract (s)
FM PC FM PC

fiasco 21.5 5.4 1.0 0.6 0.7
axtls 32.3 27.3 1.4 1.3 1.4
uclibc-ng 362.4 54.5 6.8 3.3 0.8
toybox 18.4 6.5 3.6 0.7 4.5
BusyBox 37.6 79.1 28.6 20.7 2.1
Linux 493.4 189.4 8,938.4 1,248.6 64.5

Figure 5.3: Presence condition coverage compared to sample size for all algorithms
aggregated over all six systems with a feature model

for different configuration sizes. On the x-axis, we show the sample size relative to
the sample size of YASA-FM (i.e., being 100%). On the y-axis, we show coverage
in % for PC with t = 2. Each data point represents the average for all samples per
algorithm and system. Random acts as a base line in this diagram, as it does not
aim for a certain coverage criterion. We can see a clear correlation between sample
size and the coverage criterion PC (i.e., increasing the sample size leads to higher
coverage on average). Further, we can see that YASA can reach a 100% coverage
with a substantially smaller sample than all other tested algorithms for most cases.

In addition, we calculate the Spearman’s rank correlation coefficient between the
degree of coverage and the sample size for all algorithms. For the coverage criterion
PC, we get a significant positive correlation of ≈ 0.157 with a p-value of p < 0.001.
Similarly, for the coverage criterion FM, we also get a significant positive correlation
of ≈ 0.2 with a p-value of p < 0.001.

114 5. Presence-Condition Sampling

Figure 5.4: Sampling times of all algorithms relative to YASA-FM on the same
system

Sampling Time

In Table 5.4, we show the average sampling time for all algorithms, aggregated
over all systems using the arithmetic mean and relative to the sampling time of
YASA-FM. In addition, we depict the sampling time for all algorithms in more detail
in Figure 5.4 relative to the sampling time of YASA-FM. Here, we only show the
pure sampling time, excluding the time needed for extracting presence conditions. As
we described in Section 5.3.1, the extraction process is dependent on the employed
variability mechanism, but only needs to be executed once, if the implementation
artifacts do not change. In Table 5.7, we show for each system the absolute time
in seconds required for YASA to extract the presence conditions. Additionally, in
Table 5.7, we show the absolute values for the mean sampling time of YASA-FM and
YASA-PC. We performed paired t-tests to test whether the difference in sampling
time required by the different algorithms is significant. In Table 5.8, we show the
results of these statistical tests by comparing the sampling time of all three variants
of YASA with the sample size of all other algorithms. The symbol – indicates that
the sampling time computed by the variant of YASA is significantly smaller than
the sampling time of the other algorithm (i.e., p < 0.001). Analogous, the symbol +
indicates the sampling time of YASA is significantly larger (i.e., p < 0.001).

We can see that YASA-Concrete is significantly faster than all other algorithms,
except for YASA-PC-1. Notably, the sampling time of YASA-PC-1 is significantly
smaller than all other three variants of YASA, which we did expect, because of its
lower value of t. YASA-FM and YASA-PC are able to significantly outperform ICPL,
Chvátal, and PLEDGE-Max, but not IncLing and PLEDGE-Min. Chvátal can be up
to 30 times and ICPL up to 17 times slower than YASA-FM. However, YASA-PC,
which uses presence conditions, is faster than YASA-FM by a factor of 0.6 on average.
Regarding presence condition extraction time, we can see that in most cases it is

5.4. Evaluation 115

Table 5.8: Results of the paired t-tests for difference in sampling time between YASA
and other algorithms

Algorithm ICPL Chvatal IncLing PLEDGE YASA-PC-1
Min Max

YASA-FM – – + + – +
YASA-PC – – + + – +
YASA-Concrete – – – – – +

similar to the sampling time. In case of Linux and BusyBox the extraction time is
even substantially lower than their sampling time.

5.4.3 Discussion

RQ1 Regarding RQ1, we found in our experiments that samples with a 100% t-wise
presence condition coverage were able to cover more faults than samples with 100%
t-wise interaction coverage. These results indicate that t-wise presence condition
coverage is indeed able to detect more faults than t-wise interaction coverage for
the same value of t. Furthermore, from our results we can see that t-wise presence
condition coverage for t = 1, which achieves at least the same and possible even
higher PC-coverage than Tartler et al. [2014]’s approach, finds less faults than t-wise
presence condition coverage for t = 2. This confirms our expectation that covering
combinations of presence conditions is more effective than covering single presence
conditions.

RQ2 For RQ2, we can see that only YASA-PC is able to guarantee a 100% t-wise
presence condition coverage. Nevertheless, most of the other sampling algorithms,
such as Chvátal, ICPL, IncLing, and PLEDGE achieve a high pair-wise presence
conditions coverage (i.e., over 97% on average). YASA-PC-1 achieves the lowest
coverage, which is expected, as it aims for a presence condition coverage for t = 1,
which is not concerned with presence condition interactions of higher degrees. While
these results indicate an already good t-wise presence condition coverage with
traditional sampling algorithms, it also shows that samples from these algorithms
most likely miss some interactions between code blocks, which then cannot be tested.
Furthermore, the high coverage of these algorithms might be due to the relatively
large sample size compared to YASA-PC. Notably, random sampling with similar
sample sizes also yields a similar coverage as the traditional sampling algorithms.
In summary, it is possible for other algorithms to achieve a high t-wise presence
condition coverage, though it cannot be guaranteed. However, the high t-wise
presence condition coverage of the traditional sampling algorithms seems to be
caused by their larger sample sizes.

RQ3 Concerning RQ3, we observe that for all systems, except BusyBox, YASA-PC
generates smaller samples, than Chvátal, ICPL, IncLing, and YASA-FM. This may
be caused by the relatively low number of concrete features for some systems, which
facilitates the coverage of presence conditions within a configuration. The larger

116 5. Presence-Condition Sampling

sample size of BusyBox may be caused due to a high number of mutually exclusive
presence conditions. When considering presence conditions, we see that even for
systems with more presence conditions than features (e.g., axtls, uclibc-ng, and
Linux) YASA-PC is able to generate smaller samples. Moreover, the results of
YASA-Concrete show that it is crucial to not just consider concrete features, which
yields smaller samples using t-wise interaction algorithms, but only reaches a PC
coverage of about 67% on average. In summary, for most cases t-wise presence
condition sampling produce relatively small samples, which may increase its testing
efficiency.

RQ4 Regarding RQ4, we see that the sampling time of YASA-PC is relatively small
and even outperforms some t-wise interaction sampling algorithms. The additional
time for extracting presence conditions is similar to the sampling time for the
smaller systems and even neglectable for larger systems such as Linux. In summary,
the initial generation of samples with YASA-PC is only slightly less efficient than
with traditional sampling algorithms due to the necessary extraction of presence
conditions.

To conclude, with YASA we are able to efficiently generate relatively small samples
for t-wise presence condition coverage. In addition, our results indicate that t-wise
presence condition coverage is able to increase the fault-detection rate for product-
based testing. Thus, we may be able to increase the testing efficiency and testing
effectiveness by using t-wise presence condition sampling.

5.4.4 Threats to Validity

We are aware that our evaluation might suffer from some biases that may threaten
its validity. In the following, we look into potential internal and external threats to
validity regarding our evaluation.

Internal

We aim to evaluate the concept of t-wise presence condition sampling. However, we
only use one particular sampling algorithm to cover interactions between presence
conditions. It may be the case that the concept performs better or worse when
employing other sampling algorithms or different heuristics. Still, we evaluated
our employed sampling algorithm YASA separately in Section 4.5 and found that
it performs on par or even better than other state-of-the-art algorithms for t-wise
interaction sampling.

For extraction presence conditions for configurable systems, we use an extraction
algorithm, based on the tool PCLocator. Due to the high expressiveness of the
C preprocessor, the extraction algorithm has some limitations, which can lead
to incorrect results in some cases. Most notably, the algorithm does not expand
any preprocessor macro statements, which can lead parsing problems or missed
annotations. In case of a parsing problem for a line, the resulting presence conditions
for this line is assumed to be true (i.e., the line is always present). Further, the
algorithm does only consider Boolean features. All features with numerical or string
values are ignored. Due to these limitations, it is possible that some returned presence

5.5. Summary 117

conditions might be incorrect or incomplete. There is unfortunately nothing we can
currently do to mitigate this bias. Nevertheless, the tool on which our algorithm is
based employs three established tools for analyzing C preprocessor annotations in
order to achieve more reliable results.

Another potential threat is the chance of faults in our own implementation that may
affect the results. To this end, we use automated tests to ensure that all samples we
compute with YASA and any other algorithm are valid and achieve the appropriate
degree of interaction or presence condition coverage.

External

We are using a rather small set of configurable systems with feature models in our
evaluation. Thus, the results might not scale to other systems with more complex
dependencies and presence conditions. To mitigate this potential bias, we used
configurable systems from different domains and with varying numbers of features,
constraints, and presence conditions.

We do not evaluate the actual testing effectiveness of our approach, but only compare
it to other algorithms with respect to our own coverage criterion. As we proposed
the coverage criterion of t-wise presence condition coverage, this may entail an unfair
comparison with other algorithms that aim for different coverage criteria. We do
evaluate whether samples with 100% t-wise presence condition coverage are able to
detect some known faults in several systems. However, as this is only a small set of
faults, it may hamper the generalizability of our results. Nevertheless, we tried to
include faults with varying degrees of interaction and complex presence conditions
to mitigate this bias.

Finally, as we are using randomized features orders and randomness within our
sampling algorithms, our results may be affected by a random bias. We tried to
mitigate this bias by performing multiple repetitions for all experiments.

5.5 Summary
In this chapter, we presented our new coverage criterion t-wise presence condition
coverage, which we can use to evaluate a sample from any sampling algorithm.
Further, we introduced an extension to our sampling algorithm YASA to enable
the generation of samples with a t-wise presence condition coverage of 100% for a
given value of t. Our evaluation confirms that this new coverage criterion is more
suitable to indicate the effectiveness of a sample for product-based testing than
regular interaction coverage, as it takes the solution space into account. Furthermore,
samples with t-wise presence condition sampling also tend to be smaller than samples
from t-wise interaction coverage with the same value of t. To develop our algorithm
for t-wise presence condition sampling, we use our contributions from Chapter 3
and Chapter 4. Due to this combination, we developed a sampling algorithm that
uses a our new coverage criterion and has the efficiency and adaptability of YASA.
In conclusion, we find that with t-wise presence condition sampling, we are able to
achieve better or similar results for product-based testing than existing sampling
algorithms, while maintaining a smaller sample size.

6. Related Work

In this chapter, we present other work that is related to our contributions in this
thesis. We compare our contributions to others by pointing out commonalities and
differences and identify whether existing concepts can be treated as an alternative or
as a complement to our contributions.

We structure this chapter as follows: First, we present related work on the fully-
automated configuration process and especially sampling (see Section 6.1). Second, we
look into work related to the semi-automated configuration process (see Section 6.2).
Finally, we discuss other techniques for variability analysis similar to MIGs (see
Section 6.3).

6.1 Fully-Automated Configuration Process
Besides manual configuration by a user, configurations can also be created automati-
cally by certain algorithms. An application scenario for an automated configuration
process is sampling, which requires the generation of a representative set of configu-
rations [Carmo Machado et al., 2014; Lopez-Herrejon et al., 2014; Perrouin et al.,
2010]. There exist many strategies for sampling using different technical approaches
and having different purposes in mind [Carmo Machado et al., 2014; Lopez-Herrejon
et al., 2014; Perrouin et al., 2010]. Most sampling approaches are designed for testing
configurable systems [Al-Hajjaji et al., 2016a; Cohen et al., 2006, 2008; Fischer
et al., 2016; Henard et al., 2013, 2014a; Lochau et al., 2012; Oster et al., 2010, 2011;
Perrouin et al., 2012; Tartler et al., 2014]. However, there are also other application
scenarios, such as the optimization of non-functional properties [Benavides et al.,
2005; Ochoa et al., 2015; Siegmund et al., 2012; White et al., 2007, 2009]. While we
also develop YASA and especially t-wise presence condition sampling for the purpose
of testing configurable systems, like many other approaches they are not limited to
this use case, but can be utilized for other purposes as well.

Some sampling approaches are focused on prioritizing the configurations within a
sample, for instance for increasing testing efficiency [Al-Hajjaji et al., 2017, 2019;

120 6. Related Work

Ensan et al., 2011; Henard et al., 2014b]. In our thesis, we did not focus on any
prioritization for the configurations in sample generated by YASA. However, we
discussed the possibility of using a different covering strategy that can affect the
order of configurations in the final sample.

YASA uses a greedy strategy to attempt to compute minimal samples, which is
deterministic and guarantees a certain degree of coverage. Greedy strategies are
applied by many other sampling algorithms as well [Abal et al., 2018; Al-Hajjaji et al.,
2016a; Ensan et al., 2011; Haslinger et al., 2013; Johansen et al., 2011, 2012a,b; Kim
et al., 2010, 2011; Kowal et al., 2013; Liebig et al., 2013; Oster et al., 2010; Reuling
et al., 2015; Shi et al., 2012; Tartler et al., 2014]. As the underlying problem of finding
an optimal sample is NP-hard, a greedy strategy often provides a good trade-off
between sampling time and sample effectiveness. Thus, all of these algorithms,
including YASA, have in common that they are not guaranteed to find an optimal
sample. In fact, YASA is similar to the algorithm IPOG [Lei et al., 2007], which also
starts with an empty sample and iteratively adds and refines partial configurations.
However, YASA is more flexible due to its configurability and integrates many
concepts to increase its efficiency. Besides greedy sampling algorithms, there also
exist many sampling algorithms that employ meta-heuristic strategies [Cmyrev and
Reissing, 2014; Devroey et al., 2015; Ensan et al., 2012; Ferreira et al., 2016, 2017;
Filho et al., 2017; Henard et al., 2013, 2014a; Lopez-Herrejon et al., 2014; Marijan
et al., 2013; Matnei Filho and Vergilio, 2016]. While these algorithms also cannot
guaranteed to find an optimal sample, they are often faster than greedy strategies.
These approaches can be seen as alternative to our concept. Moreover, it would be
possible to use some of these algorithm in combination with YASA. YASA is able to
use a sample produced by another sampling algorithm as input (cf. Section 4.2.3),
which could speed up the sampling process or even increase the sampling effectiveness.
A sample created by YASA might also serve as input for a meta-heuristic algorithm
to further refine the sample.

YASA uses a deterministic approach for t-wise interaction sampling. Another popular
sampling strategy is random sampling [Varshosaz et al., 2018]. The difficulty for
random sampling of feature model lies in the feature dependencies, which make it
hard generate configurations that are uniformly distributed over the valid problem
space [Plazar et al., 2019]. Nevertheless, there are approaches that implement uniform
or approximate uniform random sampling [Heradio et al., 2020; Munoz et al., 2019;
Oh et al., 2017, 2019]. Compared to YASA and other deterministic t-wise sampling
algorithms, random sampling has some advantages. It allows users to control the
number of configurations in a sample, which is useful, for instance, if only a certain
number of configurations can be tested in a given time. Furthermore, in general,
random sampling uses less memory and can be substantially faster than deterministic
t-wise sampling algorithms. Another disadvantage of random sampling is that it
cannot guarantee a 100% t-wise coverage. Users are able to cover a certain percentage
of interactions with only a few configurations, however to cover all interactions often
requires more and also a specific combination of configurations.

Most sampling algorithms are based on only using the feature model as input, and
thus solely consider the problem space of a configurable system [Varshosaz et al.,
2018]. With t-wise presence condition sampling, we take variability from the problem

6.2. Semi-Automated Configuration Process 121

and solution space into account for creating samples. However, there already exist
sampling strategies that consider other inputs in addition to a feature model [Liebig
et al., 2013; Varshosaz et al., 2018]. Similar to t-wise presence condition sampling,
there are sampling algorithms that consider implementation artifacts [Liebig et al.,
2013; Shi et al., 2012; Tartler et al., 2012, 2014] and also testing artifacts [Kim et al.,
2010, 2011] to compute a sample. While these algorithms also consider the solution
space, we are the first to combine presence conditions for implementation artifacts
with regular t-wise interaction sampling to achieve higher effectiveness.

6.2 Semi-Automated Configuration Process
One of the most important tasks in the semi-automated configuration process is to
ensure the validity of the resulting configuration. For this, many tools already provide
decision propagation as part of an interactive configuration process. Among those
tools are FeatureIDE [Pereira et al., 2016a; Thüm et al., 2014b], GEARS [Krueger,
2007; Krueger and Clements, 2013], GUIDSL [Batory, 2005], S2T2 Configurator [Bot-
terweck et al., 2009], S.P.L.O.T. [Mendonça et al., 2009a], and VariaMos [Mazo
et al., 2012]. Our basic algorithm for decision propagation is based on the SAT-based
decision propagation as proposed by Janota [Janota, 2008]. Others proposed to
propagate decisions using BDDs [Hadzic et al., 2004; Mendonça et al., 2008] and
algorithms based on solvers of the constraint satisfaction problem (CSP) [Amilhastre
et al., 2002; Benavides et al., 2005]. As we mentioned earlier, BDDs are similar to
MIGs, as both are a type of knowledge compilation technique that avoid some effort
during decision propagation (i.e., online phase) by demanding more effort for their
creation (i.e., offline phase). A problem with BDDs is that they typically do not
scale for feature models larger than 1,000 features. For instance, there is no BDD
for Linux so far [Thüm, 2020]. While CSP solvers can handle constraints beyond
boolean formulas as needed for extended feature models [Benavides et al., 2005], they
often reduce inputs to satisfiability problems internally. Hence, we do not expect that
they could improve performance compared to our MIG-assisted algorithms. Similar
to CSP, satisfiability modulo theories (SMT) extend the boolean SAT problem to
first-order logic [De Moura and Bjørner, 2011; Sprey et al., 2020]. As far as we know,
SMT solvers, such as Z3 [De Moura and Bjørner, 2008], have not been applied to
decision propagation yet. However, as our approach is independent from the actual
solver, but instead tries to reduce the number of required SAT instances, we assume
that approaches that employ SMT solvers can also benefit from MIGs.

Another technique to avoid contradictions within a configuration is error resolution,
which automatically detects and tries to resolve conflicts [Benavides et al., 2007;
Ochoa et al., 2015; White et al., 2008]. Configuration tools that support this kind of
technique are, for example, pure::variants [Beuche, 2012; pure::systems, 2017] and
FaMa [Benavides et al., 2007]. Contrary to decision propagation, error resolution can
be applied at any point during or after the configuration process. To support error
resolution, MIGs could be traversed to determine whether an updated graph for a
given configuration contains a contradiction, which we discussed in Section 3.3.2.

Besides ensuring the creation of valid configurations, the semi-automated configura-
tion process comprises a multitude of different approaches for supporting a user in

122 6. Related Work

creating desired configurations. For instance, users can be supported by recommender
systems [Pereira et al., 2016b] or visual feedback [Martinez et al., 2014; Nestor et al.,
2008]. All techniques that consider feature dependencies can potentially benefit from
MIGs, as they provide a fast and complete access to binary feature relations.

6.3 Variability Analysis Techniques
MIGs are a type of knowledge compilation [Cadoli and Donini, 1997] that represent
configuration knowledge. There are other data structures and methods with a similar
purpose, such as Binary Decision Diagrams (BDDs) [Bryant, 1986; Darwiche and
Marquis, 2002] and enumeration of all configurations [Galindo et al., 2016; Halin
et al., 2019]. These and similar approaches for knowledge compilation could be used
instead of MIGs in the task of decision propagation and also other analyses [Jensen,
2004; Perez-Morago et al., 2015]. While these approaches may be more effective
in facilitating certain analysis tasks, they are mostly harder to build for large and
complex feature models [Thüm, 2020]. Therefore, MIGs can be seen as an alternative
to these approaches that are less effective but faster to create, and thus might be
more suitable in certain situations. For instance, in application scenarios where the
feature model of a configurable system evolves frequently, an incrementally built
MIG might outperform other knowledge compilation techniques.

Besides the feature model analyses, we mention in Chapter 2 and Chapter 3, there
exist many other analyses for configurable systems that reason about feature model
dependencies [Benavides et al., 2010; Liebig et al., 2013; Thüm et al., 2014a]. In
our thesis, we are mainly focused on feature model analyses that consider only the
problem space, such as decision propagation [Batory, 2005], finding core and dead
features [Benavides et al., 2010; Trinidad and Ruiz-Cortés, 2009], and detecting
atomic sets [Segura, 2008; Zhang et al., 2004]. In contrast, to previous contributions,
we are the first to employ MIGs within these analyses. Similar to decision propagation,
most variability analyses can be implemented with a SAT-based algorithm [Benavides
et al., 2010; Thüm et al., 2014a]. In Section 3.3.2, we reasoned that many other
SAT-based analyses can benefit from employing a MIG, because it can decrease the
amount of SAT instances to solve.

With t-wise presence condition coverage, we use artifacts from the solution space to
create better sample for testing. There exist approaches that further analyzing the
variability of the solution space more directly [Liebig et al., 2013; Meinicke et al.,
2014]. For instance, with type checking, a system can be analyzed for syntactical
soundness [Aversano et al., 2002; Czarnecki and Pietroszek, 2006; Kenner et al., 2010;
Metzger et al., 2007; Thaker et al., 2007]. Static analyses of implementation artifacts,
such as control- and data-flow analysis, can provide further insights to the semantic
behavior of a system and its dependencies [Midtgaard et al., 2015; Nadi et al., 2015].
Model checking allows to analyze the correctness of a system by verifying it specified
behavior [Ben-David et al., 2015; Bessling and Huhn, 2014; Classen et al., 2014; Millo
et al., 2013; ter Beek et al., 2019; Thüm et al., 2014].

With the incremental build process for MIGs, we attempt to reuse previous analysis
results to speed up the construction of a MIG (cf. Section 3.5). A related concept is
incremental SAT solving [Mouhoub and Sadaoui, 2007]. Incremental SAT solving

6.3. Variability Analysis Techniques 123

improves the performance for solving consecutive SAT queries, in which only small
parts of each query are changed by reusing information from previous solutions [Eén
and Biere, 2005; Eén and Sörensson, 2003; Fazekas et al., 2019; Nadel et al., 2014].
This could be used to complement our approach in two ways. First, as we are solving
multiple similar SAT queries within the MIG build process, an incremental SAT
solver may be able to speed up some operations within the original and incremental
build process. Second, incremental SAT solvers could be used in conjunction with
the analysis result available from previous MIGs to facilitate the build process even
more. If the feature model change is small all SAT analyses within the build process
could be sped up by providing them with SAT solutions from a previous feature
model version.

In our evaluation of MIGs, we use configurable systems such as Linux and eCos that
provide their own feature modeling language and corresponding configuration tools
(i.e., KConfig [Community, 2018] and CDL [Veer and Dallaway, 2017]). Although,
these languages allow for multi-valued logic, they can be translated into Boolean
feature models [Berger et al., 2010; Knüppel et al., 2017; Sincero et al., 2007]. The
KConfig language differentiates between select and depends constraints. In terms
of modal implication graphs, select can be considered a strong edge, as it directly
implies other features, while depends can be seen as a set of weak edges. In contrast,
MIGs do not rely on manual specification of select and depends constraints, but can
compute the respective relationships, which avoids mistakes by users and represents
feature dependencies more efficiently.

7. Conclusion and Future Work

In the following, we summarize the contributions and insights within our thesis and
draw a conclusion on our main findings by answering the five research questions we
state at the beginning. Further, we present potential future research, which we think
is of relevance and should be investigated in more detail.

7.1 Summary
In this thesis, we made three main contributions for facilitating the configuration
process and testing of configurable systems, the introduction of modal implication
graphs (MIGs), the development of the sampling algorithm YASA, and the introduc-
tion of the coverage criterion t-wise presence condition coverage. We evaluated our
contributions in consideration of our main research questions. In the following, we
summarize our main contributions and key findings.

We introduced MIGs to support the semi- and fully-automated configuration process.
MIGs are an extension of regular implication graphs and let us easily identify pairwise
relationships between features, which decreases the computational effort for reasoning
about the validity of a configuration (cf. Section 3.3). We presented an algorithm
for decision propagation that employs MIGs and increases performance compared to
state-of-the-art algorithms. In addition, we employ MIGs in our sampling algorithm
YASA. We developed a basic and advanced build process to construct a MIG for
any non-void feature model and an incremental build process to update an existing
MIG after a feature model evolution. As a result of our evaluation of MIGs and their
build process, we gathered some key insights in this concept. First, using a MIG for
decision propagation can significantly lower its execution time. Compared to regular
SAT-based decision propagation, we can see a high reduction when employing a MIG.
This is even true for incomplete and non-minimal MIGs. Second, constructing a MIG
requires some additional time that depends on the particular build process. Using
our basic build process, an incomplete and non-minimal MIG can be constructed
fast. Even for a single complete configuration process using decision propagation
the time required to build an incomplete and non-minimal MIG can be amortized.

126 7. Conclusion and Future Work

The advanced build process to construct a complete and minimal MIG requires
significantly more time. The incremental build process is substantially faster than
the advanced build process and on par with the basic build process. However, the
degree of minimality and completeness of an incrementally built MIG can be higher
than from a MIG constructed by the basic build process. Third, the difference in
effectiveness regarding the execution time of decision propagation of a minimal and
complete MIG compared to a non-minimal and incomplete MIG is relatively small.
Completeness of a MIG can increase the performance of some analysis substantially,
such as finding atomic sets, however for decision propagation even an incomplete
MIG is sufficient. Fourth, we conclude that for most scenarios, using an incomplete
MIG resulting from our basic or incremental build process is most suitable. Using a
pure SAT-based approach without a MIG is only suitable if decision propagation is
performed only a few times for a feature model. In contrast, using a complete and
minimal MIG is only suitable if decision propagation is used many times or if the
initial build time is irrelevant. Thus, for most scenarios, an incomplete MIG seems
to provide the best trade-off between the time required for its construction and the
time saved during analysis.

We introduced YASA, a new sampling algorithm for t-wise interaction coverage. We
designed YASA to efficiently produce small samples and to be adaptable to particular
user requirements. To this end, YASA provides a number of parameters, such as
feature subsets, resampling limit, and initial sample, that give users more control over
sampling time, sample size, and other properties of the sample. Furthermore, YASA
consists of a modular architecture that allows to replace certain strategies within the
algorithm in order to further affect the properties of the computed samples. From
our evaluation of YASA, we collected some key insights. First, YASA is more or
at least as efficient as other state-of-the-art algorithms. The extend of the decrease
in sampling time compared to another algorithm is dependent on the parameter
settings of YASA. The parameter for setting a resampling limit has an inverse linear
correlation with the sampling time. Setting a low value speeds up the creation of
a sample, but may also increase the resulting sample size. Furthermore, providing
a small feature subset to YASA substantially lowers the amount of interactions
considered within a sample, and thus also decreases sampling time. However, this
also decreases the interaction coverage degree, which may only be acceptable in
some use cases. Second, the samples generated by YASA are smaller compared to
other state-of-the-art algorithms for t-wise interaction coverage. The sample size
is also dependent on the parameter settings of YASA. Choosing a high value for
the resampling limit can decrease the sample size, while simultaneously increasing
the sampling time. Third, summarizing our first two key findings, we conclude that
users of YASA have more control over sampling time, sample size, and coverage
degree than with other algorithms. By choosing specific parameter settings, user can
adapt the behavior of YASA to their concrete use case scenario. Fourth, currently,
there is a limit for the scalability of YASA regarding its sampling time. For feature
models with more than 10,000 features and a t value of ≥ 2 the sampling time of
YASA can be infeasible for many applications. However, this can be mitigated by
using YASA parameter to set a feature subset and allowing for samples with a lower
interaction coverage degree. If choosing feature subsets based on domain knowledge

7.2. Conclusion 127

of a configurable system, this could be a viable solution to create samples even for
large-scale feature models.

We introduced the coverage criterion t-wise presence condition coverage to improve
the testing effectiveness and efficiency for configurable systems. In contrast to
interaction coverage, presence conditions coverage considers the solution space of
a configurable system by taking presence conditions of implementation artifacts
into account. Our coverage criterion can be utilized to determine to which degree
a given sample covers the combinations of actual implementation artifacts and by
this to indicate its fault-detection potential. In addition, we extended our algorithm
YASA to produce samples with a 100% degree of t-wise presence condition coverage.
After evaluating t-wise presence condition coverage and our extension to YASA for
t-wise presence condition sampling, we can report some key insights. First, samples
with a 100% t-wise presence condition coverage are able to detect more faults than
samples with a 100% t-wise interaction coverage for the same value of t. Thus, t-wise
presence condition coverage seems to be a better indicator for the effectiveness of
a sample in detecting faults during testing. Second, YASA is able to generate a
sample with a 100% t-wise presence condition coverage compared to other algorithms
that only reach 97% on average. Most notably, random sampling yields the same
degree of t-wise presence condition coverage than the traditional sampling algorithms
with a similar sample size. Thus, samples from these algorithms do not cover some
interactions between implementation artifacts, which then cannot be tested. Third,
the samples generated by YASA for t-wise presence condition sampling are on average
smaller, than the samples from t-wise interaction coverage algorithms. Thus, samples
generated by t-wise presence condition sampling lead to a increased testing efficiency.
Fourth, the sampling time of YASA for t-wise presence condition sampling is similar
or faster than t-wise interaction sampling algorithms. Thus, the sampling efficiency
for t-wise presence condition sampling is about equal to regular t-wise interaction
sampling.

7.2 Conclusion
With the key insights described above, we are able to answer our main research
questions (cf. Section 1.1). Can we increase the efficiency of configuration generation
in an interactive and automated configuration process using MIGs? MIGs are well
suited to speed up decision propagation in the semi-automated configuration process.
By increasing the performance of propagating each decision, they facilitate the
entire interactive configuration process of a user. Furthermore, MIGs are a valuable
part of our sampling algorithms, which perform better than current state-of-the-art
algorithms. Thus, we are able to utilize MIGs to increase the efficiency of the
fully-automated configuration process, as well.

Can we control the initial build costs and effectiveness of a MIG by modifying its
build process? We presented different variants of a constructing a MIG with varying
degrees of completeness and minimality. While creating a working, but incomplete
and non-minimal MIG requires only neglectable computational effort, creating a
complete and minimal MIG is much more computationally expensive. On the other
hand, using a complete MIG improves its effectiveness compared to an incomplete

128 7. Conclusion and Future Work

version of it only by a small degree. Thus, we can control the effectiveness and build
time of a MIG by choosing an appropriate build process. Nevertheless, the trade-off
between additional build time and effectiveness is biased heavily towards creating
incomplete MIGs, which are slightly less effective. For most scenarios a MIG can
benefit the configuration process, while also being built and updated quickly. Only in
certain scenarios constructing a complete MIG is worth the required computational
effort.

Can we increase the efficiency of configuration generation in an automated config-
uration process using YASA? With YASA, we can produce configurations more
efficiently compared to other-state-of the art sampling algorithms. This is true for
computing samples with an equal degree of coverage as other sampling algorithms.
However, by lowering the coverage degree using appropriate parameter settings, we
are able to compute samples even faster. Thus, we are able to successfully facilitate
the fully-automated configuration process using YASA.

Can we control the sample size and sampling time of YASA with its parameter
settings? YASA is capable of producing smaller samples and also being faster than
other state-of-the-art sampling algorithms, however not always simultaneously. The
behavior of YASA can be controlled by its parameter settings, which provide a
trade-off between the sample size and sampling time. Especially the parameter for
setting a resampling limit has a high impact on both properties. A high value for
this parameter creates smaller samples, but also increases the sampling time, and
vice-versa. Thus, we enable users to control the sampling time, sample size, and also
coverage degree of a sample by modifying the parameter settings of YASA.

Can we increase the testing efficiency or testing effectiveness by employing t-wise
presence condition coverage? With t-wise presence condition sampling, we are able to
create small samples that are more effective regarding their fault detection potential
than with state-of-the-art algorithms for t-wise interaction coverage. The sampling
time of t-wise presence condition sampling is on par or even faster than current
state-of-the-art sampling algorithms. Thus, we are able to increase both, the testing
efficiency and testing effectiveness by using t-wise presence condition sampling, which
can facilitate the testing effectiveness and testing efficiency for configurable systems.

7.3 Future Work
In the following, we present some potential future work that could lead to interesting
results, in our opinion.

We use MIGs throughout our thesis for facilitating decision propagation and increasing
the performance of our sampling algorithms. In Section 3.3.2, we also mentioned the
application of MIGs for other feature model analyses. Another concept, we did not
discuss is feature model transformation, such as the decomposition of feature models
into smaller sub feature models [Schroeter et al., 2012; Schröter et al., 2016] by means
of feature model slicing [Acher et al., 2011; Krieter et al., 2016]. Feature model
decomposition can be useful for many application scenarios, especially sampling
and the analysis of feature models. Decreasing the number of features in a feature
model is a straight-forward way to decrease the complexity of the variability and by

7.3. Future Work 129

this the computational effort of most analyses, including sampling and interactive
configuration. We expect that MIGs can help with feature model decomposition by
identifying suitable sub models of a feature model. If there exists two sets of vertices
where there is no path between any vertex from one set to another one, these two
sets form disconnected sub graphs, which means that their corresponding feature
variables do not affect each other. By partitioning a MIG into disconnected or less
connected sub graphs, we can find sets of features that are mostly independent from
each other, which makes the process of feature model slicing more efficient. Thus,
we want to further research the decomposing of feature models using MIGs.

Our sampling algorithm YASA can be customized via three parameters, in addition
to the feature model and a value for t. We already showed how these parameters
affect the sampling time, sample size, and other properties of a sample. However,
in this thesis we did not investigate how we can optimize these parameter given a
particular configurable system. Regarding, the parameter feature subsets, we assume
that MIGs can be helpful to determine a suitable partition of the entire feature set.
Alternatively, domain knowledge about the system can be used to reason about useful
feature subset. Therefore, we plan more research on the investigation of suitable
feature subsets to increase the performance of YASA either further. To this end,
we aim to enable the identification of suitable subsets using MIGs. In addition, we
want to investigate whether there is other domain knowledge that can be used to
determine useful feature subsets.

Another parameter of YASA is the specification of an initial sample. We already
discussed that an initial sample could be provided by a different sampling algorithm.
By this YASA may be easily combined with another sampling algorithm, for instance
with an evolutionary algorithm, to enhance the quality of a sample. Thus, we plan to
use this mechanism to combine YASA with other sampling algorithms that provide
an initial (partial) sample. To this end, we aim to evaluate the impact of such a
combination on sampling time, sample size, and effectiveness of a sample

With the parameter resampling limit we can affect sampling time and sample size,
substantially. In our evolution of YASA, we experimented with different setting for
the resampling limit. However, we do not determine an optimal value for a given
feature model. Thus, we plan to develop an approach to determine an optimal value
for the resampling limit given a feature model. Alternatively, we want to look into a
dynamic termination criterion, instead of a fixed value for the resampling limit.

Another property of YASA is that we can easily replace the used covering and auto
completion strategy in order to impact the properties of a sample. In the thesis, we
focus on one particular covering strategy designed for reducing the sampling time.
However, we are interested in researching other useful covering strategies that may
optimize different aspects of the sampling process. The same is true for different
auto completion strategies. Although, we presented several alternative completion
strategies in this thesis, we did not compare them directly in our experiments. Thus,
we plan to develop additional covering strategies specific to other use case scenarios,
such as regression testing, and evaluated them in terms of sampling time, sample
size, and other properties of a sample. Moreover, we plan to look into other auto
completion strategies and their effect on the properties of a sample.

130 7. Conclusion and Future Work

For t-wise presence condition sampling, we rely on the extraction of presence con-
ditions from the source code of a configurable system. For the prototype we used
in our evaluation, we implement an extraction process for presence conditions of
systems that use kconfig and the C preprocessor as variability mechanism. However,
this extraction process cannot be used for any other system that implements its
variability differently. Thus, we want to look into the feasibility of tool support
to partly automate the extraction of presence conditions on arbitrary configurable
systems.

Furthermore, similar to regular t-wise interaction sampling, not all implementation
artifacts actually interact with each other. Including unnecessary combination of
presence conditions in sample can increase the sample size and by this decrease
testing efficiency. As we use YASA, we are able to provide a subset of presence
conditions considered for coverage, which can mitigate this issues. Thus, we aim to
develop static analysis that can be executed before starting a sampling process and
identifies groups of presence conditions that probably interact.

We aim to perform the proposed future research in order to further improve the
configuration process and testing of configurable systems.

List of Figures

2.1 Feature diagram of the example system Server 9

3.1 MIG for the Server feature model from Figure 2.1 (on Page 9) 28

3.2 Complete MIG for the Server feature model from Figure 2.1 (on Page 9) 32

3.3 Execution time of offline, online, and combined offline and online
phase of all algorithms for multiple feature models 54

3.4 Execution time during online phase with ASAT, IMIG, and CMIG
for the feature model of Linux . 56

3.5 Build time ratio (regular/incremental) for all systems and versions . . 58

3.6 Aggregated usage time ratio (regular/incremental) for all systems . . 59

4.1 Excerpt of BusyBox feature diagram 65

4.2 Sampling times for systems with a number of features less than 1,000 80

4.3 Sampling times for systems with a number of features larger than 1,000 81

4.4 Aggregated sampling times relative to YASA_1 (m = 1) 82

4.5 Sample size for systems with a number of features less than 1,000 . . 83

4.6 Sample size for systems with a number of features larger than 1,000 . 83

4.7 Aggregated sample size relative to YASA_10 (m = 10) 84

5.1 Pair-wise presence condition coverage aggregated over all systems . . 111

5.2 Sample size relative to YASA-FM for all six systems with a feature
model . 112

5.3 Presence condition coverage compared to sample size for all algorithms
aggregated over all six systems with a feature model 113

5.4 Sampling times of all algorithms relative to YASA-FM on the same
system . 114

List of Tables

3.1 All 12 weak edges and their conditions derived from the clause a∨b∨c∨d 41

3.2 Offline and online time of evaluated algorithms for a selection of
feature models (mean value over 200 experiments) 53

3.3 Pairwise comparison of algorithms . 55

3.4 Offline and online time of evaluated algorithms for a selection of
feature models (mean value over 200 experiments) 55

3.5 Absolute and relative build and usage times for all systems and pa-
rameter settings . 57

4.1 Subject systems for the evaluation of YASA 78

4.2 Results for Linux 2.6.28 with t = 2 81

4.3 Results for FinancialServices01 with t = 2 85

5.1 Subject systems for the evaluation of t-wise presence condition sampling106

5.2 Overview of fault conditions of faults used from Medeiros et al. 107

5.3 Faults covered across all 21 systems from Medeiros et al. 109

5.4 Relative mean sample size, mean sampling time, and mean coverage
aggregated over all six systems with a feature model 110

5.5 Results of the paired t-tests for difference in FM and PC-coverage
between YASA and other algorithms 111

5.6 Results of the paired t-tests for sample size difference between YASA
and other algorithms . 112

5.7 Absolute mean sample size and mean sampling time for YASA-FM
and YASA-PC for all 6 systems with a feature model 113

5.8 Results of the paired t-tests for difference in sampling time between
YASA and other algorithms . 115

List of Algorithms

3.1 Naïve decision-propagation algorithm 33

3.2 Advanced decision-propagation algorithm 34

3.3 MIG-assisted decision propagation algorithm 36

4.1 Main sampling algorithm of YASA 69

4.2 Basic covering strategy of YASA . 71

4.3 Advanced covering strategy of YASA 74

5.1 Main sampling algorithm of YASA adapted for presence conditions
sampling . 98

5.2 Advanced presence condition covering strategy for YASA 100

List of Code Listings

2.1 Class Logger of the example system Server 16

5.1 Excerpt of the file tftp.c adopted from BusyBox 91

List of Symbols

Name Symbol Domain

Universes

Features F –
Literals L = {ϕ+(f) | f ∈ F} ∪

{ϕ−(f) | f ∈ F}
Propositional Formulas P = {ϕ(M) | M ∈M}
Modal Implication Graphs G = 2L × 2L × 2(L

2) × 22
L

Variables

Feature Model M ∈M
Feature f ∈ F
Feature Set F ⊆ F
Literal l ∈ L
Constraint d ⊆ L
Constraint Set D ⊆ 2L

Configuration c ⊆ L
Configuration Set C ⊆ 2L

Configuration List C⃗ ∈ 2(L
<N)

Modal Implication Graph (MIG) G ∈ G
MIG Vertex v ∈ L
MIG Vertices V ⊆ L
MIG Vertex Sequence V⃗ ∈ L<N

140 7. List of Symbols

MIG Edge e ∈ L2

MIG Path p ∈ (L2)<N

Interaction i ⊆ L
Interaction List I⃗ ∈ 2(L

<N)

Presence Condition P ⊆ 2L

Presence Condition Clause d ⊆ L

Functions

Positive Literal pos(f) F→ L
Negative Literal neg(f) F→ L
Feature Model Features F(M) M→ 2F

Feature Model Dependencies D(M) M→ 2L

Literals of a Feature Set L(F) 2F → 2L

Literals of a Feature Model L(M) M→ 2L

Valid Configurations C(M) M→ 2L

Feature Model Formula ϕ(M) M→ P
Feature Model Change ∆(M,M′) M2 → 2L × 2L × 22

L × 22
L

CNF Clause
∨
(d) 2L → P

DNF Clause
∧
(d) 2L → P

MIG Vertices V(G) G→ L
MIG Set of Strong Edges ES(G) G→ 2L

2

MIG Set of Weak Edges EW (G) G→ 2L
2

MIG Strong Paths PS(G) G→ 2(L
2)<N

MIG Weak Paths PW (G) G→ 2(L
2)<N

Bibliography

Iago Abal, Jean Melo, Stefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and
Andrzej Wąsowski. Variability Bugs in Highly Configurable Systems: A Qualitative
Analysis. ACM Transactions on Software Engineering and Methodology (TOSEM),
26(3):10:1–10:34, 2018. (cited on Page 3, 21, 64, and 120)

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Slicing
Feature Models. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 424–427. IEEE Computer Science, 2011. (cited
on Page 128)

Mathieu Acher, Anthony Cleve, Philippe Collet, Philippe Merle, Laurence Duchien,
and Philippe Lahire. Extraction and Evolution of Architectural Variability Models
in Plugin-Based Systems. International Journal on Software and Systems Modeling
(SoSyM), 13(4):1367–1394, 2014. (cited on Page 16)

Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, and Gunter
Saake. IncLing: Efficient Product-line Testing Using Incremental Pairwise Sam-
pling. In Proceedings of the International Conference on Generative Programming:
Concepts & Experiences (GPCE), pages 144–155. ACM, 2016a. (cited on Page 3, 18,
51, 78, 79, 92, 103, 105, 119, and 120)

Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, Reimar Schröter, Thomas
Thüm, Thomas Leich, and Gunter Saake. Tool Demo: Testing Configurable
Systems with FeatureIDE. In Proceedings of the International Conference on
Generative Programming: Concepts & Experiences (GPCE), pages 173–177. ACM,
2016b. (cited on Page 78, 103, 104, and 105)

Mustafa Al-Hajjaji, Sascha Lity, Remo Lachmann, Thomas Thüm, Ina Schaefer,
and Gunter Saake. Delta-Oriented Product Prioritization for Similarity-Based
Product-Line Testing. In Proceedings of the International Workshop on Variability
and Complexity in Software Design (VACE), pages 34–40. IEEE Computer Science,
2017. (cited on Page 119)

Mustafa Al-Hajjaji, Thomas Thüm, Malte Lochau, Jens Meinicke, and Gunter Saake.
Effective Product-Line Testing Using Similarity-Based Product Prioritization.
International Journal on Software and Systems Modeling (SoSyM), 18(1):499–521,
2019. (cited on Page 78, 103, and 119)

142 Bibliography

Jérôme Amilhastre, Hélene Fargier, and Pierre Marquis. Consistency Restoration
and Explanations in Dynamic CSPs-Application to Configuration. Artificial
Intelligence, 135(1-2):199–234, 2002. (cited on Page 121)

Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge University
Press, 2016. (cited on Page 3, 64, and 90)

Sven Apel and Christian Kästner. An Overview of Feature-Oriented Software
Development. Journal of Object Technology (JOT), 8(5):49–84, 2009. (cited on
Page 8)

Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
Software Product Lines. Springer, 2013. (cited on Page 1, 2, 7, 8, 11, and 15)

Lerina Aversano, Massimiliano Di Penta, and Ira D. Baxter. Handling Preprocessor-
Conditioned Declarations. In Proceedings of the International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 83–92. IEEE Computer
Science, 2002. (cited on Page 122)

Don Batory. Feature Models, Grammars, and Propositional Formulas. In Proceed-
ings of the International Software Product Line Conference (SPLC), pages 7–20.
Springer, 2005. (cited on Page 2, 9, 20, 121, and 122)

Don Batory, David Benavides, and Antonio Ruiz-Cortés. Automated Analyses of
Feature Models: Challenges Ahead. Communications of the ACM, 49(12):45–47,
2006. (cited on Page 1)

Shoham Ben-David, Baruch Sterin, Joanne M. Atlee, and Sandy Beidu. Symbolic
Model Checking of Product-Line Requirements Using SAT-Based Methods. In
Proceedings of the International Conference on Software Engineering (ICSE), pages
189–199. IEEE Computer Science, 2015. (cited on Page 122)

David Benavides. On the Automated Analysis of Software Product Lines Using
Feature Models - A Framework for Developing Automated Tool Support. PhD
thesis, University of Seville, 2007. (cited on Page 13)

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Using Constraint
Programming to Reason on Feature Models. In Proceedings of the International
Conference on Software Engineering and Knowledge Engineering (SEKE), pages
677–682, 2005. (cited on Page 119 and 121)

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. FAMA:
Tooling a Framework for the Automated Analysis of Feature Models. In Proceedings
of the Workshop on Variability Modelling of Software-intensive Systems (VaMoS),
pages 129–134. Technical Report 2007-01, Lero, 2007. (cited on Page 19 and 121)

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated Analysis of
Feature Models 20 Years Later: A Literature Review. Information Systems, 35(6):
615–708, 2010. (cited on Page 13 and 122)

Bibliography 143

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. Variability Modeling in the Real: A Perspective from the Operating
Systems Domain. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 73–82. ACM, 2010. (cited on Page 1 and 123)

Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. A Survey of Variability Model-
ing in Industrial Practice. In Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages 7:1–7:8. ACM, 2013a. (cited on
Page 1)

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. A Study of Variability Models and Languages in the Systems Software
Domain. IEEE Transactions on Software Engineering (TSE), 39(12):1611–1640,
2013b. (cited on Page 48 and 62)

Sara Bessling and Michaela Huhn. Towards Formal Safety Analysis in Feature-
Oriented Product Line Development. In Proceedings of the International Symposium
on Foundations of Health Information Engineering and Systems (FHIES), pages
217–235. Springer, 2014. (cited on Page 122)

Danilo Beuche. Modeling and Building Software Product Lines with Pure::Variants.
In Proceedings of the International Software Product Line Conference (SPLC),
pages 255–255, Salvador, Brazil, 2012. (cited on Page 121)

Goetz Botterweck, Mikolás Janota, and Denny Schneeweiss. A Design of a Config-
urable Feature Model Configurator. In Proceedings of the Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), ICB Research Report, pages
165–168. Universität Duisburg-Essen, 2009. (cited on Page 121)

Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986. (cited on Page 122)

Marco Cadoli and Francesco M. Donini. A Survey on Knowledge Compilation. AI
Communications, 10(3-4):137–150, 1997. (cited on Page 122)

Ivan Do Carmo Machado, John D. McGregor, Yguaratã Cerqueira Cavalcanti, and
Eduardo Santana De Almeida. On Strategies for Testing Software Product Lines:
A Systematic Literature Review. Journal of Information and Software Technology
(IST), 56(10):1183–1199, 2014. (cited on Page 18 and 119)

Vasek Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research (MOR), 4(3):233–235, 1979. (cited on Page 78, 79, 103, and 105)

Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves
Schobbens. Formal Semantics, Modular Specification, and Symbolic Verification
of Product-Line Behaviour. Science of Computer Programming (SCP), 80(PB):
416–439, 2014. (cited on Page 122)

Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001. (cited on Page 7 and 11)

144 Bibliography

Anastasia Cmyrev and Ralf Reissing. Efficient and Effective Testing of Automotive
Software Product Lines. International Journal of Applied Science and Technology
(IJAST), 7(2), 2014. (cited on Page 120)

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and Adequacy in
Software Product Line Testing. In Proceedings of the International Workshop on
the Role of Software Architecture for Testing and Analysis (ROSATEA), pages
53–63. ACM, 2006. (cited on Page 119)

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing Interaction Test
Suites for Highly-Configurable Systems in the Presence of Constraints: A Greedy
Approach. IEEE Transactions on Software Engineering (TSE), 34(5):633–650,
2008. (cited on Page 3, 21, 64, and 119)

The Kernel Development Community. KConfig Language. Website https://www.
kernel.org/doc/html/latest/kbuild/kconfig-language.html, 2018. Visited
March 13th, 2020. (cited on Page 8 and 123)

Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings
of the ACM Symposium on Theory of Computing (STOC). ACM, 1971. (cited on
Page 3)

Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000. (cited on Page 1, 2, 7, 8, and 9)

Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying Feature-Based Model
Templates Against Well-Formedness OCL Constraints. In Proceedings of the
International Conference on Generative Programming and Component Engineering
(GPCE), pages 211–220. ACM, 2006. (cited on Page 122)

Krzysztof Czarnecki and Andrzej Wąsowski. Feature Diagrams and Logics: There and
Back Again. In Proceedings of the International Software Product Line Conference
(SPLC), pages 23–34. IEEE Computer Science, 2007. (cited on Page 9)

Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. Journal of
Artificial Intelligence Research (JAIR), 17(1):229–264, 2002. (cited on Page 122)

Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT solver. In Proceedings
of the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 337–340. Springer, 2008. (cited on Page 121)

Leonardo De Moura and Nikolaj Bjørner. Satisfiability Modulo Theories: Introduction
and Applications. Communications of the ACM, 54(9):69–77, 2011. (cited on Page 121)

Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. Covering SPL Behaviour with Sampled Configurations: An Initial
Assessment. In Proceedings of the Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), pages 59:59–59:66. ACM, 2015. (cited on Page 120)

Deepak Dhungana, Rick Rabiser, Paul Grünbacher, Klaus Lehner, and Christian
Federspiel. DOPLER: An Adaptable Tool Suite for Product Line Engineering. In

https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html

Bibliography 145

Proceedings of the International Software Product Line Conference (SPLC), pages
151–152. Kindai Kagaku Sha Co. Ltd., Tokyo, Japan, 2007. (cited on Page 8)

Niklas Eén and Armin Biere. Effective Preprocessing in SAT Through Variable and
Clause Elimination. In Proceedings of the International Conference on Theory
and Applications of Satisfiability Testing (SAT), volume 3569 of Lecture Notes in
Computer Science, pages 61–75. Springer, 2005. (cited on Page 123)

Niklas Eén and Niklas Sörensson. Temporal Induction by Incremental SAT Solving.
Electronic Notes in Theoretical Computer Science (ENTCS), 89(4):543–560, 2003.
(cited on Page 123)

Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Proceedings of
the International Conference on Theory and Applications of Satisfiability Testing
(SAT), pages 502–518. Springer, 2004. (cited on Page 13)

Emelie Engström and Per Runeson. Software Product Line Testing - A Systematic
Mapping Study. Journal of Information and Software Technology (IST), 53(1):
2–13, 2011. (cited on Page 3, 22, and 64)

Alireza Ensan, Ebrahim Bagheri, Mohsen Asadi, Dragan Gasevic, and Yevgen
Biletskiy. Goal-Oriented Test Case Selection and Prioritization for Product Line
Feature Models. In Proceedings of the International Conference on Information
Technology: New Generations (ITNG), pages 291–298. IEEE Computer Science,
2011. (cited on Page 120)

Faezeh Ensan, Ebrahim Bagheri, and Dragan Gasevic. Evolutionary Search-Based
Test Generation for Software Product Line Feature Models. In Proceedings of the
International Conference on Advanced Information Systems Engineering (CAiSE),
volume 7328 of Lecture Notes in Computer Science, pages 613–628. Springer, 2012.
(cited on Page 120)

Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental Inprocessing
in SAT Solving. In Proceedings of the International Conference on Theory and
Applications of Satisfiability Testing (SAT), pages 136–154. Springer, 2019. (cited
on Page 123)

Kevin Feichtinger, Johann Stöbich, Dario Romano, and Rick Rabiser. TRAVART:
An Approach for Transforming Variability Models. In Proceedings of the Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems
(VaMoS), pages 8:1–8:10. ACM, 2021. (cited on Page 8 and 10)

Thiago N. Ferreira, Josiel Neumann Kuk, Aurora Pozo, and Silvia Regina Vergilio.
Product Selection Based on Upper Confidence Bound MOEA/D-DRA for Testing
Software Product Lines. In Proceedings of the Congress Evolutionary Computation
(CEC), pages 4135–4142. IEEE Computer Science, 2016. (cited on Page 120)

Thiago N. Ferreira, Jackson A. Prado Lima, Andrei Strickler, Josiel N. Kuk, Silvia R.
Vergilio, and Aurora Pozo. Hyper-Heuristic Based Product Selection for Software
Product Line Testing. IEEE Computational Intelligence Magazine (CIM), 12(2):
34–45, 2017. (cited on Page 120)

146 Bibliography

Helson L. Jakubovski Filho, Jackson A. Prado Lima, and Silvia R. Vergilio. Automatic
Generation of Search-Based Algorithms Applied to the Feature Testing of Software
Product Lines. In Proceedings of the Brazilian Symposium on Software Engineering
(SBES), pages 114–123. ACM, 2017. (cited on Page 120)

Stefan Fischer, Roberto E. Lopez-Herrejon, Rudolf Ramler, and Alexander Egyed.
A Preliminary Empirical Assessment of Similarity for Combinatorial Interaction
Testing of Software Product Lines. In Proceedings of the International Workshop
on Search-Based Software Testing (SBST), pages 15–18. ACM, 2016. (cited on
Page 119)

José A. Galindo, Mathieu Acher, Juan Manuel Tirado, Cristian Vidal, Benoit
Baudry, and David Benavides. Exploiting the Enumeration of All Feature Model
Configurations: A New Perspective With Distributed Computing. In Proceedings
of the International Software Product Line Conference (SPLC), pages 74–78. ACM,
2016. (cited on Page 122)

Hassan Gomaa. Designing Software Product Lines with the Unified Modeling
Language (UML). In Proceedings of the International Software Product Line
Conference (SPLC), volume 3154 of Lecture Notes in Computer Science, page 317.
Springer, 2004. (cited on Page 8)

Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M. Jensen, Henrik R. Andersen,
Jesper Møller, and Henrik Hulgaard. Fast Backtrack-Free Product Configuration
using a Precompiled Solution Space Representation. In Proceedings of the Interna-
tional Conference on Economic, Technical and Organisational Aspects of Product
Configuration Systems, pages 131–138. Gamez Publishing, 2004. (cited on Page 121)

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin, and
Benoit Baudry. Test Them All, Is It Worth It? Assessing Configuration Sampling
on the JHipster Web Development Stack. Empirical Software Engineering (EMSE),
24(2):674–717, 2019. (cited on Page 22 and 122)

Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic
Software Product Lines. IEEE Computer, 41(4):93–95, 2008. (cited on Page 16)

Alan Hartman. Graph Theory, Combinatorics and Algorithms: Interdisciplinary
Applications, chapter Software and Hardware Testing Using Combinatorial Covering
Suites, pages 237–266. Springer, 2005. (cited on Page 23)

Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and Alexander Egyed. Using
Feature Model Knowledge to Speed Up the Generation of Covering Arrays. In
Proceedings of the Workshop on Variability Modelling of Software-intensive Systems
(VaMoS), pages 16:1–16:6. ACM, 2013. (cited on Page 120)

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. Multi-Objective Test Generation for Software Product Lines. In Proceedings
of the International Software Product Line Conference (SPLC), pages 62–71. ACM,
2013. (cited on Page 119 and 120)

Bibliography 147

Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutation-Based Gener-
ation of Software Product Line Test Configurations. In Search-Based Software
Engineering, volume 8636 of Lecture Notes in Computer Science, pages 92–106.
Springer, 2014a. (cited on Page 119 and 120)

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Hey-
mans, and Yves Le Traon. Bypassing the Combinatorial Explosion: Using Similarity
to Generate and Prioritize T-Wise Test Configurations for Software Product Lines.
IEEE Transactions on Software Engineering (TSE), 40(7):650–670, 2014b. (cited
on Page 103, 105, and 120)

Ruben Heradio, David Fernández-Amorós, José Antonio Galindo, and David Be-
navides. Uniform and Scalable SAT-Sampling for Configurable Systems. In
Proceedings of the International Software Product Line Conference (SPLC), pages
17:1–17:11. ACM, 2020. (cited on Page 120)

Arnaud Hubaux, Yingfei Xiong, and Krzysztof Czarnecki. A User Survey of Configu-
ration Challenges in Linux and eCos. In Proceedings of the Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), pages 149–155. ACM, 2012.
(cited on Page 1 and 2)

Mikolás Janota. Do SAT Solvers Make Good Configurators? In Proceedings of the
International Software Product Line Conference (SPLC), volume 2, pages 191–195.
Lero Int. Science Centre, University of Limerick, 2008. (cited on Page 2, 13, 20, and 121)

Rune M. Jensen. CLab: A C++ Library for Fast Backtrack-Free Interactive Product
Configuration. In Proceedings of the International Conference on Principles
and Practice of Constraint Programming (CP), volume 3258 of Lecture Notes in
Computer Science, page 816. Springer, 2004. (cited on Page 122)

Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. Properties of
Realistic Feature Models Make Combinatorial Testing of Product Lines Feasible.
In Proceedings of the International Conference on Model Driven Engineering
Languages and Systems (MODELS), volume 6981 of Lecture Notes in Computer
Science, pages 638–652. Springer, 2011. (cited on Page 78, 79, 92, 103, 105, and 120)

Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. An Algorithm for
Generating T-Wise Covering Arrays from Large Feature Models. In Proceedings of
the International Software Product Line Conference (SPLC), pages 46–55. ACM,
2012a. (cited on Page 3, 51, 78, 79, 92, 103, 105, and 120)

Martin Fagereng Johansen, Øystein Haugen, Franck Fleurey, Anne Grete Eldegard,
and Torbjørn Syversen. Generating Better Partial Covering Arrays by Modeling
Weights on Sub-Product Lines. In Proceedings of the International Conference
on Model Driven Engineering Languages and Systems (MODELS), volume 7590
of Lecture Notes in Computer Science, pages 269–284. Springer, 2012b. (cited on
Page 120)

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, 1990. (cited on Page 8)

148 Bibliography

Christian Kästner, Sven Apel, Syed Saif ur Rahman, Marko Rosenmüller, Don Batory,
and Gunter Saake. On the Impact of the Optional Feature Problem: Analysis and
Case Studies. In Proceedings of the International Software Product Line Conference
(SPLC), pages 181–190. Software Engineering Institute, 2009. (cited on Page 3, 21,
and 64)

Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. TypeChef:
Toward Type Checking #Ifdef Variability in C. In Proceedings of the International
SPLC Workshop Feature-Oriented Software Development (FOSD), pages 25–32.
ACM, 2010. (cited on Page 122)

Chang Hwan Peter Kim, Eric Bodden, Don Batory, and Sarfraz Khurshid. Reducing
Configurations to Monitor in a Software Product Line. In Proceedings of the
International Conference on Runtime Verification (RV), pages 285–299. Springer,
2010. (cited on Page 120 and 121)

Chang Hwan Peter Kim, Don Batory, and Sarfraz Khurshid. Reducing Combinatorics
in Testing Product Lines. In Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD), pages 57–68. ACM, 2011. (cited on Page 120
and 121)

Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina Schae-
fer. Is There a Mismatch Between Real-World Feature Models and Product-Line
Research? In Proceedings of the European Software Engineering Conference/Foun-
dations of Software Engineering (ESECFSE), pages 291–302. ACM, 2017. (cited on
Page 1, 48, 77, and 123)

Matthias Kowal, Sandro Schulze, and Ina Schaefer. Towards Efficient SPL Testing
by Variant Reduction. In Conference of the International workshop on Variability
& composition (VariComp), pages 1–6. ACM, 2013. (cited on Page 120)

Sebastian Krieter. Efficient Configuration of Large-Scale Feature Models Using
Extended Implication Graphs. Master’s thesis, University of Magdeburg, 2015.
(cited on Page 25)

Sebastian Krieter. Large-Scale T-Wise Interaction Sampling Using YASA. In
Proceedings of the International Software Product Line Conference (SPLC), pages
29:1–29:4. ACM, 2020. (cited on Page 63)

Sebastian Krieter, Reimar Schröter, Thomas Thüm, Wolfram Fenske, and Gunter
Saake. Comparing Algorithms for Efficient Feature-Model Slicing. In Proceedings
of the International Software Product Line Conference (SPLC), pages 60–64. ACM,
2016. (cited on Page 86 and 128)

Sebastian Krieter, Marcus Pinnecke, Jacob Krüger, Joshua Sprey, Christopher Sontag,
Thomas Thüm, Thomas Leich, and Gunter Saake. FeatureIDE: Empowering
Third-Party Developers. In Proceedings of the International Software Product Line
Conference (SPLC), pages 42–45. ACM, 2017. (cited on Page 52)

Bibliography 149

Sebastian Krieter, Thomas Thüm, Sandro Schulze, Reimar Schröter, and Gunter
Saake. Propagating Configuration Decisions with Modal Implication Graphs. In
Proceedings of the International Conference on Software Engineering (ICSE), pages
898–909. ACM, 2018. (cited on Page 25, 26, and 60)

Sebastian Krieter, Thomas Thüm, Sandro Schulze, Gunter Saake, and Thomas Leich.
YASA: Yet Another Sampling Algorithm. In Proceedings of the International Work-
ing Conference on Variability Modelling of Software-Intensive Systems (VaMoS),
pages 4:1–4:10. ACM, 2020. (cited on Page 63)

Sebastian Krieter, Rahel Arens, Michael Nieke, Chico Sundermann, Tobias Heß,
Thomas Thüm, and Christoph Seidl. Incremental Construction of Modal Impli-
cation Graphs for Evolving Feature Models. In Proceedings of the International
Software Product Line Conference (SPLC), pages 64–74. ACM, 2021. (cited on
Page 25 and 26)

Sebastian Krieter, Thomas Thüm, Sandro Schulze, Sebastian Ruland, Malte Lochau,
Gunter Saake, and Thomas Leich. T-Wise Presence Condition Coverage and
Sampling for Configurable Systems. arXiv:2205.15180 [cs.SE] https://arxiv.
org/abs/2205.15180, 2022. (cited on Page 89)

Charles Krueger. BigLever Software Gears and the 3-tiered SPL Methodology. In
Proceedings of the Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 844–845, Montreal, Quebec, Canada,
2007. (cited on Page 121)

Charles Krueger and Paul Clements. Systems and Software Product Line Engineering
with BigLever Software Gears. In Proceedings of the International Software Product
Line Conference (SPLC), pages 136–140, Tokyo, Japan, 2013. (cited on Page 121)

Elias Kuiter, Sebastian Krieter, Jacob Krüger, Kai Ludwig, Thomas Leich, and
Gunter Saake. PClocator: A Tool Suite to Automatically Identify Configurations
for Code Locations. In Proceedings of the International Software Product Line
Conference (SPLC), pages 284–288, 2018. (cited on Page 96 and 103)

Daniel Le Berre and Anne Parrain. The Sat4j Library, Release 2.2. Journal of
Satisfiability, Boolean Modeling and Computation, 7(2-3):59–64, 2010. (cited on
Page 13, 52, 78, 103, and 104)

Jihyun Lee, Sungwon Kang, and Danhyung Lee. A Survey on Software Product Line
Testing. In Proceedings of the International Software Product Line Conference
(SPLC), pages 31–40. ACM, 2012. (cited on Page 3, 22, and 64)

Yu Lei, Raghu N. Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence.
IPOG: A General Strategy for T-Way Software Testing. In Proceedings of the
International Conference on Engineering of Computer-Based Systems (ECBS),
pages 549–556. IEEE Computer Science, 2007. (cited on Page 71 and 120)

Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.
An Analysis of the Variability in Forty Preprocessor-Based Software Product Lines.

https://arxiv.org/abs/2205.15180
https://arxiv.org/abs/2205.15180

150 Bibliography

In Proceedings of the International Conference on Software Engineering (ICSE),
pages 105–114. IEEE Computer Science, 2010. (cited on Page 16 and 91)

Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and
Christian Lengauer. Scalable Analysis of Variable Software. In Proceedings of the
European Software Engineering Conference/Foundations of Software Engineering
(ESECFSE), pages 81–91. ACM, 2013. (cited on Page 120, 121, and 122)

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incremental Model-
Based Testing of Delta-oriented Software Product Lines. In Proceedings of the
International Conference on Tests and Proofs (TAP), pages 67–82. Springer, 2012.
(cited on Page 119)

Roberto E. Lopez-Herrejon, Stefan Fischer, Rudolf Ramler, and Aalexander Egyed. A
First Systematic Mapping Study on Combinatorial Interaction Testing for Software
Product Lines. In Proceedings of the International Workshop on Combinatorial
Testing (IWCT), pages 1–10. IEEE Computer Science, 2015. (cited on Page 23)

Roberto Erick Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Alexander Egyed,
and Enrique Alba. Comparative Analysis of Classical Multi-Objective Evolutionary
Algorithms and Seeding Strategies for Pairwise Testing of Software Product Lines.
In Proceedings of the Congress Evolutionary Computation (CEC), pages 387–396.
IEEE Computer Science, 2014. (cited on Page 18, 119, and 120)

Mike Mannion. Using First-Order Logic for Product Line Model Validation. In
Proceedings of the International Software Product Line Conference (SPLC), pages
176–187. Springer, 2002. (cited on Page 9)

Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu. Practical Pairwise
Testing for Software Product Lines. In Proceedings of the International Software
Product Line Conference (SPLC), pages 227–235. ACM, 2013. (cited on Page 3, 21,
64, and 120)

Jose Luis Martinez, Tewfik Ziadi, Raul Mazo, Tegawendé F. Bissyandé, John Klein,
and Yves Le Traon. Feature Relations Graphs: A Visualisation Paradigm for
Feature Constraints in Software Product Lines. In Proceedings of the Working
Conference on Software Visualization (VISSOFT), pages 50–59. IEEE, 2014. (cited
on Page 19 and 122)

Rui Angelo Matnei Filho and Silvia Regina Vergilio. A Multi-Objective Test Data
Generation Approach for Mutation Testing of Feature Models. Journal of Software
Engineering Research and Development (JSERD), 4(1), 2016. (cited on Page 120)

Raúl Mazo, Camille Salinesi, and Daniel Diaz. VariaMos: A Tool for Product Line
Driven Systems Engineering with a Constraint Based Approach. In Proceedings
of the International Conference on Advanced Information Systems Engineering
(CAiSE), pages 147–154. CEUR-WS.org, 2012. (cited on Page 121)

John McGregor. Testing a Software Product Line. In Testing Techniques in Software
Engineering, volume 6153 of Lecture Notes in Computer Science, pages 104–140.
Springer, 2010. (cited on Page 3, 64, and 90)

Bibliography 151

Flávio Medeiros, Thiago Lima, Francisco Dalton, Márcio Ribeiro, Rohit Gheyi, and
Baldoino Fonseca. Colligens: A Tool to Support the Development of Preprocessor-
Based Software Product Lines in C. In Proceedings of the Brazilian Conference
Software: Theory and Practice (CBSoft). CBSOFT, 2013. (cited on Page 16)

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. A
Comparison of 10 Sampling Algorithms for Configurable Systems. In Proceedings
of the International Conference on Software Engineering (ICSE), pages 643–654.
ACM, 2016. (cited on Page 21, 105, 106, 107, and 109)

Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and Gunter Saake.
An Overview on Analysis Tools for Software Product Lines. In Proceedings of the
Workshop on Software Product Line Analysis Tools (SPLat), pages 94–101. ACM,
2014. (cited on Page 22 and 122)

Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. Mastering Software Variability with FeatureIDE. Springer,
2017. (cited on Page 3, 52, 78, and 103)

Marcílio Mendonça. Efficient Reasoning Techniques for Large Scale Feature Models.
PhD thesis, University of Waterloo, 2009. (cited on Page 2, 13, 20, 26, and 45)

Marcílio Mendonça, Andrzej Wąsowski, Krzysztof Czarnecki, and Donald Cowan.
Efficient Compilation Techniques for Large Scale Feature Models. In Proceedings
of the International Conference on Generative Programming and Component
Engineering (GPCE), pages 13–22. ACM, 2008. (cited on Page 121)

Marcílio Mendonça, Moises Branco, and Donald Cowan. S.P.L.O.T.: Software
Product Lines Online Tools. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 761–762.
ACM, 2009a. (cited on Page 20 and 121)

Marcílio Mendonça, Andrzej Wąsowski, and Krzysztof Czarnecki. SAT-Based Analy-
sis of Feature Models is Easy. In Proceedings of the International Software Product
Line Conference (SPLC), pages 231–240. Software Engineering Institute, 2009b.
(cited on Page 26 and 44)

Andreas Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves Schobbens, and Germain
Saval. Disambiguating the Documentation of Variability in Software Product Lines:
A Separation of Concerns, Formalization and Automated Analysis. In Requirements
Engineering, pages 243–253. IEEE Computer Science, 2007. (cited on Page 122)

Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand, and Andrzej Wąsowski.
Systematic Derivation of Correct Variability-Aware Program Analyses. Science of
Computer Programming (SCP), 105(C):145–170, 2015. (cited on Page 122)

Jean-Vivien Millo, S. Ramesh, Shankara Narayanan Krishna, and Ganesh Khandu
Narwane. Compositional Verification of Software Product Lines. In Proceedings
of the World Conference on Integrated Formal Methods (iFM), pages 109–123.
Springer, 2013. (cited on Page 122)

152 Bibliography

Malek Mouhoub and Samira Sadaoui. Solving Incremental Satisfiability. Artificial
Intelligence Tools, 16(1):139–147, 2007. (cited on Page 122)

Munge Development Team. Munge: A Purposely-Simple Java Preprocessor. Web-
site http://github.com/sonatype/munge-maven-plugin, 2011. Visited January
11th, 2011. (cited on Page 16)

Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don Batory. Uniform
Random Sampling Product Configurations of Feature Models That Have Numerical
Features. In Proceedings of the International Software Product Line Conference
(SPLC), pages 289–301. ACM, 2019. (cited on Page 21 and 120)

Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Ultimately Incremental SAT.
In Proceedings of the International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 206–218. Springer, 2014. (cited on Page 123)

Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. Where Do
Configuration Constraints Stem From? An Extraction Approach and an Empirical
Study. IEEE Transactions on Software Engineering (TSE), 41(8):820–841, 2015.
(cited on Page 1 and 122)

Daren Nestor, Steffen Thiel, Goetz Botterweck, Ciarán Cawley, and Patrick Healy.
Applying Visualisation Techniques in Software Product Lines. In Proceedings of
the Symposium on Software Visualization (SoftVis), pages 175–184. ACM, 2008.
(cited on Page 19 and 122)

Michael Nieke, Jacopo Mauro, Christoph Seidl, Thomas Thüm, Ingrid Chieh Yu,
and Felix Franzke. Anomaly Analyses for Feature-Model Evolution. In Proceedings
of the International Conference on Generative Programming and Component
Engineering (GPCE), pages 188–201. ACM, 2018. (cited on Page 62)

Lina Ochoa, Oscar González-Rojas, and Thomas Thüm. Using Decision Rules for
Solving Conflicts in Extended Feature Models. In Proceedings of the International
Conference on Software Language Engineering (SLE), pages 149–160. ACM, 2015.
(cited on Page 19, 119, and 121)

Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding Near-
Optimal Configurations in Product Lines by Random Sampling. In Proceedings of
the International Symposium Foundations of Software Engineering (FSE), pages
61–71, 2017. (cited on Page 2, 21, and 120)

Jeho Oh, Paul Gazzillo, Don Batory, Marijn Heule, and Maggie Myers. Uniform
Sampling from Kconfig Feature Models. Technical Report TR-19-02, The University
of Texas at Austin, Department of Computer Science, 2019. (cited on Page 77, 103,
104, 105, and 120)

Sebastian Oster, Florian Markert, and Philipp Ritter. Automated Incremental
Pairwise Testing of Software Product Lines. In Proceedings of the International
Software Product Line Conference (SPLC), pages 196–210. Springer, 2010. (cited
on Page 3, 64, 119, and 120)

http://github.com/sonatype/munge-maven-plugin

Bibliography 153

Sebastian Oster, Marius Zink, Malte Lochau, and Mark Grechanik. Pairwise Feature-
Interaction Testing for SPLs: Potentials and Limitations. In Proceedings of the
International Software Product Line Conference (SPLC), pages 6:1–6:8. ACM,
2011. (cited on Page 119)

Juliana Alves Pereira, Sebastian Krieter, Jens Meinicke, Reimar Schröter, Gunter
Saake, and Thomas Leich. FeatureIDE: Scalable Product Configuration of Variable
Systems. In Proceedings of the International Conference on Software Reuse (ICSR),
pages 397–401. Springer, 2016a. (cited on Page 20, 21, and 121)

Juliana Alves Pereira, Pawel Matuszyk, Sebastian Krieter, Myra Spiliopoulou, and
Gunter Saake. A Feature-Based Personalized Recommender System for Product-
Line Configuration. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), pages 120–131. ACM, 2016b.
(cited on Page 19 and 122)

Juliana Alves Pereira, Sandro Schulze, Sebastian Krieter, Márcio Ribeiro, and Gunter
Saake. A Context-Aware Recommender System for Extended Software Product
Line Configurations. In Proceedings of the Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 97–104. ACM, 2018. (cited on Page 2)

Hector Perez-Morago, Ruben Heradio, David Fernández-Amorós, Roberto Bean, and
Carlos Cerrada. Efficient Identification of Core and Dead Features in Variability
Models. IEEE Access, 3:2333–2340, 2015. (cited on Page 122)

Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon.
Automated and Scalable T-Wise Test Case Generation Strategies for Software
Product Lines. In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pages 459–468. IEEE Computer Science, 2010.
(cited on Page 3, 18, 64, and 119)

Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and
Yves Le Traon. Pairwise Testing for Software Product Lines: Comparison of Two
Approaches. Software Quality Journal (SQJ), 20(3-4):605–643, 2012. (cited on
Page 119)

Tobias Pett, Thomas Thüm, Tobias Runge, Sebastian Krieter, Malte Lochau, and
Ina Schaefer. Product Sampling for Product Lines: The Scalability Challenge. In
Proceedings of the International Software Product Line Conference (SPLC), pages
78–83. ACM, 2019. (cited on Page 3, 62, 64, and 77)

Tobias Pett, Sebastian Krieter, Tobias Runge, Thomas Thüm, Malte Lochau, and
Ina Schaefer. Stability of Product-Line Sampling in Continuous Integration. In
Proceedings of the International Working Conference on Variability Modelling of
Software-Intensive Systems (VaMoS), pages 18:1–18:9. ACM, 2021. (cited on Page 62
and 67)

Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, and Maxime Cordy.
Uniform Sampling of SAT Solutions for Configurable Systems: Are We There Yet?
In Proceedings of the International Conference on Software Testing, Verification

154 Bibliography

and Validation (ICST), pages 240–251. IEEE Computer Science, 2019. (cited on
Page 120)

Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005. (cited on
Page 7, 8, and 11)

pure::systems. pure::variants. Website http://www.pure-systems.com/products/
pure-variants-9.html, 2017. Visited May 10th, 2017. (cited on Page 121)

Dennis Reuling, Johannes Bürdek, Serge Rotärmel, Malte Lochau, and Udo Kelter.
Fault-Based Product-Line Testing: Effective Sample Generation Based on Feature-
Diagram Mutation. In Proceedings of the International Software Product Line
Conference (SPLC), pages 131–140. ACM, 2015. (cited on Page 120)

Sebastian Ruland, Lars Luthmann, Johannes Bürdek, Sascha Lity, Thomas Thüm,
Malte Lochau, and Márcio Ribeiro. Measuring Effectiveness of Sample-Based
Product-Line Testing. In Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), pages 119–133. ACM, 2018.
(cited on Page 90 and 92)

Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature
Diagrams: A Survey and a Formal Semantics. In Requirements Engineering, pages
136–145. IEEE Computer Science, 2006. (cited on Page 9)

Julia Schroeter, Malte Lochau, and Tim Winkelmann. Multi-Perspectives on Feature
Models. In Proceedings of the International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), pages 252–268. Springer, 2012. (cited
on Page 128)

Reimar Schröter, Sebastian Krieter, Thomas Thüm, Fabian Benduhn, and Gunter
Saake. Feature-Model Interfaces: The Highway to Compositional Analyses of
Highly-Configurable Systems. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 667–678. ACM, 2016. (cited on Page 62 and 128)

Sergio Segura. Automated Analysis of Feature Models Using Atomic Sets. In Pro-
ceedings of the International Software Product Line Conference (SPLC), volume 2,
pages 201–207. IEEE Computer Science, 2008. (cited on Page 122)

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof Czar-
necki. The Variability Model of the Linux Kernel. In Proceedings of the Workshop
on Variability Modelling of Software-intensive Systems (VaMoS), volume 37 of
ICB-Research Report, pages 45–51. Universität Duisburg-Essen, 2010. (cited on
Page 8)

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and Krzysztof
Czarnecki. Reverse Engineering Feature Models. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 461–470. ACM, 2011. (cited on
Page 77 and 105)

http://www.pure-systems.com/products/pure-variants-9.html
http://www.pure-systems.com/products/pure-variants-9.html

Bibliography 155

Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer. Integration Testing of Software
Product Lines Using Compositional Symbolic Execution. In Proceedings of the
International Conference on Fundamental Approaches to Software Engineering
(FASE), pages 270–284. Springer, 2012. (cited on Page 120 and 121)

Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven
Apel, and Gunter Saake. SPL Conqueror: Toward Optimization of Non-functional
Properties in Software Product Lines. Software Quality Journal (SQJ), 20(3-4):
487–517, 2012. (cited on Page 119)

Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf Spinczyk.
Is the Linux Kernel a Software Product Line? In Proceedings of the International
Workshop on Open Source Software and Product Lines (OSSPL), pages 9–12. IEEE
Computer Science, 2007. (cited on Page 123)

Joshua Sprey, Chico Sundermann, Sebastian Krieter, Michael Nieke, Jacopo Mauro,
Thomas Thüm, and Ina Schaefer. SMT-Based Variability Analyses in FeatureIDE.
In Proceedings of the International Working Conference on Variability Modelling of
Software-Intensive Systems (VaMoS), pages 6:1–6:9. ACM, 2020. (cited on Page 121)

Richard M. Stallman and Zachary Weinberg. The C Preprocessor. Free Software
Foundation, 1987. (cited on Page 16 and 91)

Chico Sundermann, Thomas Thüm, and Ina Schaefer. Evaluating #SAT Solvers on
Industrial Feature Models. In Proceedings of the International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS), pages 3:1–3:9.
ACM, 2020. (cited on Page 1 and 3)

Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser, and
Thomas Thüm. Yet Another Textual Variability Language? A Community Effort
Towards a Unified Language. In Proceedings of the International Software Product
Line Conference (SPLC), pages 136–147. ACM, 2021. (cited on Page 8 and 9)

Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio
Sincero. Configuration Coverage in the Analysis of Large-Scale System Software.
ACM SIGOPS Operating Systems Review, 45(3):10–14, 2012. (cited on Page 121)

Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. Static Analysis of Variability in System Software: The
90,000 #Ifdefs Issue. In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 421–432. USENIX Association, 2014. (cited on Page 18, 90, 96, 103, 115,
119, 120, and 121)

Maurice H. ter Beek, Ferruccio Damiani, Stefania Gnesi, Franco Mazzanti, and Luca
Paolini. On the Expressiveness of Modal Transition Systems with Variability
Constraints. Science of Computer Programming (SCP), 169:1–17, 2019. (cited on
Page 122)

Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe Composition
of Product Lines. In Proceedings of the International Conference on Generative

156 Bibliography

Programming and Component Engineering (GPCE), pages 95–104. ACM, 2007.
(cited on Page 122)

Thomas Thüm. A BDD for Linux? The Knowledge Compilation Challenge for
Variability. In Proceedings of the International Software Product Line Conference
(SPLC), pages 16:1–16:6. ACM, 2020. (cited on Page 121 and 122)

Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A
Classification and Survey of Analysis Strategies for Software Product Lines. ACM
Computing Surveys (CSUR), 47(1):6:1–6:45, 2014a. (cited on Page 3, 21, 64, and 122)

Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. FeatureIDE: An Extensible Framework for Feature-Oriented
Software Development. Science of Computer Programming (SCP), 79:70–85, 2014b.
(cited on Page 121)

Thomas Thüm, Jens Meinicke, Fabian Benduhn, Martin Hentschel, Alexander von
Rhein, and Gunter Saake. Potential Synergies of Theorem Proving and Model
Checking for Software Product Lines. In Proceedings of the International Software
Product Line Conference (SPLC), pages 177–186. ACM, 2014. (cited on Page 122)

Thomas Thüm, Sebastian Krieter, and Ina Schaefer. Product Configuration in the
Wild: Strategies for Conflicting Decisions in Web Configurators. In Proceedings
of the Configuration Workshop (ConfWS), pages 1–8. RWTH Aachen University,
2018. (cited on Page 20)

Pablo Trinidad and Antonio Ruiz-Cortés. Abductive Reasoning and Automated
Analysis of Feature Models: How are They Connected? In Proceedings of the
Workshop on Variability Modelling of Software-intensive Systems (VaMoS), pages
145–153. Universität Duisburg-Essen, 2009. (cited on Page 122)

Grigori S. Tseytin. Automation of Reasoning: 2: Classical Papers on Computa-
tional Logic 1967–1970, chapter On the Complexity of Derivation in Propositional
Calculus, pages 466–483. Springer, 1983. (cited on Page 85)

Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Moham-
mad Reza Mousavi, and Ina Schaefer. A Classification of Product Sampling for
Software Product Lines. In Proceedings of the International Software Product Line
Conference (SPLC), pages 1–13. ACM, 2018. (cited on Page 3, 21, 22, 23, 92, 120,
and 121)

Bart Veer and John Dallaway. The eCos Component Writer’s Guide, 2017.
Available online http://ecos.sourceware.org/ecos/docs-3.0/pdf/ecos-3.
0-cdl-guide-a4.pdf; Visited May 10th, 2017. (cited on Page 123)

Jules White, Douglas C. Schmidt, Egon Wuchner, and Andrey Nechypurenko. Au-
tomating Product-Line Variant Selection for Mobile Devices. In Proceedings of
the International Software Product Line Conference (SPLC), pages 129–140, 2007.
(cited on Page 119)

http://ecos.sourceware.org/ecos/docs-3.0/pdf/ecos-3.0-cdl-guide-a4.pdf
http://ecos.sourceware.org/ecos/docs-3.0/pdf/ecos-3.0-cdl-guide-a4.pdf

Bibliography 157

Jules White, Douglas C. Schmidt, David Benavides, Pablo Trinidad, and Antonio
Ruiz-Cortés. Automated Diagnosis of Product-Line Configuration Errors in Feature
Models. In Proceedings of the International Software Product Line Conference
(SPLC), pages 225–234. IEEE Computer Science, 2008. (cited on Page 19 and 121)

Jules White, Brian Dougherty, and Douglas C. Schmidt. Selecting Highly Optimal
Architectural Feature Sets with Filtered Cartesian Flattening. Journal of Systems
and Software (JSS), 82(8):1268–1284, 2009. (cited on Page 119)

Huilin Ye and Hanchang Liu. Approach to Modelling Feature Variability and
Dependencies in Software Product Lines. IEE Proceedings - Software, 152(3):
101–109, 2005. (cited on Page 1)

Wei Zhang, Haiyan Zhao, and Hong Mei. A Propositional Logic-Based Method for
Verification of Feature Models. In Proceedings of the International Conference on
Formal Engineering Methods (ICFEM), pages 115–130. Springer, 2004. (cited on
Page 122)

	Contents
	Abstract
	Zusammenfassung
	List of Publications
	1 Introduction
	1.1 Goals and Contributions
	1.2 Structure

	2 Background
	2.1 Problem Space
	2.1.1 Feature Model
	2.1.2 Configuration
	2.1.3 Feature Model Analysis

	2.2 Solution Space
	2.2.1 Implementation Artifacts
	2.2.2 Presence Conditions

	2.3 Configuration Process
	2.3.1 Manual Configuration Process
	2.3.2 Semi-Automated Configuration Process
	2.3.3 Fully-Automated Configuration Process

	2.4 Summary

	3 Modal Implication Graphs
	3.1 Motivation
	3.2 Structure of Modal Implication Graphs
	3.2.1 Strong and Weak Edges
	3.2.2 Strong and Weak Paths
	3.2.3 Completeness and Minimality Property

	3.3 Applications of Modal Implication Graphs
	3.3.1 Decision Propagation
	3.3.2 Feature Model Analysis

	3.4 Construction of a Modal Implication Graph
	3.4.1 Basic Build Process
	3.4.2 Advanced Build Process

	3.5 Incremental Modal Implication Graphs
	3.5.1 Computing the Feature Model Change
	3.5.2 Computationally Expensive Building Steps
	3.5.3 Modified Building Steps

	3.6 Evaluation
	3.6.1 Setup of Experiments
	3.6.2 Results of Experiments
	3.6.3 Threats to Validity

	3.7 Summary

	4 Advanced T-Wise Interaction Sampling
	4.1 Motivation
	4.2 Parameters of YASA
	4.2.1 Feature Model
	4.2.2 Interaction Size
	4.2.3 Initial Sample
	4.2.4 Feature Subset
	4.2.5 Resampling Limit

	4.3 Constructing a Configuration Sample
	4.3.1 Basic Sampling Process
	4.3.2 Building the List of Interactions
	4.3.3 Covering an Interaction
	4.3.4 Resampling the Sample

	4.4 Optimization and Adaptation of YASA
	4.4.1 Advanced Covering Strategy
	4.4.2 Alternative Completion Strategies

	4.5 Evaluation
	4.5.1 Setup of Experiments
	4.5.2 Results of Experiments
	4.5.3 Threats to Validity

	4.6 Summary

	5 Presence-Condition Sampling
	5.1 Motivation
	5.2 Presence Condition Coverage
	5.2.1 Presence Condition Interactions
	5.2.2 Presence Condition Coverage Criterion

	5.3 T-Wise Presence Condition Sampling
	5.3.1 Extracting Presence Conditions
	5.3.2 Preprocessing Presence Conditions
	5.3.3 Building the List of Combined Presence Conditions
	5.3.4 Covering Presence Conditions

	5.4 Evaluation
	5.4.1 Setup of Experiments
	5.4.2 Results of Experiments
	5.4.3 Discussion
	5.4.4 Threats to Validity

	5.5 Summary

	6 Related Work
	6.1 Fully-Automated Configuration Process
	6.2 Semi-Automated Configuration Process
	6.3 Variability Analysis Techniques

	7 Conclusion and Future Work
	7.1 Summary
	7.2 Conclusion
	7.3 Future Work

	List of Figures
	List of Tables
	List of Algorithms
	List of Code Listings
	List of Symbols
	Bibliography

