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Abstract
In recent years, innovative ride-sharing systems have gained significant attention.

In such systems, dynamic fleet management covers demand and fulfillment con-

trol to determine which stochastically incoming requests are to be satisfied and how

vehicle resources are utilized for their fulfillment, respectively. Demand and ful-

fillment control can be implemented ranging from straightforward myopic to more

sophisticated anticipatory. In this paper, our aim is twofold: (1) we want to classify

how policies implement demand and fulfillment control in the related literature on

dynamic fleet management; (2) we want to explore the effectiveness of demand and

fulfillment control under varying conditions in order to identify benefits and risks for

ride-sharing systems. To this end, we define policies that differ in the optimization

of demand and/or fulfillment control through the exploitation of either confirmed or

complete information. Our experimental results demonstrate that demand and ful-

fillment control affect the performance and service quality of ride-sharing systems

quite differently.
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1 INTRODUCTION

Worldwide increasing congestion in urban traffic networks and the associated air pollution have led to a growing interest in

innovative shared mobility solutions. Among these are on-demand ride-sharing services like Uber Pool [45], which promise to

improve the efficiency of traditional taxi services by bundling travelers on the way from their origin to their destination. This

increased level of efficiency allows for lower fares compared to individual taxi services and enables a more convenient travel

experience compared to traditional local public transport through smaller transport cabins and direct trips.

Ride-sharing services have emerged in the light of advancing digitization, which allows travelers to submit requests

on-demand. The resulting interaction of request acceptance and vehicle routing poses a great challenge on operators, as

requests arrive stochastically and decisions have to be made dynamically. In request acceptance, trip requests submitted by

travelers—often in expectation of instant confirmation—are processed. Here, it must be ensured that all accepted requests can

be fulfilled with the given vehicle resources. Operators may also reject requests due to a lack of resources or in favor of potential

future ones. At the same time, vehicle routing addresses the utilization of the fleet to fulfill accepted requests as well as those

expected to be accepted in the future. Commonly, accepted requests must be fulfilled at short notice, which means that planning

and execution are performed synchronously.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided

the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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Dynamic fleet management, which comprises request acceptance and vehicle routing to control the demand to be satisfied

and its fulfillment, is a key factor for a successful ride-sharing system. To handle the uncertainty caused by the stochastic

nature of requests, demand control as well as fulfillment control can range from simple exploitation of confirmed information

only to more sophisticated exploitation of information on the stochastic problem elements. Complex strategies for both demand

and fulfillment control are reflected in the decision-making policies proposed in the literature. Given these policies, it remains

unclear what extent of demand and fulfillment control is beneficial under which conditions and how it affects the performance

of ride-sharing systems. Understanding the effectiveness of demand and fulfillment control is important, both for the systematic

development of policies as well as for guiding operators in selecting a policy tailored to the intended service.

Our aim is to investigate the effectiveness of demand and fulfillment control in a ride-sharing system systematically. To

this end, first, we define control strategies and classify the policies proposed in the literature accordingly. Secondly, we present

policies that vary in the complexity of optimization in demand and/or fulfillment control. Finally, based on a comprehensive

computational study, we analyze how these policies affect the performance metrics of a typical urban ride-sharing system as

well as the quality of service perceived by travelers.

In our computational study, for the most part, we assume complete information to increase optimization possibilities instead

of using truly anticipatory policies. Therefore, we are able to interpret results independent of anticipation capabilities and the

quality of information on the stochastic demand. However, concerning the stochastic-dynamic problem, rather upper bounds of

effectiveness are investigated than those obtainable by truly anticipatory policies. Nevertheless, it can be assumed that trends in

performance differences will be reflected through similar patterns by policies that apply the same strategies toward demand and

fulfillment control. Furthermore, to ensure the comparability of the implemented policies, all acceptance and routing decisions

are obtained by solving variants of the static dial-a-ride problem (DARP) using a well-known large neighborhood search (LNS).

In summary, we contribute to a better understanding of demand and fulfillment control in dynamic fleet management. To

this end, we give an overview of corresponding policies as proposed in the related literature. Moreover, we provide valuable

insights into the overall effectiveness of demand and fulfillment control under various conditions of a ride-sharing system.

The paper is organized as follows. Section 2 defines demand and fulfillment control in dynamic fleet management, differen-

tiates control strategies, and provides a classification of the related literature. In Section 3, the dynamic DARP (DDARP) faced

by a ride-sharing system is presented and modeled as a Markov decision process. Section 4 covers the framework for investigat-

ing the policies as well as the presentation of the LNS. In Section 5, computational experiments are presented including study

design and computational results. Finally, Section 6 provides a conclusion and outlines future research directions.

2 DEMAND AND FULFILLMENT CONTROL

The differentiation between demand and fulfillment control in dynamic fleet management is a key aspect of this paper. We define

demand control as all dynamic decisions aimed at controlling which trip requests are to be satisfied. We define fulfillment control
as all dynamic decisions aimed at controlling vehicle resources to fulfill the trip requests to be satisfied. Apart from this logical

differentiation, there is a strong interdependence between demand and fulfillment control, since demand control determines

the input for fulfillment control and fulfillment control strongly influences the availability of vehicle resources important for

demand control. In the following, we detail this differentiation and then classify the policies proposed in the literature.

2.1 Control strategies
For both demand and fulfillment control, we begin with differentiating whether these are reflected in the decision-making

process at all. This distinction is rooted in the few variants of the dynamic vehicle routing problem (DVRP) where either only

demand or only fulfillment is dynamically controlled. Secondly, we distinguish how uncertainty is handled within the decision

process. Uncertainty is a key challenge in dynamic fleet management caused by the stochastic nature of requests, implying that

decisions are made based on incomplete information. We define anticipatory decision-making as the consideration of future

stochasticity in order to maximize the expected cumulative reward. Anticipatory decision-making can be based on historical

data, forecasts, or the distribution of the stochastic elements. In contrast, decision-making that maximizes immediate rewards

only based on confirmed information is referred to as myopic. In the context of dynamic fleet management, a reward refers, for

example, to an accepted request or its monetary compensation. Demand and fulfillment control can be carried out in a myopic or

anticipatory manner. This differentiation leads to the following super-ordinate demand and fulfillment control strategies further

detailed in the subsections:

• Demand control:

– None: All requests received during the planning period are accepted.
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– Myopic: Requests received during the planning period are accepted if sufficient vehicle resources are available

and this maximizes the immediate reward.

– Anticipatory: Requests received during the planning period are accepted if sufficient vehicle resources are

available and this maximizes the expected cumulative reward.

• Fulfillment control:

– None: Requests accepted during the planning period are scheduled and fulfilled after its completion.

– Myopic: Requests accepted during the planning period are scheduled and fulfilled synchronously within the

period.

– Anticipatory: Requests accepted during the planning period are scheduled and fulfilled synchronously within the

period, taking into account expected future acceptances.

2.1.1 Demand control

For the scope of demand control, in this section, we detail the meaning of the strategies referred to as “none,” “myopic,”

and “anticipatory.” “None” means that all incoming requests will be accepted. To ensure this, corresponding DDARPs do not

consider hard constraints on the quality of service in terms of maximum waiting time for travelers. Instead, service quality

becomes part of the objective function in order to achieve a convenient service for all requesting travelers. In practice, however,

the demand is usually still controlled indirectly, either on a strategic level through determining a suitable service area, or through

inconvenient service offers with long waiting times.

In contrast, myopic and anticipatory demand control accept only a subset of the incoming requests under the objective of

maximizing the number of accepted requests or the revenue. This is usually accompanied by strict constraints on the quality

of service so that the amount of feasible demand is limited. A key feature of these demand control strategies are customer

acceptance mechanisms through which dynamic acceptance decisions are made for each incoming request. The basis for these

mechanisms is the so-called feasibility check, which ensures that a feasible route plan can be found at any state of the decision

process. In the myopic case, demand control is often limited to feasibility checks, as any additional accepted request increases the

immediate reward (see, e.g., Coslovich et al. [12]). Enhanced myopic demand control additionally proactively rejects requests

if they seem unfavorable at the time of request, for example, in terms of incremental transportation costs (see, e.g., Xiang et al.

[48]).

Anticipatory demand control can be implemented in the following ways. The first is through sophisticated customer accep-

tance mechanisms, which extend the feasibility check to an anticipatory acceptance decision. This ensures that only requests

that seem favorable with respect to the expected cumulative reward will be accepted. Whether a request is favorable or not is

either reflected in its expected vehicle resource consumption (e.g., Ulmer et al. [46] for a related DVRP) or quantified by a rev-

enue management approach (e.g., Yang and Strauss [49] for a related DVRP). The second way is through the combination of

feasibility checks and proactive allocation of vehicle resources by anticipatory routing decisions. Such decisions may concern

the relocation of idle vehicles (e.g., Horn [18]) or the incorporation of dummy requests to reflect future expected ones within a

scenario-based approach (e.g., Ichoua et al. [21]). As a result, the feasibility check is only successful for favorable requests to

which vehicle resources have been allocated. However, the effectiveness of such demand control is strongly dependent on the

extent of anticipatory routing decisions and the strictness of service quality constraints.

2.1.2 Fulfillment control

The classification of fulfillment control into the presented strategies follows the implementation of the routing decisions. There-

fore, in case of no control (“none”), no dynamic routing decisions are made. Such policies can be found in the context of

reservation systems, where the fulfillment is carried out after a booking process has been completed. Such reservation systems

have been investigated in the context of time slot management for attended home deliveries (e.g., Campbell and Savelsbergh [9],

Ehmke and Campbell [15]).

When routing decisions are made dynamically as required in on-demand systems, fulfillment control is often based on

myopic re-optimization of vehicle route plans in the event of a newly accepted request. This re-optimization can be achieved by

applying (meta)-heuristics initially developed to solve a static vehicle routing problem (e.g., in Attanasio et al. [3]), or through

newly developed routing algorithms (e.g., in Alonso-Mora et al. [1]).

Anticipatory fulfillment control enhances myopic strategies by considering expected future request acceptances in rout-

ing decisions. However, the specific approach can differ greatly in terms of complexity and comprehensiveness. For example,

waiting strategies determine at which locations vehicles should wait in order to efficiently accommodate future requests (e.g.,

Branke et al. [8]). In relocation strategies, vehicles are relocated within the service area for the same purpose (e.g., Horn [18]).

The first two examples therefore do not interfere directly with the key task in fulfillment control, namely route planning. In con-

trast, (multiple)-scenario approaches often plan anticipatory routes with the help of dummy requests (e.g., Ichoua et al. [21]).
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TABLE 1 Literature classification

Demand control

Fulfillment control None Myopic Anticipatory

None Campbell and Savelsbergh [10] Campbell and Savelsbergh [9]

Ehmke and Campbell [15] Yang et al. [50]

Cwioro et al. [13] Yang and Strauss [49]

Mackert [25]

Myopic Dial [14] Attanasio et al. [3] Ulmer et al. [46]

Madsen et al. [26] Coslovich et al. [12] Ulmer et al. [47]

Ma et al. [24] Xiang et al. [48]

Riley et al. [36] Beaudry et al. [4]

Berbeglia et al. [6]

Berbeglia et al. [7]

Hosni et al. [19]

Alonso-Mora et al. [1]

Lowalekar and Jaillet [22]

Anticipatory Mitrović-Minić and Laporte [27] Branke et al. [8] Horn [18]

Schilde et al. [40] Thomas [44] Ichoua et al. [21]

Hyytiä et al. [20] Alonso-Mora et al. [2]

Riley et al. [37] Shah et al. [41]

Yu and Shen [51]

Pouls et al. [33]

Note: Papers dealing with demand and fulfillment control in a dynamic dial-a-ride problem are written in bold.

Furthermore, for example, approaches of approximate dynamic programming (ADP) provide comprehensive anticipatory

fulfillment control for rather small problem instances (e.g., Yu and Shen [51]).

2.2 Classification of the related literature
In this section, we provide an overview of the related research on dynamic fleet management. In particular, we classify the

proposed policies according to the introduced strategies for demand and fulfillment control (see Table 1). To provide a broad

overview, we complement the primarily covered papers dealing with DDARP with related ones dealing with customer accep-

tance mechanisms or DVRP. For a comprehensive literature review on the DARP, we refer to Molenbruch et al. [29] and Ho

et al. [17]. For the DVRP, we refer to Psaraftis et al. [34] and Ritzinger et al. [38].

The first studies on dynamic fleet management of a ride-sharing system were conducted by Dial [14] and Madsen et al. [26] in

1995. Dial [14] decomposes the problem into a set of travelling salesman problems, while Madsen et al. [26] suggest an insertion

heuristic in order to solve the DDARP. These first contributions focus on myopic fulfillment control without considering demand

control. More confirmed policies following this control structure can be found in Ma et al. [24] and Riley et al. [36]. Ma et al.

[24] compute solutions for large ride-sharing systems by performing a grid-based service area decomposition. Riley et al. [36]

propose a column generation-based policy to satisfy all incoming requests under the objective of minimizing waiting times.

The policy introduced in Riley et al. [36] was later extended in Riley et al. [37] to an anticipatory fulfillment control through

a periodic relocation of vehicles in idle mode by means of demand forecasts. More comprehensive anticipatory fulfillment is

proposed by Schilde et al. [40] and Hyytiä et al. [20], again without considering demand control. Schilde et al. [40] adapt a

multiple-scenario approach, originally introduced by Bent and van Hentenryck [5] for the DVRP, using a variable neighborhood

search. Hyytiä et al. [20] propose a theoretical approach combining Markov decision processes and M/M/1 queues to develop

an anticipatory policy focusing on fulfillment control for the single-vehicle case.

Anticipatory fulfillment control via waiting time strategies is primarily investigated within the scope of the general DVRP.

For example, Mitrović-Minić and Laporte [27] analyze waiting time strategies under the objective of minimizing travel times,

while Branke et al. [8] and Thomas [44] maximize the number of accepted requests. Both papers establish demand control

through a myopic feasibility check by means of an insertion heuristic. Here, the waiting time strategies themselves are not

considered as anticipatory demand control, since stops along the route at which waiting is feasible result from the myopic

feasibility checks.

The counterparts to policies that focus only on fulfillment control are customer acceptance mechanisms that focus only on

demand control. These mechanisms are primarily examined concerning the problem of managing delivery slots in attended home

deliveries. Myopic customer acceptance mechanisms are presented for example in Campbell and Savelsbergh [10], Ehmke and
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Campbell [15], and Cwioro et al. [13]. Campbell and Savelsbergh [10] examine financial incentives to encourage customers to

choose a delivery time slot that is favorable in terms of myopically planned delivery routes. Ehmke and Campbell [15] compare

simple static and dynamic customer acceptance mechanisms under consideration of stochastic travel times. Cwioro et al. [13]

propose an adaptive large neighborhood search (ALNS) for the feasibility check to maximize the number of time slots that can

be offered. Beyond that, several anticipatory demand control approaches have been considered. Campbell and Savelsbergh [9]

adapt the multiple-scenario approach introduced by Bent and van Hentenryck [5] as a customer acceptance mechanism applying

an insertion heuristic. Yang and Strauss [49] propose a pricing approach based on ADP using a sophisticated customer choice

model developed in Yang et al. [50]. More confirmedly, Mackert [25] approximates opportunity costs using a mixed-integer

linear program. Furthermore, the pricing of individual and shared rides for a ride-sharing system is examined in Qiu et al.

[35], assuming complete information. Apart from slotting problems, ADP-based customer acceptance mechanisms have also

been investigated by Ulmer et al. [46] and extended by Ulmer et al. [47], taking into account fulfillment control. In these two

examples, demand control assesses incoming requests with respect to their long-term vehicle resource demand, while fulfillment

is myopically controlled using an insertion heuristic.

The papers reviewed above demonstrate that the implementation of demand and fulfillment control within and between

DVRPs varies greatly. In the following, we list the variants most relevant for our study, which considers demand and fulfillment

control in the scope of a DDARP. Many of those papers propose purely myopic policies. In these cases, well-known solution

methods are used to perform a quick feasibility check in demand control as well as to re-optimize route plans in fulfillment

control. Such a policy is proposed by Attanasio et al. [3] applying a parallel tabu search (TS) for both tasks, by Coslovich et al.

[12] through a two-stage insertion heuristic, by Beaudry et al. [4] through an insertion heuristic for the feasibility check and a TS

for re-optimization, and by Berbeglia et al. [6] proposing constraint programming for the feasibility check, which in Berbeglia

et al. [7] is extended to a combination of TS and constraint programming.

Some papers propose improved myopic demand control in a DDARP context. The idea is that only cost-effective requests are

accepted. This was first discussed for such a problem by Horn [18], yet dismissed due to the potential unfairness toward requests

with certain characteristics. Potential discrimination of requests is therefore one aspect that will be examined in our computa-

tional study. Xiang et al. [48] and Hosni et al. [19] proposed a policy that proactively rejects requests that seem cost-ineffective

myopically. To this end, both papers check feasibility and whether the incremental costs exceed a threshold value. Xiang et al.

[48] implement this with an insertion heuristic. Hosni et al. [19] introduce a model-based approach that integrates each incom-

ing request into the incumbent route plan at minimal incremental costs. Furthermore, Alonso-Mora et al. [1] and Lowalekar

and Jaillet [22] improve demand control by postponing acceptance decisions until a batch of requests has been received, even if

this does not allow for instant trip confirmations. Here, all dynamic decisions are made within a two-stage process. In the first

step, a set of potential routes is created, before in the second step an assignment problem is solved to select the routes to be real-

ized under the objective of maximizing the number of accepted requests. While Alonso-Mora et al. [1] determine all feasible

combinations of unfulfilled requests in the first step, Lowalekar and Jaillet [22] only consider promising ones with the help of

a zone path construction approach.

For the DDARP, several policies have been proposed that implement anticipatory demand control and fulfillment control via

routing decisions. A first policy presented by Horn [18] involves the relocation of idle vehicles. More confirmedly, Pouls et al.

[33] proposed a policy focusing primarily on anticipatory relocation. In contrast, Ichoua et al. [21], Alonso-Mora et al. [2], Shah

et al. [41] and Yu and Shen [51] focus on the anticipatory planning of vehicle routes. Ichoua et al. [21] adapt a multiscenario

approach using TS. Alonso-Mora et al. [2] extends Alonso-Mora et al. [1] by incorporating expected future requests via dummy

requests. Another extension of Alonso-Mora et al. [1] toward anticipation is proposed by Shah et al. [41], who use ADP for the

selection of routes within the allocation problem. ADP is also used by Yu and Shen [51] to solve the DDARP in connection

with a decomposition of the problem.

This literature review summarized the different strategies for demand and fulfillment control and how they are implemented

through proposed policies. In contrast to the presented literature, with our work, we provide a comparative meta-analysis of

demand and fulfillment control to investigate their effectiveness for ride-sharing systems. Moreover, we show under varying

system conditions when and how fleet management benefits from which degree of control. With all this, we want to contribute

to a better understanding of dynamic fleet management in ride-sharing systems and encourage the systematic development and

selection of policies concerning their intended effectiveness.

3 PROBLEM FORMULATION

In this section, we define the components of the DDARP under consideration. Then, we model the stochastic and dynamic

problem as a Markov decision process, enabling demand and fulfillment control in a ride-sharing system through dynamic

acceptance and routing decisions.
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3.1 Problem components
Let be a set of locations in the service area of a ride-sharing system. For each location l ∈ , it is assumed that a (deterministic)

service time pl for travelers getting on and off a vehicle is known, as well as for all pairs of locations (i, j) ∈ , a (deterministic)

travel time of ci, j is defined. The considered ride-sharing system faces a demand represented by trip requests r ∈ . Each request

is characterized by its receiving time tr, its origin or ∈ , its destination 𝑑r ∈ , as well as its fulfillment time window [br, er],

which defines the earliest pick-up time br and latest drop-off time er. We assume that the earliest pick-up time br corresponds

to the receiving time of the request tr. This means that travelers must be ready for departure at the time when they pose their

request, which excludes prebookings. The latest drop-off time er is defined by addition of earliest pickup time br, direct travel

time cor ,𝑑r , and a parameter 𝛼, which defines the maximum arrival delay tolerated by travelers. Arrival delays arise from waiting

time to be picked up as well as detours caused through the bundling of requests. Detours include both additional travel time

to reach the origin or destination of other travelers and the service time required by them for getting on or off the vehicle. To

satisfy the demand, a fleet of identical vehicles  is available. We assume that the capacity of a vehicle is not constraining, that

is, passenger seats are never fully occupied due to tight time windows for the request fulfillment.

3.2 Markov decision process
The considered decision process consists of a series of decision epochs k ∈ , covering a temporally limited planning period

of a DDARP. At the beginning of the planning period, the service is in an initial state s0. For this state, we assume that the

vehicles v ∈  are waiting in idle mode at an initial location lv ∈ . Furthermore, it is assumed that in the initial state s0 no

trips are waiting for fulfillment. Accordingly, a degree of dynamics as defined by Lund et al. [23] as the ratio of the demand

stochastically received to the total demand, of 100% is assumed. Each decision epoch k ∈  is triggered by a stochastically

incoming request rk ∈  leading to a predecision state sk. The predecision state reflects all decision-relevant characteristics

such as the activities of the vehicles and pending requests. Formally, the predecision state sk is defined by the time tr at which

the service operator has received the new request rk. Furthermore, it contains the state of the resources described through the

tuple (lvk,v
k|∀v ∈ V), where lvk ∈  specifies the current vehicle locations and v

k ⊂  for each vehicle the set of accepted

requests whose travelers are currently being transported. Finally, it represents the demand described through the tuple (rk,k),
where rk refers to the new request and k ⊂  to the set of accepted requests whose travelers still have to be picked up. These

three parts result in the state definition sk = (tr, (lvk,v
k|∀v ∈ V), (rk,k)).

Based on the predecision state sk, an action A𝜋(sk) is derived from a policy 𝜋 ∈ Π. A policy 𝜋 ∈ Π thus defines for

each predecision state sk all decisions to be taken and can thus be considered as a solution approach to the stochastic-dynamic

problem. Here, an action consists of two hierarchically dependent decisions. The first decision is whether to accept or reject

the new request rk. This acceptance decision is represented by the binary decision variable xk ∈ {0, 1}, where xk = 1 represents

acceptance and xk = 0 represents the rejection of a request. The second decision is the selection of a feasible route plan, defining

the utilization of all vehicles v ∈  until the next decision epoch. A route plan is considered feasible if all accepted requests

have been assigned to a vehicle subject to the following constraints:

(i) For all pending accepted requests r ∈ k and the new request rk, in case of xk = 1, the pick-up at origin or is planned

before the drop-off at destination dr for the same vehicle v ∈  .

(ii) For all currently executed requests r ∈ v
k, the drop-off at destination dr is planned for the same vehicle v ∈  .

(iii) For all origins, the planned pick-up zo is later or at the same time as the corresponding earliest pick-up time br.

(iv) For all destinations, the planned drop-off zd is earlier or at the same time as the corresponding latest drop-off

time er.

Let yk ∈ x be the routing decision variable, with x as a finite set of all feasible route plans under consideration of decision

xk. Such a set could for example be determined heuristically by adapting a solution method developed for a static vehicle routing

problem. The acceptance decision xk requires that the set of all route plans x must not be empty. The execution of action A𝜋(sk)
leads to a deterministic transition from the predecision state sk to a postdecision state sa

k = (yk). This state consists of the selected

feasible route plan yk, which serves for the routing of the vehicles until the next decision epoch k+ 1. This is triggered by the

stochastic transition Wk+ 1, which reflects that the operator has received the next request rk+1 ∈ .

Let Bk be the partial reward function for one decision epoch k∈K and let the value of Bk be equal to the acceptance decision

xk, so that the cumulative reward v𝜋(s0) corresponds to the number of accepted requests. The objective is to find an optimal

policy 𝜋∗ ∈ Π that maximizes the expected cumulative reward v𝜋(s0) = max𝜋 E{
∑K

k=0Bk(sk,A𝜋(sk),Wk+1)|s0} over all decision

epochs k ∈ . Having formally introduced the stochastic-dynamic problem under consideration, in the next section, we present

policies that exploit only confirmed or complete information to solve the problem with varying degrees of optimization in

demand and/or fulfillment control.
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320 HAFERKAMP AND EHMKE

TABLE 2 Investigated policies

Demand control

Fulfillment control Inspired by myopic strategies Inspired by anticipatory strategies

Inspired by myopic strategies Basic Control Advanced Demand Control

Inspired by anticipatory strategies Advanced Fulfillment Control Advanced Control

4 EVALUATION FRAMEWORK

In this section, we describe our evaluation framework for investigating the effectiveness of demand and fulfillment control

within dynamic fleet management of a ride-sharing system. Using the control strategies discussed in Chapter 2, we detail the

implemented policies in Section 4.1 and discuss an established LNS that we use to realize them in Section 4.2.

4.1 Implementation of policies
From the control strategies defined in Section 2.1, we derive possible combinations of demand and fulfillment control to define

policies for dynamic fleet management. These policies differ in optimization capabilities in demand and/or fulfillment control

through the exploitation of confirmed information only or complete information. Table 2 summarizes the policies with regard

to the related control strategy.

Basic Control refers to policies employing purely myopic demand and fulfillment control. They are implemented through

a feasibility check for demand control and re-optimization of routes for fulfillment control. In particular, the feasibility check

for the acceptance decision xk is made by an insertion heuristic, checking whether an incoming request rk ∈  can be inserted

into the incumbent route plan yk− 1, where y0 refers to the initial empty route plan. The route plan obtained is then re-optimized

in the scope of the routing decision yk. For this purpose, a static DARP is solved considering all accepted, not yet fulfilled

requests under the objective of minimizing total travel time. Note that for both acceptance and routing decisions, already fulfilled

requests as well as locations approached by a vehicle will not be rescheduled. This means that vehicles are not tracked along

the path between two locations i, j ∈ , which reduces the rescheduling opportunities but also the computational effort related

to locating vehicles. Moreover, it allows drivers and travelers to be reliably informed about the next stop, avoiding frequent

diversions of vehicles.

From an operator perspective, Basic Control could be advantageous in case of highly uncertain conditions, where the inclu-

sion of additional information in optimization does not pay off. Moreover, Basic Control does not require any sophisticated

technological and computational resources. The key argument against Basic Control is the high risk of insufficiently informed

decision-making both for demand and fulfillment control.

Advanced Demand Control aims at improving the performance of a ride-sharing system through the acceptance of favorable

requests in terms of vehicle resource occupancy (e.g., requests which can be bundled more easily). It is inspired by policies that

implement anticipatory demand control through sophisticated customer acceptance mechanisms while fulfillment is controlled

myopically. Therefore, complete information is exploited to enable enhanced acceptance decisions xk, while routing decisions

yk are made based only on confirmed information.

In particular, the acceptance decision xk is made for each incoming request rk ∈  in a two-step procedure. First, a feasibility

check is carried out by an insertion heuristic (as in Basic Control). If the feasibility check has been successful, the favorability

of the request is investigated in the second step. To identify favorable requests, a static team orienteering problem (TOP) with

equal scores for each considered request is solved. The TOP is a well-known variant of the static vehicle routing problem,

in which only the most cost-efficient locations are visited. The objective is to find the optimal set of visited locations which

maximizes the operator’s benefit [11]. As input for the TOP serves all requests of the incumbent route plan yk− 1, the current

request rk as well as all future requests. All requests have equal scores, representing that the route plan found maximizes the

number of integrated requests. All requests of the incumbent route plan yk− 1 must be covered to identify favorable requests

among current and future requests. In the end, a request rk is accepted if it is contained in the best route plan found. After the

acceptance decision has been made, a new route plan yk is determined by solving a static DARP without taking future requests

into account, following re-optimization based fulfillment control in Basic Control.
In summary, with Advanced Demand Control, a ride-sharing system operates more efficiently through the controlled selec-

tion of the requests to be satisfied. However, since we assume basic fulfillment control, vehicle resources may be utilized in

an unfavorable way making beneficial demand control much more challenging. Furthermore, there are risks associated with a

selective demand control such as incomprehensible rejections as well as rejections perceived as proactive, leading to dissatisfied

travelers. Moreover, the continuous rejection of certain requests identified as unfavorable may prevent such trips from being

requested, regardless of whether their assessment might change over time.
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HAFERKAMP AND EHMKE 321

Advanced Fulfillment Control improves request fulfillment by considering all future request acceptances in conjunction

with basic demand control. It is inspired by policies that implement anticipatory approaches for fulfillment control only.

In particular, complete information is exploited to obtain a favorable route plan in advance with respect to a feasibility

check based demand control. To this end, request acceptance decisions are simulated for each future request r ∈  in order of

appearance through an insertion heuristic. However, the fulfillment of accepted requests is not simulated, so that the incumbent

route plan can be changed flexibly throughout these checks. Once all decisions on request acceptance have been simulated, a

route plan is created from the obtained acceptances as a blueprint for fulfillment control.

Summarized, Advanced Fulfillment Control enables an optimized fulfillment of the accepted requests without changing the

concept of demand control. The acceptance of a request therefore depends primarily on the time a request is posed and not, like

in case of Advanced Demand Control, on its characteristics. However, Advanced Fulfillment Control may even reinforce the

drawbacks of such an basic demand control by enabling the acceptance of more demanding requests through improved vehicle

routing.

Finally, Advanced Control exploits complete information on future demand for both demand and fulfillment control allowing

all dynamic decisions to be made in advance. It is inspired by policies in which demand and fulfillment are controlled through

anticipatory approaches. The exploitation of complete information is done by solving a static TOP with the same score for each

request r ∈ . This results in a route plan that maximizes the number of integrated requests so that the requests to be accepted

and the routes to be taken can be selected accordingly. It therefore naturally outperforms the other three policies.

4.2 Large neighborhood search
In the following, we describe how the different policies are implemented based on an LNS. We apply the same heuristic to

all occurring DARPs to ensure the comparability of policies within computer experiments. The developed LNS is based on

the ALNS proposed by Ropke and Pisinger [39]. It was chosen because it has been applied over years to a variety of complex

vehicle routing problems and has achieved consistently good results in relatively short run times.

4.2.1 Overview

The basic idea of an LNS is to destroy and repair solutions iteratively [31]. For the problem at hand, a solution w is represented

by a route plan nw and a set of unplanned requests mw ∈ , whose fulfillment is not yet considered in route plan nw. A route

plan nw consists of a plan for each vehicle v ∈  , which specifies the sequence of the locations l ∈  to be visited as well

as their planned arrival times zv
l . The LNS aims to maximize the number of request fulfillments |nw| and/or to minimize the

required total travel time c(nw). Algorithm 1 presents the pseudocode of our LNS implementation.

The search is initialized with a solution w0 as input, which is saved as incumbent solution w and best known solution wbest

(lines 2 and 3). Next, the iterative search for a superior solution is performed until a termination criterion is met. As a termination

criterion, the maximum number of iterations 𝛽 is defined as well as further criteria depending on the respective purpose of the

search. Each iteration of the LNS begins with the creation of a new solution (lines 5–7). For this purpose, the incumbent solution

w is saved as the basis of the new solution wnew. Afterwards, wnew is destroyed through an operator that moves between 𝛾1 and

Algorithm 1. Large neighborhood search

1 Function LNS(w0)

2 w = w0

3 wbest = w0

4 while termination criterion is not met do
5 wnew = w
6 remove requests from nwnew

to mwnew

7 insert requests from mwnew
into nwnew

8 if (wnew is accepted) then
9 w = wnew

10 if (wnew is an improvement to wbest) then
11 wbest = wnew

12 end
13 end
14 end
15 return wbest
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322 HAFERKAMP AND EHMKE

𝛾2 percent of the requests from the route plan nwnew
to the set of unplanned requests mwnew

. If in the dynamic environment the

origin or has been visited already, the corresponding destination dr is no longer removable. The exact number of requests to be

removed is determined in each iteration by a random value q1 with {q1 ∈ N | (𝛾1 × |nwnew
|) ≤ q1 ≤ (𝛾2 × |nwnew

|)}. In the next

step, a repair operator inserts as many requests from the set of unplanned requests mwnew
into the route plan nwnew

as feasible. For

both destroy and repair operators, in contrast to a classical ALNS, the particular operator is selected randomly for each iteration.

This is a consequence of the implementation of the LNS in a dynamic environment, where multiple searches are performed over

a few iterations so that automatic adaptation of the operator selection during the search is neither feasible nor advantageous.

Removal operators correspond to those used in Ropke and Pisinger [39]. We summarize them as follows:

Random-removal: This operator randomly selects the requests to be removed and thus provides a maximum diversification

in terms of the set of selected requests.

Worst-removal: The aim of this operator is to remove requests that are not placed well. For this purpose, all requests of a

route plan are sorted in descending order in a list according to the travel time that could be saved if the request was removed. In

order to avoid the repeated removal of similar sets of requests, “noise” is applied when selecting a request for removal. Following

Ropke and Pisinger [39], we use the formula q𝛿1

2 × |list| to determine the list position of the next request to be removed. In this

formula, q2 stands for a random value with {q2 ∈ Q|0 ≤ q2 ≤ 1} and 𝛿1 for the parameter that controls the degree of noise.

Shaw-removal: Originally introduced by Shaw [42], this operator removes similar requests, since they can be shuffled

around more easily so that improved route plans can be found more likely. In particular, first, a request is randomly selected. All

other requests are then sorted in ascending order according to their similarity to the selected request and removed corresponding

to the sorting. The similarity between two requests r1 and r2 is calculated by the distances between origins car1
,ar2

and destinations

c𝑑r1
,𝑑r2

as well as between their planned arrival times Δ(zar1
, zar2

) + Δ(z𝑑r2
, z𝑑r2

). Before the geographical and temporal values

are added up, they are min-max normalized.

For the subsequent insertion of the removed requests, there is a wide range of operators. We discuss only those operators

that turned out promising in previous tests, one with and one without noise:

Regret-2-insertion: The regret-insertion heuristic was first proposed by Potvin and Rousseau [32] for the vehicle routing

problem with time windows. The idea is to insert requests where the regret would be largest if the best found insertion option

was no longer feasible. An insertion option comprises a position in a route for the origin and the destination of a request. For

the regret-2 variant, the regret is calculated from the difference between the most and the second most cost-effective feasible

insertion option. The costs correspond to the additional travel time which would result from the request being inserted. In case

that only one feasible insertion option can be found, the difference to the maximum integer value is calculated instead. For each

selection of the next request to be inserted in the route plan, the regret value of each unplanned request r ∈ mwnew
is calculated

and sorted in descending order. For the operator without noise, the request with the highest regret value is inserted into the most

cost-effective feasible position. For the operator with noise, the selection of the next request to be inserted is made in the same

way as described for the worst-removal operator. The degree of noise is controlled in this case by the parameter 𝛿2.

A new generated solution wnew is accepted if the number of planned requests |nwnew
| remains equal or increases relative to

the incumbent solution w (see line 8). Since mostly fully utilized services are investigated, which often show limited routing

flexibility, this acceptance criterion has the advantage of allowing a maximum diversification with respect to the overall travel

time and prevents deterioration of the number of planned requests. After accepting and saving snew as incumbent solution w,

it is checked whether this solution is superior to the best-known solution wbest (lines 10–12). This is the case if the number of

planned requests |nwnew
| is higher or remains equal with a shorter total travel time c(nwnew

). After evaluating the new solution

wnew, the next iteration is performed until the search is terminated, and the best known solution wbest is returned (line 15).

4.2.2 Execution

In the following, we briefly describe how the LNS is applied to execute the before outlined acceptance and routing decisions of

the four policies under consideration.

Basic Control: In each decision epoch k ∈ , the LNS is first executed to perform the feasibility check-based acceptance

decision xk. To this end, the input set of unplanned requests mw0
is represented by request rk, while input route plan nw0

cor-

responds to an empty plan in case of k= 0 and route plan yk− 1 otherwise, yet updated with respect to the time of request tk.

Through the update, input route plan nw0
covers only stops at locations whose planned arrival time zv

l plus service time pl is

greater or equal to the time of request tk. Furthermore, the first location of each plan contained in nw0
represents the current

respectively next location of a vehicle and will not be rescheduled. Based on this input, the LNS searches for a solution wnew

that covers all requests in the route plan nwnew
. The search is terminated when either such a solution has been found (xk = 1)

or a maximum of 𝛽 iterations has been performed (xk = 0). Note that in case of an unsuccessful feasibility check, the returned

solution is discarded, while the updated routing decision yk− 1 serves as routing decision yk. In case of a successful feasibility

check, the routing decision yk is determined by re-optimization of the found solution n under the objective of minimizing the

total travel time c(nw) in 𝛽 iterations.
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HAFERKAMP AND EHMKE 323

Advanced Demand Control: This policy requires in each decision epoch k ∈  a feasibility check for the acceptance

decision xk as well as a re-optimization for the routing decision yk. It generally corresponds to the procedure of Basic Control.
However, after each successful feasibility check follows the additional favorability check of the acceptance decision xk. To solve

the corresponding TOP, the initial solution w0 consists of the same route plan as in the feasibility check. The set of unplanned

requests mw0
contains, besides the new request rk, all trips to be requested in the following decision epochs k+ 1, k+ 2, … , k+ n.

Based on this input, the LNS is executed to maximize the number of planned requests |nw|. For the acceptance of a new solution

wnew as best solution wbest, an additional criterion is applied, which evaluates if all requests contained in the initial route plan nw0

are as well contained in nwnew
. The search terminates after either finding a solution wnew that contains all requests considered in

the search or after 𝛽 iterations have been performed. Once the search has been terminated, it is examined whether the candidate

request rk is contained in the returned route plan nwbest
, which represents that the request has passed the favorability check.

Advanced Fulfillment Control: In this case, the LNS is primarily executed as a feasibility check to obtain the future request

acceptances. The input of this feasibility check differs from that presented for Basic Control by omitting time-related updates

of the incumbent route plan so that it remains flexible throughout all checks. After completion of the last feasibility check, the

LNS is executed to determine the route plan thought of as a blueprint for the decision process. To this end, the solution returned

by the last successful feasibility check is optimized under the objective of minimizing the total travel time c(nw) in 𝛽 iterations.

Advanced Control: Here, the LNS is executed to solve a TOP again to obtain a route plan thought of as a blueprint for the

decision process. The initial solution w0 consists of an empty route plan nw0
, and the set of unplanned requests mw0

includes all

requests r ∈R. The solution w is then optimized in 𝛽 iterations with respect to the number of planned requests |nw| and the total

travel time c(nw).

5 COMPUTATIONAL EXPERIMENTS

In this section, we analyze the impact of the presented policies on the effectiveness of demand and fulfillment control with

respect to the performance of the ride-sharing system. We introduce our instances and present the results of the computational

study. The description of the parameter tuning of the LNS is given in Appendix.

From the computational results, we first analyze the performance regarding the achieved solution quality expressed as

acceptance rate, defined by the number of accepted requests divided by the number of received requests. Secondly, further

metrics that describe the operational performance of the ride-sharing system are discussed. This provides insights into the nature

of such systems and contributes to a better understanding of the context-related effectiveness of demand and fulfillment control.

Thirdly, we investigate the effect on the service quality perceived by travelers through a detailed trip-specific evaluation. Last,

we analyze how acceptance rates change when information becomes incomplete.

5.1 Experimental design
Our case study is based on taxi trip data collected in the urban area of New York City, USA. This dataset is provided by the City

of New York and contains a total of 165,114,361 million trips fulfilled by the Yellow Cab taxi fleet in the year 2014 [30]. Each

record contains the start and end time of the trip, the distance traveled as well as the origin and destination locations in terms of

geographical coordinates. Figure 1 shows the temporal distributions of the trips. In order to simplify the data handling and to

ensure consistent trip patterns, we only include weekday trips from January 2014 that operate in the evening peak (as indicated

in Figure 1 between 5:30 p.m. and 8:30 p.m.) in the area of Manhattan. Furthermore, only trips with a distance greater than

zero are considered.

Given the taxi trip data, we derive the characteristics of our ride-sharing system as follows. First, potential initial vehicle

locations are determined. For this purpose, 40 locations were randomly sampled from the set of locations where a trip ends at

5:30 p.m. Second, potential trip requests including origins and destinations are defined. To this end, of all included trips, 180

were randomly sampled. Thus, we assume one incoming request per minute on average. A constant set of trip requests is used

in all experiments to enable trip-specific evaluations. The selected locations are visualized in Figure 2, indicating that there

is a centrally located area in Manhattan with a higher demand density. Next, free-flow travel times between all locations were

computed using the GraphHopper routing engine [16]. Free flow travel times are multiplied by factor 𝜖 to provide a simple

approximation to the real travel times during peak hours.

In summary, we create 110 problem instances as follows: 10 instances are used for the parameter tuning of the LNS, and

100 for our computational study. These instances differ in the receiving times of each request as well as in the initial vehicle

locations. Moreover, a baseline scenario is defined for all instances as follows: a fleet of 10 vehicles, a planning period from

5:30 to 8:30 p.m. (180 min), a travel time factor 𝜖 = 3, and a maximum arrival delay for each request of 15 min. We vary

the baseline scenario as follows. First, we vary the fleet size to analyze varying resource-demand ratios. Second, we analyze
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FIGURE 1 Pick-up time distribution

(A) Initial vehicle locations (B) Origins (C) Destinations

FIGURE 2 Location distributions. (A) Initial vehicle locations; (B) Origins; (C) Destinations

TABLE 3 Values for the sensitivity analyses

Sensitivity analyses Varying characteristic Values

Resource Demand Ratio Fleet size 2 6 10 14 18

Temporal Demand Density Planning period 36 min 108 min 180 min 252 min 324 min

Geographical Demand Density Factor on travel time 0.6 1.8 3 4.2 5.4

Fulfillment Time Window Maximum arrival delay 3 min 9 min 15 min 21 min 27 min

The values are highlighted on the basis of which one is varied in each of the analyses.

the impact of temporally varying demand density. To this end, the length of the planning period is varied, and receiving times

of requests are adjusted to the corresponding time frame under investigation, whereby 7:00 p.m. always marks the middle of

the planning period. Third, we analyze geographically varying demand densities by adjusting the travel time factor. Fourth, we

examine the impact of the fulfillment time window by varying the allowed maximum arrival delay.

For each analysis, four variations of the base value are considered, representing a decrease of 40% and 80% as well as an

increase of 40% and 80% of its parameters (see Table 3). With these parameter intervals, we can cover a wide range of possible

objective function values and at the same time create insights into where and when the effectiveness of the considered policies

is changing. However, to keep the computational effort manageable, only one parameter is varied at a time, while all others

keep the value highlighted in Table 3.

In the next section, we will discuss the results of all four sensitivity analyses concerning their impact on acceptance rates.

In the subsequent sections, we focus on Resource Demand Ratio, while detailed results for the other sensitivity analyses can be

found in the Appendix, as the results are structurally similar.
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FIGURE 3 Resource Demand Ratio: Average acceptance rates with their standard deviations

5.2 Analysis of acceptance rates
We begin by analyzing the effectiveness of the presented policies with respect to acceptance rates. We particularly analyze the

value of more advanced optimization in demand and fulfillment control. Overall results are presented in Figure 3, which shows

the acceptance rate on the Y-axis and the fleet size on the X-axis. The acceptance rates are calculated based on the 100 instances

solved five times with the varying fleet sizes for each of the four policies. The differently shaped points represent the numeric

results and the trend is highlighted by connecting lines. Additionally, the standard deviations of the average acceptance rates

are illustrated by a lighter color range around the lines.

Generally, with increasing fleet size, achievable acceptance rates increase as well. As expected, Basic Control leads to the

smallest acceptance rates, while Advanced Control creates the best acceptance rates with an increase about 10%− 20% compared

to Basic Control. Interestingly, for smaller fleet sizes, Advanced Demand Control yields better results, while for larger fleet sizes,

Advanced Fulfillment Control can create significantly higher acceptance rates. The standard deviations increase with increasing

fleet sizes. They are negligible for Advanced Control. It can be concluded that the highest potential lies in the advanced control

of both demand and fulfillment, regardless of the resource demand ratio. However, the contribution to this potential shifts from

demand to fulfillment control with an increasing acceptance rate.

We now analyze the results of the further sensitivity analyses (see Figure 4). We begin with (A) Temporal Demand Den-
sity, where we manipulate the demand through temporal variation of the planning period. Generally, results are similar to those

obtained for the Resource Demand Ratio analysis. For the same fleet size, a relatively larger planning period allows accommo-

dating more requests, with a high benefit of advanced fulfillment control for a large temporal spread of requests and a high benefit

of advanced demand control for a small temporal spread of requests. For (B) Geographical Demand Density, instead of the time

of the planning period, the travel time factor 𝜖 is used to vary the geographical density of the service area. As expected, when the

relative travel times become larger and the area of operation becomes more “stretched” out, the acceptance rates decrease. The

acceptance rate of Advanced Control is about 20% higher than for Basic Control. Advanced control at either demand or fulfill-

ment can improve this by about 5% only. Here, a high geographical density diminishes the benefits of advanced demand control

and increases those of advanced fulfillment control. However, when the geographical density decreases, unfavorable requests

from remote regions may automatically be infeasible to fulfill. Finally, we analyze for (C) Fulfillment Time Window how the

variation of the maximum delay, consisting of waiting time and detour, influences the effectiveness of demand and fulfillment

control. As expected, acceptance rates increase for all policies with an increased maximum delay. However, the gap between

Basic Control and Advanced Control is very large for small maximum delays. In contrast, Advanced Fulfillment Control yields

quite stable results for all maximum arrival delays. The benefit from enhanced demand control is higher when the maximum

delay is higher. In contrast, the benefit from enhanced fulfillment control is higher when the maximum delay value is lower.
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FIGURE 4 Average acceptance rates per sensitivity analyses. (A) Temporal demand density; (B) Geographical demand density; (C) Fulfillment time window

The above findings demonstrate that the effectiveness of demand and fulfillment control depends highly on the system

characteristics. However, particularly advanced control of demand and fulfillment shows great potential to increase the accep-

tance rate of a ride-sharing system. Furthermore, it becomes clear that the potential for demand and fulfillment control differs

in response to the characteristics of the system under consideration. The value of advanced demand control is particularly high

when (1) insufficient resources (due to small fleet size or dense temporal demand) require a significant proportion of requests

to be rejected, and (2) when a sufficiently large and heterogeneous pool of potentially acceptable demand (due to moderate

geographic demand density and sufficiently wide fulfillment time windows) enables the selection of more favorable requests.

For advanced fulfillment control, the analysis of different fulfillment time windows demonstrates its importance when offering

immediate pick-up times, while the others highlight the dependency on a sufficiently high acceptance rate. Hence, with only a

few accepted requests, the trips to be fulfilled are so unfavorable that an increase in performance through advanced fulfillment

control alone is barely achievable. Overall, the results imply that the potential of policies focusing on an advanced demand or
fulfillment control only vary greatly depending on the nature of the ride-sharing system.

5.3 Analysis of operational performance
The aim of this subsection is to gain further insights into how demand and fulfillment control impact further performance

metrics of a ride-sharing system. The following metrics are considered:

• The average travel time per fulfilled request, defined as the total travel time divided by the total number of fulfilled

requests.

• The pooling rate, which measures the percentage of travelers who shared a part of their ride with at least one other traveler.

• The percentage share of each vehicle mode, defined by the total time all vehicles have spent in the mode, is divided by

the total time spent by the entire fleet. The considered modes are:

1. Shared Travel Time: Time a vehicle transports more than one traveler,

2. Single Travel Time: Time a vehicle transports exactly one traveler,

3. Unoccupied Travel Time: Time a vehicle drives without a traveler, that is, empty trips,

4. Service Time: Time required for travelers for getting on or off a vehicle,

5. Waiting Time: Time a vehicle waits at a location for a traveler or the next request assignment.

The first metric examined is the average travel time per fulfilled request in minutes, plotted in Figure 5 against the varying

fleet size. Basic Control creates constantly high average travel times per request even with increasing fleet size. Again, Advanced
Control represents the counterpart, with travel time savings of 3–10 min on average, highlighting the potential of a combined

advanced demand and fulfillment control for ride-sharing systems. Advanced Demand Control works almost as well as Advanced
Control; only for the largest fleet size, Advanced Fulfillment Control becomes more efficient. Hence, the reduction of the average

travel time per fulfillment is mainly rooted in demand control. Furthermore, a positive correlation can be observed between

lower average travel times and the previously identified high acceptance rates, so that the reduction does not seem to be related

to an overly restrictive demand control.

The second metric of interest is the pooling rate shown in Figure 5. Basic Control and Advanced Control define lower and

upper bounds with a gap of 60%. Here, fulfillment control is the key for a good pooling rate as shown by the results of Advanced
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FIGURE 6 Resource Demand Ratio: Average time share per vehicle mode

Fulfillment Control; with increasing fleet size, it almost becomes as effective as Advanced Control. However, if the fleet size is

small, there is a similarly high potential for improving the pooling rate through demand control.

So far, we have seen that the effectiveness of demand and fulfillment control can vary quite a bit. Advanced demand control

tends to achieve a reduced average travel time per fulfillment by accepting a set of favorable requests, while advanced fulfillment

control tends to offer higher pooling rates through more successful bundling of travelers. Finally, we examine the proportion of

all modes a vehicle can have for the four policies (see Figure 6).

For all policies and fleet sizes, a rather stable proportion of Unoccupied Travel Time, as well as the relatively large share

of single travel time, is clearly visible. Interesting differences can be observed with respect to the Shared Travel Time and
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Waiting Time. For Shared Travel Time, again, advanced fulfillment control seems to be the key. Interestingly, even at Advanced
Control, only about 25% of the total fleet time is used for the simultaneous transport of more than one traveler. However, this

is a significantly increased proportion compared to Basic Control. Major differences are also apparent for the Waiting Time.

Especially for Advanced Fulfillment Control and Advanced Control, lower waiting times can be observed. The lower waiting

times in case of an advanced fulfillment control may root in a proactive approach toward future requests. In contrast, the share

of the waiting times is highest for Advanced Demand Control. Here, the higher waiting times arise as an advanced demand

control may have vehicles wait for favorable request instead of accepting unfavorable ones. Overall, these results show different

strategies regarding the handling of waiting time, whereby a smart combination of both strategies appears to be most promising

5.4 Analysis of service quality
Finally, we examine the impact of demand and fulfillment control on the quality of service experienced by travelers. Service

quality metrics are derived for each of the trips and summarized per policy. The first step is to investigate whether different

service quality levels can be observed and if the trip-specific quality of service varies. We analyze the following metrics:

• The acceptance probability per trip, defined by the number of times the trip is requested divided by the number of times

the request is accepted.

• The average waiting time per trip, based on the difference between the time of the request and the time the corresponding

traveler is picked-up.

• The average detour duration per trip, defined as the average difference between the direct travel time of the trip and the

actual time between executed pick-up and drop-off.

The results are shown in Figure 7 by means of density plots. With regard to acceptance probability, there are clear differences

in the distributions. For Basic Control and Advanced Fulfillment Control, the diversification is relatively low, with a high

density at about 50%. Distributions for Advanced Demand Control and Advanced Control are very flat. This indicates that the

probability of being accepted is quite dissimilar among the trips regardless of the circumstances of their request, indicating that

the acceptance probability depends on trip inherent characteristics. Interestingly, these characteristics seem to have a relatively

minor influence on whether it is feasible to accept a trip. As seen for the analysis of acceptance probability, the average detour

duration per trip also follows different distributions. What is particularly surprising is the shape of the distributions, which

shows, especially for Advanced Fulfillment Control and Advanced Control, that the average detour duration varies depending on

the trip. The opposite order of the distribution peaks, compared to those of the average waiting time, results from the limitation

through the maximum delay parameter. The shorter waiting times achieved by an advanced demand and fulfillment control are

thus partly offset by longer detours.

In the following, trip characteristics are further investigated to find correlations between acceptance probability and detour

duration. To this end, we consider the location of the origin and destination as well as the distance between them. For a DVRP,

Soeffker et al. [43] have already shown that anticipatory acceptance discriminates the peripheral regions of the operating area,

that is, the locations there have a lower probability of acceptance. For Advanced Demand Control, Figure 8 illustrates this

correlation separately for origin and destination of all trips, using a color scale as well as sizes that reflect the acceptance

probability. The small, dark dots indicate trips with a very low acceptance probability and large, bright ones with a very high
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acceptance probability. A preference for the regional center and the discrimination of upper and lower periphery is evident,

illustrating, for demand control via enhanced acceptance decisions, the positive correlation between the acceptance probability

of a trip and the geographical centrality of its origin and destination. In contrast, the analyses of average detour duration for

Advanced Demand Control and Advanced Fulfillment Control did not reveal any recognizable discrimination patterns.

As a further characteristic, we examine the trip distance in the light of acceptance probability and detour duration. Results

are shown in Figure 9. It becomes evident that there is a distinct negative correlation in the case of Advanced Demand Control.
Implicitly, the advanced demand control utilizes the trip distance as a further criterion to assess requests. For the average detour

per trip, a positive correlation with trip distance is noticeable for both cases. This correlation, however, is much more pronounced

for Advanced Fulfillment Control. Hence, advanced fulfillment control penalizes long-distance trips, yet in a way that limits the

usability of the ride-sharing system for such trip requests not as strict as an advanced demand control does.

In summary, demand and fulfillment control have a very different impact on the service quality of ride-sharing systems as

experienced by travelers. For advanced demand control, the quality depends significantly on the nature of the requested trip.

A ride-sharing system applying such a policy would be very suited for short trips in the center of the service area. However,

as their requests would be rejected frequently, travelers requesting trips with unfavorable characteristics are likely to switch to

other mobility services. In contrast, for advanced fulfillment control, the service would be much more balanced in terms of the

acceptance probability. Yet, the increasing average detour in proportion to the distance traveled could diminish the perceived

quality of service, even if this would be perceived as fair by the traveler. Finally, it should be noted that a policy exploiting the

optimization potential in demand and fulfillment control would not only incorporate the performance benefits as shown in the

previous sections but also the varying quality of service depending on the characteristics of the trip.

5.5 Analysis of incomplete information
In the following, based on the Resource Demand Ratio sensitivity analysis, we investigate to which extent the above results

change when information becomes incomplete. For this purpose, the average acceptance rates obtained under complete infor-

mation are compared to those obtained for a perfect information horizon limited to the next 10 min. This analysis provides

insights into the value of information defined by Mitrović-Minić et al. [28] as the “performance gap between solving an instance

with incomplete and complete information.”

Limiting the information horizon requires some minor adjustments to the three policies considering advanced demand and/or

fulfillment control. With respect to Advanced Demand Control, the set of requests considered in the TOP-based favorability
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check is reduced from all future requests to those that will be received in the next 10 min. Advanced Fulfillment Control is

adapted so that for each incoming request, feasibility checks are performed to determine which requests will be accepted in

the next 10 min, to be able to re-optimize the route plan accordingly. In case of Advanced Control, a TOP is solved for each

incoming request, taking into account the already accepted requests as well as all requests that will be received in the next 10

min to decide upon the acceptance as well as the new incumbent route plan. The results are visualized in Figure 10, which

shows the acceptance rates for the four considered policies as a solid line for the unlimited information horizon and as dashed

line for the information horizon limited to 10 min. The gap between the two lines of each policy is further highlighted by the

respective color.

For Basic Control, per definition, no difference is visible, since it does not take into account any information about future

demand. As expected, decreased acceptance rates can be observed in case of the limited information horizon among the other

three policies. Consequently, policies that are most affected by information incompleteness are those that exploit the information

most extensively. However, the structural differences between the policies implementing advanced demand and/or fulfillment

control remain similar to those obtained under complete information.

These results indicate, on the one hand, that the value of information in demand and fulfillment control is directly reflected

by the acceptance rates and its proportional deterioration. On the other hand, it can be observed that the previously presented

findings are less pronounced in the considered case of incomplete information, yet structurally still valid. However, this inves-

tigation represents only one of various possible variations from complete over incomplete to erroneous information. It would

therefore be interesting to investigate in future work under which horizon and/or quality of information the structural consistency

persists and when and how it may alter.

6 CONCLUSION

In our paper, we investigated the effectiveness of demand and fulfillment control in dynamic fleet management of ride-sharing

systems. To this end, we first differentiated strategies for demand and fulfillment control and classified the related literature

accordingly. Second, we defined four policies, which differ in the complexity of optimization and the amount of information

exploited by demand and/or fulfillment control. The impact of these policies on dynamic fleet management was investigated in

a comprehensive computational study, highlighting the operator’s perspective as well as the consequences for travelers. Overall,

our results demonstrated great potential for combined advanced demand and fulfillment control in dynamic fleet management.

Potential benefits range from increased acceptance and pooling rates to decreased travel and idle times. However, acceptance

probability and detour duration depend considerably on the nature of the requested trip.

A particular contribution of our paper is the differentiation of dynamic fleet management according to the effectiveness of

demand and fulfillment control. This created insights about whether optimization potential can be attributed to either demand

or fulfillment control or a reasonable combination of them. This is important since advanced demand and fulfillment control

differ in their requirements as well as in the effect on the performance of the ride-sharing system. Advanced demand control

is especially beneficial if there is a sufficient surplus of demand, that is, when there is a decent subset of favorable requests

that can be selected from a larger pool of feasible requests. Furthermore, advanced demand control can increase the acceptance

rate primarily through a significant decrease of average travel time per fulfilled request. The acceptance probability is highly

correlated with the nature of the requested trip, leading to an acceptance of short trips that are centrally located in the service area.

The potential of fulfillment control is primarily associated with the acceptance rate and the promised fulfillment time window.

Taking acceptance of future requests into account, advanced fulfillment control enables a rather stable performance despite

increasingly narrow fulfillment time windows. However, advanced fulfillment control can only be beneficial if demand control

has only a minor impact or is of advanced nature, too. In particular, performance improvement through advanced fulfillment

control can be traced back to a much more successful bundling of requests. The consequence for travelers is that the detour

duration increases proportionally to the distance of the trip.

Our paper offers operators of ride-sharing systems an orientation on how to implement demand and fulfillment control.

For instance, advanced demand control could be more suitable for large systems or systems with a few regular travelers, where

the satisfaction of individual travelers is negligible. Furthermore, it could be implemented in order to efficiently manage a

temporary demand surplus on special occasions. Advanced fulfillment control would be particularly suitable for systems with

stable demand allowing precise anticipation of future acceptances. Moreover, under the assumption that a selective demand

control avoids, the demand target should be fully operable.

Moreover, we contribute to research on dynamic fleet management by providing a more differentiated view of how policies

control demand and fulfillment in a ride-sharing system. We believe that this can be the basis for a better understanding of the

varying effectiveness of existing policies as well as the development of new ones.
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332 HAFERKAMP AND EHMKE

In the future, a more detailed overview of anticipatory decision-making in dynamic fleet management could provide a

better understanding of what types of anticipation are reasonable for ride-sharing systems. Furthermore, for our study, we per-

formed the evaluation mostly assuming complete information while the implications of incomplete information were only briefly

examined. An intuitive next step would be to preform demand and fulfillment control under different degrees of incomplete

or imperfect information to investigate the link between information quality and the exploitation of the identified potentials.

Moreover, state-of-the-art policies for demand and/or fulfillment control could be evaluated to compare their effectiveness with

the results obtained. This would include the development of sophisticated customer acceptance mechanisms for anticipatory

demand control in ride-sharing systems.
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APPENDIX

A.1 Parameter tuning

The parameter tuning of the LNS is based on the Resource Demand Ratio sensitivity analysis. Ten instances generated for

parameter tuning are solved five times, each time with an adapted fleet size. For feasibility check and re-optimization in the

scope of Basic Control, and Advanced Demand Control the tuning of the parameters is based on Basic Control. For Advanced
Fulfillment Control, a separated tuning is performed, since considerably more requests have to be handled during a feasibility

check and the final optimization. Regarding the TOP, the parameter tuning is based on Advanced Control. The resulting values

are mostly applied as well to solve the TOP as favorability check within Advanced Demand Control. However, the number of

required iterations 𝛽 and thus the computational effort is determined separately.
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TABLE A1 Number of iterations

ø Last successful iteration per fleet size

Policy Case Final 𝜷 Test 𝜷 2 6 10 14 18

Basic Control Feasibility check 100 1000 1 2 5 5 11
Re-optimization 200 1000 0 1 8 24 126

Advanced Demand Control TOP 3000 3000 2895 2995 2995 2996 2999
Advanced Fulfillment Control Feasibility check 1000 2000 260 531 728 910 719

Final optimization 10 000 10 000 3 1245 6283 9713 9778
Advanced Control TOP 30 000 40 000 4770 15195 15∖,288 27 235 15 306

Note: The values are highlighted on the basis of which one is varied in each of the analyses.

Abbreviation: TOP, team orienteering problem.

The number of iterations as termination criterion has a particular impact on the solution quality and the computing time.

We define a reasonable maximum number of iterations 𝛽 as follows. We begin with an overly large number and then check the

last iteration yielding a new best solution. The final number of iterations is then determined in dependence of its magnitude by

rounding up to the next number divisible by 100, 1000, or 10 000. The results of this procedure are summarized in Table A1.

At the beginning, the percentage of trips removed per iteration is set to 𝛾1 = 0.3 and 𝛾2 = 0.4 following Ropke and Pisinger

[39], and the noise for the operators is set to a medium level of 𝛿1 = 4 and 𝛿2 = 4.

It can be observed that the values vary considerably, which is due to the different number of replannable requests and

the differences between single and repeated execution. Overall, a reasonable value of 𝛽 could be determined for most of the

cases. An exception is the TOP in case of Advanced Demand Control. Here, improvements are still found for all fleet sizes

close to the last iteration. A further increase of the number of iterations was omitted, since the tested 𝛽 values already induce

significant computational effort. However, since this check is simply intended to determine whether a trip is favorable, that is,
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TABLE A2 Percentage of requests removed per iteration

Advanced control Advanced fulfillment control Basic control

𝜸1 − 𝜸2 TOP
Feasibility check and final
optimization

Feasibility check and
re-optimization

10%–20% 64.4% 54.0% 44.4%

30%–40% 63.9% 53.3% 44.5%

50%–60% 61.8% 51.5% 44.5%

70%–80% 61.4% 50.5% 44.6%

Note: The values are highlighted on the basis of which one is varied in each of the analyses.

Abbreviation: TOP, team orienteering problem.

TABLE A3 Noise value regret-2 insertion

Advanced control Advanced fulfillment control Basic Control

Values TOP
Feasibility check and final
optimization

Feasibility check and
re-optimization

𝛿1 = 0 64.2% 53.8% 44.6%

𝛿1 = 4 64.4% 54.0% 44.7%
𝛿1 = 8 64.3% 53.6% 44.6%

Note: The values are highlighted on the basis of which one is varied in each of the analyses.

TABLE A4 Noise value worst-removal

Advanced control Advanced fulfillment control Basic control

Values TOP
Feasibility check
and final optimization

Feasibility check and
re-optimization

𝛿2 = 0 64.3% 53.7% 44.6%

𝛿2 = 4 64.4% 54.0% 44.7%
𝛿2 = 8 64.4% 53.8% 44.6%

Note: The values are highlighted on the basis of which one is varied in each of the analyses.

Abbreviation: TOP, team orienteering problem.

whether it can be easily integrated together with current and future requests, there is no need to focus on exceptional solution

quality.

Further parameter values are determined by the acceptance rate calculated across all instances. The first parameter values

are 𝛾1 and 𝛾2, which control the minimum and maximum percentage of requests to be removed per iteration. To determine these

two parameters, values between 𝛾1 = 0.1, 𝛾2 = 0.2 and 𝛾1 = 0.7, 𝛾2 = 0.8 were tested for the same LNS cases as before.

It turns out that in cases with a high number of replannable requests, lower values and thus smaller changes in the solution

are advantageous. The acceptance rate for these cases differs up to 4%. In the opposite case, with only a few replannable

requests, higher values are slightly advantageous, however, the differences are small. Based on these results, for the insertion

and re-optimization in the case of Basic Control and Advanced Demand Control, 𝛾1 = 0.7, 𝛾2 = 0.8 is applied. For both TOP

as well as the insertion and final optimization of Advanced Fulfillment Control, we set 𝛾1 = 0.1, 𝛾2 = 0.2. Regarding the noise

parameters 𝛿1 and 𝛿2, which are applied in the worst-removal and the regret-2 operator, no noise (𝛿1 and 𝛿2 = 0), medium noise

(𝛿1 and 𝛿2 = 4) and a high degree of noise (𝛿1 and 𝛿2 = 8) are examined separately. However, a significant influence on the

acceptance rate could not be determined. Since the results were best for all examined cases when using a medium noise (𝛿1 and

𝛿2 = 4), this value is selected for the experiments. For detailed results of the tuning of 𝛾1, 𝛾2, 𝛿1, and 𝛿2 see Tables A2, A3,

and A4.
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