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ABSTRACT  
Computer-aided drug design (CADD) methodologies are extensively used in 

pharmaceutical industries and academia, and nowadays play a pivotal role in the drug 

discovery pipeline. The current work illustrates the most widely used in silico techniques 

in drug discovery, emphasizing their applications, potential, limitations and alternative 

solutions to overcome those limitations –when possible. The results show how these 

methodologies have been applied in diverse projects to accelerate the discovery of new 

small molecule inhibitors for flexible protein binding pockets. Specifically, the studies 

presented herein cover different drug discovery aspects and try to address specific 

questions and challenges that are project/target related.  

In the case of Spindlin1, the herein described work started when no inhibitors were 

reported, and only crystal structures in apo form and holo forms in complex with histone 

peptides were available. Nonetheless, a successful iterative virtual screening campaign 

was conducted, which was coupled with in vitro testing and lead optimization studies. 

This led to the identification of the first set of novel Spindlin1 inhibitors active in the 

micromolar range. Subsequently, with the availability of crystal structures in complex 

with inhibitors, we tried to tackle the pocket flexibility challenge by computational 

means. Our studies highlighted how pocket flexibility could play a role in pose prediction 

and how different in silico approaches perform in sampling pocket conformations. 

Subsequently, a validated protocol combining induced fit docking and short molecular 

dynamics simulation was proposed to predict the binding mode of small molecule ligands 

into a flexible binding pocket. Finally, a congeneric series of Spindlin1 inhibitors was 

designed and explored. In this context, CADD methodologies were helpful in explaining 

the lack of activity of some derivatives and defining the key protein-ligand interactions 

and their contributions to the binding. Moreover, using MM-GBSA as rescoring step, we 

developed a protocol that discriminates active from inactive compounds that can be 

applied to guide further optimization steps to prioritize compounds for synthesis and 

biological characterization.  

Within the AChE and BChE work, computational methods such as docking and MM-

GBSA were constructively used to predict the binding mode and explain the activity 

profile of a series of 8-hydroxy-2,7-naphthyridin-2-ium derivatives. In this study, we 

reported potent dual AChE and BChE inhibitors and a selective AChE inhibitor. 
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Moreover, we could identify the structural features that affect the biological activity of 

our series. 

Finally, computer-based methods were used in the context of peptides to explore and 

rationalize from a structural point of view the cleavage behavior of some 

metalloproteinases, namely NEP, MMP-7, MMP-9, MMP-12 and MMP-14. 

Additionally, a detailed analysis and comparison of the MMPs pockets under 

investigation was performed. 

 

Keywords: drug discovery, computer-aided drug design, molecular docking, 

molecular dynamics simulation, binding free energy calculation, MM-GBSA, virtual 

screening, pharmacophore modelling, small molecule inhibitors, peptides, epigenetics, 

Spindlin1, cholinesterases, AChE, BChE, metalloproteinases, NEP, MMP-14. 
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KURZFASSUNG 
Computergestütztes Wirkstoffdesign (CADD) wird in der pharmazeutischen 

Industrie und in dem akademischen Bereich ausgiebig eingesetzt und spielt heute eine 

zentrale Rolle in der Wirkstoffentwicklung. Die vorliegende Arbeit befasst sich mit den 

am häufigsten verwendeten in silico Methoden, die in der Arzneimittelentwicklung 

eingesetzt werden, und hebt ihre Anwendungen, Potenzial, und Beschränkungen hervor. 

Die Ergebnisse der vorliegenden Arbeit zeigen, wie diese Methoden in verschiedenen 

Projekten angewandt wurden, um unter anderem die Entdeckung und Entwicklung neuer 

niedermolekularen Inhibitoren zu beschleunigen, die Flexibilität von Proteinen zu 

untersuchen und den Bindungsmodus von sowohl niedermolekularen als auch 

peptidischen Liganden zu erforschen. Die hier vorgestellten Studien befassen sich mit 

verschiedenen Aspekten der Arzneimittelentdeckung und versuchen, spezifische Fragen 

und Herausforderungen zu lösen, die mit dem Projekt/Target in Zusammenhang stehen.  

Unsere Studien an Spindlin1 als Target begannen als noch keine Inhibitoren bekannt 

waren und nur Kristallstrukturen in Apo- und Holo-Form im Komplex mit 

Histonpeptiden vorlagen. Nichtsdestotrotz wurde eine erfolgreiche iterative Virtuelles-

Screening-Kampagne durchgeführt, die mit in vitro Tests und Studien zur 

Leitstrukturoptimierung gekoppelt war und zur Identifizierung der ersten neuen 

Spindlin1-Inhibitoren, die im mikromolaren Bereich aktiv sind, führten. Mit der 

Verfügbarkeit von Spindlin1-Kristallstrukturen im Komplex mit Inhibitoren versuchten 

wir anschließend, die Herausforderung der Taschenflexibilität mit rechnerischen Mitteln 

anzugehen. Wir haben gezeigt, wie die Taschenflexibilität bei der 

Bindungsmodusvorhersage eine Rolle spielen könnte und wie verschiedene in silico 

Ansätze bei der Erfassung von Taschenkonformationen abschneiden. Daraufhin wurde 

ein validiertes Protokoll etabliert, das “induced fit docking” und kurze 

Molekulardynamiksimulationen kombiniert, um den Bindungsmodus von 

niedermolekularen Liganden in einer flexiblen Bindungstasche vorherzusagen. 

Schließlich wurde eine Serie von Spindlin1-Inhibitoren designt und synthetisiert, und 

derer Spindlin1 inhibitorische Aktivität mittels einem etablierten Assays bestimmt. In 

diesem Zusammenhang waren CADD-Methoden hilfreich, um die mangelnde Aktivität 

einiger Derivate zu erklären und die wichtigsten Protein-Ligand-Wechselwirkungen, die 

zur Bindung beitragen, zu bestimmen. Darüber hinaus haben wir unter Verwendung von 

MM-GBSA als Rescoring-Schritt ein Protokoll entwickelt, das aktive von inaktiven 
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Verbindungen unterscheidet und das als Leitfaden für weitere 

Strukturoptimierungsstudien dienen kann. 

Im Rahmen der AChE- und BChE-Studien wurden computerdestützte Methoden wie 

Docking und MM-GBSA konstruktiv eingesetzt, um die Bindungsmodi einer Reihe von 

8-Hydroxy-2,7-naphthyridin-2-ium-Derivaten vorherzusagen und deren Aktivitäten 

rationalzu begründen. In dieser Studie wurden potente duale AChE- und BChE-

Inhibitoren und einen selektiven AChE-Inhibitor entwickelt. Darüber hinaus konnten 

wurden die strukturellen Merkmale, die die biologische Aktivität dieser Serie 

beeinflussen, identifiziert. 

Schließlich wurden computergestützte Methoden bei peptidischen Liganden 

eingesetz, um das Spaltungsverhalten der Metalloproteinasen NEP, MMP-7, MMP-9, 

MMP-12 und MMP-14 aus struktureller Sicht zu untersuchen. Zusätzlich wurde eine 

detaillierte Analyse und einen Vergleich der untersuchten MMP-Taschen durchgeführt. 

 

Schlagwörter: Wirkstoffforschung, computergestütztes Wirkstoffdesign, 

molekulares Docking, Moleküldynamiksimulation, freie Bindungsenergie, MM-GBSA, 

virtuelles Screening, Pharmakophor-Modellierung, niedermolekulare Inhibitoren, 

Peptiden, Epigenetik, Spindlin1, Cholinesterasen, AChE, BChE, Metalloproteinasen, 

NEP, MMP-14. 
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1. INTRODUCTION 

This chapter is divided into two main parts, and it aims at introducing the 

computational approaches and the targets investigated in the thesis. 

 In Silico techniques in medicinal chemistry: application, 
potential and limitations 

The use of in silico techniques in the field of computational chemistry and drug 

design has widely increased over the last four decades. The word “in silico” was initially 

coined in 1987 to describe experiments that were performed via computer simulations 

and were related to biological experiments. Several new approaches have emerged 

intending to assist scientists in studying and analyzing molecular systems, cellular 

behavior, gene expression, compounds properties, toxicity and pharmacokinetic 

properties of new drug candidates [1-4]. In the medicinal chemistry field, the employment 

of computers to investigate drug candidates has already started in the early 1980s. It can 

be dated back to 1980 and 1981 when the first article describing the use of computers at 

Merck was published which was followed by a cover article: i) a scientific overview in 

Science entitled “Three-dimensional molecular modeling and drug design” [5]; ii) a cover 

article in Fortune magazine entitled “The Next Industrial Revolution: designing drugs by 

computer at Merck” [6, 7].  

Since then, computer-aided drug design (CADD) drew the interest of both the 

pharmaceutical industries and academia and nowadays plays a pivotal role in the drug 

discovery pipeline [7-14]. Indeed, CADD techniques have considerably influenced the 

development of several approved drugs such as captopril [10], nelfinavir and amprenavir 

[10], and tirofiban [15]. 
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In the following sections, an overview of the most widely used in silico techniques in 

drug discovery is given, emphasizing their applications, potential, limitations and 

alternative solutions to overcome those limitations –when possible. 

 Molecular docking 
Molecular docking is a widely used computational method that was pioneered in the 

early 1980s [16] and is, nowadays, not only employed in small molecule drug design but 

also in the study of protein-protein interactions and behavior of nanomaterials [17]. In a 

CADD scenario, docking studies are routinely applied in the hit-identification and lead-

optimization phases. The primary objective of docking techniques is to generate a binding 

mode hypothesis of a molecule in a macromolecular target, typically proteins or nucleic 

acids, and to estimate its relative binding affinity [17, 18]. The structures of the target of 

interest are generally retrieved from the Protein Data Bank (PDB) [19], which to this day 

holds over 180,685 [20] macromolecular 3D structures solved by X-ray crystallography, 

and to a lesser extent NMR and electron microscopy. If an experimental structure of the 

protein target is not available, it can, under certain circumstances, be predicted by 

homology modeling using structural details of family-related members [21-23]. Very 

recently, a breakthrough came from the field of Artificial Intelligence (AI), as DeepMind, 

along with EMBL-EBI, has made available through AlphaFold2 highly accurate 3D 

structure predictions of over 100,000 unique proteins [24]. 

Both small molecules and peptide can be docked into a target structure, as well as 

protein to protein. Docking programs are used to “place” ligands into the binding site of 

the target of interest. In cases where the binding pocket is unknown, so-called “blind 

docking” can be performed to identify the part of the macromolecule that is more likely 

to be targeted and act as the binding site, or to search for possible allosteric pockets [25-

28]. Nevertheless, in most cases the pocket is already known. Herein, the focus is set on 

molecular docking of small molecules and peptides to already known binding sites since 

these computational approaches were applied in all the studies and publications reported 

in the Ph.D. thesis work. In this context, the term ligand denotes both small molecules 

and peptides.  

The key concepts at the basis of the molecular docking methods are search algorithms 

and scoring functions, which respectively sample conformations and orientations of the 

ligand into the pocket, and estimate a score for each of the predicted poses [29-32]. While 

it is well known that many robust and accurate docking algorithms are available, the 

reliability of the scoring functions continues to be the major limiting factor of docking 
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programs [17, 30, 33]. Through docking algorithms, docking programs generate different 

binding hypotheses for each docked ligand, diversifying its position, orientation and 

conformation. The binding modes can be similar or distinct based on various factors, e.g., 

size and flexibility of the ligand, shape of the binding pocket –buried or more solvent 

exposed–, number of poses outputted, presence of constrains applied during docking 

procedures, etc. The binding affinity of the obtained poses is then predicted by scoring 

functions, which estimate if a given molecule is potentially a suitable binder and which 

binding hypotheses are more favorable [30, 31]. The energy values associated with the 

poses are referred to as docking scores. Numerous scoring functions have been developed, 

and they can be classified as force field-based [30, 34], empirical [30, 35, 36], knowledge-

based [30, 37, 38] and entropy-based [39-41]. Moreover, different scoring functions can 

be contemplated at the same time, leading to a consensus scoring approach [30, 42-44].  

Empirical scoring functions are based on the assumption that the binding energies 

can be approximated by a sum of individual uncorrelated terms, a concept first proposed 

by Böhm, and then further extended [30, 36, 45]. Each empirically based scoring 

approach has specific terms, as example in Equation 1 is reported the ChemScore 

function of Eldridge et al., which is the starting point for Glide scoring [30, 36, 46]. 

 

 

∆"!"#$ = ∆"% +	∆"&'!(#$& ')(∆r)'*(∆α)
"+

+	∆",-./0& ,(-/1)
/1

+	∆"0"2(& ,(-+3) 	+	Δ"4(./4(.
+3

 

(1) 

 

The free energy of binding (∆"!"#$) is approximated as a sum of contributing free 

energy terms of hydrogen bonding (H-bond), metal (metal), lipophilic (lipo) and ligand 

rotational entropy (rotor) components. ∆"&'!(#$ , ∆",-./0 , ∆"0"2( and Δ"4(.	 are 

regression coefficients for each corresponding free energy term, whereas ∆"%  is a 

regression constant. The summation ∑ ')(∆r)'*(∆α)"+  and ∑ ,(-+3)	+3 are calculated for 

all complementary possibilities of hydrogen bonds between ligand atoms (i) and receptor 

atoms (I), and for all lipophilic ligand atoms (l) and all lipophilic receptor atoms (L), 

respectively. The metal term, ∑ ,(-/1)/1 , is estimated for all acceptor and 

acceptor/donor atoms (a) in the ligand and any metal atoms (M) in the receptor. The free 
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energy terms are computed with functions (,, ') and '*) which can depend on an angular 

(∆α) and/or a distance (∆r) term. 

Although the scoring functions vary for the way they approximate the energy of the 

binding event, they must strike a balance between speed and accuracy, which is ultimately 

shifted in favor of the speed. 

1.1.1.1. Rigid and Flexible docking  

Initially, docking programs treated both ligand and protein as rigid entities, and only 

the three translational and three rotational degrees of freedom were included [16]. This 

approach evoked the “lock and key” concept introduced by Emil Fischer in 1894 to 

describe the enzyme-substrate interactions [47]. With the resolution of macromolecular 

3D structures in apo and holo form (bound to a ligand), it became clear that the binding 

event is much more challenging. In fact, upon the binding of a ligand, the protein target 

can undergo conformational changes ranging from modest loop motions to hinge bending 

[48]. At the same time, the ligand can adopt different conformations and orientations in 

the binding pocket, of which one is more energetically favorable and defined as bioactive 

conformation. As mentioned above, search algorithms are applied to sample different 

ligand orientations/conformations and, thus, to treat ligand flexibility [16, 30, 49]. They 

can be divided into three categories [30]: systematic methods (conformational search, 

databases, incremental construction); simulation methods (molecular dynamics, energy 

minimization); and random or stochastic methods (genetic algorithms, Monte Carlo,  tabu 

search). 

Currently, there are many docking programs [50], which are based on diverse 

algorithms and scoring functions, and all of them treat only the ligand as flexible unless 

otherwise specified [17, 51]. This will be referred to as rigid-body docking, or merely 

docking, when only the ligand is treated as flexible while the protein (body) is kept rigid 

in its original state (Figure 1.1). Depending on the input protein conformation, the ligand 

adapts itself in the pocket in a different way giving binding modes that reflect the shape 

of the active site. Hence, the orientation of side chains or loops that impact the pocket 

will directly influence the poses generated by the docking program. Figure 1.1.a presents 

an example of rigid-body docking using two different protein conformations; in blue is 

highlighted a specific amino acid that shows alternative side chain orientations. 

Various docking approaches, which allow the possibility to consider protein 

flexibility to some extent, have been developed to account for the protein plasticity, 
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including rotamer libraries [52, 53] and induced fit docking [54, 55]. These approaches 

will be referred to as flexible docking. Programs that employ rotamer libraries allow the 

user to introduce alternative conformations for specific side chains choosing from a 

database of rotamers. On the other hand, induced fit docking gives the possibility to treat 

either specific residues in the binding pocket or an area around the ligand as flexible, as 

well as allows specification of whole loops to move. This approach relies on the 

assumption that ligands are often known to induce conformational changes in the pocket 

upon binding. In Figure 1.1.b are illustrated two cases of flexible docking, and possible 

residues that can be treated as flexible are colored in green.  

 
Figure 1.1. Schematic representation of different molecular docking approaches. The binding of a 
ligand (orange) to a protein target (white) is illustrated; in blue are highlighted different side chains 
orientations of the same amino acid (a and c), while in green possible residues that can be treated as 
flexible during flexible docking (b). The latter approach allows the flexibility of either specific 
residues (left) or an area around the ligand (right). When rigid-body docking is used, different binding 
hypotheses are generated based on the input protein conformation; in (a) two different protein 
conformations are given as separate examples while in (e) three different protein conformations as an 
example of ensemble docking.  

However, flexible docking is time-consuming and may not be feasible for big 

databases. Another way to account for pocket flexibility, trying to balance the speed of 
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the calculations, is to use rigid-body docking with an ensemble of protein conformations, 

which is generally defined as ensemble docking (Figure 1.1.c) [56-58]. Here different 

binding modes are generated and then the best binding hypothesis is selected for each 

ligand based on the docking score – regardless of the input protein conformation structure. 

Ensemble docking is performed to evaluate the impact of the protein flexibility on the 

ligand binding when a pool of multiple crystal structures of the same target is available. 

Alternatively, molecular dynamics simulations can be performed to generate such a set 

of different protein conformations [59-61]; the possibility to use molecular dynamics 

snapshots is discussed in section 1.1.2. 

1.1.1.2. Advantages, Limitations, and Perspectives 

Molecular docking is the most widely used technique to investigate the ligand binding 

mode and provide a rough estimation of the ligand binding affinity. Its major advantage 

is the speed of the calculation that allows the evaluation of millions of compounds (high-

throughput docking) in short time and with reasonable computational cost [33, 62]. 

Moreover, the binding modes predicted by docking offer structural information on the 

nature of the interactions between the ligand and the protein, which in turn helps not only 

to explore the key interactions important for the activity but also to guide structure-based 

optimization studies. 

In order to obtain reliable binding modes, the protocol that will be applied in docking 

studies is tested beforehand. Diverse settings are generally probed, and various strategies 

can be undertaken based on the data available for the target under investigation. In case 

there are co-crystal structures deposited in the PDB [19], the ability of the protocol to 

successfully reproduce the experimentally determined ligand binding modes is assessed 

(re-docking and cross-docking). When known inhibitors are reported, retrospective 

studies can be conducted to verify whether the setup being used can discriminate between 

active and inactive compounds and how the actives are ranked or enriched in comparison 

to a random selection. Alternatively, decoys can be used in the absence of known inactive 

ligands [63-65]. However, the use of experimentally confirmed inactive compounds 

should be privileged since decoys are assumed to be inactive but may be positives in 

reality [66]. Additionally, the accuracy of the docking protocol is highly related to protein 

and ligands preparation. As a consequence, some aspects should be carefully addressed. 

Particular attention has to be given to the protonation states of the amino acids in the 

binding site as well as to possible isomers and protonation states of the ligands. More 
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details on critical issues to consider during protein and ligand preparation are given in 

chapter 3.2 [67]. 

Another challenging aspect to evaluate when performing docking is the correct 

placement of water molecules within the binding site [30, 68]. Indeed, structural water 

molecules should be incorporated only after careful analysis. In contrast, water molecules 

that are not directly involved in binding interactions or are not essential to the protein 

structure can be removed during docking [68]. Nevertheless, there might be cases in 

which it is difficult to determine which water molecules are conserved and which not. 

Additional considerations that are needed are: i) ligands can displace conserved water 

molecules; ii) even if water molecules are not conserved, they can still mediate 

interactions with ligands (bridging water molecules) [69, 70]. Thus, how to deal with 

water molecules remains a problematic issue. If the programs allow the possibility, 

specific water molecules in the binding site can be kept while using the function to toggle 

or to spin them. For example, the program GOLD offers such options; the toggle option 

leaves to the program the choice of whether the water molecule should be present or 

displaced by the ligand during the docking [71]. 

The main limitations of docking programs are the accuracy of the scoring functions 

and the possibility to treat protein flexibility [30, 33]. The scoring functions make various 

assumptions and simplifications in the evaluation of the binding affinity of protein-ligand 

complexes and, hence, rarely give an accurate estimation of the free energy of binding. 

Important physical phenomena like the thermodynamics of the free energy of binding and 

solvation/desolvation of the ligand are not considered into the energy values of most of 

the docking scoring functions [17]. A strategy to overcome these approximations is to 

post-process the top-ranked molecules using better but slower re-scoring methods, which 

are described in the binding free energy calculations section (1.1.3). 

Proteins are dynamic systems and using only one static frame of the protein structure 

may lead to missing important aspects. At the same time, introducing flexibility into the 

docking process would exponentially increase the time for performing the calculations. 

Therefore, methods that try to balance the speed while considering the binding pocket 

flexibility have been developed and they have already been discussed above. In summary, 

alternatives are: 

- Flexible docking (induced fit docking), selecting the residues to treat as flexible, 

e.g., residues that are known to be flexible or that should be explored. 
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- Ensemble docking, using diverse protein structures that show binding site 

plasticity. 

Nonetheless, both flexible docking and ensemble docking are more computationally 

time demanding methodologies, and their applicability depends mainly on the objective 

of the project. For instance, flexible docking can be feasible for a small set of compounds 

up to a few hundred molecules but not in virtual screening (VS) campaigns (section 1.1.4).  

The aspects considered so far are relevant for small molecules as well as for peptide 

docking, but additional considerations are needed for peptides. Because the accuracy of 

the scoring function is already a challenge for small molecules, when it comes to peptides, 

which are bigger in size and more flexible, putting too much trust in docking scores can 

be misleading. Consequently, peptide docking approaches are mainly used to obtain 

binding hypothesis, identify key interactions and to support experimental work, e.g., for 

the interpretation of ambiguous experimental data or to corroborate an assumption [51]. 

Additionally, the conformational sampling problem for very flexible ligands like peptides 

should be considered when performing docking. As peptides are more flexible, an 

exhaustive sampling is needed. To avoid that not enough conformations are sampled, it 

is advisable to extend the number of poses to generate during the calculations. 

Overall, taking into account limitations and advantages and the fact that docking has 

been widely applied with success, it is considered a cornerstone of structure-based drug 

design [72]. 

 Molecular Dynamics simulations 
Molecular dynamics (MD) is a computational approach used to simulate the dynamic 

behavior of molecular systems as a function of time, which treats ligand, protein, ions and 

water molecules as flexible entities by applying Newton’s equations of motion [73, 74]. 

When MD was first applied to a biomolecule in the late 1970s [75], there was great 

excitement about the potential of displaying the conformational flexibility inherent in 

proteins, unlike the static pictures retrieved from crystallography [9]. Since then, MD 

simulations have become powerful computational tools that can help drug design projects 

at several levels, going from the analysis of protein dynamics to highlighting the key 

protein-ligand interactions that are stable and likely responsible for the binding and 

activity [76, 77].  

For instance, when it is known that a protein can exist in different conformations or 

that some side chains in the binding site are highly flexible, MD simulations can be 

employed to study the protein flexibility and generate an ensemble of multiple protein 
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conformations [59-61, 77, 78], as exemplified in Figure 1.2. Hence, the obtained MD 

snapshots can provide an alternative way to create a structurally diverse subset of a 

protein structure, which can be used not only to evaluate the degree of flexibility but also 

to perform ensemble docking [79]. 

Another typical application of MD simulations is to assess the stability of the protein-

ligand complex and confirm the binding mode hypothesis obtained by docking [76, 77, 

80]. The root-mean-square-deviation (RMSD) and root-mean-square-fluctuations 

(RMSF) are analyzed to evaluate the stability of the protein and ligand during the 

simulation. High deviations and fluctuations are generally observed for protein motion, 

flexible amino acids, unstable binding mode, or ligand atoms that are more flexible. MD 

simulations can also be employed during optimization studies; here ligands that show 

unstable binding modes are discarded [77]. Besides, MD simulations provide helpful 

information to identify the interactions that are crucial for the binding of the inhibitors in 

the pocket [77]. The analysis of the interactions and their occupancy can shed light on the 

activity of the compounds and suggest promising chemical modifications that might 

improve the activity. As an example, in Figure 1.2 is displayed the binding mode analysis 

of two ligands, one active and one inactive. A stable binding mode can be observed for 

the active ligand (Lig-1), which is also reflected in the low RMSD values. Meanwhile, 

diverse binding modes and high RMSD values can be seen for the inactive ligand (Lig-

2). Further clarifications are given when the binding interactions and their occupancy are 

evaluated, indeed some key interactions are lost during the MD simulation of Lig-2. 

Apart from the above-mentioned purposes, classical MD simulations can also be 

applied to (a) estimate the binding free energy of bound and unbound ligand-protein 

complexes [78]; (b) identify transient or cryptic sub-pockets [78, 81, 82]; (c) provide 

relevant information on water molecules and their contribution in modulating ligand 

binding [83-86]. 
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Figure 1.2. Examples of typical applications of Molecular Dynamics (MD) simulations in drug design 
projects.  
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The major limitations of MD simulations include the approximations of molecular 

force fields and the high computational costs [78]. As this approach is still a simulation, 

approximations are undoubtedly required to render it applicable in large-scale. In spite of 

that, progress has been made which allows to accurately predict important molecular 

motions by MD methods [78]. Thanks to the advance of supercomputer and Graphics 

Processing Units (GPUs), the computational costs associated with MD have been reduced 

and the speed of the simulation time is constantly increasing [87, 88]. Nevertheless, 

performing MD simulations is computationally more expensive than docking. 

Consequently, MD calculations are mostly implemented in the lead optimization phase 

and only for a limited number of molecules. For instance, simulations in the range of 1-

10 nanoseconds can be performed for hundreds of molecules, whereas longer simulations 

(100-200 nanoseconds) are generally carried out only for a very small dataset of 

compounds. 

The timescale reached during MD simulations can be extended; however, there will 

still be a gap compared to the timescale observed in experiments. Thus, the limitation of 

the simulation time leads to a sampling problem. With classical MD simulation, slow 

processes like folding and binding/unbinding processes cannot be observed. Other 

techniques that use enhanced sampling methods have been developed to address such 

problems in accessible timescale by introducing a bias force/potential to the MD 

simulations to increase the likelihood of detecting slow processes. Examples of enhanced 

sampling methods are replica exchange [89], metadynamics [90] and steered MD [91]. 

 Binding Free Energy calculations  
The ultimate goal of drug design strategies is to find new pharmaceutical 

compound(s) that bind to a macromolecular target with high affinity, which leads to a 

desired therapeutic effect. The binding event can be described with the chemical reaction 

(2): 

 

 1 + 	2	 ⇌ 12 (2) 

 

where L represents the ligand and R the receptor (which typically is a protein); the 

binding strength is determined by the binding free energy, Δ"!"#$. Many efforts have 

been made in developing computer-based methods that could decode the ligand binding 

interactions and estimate the binding affinity. Indeed, the ability to correctly estimate the 
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experimentally determined binding affinity and then to predict the activity of new 

compounds has been a major focus of CADD efforts [33]. 

As already described in the molecular docking section (1.1.1), docking programs also 

try to estimate the binding affinity; however, they are not particularly accurate. A strategy 

to overcome this limitation is to rescore the docked molecules using more accurate but 

slower approaches [92-97]. Consequently, binding free energy (BFE) calculations have 

received more attention in the last decades with the aim of improving the ligand binding 

affinity estimation [33].  

BFE calculation methods can be classified in (a) end-state methods, including MM-

GB(PB)SA [98] and Linear Interaction Energy (LIE) [99, 100]; and (b) alchemical 

perturbation methods, such as Thermodynamic Integration (TI) [101], Free Energy 

Perturbation (FEP) [102] and Bennett Acceptance Ratio (BAR) [103]. These methods 

either estimate the absolute protein-ligand BFE, which is the free energy difference 

between the bound and unbound state computed for the complex, or the relative BFE, 

which is the difference of the binding free energies between two or more ligands [33]. No 

method outperforms another, they all have pros and cons and the choice depends on the 

objective of the research and the system under investigation [33]. Even among the same 

approach, different software programs perform differently based on the target/data and 

on the protocol used. It is a good practice to evaluate the program and different settings 

beforehand. Albeit the same accuracy can be obtained by using different methods, the 

time required for performing the calculations vary significantly. Alchemical perturbation 

methods are among the more computationally intensive and expensive approaches as they 

require extensive sampling of the free ligand in solution and of the complex, as well as of 

unphysical intermediate states. Meanwhile, the end-state methods are based on the 

sampling of the end-point, which render them faster but still more demanding in 

comparison to docking scoring functions [98]. Due to the high computational costs, 

initially, BFE simulations were feasible only for a limited number of compounds [30]. 

Nowadays, the advances in modern computer hardware have significantly improved the 

speed of the calculations, making it possible to use these approaches for a bigger number 

of molecules.  

BFE calculations are becoming more popular, and they are routinely applied as a 

rescoring step after docking [93-95]. If enough data (ligands and relative activity data) is 

available for a specific target, a protocol can be developed and subsequently used to guide 

the optimization steps of a series of compounds. Based on the dataset, binary models or 
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linear regression models can be generated to evaluate the discrimination power and the 

correlation between the computed BFE values and the experimental affinities. In order to 

create a reliable linear regression model, the range and distribution of the biological 

activity data should be as wide as possible covering at least 3 log units [104, 105]. 

Moreover, biological assays derived from different laboratories should never be 

considered together in discrimination/correlation studies as this can easily lead to errors 

and bias in the model. It is important to specify that BFE calculations are generally 

applied to evaluate congeneric series of compounds (ligands with similar structures) [30]; 

their accuracy is related to the dataset used and the results depend critically on the tested 

protein-ligand system [98]. Successful application in the evaluation of congeneric series 

by BFE calculations have been reported [92, 97].  

FEP and TI methods are more restricted methodologies as they can handle only small 

variation in the ligand scaffold, whereas, MM-GB(PB)SA allows for larger variation [98]. 

Different studies have evaluated the ability to correlate BFE values retrieved from MM-

GB(PB)SA approaches with experimental biological activity in case of more structurally 

dissimilar ligands, and depending on the target good correlation could be found [93].  

1.1.3.1. MM-GB(PB)SA 

Among BFE approaches, MM-GB(PB)SA has drawn interest due to its good balance 

between speed and accuracy [93-97, 106, 107]. The acronym stands for Molecular 

Mechanics/Generalized Born Surface Area (MM-GBSA) and Molecular 

Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA), where molecular mechanics 

and continuum solvent models are combined to predict the protein-ligand BFE. The 

method was established by Kollman and Case in the late 1990s [108-110] with parallel 

work by other groups [111], and it has been further developed and modified since then 

[112-114].  

The BFE calculated by MM-GB(PB)SA approaches is evaluated according to the 

Equations (3) and (4) [110]. 

 

 ∆"!"#$ = "5(,20-6 − 5"24(.-"# +	"0"7/#$6 (3) 

 

The total free energy of each term in the Equation (3) can be estimated as the sum of 

the gas-phase energy ( 711 ), the solvation free energy ( ∆"8(0 ) and the entropy 

contributions (8∆9), Equation (4). 
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 " = 711 	+ ∆"8(0 	− 	8∆9 (4) 

 

Where 711 and ∆"8(0 are computed as following: 

 

 711 = 7"#. 	+ 7-0- 	+ 	79$: (5) 

 ∆"8(0 = ";</>< 	+ "?@ (6) 

 

711 	represents the molecular mechanics free energy, which includes internal energy 

(7"#.), electrostatic energy (7-0-) and van der Waals energy (79$:). Meanwhile ∆"8(0 is 

the solvation free energy that consists of the polar contributions of the electrostatic 

solvation energy (";</><) and non-polar contributions of the non-electrostatic solvation 

energy ("?@).  

Calculating the entropy term, 8∆9, is the most time-consuming step, thus, diverse 

attempts have been made to assign its contribution, and it has been proposed that it can 

be neglected if the BFE of similar ligands is analyzed [113]. In the original MM-PBSA 

method, the entropic contribution was obtained by a normal-mode analysis, which 

calculates the vibrational frequencies using a rigid-rotor harmonic-oscillator ideal-gas 

approximation [98]. Other methods for adding the entropic contribution have been 

proposed, such as assigning an entropic penalty to the rotatable bonds in the ligand and 

the protein [115], estimating the entropy by a quasi-harmonic analysis of the MD 

trajectories [116], or calculating it only for a subset of the snapshots taken from MD 

simulations [109, 110]. It has also been suggested that computing the entropy of the ligand 

can be enough, while other studies state that it can be omitted as it does not improve the 

results in large tests [93, 98, 117]. Indeed, there are many articles in the literature that 

omit the entropy term and show good accuracy of the BFE calculations [112, 113, 118], 

and many programs neglect it by default. In the studies presented in this thesis work, the 

entropic contribution was not evaluated when BFE calculations were performed. 

1.1.3.2. Advantages and Limitations 

Although BFE calculations has shown good results in estimating binding affinity 

there are limitations, many of which are applicable to BFE in general while others are 

methods related. Some limitations have already been discussed above and will be 

summarized here.  
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A typical drawback of BFE methods is that they are rigorous but computationally 

more demanding calculations; thus, they can only be applied for tens up to hundreds of 

compounds [33]. More often such approaches are used in the lead optimization step 

because at this stage the dataset being investigated is relatively small and encompasses a 

congeneric series of compounds. Some BFE methods are faster than others; nonetheless, 

they still remain too slow and not feasible for bigger databases usually used in VS 

campaigns. Moreover, their caveat in evaluating the binding affinity of dissimilar 

scaffolds should be carefully considered when applying these methodologies in a VS 

scenario (details about VS are given in section 1.1.4). On the other hand, BFE calculations 

correlate well with experimental biological activity in case of congeneric ligands [33, 92, 

97, 119]. Because alchemical perturbation methods are based on energy perturbation, 

their accuracy is not only restricted to the use of congeneric series but also related to how 

many heavy atoms are perturbed [33, 120]; and they are more sensitive to changes in the 

net charge [98]. 

BFE methods require prior knowledge of the ligand binding mode, and their affinity 

estimation depends on the starting binding hypothesis. Thus, it is essential to have a high 

degree of confidence in the binding modes being used as input for BFE [94, 121]. Usually, 

starting ligand conformations and protein-ligand complexes are taken from docking. If 

co-crystallized complexes of similar ligands are known, this information can be used 

during docking studies to reproduce the important protein-ligand interactions and binding 

mode observed in the resolved 3D structures.  

The accuracy of the BFE estimation can vary among the methods/protocol, and not 

all of them are able to capture small differences in affinities. Despite that, promising 

results are reported in the literature [92-95, 97, 112, 118, 120, 122, 123]. For example, it 

has been reported that FEP+ (a newer implementation of FEP) was able to estimate the 

relative binding affinity with a statistical accuracy in the order of 1 kcal/mol, lower than 

the accepted force field accuracy (1.5/2 kcal/mol) [33, 120]. In another study, an average 

unsigned error of about 1.0 kcal/mol was obtained between MM-PBSA values and 

experimental data [123]. However, the results are strictly associated with the dataset and 

protein-ligand system under investigation. Additionally, even if a good correlation is 

found, it is not entirely guaranteed that the method/protocol can reliably predict the 

activity of new compounds [33, 98].  



Chapter 1: Introduction 

16   

Other potential challenges of BFE methods are the treatment of explicit water 

molecules and changes in water structure, and the approximation of the entropic 

contribution [124, 125]. 

Weaknesses aside, BFE calculations offer insights into the ligand binding affinity and 

play important roles in drug discovery [8, 126]. 

 Virtual Screening  
In the 1990s, a new approach became a cornerstone technology of pharmaceutical 

research [9]; the idea behind it was to generate billions of molecules and screen them all 

to find the right ligand that evoked the desired biological response. High-throughput 

screening (HTS) was, and still is, applied during the hit-identification stage for the search 

of new drug candidates. It requires an established assay for the target of interest along 

with a big library of synthesized compounds. After a naïve phase where HTS were widely 

applied, the use of this approach was reduced due to the combination of its high costs, 

extensive preparation and low hits rates [8, 9]. Moreover, the possibility of the identified 

hit to fail in other drug discovery and development stages highlighted the need to promote 

alternative strategies that could enhance the success rates at reduced costs and time [8, 9]. 

This led to the advent and rapid spread of virtual screening (VS) techniques, which have 

the same goal of HTS but with the potential of transforming random screening into more 

focused and integrated efforts. Indeed, knowledge about the target of interest is applied 

during VS campaigns in order to increase the hit rate by reducing the number of 

compounds to be experimentally tested. VS represents a rational, fast, and cost-effective 

pre-filtering tool widely implemented in the CADD scenario for the identification of 

novel and diverse hit structures [62, 127]. Biological evaluation of the selected virtual 

hits is carried out to confirm the activity of the compounds.  

VS approaches can be classified into two branches based on the source of information 

used: ligand-based (LB) and structure-based (SB), Figure 1.3. The LB approaches rely 

on the availability of known active ligands. Meanwhile, the SB approaches require a 3D 

protein structure of the target obtained through methods like X-ray crystallography and 

NMR spectroscopy. In case an experimental structure is not available, homology models 

can be generated based on known 3D structures of related proteins [21-23]. The two VS 

approaches can be combined.  

In both SB and LB strategies, usually large libraries of compounds are screened. 

Databases and related aspects are described in subsection 1.1.4.4.  
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Figure 1.3. Virtual Screening workflow. 

1.1.4.1. Ligand-based (LB) approaches  

LB methods have been shown to yield promising hit compounds during both hit-

identification and lead-optimization phases, either alone or in combination with SB 

approaches [128-141]. Different methods can be classified among the LB drug design 

strategies. In a VS scenario, techniques like substructures search, 2D similarity, 3D-shape 

and LB pharmacophore VS are commonly applied [127, 142-149]. These approaches rely 

on the idea that similar compounds generally show similar biological effects; a concept 

that is only partially true as even small substitutions can dramatically impact the activity 

as underlined by the “similarity paradox” described in the limitation subsection (1.1.4.5) 

[150, 151].  

In the 2D similarity and substructures search VS, a known inhibitor(s) is used as 

query for screening large databases in a very short time [144-146, 152-154]. During a 

substructure search VS, the scaffold of an active molecule, which is known to be essential 

for the activity, is used as a query while searching for possible substituents that can 

enhance the potency. This strategy is applied primarily in the hit-expansion phase of a VS 

campaign to develop a SAR around an active molecule. Otherwise, if the VS objective is 

to search for new chemotypes using known inhibitor(s), 2D similarity search can be 

carried out. In this case, first molecular fingerprints are generated and then similarity 

indices, such as the Tanimoto coefficient of similarity, are computed to compare the query 

molecule to the compounds in the screening library [145, 146]. There are several types of 

molecular fingerprints, which differ in the method used to encode the structures of the 
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molecules as sequence of bits or boolean arrays. Some widely used approaches are i) 

substructure keys-based fingerprints, e.g., Molecular ACCess System (MACCS); ii) 

circular fingerprints, e.g., Extended-Connectivity Fingerprints (ECFPs). The latter 

method is more suitable for full structure similarity searching, while the first approach is 

also used for substructure queries [155]. 

If a 3D protein of the target under investigation is available, the virtual hits obtained 

from LB screenings can be subsequently docked to attain ideas about the binding modes 

and interactions established in the binding pocket before the final selection (SB strategy, 

the reader is referred to structure-based (1.1.4.2, below) and molecular docking (1.1.1)). 

1.1.4.2. Structure-based (SB) approaches 

SB methods can be carried out when a 3D protein structure of the target is available; 

they include docking and SB-pharmacophore VS. Such approaches are performed during 

the hit-identification phase of drug discovery projects, and they have been proven 

successful in identifying micromolar binders – which can be further optimized into more 

potent compounds [128, 139, 149, 156-170]. Additionally, focused libraries are generally 

screened in the course of hit-optimization studies [171]. 

Molecular docking is the most commonly used SB method, and it is usually employed 

in a VS campaign [30, 171, 172]. Docking studies can be used to screen full databases, 

prefiltered databases, or to better analyze and prioritize hits retrieved from previously run 

VS (SB-pharmacophore and LB). Using high-throughput docking procedures, databases 

of up to 106 small molecules can be screened in a reasonable time [173]. Often only the 

top-ranked compounds are visually inspected. Based on their estimated binding affinity 

and interactions in the binding site of the target, virtual hits are selected for further in 

vitro biological evaluation using an established assay [171, 174].  

1.1.4.3. Pharmacophore modeling 

According to the IUPAC, a pharmacophore is defined as “the ensemble of steric and 

electronic features that is necessary to ensure the optimal molecular interactions with a 

specific biological target structure and to trigger (or to block) its biological response” 

[175]. Based on the research areas, other definitions have been given. For instance, 

medicinal chemists have historically described the pharmacophore as the essential 

functional groups or structural elements of a molecule that are responsible for the 

biological activity [176, 177]. However, if the classical definition is considered, it can be 
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noticed that it does not describe a real molecule or association of functional groups, 

neither specific functional groups [176]. The concept of pharmacophore is indeed more 

abstract and accounts for common molecular interactions of a group of molecules for a 

given target protein [176]. 

Pharmacophore models can be generated using a LB (ligand-based) or a SB 

(structure-based) approach [149, 178, 179] , examples can be seen in Figure 1.4. Classical 

pharmacophoric features are H-bond donors and acceptors (HBD, HBA), positive and 

negative ionizable groups (PI, NI), hydrophobic moieties (H) and aromatic rings (AR). 

LB pharmacophore models are constructed based on the 3D alignment of active 

molecules: first, the known active ligands are transformed into 3D structures, then 

conformers are generated for each ligand with the aim of providing a good approximation 

of the bioactive conformation. Subsequently, the conformers are aligned based on shared 

chemical features, and hence diverse pharmacophore models are generated which 

represent the spatial orientation of the common features. Different models can be chosen 

and tested through validation studies, in case enough information is available for carrying 

out the validation procedure [180]. Finally, the selected model(s) are used for VS.  

SB pharmacophore models can be generated only when a 3D structure of the target 

protein is available [179]. They mainly rely on the use of a protein-ligand complex as the 

source of the interaction patterns to assign the pharmacophoric features. Such models 

reflect the information about the bioactive conformation of the active ligand, the binding 

interactions between the ligand and the protein, and the shape restrictions of the binding 

pocket since exclusion volumes can be implemented [149, 177]. Additionally, SB 

pharmacophore models can be constructed using an apo form protein structure [181-183]. 

Nevertheless, because this approach misses the concept behind the pharmacophore 

(molecular interactions information retrieved from the ligand), it is rarely employed. 

Recently, another strategy has emerged for the generation of SB pharmacophore models 

which rely on the use of MD simulations of a protein-ligand complex [182-188]. The MD 

trajectory is decomposed and each inputted snapshot is treated as separate entities for the 

generation of pharmacophore models. Hence, the evolution of the features over time can 

be analyzed, as well as their occupancy. Similar to LB pharmacophore modeling, 

validation studies are performed to evaluate the performance of the generated SB 

pharmacophore models before using them in VS campaigns [180]. 

Pharmacophore modeling is commonly applied in VS campaigns and is considered a 

valuable tool for drug discovery projects [10, 149, 189, 190].  
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Figure 1.4. Examples of pharmacophore modeling. On the left is depicted a pharmacophore model 
generated on a set of known inhibitors, while on the right by using a protein-ligand complex. The 
yellow spheres represent hydrophobic features, red spheres hydrogen-bond acceptor, green 
arrows/spheres hydrogen-bond donor and the blue spheres positive ionizable features. The excluded 
volumes are indicated as grey spheres. 

1.1.4.4. Databases  

Virtual chemical databases are essential for all VS approaches as they represent the 

source of potential hit compounds. There is a big variety of public and private libraries, 

such as ChemBridge [191], ChemDiv [192], Enamine [193], IBScreen [194], Sigma-

Aldrich [195], Princeton [196], Cayman [197], Maybridge [198], Prestwick [199], Otava 

[200], etc. The databases can be generic libraries covering large sets of compounds or 

contain focused and targeted compounds (designed for a specific target and/or containing 

certain features), as well as already filtered molecules based on drug-like and lead-like 

properties or favorable physicochemical properties. Moreover, libraries of approved 

drugs are also available for a drug repositioning strategy [203], e.g., the DrugBank 

database which contains FDA-approved drugs [204]. It should be emphasized that the 

libraries to use in a VS campaign must fit the goal of the project. For instance, to identify 

novel scaffolds for new or relatively unexplored targets, chemically diverse databases are 

particularly attractive. If the purpose of the VS is lead optimization, then chemical 

libraries with high intermolecular similarity are a more suitable source [66]. 

Already in the era 1992–1995, there were debates over how large the total space of 

molecules is and how the libraries could properly sample that space [9]. To cope with the 

demands of bigger databases, different vendors provide virtual libraries of billions of 

compounds [205]. As an example, Enamine offers the REAL Space database that 



Chapter 1: Introduction 

   21 

comprises 14.1 billion make-on-demand molecules and is currently the most extensive 

library of commercially available compounds [206]. Very recently, a new trend has 

emerged which favors the use of ultra-large databases in VS with the idea that by covering 

a bigger chemical space, the chance of finding novel inhibitors increases [207-210]. On 

the other hand, a viewpoint published in the "New Trends in Virtual Screening" special 

issue of the Journal of Chemical Information and Modeling tried to counterbalance this 

tendency by highlighting small-scale VS campaigns that led to the discovery of clinical 

candidates [211].  

Filters, which serve to reduce the number of compounds to be screened, are often 

applied either during the database preparation or in the refinement of the database prior 

to the VS [212]. Based on the target, substructure filters can be applied to generate 

focused libraries containing only molecules with desired chemical features or fragments 

which are known to be essential for the activity. Typical filters are based on the 

physicochemical properties of the compounds like the Lipinski’s rule of five for drug-

likeness [213], Oprea’s criteria for lead-likeness [214], or on the reactivity of the 

molecules like the REOS (rapid elimination of swill) filter [215]. Another frequently 

applied filter is the PAINS (pan-assay interference compounds) filter, which identifies 

functional groups and scaffolds of biologically promiscuous compounds known to be 

non-specific and active against numerous proteins [216-218]. However, PAINS were 

found among 6–7% of approved drugs [219, 220]; hence some concerns have been raised 

about the use of PAINS filters as they can lead to discarding high-quality chemical probes 

and drug candidates [221]. The same happens for some approved drugs, like antibiotics, 

which fall outside the rule of five for drug-likeness [66, 222]. Therefore, another strategy 

is to not discard but to flag those compounds that do not pass these filters. Unsuitable 

compounds could instead be discarded while analyzing the results of the VS bearing in 

mind that screening hits in general are only starting points which will further undergo 

optimization steps. Thus, some functional groups can be replaced or removed, and 

physicochemical properties can be optimized in subsequent steps. 

Although numerous databases are available online, there are cases in which custom-

made libraries are needed, for example to explore potential chemical modifications that 

can enhance the activity and physicochemical properties of a validated hit. In this context, 

virtual focused libraries can be designed in-house using a confirmed scaffold and 

programs that can suggest novel derivatives for the synthesis according to synthetic and 

parametric considerations [171, 223]. 
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1.1.4.5. Limitations and Perspectives  

Even though VS might be considered a probabilistic game or challenging like finding 

needles in haystacks, it is largely applied and with success. To enhance its odds, it is 

important to plan the steps carefully and to consider current limitations and pitfalls [66, 

172]. 

The “similarity paradox” encompasses the notion that minor chemical modifications 

can render the molecules either active or inactive. This was for example observed for the 

monoamine oxidase inhibitor pargyline, where only an additional methyl group could 

lead to a complete loss in inhibitory activity [150, 151]. Therefore, selecting only one or 

a few representative ligands from a series of similar compounds might turn a successful 

VS into a failure based on the selected molecules. To avoid such a potential problem, it 

is advisable to select more representative ligands for the biological evaluation and/or 

analyze the interactions established at the binding pocket (binding modes predicted by 

docking) to better evaluate the virtual hits and understand which modification might be 

beneficial for the activity. Inevitably VS yields active and inactive compounds, but the 

rationalization of the results can help to explain its successes and guide the optimization 

studies [30]. Besides, considering that the primary objective of VS is to increase the 

number of hits compared to a random selection and that it is applied to screen large 

chemical databases, errors are commonly expected and tolerated [66]. 

An aspect that might be seen as a drawback of VS is that the hits retrieved are 

generally active only in the μM range [66, 172], and optimization studies are needed to 

improve the activity and other properties [224]. This should be further contextualized, as 

not all weak hits are the same. Indeed, the discovery of other weakly active ligands might 

be questionable in the case of a well-known target, for which numerous potent inhibitors 

active have already been reported. By contrast, in the case of novel targets for which only 

little information is available, weakly or borderline active VS hits can be considered 

valuable resources [172]. 

The quality of the derived hits is an additional issue concerning VS results as 

numerous studies report promiscuous binders and assay-interfering molecules, or often 

experimental evaluation is not consistent [66, 172]. This can be in part easily resolved by 

checking if the hits fall into the PAINS filters and then, based on the target, decide 

whether to test the compounds or not. Again, in case there are no reported inhibitors, it 

might be worthwhile to have low-quality starting points. Regarding the experimental 

evaluation, validation of the virtual hits through biological tests is essential and should 
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always be performed. This might seem obvious; nevertheless, publications that lack 

biological assays are present in literature [143, 172]. 

Further pitfalls are method validation and benchmark studies [66, 143, 172]. It can 

be difficult to validate the protocols, either because it is an intrinsic challenge of the 

method itself (e.g., for similarly and substructure search) or because the information 

needed for validation studies is not yet available. Contrariwise, in the case of 

pharmacophore and docking VS, if there are known active and inactive compounds, it is 

highly recommended to evaluate and validate the ability of the protocol to discriminate 

between active and inactive ligands before running the VS campaigns.  

Lastly, the structural novelty of the identified hits is another limitation that has been 

raised since the “rediscovery” of previously known or very similar active compounds by 

VS is reported [129, 172]. To avoid such cases, resources like CAS SciFinder [225] and 

PubChem [226] can be applied to evaluate if the identified VS hits are outside the current 

scientific and patent space for the target being screened.  

Despite the limitations mentioned above, VS techniques are valuable resources for 

finding new hit molecules and exploring the chemical space around the hits.  

 Relevance of the investigated protein targets 
In the following sections, the protein targets investigated in this work are described. 

For each target, the physiological roles, the implications in pathological conditions, as 

well as the available inhibitors, are introduced. 

 Spindlin1  
Epigenetics is the study of heritable changes in gene activity and expression that 

occur without alteration in the DNA sequence. These non-genetic alterations are tightly 

regulated by two major epigenetic modifications: chemical modifications of cytosine 

residues located in the DNA (DNA methylation) and histone modifications, referred to as 

post-translational modifications (PTMs) of histone tails [227, 228]. Three groups of 

proteins play a role in the PTMs and are classified as writers, erasers and readers, which 

respectively introduce, remove and recognize specific modifications. Typical 

modifications that alter the chromatin structure by adding chemical groups on the histone 

tails are acetylation, methylation, phosphorylation, sumoylation and ubiquitinylation 

[229]. Additionally, reader proteins are recruited at the histone tail to read the marker and 

guide further downstream signaling cascades [230-233]. 
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A growing interest in epigenetic mechanisms has led to the recognition that PTMs 

mechanisms contribute to the genesis and development of several human diseases, most 

importantly cancer, diabetes and neurodegenerative diseases [234]. Up to date, only 

histone deacetylase inhibitors have been approved by the FDA [235-237]. Meanwhile, 

other fields of epigenetics have not yet been sufficiently investigated, although they 

comprise some highly attractive biological targets for the field of drug discovery.  

Spindlin1 is a relatively newly identified chromatin reader protein, which is 

composed of three Tudor domains (Figure 1.5). It recognizes the H3K4me3 (H3 

trimethylated at lysine 4) and H4K20me3 (H4 trimethylated at lysine 20) marks. While 

the recognition of H3K4me3 by Spindlin1 has been more examined [238-240], its 

interaction with H4K20me3 has been recently described and further studies are needed to 

investigate the biological relevance and functions correlated to it [241, 242]. Moreover, 

the binding of the H4K20me3 histone mark displays a weaker affinity than that of 

H3K4me3; thus, it has been postulated that the H4K20me3 mark may act as a secondary 

substrate for Spindlin1 [242].  

Up to date, 15 crystal structures of Spindlin1 have been deposited in the PDB [19, 

243], which comprise apo form crystal structure [244], as well as holo forms in complex 

with histone peptides [239, 240, 242, 245, 246] and inhibitors [247-249]. The latter 

structures have been resolved in the last three years. In Figure 1.5 is depicted the crystal 

structure of Spindlin1 in complex with H3K4me3 (PDB ID: 4H75 [239]). The analysis 

of the crystal structures, together with mutagenesis studies of some residues of the first 

and second Tudor domains, clearly showed that the second domain is responsible for the 

recognition of the trimethylated lysine [239, 240, 242, 250]. In particular, a so-called 

aromatic cage formed by four aromatic residues (Phe141, Trp151, Tyr170, Tyr177) binds 

the trimethylated lysine through cation-pi interactions and van der Waals contacts 

(Figure 1.5). Meanwhile, the first domain can bind to asymmetrically dimethylated 

arginine residues (Rme2a) and to positive nitrogen moieties of bivalent inhibitors, which 

simultaneously bind to the first and second domains. Of note, the interaction with Rme2a 

displays different effects on the histone peptide affinity: it increases the affinity for 

H3K4me3 (H3K4me3R8me2a), whereas, decreases the binding affinity of H4K20me3 

(H4K20me3R23me2a) [240, 242]. Very recently, another bivalent methylation pattern on 

H3 has been described, namely H3K4me3K9me3/2. The study reported that by binding 

to the first domain, the trimethylation and demethylation of lysine 9 enhances the histone 

affinity of H3K4me3 [251]. 
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Figure 1.5. Crystal structure of Spindlin1 in complex with H3K4me3, PDB ID: 4H75. Only the side 
chains of the surrounding residues are shown for clarity, and they are displayed as sticks. Hydrogen 
bonds are represented as dashed yellow lines and cation-pi interactions as dashed green lines.  

Spindlin1 has been related to several types of malignant tumors, including ovarian 

cancer, non-small-cell lung cancers, breast cancer and triple-negative breast cancer, 

liposarcoma and very recently to liver cancer [250, 252-256]. Likewise, a study 

established that Spindlin1, which is negatively regulated by the miR-148/152 family, 

enhances adriamycin-resistance, thus linking Spindlin1 to drug-resistant breast cancer 

[257]. Additionally, it has been reported that spindlin1 may play a role in tumorigenesis, 

and was proposed to be a proto-oncogene [258-262]. Diverse signaling pathways have 

been associated with some of the Spindlin1 functions mentioned above, such as Wnt [240, 

263], PI3K/Akt [253], RET [250], uL18-MDM2-p53 [261] pathways and SREBP1c-

triggered FASN signaling [256]. Besides, Spindlin1 was found to control skeletal muscle 

development in mice and to be involved in the first meiotic division of mammalian 

oocytes. Accordingly, Spindlin1 is also potentially related to human skeletal muscle 

diseases and human infertility [264, 265].  

Owing to the associations of Spindlin1 to diverse pathological conditions, it can be 

considered as an interesting target for therapeutic purposes, which, however, needs to be 

further investigated. Consequently, a growing interest in this reader protein has arisen, 

which has led to the identification of several inhibitors in recent years. In 2016, A366 –a 
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previously described G9a inhibitor (IC50: 3.3 nM (AlphaLISA), [266])– was reported as 

the first Spindlin1 inhibitor discovered using a screening platform (IC50: 186.3 nM 

(AlphaLISA), [267]). Applying the same approach in the screening of an epigenetic 

compound library, followed by optimization studies, other inhibitors have been reported 

in 2019, such as the fragment-like inhibitor MS31 (IC50 of 77 nM (AlphaLISA) and 243 

nM (fluorescence polarization), [249]). Bae et al. presented the first study describing the 

development of bivalent inhibitors through protein microarrays [247]; as an example, 

compound EML631 (Kd of 3 μM) is shown in Figure 1.6 alongside with A366 and 

MS31. Lately, starting from A366 other bivalent inhibitors have been developed [248]. 

 
Figure 1.6. Chemical structures of the inhibitors mentioned in the text. 
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Our efforts in finding novel Spindlin1 inhibitors, in investigating a congeneric series 

of A366 analogs, as well as in studying the binding pocket plasticity resulted from this 

Ph.D. thesis are reported in chapter 3.  

 Acetylcholinesterase and Butyrylcholinesterase 
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are two esterase 

enzymes that belong to the cholinesterase family, and they are responsible for terminating 

the cholinergic signal transmission through the hydrolysis of choline esters [268]. 

Although the two enzymes have similar catalytic properties, they show different cellular 

and extracellular distributions [269]. AChE is highly selective for the hydrolysis of 

acetylcholine, and it is mainly found in chemical synapses of the central and peripheral 

nervous systems and in the membranes of erythrocytes [269, 270]. This renders AChE a 

key regulator of cholinergic neurotransmission. On the other hand, BChE is a nonspecific 

cholinesterase enzyme that hydrolyzes many different choline-based esters, as well as 

neuroactive peptides, and it is present in the blood plasma at high concentrations [269, 

271]. Because BChE does not have an endogenous substrate, its physiological role is not 

totally clear unless for its well-recognized function as metabolizer of bioactive esters in 

the diet and drugs [272]. Recently, BChE has been found to have an important role in 

regulating the peptide hormone ghrelin in mice; a hormone also called “hunger hormone”, 

which affects not only appetite and weight gain but also emotional states, fear, anxiety 

and aggression [273]. It has also been proposed that BChE may act as a backup enzyme 

for AChE since it is a co-regulator of acetylcholine levels in the human brain [271, 274]. 

The correlation of AChE and BChE to human diseases is well known, as the 

dysregulation of cholinergic signaling has been linked to several pathological conditions, 

including myasthenia gravis, glaucoma and Alzheimer’s disease (AD) [275-277]. In the 

context of AD, two main events play a role in its onset and progression, which are the 

formation of amyloid β (Aβ) plaques and a decrease of cholinergic signaling, due to 

degeneration of cholinergic neurons, associated with low levels of acetylcholine [271, 

278]. The cholinergic signaling is important in cognition, and consequently AD patients 

show cognitive, functional and behavioral symptoms. Therefore, the first therapeutic line 

for AD is to treat its symptoms by increasing the levels of acetylcholine through AChE 

inhibitors [271]. Numerous AChE inhibitors have been developed; donepezil, 

galantamine and rivastigmine are three FDA-approved drugs for the treatment of AD 

(Figure 1.6) – galantamine and rivastigmine are approved for mild-to-moderate stages, 

whereas donepezil for all stages of AD [271, 279, 280]. Donepezil and galantamine 
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compete with acetylcholine for the AChE binding, and they act as reversible inhibitors. 

Meanwhile, rivastigmine forms a covalent adduct in the AChE catalytic pocket, and it is 

classified as a “pseudo-irreversible” AChE inhibitor [279]. In addition to the cholinergic 

activity, various studies demonstrated that AChE inhibitors are also able to prevent Aβ 

oligomerization to some extent [281]. However, these inhibitors, as well as the other 

FDA-approved drugs for the treatment of AD (memantine, an N-methyl D-aspartate 

(NMDA) receptor antagonist prescribed to improve memory and attention; and a 

combination of donepezil and memantine), can only reduce and slow down the symptoms, 

but they cannot delay or stop its progression [271, 280].  

Interestingly, donepezil and galantamine selectively inhibit AChE, while 

rivastigmine is a dual cholinesterase inhibitor that targets both AChE and BChE [282]. 

Several studies have supported the use of dual inhibitors in the treatment of neurological 

disorders [269, 282]; consequently, efforts have been made in the development of 

reversible dual AChE-BChE inhibitors [283-285]. Considering also that the drugs 

currently approved for AD have limited therapeutic efficacy and several side effects, the 

discovery of novel cholinesterase inhibitors is still an attractive area of research. Our 

contribution in this field is reported in chapter 3.5. 

In Figure 1.7 are illustrated the crystal structures of human AChE in complex with 

donepezil (PDB ID: 6O4W [286]) and human BChE with tacrine (PDB ID: 4BDS [287]). 

The latter inhibitor is a previously FDA-approved drug for the treatment of AD, which 

was withdrawn from use in 2013 because of concerns over safety [288]. The 2D structure 

of tacrine is reported in Figure 1.6. AChE and BChE share 65% sequence identity, and 

they show a similar tertiary structure [269, 271]. The binding pockets of both enzymes 

present a deep groove (gorge), composed of aromatic residues, that gives access to the 

active site and shape the pocket. At the bottom of the gorge is located the catalytic active 

site (CAS), which encompasses the conserved catalytic triad (His, Ser and Glu) and other 

residues that differ based on the cholinesterase and the species. At the top of the gorge, 

the peripheral anionic binding site (PAS) acts as the entrance and guides the substrate 

down [271]. BChE shows a larger PAS since it contains smaller amino acids than in 

AChE, e.g., Ala (A277 in hBChE) substitutes Trp (W286 hAChE and W297 in TcAChE). 
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Figure 1.7. Crystal structures of human cholinesterases. AChE (white) and BChE (green) in complex 
with donepezil (orange sticks) and tacrine (yellow sticks), respectively. PDB IDs: 6O4W (AChE) and 
4BDS (BChE). Only the side chains of the surrounding residues are shown for clarity and they are 
displayed as sticks; for residue F295 (AChE) the main chain is shown. Binding interactions are 
represented with dashed lines colored in green (cation-pi), cyan (pi-pi stacking) and yellow (hydrogen 
bond). 

 Metalloproteinases: Neprilysin and Matrix 
metallopeptidase-14 

Other targets that have been investigated in this thesis work are members of the 

metalloproteinase family, a big family of enzymes that uses metal ions for the catalytic 

mechanism and to which all protease enzymes belong. The metalloproteinases are further 

divided into two subgroups, exopeptidases (metalloexopeptidases) and endopeptidases 
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(metalloendopeptidases) [289]. Neprilysin and Matrix metallopeptidase-14 are both 

members of the endopeptidase subfamily. 

1.2.3.1. Neprilysin  

Neprilysin is also known as membrane metallo-endopeptidase (MME) or neutral 

endopeptidase (NEP). It is a type-II integral membrane zinc-containing endopeptidase, 

which is involved in the extracellular catabolism of numerous bioactive peptides, 

including enkephalins, substance P, endothelin, bradykinin and atrial natriuretic factor 

peptide [290, 291]. Due to its physiological implications, NEP has been a focus of interest 

in the field of analgesics, anti-hypertensive and heart failure drugs [291-293]. First 

attempts in the discovery of NEP inhibitors resulted in the development of diverse 

candidates for the treatment of hypertension and heart failure, the use of which in the long 

term showed that the initial reduction in blood pressure was not sustained [293]. This 

effect has been linked to another physiological role of NEP. Indeed, it has been found that 

NEP also breaks down the peptide angiotensin II. Thus, the inhibition of NEP alone also 

leads to increasing the levels of angiotensin II, which in turn counterbalances the actions 

of the natriuretic peptide [293]. Consequently, to overcome this limitation dual inhibitors 

have been proposed that simultaneously bind to NEP and angiotensin-converting enzyme. 

Another strategy, which has been successful and resulted in an FDA-approved drug 

(sacubitril/valsartan) for the treatment of heart failure, is the combination of NEP and 

ACE inhibitors [293]. In Figure 1.6 is reported the NEP inhibitor sacubitrilat, the active 

form of the prodrug sacubitril, while the 3D structure of NEP in complex with sacubitrilat 

is represented in Figure 1.9 (PDB ID: 5JMY, [294]).  

Apart from the above-mentioned implications, NEP has also been found to degrade 

components of the elastic fiber system [295, 296] and it has been postulated that NEP 

may play a crucial role in wrinkle formation through the degradation of dermal elastic 

fibers [296, 297]. Moreover, the up-regulation and overexpression of NEP in mice 

exposed to UV and under skin aging has been associated with impairment of the elastic 

fiber network and subsequent loss of skin elasticity [297]. Our contribution in 

understanding the cleavage behavior of NEP on human skin elastin is reported in chapter 

3.6. 
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Figure 1.8. Crystal structure of NEP in complex with sacubitrilat (PDB ID: 5JMY). Only the side 
chains of the surrounding residues are shown for clarity and they are displayed as light pink sticks, 
whereas the inhibitor is colored in green. The zinc ion is shown as a grey sphere, and the hydrogen 
bonds are represented as dashed yellow lines. 

1.2.3.2. Matrix metallopeptidase-14 

Matrix metallopeptidases (MMPs) are also known as matrix metalloproteinases or 

matrixins, and they are a large group of zinc- and calcium-dependent endopeptidases that 

regulate several connective tissue remodeling processes [298]. For instance, owing to 

MMPs’ ability to degrade extracellular matrix proteins, including collagens, 

proteoglycans, fibronectin, laminin and elastin, MMPs are known to be involved in 

embryonic development, pregnancy, growth and wound healing [299]. Furthermore, 

MMPs have been associated with processes like vascular remodeling and angiogenesis 

[300].  

In physiological conditions, the activity of MMPs is further controlled by endogenous 

specific tissue inhibitors, namely TIMPs (tissue inhibitors of metalloproteinases) [301]. 

As an example, the crystal structure of MMP-14 in complex with TIMP-1 is depicted in 

Figure 1.9 (PDB ID: 3MA2, [302]). The dysregulation of the MMPs-TIMPs balance has 

been linked to different pathological conditions such as pulmonary emphysema, 

rheumatoid arthritis, atherosclerosis, myocardial infarction, as well as tumor growth and 

metastasis [301, 303]. Additionally, the overexpression of MMPs has also been related to 
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diseases like periodontitis, hepatitis, autoimmune disorders of the skin and dermal 

photoaging [304, 305]. Due to their implication in pathological disorders, MMPs are 

considered as potential drug targets [305-307]. Thus, efforts have been made in the 

discovery of MMPs inhibitors, which, unfortunately, have not led to encouraging 

outcomes as most of the clinical trials highlighted severe side effects of MMPs inhibitors 

related to their poor selectivity for a specific MMP [308, 309]. Nevertheless, one inhibitor 

has been approved by the FDA and it is on the market for the treatment of periodontal 

disease [308]; namely the known antibiotic doxycycline (Figure 1.6). 

Among the 28 MMPs know so far, our interest was set on MMP-14 in order to 

characterize its cleavage behavior on human skin elastin and to compare it with other 

MMPs that are known to cleave elastin, like MMP-7, MMP-9 and MMP-12. Indeed, even 

though it has been suggested that MMP-14 plays a central role in macrophage-mediated 

elastin degradation [310], its association with human elastin was not yet been described, 

unlike for other MMPs [311-313]. A detailed comparison of the pockets of the MMPs 

under our analysis, as well as our findings, is reported in chapter 3.7.  

 
Figure 1.9. Crystal structure of MMP-14 (green) in complex with TIMP-1 (yellow). The metal ions 
are shown as spheres, respectively in grey (zinc) and hot pink (calcium). 
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2. AIM OF THE WORK  

The studies described in this thesis aim to apply computational approaches to drug 

discovery and design projects to identify new inhibitors, rationalize their activity, get 

insight into protein flexibility, and investigate the binding mode of small molecules and 

peptides. A special focus is given to proteins with flexible binding sites for which 

traditional computational approaches often fail. Different computational techniques are 

evaluated based on the project and related challenges, including structure-based 

pharmacophore modeling, VS, docking (classical rigid-body docking and flexible 

docking), MD simulations and MM-GBSA calculations. 

To search for new Spindlin1 inhibitors, an iterative VS campaign encompassing 

structure- and ligand-based approaches is conducted, followed by lead optimization 

studies (chapter 3.1 and chapter 3.2). Knowing the potential flexibility of the aromatic 

cage, the focus is set to study the conformational changes of the pocket by structural 

analysis and MD simulations. Another aim is to establish a relatively fast protocol able 

to rightly predict the binding mode of small molecule ligands in flexible binding pockets 

(chapter 3.3). Lastly, in an effort to improve the activity and explore the SAR of the 

Spindlin1 inhibitor A366, a series of 21 derivatives is investigated by means of molecular 

modeling tools like docking, MD simulations and MM-GBSA calculations (chapter 3.4).  

In chapter 3.5, computational methods are implemented to support the discovery of 

dual inhibitors of AChE and BChE as well as inhibitors showing a preferential inhibition 

of AChE over BChE. In this project, docking and MM-GBSA are applied to predict the 

binding mode, rationalize the biological activity and identify the structural features that 

affect the activity of our series.  

Finally, computer-based approaches are applied in chapter 3.6 and chapter 3.7 to 

explore and rationalize from a structural point of view the cleavage behavior of NEP, 

MMP-14 and other MMPs on specific human elastin fibers. The binding mode of the 

peptides is investigated, and an analysis and comparison of the MMPs pockets under 

investigation is performed. 

Overall, the global aim is to integrate CADD methods in the academic pipeline; 

hence, successful examples of collaboration among different research fields are shown. 
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3. RESULTS 

In this chapter are presented the abstracts of seven manuscripts relevant to this thesis 

work. The full texts with the relative supporting information, and a book chapter that 

covers lysine reader proteins, are given in the Appendices. 

 Identification and Structure–Activity Relationship 
Studies of Small-Molecule Inhibitors of the Methyllysine 
Reader Protein Spindlin1  

 

D. Robaa, T. Wagner, C. Luise, L. Carlino, J. McMillan, R. Flaig, R. Schüle, 

M. Jung, W. Sippl 

ChemMedChem, 11, 2327-2338, 2016 

DOI: 10.1002/cmdc.201600362 

 

The methyllysine reader protein Spindlin1 has been implicated in the tumorigenesis 

of several types of cancer and may be an attractive novel therapeutic target. Small-

molecule inhibitors of Spindlin1 should be valuable as chemical probes as well as 

potential new therapeutics. We applied an iterative virtual screening campaign, 

encompassing structure- and ligand-based approaches, to identify potential Spindlin1 

inhibitors from data- bases of commercially available compounds. Our in silico studies 

coupled with in vitro testing were successful in identifying 

novel Spindlin1 inhibitors. Several 4-aminoquinazoline and quinazolinethione 

derivatives were among the active hit com- pounds, which indicated that these scaffolds 

represent promising lead structures for the development of Spindlin1 inhibitors. 

Subsequent lead optimization studies were hence carried out, and numerous derivatives 

of both lead scaffolds were synthesized. This resulted in the discovery of novel inhibitors 

of Spindlin1 and helped explore the structure–activity relationships 
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 Application of Virtual Screening Approaches for the 
Identification of Small Molecule Inhibitors of the 
Methyllysine Reader Protein Spindlin1 

 

C. Luise and D. Robaa 

Rational Drug Design. Methods in Molecular Biology, 1824, 347-370, 2018 

DOI: 10.1007/978-1-4939-8630-9_21 

 

Computer-based approaches represent a powerful tool which helps to identify and 

optimize lead structures in the process of drug discovery. Computer-aided drug design 

techniques (CADD) encompass a large variety of methods which are subdivided into 

structure-based (SBDD) and ligand-based drug design (LBDD) methods. Several 

approaches have been successfully used over the last three decades in different fields. 

Indeed also in the field of epigenetics, virtual screening (VS) studies and structure-based 

approaches have been applied to identify novel chemical modulators of epigenetic targets 

as well as to predict the binding mode of active ligands and to study the protein dynamics. 

In this chapter, an iterative VS approach using both SBDD and LBDD methods, which 

was successful in identifying Spindlin1 inhibitors, will be described. All protocol steps, 

starting from structure-based pharmacophore modeling, protein and database preparation 

along with docking and similarity search, will be explained in details. 
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 Exploring aromatic cage flexibility of the histone 
methyllysine reader protein Spindlin1 and its impact on 
binding mode prediction: an in silico study  

 

C. Luise, D. Robaa, W. Sippl  

Journal of Computer-Aided Molecular Design, 35, 695-706, 2021 

DOI: 10.1007/s10822-021-00391-9 

 

Some of the main challenges faced in drug discovery are pocket flexibility and 

binding mode prediction. In this work, we explored the aromatic cage flexibility of the 

histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction 

by means of in silico approaches. We first investigated the Spindlin1 aromatic cage 

plasticity by analyzing the available crystal structures and through molecular dynamic 

simulations. Then we assessed the ability of rigid docking and flexible docking to rightly 

reproduce the binding mode of a known ligand into Spindlin1, as an example of a reader 

protein displaying flexibility in the binding pocket. The ability of induced fit docking was 

further probed to test if the right ligand binding mode could be obtained through flexible 

docking regardless of the initial protein conformation. Finally, the stability of generated 

docking poses was verified by molecular dynamic simulations. Accurate binding mode 

prediction was obtained showing that the herein reported approach is a highly promising 

combination of in silico methods able to rightly predict the binding mode of small 

molecule ligands in flexible binding pockets, such as those observed in some reader 

proteins. 
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The chromatin reader protein Spindlin1 plays an important role in epigenetic 

regulation, through which it has been linked to several types of malignant tumors. In the 

current work, we report on the development of novel analogs of the previously published 

lead inhibitor A366. In an effort to improve the activity and explore the structure–activity 

relationship (SAR), a series of 21 derivatives was synthesized, tested in vitro, and 

investigated by means of molecular modeling tools. Docking studies and molecular 

dynamics (MD) simulations were performed to analyze and rationalize the structural 

differences responsible for the Spindlin1 activity. The analysis of MD simulations shed 

light on the important interactions. Our study highlighted the main structural features that 

are required for Spindlin1 inhibitory activity, which include a positively charged 

pyrrolidine moiety embedded into the aromatic cage connected via a propyloxy linker to 

the 2-aminoindole core. Of the latter, the amidine group anchor the compounds into the 

pocket through salt bridge interactions with Asp184. Different protocols were tested to 

identify a fast in silico method that could help to discriminate between active and inactive 

compounds within the A366 series. Rescoring the docking poses with MM-GBSA 

calculations was successful in this regard. Because A366 is known to be a G9a inhibitor, 

the most active developed Spindlin1 inhibitors were also tested over G9a and GLP to 

verify the selectivity profile of the A366 analogs. This resulted in the discovery of diverse 

selective compounds, among which 1s and 1t showed Spindlin1 activity in the nanomolar 

range and selectivity over G9a and GLP. Finally, future design hypotheses were 

suggested based on our findings.  

 

.  
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By analogy with the natural product chelerythrine, which has been identified as an 

inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), we 

prepared a small series of 8-hydroxy-2,7- naphthyridin-2-ium salts. Spectroscopic 

analyses allowed us to elucidate the zwitterionic nature of 2,7- naphthyridin-1Ĳ7H)-ones, 

the neutral state of 8-hydroxy-2,7-naphthyridin-2-ium salts. Among the tested 

compounds, we identified dual inhibitors of AChE and BChE as well as an inhibitor 

showing a preferential inhibition of AChE over BChE. By in vitro characterization in 

combination with docking studies, we were able to identify structural features that 

influence the biological activity of 8-hydroxy-2,7-naphthyridin-2-ium salts. 
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Biochimie, 146, 73-78, 2018  

DOI: 10.1016/j.biochi.2017.11.018  

 

Neprilysin is also known as skin fibroblast-derived elastase, and its up-regulation 

during aging is associated with impairments of the elastic fiber network, loss of skin 

elasticity and wrinkle formation. However, information on its elastase activity is still 

limited. The aim of this study was to investigate the degradation of fibrillar skin elastin 

by neprilysin and the influence of the donor’s age on the degradation process using mass 

spectrometry and bioinformatics approaches. The results showed that cleavage by 

neprilysin is dependent on previous damage of elastin. While neprilysin does not cleave 

young and intact skin elastin well, it degrades elastin fibers from older donors, which may 

further promote aging processes. With regards to the cleavage behavior of neprilysin, a 

strong preference for Gly at P1 was found, while Gly, Ala and Val were well accepted at 

P10 upon cleavage of tropoelastin and skin elastin. The results of the study indicate that 

the progressive release of bioactive elastin peptides by neprilysin upon skin aging may 

enhance local tissue damage and accelerate extracellular matrix aging processes. 
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 MMP-14 degrades tropoelastin and elastin 
 

N. Miekus, C. Luise, W. Sippl, T. Baczek, C.E.H. Schmelzer, A. Heinz 

Biochimie, 165, 32-39, 2019  

DOI: 1016/j.biochi.2019.07.001 

 

Matrix metalloproteinases are a class of enzymes, which degrade extracellular matrix 

components such as collagens, elastin, laminin or fibronectin. So far, four matrix 

metalloproteinases have been shown to degrade elastin and its precursor tropoelastin, 

namely matrix metalloproteinase-2, -7, -9 and -12. This study focuses on investigating 

the elastinolytic capability of membrane-type 1 matrix metalloproteinase, also known as 

matrix metalloproteinase-14. We digested recombinant human tropoelastin and human 

skin elastin with matrix metalloproteinase-14 and analyzed the peptide mixtures using 

complementary mass spectrometric techniques and bioinformatics tools. The results and 

additional molecular docking studies show that matrix metalloproteinase-14 cleaves 

tropoelastin as well as elastin. While tropoelastin was well degraded, fewer cleavages 

occurred in the highly cross-linked mature elastin. The study also provides insights into 

the cleavage preferences of the enzyme. Similar to cleavage preferences of matrix 

metalloproteinases-2, -7, -9 and -12, matrix metalloproteinase-14 prefers small and 

medium-sized hydrophobic residues including Gly, Ala, Leu and Val at cleavage site P1’. 

Pro, Gly and Ala were preferably found at P1-P4 and P20-P40 in both tropoelastin and 

elastin. Cleavage of mature skin elastin by matrix metalloproteinase-14 released a variety 

of bioactive elastin peptides, which indicates that the enzyme may play a role in the 

development and progression of cardiovascular diseases that go along with elastin 

breakdown. 
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4. SUMMARY AND 
CONCLUSIONS 

In chapter 3, the results of our efforts to apply computer-based methods in drug 

discovery projects are given in details. Several approaches were employed to identify and 

study small-molecule inhibitors and peptides. In this chapter, a summary of the results 

with an emphasis on the techniques used, the main achievements as well as the related 

challenges and limitations is given. Furthermore, general conclusions and perspectives 

are provided. 

 Application of computer-based methods to search and 
investigate Spindlin1 inhibitors 

To search for new Spindlin1 inhibitors, computer-based methods such as structure-

based pharmacophore modelling, VS, rigid-body and flexible docking, MD simulations 

and MM-GBSA calculations were applied.  

Firstly, an iterative VS campaign, encompassing structure- and ligand-based 

approaches, was conducted based on the peptide binding mode and then on the first 

validated hits. Subsequently, lead optimization studies were carried out. This led to the 

synthesis of numerous derivatives in order to obtain compounds with improved inhibitory 

activities and to deduce the SAR of these new series of Spindlin1 inhibitors (chapter 3.1 

and chapter 3.2). Furthermore, knowing that the aromatic cage of the reader proteins can 

undergo conformational changes, special attention was given to the structural flexibility. 

Hence, MD simulations and induced fit docking were performed to gain insight into the 

binding site flexibility and binding mode prediction (chapter 3.3). Finally, with the 

availability of a co-crystal structure of Spindlin1 in complex with A366, the binding mode 

of an in-house congeneric series of A366 derivatives was investigated via MD 

simulations, docking and MM-GBSA calculations (chapter 3.4).  
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 Identification of novel Spindlin1 inhibitors through an 
iterative VS campaign followed by optimization studies 

The main objective of this part of the work was to discover novel Spindlin1 inhibitors 

from databases of commercially available compounds through in silico techniques 

(chapter 3.1) and to provide insights and all protocol steps of a VS campaign (chapter 

3.2). 

At the beginning of the study, no Spindlin1 inhibitors were reported, and only crystal 

structures in apo form and holo forms in complex with histone peptides were deposited 

in the PDB. The main challenge of this project was to identify small molecule inhibitors 

for a relatively new target having little information about the important features 

responsible for the binding and activity. To overcome this, an iterative VS campaign, 

including structure- and ligand-based approaches coupled with in vitro testing, was 

performed (Figure 4.1). 

First, a pharmacophore screening based on the experimentally determined peptide 

binding mode was carried out. The crystal structure of Spindlin1 in complex with 

H3K4me3 peptide (PDB ID: 4H75) was retrieved from the PDB and pharmacophoric 

features describing the protein-peptide interactions were assigned. Six different 

pharmacophore models were generated and used to screen databases of commercially 

available compounds, namely ChemBridge and ChemDiv. One feature (CAT-1, Figure 

4.1), representing the cation-pi interactions of the trimethylated lysine moiety with the 

aromatic residues of the cage (Figure 1.5), was considered essential and kept in all 

pharmacophore models. The other features were, instead, alternatively combined. To 

decrease the number of compounds to be screened, the databases were previously filtered 

by accounting for the molecular weight and the presence of structural features. Thus, 

compounds with a molecular weight greater than 500 Da and compounds containing no 

positively charged nitrogen atoms (N+) or H-bond donors were removed.  

The virtual hits obtained from the pharmacophore screening were subsequently 

docked to the crystal structure. The docking results were analyzed and only the top-scored 

compounds showing a protonated nitrogen rightly positioned in the aromatic cage were 

considered. The most promising compounds were purchased and subjected to in vitro 

screening. With this approach, we were able to identify four compounds that showed in 

vitro inhibition of Spindlin1 using an AlphaLISA assay established by our collaborators 

(Figure 4.1). 
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Figure 4.1. Workflow of the VS campaign. Spindlin1 crystal structure in complex with H3K4Me3 
(PDB ID: 4H75) was used for pharmacophore models generation and docking. Top-right figure: all 
pharmacophoric features; blue spheres: cationic feature (CAT), green spheres and green arrow: H-
bond donor feature (HBD), red spheres and red arrow: H-bond acceptor feature (HBA). The N-
terminal residues of H3K4me3 are displayed as grey sticks, the binding pocket residues as cyan sticks, 
and water molecules as red spheres. TC: Tanimoto Coefficient. MACCS: Molecular ACCess System.  
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Secondly, to obtain further derivatives and/or structural analogs of the active hits, a 

2D-chemical similarity search using the identified hits as queries was executed. Again, 

the retrieved hits were consequently docked into the Spindlin1 crystal structure and a total 

of 23 compounds were purchased and tested. This resulted in uncovering four additional 

active hits (Figure 4.1).  

Finally, lead optimization studies of two scaffolds (4-aminoquinazolinethiones and 

thioquinazolinones) were carried out, and numerous derivatives were synthesized, which 

allowed to expand the SAR of the series and attain compounds with improved inhibitory 

activities. Altogether, the obtained data highlighted that the aliphatic basic group acts as 

a lysine-mimetic, and its nature has a significant effect on the activity. Thus, the choice 

of an appropriate lysine-mimetic group is crucial for achieving Spindlin1 inhibition. 

Nonetheless, additional modifications are needed to further improve the activity, as 

shown by the increase in potency of the compounds bearing a benzyloxy substituent at 

position 7 of the 4-aminoquinazolinethione and thioquinazolinone scaffolds. As an 

example, the predicted binding mode of two of the most active compounds (1k and 4q, 

IC50 values of 3.5 and 4.5 µM, respectively) are illustrated in Figure 4.2. 

 
Figure 4.2. 2D chemical structures and predicted binding modes of compounds 1k and 4q in the 
Spindlin1 second domain binding site (PDB ID: 4H75). Docking poses are shown as orange (1k) and 
cyan (4q) balls and sticks, while the side chains of the surrounding residues are depicted as beige 
sticks. Hydrogen bond interactions are represented with yellow dashed lines while cation-pi 
interactions as dark green dashed lines. 
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In conclusion, the in silico studies coupled with in vitro testing applied in this work 

were successful in identifying the first set of novel Spindlin1 inhibitors active in the 

micromolar range. Meanwhile, structural modifications of the VS hits allowed four- to 

six-fold improvement in the inhibitory activity yielding six Spindlin1 inhibitors active in 

the low micromolar range.  

4.1.1.1. Limitations and conclusions 

As discussed in detail in the introduction (subparagraph 1.1.4.5), VS campaigns have 

some limitations. Generally, only hits active in the micromolar range are retrieved, and 

optimization studies are needed to improve the activity. This is partially due to the type 

of approaches used at this stage, mainly fast approaches like pharmacophore screening, 

similarity search and docking that do not take into account important contributions for 

the binding. Moreover, the nature of the compounds present in the database also plays a 

key role. For well-known targets, tailored and enriched databases can be used, which will 

facilitate the finding of more active compounds. However, for new targets with unknown 

inhibitors, the primary goal of VS and HTS is to find new hits/lead structures, which will 

be further optimized. 

In this project, we encountered additional challenges related to the little knowledge 

available for the target at the beginning of the project. Indeed, no Spindlin1 inhibitors and 

crystal structures bound to inhibitors were reported, and the potential flexibility of the 

pocket upon the binding of ligands was still unknown. Nevertheless, micromolar hits 

could be found which were optimized into more active compounds.  

Parallel to this work, our colleagues performed a focused screening of an in-house 

database containing known epigenetic probes and discovered that A366, a potent inhibitor 

of the histone methyltransferase G9a, is also a Spindlin1 nanomolar inhibitor. Hence, our 

subsequent efforts focused on A366 derivatives (section 4.1.3). 

 In silico studies to explore the aromatic cage flexibility and 
its impact on binding mode prediction 

This part of the work focused on investigating the pocket flexibility of Spindlin1 by 

molecular modeling methodologies (chapter 3.3). After the release of diverse Spinldin1 

crystal structures in complex with inhibitors, it became clear that the aromatic cage 

responsible for the binding of the trimethylated lysine and mimetic moieties can undergo 

conformational changes. Because subtle changes in the side chain conformation can 

impact the binding mode prediction and related in silico studies, we set to explore the 
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pocket flexibility and to assess the ability of various computational methods to rightly 

reproduce the binding mode of a known Spinlin1 inhibitor. 

To investigate the conformational plasticity of the binding pocket, we first analyzed 

the available Spindlin1 crystal structures deposited in the Protein Data Bank focusing on 

the aromatic cage residues (Phe141, Trp151, Tyr170, Tyr177). The analysis underlined 

that, among those residues, Phe141 and Trp151 display higher temperature factor values, 

and hence a higher degree of flexibility. Of note is the side chain of Phe141, as it can 

adopt two different orientations that lead to two diverse shapes of the aromatic cage, 

which we defined as closed cage and open cage (Figure 4.3). The open conformation is 

present in all the X-ray ligand-bound forms but one, indicating that the flip of the Phe141 

side chain is induced by the ligands. 

 
Figure 4.3. Analysis of the Spindlin1 aromatic cage. Left side: superimposition of the investigated 
crystal structures (PDB IDs: 2NS2, 4H75, 4MZF, 5Y5W, 5JSG, 5JSJ, 6QPL, 6I8Y). Right side: focus 
on the cage conformation. The protein residues are colored according to the PDB B-factor values and 
are shown as sticks.  

Subsequently, we performed MD simulations on the apo protein to probe whether it 

is possible to obtain the open cage starting from the closed cage conformation and to 

further assess the flexibility of the second domain binding site. The results of the MD 

simulations were analyzed by several means: i) RMSD plots of the backbone atoms; ii) 

RMSF values of the heavy atoms of the amino acids that constitute the pocket; iii) 

occupancy of the hydrogen bond networking established by the latter residues during the 

simulation time; iv) clustering of the trajectories based on the RMSD of Ph141. From our 

study we could conclude that some residues are relatively steady (His139, Tyr170, 
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Tyr177, Tyr179), whereas others show flexibility during the simulation (e.g., Ph141, 

Trp151). Hydrogen bonds among the steady residues, which are maintained during 

simulation, play a role in stabilizing their conformations. Contrariwise, Phe141 lacks the 

possibility to form hydrogen bonds with its side chain and displays plasticity and diverse 

conformations. On the other hand, Phe141 interacts via pi-pi stacking with Trp151, 

leading the side chains of both residues to be closer and move together during the 

simulations. Consequently, the MD simulations could not yield an open cage 

conformation suitable for the ligand binding. Indeed, only closed cage or disorganized 

cage conformations could be obtained. We attributed the failure of the MD simulations 

to produce the open cage to the hydrophobic nature of the pocket: in the absence of any 

ligand, Phe141 is driven by pi-pi stacking interactions towards Trp151, which results in 

the aromatic cage being mainly in the closed conformation. 

In order to test not only if flexible docking could generate the open cage but also how 

the methodology performs using different protein conformations as starting points, we 

then investigated the ability of induced fit docking (IFD) to correctly reproduce the 

experimentally determined X-ray binding mode of A366 (PDB ID: 6I8Y). At the same 

time, we also carried out rigid-body docking (which refers to classical docking – protein 

kept rigid in its original conformation, ligand treated as flexible; subparagraph 1.1.1.1) to 

emphasize that, in cases where the pocket can exhibit flexibility upon ligand binding, 

treating the protein as a rigid entity can be a limiting factor if the right protein 

conformation is not available. Thus, open and closed conformations were used for the 

docking studies. Additionally, diverse IFD protocols were examined by changing the 

number of the residues treated as flexible with the aim to establish a relatively fast and 

efficient protocol. The selection of the residues was guided by the crystal structures 

analysis and MD simulations results.  

As expected, the experimentally determined binding mode of A366 could not be 

reproduced through rigid-body docking into the closed cage conformation (Figure 4.4). 

Whereas IFD could nicely reproduce the X-ray binding mode of A366 starting both from 

open and closed pockets, with RMSD values in the range of 0.48-1.45 Å. In fact, when 

using the closed cage as protein input, A366 induced the flip of Phe141, and IFD 

methodology proved to be able to generate an open cage with the correct ligand binding 

mode (Figure 4.4).  
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Figure 4.4. The upper panel shows the predicted binding modes of A366 generated through rigid-
body docking and IFD in the second domain of Spindlin1 (PDB ID: 2NS2 – closed cage). The IFD 
pose reported refers to the protocol with three residues were treated as flexible (Phe141, Trp151, 
Asp184). The docking poses are displayed as orange balls and sticks, binding pocket residues as 
yellow sticks, and the protein as white surface. Phe141 is also illustrated as yellow mesh surface. 
Binding interactions are represented as dashed lines colored in magenta (salt bridge), yellow 
(hydrogen bonds) and dark green (cation-pi interactions). The lower panel shows the relative binding 
mode of A366 (orange balls and sticks) observed during the MD simulations at 0 ns, 10 ns, 20 ns, 30 
ns, 40 ns and 50 ns superimposed with the experimentally determined A366 X-ray ligand conformation 
(cyan ball and stick, PDB ID: 6I8Y). The protein is displayed as yellow cartoon. 

To evaluate the stability of the attained binding mode, we subsequently subjected the 

obtained docking poses-complexes to short MD simulations (50 ns). The study 

highlighted that the binding mode obtained into the closed aromatic cage through rigid-

body docking is highly unstable and generates diverse binding modes (Figure 4.4). Since 

Phe141 does not flip during the simulation, the experimentally determined pose of A366 

is not reproduced. Assuming that the A366 X-ray conformation would not have been 

available for comparison, this binding mode hypothesis could have been discarded based 
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on the MD results. Meanwhile the binding mode predicted into the closed cage by IFD is 

highly stable during the MD simulation, with the initial pose being maintained throughout 

the simulation time – a pose that perfectly reproduces the experimentally observed A366 

X-ray conformation (Figure 4.4). These results are good examples of how MD 

simulations can be beneficial to verify the predicted binding modes by analysing their 

stability. 

To sum up, we outlined how pocket flexibility can play a role in binding mode 

prediction and how diverse in silico methodologies perform in sampling pocket 

conformations and pose prediction. We highlighted that previous pocket analysis could 

shed light on the residues to treat as flexible during IFD, allowing faster and accurate 

results. The combination of IFD followed by short MD simulation reported in this work 

is a highly promising approach to rightly predict the binding mode of small molecule 

ligands in flexible binding pockets, such as observed in Spindlin1. 

4.1.2.1. Limitations 

One limitation encountered in this study is related to the MD simulation of the apo 

protein. Our work highlighted that for such a protein where stable pi-pi interactions 

between side chains are formed, it is challenging to obtain clusters that sample suitable 

open cage conformations. Even if the open cage is present during the simulation time, the 

event is so negligible that it is not perceived in the analysis. On the other hand, the MD 

simulations of the apo protein gave confidence about the residues to treat as flexible 

during IFD. Likewise, the MD simulations of the docked poses were helpful to evaluate 

the stability and reliability of the predicted binding mode hypotheses.  

IFD proved to be a viable and relatively fast approach to observe the movement of 

side chains and the consequent modification of the shape of the pocket induced by the 

ligand. However, as fast as IFD might be, it can be performed on a small number of 

compounds, but it is not feasible on a large scale – e.g., databases used in VS. In fact, VS 

methods are meant to be fast and using IFD would be time-consuming. 

 Molecular Modeling Studies of A366 derivatives 
After investigating the pocket flexibility and how to obtain the X-ray binding mode 

of A366 starting from a closed conformation by computational means, we focused our 

attention on developing novel A366 analogs (chapter 3.4). In an attempt to improve the 

activity and explore the SAR of the lead inhibitor, a congeneric series of A366 derivatives 
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was designed, synthesized, tested in vitro, and investigated through molecular modeling 

approaches. The dataset encompassed 21 analogs, of which 17 displayed IC50 values in 

the range of 0.15–11.8 µM, two were found to be weakly active, and three were 

considered inactive as they showed a considerably decreased activity. Since A366 is 

originally known as a potent G9a inhibitor, the most active Spindlin1 inhibitors were also 

tested in vitro against G9a and GLP (G9a like protein) to verify their selectivity profile. 

The crystal structure of Spindlin1 in complex with A366 (PDB ID: 6I8Y – open cage) 

was used within this project to carry out docking and subsequent in silico studies. 

Knowing that the difference between the active and inactive analogs lies in the linker 

chain length, we first employed docking studies and MD simulations to analyze and 

rationalize this information by computational means. Unfortunately, the docking results 

could not explain the compounds’ inactivity, as similar binding modes and docking scores 

were detected for A366 and the inactive analogs. This prompted us to further explore the 

predicted binding modes of both inactive compounds (1c, 1e) and A366 through long MD 

simulations (200 ns) (Figure 4.5). The stability of the poses and the interactions 

established during the simulations were examined. Interestingly, the analysis of the MD 

simulations shed light on the important interactions and their contributions. Specifically, 

the study highlighted the crucial role of the spacer length for the presence of the 

intramolecular hydrogen bond and how this influences the formation of the cation–pi 

interactions with the aromatic cage residues and the interactions of the amidine moiety 

with Asp184. The inactive compounds, which bear either an ethyl or a butyl chain spacer, 

show a negligible occupancy rate of the intramolecular hydrogen bond and dramatically 

decreased values of the cation–pi interactions compared to A366 (Figure 4.5). In 

summary, the key structural features and interactions associated with the nanomolar 

activity of A366 underlined from the MD analysis are: 

• A positively charged pyrrolidine moiety embedded into the aromatic cage, 

which undergoes stable cation–pi interactions with all the four surrounding 

amino acids. 

• A propyl spacer, which is entropically favored as it stabilizes the bioactive 

conformation through the formation of an intramolecular hydrogen bond 

between the methoxy group and the positively charged pyrrolidine-NH. 

• The amidine group of the 2-aminoindole core which anchors the compound 

into the pocket through salt bridge interactions with Asp184. 
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The absence of one of these interactions results in inactive A366 analogs, as shown 

by 1c and 1e, which both lack a stable intramolecular hydrogen bond. Moreover, 1c 

exhibits salt bridge interactions with Asp184 but the occupancy rates of the cation–pi 

interactions are generally low, while 1e is able to establish cation–pi interactions to a 

certain extent but fails to preserve stable interactions with Asp184. The interaction heat 

map obtained from the 200 ns MD simulations is displayed in Figure 4.5. 

 
Figure 4.5. The upper panel shows the docking poses of A366, 1c and 1e in the second domain of 
Spindlin1 (PDB ID: 6I8Y – open cage). The ligands are displayed as balls and sticks, while the side 
chains of the surrounding residues as white sticks. Binding interactions are represented as dashed lines 
colored in magenta (salt bridge), yellow (hydrogen bonds), dark green (cation-pi interactions) and 
cyan (pi–pi stacking). The lower panel shows on the left side the 2D structure of the compounds 
highlighting the atoms involved in the interactions, and on the right side the heat map with the 
occupancy rates of the binding interactions identified during the 200 ns MD simulations of A366, 1c 
and 1e docking poses.  

Although MD simulations gave insight into the compounds’ activity, the approach 

remains too time-consuming for more extensive datasets. With the purpose to identify a 
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faster method capable of discriminating between active and inactive compounds within 

the A366 series, we performed binding free energies calculations as rescoring steps. 

Interestingly, Prime MM-GBSA resulted in being up to the challenge providing good 

discrimination ranges between active and inactive compounds (MM-GBSA ∆Gbind mean 

values of -76.3 kcal/mol (actives) and -60.35 kcal/mol (inactives)). In Figure 4.6 is 

reported the box-plot of the computed binding affinity values.  

 
Figure 4.6. The left upper panel shows the box-plot representing the ∆Gbind distribution obtained for 
active and inactive compounds using Prime MM-GBSA (protocol when only ligands are relaxed). In 
the left lower panel is depicted the scaffold of our series. The right panel shows the 2D structure of 
compound 1s as well as the predicted binding modes (S, cyan; R, light pink). The ligands are displayed 
as balls and sticks, while the side chains of the surrounding residues as white sticks. Binding 
interactions are represented as dashed lines colored in magenta (salt bridge), yellow (hydrogen bonds), 
dark green (cation-pi interactions) and cyan (pi–pi stacking).  

Finally, through the SAR of our series, we could identify substitution patterns that 

can be used to design selective compounds. The biological activity of the A366 

derivatives highlighted the modifications that lead to a significant drop in the activity for 

G9a and GLP whilst maintaining the potent inhibitory activity against Spindlin1. Namely, 

small substitutions on the pyrrolidine moiety such as 3-methyl and 3-hydroxymethyl or 

replacing the pyrrolidine ring with an isoindoline moiety. As an example, Figure 4.6 

depicts the binding mode of 1s, a good Spindlin1 binder and the most selective compound 

of our series (Spindlin1 IC50: 360 ± 20 nM, G9a IC50 >20 µM, GLP IC50 >20 µM). 

Conversely, other modifications were well tolerated by both targets. For instance, the 
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most active derivative of the series (compound 1p), which bears a dimethyl group instead 

of the spiro moiety on R4, showed no selectivity over G9a and GLP (Spindlin1 IC50: 157 

± 12 nM, G9a IC50: 759 nM, GLP IC50: 470 nM).  

In conclusion, the A366 dataset yielded a variety of analogs with diverse potent and 

selective Spindlin1 inhibitors. Using MD simulations, we rationalized the lack of activity 

of some derivatives and elucidated the critical interactions and their contributions to the 

binding. We developed a rescoring protocol able to successfully discriminate active from 

inactive compounds that can be applied to guide further optimization steps to prioritize 

compounds for synthesis and biological characterization. 

4.1.3.1. Limitations and Perspectives 

The results of this work highlighted the limitations of docking scores, which, in some 

cases, fail to discriminate active compounds from inactive even within a congeneric 

series. Consequently, we rescored the docked molecules using MM-GBSA, a more 

accurate but slower approach. The dataset at our disposal enabled us to generate 

satisfactory binary models but not linear regression models. In fact, the range of the data 

is too narrow; moreover, the compounds are mainly spread in the nanomolar range, thus 

limiting the generation of linear regression models. Further work in this line would 

include probing new predictive models once a larger sample containing ligands with a 

broader range of activity will be available. 

Taking into account the SAR of our series and the structural features of the binding 

site of Spindlin1 and G9a, perspectives for further modifications can be drawn. Knowing 

the good selectivity profile of analogs 1s (R3: 3-(isoindolin-2-yl)propyl) and 1t (R3: 3-

((R)-3-methyl-pyrrolidin-1-yl)propyl), other bicyclic basic moieties on R3 –scaffold is 

shown in Figure 4.6– as well as bisubstitutions on the pyrrolidine moiety will be explored 

to attain new potent and selective compounds. Furthermore, position R2 will be 

investigated with longer and hydrophilic substitutions. Such modifications are 

hypothesized to pick up new interactions with the surrounding Spindlin1 amino acids 

(e.g., Asp95 and Glu142), gaining potency, and at the same time clash with the smaller 

G9a pocket and thus ensure selectivity. 
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 Design and binding mode prediction of AChE and 
BChE inhibitors  

In this project, the determined biological activities of a series of 8-hydroxy-2,7-

naphthyridin-2-ium derivatives was rationalized by means of molecular docking studies 

(chapter 3.5). With the aim to identify dual inhibitors of AChE and BChE as well as 

inhibitors showing a preferential inhibition of AChE over BChE, we developed a set of 

derivatives starting from the knowledge that the natural products of the 8-

methoxyisoquinoline group, e.g., chelerythrine (Figure 4.7), have been identified as 

AChE and BChE inhibitors.  

 
Figure 4.7. 2D chemical structures of our scaffold and two reported AChE and BChE inhibitors. 

The 8-hydroxy-2,7-naphthyridin-2-ium derivatives were designed focusing on three 

main aspects: i) generate structurally different analogs to gain insights into the structural 

motifs that influence the biological activity; ii) synthetical accessibility of the atoms at 

positions 2 (R2) and 6 (R1) of the investigated scaffold (Figure 4.7); iii) analogy with the 

N-benzylated moiety of donepezil, a selective AChE inhibitor (Figure 4.7). The R1 

position of the scaffold was thus explored by comparing N-benzylated to N-methylated 

and N-ethylated moieties. Subsequently, the synthesized ligands were docked into AChE 

and BChE pockets, minimized and rescored with MM-GBSA to identify plausible 

binding modes and rationalize their activity.  

The in vitro inhibition data revealed that the N-benzylated derivatives are more active 

than the relative N-methylated and N-ethylated analogs allowing us to identify structural 

features that influence the activity of our series. From our docking studies, we could 

identify the role of the benzyl group in the AChE and BChE active sites: the moiety helps 

the compounds be anchored in the pocket, adopt the correct orientation, and establish 
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some of the key interactions (cation–pi and pi–pi interactions). As an example, the 

predicted binding modes of the most potent dual inhibitor 3e in the AChE and BChE 

pockets are shown in Figure 4.8, whereas the 2D structure is reported in Figure 4.9. 

Moreover, the study highlighted that quaternary nitrogen of the active compound 3e 

adopts the same position as observed for the protonated amino group of donepezil in the 

X-ray of AChE (Figure 1.7). 

 
Figure 4.8. Predicted binding modes of compound 3e in AChE and BChE active sites. The docking 
poses are depicted as balls and sticks colored in dark cyan, while the side chains of the surrounding 
residues are depicted as white (AChE) and beige (BChE) sticks. Only the side chains of the 
surrounding amino acid residues are shown for clarity; for residue Ser79 the main chain is shown. 
Binding interactions are represented as dashed lines colored in magenta (salt bridge), yellow 
(hydrogen bonds), dark green (cation-pi interactions) and cyan (pi–pi stacking). 

 
Figure 4.9. 2D chemical structures and activity data of compounds 3e and 3f.  
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Notably, compound 3f showed preferential inhibition of AChE over BChE (Figure 

4.9). The selectivity of 3f is consistent with the binding mode hypotheses which suggest 

that when the benzyl group is missing, the molecule is not able to adopt a favorable 

orientation at the larger BChE binding pocket, and the critical interactions are not formed 

(salt bridge with Asp70, cation–pi interaction with Tyr332, pi–pi interaction with Trp82). 

On the other hand, the absence of the benzyl group at the smaller AChE active site results 

in less active compounds. Considering the activity data of the 8-hydroxy-2,7-

naphthyridin-2-ium derivatives, compound 3f can be viewed as a promising starting point 

for further selectivity studies. 

The main challenge of this work was to understand the binding mode of our series 

and the structural features that influence the AChE and BChE activity; we addressed this 

by synthesis, in vitro characterization and in silico studies. In conclusion, we reported 

potent dual AChE and BChE inhibitors and a selective AChE inhibitor, and we could 

identify the structural features that affect the biological activity. 

 Exploring the cleavage behavior of NEP and MMP-14 
by computational means 

Our contribution in these projects focused on exploring and rationalizing from a 

structural point of view the cleavage behavior of NEP (chapter 3.6), MMP-14 and other 

MMP proteins (chapter 3.7) on specific human elastin fibers. Additionally, we performed 

a detailed analysis and comparison of the MMPs pockets under investigation. 

To help the readers to understand the terminology following is a summary of the 

nomenclature used: the peptide sequence is defined as P4-P3-P2-P1-P1’-P2’-P3’-P4’, 

where residues P4-P3-P2-P1 indicate directionality from N-terminal to the cleavage site, 

while P1’-P2’-P3’-P4’ from the cleavage site to C-terminal. The corresponding binding 

sites on the enzymes are defined as S4-S3-S2-S1 and S1’-S2’-S3’-S4’, respectively [314]. 

 NEP 
Using mass spectrometry, our collaborators identified cleavage sites and preferences 

for specific residues on the peptide sequences of fibrillar skin elastin; among these 

residues, some have already been reported, whereas others were not described before. 

Specifically, a preference for Pro at P2 and P3’, Gly at P1 and bulky residues at P1’ and 

P2’ was observed. With the purpose of investigating these preferences by computational 

means, we performed docking studies for the peptides under analysis. From our study, 
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we could elucidate the preference for specific residues and suggest favorable interactions 

for others. 

• Residue P1 lies in subpocket S1, which shows limited size, and thus, Gly 

seems to be favorable at this position.  

• Subpocket S1’, formed by Phe563 and Val692, is buried and hydrophobic in 

nature, and it is able to accommodate and interact with bulky residues (such 

as Phe, Ile, Leu and Lys) situated at P1’ and P2’ on the peptides.  

• Pro at position P2 and P3’ interacts with the aromatic ring of His587 and 

His711, respectively, and therefore appears to be a suitable residue in these 

positions. 

Hydrogen bonds that stabilize the substrate peptides in the pocket and help place the 

scissile bond close to the zinc ion were detected in the docking results. These include a 

hydrogen bond with a conserved water bound to the zinc ion and several hydrogen bonds 

to NEP side chains (Arg102, Arg110, Asn542, His711, Arg717) and backbone residues 

(Ala543, Tyr545, Ser547) – slight variations are observed among diverse peptides. As an 

example, the predicted docking pose of GVPGAIPG at the active site of NEP is displayed 

in Figure 4.10. 

 
Figure 4.10. Predicted docking pose of substrate peptide GVPGAIPG (cyan ball and sticks) at the 
active site of NEP (pale green sticks). Hydrogen bonds are represented as yellow dashed lines. The 
water molecule is displayed as red sphere while the catalytic zinc ion as grey sphere. For clarity, only 
the central six residues of the peptide and the side chains of the surrounding amino acid residues are 
shown; for residues Asn542, Ala543, Phe544, Tyr545, Ser546 and Ser547 main chains are displayed. 
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 MMP-14 
Since MMP-14 was not yet described as an elastase, this work aimed to investigate 

the elastinolytic capability of this protein and to compare it with other MMPs that were 

already known to cleave elastin, like MMP-7, MMP-9 and MMP-12. To this end, we used 

diverse techniques such as complementary mass spectrometric, bioinformatics tools and 

molecular docking studies to systematically characterize and compare the cleavage 

behavior and the cleavage site specificities of the MMPs under our analysis. Specifically, 

our collaborators identified by mass spectrometric analysis that tropoelastin and elastin 

peptides are digested by MMP-14 and other MMPs. Furthermore, cleavage site 

specificities and preferences covering the cleavage positions P4-P4’ were determined. To 

gain insight into the binding mode of the digested peptides, we performed docking studies 

for the four MMPs. Furthermore, we carried out a comprehensive structure analysis and 

comparison of these MMPs with an emphasis on S1’ subpocket, which highlighted 

similarities and main differences among the pockets. The readers are referred to chapter 

3.7 for details about pocket analysis. Herein are summarized the findings of the docking 

studies at MMP-14, MMP-12, MMP-9 and MMP-7 active sites for six octapeptides 

derived from cleavage sites found in the MMP-14 digests of elastin.  

• The docking poses of all analyzed octapeptides displayed similar binding 

modes at the active sites, suggesting that MMP-14, MMP-12, MMP-9 and 

MMP-7 are able to accommodate and cleave the same peptides.  

• Small and medium-sized hydrophobic residues including Gly, Ala, Leu and 

Val at cleavage site P1’ are preferred by MMP-14, MMP-12, MMP-9 and 

MMP-7 as shown by mass spectrometric analysis. Nonetheless, docking 

studies highlighted that bigger residues such as Lys, Phe and Tyr, are likewise 

well accepted and fitted in the MMP-14, MMP-12, MMP-9 and MMP-7 

active sites. 

The docking studies could identify hydrogen bonds that stabilize the substrate 

peptides in the MMPs pockets and favor the placement of the scissile bond close to the 

zinc ion. Specifically, residue P1’ establishes hydrogen bonds with the backbones of Leu 

and Ala (conserved residues among these four MMPs). Moreover, the other peptide 

residues are involved in a conserved hydrogen bond with the zinc ion and several 

hydrogen bonds to MMPs backbone residues that further stabilize the peptides into the 

pocket. Based on the nature of the octapeptides, pi-pi stacking and cation-pi interactions 
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with MMPs side chain residues are also observed. The predicted binding mode of 

PGAGLGAL in the active site of MMP-14 is shown in Figure 4.11 as an example. 

 
Figure 4.11. Predicted docking pose of substrate peptide PGAGLGAL (orange ball and sticks) at the 
active site of MMP-14 (green sticks). Hydrogen bonds are represented as yellow dashed lines, while 
the catalytic zinc ion as grey sphere. Only the side chains of the surrounding amino acid residues are 
shown for clarity; for residues Gly197, Phe198, Leu199, Ala200, His201, Ala202, Tyr203, Phe204, 
Pro259, Phe260 and Tyr261 main chains are displayed. 

 Common challenges and limitations  
These two projects shared the same challenges and limitations as both tried to address 

the same questions. Within these works, we carried out docking studies to suggest binding 

mode hypothesis and investigate the cleavage behavior of specific metalloproteinases. As 

discussed in detail in the introduction (subparagraph 1.1.1.2), molecular docking is the 

most widely used technique, although it has limitations. One above all is the low accuracy 

of the scoring functions, which is even more evident for peptide docking due to the bigger 

size and increased flexibility of the peptides. In fact, it is difficult to differentiate which 

peptide would serve as a better substrate based only on the obtained docking scores. Thus, 

the analysis of the binding mode and the interactions established at the active site give 

better insight than relying solely on the docking scores. Furthermore, another aspect to 

consider when performing docking is the conformational sampling problem for very 

flexible ligands with many rotatable bonds like peptides. General procedures used to 

avoid this drawback are to extend the number of poses generated and use constraints to 
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ensure that the correct poses are sampled; both strategies were applied in these studies to 

reduce the sampling problem. 

 General conclusions  
CADD methodologies are widely used both in pharmaceutical industries and 

academia and have become an essential part of the drug discovery pipeline. The general 

aim of this thesis was to apply computational approaches to drug discovery and design 

projects to identify new inhibitors, rationalize their activity, get insight into protein 

flexibility and investigate the binding mode of small molecules and peptides. We used 

diverse approaches, including structure-based pharmacophore modeling, VS, docking 

(classical rigid-body docking and flexible docking), MD simulations and MM-GBSA 

calculations. 

Through the studies presented herein, we have shown how computer -based methods 

can be successfully used to address specific questions and challenges that are 

project/target related. For instance, by applying different VS approaches, coupled with in 

vitro testing, we could identify novel hits even for a new target that lacked known 

inhibitors. Not surprisingly, the hits were active in the micromolar range; nonetheless, the 

study pointed out how structural optimization could lead to higher inhibitory activity. 

Concerning molecular docking, this approach was constructively applied in all the 

projects to predict the ligands binding mode and, for AChE and BChE, also to explain the 

selectivity between the two targets. However, as we have seen in the case of Spindlin1, 

rigid-body docking fails to retrieve the proper binding mode when dealing with flexible 

pockets. In such a scenario, more thorough computational methods like flexile docking 

combined with short MD simulations can be used to achieve a better binding mode 

prediction. Moreover, when possible, we have overcome the limitations of docking scores 

by rescoring the ligand poses with MM-GBSA. For Spindlin1, we have proved that 

satisfactory MM-GBSA models that discriminate between active from inactive 

compounds can be generated. 

To conclude, in silico techniques are undoubtedly valuable tools to search and 

investigate potential drug candidates with reduced cost and time. Nevertheless, some 

limitations still need to be addressed, such as more accurate scoring functions, 

incorporating solvent effects and faster evaluation of pocket flexibility in the docking 

procedure, and increasing computational efficiency.  
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Finally, this work has also emphasized that collaborations between different fields 

are essential to achieve progress in drug discovery. 
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5. GLOSSARY OF TERMS USED 

Follow a brief definition of the technical terms used in the thesis. The glossary was 

readapted from http://www.drugdesign.com/web/teaching/glossary [315].  

 

Affinity - The affinity of a ligand is its ability to bind to its biological target. 

Analog - A molecule structurally similar to another, generally based on the same 

scaffold. 

Antagonist - A molecule that blocks the activation of a receptor. 

Apo - 3D structure of a macromolecule without a ligand. 

Benchmark - A dataset by which the validity of a method can be measured and 

judged. 

Binding mode - Orientation and geometry adopted by a chemical substance when it 

is bound to a specific protein. 

Bioactive conformation - The geometry adopted by a ligand when it binds to its 

biological target. 

False positive - A hit that is erroneously recognized as good (positive). 

FDA - Food and Drug Administration. Agency in the USA responsible for safety 

regulations. 

Force field - A set of mathematical equations and parameters used for assessing the 

energy of a given chemical system. 

Genetic algorithm - A computerized search technique inspired by evolutionary 

biology and used in computer science to find approximate solutions to optimization and 

search problems. 

Harmonic - A function whose frequency is an integral multiple of the frequency of 

a reference function. 

Holo - 3D structure of a macromolecule with a bound ligand. 

Homology Modeling - A method for predicting the 3D structure of a protein, based 

on its amino acid sequence and the 3D-structure of analog protein(s). 

In silico - Refers to the use of silicon-based computer technologies to perform 

simulations, modeling and experiments. 



Chapter 5: Glossary of Terms Used 

66   

In vivo - Refers to the technique of performing a given procedure in a controlled 

environment outside of a living organism. The studies are performed with 

microorganisms, cells, or biological molecules outside their normal biological context. 

Inhibitor - Chemical substance that blocks or suppress the activity of a given protein. 

Isomers - Isomers are compounds with the same chemical formula but different 2D-

structures. 

Ligand - In Biochemistry: substance that binds to a biological target. In Chemistry: 

an atom or group of atoms. 

Minimization - Minimization treatments consist of successive alterations of the 

geometry of the molecule until a minimum is found on the conformational potential 

surface. 

Moieties - Fragments, functional groups or portions of chemical compounds. 

Molecular descriptor - Molecular descriptors are numerical values that capture the 

structure and properties of molecules. 

Molecular dynamics - Molecular dynamics (MD) is a computer simulation 

technique which follows the time evolution of a molecular system in 3D. Successive 

integration of Newtons equations of motion over time enables to obtain information about 

time-dependent properties of the system. 

Molecular mechanics - Molecular mechanics is a computer simulation technique for 

modeling the molecular geometry and energy of a system based on the energy 

minimization of its potential energy function. The set of potential functions used to 

calculate the energy is known as the force-field. 

Nuclear Magnetic Resonance, NMR - An analytical method that allows the 

spectroscopic detection of structural information of molecules. It requires the application 

of a strong magnetic field. 

Pharmacophore - Specific 3D arrangement of chemical groups common to active 

molecules and essential to their biological activities. 

Promiscuous - Some molecules emerge repeatedly as hits in diverse unrelated target 

systems. These so-called promiscuous hits act non-competitively, show little structure–

activity relationships and have poor selectivity. 

Protein Data Bank - The "Protein Data Bank". A worldwide repository source of 

3D structures of proteins obtained by X-ray crystallography or NMR studies. 
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Protein folding - A spontaneous process directed by the physical and chemical 

properties of the amino acid sequence that dictate the folding of a protein into a particular 

conformation. 

QSAR, Quantitative Structure Activity Relationships - Quantitative Structure 

Activity Relationships (QSAR) - Mathematical equation linking chemical structure and 

biological activity for a series of compounds. 

RMS - Root Mean Square: the square root of the arithmetic average of the square's 

set of values. 

RMSD - The Root Mean Square Deviation is a measure of the differences between 

the values predicted by a model and the values experimentally observed. 

Stochastic - Stochastic means "random" in opposition to "deterministic" (where 

random phenomena are not involved). Stochastic models are based on random trials that 

are guided by computerized stochastic algorithms. 

Stochastic algorithm - Process with random variables. 

Structure–activity relationships - Structure–Activity Relationships (SAR) is the 

analysis of the relationships between chemical structure and biological activity. 

Trajectory - Trajectory = positions + velocities. 

Virtual library - A library which exists solely in electronic form and used in the 

design and evaluation of possible real libraries. 
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