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Abstract

In recent years machine learning is quickly becoming one of the most

valuable tools in solid-state material science. In this cumulative thesis

we develop two applications of machine learning to solid-state physics

and material science. First, we train machine learning exchange-correlation

functionals for density functional theory (DFT). In contrast to earlier

works we not only train for the exchange-correlation energy but also

use automatic differentiation to train for the correct potential as func-

tional derivative of the neural network. Such neural network functionals

can be extremely nonlocal while retaining the same computational scal-

ing of local and semilocal functionals and promise to solve some of the

non-locality problems plaguing DFT.

We also develop Crystal-Graph Attention networks (CGAT) for the

prediction of thermodynamically stable materials. Previous generations

of graph neural networks typically use the atomic positions and the

atomic species as input. However, one can only obtain the atomic posi-

tions of the relaxed crystal structures during high-throughput searches

via DFT calculations. Thus making it impossible to apply these net-

works directly to such studies. We solve this challenge by replacing

the atomic distances with embeddings of the graph distances to create

networks suitable for high-throughput studies. To train these networks

we accumulate and clean one of the largest datasets of DFT calcula-

tions with consistent parameters. Applying the dataset and the new

network topology to high-throughput searches we have scanned a com-

pound space of over 1 billion materials. As a result we have already

discovered more than 23000 materials that are stable relative to the

convex hull we started with. Using the hull resulting from our origi-

nal dataset we perform more than 200k geometry optimizations with
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the Perdew-Burke-Ernzerhofer functional for solids (PBEsol) and single

point calculations with the ”Strongly Constrained and Appropriately

Normed” (SCAN) functional to obtain a convex hull and structural in-

formation from functionals beyond the PBE. These will allow for a more

accurate prediction of stable materials and their properties in the future.
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Abstract

In den letzten Jahren hat sich das maschinelle Lernen schnell zu einem

der wertvollsten Werkzeuge in der Festkörpermaterialwissenschaft en-

twickelt. In dieser kumulativen Dissertation entwickeln wir zwei An-

wendungen des maschinellen Lernens für die Festkörperphysik und Ma-

terialwissenschaft. Erstens trainieren wir mit maschinellem Lernen Aus-

tauschkorrelationsfunktionale für Dichtefunktionaltheorie (DFT). Im Gegen-

satz zu früheren Arbeiten, trainieren wir nicht nur die Austausch-Korrelations-

Energie, sondern verwenden automatische Differentiation, um gleichzeitig

das korrekte Potential als funktionale Ableitung des neuronalen Net-

zes zu trainieren. Solche neuronalen Netzwerkfunktionale können ex-

trem nichtlokal sein, während sie rechenkostentechnisch wie lokale und

semilokale Funktionale skalieren. Deshalb haben sie das Potential einige

der Nichtlokalitätsprobleme der Dichtefunktionaltheorie zu lösen.

Zweitens trainieren, entwickeln, und implementieren wir Crystal-Graph

Attention Networks (CGAT) für die Vorhersage von thermodynamisch

stabilen Materialien. Frühere Generationen von Graph-Neuronalen Net-

zewerken verwenden in der Regel die Atompositionen und die Elemente

als Eingabe. Die Atompositionen der optimierten Kristallstrukturen

können jedoch nur über DFT-Berechnungen ermittelt werden. Dies

macht es unmöglich, die Netzwerke direkt auf solche Studien anzuwen-

den. Wir lösen diese Herausforderung, indem wir die atomaren Abstände

durch Reprsäsentationen der Graphabstände ersetzen, um Netzwerke zu

schaffen, die für Hochdurchsatzstudien geeignet sind. Um diese Net-

zwerke zu trainieren, sammeln und kuratieren wir einen der größten

Datensätze von DFT-Berechnungen mit konsistenten Parametern. Durch

die Anwendung des Datensatzes und der neuen Netzwerktopologie kon-

nten wir mehr als eine Milliarde Materialien auf ihre Stabilität un-

3



tersuchen. Als Resultat dieser Hochdurchsatzstudie haben wir bere-

its mehr als 23000 Materialien entdeckt, die relativ zu der konvexen

Hülle, mit der wir begonnen haben, stabil sind. Unter Verwendung der

Hülle, die sich aus unserem ursprünglichen Datensatz ergibt, führen wir

mehr als 200k Kristallstrukturoptimierungen mit dem Perdew-Burke-

Ernzerhofer-Funktional für Festkörper (PBEsol) und Einzelpunktberech-

nungen mit dem ”Strongly Constrained and Appropriately Normed”-

Funktional (SCAN) durch, um eine konvexe Hülle und Strukturinfor-

mationen von Funktionalen jenseits des PBE zu erhalten. Diese Daten

werden in Zukunft eine genauere Vorhersage von stabilen Materialien

und ihren Eigenschaften ermöglichen.
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1 Introduction

In the last 15 years, the field of machine learning and its applications

in other domains have seen an unprecedented increase in interest. This

revolution is a result of the increase in computing power, especially in

graphic processing units, the development of new algorithms and the

accumulation of large datasets that allow for the application of these

algorithms. Machine learning has proven to have superhuman abilities

in multiple fields from computer games [12, 164], over chess, Go [144]

and self-driving cars [15] to image classification [60] and the prediction of

protein folding [72]. While chemistry [114] and genetics [6] already have

a long history of data-driven research, theoretical solid-state physics

and material science have only recently started to embrace this new

paradigm [JSPhD9]. Two of the most active research topics in this

field are the discovery of new materials and the development of machine

learning density functionals [JSPhD9, JSPhD6].

Material Discovery

The design of new compounds is one of the principal factors driving

progress in material science. Traditionally, experiments based on hu-

man ingenuity and even randomness have played the most prominent

part in the discovery of new materials [129]. The first computer revolu-

tion changed this by introducing computational high-throughput studies

based on ab initio methods [105]. These already resulted in a signifi-

cant speedup for the development of new materials and technologies.

However, the first-principle methods, mainly DFT, are still computa-

tionally expensive, and the vast majority of DFT calculations is quickly

forgotten as they result in unstable or useless materials.

Machine learning allows us to use this forgotten data and speed up the

exploration of the chemical space by several orders of magnitude [JSPhD9,
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117]. Machine learning models that use the compositions and/or struc-

tures as input allow for the direct prediction of the stabilityand other

properties of the materials. The prediction capabilities of these algo-

rithms depend first on the model itself and second on the training data.

Concerning models, graph neural networks based on the atomic posi-

tions provide the most precise predictions of material properties [7, 32].

However, these models are not applicable to high-throughput searches

of materials as only a crystal structure prototype but not the exact

positions are available until DFT calculations are performed [JSPhD6].

Less accurate composition-based models do not present an alternative as

they cannot differentiate between polymorphs with the same composi-

tion but different structures. In this work, we aim to solve this challenge

by proposing a message passing network that relies on imprecise struc-

ture representations as input and can therefore be used efficiently in

prototype-based high-throughput searches.

We will also work on creating larger and higher fidelity DFT datasets

to improve the performance of the machine learning models and the

precision of stability predictions via DFT. The accuracy of DFT calcu-

lations rests mostly on the quality of the functional that is used. All

large scale solid-state databases (≥10k materials) still use the PBE func-

tional [119] developed a quarter-century ago. We will address this prob-

lem and create a database of 250k materials calculated with SCAN [152]

and PBEsol [121]. These modern functionals profit from decades of func-

tional research and provide more accurate energies, crystal structures

and band gaps for solids [178, JSPhD1, 177, JSPhD5].

Machine Learning Functionals

While newer approximations such as SCAN show a significant im-

provement over old functionals, DFT still suffers from its classical fail-

9



ure points, in particular the delocalization errors and the locality of

most functionals. The number of empirical functionals has already in-

creased in the last decade [92] and neural network functionals have a

long history [157]. In recent years more and more machine learning

functionals have been suggested. However, most of them either arrive

at inaccurate potentials [146] or do not calculate them as functional

derivative of the energy functional [111]. At the same time, automatic

differentiation frameworks have made significant advances [1, 118]. One

of the goals of this thesis will be to use these advances to simulta-

neously train a neural network exchange-correlation functional and its

functional derivative with respect to the density and demonstrate the

feasibility of this approach for one-dimensional systems. Furthermore,

in contrast to traditional approximations, neural networks should allow

us to easily vary the locality of the functional and research different de-

grees of locality. We will attempt to demonstrate that machine learning

functionals have the potential to overcome some of the deficiencies of

classical exchange-correlation functionals.
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2 Theoretical Foundation

We aim to replace or speed up the calculation of precise energies and

other properties of crystal structures with machine learning methods.

To calculate these energies or other properties we have to solve the

many-body problem. In the next section, we will discuss this problem

and DFT as an approach to solve it.

2.1 Many-Body Problem

The quantum mechanical many-body problem is well-defined by the

Schrödinger equation in atomic units:

Ĥψ = Eψ, (1)

with the following many-body Hamiltonian:

Ĥ = −
∑
j

∇2
j

2Mj
−
∑
i

∇2
i

2
+
∑
j 6=i

ZjZi
|Rj −Ri|

+
∑
j 6=i

1

|rj − ri|
−
∑
j,i

Zj
|Rj − ri|

.

(2)

Here Rj, Mj, Zj and ri denote respectively the coordinates, masses and

charges of the nuclei and the coordinates of the electrons. The first

two terms of the Hamiltonian are the kinetic energy of the nuclei and

the kinetic energy of the electrons. This is followed by the electrostatic

energy of the nuclei and the electrons and the electrostatic energy of

the nuclei interacting with the electrons.

Commonly, this equation is simplified through the Born-Oppenheimer

approximation [16] that separates the wave functions of nuclei and elec-

trons based on the fact that nuclei are at least ∼ 3 orders of magnitude

heavier than electrons.

ψ (Ri, ri) = γ (Ri)φRi
(ri) (3)
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Unfortunately, even for the resulting simplified electronic Hamiltonian:

Ĥe = −
∑
i

∇2
i

2
+
∑
j 6=i

1

|rj − ri|
−
∑
j,i

Zj
|Rj − ri|

, (4)

no analytic solutions are known for larger systems and it can be eas-

ily understood that standard numerical solutions for more than a few

particles are impossible. The memory alone to save the solution of a

10 particle problem on a 10 by 10 grid in 3 dimensions would be of the

order of 1021 gigabytes prohibiting this approach.

2.2 Density Functional Theory

Fortunately, Hohenberg and Kohn circumvented this challenge through

the development of DFT [62]. DFT replaces the wavefunction as the

central object of quantum mechanics with the electronic density:

n (r) = N

∫
dr2 . . .

∫
drNψ (r, · · · , rN)ψ∗ (r, . . . , rN) . (5)

This replacement is made possible by the Hohenberg-Kohn theorem [62]

that we can divide into two parts. The first one states that a one-

to-one correspondence between the electronic density and the external

potential of a system and consequently its Hamiltonian exists. The

second part proves that the ground state electronic density minimizes

the energy of a system, which is the variational principle used in DFT.

We can write the energy functional as a sum of the energy of an external

potential vext and a universal functional F[n(r)]:

E[n(r)] =

∫
dr n (r) vext (r) + F [n(r)], (6)

where the latter can be denoted as the kinetic energy plus the Coulomb

interaction of the electrons:

F [n(r)] = T [n(r)] + U [n(r)]. (7)
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We can efficiently solve the variational problem by switching to the

Kohn-Sham formalism [82]. Here we reduce the many-body problem to

a non-interacting system with an effective potential that leads to the

same ground state density as the interacting system. Based on this

assumption, we arrive at the Kohn-Sham equations:(
−∇

2

2
+ veff([n(r)], r)

)
Ψi = EiΨi. (8)

The effective potential veff([n[r], r) is defined as follows:

veff(n[r], r) = vext (r) + vH ([n(r)] , r) + vxc ([n(r)], r) . (9)

Here vext (r) is the external potential, parameterized by the positions of

the nuclei that were fixed through the Born-Oppenheimer approxima-

tion. The Hartree potential is denoted as:

vH ([n(r)] , r) =

∫
dr′

n (r′)

|r − r′|
, (10)

and

vxc ([n(r)], r) =
δExc

δn (r)
(11)

is the exchange-correlation potential that results as the functional deriva-

tive of the exchange-correlation energy. The latter potential includes all

remaining many-particle interactions. Since two of the potentials are

functionals of the electronic density, we have to solve the Kohn-Sham

equations in a self-consistent manner. The atomic density can be used as

a starting guess to calculate the exchange-correlation and the Coulomb

potential. Following the solution of the equations, we can obtain a new

density from the resulting Kohn-Sham orbitals:

n (r) =
N∑
i

|ψi (r)|2 (12)
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and use this density to recalculate the potentials. Then we solve the

equations again, repeating this process until convergence.

The total energy of the Kohn-Sham system is written as:

Etotal = TKS[n(r)] +

∫
drn (r) vext (r) + EH[n(r)] + Exc[n(r)] (13)

where TKS[n(r)] is the kinetic energy of the non-interacting electrons

and EH the electrostatic repulsion between electrons:

EH[n(r)] =
1

2

∫
dr

∫
dr′

n (r)n (r′)

|r − r′|
. (14)

While we know the form of the Hartree terms, the same is not true

for the exchange-correlation energy. Improving the approximations for

the exchange-correlation energy Exc[n(r)], that we only know exactly

for simple systems such as the Fermi gas, has been the major challenge

since the advent of DFT. Although the problem is not solved, a number

of successful approximations have been developed.

2.3 Exchange-Correlation Functionals

The simplest of these is the local density approximation:

ELDA
xc =

∫
εxc [n(r)]n (r) dr. (15)

Here εxc is the exchange-correlation energy per particle of a homoge-

neous electron gas with charge density n(r). Usually we decompose the

exchange-correlation energy into an exchange and a correlation energy:

Exc = Ex + Ec. (16)

Naturally, we can extend the definition of this functional, and of DFT

in general, to consider spin, which results in the local-spin density ap-

proximation:

ELSDA
xc =

∫
(εx [n↑(r), n↓(r)]n(r) + εc [n↑(r), n↓(r)]n(r)) dr. (17)
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The LSDA represents the first step on Jacob’s ladder (see fig. 1) a hierar-

chy of exchange-correlation approximations suggested by John Perdew

in 2001 [122].

Figure 1: Jacob’s ladder representing the different levels of accuracy of the increasingly

more complex categories of exchange-correlation approximations.

Generalized gradient approximations (GGAs) take up the next step

on the ladder. In addition to the local density, GGAs also include the

gradient of the density:

EGGA
xc [n↑, n↓] =

∫
drn(r)eGGA

xc (n↑, n↓,∇n↑,∇n↓). (18)

GGAs are the most used functionals in solid-state physics, with the

Perdew-Burke-Ernzerhof approximation(PBE) being the foremost func-
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tional [119].

Meta-GGAs reach even one step closer to the heaven of chemical ac-

curacy by adding the kinetic energy density τ(r), and ∇2n(r) to their

functional form. As the calculation of τ(r) requires the calculation of the

derivatives of the Kohn-Sham orbitals, the potentially better accuracy

comes at a higher computational cost. The most successful meta-GGA

is the strongly constrained and appropriately normed (SCAN) func-

tional [152] that was developed based on all known exact constraints for

meta-GGAs.

The next rung is taken up by functionals using information from the

occupied orbitals. The most common example are hybrid function-

als [11, 150, 120] that combine a portion of the exchange energy from

Hartree-Fock with other functionals. The Hartree-Fock exchange energy

is calculated as a four-center integral of the orbitals. Consequently, hy-

brids are nonlocal functionals and scale even slower than meta-GGAs.

Double hybrids extend this concept by including interactions between

occupied and unoccupied orbitals. For instance, the PT2 family of func-

tionals [109, 53] adds a correlation term corresponding to the single and

double excitations in second order perturbation theory.

In total, more than 500 exchange-correlation functionals have been

proposed in the past fifty years [92] even though the majority of them

had a very limited impact.

Functionals in general play a major role in this thesis. First, we at-

tempt to skip Jacob’s ladder to the heaven of chemical accuracy by

taking a ”machine learning elevator”. We will demonstrate that it is

possible to train neural network functionals with a physically correct

exchange-correlation potential, that is, the functional derivative of the

energy with respect to the density. Furthermore, we show that these
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functionals can be extremely nonlocal while maintaining the scaling of

traditionally local functionals.

Secondly, we improve existing PBE solid-state datasets by recalcu-

lating them with the PBEsol [121] and the SCAN functional [152]. In

the following, we introduce the details of these two functionals and the

machinery behind solid-state DFT calculations.

PBEsol and SCAN

Both the PBE, the PBEsol as well as the SCAN functional consider

some exact conditions. The PBE functional fulfills 5 conditions for the

exchange part [35]:

• exact for uniform densities

• correct scaling of the functional under a uniform density scaling

nλ(r) = n(λr):

Ex [nλ(r)] = λEx [n(r)] (19)

• spin scaling relationship:

Ex [n↓(r), n↑(r)] =
1

2
(Ex [2n↑(r)] + Ex [2n↓(r)]) (20)

• linear response of the LDA for small densities

• local Lieb-Oxford bound [35]:

Ex [n(r)] ≥ Eλ=1
xc [n(r)] ≥ 2.273ELDA

x (21)

and 3 conditions for the correlation part:

• exact second-order gradient expansion in the slowly varying limit
|∇n(r)|
n(r) → 0

• in the rapidly varying limit |∇n(r)|
n(r) → ∞ the correlation energy

should vanish
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• negative constant under uniform scaling to the high-density limit.

Based on these theoretical conditions Perdew, Burke and Ernzerhof fixed

the four parameters of the PBE making it fully ab-initio. While it uses

the same formula, PBEsol selects different exact conditions leading to

changed parameter values. Specifically, PBEsol fixes the density gradi-

ent expansion of the exchange resulting in one different parameter and

making it impossible to satisfy the gradient expansion for the correla-

tion. A second parameter is also changed, violating the linear response

condition but allowing for better surface energies. With these changes,

we arrive at a functional that corrects most of the underbinding of PBE,

resulting in far superior lattice constants [JSPhD5]. We will later use

this fact to obtain more precise ground state geometries while retaining

the computational cost of a GGA. The third and last functional used

in this thesis is the SCAN [152] functional, a meta-GGA. SCAN was

developed by satisfying all 17 exact constraints for meta-GGAs and ful-

filling several norms from uniform and slow-varying densities to various

gas atoms and the Z→ ∞ limit of two-electron ions. As a result, it

provides lattice constants that are en par with PBEsol [177, 151] while

yielding superior formation energies [178, 151] and slightly improved

band gaps [JSPhD1]. However, we have to note that SCAN is plagued

by some numerical issues that can lead to difficulties converging calcu-

lations [38, 8].

2.4 Plane Wave basis and Projector-Augmented-Wave Method

While it is possible to solve the Kohn-Sham equations in real space and

some codes follow this direction [154, 173], it is usually far more efficient

18



to represent the Kohn-Sham orbitals in a basis:

φi(r) =
∑
i

ciχi(r). (22)

Here ci are the expansion coefficients that are optimized during the SCF-

method and χi is a fixed set of basis functions. When using a basis, the

eigenvalue problem transforms to a generalized eigenvalue problem:

(H − εiS)C = 0 (23)

where S is the overlap matrix of the basis, which vanishes only in the

case of an orthogonal basis. In quantum chemistry, Gaussian type or-

bitals find the widest application as basis sets [36, 153], while solid-

state codes are dominated by plane wave bases [85, 84, 45, 50, 31]. The

reasons for this are quite simple if we consider the Born–von Kármán

periodic boundary conditions of crystal structures:

Ψnk(r) = Ψnk(r +R) (24)

and Bloch’s theorem:

Ψnk(r) = unk(r)eikr (25)

unk(r) = unk(r+R). (26)

We label the states by their Bloch vector k and their band index n,

unk(r) are functions following the periodicity of the lattice. R is a lattice

translation vector composed from the lattice vectors ai of the crystal

structure R =
∑

i niai. The cell periodic functions unk(r) are usually

expanded in plane waves:

unk(r) =
1

Ω
1
2

∑
G

cnGke
iGr (27)

Ψnk(r) =
1

Ω
1
2

∑
G

cnG+ke
i(G+k)r. (28)
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In practice only the plane waves below the energy cutoff 1
2 |G + k|2 <

Ecutoff are used which reduces the basis to a finite size. The integrals

over the Brillouin zone are evaluated by selecting special sets of k-Points

according to some scheme, e.g., the Monkhost-Pack scheme [108]. Plane

wave basis sets have many more advantages over atomic basis sets, e.g.,:

• they are orthogonal,

• Laplace operators are diagonal,

• they allow for efficient transformation to real space with fast Fourier

transforms,

• they are independent of nuclei positions,

• the precision is systematically improvable by increasing the energy

cutoff.

However, the number of plane waves needed to describe strongly local-

ized states or the oscillations of the wave functions near the nucleus

quickly becomes impractical. To overcome this problem, we use the

frozen core approximation. We calculate core electrons in an atomic

environment, leave them frozen during the DFT calculation, and rep-

resent them by a pseudopotential. This has the second major advan-

tage of massively reducing the number of electrons in DFT calcula-

tions. The main variants of pseudopotentials that are in use are norm-

conserving [86] pseudopotentials, ultra-soft pseudopotentials [161], and

the Projector-Augmented-Wave (PAW) method [13, 87, 131]. The lat-

ter combines ideas from both Vanderbilt-type ultrasoft pseudopoten-

tials [161] and the linearized-augmented-plane-wave (LAPW) method [4].

The only major DFT-code used for this thesis was the Vienna Ab-Initio

Simulation Package (VASP) [85, 84] that utilizes the PAW-method.
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Therefore, we limit our discussion to this method. For the derivation

of the PAW-method we follow the description in Ref. [131]. When us-

ing pseudopotentials the wave function can usually be divided into two

regions: the interstitial region between atoms where the wave function

is relatively smooth, and spheres around the atoms, where approxima-

tions are needed. In the PAW-method we use a linear transformation

to go from the smooth pseudo-wavefunction
∣∣∣Ψ̃n

〉
to the all-electron

Kohn-Sham orbitals:

|Ψ〉n = T̂
∣∣∣Ψ̃n

〉
. (29)

The linear transformation T̂ needs to be defined in such a way, that it

yields a transformed eigenvalue problem with smooth eigenvectors that

are efficient for calculations:

T̂ †ĤT̂
∣∣∣Ψ̃〉

n
= εnT̂ †T̂

∣∣∣Ψ̃n

〉
. (30)

We already expect the Kohn-Sham orbitals to be sufficiently smooth in

the interstitial regions, therefore we only need to adjust them close to

the cores. To simplify the process we can decompose the linear trans-

formation into a set of atom centered transformations T̂α that vanish

outside of a cutoff |r −Rα| < rcutoff
α centered on each nucleus α:

T̂ = 1 +
∑
α

T̂α. (31)

We name this cutoff augmentation spheres or regions. For each augmen-

tation region, we define a set of partial waves |Φα
i 〉 and a corresponding

set of smooth pseudo partial waves
∣∣∣Φ̃α

i

〉
. The former is used to expand

the all-electron orbitals and has to obey the following relation with the

latter:

|Φα
i 〉 = (1 + T̂α)

∣∣∣Φ̃α
i

〉
⇐⇒ T̂α

∣∣∣Φ̃α
i

〉
= |Φα

i 〉 −
∣∣∣Φ̃α

i

〉
. (32)
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As the transformations T̂α are supposed to vanish outside the core re-

gions we arrive at the following:

∀α, i Φα
i (r) = Φ̃α

i (r) for |r −Rα| > rcutoff
α . (33)

Assuming that each set
∣∣∣Φ̃α

i

〉
is a complete basis inside its augmentation

radius, each all-electron orbital |Ψ〉n and its smoothed counterpart
∣∣∣Ψ̃n

〉
can be expanded as:∣∣∣Ψ̃n

〉
=
∑
i

cαni

∣∣∣Φ̃α
i

〉
, for |r −Rα| < rcutoff

α (34)

|Ψ〉n = T̂
∣∣∣Ψ̃n

〉
=
∑
i

cαni |Φα
i 〉 , for |r −Rα| < rcutoff

α . (35)

The second equation follows directly from eq. (32). T̂ is a linear operator

and consequently the expansion coefficients are required to be linear in∣∣∣Ψ̃n

〉
. Therefore, they can be represented as:

cαni =
〈
p̃αi

∣∣∣Ψ̃n

〉
. (36)

p̃αi are fixed functions that have to be selected and are known as pro-

jector functions. The augmentation regions are defined such that there

is no overlap between them. Hence, we obtain the following relations

inside each augmentation sphere:∣∣∣Ψ̃n

〉
=
∣∣∣Ψ̃α

n

〉
=
∑
i

∣∣∣φ̃αi 〉〈p̃αi ∣∣∣Ψ̃n

〉
⇒

∑
i

∣∣∣φ̃αi 〉〈p̃αi ∣∣∣ = 1. (37)

Consequently, the projector functions and pseudo partial waves are or-

thonormal to each other inside the augmentation spheres. Using the

above completeness relation we arrive at the formulas for the linear

operators T̂α and the all-electron Kohn-Sham orbitals:

T̂α =
∑
i

(
|Φα

i 〉 −
∣∣∣Φ̃α

i

〉)
〈p̃αi | (38)

|Ψn〉 =
∣∣∣Ψ̃n

〉
+
∑
αi

(
|Φα

i 〉 −
∣∣∣Φ̃α

i

〉)〈
p̃αi

∣∣∣Ψ̃n

〉
. (39)
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Through this transformation we separated the wave function into a

smooth part for the interstitial region and rapidly oscillating parts inside

the augmentation spheres that can both be treated efficiently.

By adding the frozen core approximation, we assume that the core

electrons are localized in the augmentation spheres and fill their stan-

dard atomic orbitals. Consequently, we are only required to treat va-

lence states with the PAW-method. Note that while we primarily use

plane waves, the PAW-formalism leads to a non-diagonal overlap oper-

ator in the eigenvalue problem.

|Φα
i 〉,
∣∣∣Φ̃α

i

〉
and |p̃αi 〉 are functions chosen under the previously defined

restraints with the goal to be as efficient as possible. They are tabu-

lated for each element, however different codes can vary considerably

in their selection of functions. The partial waves |Φα
i 〉 are usually the

eigenstates of the isolated non-spinpolarized atoms. Outside the aug-

mentation spheres, the pseudo partial waves are equal to the partial

waves. Inside the spheres we can choose any continuous continuation,

e.g., Bessel functions in VASP or polynomials in GPAW. The projector

functions are typically calculated according to:

|p̃αi 〉 =

(
−1

2
∇2 + ṽks − εi

) ∣∣∣φ̃αi 〉 . (40)

for each reference atom, followed by an orthonormalization procedure

to enforce the completeness relation. Here ṽks is the smoothed Kohn-

Sham potential that is obtained by applying T̂ α to the Kohn-Sham

Hamiltonian.

The PAW-method significantly complicates any DFT code as the cal-

culation of most quantities changes due to the dual basis description.

For instance, when calculating an energy resulting from an external po-

tential we obtain atomic corrections as well as an additional term from
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the pseudo density ñ(r):

Eext =
∑
α

∫
dr (nα(r)− ñα(r)) vext(r) +

∫
drñ(r)vext(r). (41)

2.5 Thermodynamic Stability

In the last chapters, we introduced DFT and various exchange-correlation

functionals. For us, the most important result of a DFT calculation is

the energy of the system. The energy allows us to at least partially

answer one of the key questions in this thesis, that is, whether a crystal

structure is thermodynamically stable or not.

We define a crystal structure as thermodynamically stable if all possi-

ble decomposition channels are higher in energy. For a binary compound

with composition AxBy, the conceivable decomposition channels are all

linear combinations of elementary materials A, B, or binary compounds

AβBα, that result in the composition AxBy. If any of these linear combi-

nations results in a lower energy than the compound, the compound will

decompose into the lowest energy combination after a finite amount of

time. Thermodynamic stability can be easily visualized and computed

using the concept of a convex hull. In fig. 2 we show a convex hull for

a binary system. All known stable materials are shown in blue and are

part of the convex hull. Any new material (orange) that lies above the

hull is noted as having a positive distance to the hull and will decompose

into the linear combination that can be read from the hull diagram. Any

stable material (pink) resulting from a new calculation will be added to

the hull. While materials on the hull have a zero distance to the hull,

we use a negative distance in practice. The negative distance is evalu-

ated by removing the material from the hull and then calculating the

distance to the remaining hull with the leftover compounds.
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Figure 2: We note stable materials that are already part of the convex hull in blue.

Orange materials are unstable and have a positive distance to the convex

hull. When we add a new material to the hull (magenta), we need to adjust

the hull appropriately. Modified graphic from Ref. [JSPhD6].

Necessarily, our knowledge of the convex hull is incomplete, approxi-

mate and constantly expanding. Incomplete, because we are only slowly

discovering stable materials, approximate due to the errors associated

with DFT and constantly changing and expanding through new high-

throughput searches and other calculations. As we compare energies

when creating the convex hull, we have to use compatible calculation

parameters, e.g., the same exchange-correlation functional, pseudopo-

tentials, etc.. Thus, depending on our data source, the completeness

of the hull and the errors associated with the calculation parameters,

differ.

The most common data source for calculating distances to the con-
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vex hull is the Materials Project [68] which contains only 144k com-

pounds. However, a relatively large number of these are close to sta-

bility, including many compounds from the International Crystal Struc-

ture Database [2]. Other sources are the Open Quantum Materials

Database (OQMD) [133, 77], the Automatic FLOW for Materials Dis-

covery database (AFLOW) [27, 116] as well as works from our group [JS4,

JS3, JSPhD10, 166, JSPhD12]. All of these databases rely on the PBE

functional [119] as exchange-correlation functional but deviate partially

in other parameters. For instance, the OQMD and AFLOW employ

different pseudopotentials and k-point grids in some calculations when

compared with the Materials Project. In Ref. [JSPhD10] we approach

this problem by filtering multiple databases for compatible calculations

to obtain a larger consistent convex hull. We tackle the problem of lim-

ited accuracy in Ref. [JSPhD11] by creating a convex hull with SCAN

calculations [JSPhD11].

Naturally, our goal is to use the convex hull to identify new stable

materials and extend the hull through this process. Prototype-based

high-throughput searches are one of the most efficient ways to discover

new materials. In such a high-throughput search we start by selecting

a known crystal structure prototype with a certain composition, e.g.,

ABC. Then we fill up the sites of the structure with all combinations of

elemental species. For a ternary prototype, this process typically results

in 250k to 500k structures depending on the number of elements that

we consider. Traditionally, we calculate the energies of the resulting

structures with DFT and then determine the stability of each struc-

ture. While this process is feasible for ternaries, it is computationally

expensive and quickly becomes impossible for quaternary or quinary

compounds.
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We will discuss the application of machine learning methods to high-

throughput searches in section 3.2. While machine learning has already

shown some success to speed up the process, a tailor-made tool, us-

ing the latest progress in machine learning, is still missing. We try to

overcome this challenge in Ref. [JSPhD10].
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3 Machine Learning

The goal of machine learning algorithms is to optimize the performance

of the algorithm for a specific task based on examples provided to the

machine [3]. These examples can both be explicitly labeled data or past

experience of the machine. In general, we can divide machine learning

into four subcategories, supervised learning, unsupervised learning, self-

supervised learning and reinforcement learning. In this thesis, we only

employ supervised learning techniques, which are algorithms minimizing

a prediction error on a dataset for which the target values/categories are

known and provided to the machine. In our case, these tasks are the pre-

diction of exchange-correlation energies and potentials in Ref. [JSPhD7]

and the prediction of the thermodynamic stability of crystal structures

in Ref. [JSPhD10]. There is a wide variety of supervised machine learn-

ing algorithms used in material science [JSPhD9], from support vec-

tor machines, decision tree algorithms, linear and kernel-based methods

over Gaussian process regression to neural networks. We will limit our-

selves to neural networks and discuss their foundations and specialized

variants that we employed in this thesis in the following chapter.

3.1 Neural Networks

We start the section by introducing simple fully connected neural net-

works and their training process. These will lay the foundation for hy-

pernetworks, and message passing networks in the context of theoretical

material science.
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3.1.1 Fully Connected Neural Networks

A machine learning algorithm has to start with a numeric representation

of the input system. In simple cases this input is just a single feature

vector. Fully connected neural networks (FCNN) transform such feature

vectors in a non-linear fashion to obtain a prediction. We can reduce

every FCNN to building blocks of single layers. A layer li consists of a

number of neurons which can be represented by a vector zi ∈ RN , where

N is the number of neurons in the layer. The neurons of each layer are

connected with the following layer through a linear transformation, i.e.

a matrix multiplication with the weight matrix Ai
weight, followed by a

non-linear activation function. Often a bias vector is added before the

activation function is applied:

zi+1 = factivation(Ai
weightzi + biasi). (42)

Chaining multiple layers together, we arrive at a FCNN. Commonly, we

denote the first layer as input layer, the last layer as output layer and

all layers in between as hidden layers.

The activation functions can be any form of non-linearity. Tradi-

tionally sigmoidal functions such as the hyperbolic tangent were used.

However, as gradients of sigmoidal functions quickly saturate to zero re-

sulting in the vanishing gradient problem [83] for deep neural networks

they declined in popularity. Nowadays, rectified linear units [113, 49]:

ReLU(x) =

x if x > 0

0 otherwise
(43)

and various functions derived from ReLU such as leaky ReLU [104]:

LeakyReLU(x) =

x if x > 0

ε ∗ x otherwise,
(44)
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Figure 3: The following parameters were used: LeakyRelu ε = 0.1, ELU α=1.0.

exponentional linear units (ELU) [25]:

ELU(x) =

x if x > 0

α(ex − 1) otherwise
(45)

or Gaussian error linear unit (GELU) [61]:

GELU(x) =
x

2
(1 + erf(

x√
2

)) (46)

are the most common. Here erf(x) is the error function. In fig. 3 the

main differences between the activation functions are displayed. The

gradient of the traditional hyperbolic tangent saturates quickly for neg-

ative as well as positive values leading to the vanishing gradient problem.

In contrast all the newer activation functions converge to f(x) = x on

the positive side. The gradient of LeakyReLU in difference to ReLU,

ELU and GELU does not saturate for negative values. However, ReLU
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as well as LeakyReLU have a discontinuous derivative at zero. This

needs to be considered in physics applications where potentials are of-

ten calculated as derivatives of a neural network.

The parameters of the weight matrices Ai
weight are usually randomly

initialized according to normal or uniform distributions [48]. Naturally,

these random parameters do not produce useful predictions as an out-

put of the neural network. To optimize the performance of the neural

networks we can apply the gradient descent algorithm to a suitable dif-

ferentiable loss function, e.g., the mean-squared error:

L(yi, xi, θ) =
∑
i

(FCNNθ(xi)− yi)2. (47)

Here θ are the parameters of the neural network contained in its weight

matrices and bias vectors, xi is the input representation of the ith sample

and yi is the respective target. Following the gradient with respect to

the parameters θ:

θnew = θ − learning rate× ∂L

∂θ
(48)

leads to local optima of the loss function where we stop the minimiza-

tion if we reach a sufficiently small validation error. The gradient steps

are reduced by a prefactor called the learning rate. In practice, differ-

ent variants of stochastic gradient descent are used, which means that

the loss function and its gradient are only calculated for one batch of

samples at a time followed by a change in the parameters. The most

popular variants, i.e. optimizers, are Adam [76] and its corrected im-

plementation AdamW [100] as well as basic stochastic gradient descent

with momentum. Adam and AdamW are the main optimizers used in

the thesis. The update for the jth parameter at the tth timestep in Adam
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can be denoted as:

δwt
j = − learning rate√

1
1−β2MA(gtj

2
)
× 1

1− β1
MA(gtj). (49)

Here MA(gtj) and MA(gtj
2
) are the exponential moving averages of the

gradient of the jth parameter with a decay of β1 and the squared gradient

with a decay of β2, respectively. In contrast to previous algorithms

the averages are bias-corrected, i.e. corrected for the initialization bias

assuming the moving averages are initialized to 0. Moreover, Adam uses

not only an exponential moving average of the squared gradient but also

of the gradient itself.

To easily obtain the derivatives of scalar loss functions modern ma-

chine learning frameworks such as pytorch [118] or tensorflow [1] use

reverse-mode automatic differentiation. This allows for an efficient cal-

culation of the derivative of an arbitrary combination of operations de-

fined within the framework.

3.1.2 Hypernetworks

One of these combinations of operations is known as hypernetworks [56,

110]. We briefly introduce them as we employ them in Ref. [JSPhD10].

Hyper networks are neural networks that themselves return a neural

network as output which then produces a normal output:

HFCNNθH(x) = θx → FCNNθx → FCNNθx(x)→ output. (50)

Here θH are the weights of the hypernetwork and θx the weights obtained

as output for the input x from the hypernetwork. While hypernetworks

exist that output networks of differing topology depending on the in-

put [80], we limit ourselves to hypernetworks that return weights for a

fixed topology. Effectively, these are regular fully connected networks
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that output a vector of the size of the combined weights of the resulting

network. The hypernetworks are trained end-to-end with backpropa-

gation, i.e. the derivative is taken both through the returned network

FCNNx and through the hypernetwork HFCNNθH(x) with respect to

the parameters of the hypernetwork:

∂L

∂θH
=
∂L

∂θx
× ∂θx
∂θH

. (51)

While in most cases they require a larger number of parameters, in the

ideal case, we can obtain a suitable network for each input when using

a hypernetwork.

3.1.3 Message Passing Neural Networks

Message passing neural networks are a relatively general class of neural

networks working on graph-like structures. The central idea of message

passing networks is to update the representation of each vertex in a

graph based on messages sent from neighboring vertices. We discuss

message passing networks in the context of crystal and molecular graphs

that is relevant to this thesis.

To represent a material as a graph, we denote the atoms as vertices and

encode distance and bond information in the edges of the graph. In most

cases, we consider undirected graphs. However, directional edge prop-

erties can easily be integrated into the message passing framework [79]

and are required for some networks [137]. We should also note that some

molecular graphs cannot be differentiated by message passing networks

lacking angular edge information [127].

Each node hi and edge eij connecting the nodes hi and hj are respec-

tively initialized with an embedding vector h0
i ∈ Rm and e0

ij ∈ Rl. The

starting node embedding h0
i is solely dependent on the atomic species.
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In earlier works [172, 20], encodings of basic elemental properties such

as the atomic mass were used as features. Later works employed ran-

domly parameterized embeddings that were trained as part of the neu-

ral network [141]. An additional alternative are pretrained embeddings

learned from text [159]. Of course, we can combine the latter two op-

tions by using a fixed pretrained embedding followed by a trainable lin-

ear layer. The edge embeddings can contain various information, from

atomic distances or chemical bond features [20] to information based

on Voronoi-Tesselations [117] or randomly initialized embeddings of the

graph distance [JSPhD10].

While the starting embeddings are an important choice they only cor-

respond to the feature vectors in simple FCNNs. In total, the input for

a graph network consists of node embeddings, edge embeddings and an

adjacency matrix or equivalent information. Once this representation

of the graph enters the network, we update the node embeddings based

on messages passed from neighbouring nodes to adapt the embeddings

to their local graph environment N (i):

ht+1
i = U

(
hti,
{
htj, e

t
ji

}
, j ∈ N (i)

)
. (52)

U is the update function of the message passing process [46], the only

limitations being that it updates the representation of each node based

on its previous embeddings as well as the embeddings of the neighbour-

ing vertices and their connecting edges. While the form of the update

function is usually constant through all message passing steps, we use

unique weights to parameterize the update function at each step. Ear-

lier works now classified as recurrent graph neural networks used the

same weights for each update step [170]. Network topologies or up-

dating functions can differ strongly in their strategy. Crystal graph
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convolutions are one successful example [172]:

ht+1
i = hti +

∑
j∈N (i)

σ
(
zti,jWf + bf

)
� g

(
zti,jWs + bs

)
. (53)

For crystal structures the neighborhood N (i) is usually defined by a

cutoff radius. zti,j denotes the concatenation of the node embeddings

hti, h
t
j and the corresponding edge eij, σ and g are activation functions,

and Wf/s and bf/s are weight matrices and bias vectors, respectively.

Effectively, the vector zi,j is processed by two single layer FCNNs, and

the results are multiplied to create a message from each neighboring

atom. Then we sum over the messages from the whole neighborhood to

create the update for the node embedding.

Figure 4: The ith atom is shown in black with the atoms in its cutoff radius in blue.

The atoms in red are inside the cutoff radius of the neighboring atoms.

Consequently, the information that was passed to them is part of the second

message passing step to the ith atom.
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As we see in fig. 4 the first message passing step is limited to in-

formation inside the original cutoff radius. The representations of the

atoms in the first cutoff radius are updated based on their own spatially

restricted neighborhood. Thus the effective radius from which informa-

tion is passed to an atom during the second and further message passing

steps is gradually extended.

This functionality is very similar to standard convolutional networks

that work on a grid, and a large share of message passing networks are

actually graph convolutional networks that generalize convolutions to

graphs [170].

In material science we typically use three to five updating steps. After

the last step, we can predict atomic properties, e.g., atomic charges or

magnetic dipoles. To obtain a prediction for the whole crystal structure,

we have to combine the atom representations to a single graph embed-

ding through a pooling function. This graph embedding represents the

entire crystal structure or molecule and typically enters some form of

FCNN to arrive at a prediction. During the last years a large number

of message passing network topologies were published that produce im-

pressive results for the prediction of structural properties [172, 46, 41,

20, 51, 117, 143, 71], Hamiltonians [5, 81, 134, 138, 40], and structure

generation [175, 28, 160, 89, 98, 106, 70, 42, 43]. We discuss a few of

the most relevant and influential examples.

Crystal Graph Convolutional Neural Networks (CGCNN)

were one of the first message passing networks explicitly designed for

crystal structures. Xie et al. used elemental properties encoded in one-

hot vectors as starting embedding for the atoms. The distances between

atoms were encoded in a Gaussian basis. We already noted the update

function in eq. (53). It only updates the node embeddings and keeps
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the edge embeddings constant. The CGCNN were used to predict a va-

riety of crystal structure properties (formation energy, bandgap, fermi

energy, etc.) and according to relatively recent benchmarks [32, 37] they

are still competitive with newer models.

With the SCHNET-architecture Schütt et al. introduced continuous

filter convolutions as a message passing function. Here the atoms are

represented by randomly initialized embeddings, and the edge embed-

dings are radial expansions of the distances dij between atoms:

eij = ||ke−γ||dij−µk||2. (54)

||k denotes the concatenation of the k values. The number of different

basis functions and the distances of their centers µk determine the size

and resolution of the filter convolutions. The atomic representations

are updated by so-called interaction blocks consisting of fully connected

network layers that adapt the representations and the continuous filter

convolutions. The edge representations enter a fully connected two layer

neural network that yields the filter weights:

W t(eij) = FCNNt
c(eij) (55)

for the continuous convolution.

ht+1
i = hti + FCNN1

(∑
ij

FCNNt
0(h

t
j) ◦W t(eij)

)
. (56)

Comparing this function with the crystal graph convolutional networks

published one year later, we see that the SCHNET convolution oper-

ator only depends on the edge information while the CGCNN filters

are calculated using both nodes and the connecting edge. Initially, the

SCHNET-architecture was only applied to molecular datasets but it can

easily be applied to solids and an implementation for solids is available in
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the SCHNETPACK software package [140]. Both network architectures

retain their starting edge representations during the message passing

process. Jorgensen et al. [71] expanded the SCHNET-architecture with

an edge update function. At each message passing step the edges are

updated by a fully connected network using a concatenation of the up-

dated embeddings of the two connected nodes and the edge embedding

as input:

et+1
ij = FCNN(etij||ht+1

i ||ht+1
j ). (57)

This addition leads to a remarkable performance gain of more than 25%

for formation energy prediction tasks in the QM9 dataset [130, 132], the

Materials Project dataset [68] and the OQMD [133, 77].

However, as these networks and countless other message passing ar-

chitectures rely on the relative atomic positions as input data, they can-

not be used effectively in high-throughput studies to predict properties

from unrelaxed structures. For instance, one of the most recent architec-

tures [117] reports several times higher errors for unrelaxed structures.

3.1.4 Attention Mechanism for Graphs

The most successful idea in machine learning from the last years is the

attention mechanism and its application in natural language process-

ing [162]. In natural language processing, the self-attention mechanism

is responsible for directing the attention of the network layers in a trans-

former [162] to tokens or words in a sentence depending on the sentence

itself. Transformers can be considered as graph networks over a fully

connected word-graph.

As a result, different versions of the attention mechanism have also

found success in message passing architectures [163] and were already

applied to material science [51].
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In the case of graph networks, the goal is to direct the attention dur-

ing the message passing process to the nodes with the most relevant

messages. The attention is directed by so-called attention coefficients

aij. For each atom i the attention coefficient are multiplied with the

messages mij from atom j to atom i. If the attention coefficient is close

to zero, atom i does ”not pay attention” to atom j. However, there

might be multiple important aspects to the chemical environment rep-

resented by each message passing step. Thus, we not only calculate one

but N sets of attention coefficients anij and messages mn
ij at each time

step. We call each set of networks calculating the messages and atten-

tion coefficients an attention head. Ideally, each head learns to direct

its focus at different facets of the chemical environment.

In detail each attention head, indexed by n, at each timestep t, consists

of two fully connected networks FCNNNn,t
a and FCNNNn,t

m where the

first is used in the process of calculating the attention coefficients while

the latter directly calculates the messages:

st,nij = FCNNNt,n
a (hti||htj||eij) (58)

at,nij =
exp
(
st,nij
)∑

j exp
(
st,nij
) (59)

mt,n
ij = FCNNt,n

m (hti||htj||eij). (60)

Here hti||htj||eij denotes the concatenation of the atomic embeddings hti

and htj as well as the edge embedding eij. Based on this information

the message mt,n
ij and the coefficients st,nij are calculated. The latter are

normalized with a softmax function to produce the attention coefficients.

We update the representation of each atom using the messages weighted
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by the attention coefficients:

ht+1
i = hti + FCNNt

(
||
n

∑
j

anijm
h
ij

)
. (61)

After we sum over the messages from each atom, we concatenate or

average the resulting messages from each attention head before they

enter an additional network. A basic version of this attention mecha-

nism was developed in Ref. [51] and another version of it is applied in

Ref. [JSPhD10].

”Representation Learning from Stoichiometry” (Roost) [51] in con-

trast to the other models we discussed, is a message passing network for

graphs of the composition. For instace, a ternary composition ABC is

represented as a fully connected graph with the vertices A, B and C and

messages are passed between these nodes. The fractional composition is

then used to weigh the embeddings during message passing and pooling.

The message passing applies a version of the attention mechanism de-

scribed above that does not use edge information. Roost uses pretrained

embeddings from Ref. [159], that were trained as word2vec [107] embed-

dings on material science literature, followed by a linear layer. In gen-

eral, Roost performs superior to previous composition-based machine

learning models but worse than message passing models that include

the structure as a crystal graph [7].

Crystal Graph Attention Networks

We developed Crystal Graph Attention Networks (CGAT) for the pre-

diction of thermodynamic stability in Ref. [JSPhD10]. They are an-

other message passing architecture for crystal graphs. We use the same

fixed pretrained elemental embeddings from Ref. [159] as Ref. [51], fol-

lowed by an extra linear layer that allows for changes during training.

The edge embeddings constitute a significant change in contrast to prior
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networks for crystal structures. For the edges, we consider purely the

graph distance and assign each graph distance, i.e. first neighbor, sec-

ond neighbor etc. a vector that is randomly initiated during the net-

work creation. These embeddings are again updated during training

to learn sensible representations of the graph distances. We use the

previously introduced attention mechanism with some updates as our

message passing scheme.

Each message is already a high-dimensional vector. Therefore, we do

not only use attention coefficients such as in Ref. [163] and Ref. [51]

but introduce attention vectors of the same dimension as the messages.

While this change increases the parameter number per attention head,

we also see a mean absolute error improvement (MAE) of 11% in com-

parison to scalar attention coefficients for experiments we performed in

Ref. [JSPhD10]. The update function is further revised by changing the

last FCNN network in eq. (61) to a hypernetwork.

ht+1
i = hti + HFCNNt

θtg

(
||
n

∑
j

anijm
n
ij

)
. (62)

Here HFCNN is a hypernetwork along the lines of Ref. [110] that cal-

culates a network based on the representation at each message passing

timestep in comparison to the starting time step. While [110] used

the same network at each message passing time step, we found separate

networks performing better.

Jorgensen et al. [71] demonstrated that updating both the edge em-

beddings as well as the node embeddings yields better results. Thus we

also add an edge-update function. We consider this even more essential

in our case, as the first neighbor distance between, e.g., an iron and a

bismuth atom or an iron and a chloride atom will most likely be very

different. And in contrast to an exact distance representation, we ini-
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tialize the embeddings for each respective graph distance always with

the same vector. Consequently, they need to adapt more based on their

environment.

The edge embeddings are updated in a similar manner as the node

embeddings at each message passing step:

se,nij = FCNNNn
a(h

t
i||htj||etij) (63)

ae,nij =
exp(sij)∑
n exp(sni )

(64)

me,n
ij = FCNNNn(hti||htj||etij) (65)

et+1
ij = etij + HFCNNn,t

θtg

(
||
n
ae,nij m

e,n
ij .

)
(66)

After the message passing steps, we have to combine the updated rep-

resentations of the single atoms into a prediction of a crystal property.

The obvious step would be to use an additional attention layer to pool

the representations together.

However, in 2021 Louis et al. [101] introduced a global composition-

based attention pooling layer. Here, the atomic representations are

combined contingent on a global context vector. An attention layer is

used to combine the representations of the different atoms, but before

the representations enter the FCNNNn
Pooling−a and FCNNNn

Pooling−m of

the attention heads a vector representing the composition is concate-

nated. In this way, the entire chemical context can be considered when

combining the vectors representing each atom. While Louis et al. used a

simple vector based on the fractional compositions, we train a ROOST

model [51] to output a context vector. Besides the extra context vector,

the attention pooling layer is a normal attention layer that considers all
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atoms in the unit cell:

sni = FCNNNn
a(h

t
i||C) (67)

ani =
exp(si)∑
i exp(sni )

(68)

mn
i = FCNNNn

m(hti) (69)

Output = FCNNRS

∑
i,n

mn
i a

n
i . (70)

Lastly, a fully connected network with residual connections FCNNRS [59]

is used to obtain the final output. In Ref. [JSPhD10] we solely use the

network to predict distances to the convex hull. However, it can easily

be used for other system- or per-atom-properties.

3.2 Machine Learning Material Properties

A large section of the machine learning research in material science can

be summarized as predicting material properties, i.e. learning structure-

property relationships. Using some representation of crystal structures

as input, researchers have already attempted to predict more than 40

different properties [JSPhD9, JSPhD6]. The by far most common tar-

get properties in solid-state material science are the formation energy

or thermodynamic stability of materials [34, JS3, JS4, 117, 71, 97, 75,

139, 172, 97, 174, 20, 179, 51, 110] and the band gap of materials [183,

172, 66, 29, 91, 124, 128, 156, 176, 148, 169, 55, 126, 142, 102, 125, 21,

JSPhD1]. As discussed in the introduction, we are specifically interested

in the first two. For a machine learning application, the first challenge is

selecting an adequate feature set, i.e. input representation. The major-

ity of works [34, 33, 167, JS4, 139] until 2017 used input representations

purely built on domain knowledge and human intuition. Typically, a

number of atomic properties such as atomic mass and radius were se-
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lected and combined to arrive at a feature vector representing the whole

composition. In the following, a simple machine learning algorithm, e.g.,

a decision tree ensemble [17, 44] or a FCNN was applied to the vector

to obtain the formation energy or distance to the convex hull. Despite

their simplicity, these models were already quite successful, achieving

speedups, i.e. reduction in the number of DFT calculations in compar-

ison to a complete high-throughput search, between a factor of 5 to 30

[JS4, JS3, 75]. The next step in model development were deeper fully

connected networks or convolutional networks such as ElemNet [69] or

Ref. [180, 181], respectively. These do not use atomic properties as fea-

tures but apply the ability of deep neural networks to learn their own

representations [90] from the composition.

ElemNet uses a one-hot vector of length N, where N is the number

of possible species, for each composition. The corresponding positions

in the vector are set to the fraction of the species in the composition

(see fig. 5). Then a 7-layer FCNN learns the formation energy from

this representation. The representations in Ref. [180, 181] are slightly

more sophisticated as they use an ”image” of the periodic table filled

with the corresponding composition fractions as input, followed by a

few convolution layers and then a deep FCNN.

However, if we consider a prototype-based high-throughput search of

a binary compound AB, where A and B are not equivalent sites, we

quickly see that both models [69, 180] have problems learning. The

models cannot differentiate between the structures AB and BA. For

a single prototype structure this problem can be circumvented by in-

troducing an extra dimension to the input. Then we obtain one vec-

tor/periodic table for position A and one vector/periodic tabl for po-

sition B. However, as a result the model cannot profit from training
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Figure 5: a) shows the ElemNet feature vector for a composition NaNiBe3. b) shows

the feature vector for a ternary composition when it is extended to 2-

dimensions to apply an ordering of the composition to differentiate between

polymorphs of one prototype. c) shows the same method applied to the

periodic table ”images” used in Ref. [180, 181]. Figure from Ref. [JSPhD10]

data from other prototypes and separate training data need to be cal-

culated for each prototype. The state of the art concerning composition

models is Roost [51, 7] that considers the composition as a graph and

then applies a message passing mechanism. We discussed it in detail in

the previous section 3.1.3. Despite its impressive performance in bench-

marks [7], Roost has the common failure point of compositional models

as it also cannot differentiate between polymorphs, i.e. compounds with

the same composition but a different structure. Isayev et al. [66], and

Ward et al. [167] were some of the first to develop successful structure
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sensitive descriptors suitable for high-throughput searches. Besides dis-

tinguishing polymorphs, the primary advantage of structure sensitive

representations is that all training data of all crystal structures can be

used. Ward et al. [167, 75] demonstrated that the additional training

data can result in significant performance gains. With the advent of

deep graph neural networks, the molecular and crystal graphs discussed

in the previous section have turned out to be the most successful rep-

resentation for large data applications [32, JSPhD9].

However, due to their reliance on atomic positions message passing

networks have not made an impact in high-throughput studies yet.

To circumvent the problem of unknown exact atomic positions in

prototype-based high-throughput searches, we developed crystal graph

attention networks. As discussed previously, the edge embeddings are

the primary difference to other networks as we solely consider the graph

distance and ignore the exact distances. This change brings the ad-

vantage that if we simply scale the volume of a structure, the neighbor

list, and consequently the network output, stay unchanged. Thus, our

prediction is relatively insensitive to a geometry optimization. By con-

structing prototypes with different cell constant ratios, we can reduce

the effect of a changing neighbor list during geometry optimization even

more. For instance, mixed perovskites have a tetragonal structure fig. 6,

and so we have to consider structures stretched by different ratios to ar-

rive at a minimum energy prediction. This approach is only viable for

energies, as we are essentially performing a geometry optimization with

the machine learning model by selecting the lowest energy prediction

as the ground state prediction. For other properties no such selection

criterion is available. Therefore, we use the structure selected during

the energy prediction to obtain other properties. We will discuss the
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Figure 6: Crystal structures of the mixed perovskites prototype used in Ref. [JSPhD10]

with different cell constant ratios a/b .

details of the application and testing of the CGATs in section 4.2.

3.3 Neural Network Functionals

In this section, we give an overview of machine learning works for den-

sity functionals up to the time when Ref. [JSPhD7] was published.

Tozer et al. [157] started the development of machine learning exchange-

correlation functionals in 1996, a decade ahead of their time. They used

a one hidden-layer FCNN to map the electronic density directly to the

exchange-correlation potential. Despite their network containing only

25 parameters, the functional yielded results comparable to the LDA

for molecules that were sufficiently represented in the training data.

The machine learning work got rekindled in the early 2010s with, e.g.,

the work performed by Snyder et al. [147, 165, 145, 146, 96]. Starting

with a 1D kinetic energy functional [146] based on kernel ridge regres-

sion, self-consistent orbital free calculations were possible. As only the

functional and not its derivative was trained, the directly calculated

functional derivative was inaccurate and needed to be corrected through

a projection on the principal components of the most similar training
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densities. Snyder et al. researched similar kinetic energy functionals in

further publications [147, 165, 145, 96]. However, the functionals were

always held back by the untrained functional derivatives. As a result,

the functional derivatives needed to be constrained to the training data

manifold. Yao et al. were the first to use convolutional networks for

the development of kinetic energy functionals and already mentioned

the possibility of using the derivative of the network as a functional

derivative but were hindered by the programming effort to realize it. Li

et al. [94] and Hollingsworthet al. [63] also used kernel ridge regression

to train kinetic energy functionals for 1D systems. A second way to by-

pass the Kohn-Sham equations is to train the Hohenberg-Kohn map in

the sense of predicting the electronic density directly from the external

potential or nuclei positions [18, 14, 54]. Other work [99, 112, 103, 168]

focused on training the exchange-correlation functionals that we are in-

terested in. Lundgaard et al. [168, 103] fit a standard meta-GGA form

with van der Waals corrections to sets of molecules. In Ref. [112] Nagai

et al. use fully connected neural networks to directly predict exchange-

correlation potentials from the electronic density for a one-dimensional

two-electron system with a fixed size. Liu et al. [99] fit a neural network

as the range separation parameter for a long-range-corrected Becke-Lee-

Yang-Parr functional [64] improving atomization energies and heats of

formation for a set of molecules. Zhou et al. train a 3D-convolutional

neural network on molecules to predict the exchange-correlation poten-

tial [182] directly from a local density. However, this potential is also

not calculated as the functional derivative, and the network does not

satisfy the correct symmetry requirements. While there are a number

of machine-learned density functionals, the majority of them have some

problematic features. To train a machine learning functional, we have
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to consider a few requirements that are easily fulfilled in most classic

functionals. The first requirement is that the network takes purely the

electronic density as input to arrive at a physical exchange-correlation

potential that fulfills the equation:

vxc([n(r)], r) =
δExc[n]

δn(r)
. (71)

There are a small number of functionals that violate this equation [88,

10, 158]. While these ”stray” functionals [39] have found some success-

ful applications, they violate a number of exact conditions limiting the

universality and application range of the functionals.

Secondly, the network must be able to treat systems of different sizes

and be size-consistent. That means calculations for two infinitely far

removed subsystems should arrive at the same result as separate cal-

culations of the subsystems. Quite a few of the early works [111, 146]

already do not fulfill the requirement of being able to treat different sys-

tem sizes. And while some of them used the derivative of the exchange-

correlation energy as potential, none of them trained it [JSPhD6].

As a third point, the physical symmetries of the density have to be con-

sidered. A functional should treat density points independent of their

position in space, i.e. the functional has to be translationally invariant.

Furthermore, if we rotate or mirror a system, the exchange-correlation

energy has to be invariant while the exchange-correlation potential must

be equivariant. For 3D systems, these requirements are fulfilled by the

Euclidean group in 3 dimensions E(3). None of the works we discussed

before considered this symmetry directly in the network but some of

them calculated invariant features [93] from the density instead. In the

one-dimensional case that we treated in Ref. [JSPhD7], the symmetries

reduce to a translational invariance and a mirror symmetry. We can

meet the latter requirement by adding a mirror symmetry to the weight
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matrix of the first layer of a neural network. To achieve the transla-

tional invariance and treat different system sizes, we need to use some

type of convolutional network. In our case, a sliding-window convolu-

tion returned the best results. A sliding-window convolutional network

is a simple FCNN that considers only a certain number of density points

at once (kernelsize) and returns a local energy as output. By scanning

over the whole system in this manner, the symmetries of the 1D den-

sity are satisfied. E(3) equivariant networks [9, 155] that solve these

challenges in three dimensions have also been developed during the last

years, although we are not aware of any application to machine learning

functionals yet.
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4 Results and Discussion

In the previous chapters, we have discussed the theoretical foundations

of DFT and machine learning applied to the development of functionals

as well as material science. In the following chapter, we present three

publications and discuss them in the context of the thesis. Furthermore,

we discuss follow up publications as well as important results that are

not yet published.

4.1 Machine Learning the Physical Nonlocal Exchange-Correlation

Functional of Density-Functional Theory

In the following publication ”Machine Learning the Physical Non-

local Exchange-Correlation Functional of Density-Functional

Theory” [JSPhD7] we simultaneously train a neural network as an

exchange-correlation energy functional and its functional derivative as

exchange-correlation potential using automatic differentiation. We demon-

strate the feasibility of this approach for one-dimensional systems with

two strongly correlated electrons that are normally beyond DFT.

Specifically, we build a local functional that takes κ (kernel size) den-

sity points as input to predict a local exchange-correlation energy. Con-

sequently, the network can be used for systems of different sizes and

also fulfills the requirement of size-consistency that we discussed in the

theory section. By symmetrizing the kernel and using a sliding window

convolution we also satisfy the physical symmetries of the systems. We

train networks with different kernel sizes on 2 electron systems with

one to three randomly placed nuclei. We are able to demonstrate that

including the exchange-correlation potential as functional derivative in

the loss function leads to massively improved potentials, allowing for
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accurate self-consistent calculations.

We also show that increasing the kernel size, i.e. the degree of non-

locality, leads to consistently decreasing mean absolute errors for the

energy of self-consistent calculations. Furthermore, we evaluate the

functional on the dissociating H2 molecule in one dimension. Here,

we find that increasing the kernel size from one to thirty density points

yields a massive improvement in the dissociation curve. However, it has

to be noted that kernel sizes larger than thirty prove problematic as

they show nonphysical behavior during the dissociation. We also study

the homogeneous electron gas and find similar results. Compared with

quantum Monte Carlo results, a kernel size of 120 produces the best

results, but larger kernel sizes increase the error once again. Finally, we

test the best performing functional on systems with four nuclei. We find

that its energy error is still eight times smaller than an LDA despite us

only training the functional on systems with up to 3 nuclei. While we

researched the effects of non-locality, this work was mostly a proof of

concept work on one-dimensional model systems.

Indeed, since this work, the number of machine learning functionals

have strongly increased [JSPhD6] and a large number of them calculate

the exchange-correlation potential as the functional derivative of the

neural network energy functional [73, 95, 30, 74, JSPhD3]. Furthermore,

we have demonstrated in a follow-up work [JSPhD3], directly based on

this publication [ourfuncional], that it is possible to correctly include

the derivative discontinuity at integer particle numbers in a machine

learning functional. We hope that including such exact conditions that

go beyond previous functionals might extend the applicability of DFT.

For instance, correct derivative discontinuities could result in improved
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fundamental gaps from DFT. 1

1Concerning the following article: Reprinted with permission from Jonathan Schmidt et al. J. Phys.

Chem. Lett.10.20 (Oct.2019). Copyright 2019 American Chemical Society.
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Machine Learning the Physical Nonlocal Exchange−Correlation
Functional of Density-Functional Theory
Jonathan Schmidt, Carlos L. Benavides-Riveros,* and Miguel A. L. Marques*

Institut für Physik, Martin-Luther-Universitaẗ Halle-Wittenberg, 06120 Halle (Saale), Germany

ABSTRACT: We train a neural network as the universal exchange−correlation
functional of density-functional theory that simultaneously reproduces both the
exact exchange−correlation energy and the potential. This functional is extremely
nonlocal but retains the computational scaling of traditional local or semilocal
approximations. It therefore holds the promise of solving some of the
delocalization problems that plague density-functional theory, while maintaining
the computational efficiency that characterizes the Kohn−Sham equations.
Furthermore, by using automatic differentiation, a capability present in modern
machine-learning frameworks, we impose the exact mathematical relation
between the exchange−correlation energy and the potential, leading to a fully
consistent method. We demonstrate the feasibility of our approach by looking at
one-dimensional systems with two strongly correlated electrons, where density-
functional methods are known to fail, and investigate the behavior and
performance of our functional by varying the degree of nonlocality.

Nowadays density-functional theory (DFT) is the corner-
stone of computational theoretical physics and quantum

chemistry, as it provides the prevalent method for the
calculation of the electronic structure of both solids and
molecules. Based on the Hohenberg−Kohn theorems,1 DFT
re-formulates the quantum many-electron problem as a theory
of the ground-state electronic density n(r). The success of
DFT is to a large extent due to the existence of a system of
noninteracting electrons (the Kohn−Sham system) that has
the same ground-state density as the interacting electrons. This
leads to the Kohn−Sham equations, a set of self-consistent
equations for one-particle orbitals.2 In such a formalism the
ground-state (GS) energy can be expressed as

E E n r v n E nr rd ( ) ( )
i

iGS xc
3

xc H∫∑= ϵ + [ ] − − [ ]
(1)

where ϵi are the eigenvalues of the Kohn−Sham Hamiltonian,
vxc(r) is the exchange−correlation potential, EH[n] is the
Hartree energy, and Exc[n] is the exchange−correlation energy.
The exchange−correlation potential is defined as the func-
tional derivative of the universal exchange−correlation energy
functional:

v
E n
n

r
r

( )
( )xc

xcδ
δ

= [ ]
(2)

Due to the Hohenberg−Kohn existence theorems, if the exact
exchange−correlation energy functional Exc[n] is known,
Kohn−Sham DFT then yields the exact ground-state energy
and the exact ground-state electronic density.
Traditionally, “educated” formal expressions of the ex-

change−correlation energy functional have been proposed by a
combination of theoretical insight, highly accurate Monte

Carlo,3 or quantum chemical simulations or by fitting general
expressions to experimental data. In general, functionals can be
sorted according to Jacob’s ladder:4 the lowest rung of the
ladder is occupied by local-density approximations (LDA) that
use solely single density points as inputs.5−7 The second rung
is occupied by generalized-gradient approximations (GGA)
that include the gradient of the density.8,9 This is followed by
the meta-GGAs10 (that use the kinetic-energy density) and
hybrid functionals11−13 (that mix a fraction of nonlocal Fock
exchange) on the subsequent rungs. Note that more than 500
of these functionals have been proposed in the past decades,14

although most of them with rather limited impact.
In spite of the success of DFT in dealing efficiently with

electronic systems, it still suffers from stubborn quantitative
and qualitative failures. For instance, barriers of chemical
reactions, band gaps of materials, or molecular dissociation
energies are usually underestimated.15 Degenerate or near-
degenerate states are also poorly described by DFT. While
hybrid functionals can alleviate some of the problems of
traditional semilocal functionals, they come at a greatly
increased computational cost that limits severely the number
and size of systems that can be researched. It is believed that
many of these problems originate in the delocalization and
static correlation errors which plague approximate func-
tionals.16−18 Roughly speaking, the delocalization error refers
to the tendency of DFT functionals to spread out the electron
density, while the static correlation arises from the difficulty of
describing degenerated states with a single Slater determi-
nant.19
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More recently, machine learning (ML) has revolutionized
many fields of computational sciences, such as image or speech
recognition,20,21 and has found countless applications in
material science.22−24 Within DFT, the application of ML
techniques to the formulation of density functionals has
already a long history.25 In 2012, an ML approximation for the
kinetic energy functional Ts[n] was constructed for a system of
noninteracting spinless fermions.26,27 Yao et al.28 developed a
convolutional neural network to reproduce the kinetic energy
functional for molecules. They already mentioned the
possibility of using the functional derivative of the neural
network for minimization purposes. In order to exploit the
Hohenberg−Kohn density-potential map, an ML model was
later trained to learn the fundamental relation of DFT between
external potentials and electronic densities.29 These works
focused mainly on developing functionals for the total energy
or the noninteracting kinetic energy to facilitate orbital-free
DFT calculations. More recently, some works have addressed
the problem of training the exchange−correlation poten-
tial.30−34 However, this line of research has been limited by the
fact that the exchange−correlation potential was not obtained
from the exchange−correlation energy through the functional
derivative of eq 2.
It is true that one can find in the literature a series of

approximations to the exchange−correlation functionals that
do not fulfill eq 2. For example, the Krieger−Lee−Iafrate
approximation35 breaks this connection in order to simplify the
implementations of orbital functionals using the optimized
effective potential method.36,37 Sometimes, it is also con-
venient to approximate directly the potential (e.g., in the van
Leeuwen-Baerends GGA from 199438 or the modified Becke−
Johnson potential39,40), leading again to expressions that do
not obey eq 2. These so-called “stray” functionals41 have found
some important applications. For example, the modified
Becke−Johnson is one of the most successful functionals to
calculate electronic band-gaps.42 Unfortunately, they are also
found to break a series of exact theorems and conditions,41

severely limiting their universality and range of applicability. By
and large, it is highly advantageous to develop consistent
functionals that obey the important eq 2.
Modern ML frameworks, like pytorch43 and tensorflow,44

allow for automatic differentiation with respect to any
parameter. Recently, Nagai et al. used this functionality to
train exchange−correlation potentials for molecules.45 They
trained neural networks through a Monte Carlo updating
scheme to reproduce accurate energies and densities of
molecules. The functionals by Nagai and coauthors follow
the traditional approaches of an LDA, GGA, meta-GGA and
add a related near-region approximation. Although a clear step
forward, using traditional forms for the exchange−correlation
functional is unlikely to lead to fundamentally better, disruptive
approximations to the exchange−correlation functionals. New
paradigms have to be sought in order to unleash the power of
ML techniques to its full extent.
In this paper we use the autodifferentiation functionality to

train neural-network exchange−correlation functionals through
back-propagation. The networks are trained to reproduce not
only the correct exchange−correlation energy Exc but also the
exchange−correlation potential vxc(r) consistently as its
functional derivative with respect to the density. Consequently,
the resulting functional allows for self-consistent calculations
and can easily be integrated into existing Kohn−Sham DFT
frameworks. Furthermore, these functionals can be made

highly nonlocal by using the information on the density in a
f inite neighborhood as input to the neural network, allowing
for far more nonlocality than traditional LDA or GGA
functionals, despite having the same computational scaling
with system size. Therefore, this approach promises to alleviate
the delocalization problems of DFT and to improve its
accuracy without the computational expense of hybrid
functionals. To demonstrate the feasibility of this approach,
we developed an ML functional for the exchange−correlation
energy and exchange−correlation potential based on exact
results for two electrons in one-dimension (1D).
The letter presents the details of the data set, training

process, and neural networks. The exact dependence of the
functional on the degree of locality and its behavior is also
discussed, as well as our results for the 1D homogeneous
electron gas and the H2 molecule along the dissociation path.
Finally, we finish the letter discussing our conclusions and
future research directions.
Data. The training data was produced by solving exactly the

one-dimensional two-electron problem in the external
potential generated by up to three different nuclei. Softening
the Coulomb interaction,

r x

1 1

1 2
→

+ (3)

we obtain the 1D Hamiltonian driven by the interaction of the
two electrons, namely,
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where the external potential is given by the superposition of
three potentials,

v x
Z
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( )
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1 ( )k

k

k1
2

∑=
+ −= (4)

The total charge of the nuclei Z Zk k= ∑ is equal to 2 or 3.
Qualitatively close to real 3D systems, this 1D model is known
as a theoretical laboratory for studying strong correlation and
developing exchange−correlation density functionals for
DFT.46 Since the ground-state problem of the Hamiltonian
H(x1,x2) can be treated as a one-particle problem in two
dimensions, the problem can be solved exactly.
We sampled 20 000 systems and calculated their exact

ground-state energy and ground-state electronic density. We
used a grid spacing of 0.1 au, and a box size of 20 au, leading to
a grid with 201 points. The nuclei positions ai in eq 4 were
normally distributed with zero mean and variance of 4 au We
then solved the corresponding inverse Kohn−Sham problem in
OCTOPUS

47 to find the exact exchange−correlation energy and
potential. Since the inversion is known to be numerically
unstable,48 we removed outliers that result from these
instabilities. We used up to 12 800 of these systems for
training, 6400 for validation during the training, and 2000
systems for the test set. Furthermore, training was considerably
improved when removing outliers with Exc > −0.55 au from the
training set. No outliers were removed from the test set to
allow for a completely unbiased evaluation of the functionals.
In general, one would have to double the data by mirroring

the systems to learn the correct symmetry. However, in this
specific case one can simply build the symmetry directly into
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the neural network functional, as explained in the next
subsection.
Topology of the Neural Network. Our ML functional scans the

density of the total system, as illustrated in Figure 1. The

density in a neighborhood of the test point is used as the input
for a 4 or 5 layer fully connected neural network, that then
outputs a local exchange−correlation energy. Specifically, the
network takes a certain number of density points as input,
which we call κ, the kernel size. This is the degree of locality of
the ML functional. At the borders of the system the density is
padded with κ − 1 zeros. Starting at one border the network
calculates the local exchange−correlation energy. In the next
step the input of the network is moved by one grid point, and
it is evaluated again. As described in Figure 1, this process
continues until the other border is reached. We arrive at the
total exchange−correlation energy of the system by summing
over all network outputs. The padding and the scanning with a
certain kernel size are inspired by standard convolutional
neural networks and can also be implemented as such by
concatenating the data along the channel-dimensions in
between standard convolutional layers. Due to the homoge-
neity of space, the functional has to be symmetric with respect
to its input densities. The symmetry is ensured by initializing
the weights of the first layer symmetrically along the spacial
dimension. To arrive at the final scalar output we used four- or
five-layer fully connected neural networks.
The possible selection of activation functions (i.e., the

nonlinearities that follow each multiplication with a weight
matrix of a neural network) was rather limited, because typical
functions (e.g., rectified linear units) were not usable due to
their lacking differentiability at zero (using relus actually
resulted in piece-wise linear potentials). To avoid this problem,
we chose exponential linear functions.49 Different numbers and
sizes of hidden layers were also tested, and we settled on the
minimum number of parameters that could be used without
underfitting. In this work all networks were built on the basis of
the ML framework pytorch.43 The library Ignite50 was used to
simplify the training process and tensorboardX to integrate
tensorboard44 into pytorch. The network weights were
optimized with Adam51 using default parameters from pytorch.
For the loss function (i.e., the cost function which is going to

be optimized in the learning process), we should keep in mind
that the objective is not only to obtain small errors for the
exchange−correlation energy. To arrive at the correct density
through the solution of the self-consistent Kohn−Sham
equations, also the exchange−correlation potential should be
as close as possible to the exact one. Furthermore, we want not
only to ensure a small error for the potential but also its
smoothness. In addition, the error of the exchange−correlation

energy, as well as the error of the integral ∫ dx vxc(x) n(x) (that
appears in the expression for the total energy (1)), should be
minimized.
In order to achieve all these goals concurrently, we used the

following loss function, where θ are the parameters of the
neural network that have to be optimized:
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This function is a weighted combination of the mean-
squared errors (MSE) of the exchange−correlation energy, the
exchange−correlation potential, its numerical spatial derivative,
and the difference between the exchange−correlation energy
and the integral over the potential. This latter term is part of
the formula for the total energy (1) and theoretically allows for
some error cancellation. We also attempted to use the integral
as a separate term in eq 5. Depending on the network, one or
the other term produced better results. Finally, the weights α,
β, γ, and δ in eq 5 are also optimized as part of the
hyperparameter optimization. Usual values for α, β, γ, δ are 1.0,
100.0, 10.0, 1.0.
The training for the exchange−correlation energy converges

quite fast after a few hundred epochs (i.e., one complete pass
of the training data). The convergence of the potential can take
thousands of epochs depending on the training set and batch
size. At each training step the model was saved if it improved
the validation error for the potential. The model with the
lowest validation error was later used for the self-consistent
Kohn−Sham calculations. As the amount of memory that is
needed per sample is quite limited, very large batch sizes (e.g.,
4096) are possible, allowing for a far more efficient
parallelization of the training. Training with larger batchsizes
seems to produce better convergence. However, it leads to a
strong increase in the error during validation with self-
consistent Kohn−Sham calculations. Smaller batch sizes (32,
64, 128) improve the error by up to 50% and provide the best
generalization ability of the functionals, in consistency with the
literature.52,53

Evaluation. We trained neural networks with various kernel
sizes and used them within a self-consistent Kohn−Sham
calculations for a test set of 2000 systems created with the
method described above. The self-consistent Kohn−Sham
calculations were run using a self-written code. For all kernel
sizes, models with different hyper-parameters were evaluated
on a validation set of 250 systems. The training was not
completely converged at this stage. Only for the best models of
each kernel size did we continue the training and evaluate the
models on the test set. To compare various models with
respect to the LDA functional of DFT, we chose energy
differences, as these are physically more meaningful.
In Figure 2 we plot the exchange−correlation potential

resulting from self-consistent calculations with a ML functional
trained according to the loss function (5) for two test-systems
and compared it with the exact and LDA predicted exchange−
correlation potentials. In Figure 3 we plot the same
information for one test system; the ML functional is this
time trained only on the exchange−correlation energy (i.e., not
on the potential). Whenever the machine-learned functional is
trained on both the energy and the potential, the exchange−
correlation potential presents a great improvement in

Figure 1. Structure of the ML functional in 1D with the degree of
locality equal to κ = 6 (see text). At the borders, the density is padded
with κ − 1 = 5 zeros. Starting at one of the borders, the network
calculates the local exchange−correlation energy for κ points. In the
next step, the input of the network is moved by one grid point and it
is evaluated again. The network itself is a simple fully connected
neural network.
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comparison to the traditional LDA functional, while the
functional trained only on the energy fails completely.
Remarkably, the functionals trained with the loss-function
(5) also show a qualitatively closer behavior to the exact
exchange−correlation potentials. The results for the predicted

total energies of the test set (relative to the energy of H2 at its
equilibrium distance) are presented in Table 1. Our ML-LDA

(i.e., the functional with kernel size κ = 1) already performs
better than the traditional LDA. As the ML-LDA was trained
to reproduce the exchange−correlation energy of heteroge-
neous systems while traditional LDAs are “trained” for
constant densities, the difference in performance is not
surprising. Increasing the kernel size leads to a monotonical
decrease of the error, and improves the results by more than a
factor of 6 for the larger sizes. The optimal kernel size is, in our
opinion, around 30 (i.e., 3 au), as larger kernels do not provide
a significant advantage. Furthermore, some of the functionals
with larger kernel sizes also demonstrate unphysical behavior
(see below).
Ultimately, the more nonlocal the functional is, the higher

the complexity and the larger the number of parameters. This
reason, together with the need to represent more long-range
interactions that are based on different physical principles
(such as van der Waals interaction), makes the training
considerably more difficult. One approach to circumvent this
problem is to keep the nonlocality limited to ranges on the
scale of molecular bonds. This allows for simpler training and
still includes most of the nonlocality that is required for the
exchange−correlation energy. Another possibility would be to
enlarge the nonlocality by increasing the architectural
complexity of the functional.
Efforts to decrease the number of training systems for a

kernel size of 30 lead to a slightly increased error of 11% using
800 samples for training. Although the scaling of the networks
to realistic three-dimensional systems is nontrivial, we expect
that both the number of trainable parameters and the density
points in the training set will grow cubically when transitioning
to three-dimensional systems. In this sense, we expect a similar
demand for training data as in 1D. Furthermore, realistic
systems are usually far larger and therefore provide more
“local” training samples per system for the neural network.
Recent research by Nagai and coauthors points in the same
direction.45 Indeed, they only required a few sample molecules
and used far more parameters to learn a much more local (and
in this sense simpler) functional than the ones used here.
Previously, we tested the ML-functional on sample systems

belonging to the distribution of the training data. Now, we go a
step further and test how our functionals perform self-
consistently on systems outside this distribution as well as a
couple of paradigmatic cases. The systems in the training set
had external potentials arising from 2 and 3 nuclei. In order to

Figure 2. Comparison of exchange−correlation potentials of an 1D-
LDA,54 the exact potential, and our ML-functional with kernel size 30
for two different systems.

Figure 3. Comparison of exchange−correlation potentials of an 1D-
LDA,54 the exact potential, and our ML-functional trained only with
the exchange−correlation energy.

Table 1. Mean Absolute Errors (MAE) for the Total Energy
in Self-Consistent Calculations for Various Kernel Sizes of
Our ML-DFT Functional, Relative to the Error of the One-
Dimensional LDA of Ref 54a

kernel size MAE(ML)/MAE(LDA) [%]

LDA 100
1 38.1
15 21.8
30 8.2
60 8.2
120 7.1
180 6.5

aFor reference, the mean absolute error of the LDA of ref 54 is 1.4 ×
10−2 au.
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go beyond these systems, we tested the functional with kernel
size 30 also on a test set of 150 systems with 4 nuclei. Using
the same functional as in Table 1, we arrive at an error for the
total energy more than eight times smaller than with the LDA
(MAE(ML)/MAE(LDA) = 11.9%). Naturally, the error
increased outside the training distribution. However, consid-
ering the different nature of the highly charged systems with 4
nuclei, this hints at a good generalization ability of the
functional.
In Figure 4 we present our calculations for the H2 molecule

in 1D along the dissociation path with functionals of varying

nonlocality in comparison to the exact result. The curves in
Figure 4 are shifted to have the same equilibrium energies. As
is well-known, the traditional LDA completely fails to produce
the correct dissociation limit.54 The same behavior is observed
for the ML LDA (with a kernel size of 1). Remarkably, using
increasingly more nonlocal functionals, we can reduce the
relative energy error to 3.2% of the LDA error.
It is obvious that even the functional with a kernel size of 30

will start failing above a certain distance. This is a conceptual
problem of local KS-DFT and can only be alleviated and not
eliminated in our approach. It can already be considered a
success that our functionals are able to reproduce the
dissociation curve reasonably well far beyond their own degree
of nonlocality.
Yet it has to be noted that not all functionals performed that

well. Some of the functionals with larger kernels failed to
reproduce a physical behavior with respect to the dissociation
distance and produced multiple local minima and maxima.
Despite these problems, they still return the correct
equilibrium distance and on average far better energies than
the LDA. This unphysical behavior of some functionals just
stresses the fact that a rigorous validation on a multitude of
different systems will be essential to arrive at a working
functional. It has to be noted that a larger training set and a
longer training time was far more beneficial for this validation
than for example the average error. As systems similar to the
dissociated molecule are most likely outliers of the training
data this is not surprising. Note that the need for more training
data can, however, be avoided by active learning and a
thoughtful construction of the training set.

Finally, we study the homogeneous-electron gas, a model
system that is used in the construction of the majority of
exchange−correlation functionals. We can simulate this system
with our neural networks by providing them with a constant
electronic density as input. The results can then be compared
to the numerically exact values for the energy density as
obtained, for example, from quantum Monte Carlo simu-
lations.54 Our results are depicted in Figure 5 as a function of

the Wigner−Seitz radius rs = 1/2n. Remarkably, our ML
functional with kernel size equal to 120 reproduces the
exchange−correlation energy of the 1D homogeneous electron
gas, especially for rs > 2, where the majority of counts in the
training data were located. Furthermore, kernel sizes lower
than or equal to 60 are practically indistinguishable for larger rs
and behave qualitatively very close to the homogeneous
electron gas. The largest kernel size (say, 180) underestimates
the exchange−correlation energy.
Some difficulties for our neural-network functionals are

evident. First, the functionals were trained only for systems
with a specific size while the homogeneous electron gas is, in
fact, an infinite periodic system. Second, as the histogram in
Figure 5 illustrates, the training data does not contain almost
any samples with high densities (rs < 1). Naturally, the
availability of training data similar to the homogeneous
electron gas is even more important for the more nonlocal
functionals as they take into account larger regions of space.
The first challenge results in the fact that the nonzero biases in
each layer cause the neural networks to output a nonzero value
for zero density. When training for different system sizes, there
are several ways to avoid this failure. First, one could solve the
problem by adding systems padded with different amounts of
zeros at the border to force the neural network to learn the
correct relationship. As a second possibility, one could force all
biases of all layers to zero, however, this would severely limit
the expressibility of the networks. To circumvent this problem,
and in order to compare the behavior of the energy with

Figure 4. Dissociation curves of the 1D H2 molecule with ML
functionals of varying nonlocality (i.e., kernels of 1, 15, 120, 30) in
comparison to the exact and the LDA results.

Figure 5. Exchange−correlation energy per unit volume of a 1D
homogeneous electron gas from quantum Monte Carlo calculations54

(curve labeled LDA) is compared with several ML functionals
evaluated at constant density. We also plot a histogram of the number
of systems of the training set containing more than three grid points
with a density within a bin size of 0.01 au. The number of counts can
be read on the right axis. Notice that there is basically no system with
rs < 1. The machine-learned curves are shifted to be exactly zero at
zero density.
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respect to the Wigner−Seitz radius, we shifted the curves in
Figure 5 to yield zero energy for zero density.
Despite the small amount of training data at high density,

functionals with larger kernel sizes still generalize on average
far better to the homogeneous electron gas. While this is the
case for most models, there are some rare cases, similar to the
problems with the H2 dissociation, where large kernel sizes
produce unphysical behavior. It is not obvious whether this
result will remain true in three dimensions, it is nevertheless
promising that the extra nonlocal information in the larger
kernels might help the functionals to be generalized. Constant
densities will be an essential feature of a functional for solid-
state physics. Fortunately, exact training data in the form of
quantum Monte Carlo calculations already exists for this
purpose and can be easily incorporated in our training sets.
In conclusion, in this Letter we have demonstrated the

viability of learning an exchange−correlation potential, via the
differentiation of the exchange−correlation energy in a
physically consistent manner. This procedure allows for
standard self-consistent Kohn−Sham calculations. From the
presented data, it is evident that neural-network functionals
trained on the exchange−correlation potential and energy have
the potential to be far more precise than previous local DFT
functionals. Increasing the nonlocality of the functional allows
for an extremely precise treatment of the electronic interaction
on the scale of at least a few atomic units and, to a certain
extent, even solve long-standing problems in DFT like, e.g.,
molecular dissociation.
For simplicity, we trained a neural network to the one-

dimensional two-electron problem in the external potential
generated by up to to three nuclei. Training three-dimensional
systems will have to be accomplished by using data obtained
with coupled-cluster, full configuration-interaction, or quantum
Monte Carlo. While sufficient data to train a universal
functional still has to be created, exchange−correlation
energies and potentials for a few small molecules already
exists and can provide a good starting point. The density
representation on a grid is unfortunately not feasible for more
general systems, as grid sizes and forms will vary. However, we
think this can easily be circumvented by representing the
density locally in some basis sets (e.g., Gaussians).
Finally, there is already a long history within DFT in the

development of empirical functionals.32,33,55−57 The machine
learning paradigm allows us to drastically increase the amount
of data used for the training and the complexity of these
functionals. Including known exact conditions of the
exchange−correlation functional in the learning process as
constraints in the minimization will still be helpful58 and
provide further conditions for validation. Furthermore, as the
functionals will have to work in practically every density
environment, the importance of an extremely in-depth
validation cannot be overstated and will be essential to arrive
at a widely used functional.
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4.2 Crystal-Graph Attention Networks for the Prediction of

Stable Materials

In section 3.2, we have introduced structure- and composition-based

graph neural networks in the context of predicting structure-property

relations and have discussed the difficulty of predicting properties from

unrelaxed structures.

In the next publication ”Crystal-Graph Attention Networks for

the Prediction of Stable Materials” [JSPhD10] we overcome this

challenge by reducing the edge representation to the graph distance

between atoms. This imprecise edge representation drastically reduces

the dependence on the correct volume or lattice vectors of the input

structure and allows for accurate predictions from unrelaxed structures.

To make use of the structure sensitivity of the models, we create a

large dataset, accumulating and filtering millions of data points from

AFLOW [27], the Materials Project [67] and publications from our

group [166, 135, JS3, JS4, JSPhD12]. This results in one of the largest

convex hulls and consistent DFT datasets to date.

In the following, we employ this new dataset, and an extra dataset of

mixed perovskites calculated for this paper, to train and evaluate the

model.

One of the major objectives of the model is its ability to go beyond

compositional models and learn to predict the distance to the convex

hull from different structure prototypes while not relying on precise

structural inputs. To test this hypothesis, we use the large dataset

for pretraining and demonstrate that the pretraining can substantially

reduce the training data required to achieve a certain MAE for a proto-

type. For mixed perovskites as an example, the pretraining reduces the

training data needed to reach a sufficient MAE for a high-throughput
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search by half. We also compare these results to the composition-based

3D-ElemNet model (see section 5) and find that independent of the

dataset size, the errors of the 3D-ElemNet model are roughly double

that of the pretrained CGAT model. Furthermore, we test the model

on a quaternary Heusler dataset from Ref. [75] finding a four times

lower test error even without pretraining. In an additional experiment,

we demonstrate that the vectorized attention coefficients we introduce

in this work lead to a performance gain of more than 10% in the case

of the mixed perovskites.

As we have discussed in section 3.2, for most structures, the neighbor

lists still change during a geometry relaxation, and thus the CGAT

output varies. To predict the minimum energy, we use structures with

multiple cell constant ratios as input and the prediction is selected as the

one with the minimum energy. We demonstrate for mixed perovskites

that just four different cell constant ratios as input are sufficient to

reduce the error for the distance to the convex hull to within a few

percent of the MAE for relaxed structures.

Finally, we employ the network to perform a high-throughput search

of the mentioned mixed perovskites. Searching through 16 million com-

pounds, we discover 8681 compounds below 100 meV/atm, 404 below

5 meV/atm and 325 on the hull. We have found in Ref. [JSPhD12]

that distortions, different arrangements of the C and D atoms and

configurational entropy can stabilize mixed perovskites by more than

150 meV/atm. In light of this fact, an experimental realisation of far

more than just the compounds on the hull might be feasible.

We also find that the performance of the network varies significantly

for different prototypes as well as elements. We assume that this is

due to a bias of the training set that mainly contains materials result-
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ing from high-throughput searches or known stable materials. Conse-

quently, a few prototypes, and elements such as oxygen are very much

overrepresented, while elemental groups such as lanthanides are under-

represented.

Follow up Work

CGATs and potentially other more recent architectures [52] seem to

be sufficient from a machine learning point of view to solve the scientific

question of high-throughput searches for thermodynamically stable ma-

terials. While there is still the issue of the bias in the dataset that we

will discuss later, the main task now is to perform an enormous number

of high-throughput searches [JSPhD6].

The dataset used in Ref. [JSPhD11] consists of roughly 25k proto-

types. Here we note every crystal structure as a separate prototype if

the structure matcher from pymatgen [115] considers the structures dif-

ferent. We use the default settings for the structure matcher and allow

for arbitrary scaling of the volume and coloring of the Wyckoff posi-

tions. Even though we do not need to calculate new training data for

any prototype, all compounds close to stability still require DFT vali-

dation. Consequently, we still have to limit the number of prototypes.

We are now searching through all binary, ternary and quaternary proto-

types with less than twenty atoms in the unit cell that appear more than

ten times in our database and have space group numbers larger than

ten. The first two criteria were selected to limit the cost of the DFT

calculations, while the last ensures some previous scientific interest in

the prototype.

We apply a cutoff of 50 meV/atm distance to the convex hull for the

predictions that we validate with DFT. We have already scanned all 639

selected binary and 1829 selected ternary prototypes spanning a search
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space of 1.05B compounds using another 463986 DFT calculations.2

Assuming we found the majority of stable compounds, this is a speedup

of approximately a factor of 2200.
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Figure 7: Histogram of the DFT distances to the convex hull for validated predictions

of 1829 ternary and 639 binary prototypes. The medians of the binary and

ternary dataset are marked with a red and a black vertical line, respectively.

All materials predicted to be below 50 meV/atm were validated with DFT

calculations.

2We performed all calculations discussed in this section with the same parameters as in

Ref. [JSPhD10]. The machine learning model was a CGAT network trained with the same hyper-

parameters as in Ref. [JSPhD10]. We used all the data in Ref. [JSPhD10] including the quaternary

perovskites for training, and the resulting calculations from the Garnet high-throughput search

were also added to the training data for the large scale high-throughput search of all prototypes.

Furthermore, we recalculated all AFLOW compounds identified as outliers in Ref. [JSPhD10] and

added them to the hull and training data.
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For the validated compounds, the MAE is at 113 meV/atm and the

median distance to the convex hull is at 105 meV/atm for the ternary

prototypes and 50 meV/atm for the binary prototypes. This results in

41627 ternary and 2035 binary compounds below 10 meV/atm and re-

spectively 22145 and 914 materials below the hull. These stabilities are

calculated based on the convex hull before the high-throughput search.

We are currently scanning the leftover quaternary prototypes spanning a

search space of over 13B compounds. For the quaternary prototypes, we

will employ various strategies to reduce the bias in the training set that

we saw in Ref. [JSPhD10]. The same bias is also visible in fig. 8. Here

we depict the mean and standard deviation of the absolute error for dif-

ferent ternary prototypes from the already performed high-throughput

search. It is apparent that a few outlier prototypes have extremely

high MAEs. We plan to overcome this challenge by identifying these

prototypes and adding corresponding training data through an active

learning loop using an ensemble of models.

Lastly, we perform a more detailed high-throughput search of cu-

bic garnets with the composition A12B20C48 using the model trained

in Ref. [JSPhD10]. With this search, we demonstrate that even large

unit cells of 80 atoms are in the reach of comprehensive high-throughput

searches. After DFT validation, we identify 1474 garnets below 100 meV/atm,

391 below 10 meV/atm and 88 below the hull. This includes sulfide and

nitride garnets, two previously unknown groups of garnets. A more de-

tailed analysis of these results will be part of future publications, but

we think the results already demonstrate the potential of CGATs to

expand our knowledge of stable materials significantly. 3

3Concerning the following article: Reprinted with permission from Jonathan Schmidt et al. , Sci.

Adv.7.49 (2021), eabi7948, Copyright © 2021 The Authors, some rights reserved; exclusive li-

censee American Association for the Advancement of Science.
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M A T E R I A L S  S C I E N C E

Crystal graph attention networks for the prediction 
of stable materials
Jonathan Schmidt1, Love Pettersson2, Claudio Verdozzi2, Silvana Botti3*, Miguel A. L. Marques1

Graph neural networks for crystal structures typically use the atomic positions and the atomic species as input. 
Unfortunately, this information is not available when predicting new materials, for which the precise geometrical 
information is unknown. We circumvent this problem by replacing the precise bond distances with embeddings 
of graph distances. This allows our networks to be applied directly in high-throughput studies based on both 
composition and crystal structure prototype without using relaxed structures as input. To train these networks, 
we curate a dataset of over 2 million density functional calculations of crystals with consistent calculation param-
eters. We apply the resulting model to the high-throughput search of 15 million tetragonal perovskites of compo-
sition ABCD2. As a result, we identify several thousand potentially stable compounds and demonstrate that 
transfer learning from the newly curated dataset reduces the required training data by 50%.

INTRODUCTION
Machine learning methods have found increasing success in mate-
rials science and solid-state physics (1–6). Requiring orders of mag-
nitude less computation time than traditional approaches such as 
density functional theory (DFT), machine learning methods allow 
for the prediction of material properties with close to ab initio accu-
racy. In the past few years, machines were developed to predict a 
plethora of physical properties, ranging from bandgaps (7–9), hard-
ness (10), magnetic transition temperatures (11), etc. A particularly 
interesting property is the energy that ultimately determines the 
stability of a given material. Therefore, it is not unexpected that pre-
dicting the energy is essential for the challenging task of finding new 
stable compounds.

The modern theoretical approach to finding new materials in-
volves scanning the whole composition space of one crystal struc-
ture, optimizing each crystal with DFT, and then comparing the 
DFT energy with all possible decomposition channels. Binary com-
position spaces are easily in the reach of DFT and have been exten-
sively explored in the past (12). However, there are already around 
105 different ternary combinations of chemical elements, and these 
can exist in a large number of different stoichiometries. Quaternary 
and higher prototypes are simply out of the reach of systematic DFT 
searches. Machine learning strategies have shown a lot of promise 
to speed up this process (13–18), with different approaches being 
proposed in the past. The main and most efficient approach to 
high-throughput searches is to calculate the distance to the convex 
hull of thermodynamic stability for all compositions of a single pro-
totype (16–26). This step can be substantially accelerated by a 
machine learning model trained for the specific prototype, requir-
ing separate training data for every prototype (16, 17, 20). An alter-
native is the development of composition-based models that are 
prototype agnostic (27, 28). These models can determine potential-
ly stable compositions; however, they do not yield any information 
about the crystal structure of the material.

There are furthermore a large number of message passing net-
works (MPNs) (4–6, 29–32) that predict formation or absolute en-
ergies based on atomic positions and compositions. These networks 
usually achieve very high accuracy, but, unfortunately, they require 
a priori knowledge of the crystal structures (both lattice vectors and 
positions of the atoms) that are, in general, not available when search-
ing for new materials.

In this work, we go beyond these approaches by developing a 
model that predicts the distance to the convex hull based on both 
the composition and the generic structure prototype but without 
requiring knowledge of the precise crystal structure. A previous 
approach that used the same philosophy is (23), where hand-
crafted structural features based on the Voronoi tessellations of the 
unit cell are used as input for random forests. A more recent work 
(30) also used Voronoi features, but, unfortunately, the error in-
creases markedly for nonrelaxed structures [see the supplemen-
tary material of 30]. To circumvent these problems, instead of using 
handcrafted features, we combine techniques from previous deep 
MPNs (5, 6, 28, 29, 33, 34).

The goal of this work is to speed up prototype-based high- 
throughput searches beyond the possibilities of previous machine 
learning models. We remark that, as our model does not make 
use of the complete structural information, it does not give us ac-
cess to forces and stresses and therefore cannot be used as a generic 
force field.

Just as important as the choice of model is, of course, the dataset. 
The commonly used datasets for machine learning are obtained 
from the materials project (35) and the open quantum materials 
database (OQMD) (36). The former is often used as a benchmark 
and as a training set for stability prediction [see, e.g., (37)]. However, 
as it contains mostly stable (or close to stable) compounds, one cannot 
realistically evaluate the error in the distance to the convex hull (or 
the formation energy) of a model trained exclusively on this dataset. 
The OQMD, on the other hand, is hard to combine with other large 
datasets because of the use of incompatible parameters in the DFT 
calculations. To construct a large dataset that allows for good transfer 
learning performance, we accumulated and curated data from var-
ious sources. In this way, we obtained a dataset that includes more 
than 2 million DFT calculations of both stable and unstable mate-
rials in a large variety of crystal structures.
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The remainder of this manuscript is structured as follows. In 
next section, we start with the developed model and the accumulated 
dataset. We then show the power of our model by studying in detail 
a quaternary family of perovskites. After the discussion of our re-
sults, we go over the details of the work in Materials and Methods.

RESULTS
Crystal graph attention networks
The crystal structure prototype will enter our model as a crystal 
graph. To incorporate the neighborhood information, each vertex is 
labeled by an embedding for the elemental species, and each edge by 
an embedding for the graph distance (see Fig. 1). The edge embed-
dings are initialized completely randomly, while the vertex embed-
dings are pretrained embeddings from (38). For the latter, an extra 
one-layer fully connected network is used to allow for possible 
changes in the embedding.

As in the MegNet model (5), during the message passing phase, 
the information of each vertex and its corresponding neighbors and 
edges is combined to calculate a new representation for each vertex 
and edge. This process is repeated several times until we arrive at a 
final representation for each vertex. This representation is then 
pooled, taking into account a global context vector along the ideas 
of (29). In the following, we discuss the mathematical details of the 
message passing phase. Vectors will be denoted in bold letters.

Each material starts with a representation   h i  
t   for each atom i. This 

representation is updated through a message passing approach

   h i  
t+1  = U( h i  

t , { h  j  ,  e  ji  })  (1)

where U is an update function that depends on the crystal graph 
attention networks’ previous representation, the vertices of the 
neighbors, and the edges connecting the neighbors to the vertex. 
The neighbors are ordered by distance, and the edges are assigned 
corresponding embeddings for first neighbor, second neighbor, etc. 
These embeddings start as randomly initialized vectors and are 
trained together with the rest of the network. Naturally, one has to 
use periodic boundary conditions and a cutoff radius as we con-
sider solids.

The update function is based on the attention mechanism that has 
revolutionized natural language processing (39) and has also found 
application in graph neural networks (28, 33, 40). Previous graph at-
tention networks applied to materials science used simple fully con-
nected neural networks (FCNNs) to calculate a number of coefficients

   s ij  n  = FCNN  N a  n ( h i  
t ‖ h j  t ‖ e ij  t  )  (2)

from the concatanation ‖ of the two vertex representations and the 
edge representation. Here, and in the following equations, the index 
n counts the number of FCNNs. These coefficients are normalized 
with a softmax function

   a ij  n  =   
exp ( s ij  n )

 ─ 
 ∑ j     exp ( s ij  n )

    (3)

In contrast to these previous works, we use vectors instead of co-
efficients, which effectively results in a separate attention coefficient 
for each element of the representation of each node/message. The 
resulting attention vectors   a ij  n   are used to weight the messages   m ij  n  

   m  ij   = FCN  N m  n  ( h i  
t ‖ h j  t ‖ e  ij  )  (4)

when the representation is updated by

   h i  
t+1  =  h i  

t  +  HFCNN   g  t    
t  (    ‖ 

n
   ∑ 

j
      a ij  n   m ij  n )  (5)

Every pair of   FCNN a  n   and   FCNN m  n    can be considered one atten-
tion head. Ideally, each attention head learns to direct its focus to 
different features. This message passing procedure is repeated a num-
ber of times. At each message passing step, the edge embeddings are 
updated in a similar manner according to the following equations

   s ij  e,n  =  FCNNN a  n ( h i  
t ‖ h j  t ‖ e ij  t  )  (6)

   a ij  e,n  =   
exp( s  ij  ) ─ 

 ∑ n     exp( s i  
n )

    (7)

   m ij  e,n  =  FCNNN   n ( h i  
t ‖ h j  t ‖ e ij  t  )  (8)

   e ij  t+1  =  e ij  t   +  HFCNN   g  t    
n,t (‖ a ij  e,n   m ij  e,n )  (9)

The HFCNNs are hypernetworks along the work of (34), where the 
parameters of each network depend on the starting state of the node/
edge and the state at step t.

   θ g  t   = f( ch v  
0  + (1 − c )  h v  

t  )  (10)

Recently, (29) suggested using an extra global compositional 
vector for a last attention-based pooling layer. We follow this ap-
proach and use an extra roost (28) model that calculates a represen-
tation vector C of the total composition also based on a graph 
attention network where the composition enters as a complete 
graph. This vector is then concatenated with the representation of 
each atom   h i  

T   and used to calculate a final representation of the com-
pound according to the following equations

   s i  
n  =  FCNNN a  n ( h i  

t ‖C)  (11)

Fig. 1. The crystal structure is transformed into a graph. In this case, the crystal 
structure is a mixed perovskite, and we consider the five nearest neighbors. Here, 
blue edges represent first neighbors, black edges represent second neighbors, and 
green edges represent third neighbors. During the message passing steps, each 
individual edge and vertex embedding is updated based on its neighborhood.
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   a i  
n  =   

exp( s  i  ) ─ 
 ∑ i     exp( s i  

n )
    (12)

   m i  
n  =  FCNNN m  n  ( h i  

t )  (13)

  Output =  FCNN  RS    ∑ 
i,n

      m i  
n   a i  

n   (14)

In this way, the network can once again evaluate the importance 
of the different elements using learned knowledge of the whole 
composition. A fully connected network with residual connections 
FCNNRS (41) is used to obtain the final output.

While the study of Bartel et al. (37) recommends to learn forma-
tion energies, other machine learning studies came to different con-
clusions (24) and showed that it is advantageous to predict directly 
the distance to the convex hull. In particular, in (30), the authors 
obtained lower errors when learning formation energies; however, 
they showed that stability predictions were more successful when 
distances to the hull were predicted. For simplicity, we decided to 
predict directly the quantity we are interested in, the distance to the 
convex hull of stability.

Data
As already discussed in Introduction, the datasets most commonly 
used for machine learning are the materials project (35) and the 
OQMD (36) as they use internally consistent parameters. The largest 
freely available database, Automatic FLOW for Materials Discovery 
(AFLOW) (12), is used less commonly even though it contains over 
3 million compounds. Unfortunately, the OQMD can neither be 
easily combined with the materials project nor AFLOW as its calcu-
lation parameters are most often not compatible with the other two.

To construct a consistent dataset, we decided therefore to use all 
data from the materials project as well as all data from AFLOW that 
used functionals, pseudopotentials, and Hubbard Us that were con-
sistent with the materials project. Furthermore, we added about 
1.3 million compatible calculations from our group (16, 17, 42).

The final dataset after filtering all nonsuitable materials con-
tained 2,093,838 compounds. Most of these belong to large groups of 
prototypes, such as cubic ternary perovskites (∼230,000 systems), 

tetragonal mixed perovskites (∼340,000 systems), chalcopyrites 
(∼100,000 systems), and delafossites (∼30,000 systems). This has to be 
considered during the evaluation, as the out-of-group prediction 
error (43) will be larger than for a randomly selected training and 
validation set.

The distribution of the distances to the convex hull of the final 
dataset is displayed in Fig. 2. It is evident that the materials project 
data consist mostly of compounds that are stable or close to stable 
with a mean, median, and SD of 220, 50, and 530 meV/atom. Because 
of its consistency in calculation parameters and ease of access, it is 
very commonly used as a benchmark set for machine learning algo-
rithms. However, because it focuses on stable compounds, the dis-
tribution of distances to the convex hull is very different from the 
distribution of a random sample of compounds. Therefore, it is 
clear that this dataset is not convenient to train general machines to 
search for new materials. On the other hand, it is an ideal bench-
mark set for other properties, such as bandgaps, as these are mostly 
relevant for stable materials.

The curated AFLOW follows a typical skewed Gaussian with a 
mean, median, and SD of 530, 440, and 400 meV/atom.

The data from our group consist of multiple subsets as shown 
in Fig. 3. The highest peak arises from the data of (42), in which 
chemical elements were substituted by similar ones in stable mate-
rials. As we can see, this method leads to materials very close to 
stability. The green peak originates from machine learning–guided 
high-throughput calculations (17) (that resulted in relatively stable 
compounds) together with ~40,000 compounds from random training 
sets. The rest of the data consist of various traditional high-throughput 
searches of perovskites (16), mixed perovskites, chalcopyrites, Heusler 
compounds, and delafossites.

We will specifically focus on a dataset of mixed perovskites (see 
Fig. 1 for the crystal structure) as we apply the models developed in 
this work to a high-throughput search of their compositional space. 
We used a training set of around 180,000 randomly selected compo-
sitions. A further dataset of ∼64,000 low-energy mixed perovskites 
was later selected by the machine learning models. This dataset was 
not considered in the calculation of the hull to avoid any leak of 
information into the training set.

Fig. 2. Schema depicting the workflow for the creation of the dataset and the resulting energy distribution. A total of 2.7 million calculations from AFLOW, 0.14 million 
from the materials project, and 1.3 million from our group were accumulated and curated, leaving in the end 2.09 million data points (0.96 million of which from AFLOW, 0.10 
million from the materials project, and 1.02 million from our group data). A histogram depicting the distance to the convex hull of the final dataset is shown in the right. M, million.
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Experiment
The network was first trained on the newly accumulated large data-
set (minus the ∼180,000 mixed perovskites used in the next section) 
with a training/validation/test split of 80%/10%/10%.

The network achieved a mean absolute error (MAE) in the training 
set of 30 meV/atom for our large dataset. As a large part of the dataset 
is composed of high-throughput calculations for a small number 
of crystal structure prototypes, this error does not properly represent 
the abilities of the model. Consequently, we will do an in-depth val-
idation in the next section using a family of quaternary perovskites.

We also researched the ability of the model to differentiate the 
stability between different polymorphs. To accomplish this, we se-
lected all structures whose composition appeared at least twice in 
the test set. We then checked whether the model predicts the correct 
relative stability for each pair of structures. In Fig. 4, we plot the 
percentage of correct orderings as a function of the minimal differ-
ence in energy between the polymorphs. In the inset, we show the 
distribution of compositions with a given number of polymorphs in 
the test set. As expected from a random test set, the majority of re-
peated compositions only appears twice, with around 7500 appear-
ing three times, roughly 2800 four times, and 850 five times. Our 
model correctly predicts the relative stability of two polymorphs 93% 
of the time, increasing to 97% for polymorphs with an energy differ-
ence of 10 meV/atom and 99% for 100 meV/atom.

To achieve some comparability with other works, we also tested the 
model on the materials project dataset for the formation energies from 
(44). Using a training/validation/test split of 60%/20%/20%, we achieved 
a MAE of 41 meV/atom in the test set. The learning rate/batch size was 
changed in comparison to the other datasets because of the different 
dataset size. For the same set (44), crystal graph convolutional networks 
achieve an MAE of 33.2 meV/atom, while MEGNet achieves an MAE 
of 32.7 meV/atom. We have to note that our result is for a single validation 
split, while in (44), the error was averaged over five different splits. 
This slightly worse error is not unexpected as our networks do not use 
the complete information of the optimized crystal structure.

Furthermore, we trained our model on the quaternary Heusler data-
set of (24). We used a training/validation/test split of 85%/5%/10% 
to be compared with 90%/10% of (24). We obtained a test error of 

9 meV/atom in comparison to the best validation error of 37 meV/atom 
in (24), demonstrating the quality of our network.

Validation for mixed perovskites
In this section, we analyze in detail the ability of the model trained 
in the previous section to be used in high-throughput searches. We 
concentrate on a family of perovskites that can be obtained by alloy-
ing the Wyckoff 3d position of the cubic ABX3 system, leading to 
the quaternary ABX2Y composition. Among these, we find the well-
known mixed-anionic oxynitride and oxyfluoride perovskites (45) 
that have found interesting applications such as in optoelectronics 
(46). The basic tetragonal crystal structure of our mixed perovskites 
is depicted in Fig. 1. We note that the size of the compositional 
space for the chemical elements we took into account is around 
15 million. This includes not only the mixed-anionic systems but also 
inverted perovskites where the nonmetal occupies the center of the 
octahedra and the vertices are formed by a mixture of two metals. In 
view of the large number of stable inverted ternary perovskites (16) 
and the large number of possibilities for alloying two metals, we ex-
pect that the number of stable inverted quaternary perovskites will 
dwarf the number of mixed-anionic compounds.

All elements up to bismuth with the exception of the noble gases 
and the lanthanides were used. We did not use traditional stability 
tolerance factors, like the Goldschmidt factor or charge neutrality, in 
order not to bias the machine. If we consider compounds close to 
stability, we discover that the majority are not charge neutral in the 
standard (most common) oxidation state of the constituent chem-
ical elements. If we use pymatgen to assign oxidation states to the struc-
tures below 100 meV/atom, we find that only 1056 cases have a charge 
neutral configuration, corresponding to 13% of the compounds. Con-
sidering these results, we believe that it is important not to bias train-
ing data using empirical rules but to rely exclusively on DFT results.

We started by constructing a dataset for random quaternary com-
positions composed of around 173,900 systems. This dataset was 

Fig. 3. Distribution of the distances to the convex hull for our group’s data. In 
orange, we show mostly stable or close to stable compounds resulting from substi-
tutions of chemically similar elements into stable structures (43). High-throughput 
studies of several prototypes with all compositions are in blue/red. Machine learn-
ing (ML)–guided high-throughput study including the training set in green.

Fig. 4. Percentage of correctly predicted relative stability between polymorphs 
versus the minimum difference in energy between the compared polymorphs. 
The main plot shows the percentage of correctly predicted relative stability be-
tween polymorphs as a function of the minimum difference in energy between the 
compared polymorphs. Inset: The distribution of chemical compositions that have 
a given number of polymorphs is shown. This data include all compositions that 
appear at least twice in the test set.
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split into a training set of 139,123 compounds and a validation and 
test set of 17,390 entries each. The MAE of the general machine dis-
cussed in the previous section in this test set is 508 meV/atom, which 
is considerably higher than the 30 meV/atom obtained for the large 
training set. This is not unexpected considering the facts that the 
pretraining dataset is extremely biased toward a few crystal proto-
types and has a mean distance to the convex hull of 590 meV/atom, 
while the mixed perovskites set is extremely unstable with a mean of 
1445 meV/atom. If we consider mixed perovskites closer to stabili-
ty, e.g., below 500 meV/atom, then the MAE becomes a lot more 
reasonable at 132 meV/atom.

Transfer learning
A way to improve the general model presented before is to use 
transfer learning. For this, we create sets containing from 2.5 to 80% of 
the 173,903 mixed quaternary compounds and use them to retrain our 
previous general model. In this case, the learning rate was reduced by a 
factor of 10, and no further hyperparameters were changed or opti-
mized. For comparison, we also trained models only in these train-
ing sets (i.e., without pretraining) and with a three- dimensional (3D) 
ElemNet model (see Materials and Methods). The validation and test 
sets contained 17,390 compounds each as discussed before.

We also trained a Representation Learning from Stoichiometry 
(ROOST) method (28) to the perovskite data. However, because of the 
inability of ROOST to differentiate between different compounds 
with the same overall composition, the error of our trained models 
remained stubbornly high.

In Fig. 5, we show that the MAEs for the pretrained model are im-
proved for all training set sizes and that the purely composition-based 
ElemNet is outclassed by the graph networks. However, the advantage 
of using a pretrained model drops off as the training set size increases 
and the majority of the information learned during the pretraining is 
already included in the training data. With pretraining, we arrive at an 
error of 62 meV/atom with a training set size of 17,400 systems, while 
more than 35,000 samples are required to achieve the same test error 
without pretraining. As this error is sufficient to start a machine learning–
guided high-throughput search, we see that transfer learning can 
easily reduce the required training data by a factor of two.

We also trained a model using the scalar attention coefficients of 
(28, 33) on the mixed-perovskite dataset. The resulting test MAE was 
11% higher, proving the superior quality of the vectorized attention 
operation used in this work.

In Fig. 6, we display the MAE for all mixed perovskites contain-
ing a certain chemical element. Note that we left out compounds 
including vanadium from the training set to investigate the trans-
ferability across the periodic table without extra training data (see the 
next section). As discussed in previous studies (16, 17), magnetic ele-
ments like chromium, manganese, and iron as well as some first row 
elements show a higher MAE. The first is most likely due to the mag-
netic interactions not being described properly by the DFT calcula-
tion, which leads to difficulty in learning, while the second is caused 
by the well-known first row anomaly (47, 48) of the periodic table.

High-throughput search
As a further independent validation of our machines, we selected all 
mixed perovskites predicted to have a distance to the hull below 
200 meV/atom. We used two different models: the best pretrained 
model from the previous section and the ElemNet model to 
select these compounds.

Our mixed perovskites have a tetragonal crystal structure. As such, 
the list of neighbors that are used as input features to our model 
depends to some extent on the ratio of the cell constants, which are 
unfortunately unavailable without performing the actual ab initio cal-
culation. To circumvent this problem, we constructed prototypes 
with different ratios and used the lowest value of the distance to the 
convex hull as the actual prediction of the machine learning model. 
In practice, we used cell constant ratios of 0.85, 0.9, 1.1, and 1.15 for 
c/a while keeping a = b to maintain the symmetry of the system.

In total, 64,914 compounds were selected below the cutoff of 200 meV/
atom. This choice is higher than the 70 to 100 meV/atom often used 
[see, for example, (49)] and is motivated by (45), where it was found that 
the large majority of experimentally known mixed perovskites are below 
200 meV/atom when computed in the five-atom tetragonal unit cell.

As before, we optimized the geometries of these compounds 
with DFT and calculated the distance to the convex hull of thermo-
dynamic stability. The MAE of the pretrained machine learning 
model for this new validation set using the DFT-relaxed structures 
was 33.5 meV/atom, which is comparable to the error in the validation 
set. The error for the unrelaxed structures decreases with the number 
of considered structures from 45.7 meV/atom for one unrelaxed 
structure to 36.5 meV/atom for the four considered structures.

Furthermore, for 88% of the materials, the model predicted cor-
rectly whether a > c or a < c was the more stable phase, illustrating 
the structure sensitivity of the model. We are now also in position to 
determine the generalization error of the machine to vanadium- 
containing compounds. The MAE for these materials is 87 meV/atom 
for the best pretrained model. This should be compared (see Fig. 6) 
34 meV/atom for Ti, 84 meV/atom for Cr, and 85 meV/atom for Fe. 
We can see that the error is still perfectly acceptable, showing that 
the machine can reliably interpolate in the periodic table.

Last, in Fig. 7, we depict the distribution of the distance to the 
convex hull (calculated with DFT). If we consider various lower 
bounds, then we arrive at 21,333 materials below 150 meV/atom, 
8681 materials below 100 meV/atom, 2405 materials below 50 meV/
atom, 404 below 5 meV/atom, and 325 below the convex hull. We 
note that we demonstrated in a recent work (45) that many mixed 

Fig. 5. Test MAE versus number of systems in the training set. We display the 
MAE for the test set of mixed perovskites in dependence of the number of mixed 
perovskite for both a pretrained as well as a nonpretrained crystal graph attention 
network and a 3D ElemNet model.
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perovskites can be stabilized by a substantial amount through struc-
tural distortions (like the rotation and tilting of the octahedra) or by 
considering different arrangements of the C and D atoms. Some 
systems are stabilized by more than 150 meV/atom. Furthermore, 
configurational entropy, which was not considered in (45), is an 
additional stabilizing factor. Last, the experimentally known mixed 
perovskite with the highest DFT distance to the convex hull is 
LaZrO2N at 260 meV/atom (45). As such, we believe that there is a 
very good chance that a large majority of the compounds that are 
below 150 meV/atom can be synthesized experimentally.

In Fig. 8, we show the distribution of elements A, B, C, and D for 
the potentially stable ABC2D perovskites. In this case, we plotted all 
8681 compounds that were calculated to have a distance to the con-
vex hull smaller than 100 meV/atom. In what concerns the A atom, 
we find mainly alkali atoms and metals around indium. This is in 
agreement with the findings of (16) for ternary perovskites. The dis-
tribution for the B atom (in the center of the octahedra) is especially 
notable with 66% of the materials containing either hydrogen, or carbon, 
or nitrogen, or oxygen. This points to the fact that the majority of dis-
covered materials are inverted perovskites. Last, for the C and D atoms 
(at the vertices of the octahedra), we find a large collection of metals 
and also a few halogens. Obviously, the former corresponds to inverted 
perovskites, and the latter corresponds to normal (noninverted) halide 
perovskites with two halogens alloyed in the vertices of the octahedra.

The overwhelming majority of the compounds are metallic, with 
only 8% of the systems exhibiting a bandgap above 0.1 eV. As ex-
pected, the largest bandgaps are observed for halide perovskites or 
for systems with a halogen occupying the C position and H in the D 
position. On the other hand, more than 15% of the tetragonal com-
pounds exhibit a magnetic polarization, because of the abundance 
of magnetic 3d metals in the stable compositions.

In the following, we look in more detail into some of these com-
pounds. We note that we restrict our discussion to the tetragonal 
unit cell and that the properties of this crystal phase might be differ-
ent from a cell including structural deformations (octahedra tilting 
and rotation, etc.). Moreover, our five-atom unit cell is not capable of 
describing different positions of the C and D atoms such as the cis 
arrangement, which is known to be favorable in some oxynitrides, 
oxyhalides, and oxysulphides (50, 51), or more complex orderings 
(45). We also do not analyze oxynitride, oxyfluoride, or nitrofluoride 
compounds as these were discussed in a previous work that per-
formed an exhaustive study of these systems (45).

We start with the normal perovskites, where the C and D atoms 
belong to the same nonmetallic group. This case is rather important 

as alloying the nonmetallic sites allows for the tuning of electronic 
properties, such as the bandgap. We could not find any system below 
100 meV/atom that alloys two pnictogens. This is not unexpected as it 
is already very difficult to form nitride perovskites because of the very 
high oxidation state of nitrogen (52, 53). When C and D are elements of the 
chalcogenide family, we find 12 systems, among which six oxysulfides 
of compositions Ba{Zr,Nb,Hf,Ta}S2O and Na{Nb,Ta}O2S and six 
S─Se alloys with compositions Ba{Ti,Zr,Hf}S2Se and Ba{Ti,Zr,Hf}Se2S.  
These are mostly nonmagnetic semiconductors with Perdew-Burke- 
Ernzerhof (PBE) bandgaps that go up to 1.26 eV for BaHfS2O. We 
found many more compounds with C and D belonging to the halogen 
group. We remember that halide perovskites revolutionized research 
on solar energy with solar power conversion efficiencies that reached 
up to 22.1% in only 6 years. In modern solar cells, one often alloys I 
with Br as this was found to improve the stability of these com-
pounds (54, 55). From the 580 compounds we found, 229 contained F, 
354 contained Cl, 335 contained Br, and contained 286 I. Obviously, it is 
easier to alloy Br─Cl than, for example, F─I, and that is exactly what we 
find in our results with 149 systems for the former and 60 for the latter. 
The large majority of the compounds turn out to be nonmagnetic 
semiconductors, with bandgaps going up to 5.7 eV (for CsCaCl2F). We 
note that we find in this list the inorganic perovskites that are 

Fig. 6. MAE for structures containing each element. MAE for the mixed perovskites in the test set containing each chemical element.

Fig. 7. Distances to the convex hull for the mixed perovskites predicted to be below 
200 meV/atom. We show the distances to the convex hull calculated with DFT for 
the mixed perovskites predicted to be below 200 meV/atom by the machine lean-
ing model and the percentage of systems below the energy on the x axis in red.
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relevant for photovoltaics, such as CsPbCl2F and CsPbF2Cl for 11 
different combinations of the nonmetals, showing the miscibility of 
the halogens in these compounds.

Another very interesting type of system are hydride perovskites (56). 
These have attracted some interest recently as possible materials for, 
e.g., hydrogen storage (56–58). We found a series of exotic hydrogen- 
containing mixed perovskites, where H is combined with a group 15, 16, 

or 17 elements. Up to 100 meV/atom, we find 42 hydronitride systems, 
the most stable being La{Cr, Mo, Tc, W, Re}N2H and La{Mn, Fe, Mo, 
Tc}H2N. Assuming the standard oxidation states of the nonmetals 
and of La, we see that the metal in the B site should have an oxida-
tion state of +4 and +2, respectively, for the N2H and H2N per-
ovskites. This is true for many of the systems we found, but we also 
find less common oxidation states in the data. These systems are 

Fig. 8. Number of potentially stable Perovskite with a specific element in A, B, C, or D position. Perovskites ABC2D that are predicted by DFT to have a distance to 
the convex hull smaller than 100 meV/atom and that have a certain chemical element in positions A, B, C, or D.
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metallic and can be magnetic when the B atom is a magnetic d met-
al. Looking now at group 16, we find 12 hydroxides (59) and 7 hy-
drosulfides with mostly Sr or Ba in the A position and a +2 or +3 
metal in the B position. There are several semiconductors in this 
list, reaching a maximum PBE gap of 2.43 eV for BaYO2H. Last, we 
find 49 hydrohalides compounds with a +1 metal in the A position 
(either an alkali or Tl) and a +2 metal in the B position. There are 
also several hydride perovskites with similar compositions that were 
previously studied experimentally and computationally (60), sug-
gesting the possibility of the exchange of the hydrogen by a halide 
ion. These are nonmagnetic and can have rather large bandgaps reach-
ing a maximum of 5.39 eV (in the PBE approximation) for KMgF2H.

We now turn out attention to inverted or antiperovskites. These 
are materials that are finding diverse applications in battery tech-
nology, magnetism, superconductivity, etc. (61). As mentioned be-
fore, we find a very large number of such systems, which is not 
unexpected as the majority of stable ternary perovskites are also in-
verted (16), and it is relatively easy to alloy two C and D metals.

We start by looking at inverted hydrides, of which we find 3007 below 
100 meV/atom of the convex hull of stability. The most common ele-
ments that we find in the A position in these compounds are noble metals 
such as Pt (201 systems), Au (163), Ir (125), etc., or an element from 
groups 13 or 14 such as Sn (148), Ga (143), In (125), Al (100), etc. Naturally, 
most compounds are metallic, but we find a handful of semicon-
ductors mostly of the form {Se, Te}  HA 2  (1)   A   (2)   and {P, As, Sb, Bi}  HA 2  

(1)   
A   (3)  , where A(1) and A(2) are alkalines and A(3) is an alkali earth. We note 
that the former belong to the family of inverted ternary hydride perovskites 
with both A and B sites occupied by anions, which were proposed as 
fast alkali ionic conductors (62). We also found a couple of more 
exotic systems, such as TeH{Rh, Pd}2Li, TeHLi2Pd, and TeHPd2Sc.

Our list contains 223 inverted boride perovskites, with the A po-
sition predominantly filled by Y (31 systems), Sc (30), In (28), Mg 
(20), etc. On the other hand, the C and D positions contain often a 
metal like Ru, Rh, Pd, Ir, Pt, etc., or a magnetic metal like Co or Ni. 
Not unexpectedly, these are all metals.

Carbide antiperovskites have attracted some attention especially 
since the discovery of superconductivity in MgCNi3 (63). There are 
1002 (metallic) carbide antiperovskites in our list. Mg is the most com-
mon metal we find in the A position (with 82 systems), followed 
by In (76), Zn (74), Cs (72), etc. From the 82 systems with Mg, 12 of 
which also include Ni in the C or D position (alloyed with another 
3d metal or with Li, Rh, and Ir). In the C position, the most com-
mon metals are Sc (228 system), Y (200), and La (200), while in the 
D position, we find mostly a 3d magnetic element or Ru, Ir, Tc, etc.

Inverted nitride perovskites are metal-rich compounds with par-
ticularly interesting electronic and magnetic properties (64). We find 
1284 such systems with distances to the hull below 100 meV/atom. 
In the A position, we encounter mostly late transition and noble 
metals such as Ag, Au, Pt or Zn, Cd, Hg, etc., while in the corners of 
the octahedra, we find metals such as Ca, Se, La, Ba, etc. (in the C 
position) or Li, Co, Ni, Rh, etc. (in the D position). These tetragonal 
systems turn out to be mostly metallic, but with a handful of excep-
tions when the A position is occupied by another nonmetal such 
as a chalcogen or a halogen. The maximum PBE gap we find is for 
SNCa2Li with a direct bandgap of 1.04 eV, 39 meV/atom above the 
convex hull. We also find more than 300 magnetic systems with mag-
netic 3d elements in the C or D position.

With O in the B position, we find 519 systems. Among the most 
stable ones, we find series of Li-containing compounds such as {Al, Ga, 

In}O{Sc, Y}2Li or {Sn, Pb}{Sc, Y}2Li, but there is a large variety in 
the compositions. Recently, ternary oxysilicides and oxygermanides 
of the type {Si,Ge}O{Ca,Sr}3 were proposed as candidates for non-
toxic infrared semiconductors, as they exhibit sharp absorption edges 
below 1 eV (65). We find a number of quaternary mixed perovskites 
of this family, namely, 7 oxysilicides, 11 oxygermanides, and 21 oxystan-
nites, with Sr, Ca, Ba, but also Y, La, etc., alloyed in the C and D posi-
tions. All these compounds turn out to be metallic in our calculations, 
but this is very likely due to the use of the small five-atom tetragonal 
cell and the PBE approximation. Similarly to the hydrides, we also 
find a number of semiconducting systems with both the A and B 
positions occupied by anions. Examples are {S, Se, Te}  HA 2  (1)   A   (3)   and 
{Cl, Br, I}  HA 2  (1)   A   (2)  . We find PBE bandgaps in a rather large range up 
to 2.88 eV (for SOLi2Ca).

DISCUSSION
In this study, we developed a machine learning model that predicts 
the energy of a material as a function of the composition and the 
structure prototype. However, and in contrast with previous ap-
proaches, our input features do not require the precise knowledge 
of the geometry, so our model can be used to accelerate the discovery 
of new materials with high-throughput methods based on DFT. Our 
machine relies on crystal graph attention neural networks, and 
during the message passing steps, each individual edge and vertex 
embedding is updated based on its neighborhood.

To train this machine, we compiled and curated a large dataset 
of more than 2 million density functional calculations. These include 
data points from online databases and from our own calculations that 
were obtained with compatible parameters. Despite its large size, 
this dataset is somewhat biased as many of the calculations are for a 
relatively small number of different crystal prototypes.

To circumvent this problem, we propose a transfer learning ap-
proach, where our general purpose model is retrained for specific crystal 
structures. We experimented with this idea for a set of quaternary 

Fig. 9. ElemNet representations with multiple dimensions. (A) Representation of 
ElemNet (28). (B and C) ElemNet representation extended to two and three dimensions.
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perovskites, showing that transfer learning can speed up the training 
of the model by a factor of two. By omitting vanadium- containing 
compounds from the training, we also showed that the network can 
reliably extrapolate to unknown regions of the periodic table.

Last, we used our training model to predict stable quaternary 
perovskites, predictions that were then validated with DFT. It turns out 
that there are more than 20,000 materials that have a good chance of 
being synthesized experimentally. These are mostly inverted per-
ovskites, with hydrogen, carbon, or nitrogen in the center of the octa-
hedra, and with two metals alloyed in the vertices of the octahedra.

In view of the above, we believe that our model combined with 
transfer learning techniques will allow us to explore a large domain 
of the vast chemical space in the search for new stable crystalline 
compounds.

MATERIALS AND METHODS
Data accumulation and filtering
As previously discussed, we combined data from the materials proj-
ect, our group, and AFLOW. Concerning AFLOW, it has to be noted 
that a number of calculations in the database are “ill-calculated” as 
noted internally in the code of the AFLOW-CHULL tool (66). Ac-
cordingly, all prototypes denoted as “_DEVIL_PROTOTYPES_” and 
all pseudopotential/prototype combinations that are known to be 
ill-converged were removed from the AFLOW data. Furthermore, 
outliers from AFLOW were removed along the strategy explained 
in (66). Last, all actinides and nobles gases were removed from the 
data as they are not relevant for most applications, and some of the 
energies of the former are questionable. Duplicates were removed 
by checking for structures with the same composition, space group, 
and total energy (rounded to the fourth digit). The space group was 
determined with pymatgen, with the “symprec” parameter set to 0.1.

The convex hull was then constructed with pymatgen (67). All 
energies were corrected according to the materials project compat-
ibility scheme. Furthermore, the distances to the hull were evaluat-
ed for each compound by removing the compound itself from the 
convex hull. Stable systems have then negative distances to the hull 
instead of being truncated at zero. This, in our opinion, should im-
prove the learning as we are predicting a smoother quantity.

All elementary substances were removed from the dataset as the 
roost model used for the global pooling only works for multinary 
structures. A few hundred compounds that did not have 24 neigh-
bors in the cutoff radius were also removed from the dataset.

Calculation parameters
For all density functional calculations first published in this work, 
we optimized the geometry and calculated the energy with the code vasp 
(68). Calculation parameters were chosen to be compatible with the 
materials project database (35). We used the projector augmented 
wave (69) datasets of version 5.2 with a cutoff of 520 eV. The Brillouin 
zone was sampled by -centered k-point grids with a uniform 
density calculated to yield 1000 k-points per reciprocal atom. All 
forces were converged to better than 0.005 eV/Å. Calculations were 
performed with spin polarization using the Perdew-Burke-Ernzerhof 
(70) exchange-correlation functional, with the exception of oxides 
and fluorides containing Co, Cr, Fe, Mn, Mo, Ni, V, and W, where 
an on-site Coulomb repulsive interaction U with a value of 3.32, 
3.7, 5.3, 3.9, 4,38, 6.2, 3.25, and 6.2 eV, respectively, was added to 
correct the d states.

Implementation
The model was implemented in PyTorch (71) and PyTorch geometric 
(72) using PyTorch lightning (73) for convenience purposes. Code 
from (28) and (6) was reused, demonstrating the importance of shar-
ing code together with a paper. The code developed here will be 
distributed on github (https://github.com/hyllios/CGAT).

Crystal graph attention network hyperparameters
The size, number of layers of the FCNNs, the number of attention 
heads, the number of message passing steps, the size of the embed-
dings, the learning rate, batch size, optimizer, hyperparameters of 
the optimizer, the maximum number of neighbors, the cutoff radius 
for both the graph attention network, and the roost model used for 
the global composition representation are all hyperparameters that 
had to be optimized over a number of runs. Because of the high 
training cost, they were not optimized automatically but rather by 
hand increasing the number of parameters in terms of attention heads, 
message passing steps, and embedding sizes until a further increase 
ceased to efficiently improve the error. Afterward, the batch size and 
learning rate were optimized. AdamW (74) in combination with a 
cyclical learning rate scheduler was used for the training of the 
model. As loss function, we used the expanded MAE used in (28) 
that includes an estimate of the aleatoric uncertainty. Using hyper-
networks instead of normal fully connected networks resulted only 
in a very small gain in validation error; however, for larger datasets, 
the validation error converged after less learning rate cycles, reduc-
ing the training time.

optimizer AdamW

learning rate 0.000125

starting embedding matscholar-embedding

nbr-embedding-size 512

msg-heads 6

batch size 512

max-nbr 24

epochs 390

loss L1 loss

momentum 0.9

weight decay 1e-06

atom-fea-len 128

message passing steps 5

roost message passing steps 3

other roost parameters default

vector attention True

edges updated

learning rate cyclical

learning rate schedule (0.1, 0.05)

learning rate period 130

hypernetwork 3 hidden layers; size, 128

hypernetwork activ. funct. tahn

FCNN 1 hidden layer, size 512

FCNN activ. funct. leaky RELU (76)
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The hyperparameters used to train the crystal graph attention net-
work were as follows.

The output ResNet consisted of seven hidden layers with sizes 
1024, 1024, 512, 512, 256, 256, and 128 and rectified linear unit (76) 
activation functions (Relu).

ElemNet
For comparison purposes, we use a model with a composition-based 
input, in this case a modified version of ElemNet. The original El-
emNet was a standard FCNN with dropout and batch normaliza-
tion layers. Naturally, such a network is not able to predict energies 
for mixed perovskites as it cannot distinguish between, e.g., BaTiPbO2 
and TiBaPbO2. To circumvent this problem, we tried two different 
representations along the ideas of (77, 78) and used multiple input 
channels for each crystallographic position, and we ordered the in-
put in the form of a periodic table (Fig. 9). Naturally, this kind of 
network is fixed to one specific crystal prototype. The ElemNet network 
started with one 3D convolutional layer [1 input channel, 92 output 
channels, kernel size (1, 6, 3), stride 1, and padding 0]. The resulting 
tensor was flattened and input in a 17-layer fully connected network 
with Relu (76) activation functions and sizes of 5520, 1024, 1024, 1024, 
1024, 512, 512, 512, 256, 256, 256, 128, 128, 128, 64, 64, and 32. The 
hyperparameters for the training of the ElemNet model were as follows.
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Figure 8: The figure shows the MAE, and the standard deviation of the absolute er-

ror as error bar, plotted for a number of ternary prototypes from the new

high-throughput search. The prototypes are color-coded according to the

matching composition.

4.3 A Dataset of 175k Stable and Metastable Materials

Calculated with the PBEsol and SCAN Functionals

During the last decade, a number of large databases of theoretical crystal

structure properties have been accumulated. As we have discussed in

section 2.3, the accuracy of this data largely depends on the functional

that was used in its creation.

While there are a number of small databases [58, 47, 23, 24, 22] that

go beyond the PBE functional, all large scale databases [27, 133, 77, 67]

are calculated with the PBE functional. For most calculated properties,
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it is rather simple to improve their accuracy by repeating the calculation

with a functional that has proven to have better accuracy with respect

to experiment. In the case of thermodynamic stability, the situation is

different as we need the energies of all potential decomposition channels

calculated with compatible parameters to arrive at a distance to the

convex hull. This has so far stopped any functional from establishing

itself besides the PBE functional.

In this publication ”A Dataset of 175k Stable and Metastable

Materials Calculated with the PBEsol and SCAN Functionals”,

we aim to rectify the situation by creating a convex hull with both the

SCAN as well as the PBEsol functional. The former has demonstrated

a superior accuracy for the determination of thermodynamic stability.

In Ref. [JSPhD10] we have accumulated a rather complete convex hull

by combining the AFLOW and Materials Project databases as well as

more than a million calculations from our own group. We select the ma-

jority of compounds close to and on the convex hull from this dataset to

recalculate them with the SCAN functional. However, SCAN calcula-

tions can be more than five times as expensive as PBE calculations and

sometimes difficult to converge [38, 8]. We can mitigate this problem

by minimizing the number of SCAN calculations. The PBEsol func-

tional provides accurate crystal structures on the level of the SCAN

functional [26, 65]. Therefore we opt to only perform PBEsol geom-

etry optimizations and single point SCAN calculations at the PBEsol

geometries.

We converge nearly all of the calculations successfully, and 176k are al-

ready openly available at [136]. Moreover, we have finished an additional

54k calculations of the compounds close to the hull that will be added

to the online dataset in the near future. Analysing the dataset, known
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trends [57, JSPhD1] concerning the difference in results between the

PBE, PBEsol and SCAN functional are again confirmed. This includes

the underbinding of the PBE functional that leads to an overestimation

of lattice constants in comparison with the PBEsol functional, SCAN

functional, and experiment, as well as the strong underestimation of

band gaps both by the PBEsol and the PBE functional.

The two primary purposes behind the creation of this dataset are to

allow for the stability analysis of materials and the training of machine

learning models with the accuracy of the SCAN functional. The first

point is relatively simple and just requires an extra PBEsol geometry

optimization and single point SCAN calculation to confirm materials

found as stable in high-throughput searches. Concerning the second

point, we are in the process of applying transfer learning techniques

to the PBE-trained models. These should allow us to negate the lack

of SCAN/PBEsol training data and create high performing models to

predict SCAN distances to the convex hull and PBEsol geometries. For

this purpose, we have also performed an extra 50k PBEsol/SCAN calcu-

lations of unstable materials to reduce the bias toward stable materials

in our training set.
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A dataset of 175k stable and 
metastable materials calculated 
with the PBEsol and SCAN 
functionals
Jonathan Schmidt1, Hai-Chen Wang  1, Tiago F. T. Cerqueira2, Silvana Botti  3 & 
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In the past decade we have witnessed the appearance of large databases of calculated material 
properties. These are most often obtained with the Perdew-Burke-Ernzerhof (PBE) functional of 
density-functional theory, a well established and reliable technique that is by now the standard in 
materials science. However, there have been recent theoretical developments that allow for increased 
accuracy in the calculations. Here, we present a dataset of calculations for 175k crystalline materials 
obtained with two functionals: geometry optimizations are performed with PBE for solids (PBEsol) that 
yields consistently better geometries than the PBE functional, and energies are obtained from PBEsol 
and from SCAN single-point calculations at the PBEsol geometry. Our results provide an accurate 
overview of the landscape of stable (and nearly stable) materials, and as such can be used for reliable 
predictions of novel compounds. They can also be used for training machine learning models, or even for 
the comparison and benchmark of PBE, PBEsol, and SCAN.

Background & Summary
The search for new materials remains one of the most important quests but, unfortunately, also one of the great 
challenges of materials science. Nowadays, data-driven searching strategies have become the most cost-effective 
methods to tackle this problem, and the fastest way of finding new materials or study their properties are com-
putational high-throughput searches. After years of data accumulation, there are millions of calculations of 
materials available in open databases1,2 that are used as an invaluable reservoir to select and filter promising 
candidates for further experimental synthesis and characterization.

These high-throughput studies in solid-state material science3–6 have broadened the exploration of the vast 
chemical space, while plenty of works have successfully found and predicted promising materials for techno-
logical applications. However, nearly all high throughput searches rely on the use of density functional theory 
(DFT) within the Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation functional7. This 
is a well established and reliable approach that earned its place as the standard technique in solid-state research. 
However, the PBE functional is now over 25 years old, and more recent (and accurate) functional have by now 
been proposed in the literature. For example, the Armiento-Mattson 20058 or the PBE for solids9 functionals 
consistently lead to superior geometries10,11, while the SCAN meta-generalized gradient approximation12 yields 
formation energies that are on average better by a factor of two than the PBE13. Unfortunately, and in stark 
contrast with the abundance of PBE data, there are no available comparable large scale datasets calculated with 
these improved functionals.

There are a number of other databases that use either higher accuracy methods, like G0 W0, or apply 
density-functionals different from PBE. For example, we can mention the Computational 2D Materials 
Database14,15 that provides a dataset of 4000 2D materials calculated with HSE, G0 W0, RPA and the 
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Bethe-Salpeter equation, while JARVIS contains a large number of calculations with vdW corrections using 
OptB88vdW16,17 and performed with the modified Becke-Johnson potential18–20.

In a previous work21 we combined data from the AFLOW database1, the Materials Project2 and from our 
own group to create a rather complete convex hull of thermodynamic stability at the PBE level. The details of 
the selection of the dataset can be found in ref. 21. Specifically, we selected all materials that were calculated 
with the same functional, pseudopotential, as well as U-parameters used in the Materials Project. We removed 
duplicates, i.e. entries with the same space group, composition and total energy (rounded to the 4th digit). Here 
we determined the space group using pymatgen with the “symprec” keyword set to 0.1. From the AFLOW 
database we further removed all prototypes labeled “_DEVIL_PROTOTYPES_” and all other combinations of 
prototypes and pseudopotentials that are noted as ill-converged in the code of ref. 22. As AFLOW is still known 
to contain outliers22, we also removed them from the calculation of the hull following a strategy similar to the 
one explained in ref. 22. We used the total energies of all the remaining structures to calculate the convex hulls 
applying the corrections from the materials project workflow to the energies.

From this dataset23 we selected around 175k compounds that were either stable (i.e., on the convex hull), or 
close to stable (within 100 meV/atom of the hull). These were then reoptimized with PBEsol9. Finally, the total 
energies were reevaluated with SCAN12 to create highly accurate formation energies and convex hulls.

Methods
Our starting point was the dataset used in the machine learning study of ref. 21. This included PBE calculations 
stemming from the Materials Project database2, AFLOW1, and our own calculations. These were then filtered to 
obtain a homogeneous set in what regards the calculation parameters, leading to a dataset containing more than 
two million compounds. We then constructed the convex hull of thermodynamic stability and extracted entries 
that were either on the hull or within 0.1 eV/atom24,25. The reason for the choice of this cutoff was twofold. First, 
its value is still below the average error in the formation energies calculated with PBE26,27, but is larger than the 
estimated error in the distances to the convex hull28,29. As such, the compounds that were misidentified by the 
PBE as thermodynamically unstable are likely to be included in the set. Second, there are a number of materials 
that are metastable, but experimentally accessible (for example for compositions that have more than one pol-
ymorph). We can reasonably expect that the cutoff allows for the inclusion of the majority of these cases. We 
also eliminated materials with unit cells that were too large for our computational resources, leading to a final 
amount of ~175k compounds.

All calculations were performed using density-functional theory, within the projector augmented wave 
method (PAW)30 as implemented in the Vienna ab initio simulation package (VASP)31,32. We used the PAW set-
ups shipped with version 5.4 of vasp that include information on the kinetic energy density of the core electrons. 
We mostly followed the recommendations of the Materials Project for the choice of the pseudopotentials. The 
exception was Cs, for which we used an improved pseudopotential generated by the vasp developers, as the stock 
PAW setup often led to negative densities during the self-consistent cycle, crashing the calculation. All calcula-
tions were performed taking into account spin-polarization, and started from a ferromagnetic configuration (as 
in the large majority of high-throughput studies). This most likely leads to an incorrect spin configuration for 
antiferromagnetic systems, resulting in an energy higher than the true groud-state. However, it is well known 
that in most cases magnetic exchange energies are rather small, so the error in the total energy is limited to a few 
tens of meV/atom. Methfessel-Paxton order one smearing with a width of 0.2 eV was applied in the integration 
of the Brillouin zone.

The structures were optimized using the PBEsol9 approximation, the “High” precision keyword of vasp, and 
a Γ-centered k-point grid with 2000 k-points per reciprocal atom, until the forces on the atoms were below 
5 meV/Å. To detect the structures that required re-optimization we checked that the the absolute value of the 
forces (in meV/Å) and the individual components of the stress tensor (in meV/Å3), calculated with PBEsol 
with stricter convergence criteria (520 eV for the wave-function cutoff and 8000 k-points per reciprocal atom), 
remained smaller than 0.05. If it was not the case, we increased both the energy cutoff and the number of 
k-points and performed again the geometry optimization. Around 3% of all structures required this further 
calculation step. We note that as we had already a reasonable starting point, specifically the PBE geometry, the 
geometry optimization required a relatively small number of steps in most cases.

A final energy evaluation with the SCAN meta-GGA functional was performed with a cutoff of 520 eV, 8000 
k-points per reciprocal atom, and including the non-spherical contributions from the gradient corrections 
inside the PAW spheres. As expected, SCAN calculations were much more unstable than PBEsol, due to the 
well known numerical instabilities of this functional33,34, which led to a much lower average convergence rate. 
In any case, we succeeded in converging nearly all calculations. In total, the calculations presented here required 
around 10 million CPU hours.

Data records
The output files of vasp were collected and processed with the pymatgen library35. Each final data record con-
sisted of a ComputedStructureEntry that included the chemical composition, the total energy, and the detailed 
crystal structure of the entry. Two files, containing all entries for each functional, can be freely downloaded from 
the Materials Cloud repository36 and can be loaded trivially using the json module of python. For convenience, 
we also provide a summary of the data in tabulated form, that include the fields listed in Table 1.

In panel a of Fig. 1 we plot the histogram of the number of different chemical elements in our materials. 
We can clearly see that the dataset is dominated by ternary compounds, followed by binary and quaternary. 
Relatively few multinary materials with more than 4 different chemical elements are present. We can understand 
this distribution by considering that the number of permutations increases very rapidly with the number of 
chemical elements, explaining, e.g., why we have many more binaries than elementary substances or ternary 
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than binary compounds. However, we have to keep in mind that the complexity of the unit cells also increases 
and that most of the systematic high-throughput DFT studies were performed for ternary systems37–42. This can 
also be seen in panel (b) of Fig. 1 where we show a histogram of the number of atoms in the primitive unit cell. 
The distribution is dominated by a peak centered around five atoms per unit cell, arising from the materials 
stemming from the high-throughput studies of AFLOW1 and from our group3,37,38. Obviously, we do not expect 
that the true distribution of all possible thermodynamically stable and metastable materials follows the behavior 
depicted in Fig. 1. Finally, in panels (c) and (d) of the same figure, we plot an histogram of the number of mate-
rials as a function of the space group index and of the crystal system. We see that the most represented systems 
are the trigonal and orthorhombic, while the tetragonal and triclinic are the least represented.

In Fig. 2 we show the distribution of chemical elements for the calculated structures. We considered all 
elements except noble gases up to bismuth as well as most lanthanides, and actinides up to plutonium. We can 
observe some obvious trends. Not surprisingly, the most common element is oxygen due to the abundance of 

Composition Chemical composition of each material.

Number of sites Number of atoms in the unit cell.

EPBE Total energy per atom calculated with PBE (extracted from the primary dataset)

EPBEsol Total energy per atom calculated with PBEsol.

ESCAN Total energy per atom calculated with SCAN.

VPBE Volume per atom of the PBE unit cell (extracted from the primary dataset).

VPBEsol Volume per atom of the PBEsol unit cell.

GapPBEsol Band gap calculated with PBEsol.

GapSCAN Band gap calculated with SCAN.

MPBEsol Total magnetic moment per atom calculated with PBEsol.

MSCAN Total magnetic moment per atom calculated with SCAN.

SSCAN The diagonal elements of the stress tensor calculated with SCAN.

Table 1. Fields included in the summary of the data in tabulated form.

Fig. 1 Distribution of (a) number of different chemical elements per unit cell, (b) number of atoms per unit cell, 
(c) index of space groups, and (d) crystal systems for all the materials in our dataset.
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oxides in our planet and their stability in our oxygen-rich atmosphere. The remaining chalcogens (S, Se, Te) are 
all equally represented, which is probably an indication of their chemical similarity. For the halogen family we 
see a decreasing number of materials following the decrease of the electronegativity, with iodine compounds 
being half as abundant as fluorides. For the pnictogens we witness exactly the opposite behavior, with much 
fewer nitrides than compounds containing antimony. This can be understood from the high chemical stability 
of the N2 molecule and the rather high nominal oxidation state of nitrogen (−3) that hinders the synthesis of 
nitrides. Finally carbon-containing materials are rather scarce due to the absence of organic compounds in our 
dataset.

From the metals, the two with the highest number of compounds are aluminum and lithium. The former is 
within a cluster of highly represented chemical elements (such as nickel, copper, zinc, or indium). The exception 
in this region of the periodic table is gallium, in spite of its importance in many semiconductors used in elec-
tronics and optoelectronics. Lithium compounds, on the other hand, are much more common in our dataset 
than materials containing any other alkali element, which might be explained by the popularity of studies in lith-
ium compounds in view of their application in battery technologies. Interestingly, in contrast to the other alkali 
earth elements, beryllium appears in relatively few compounds, probably due to its high toxicity. Another region 
that exhibits relatively few compounds is the one centered in vanadium and that includes rhenium, hafnium, 
niobium, etc. We can observe a continuity in the values in this region that might indicate that these chemical ele-
ments, often exhibiting the very high oxidation numbers of +4, +5 or +6, have more difficulty producing stable 
compounds than other metals with lower oxidation numbers. Finally, the least represented groups are unsurpris-
ingly the lanthanides and the actinides, showing how little we know the chemistry of these chemical elements 
that are essential in a multitude of technologies, such as in hard magnets or in the storage of nuclear waste.

It is also interesting to look at the structural diversity in our dataset. With that objective, we used pymatgen 
to divide our structures into groups according to structural similarity. In total, our data turned out to contain 
24706 prototypes of 4557 different generic compositions. However, and as expected, the distribution of com-
pounds among these prototypes was rather unbalanced. For example, 15399 prototypes only appeared once in 
the dataset and 2412 only twice. On the other hand, most materials belong to just a few prototypes. The most 
common was by far the Heusler family of compounds, with almost 12 000 compositions, followed by the double 
perovskite family with more than 5000 elements. Of course, these numbers reflect not only the chemical stability 
and size of each one of the families, but also the interest of the community for these compounds.

Technical Validation
In the left panel of Fig. 3 we plot the distribution of the volumes per atom with the PBE (obtained from the 
primary data) and PBEsol. Both curves look similar, with a peak at around 15 Å3 and skewed towards larger vol-
umes. We can also observe that the PBE data is shifted toward larger volumes with respect to PBEsol. This is due 
to the well known underbinding of the PBE43 that leads to lattice constants that are larger than their experimen-
tal values by 2–3% (and consequently volumes that are overestimated by ~10%). This underbinding is almost 
totally corrected by PBEsol, yielding smaller volumes in much better agreement with experiment. In the right 
panel of the same figure we plot a histogram of the three diagonal components of the stress tensor calculated 
with SCAN at the PBEsol geometry. We can see that the calculations yield rather small stresses, showing that the 
structures are close to mechanical equilibrium. This is expected because SCAN, like PBEsol, yields high quality 
geometries in good agreement with experiment10,44. This also validates our pragmatic approach of using a single 
point SCAN calculation at the PBEsol geometries.

In Fig. 4 we show the distribution of (indirect) band gaps calculated with both PBEsol and SCAN. As 
expected, the curves decay monotonically with the value of the gap, and exhibit a fat tail that extends beyond 
10 eV. It is known that PBEsol, as well as PBE, strongly underestimate the value of the band gaps by essentially 
a factor of two, leading to mean absolute percentage errors bordering the 50%45,46 with respect to experiment. 
This is to some extent corrected by SCAN, that increases consistently the band gaps leading to a mean absolute 
percentage error of around 40%45,46. This increase is evident from Fig. 4, where the SCAN band gap distribution 
is shifted to the right with respect to PBEsol.

Fig. 2 Periodic table depicting the chemical elements present in our dataset. The number beneath the chemical 
symbol is the number of materials present in the dataset that contain the given element.
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Finally, we performed an analysis of the convex hulls obtained with PBE, PBEsol, and SCAN. The hulls 
contained 36985, 40246 and 38692 materials respectively. These differences are expected, and mostly stem from 
relatively small changes in the formation energy for compounds that were close to the hull. The distributions 
of the distances to the convex hull of thermodynamic stability are plotted in the right panel of Fig. 4. For this 
plot, we always removed the compound under study from the hull, allowing therefore for negative distances. 
Although this allows for a better interpretation of the results, we should remember that technically speaking all 
compounds with negative distances should be placed strictly at zero. Both distributions grow fast for negative 
distances to the hull, having a marked peak at zero. The main contributors to this behavior are the experimental 
compounds. The number of materials with positive distance to the hull is relatively constant, until reaching our 
cutoff at ±0.2 eV/atom. This cutoff is obviously smeared for the PBEsol and SCAN calculations.

As an illustration, we plot in Fig. 5 the ternary phase diagrams of Li–Al–Cu and Mg–Sc–Zn. We see that the 
three functionals agree to a large extent on which are the stable materials. However, some differences are also 
clear. For example, MgZn is stable with the PBE functional but not with PBEsol or SCAN, or LiAl3 is unstable 
with SCAN but stable with the other two functionals. In any case, compounds that are stable with one functional 
do appear stable, or at least metastable with the other functionals. Of course, SCAN is the most accurate of the 

Fig. 3 Left: Distribution and scatter plots of volumes per atom calculated with PBE (from the primary data) and 
PBEsol functionals. The width of the bins is 0.35 Å3/atom. Right: distribution and scatter plots of the diagonal 
components of the stress tensor calculated with PBEsol and SCAN at PBEsol geometries. The width of the bins 
is 0.6 meV/Å3.

Fig. 4 Left: Distribution and scatter plots of the (in)direct band gaps calculated with PBEsol and SCAN at the 
PBEsol geometry. The width of the bins is 0.1 eV. Right: Distribution and scatter plots of the distances to the 
convex hull calculated with PBEsol and SCAN at PBEsol geometries. The corresponding hulls contain 40246 
and 38692 materials. The width of the bins is 2 meV/atom.



6Scientific Data |            (2022) 9:64  | https://doi.org/10.1038/s41597-022-01177-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

three functionals in what concerns formation energies and distances to the convex hull, so the SCAN diagrams 
should on average have the highest accuracy.

Usage Notes
The data can be downloaded from the Materials Cloud repository36. The energies, compositions, and struc-
tures for each material are formatted as ComputedStructureEntries and stored as compressed json files. They can 
therefore be trivially loaded in python and analyzed with pymatgen. We note that we used version v2019.10.2 of 
pymatgen, but the data should be compatible with other versions.

Code availability
All data can be easily processed with publicly available tools such as json and pymatgen35. An example usage is 
provided with the data. The dataset was generated with VASP, the bash and python scripts to generate input files 
or manage the output files can be downloaded from github repository: https://github.com/hyllios/utils/tree/main/
ht_pd_scan.
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5 Conclusion and Outlook

In three publications, we have presented various advancements for ma-

chine learning applications in theoretical solid-state physics and material

science.

In the first publication, we have successfully introduced and imple-

mented the idea of using automatic differentiation to simultaneously

train a neural network as an exchange-correlation functional and its

functional derivative. In contrast to only training the energy functional,

this approach allows us to accurately reproduce the exact exchange-

correlation potentials for strongly correlated two-electron systems. For

random as well as specifically selected test systems the functional sig-

nificantly outperforms the classical LDA in one dimension. The neural

networks make it possible to arbitrarily scale the locality of the trained

functionals, which alleviates some of the traditional challenges of



DFT. Specifically, increasing the non-locality allows the functional to

correctly reproduce the one-dimensional H2 dissociation process for con-

siderably larger distances than possible with classical local functionals.

In the second publication, we have suggested and implemented a modi-

fication to graph networks that allows us to use them in prototype-based

high-throughput searches. This development has enabled us to perform

high-throughput searches of already more than 2000 prototypes span-

ning a compound space of one billion materials. As a result, we can

suggest a large number of potentially stable mixed perovskites, garnets

and more than ten thousand other materials.

As a secondary result of this work, we have curated a dataset of more

than 2 million crystal structures with consistent calculation parameters.

This dataset already allows most researchers to upgrade their machine

learning models solely by providing more training data than was pre-

viously available to them. Furthermore, the dataset provides a rather

complete convex hull, increasing the accuracy of thermodynamic stabil-

ities.

Machine learning supported high-throughput studies are already a

relatively mature field with successful applications over the last seven

years. However, due to the need for separate training data for most

prototypes, high-throughput searches have been limited in scope. We

think that the works presented in this thesis can significantly expand

this scope. Considering that prototype-based high-throughput publica-

tions were mostly limited to one ternary or quaternary prototype, and

we already performed high-throughput searches of more than a thou-

sand ternary prototypes just this year, the scope has already massively

expanded.

In the third publication, we have upgraded our convex hull by recal-
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culating the majority of compounds close to the convex hull with the

PBEsol and the SCAN functional. To the best of our knowledge, the re-

sulting convex hull is the first reasonably complete hull calculated with

a functional more precise than the PBE functional. It also provides

more precise geometries and bandgaps for interested experimentalists,

allowing them to better identify promising candidates for synthesis and

further study.

5.1 Outlook

We are in the process of addressing two of the challenges high-throughput

searches are facing right now. First, we are attempting to lessen the bi-

ases in terms of prototypes and elements in our data sets to achieve a

more consistent error across the chemical space. Secondly, we are up-

grading the machine learning models via transfer learning to the accu-

racy of SCAN and PBEsol. It seems that the number of DFT-geometry

optimizations performed during a comprehensive high-throughput search

cannot be significantly reduced at the moment. However, there is sub-

stantial potential to reduce the number of steps during each geometry

optimization through machine learning force fields. So far solid-state

machine learning force fields have been limited in structure and sto-

chiometry space[JSPhD6].

We plan to harness the millions of force and energy data points that

result from our DFT geometry optimizations each year and combine

them with state of the art graph neural networks. This should allow

us to cut the number of DFT geometry optimization steps and conse-

quently the computational cost by at least a factor of three. For this

purpose, we are already saving geometry optimization steps from the

large-scale high-throughput search discussed in section 4.2 and the cal-
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culations in Ref. [JSPhD11]. Most recently, work in this direction on a

smaller scale has already been published by Chen et al. [19].

Our work on machine learning functionals was mostly a proof of con-

cept work demonstrating that training accurate exchange correlation

potentials is possible through automatic differentiation. Due to the

abundance of high-fidelity training and validation data produced by

coupled cluster, full-CI, and quantum Monte Carlo (QMC) calculations,

the future of machine learning functionals in chemistry is quite promis-

ing. Using this data and classical functional forms enhanced with ma-

chine learning, the most recent works were able to produce functionals

[78] that consistently improve over traditional functionals although at a

higher computational cost.

There are now several research directions to proceed from here. Tra-

ditional functionals use a very limited amount of data and parameters.

Continuing on the path of using the entire machine learning toolbox

to fit traditional functional forms enhanced by some machine learning

should allow us to progress beyond the existing functionals. While this

approach will be useful, it seems unlikely to produce real innovations.

A promising research direction could be to replace the expensive hybrid

parts of functionals with semi-local machine-learned terms to improve

the calculation speed, while retaining the accuracy of existing hybrids.

A further research direction is to add exact conditions through the data,

and functional form, that are mostly ignored in traditional functionals,

e.g., the derivative discontinuity [JSPhD3]. Removing such a failure

point of DFT from functionals has the potential to make a major dif-

ference for the applicability and accuracy of DFT.

In solid-state DFT the picture is different to quantum chemistry as

high-quality data exists mainly for the electron gas. Consequently, as
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a first step, the research community has to find a suitable calculation

method to produce high fidelity benchmark and training data. This

would allow us to progress to the point where quantum chemistry is

right now. The calculation method will most likely have to be a type of

QMC, e.g., diffusion- or auxiliary field QMC. Machine learning based

variational and diffusion Monte Carlo approaches have also shown some

promise for this problem in the last two years [123, 171, 149]. However,

it seems, without such data, progress can neither be achieved nor even

be properly evaluated.
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Luther-Universität Halle-Wittenberg vom 13.07.2016, dass ich die vor-

liegende Arbeit ”Machine Learning the Thermodynamic Stability of
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