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Abstract
Aortic dissection is a life-threatening vascular disease characterized by abrupt formation of a new flow channel (false lumen)
within the aortic wall. Survivors of the acute phase remain at high risk for late complications, such as aneurysm formation,
rupture, and death. Morphologic features of aortic dissection determine not only treatment strategies in the acute phase
(surgical vs. endovascular vs. medical), but also modulate the hemodynamics in the false lumen, ultimately responsible for late
complications. Accurate description of the true and false lumen, any communications across the dissection membrane separating
the two lumina, and blood supply from each lumen to aortic branch vessels is critical for risk prediction. Patient-specific surface
representations are also a prerequisite for hemodynamic simulations, but currently require time-consuming manual segmentation
of CT data. We present an aortic dissection cross-sectional model that captures the varying aortic anatomy, allowing for reliable
measurements and creation of high-quality surface representations. In contrast to the traditional spline-based cross-sectional
model, we employ elliptic Fourier descriptors, which allows users to control the accuracy of the cross-sectional contour of a flow
channel. We demonstrate (i) how our approach can solve the requirements for generating surface and wall representations of
the flow channels, (ii) how any number of communications between flow channels can be specified in a consistent manner, and
(iii) how well branches connected to the respective flow channels are handled. Finally, we discuss how our approach is a step
forward to an automated generation of surface models for aortic dissections from raw 3D imaging segmentation masks.

CCS Concepts
• Human-centered computing → Scientific visualization; • Applied computing → Health informatics; • Computing method-
ologies → Parametric curve and surface models;

1. Introduction

Aortic dissection (AD) is a rare but life-threatening vascular dis-
ease [WFEG∗20] that is pathologically characterized by a semi-
circumferential delamination of the aortic media layer. This leads
to formation of a new flow channel—the false lumen—within
the thinned, delaminated wall, that is separated from the original
channel—the true lumen—by a membrane, the so-called dissec-
tion flap [MHM∗16]. Patients with dissection of the ascending
aorta—type A aortic dissection (TAAD)—require urgent surgical
repair [CM16]. If the ascending aorta is not involved—type B aor-
tic dissection (TBAD)—endovascular aortic repair is indicated if
acute complications occur, such as aortic rupture, and branch vessel
malperfusion (complicated TBAD). Patients without complications
can be managed medically (uncomplicated TBAD) [HBB∗10]. All
survivors of acute AD remain at high risk of late complications,
predominantly driven by false lumen degeneration and aneurysm
formation, and require lifelong surveillance and imaging. Once the
aorta reaches 5.5 cm in diameter, elective surgical repair is indicated
to prevent rupture.

There is growing evidence that morphologic features of aortic
dissection predict aneurysm formation and late complications. The
morphologic features of interest include the geometry and relative ar-
rangement of the true and false lumen, the communications between
them across the dissection flap, and the specific arrangement of aor-
tic branch vessels relative to both lumina. More branches arising off
the false lumen improves drainage and putatively lowers the false lu-
men pressure. A prediction model based on four manually extracted
morphologic dissection features was able to discriminate between
high-risk and other patients with uncomplicated TBAD [SvKN∗17].
A more refined patient-specific approach to estimate the pressure
within the false lumen—which is the ultimate driving force for late
complications—requires detailed modeling.

Bäumler et al. [BVS∗20] recently presented a numerical model to
simulate hemodynamics and pressures in patient-specific models of
aortic dissection, using fluid-structure interactions. This approach
requires 3D models of both the vessel lumen (fluid domain) and the
vessel wall (structural domain). They showed how the dissection flap
elasticity can affect true and false lumen pressures and flow rates.
However, reliable measurement of imaging features and automatic
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generation of 3D models for hemodynamic simulations require an
aortic model that can capture the varying anatomy of ADs.

Three-dimensional surface representations of vascular struc-
tures can be created explicitly with truncated cones [HPSP01],
point-cloud polygonization [WWL∗10] or implicitly using Gaus-
sians [OP05], multi-level partition of unity implicits [SOB∗07], or
extrusion surfaces [KGPS13, HLW∗18]. The majority of explicit
and implicit model-based approaches either support only circu-
lar cross-sections [HPSP01, OP05] or use spline-based represen-
tations [KGPS13, HLW∗18], but present mainly convex shapes.

In this work, we present a model-based approach for the represen-
tation of AD surfaces based on elliptic Fourier descriptors (EFDs) of
a chain-coded flow channel’s cross-sectional contour [KG82]. The
EFD representation of contours on each 2D image slice allows us to

• control the smoothness of a cross-sectional contour by gradually
removing high-frequency details while retaining the overall shape,
• model concave cross-sections separated by a dissection flap,
• model the outer vessel wall with a lumen-specific thickness, and
• create an abstraction of the dissected aorta.

Rendering EFDs into a 3D model is then governed by smoothly
blending the cross-sections into the final surface representation.

2. Related Work

This work focuses on the cross-sectional representation of vessel
contours in ADs via EFDs. Related work includes 2D contour repre-
sentations such as chain codes and Fourier descriptors (FDs). Since
individual cross-sections are then combined into a single surface
representation, we also discuss relevant work in that field.

2.1. Chain Codes

Chain codes represent discrete contours by encoding the directions
of movement along the contour, instead of storing the spatial posi-
tions. These directions are determined either absolutely in relation
to its enclosing reference system (image or volume) or relative to the
current orientation, with the latter referred to as differential chain
code (DCC). Absolute chain codes are invariant under translation,
but not rotation, while DCCs are also rotationally invariant. Chain
codes are easy to compare, but sensitive to noise. This sensitivity
can be handled by creating them at a coarser resolution [YKR08].

One of the most prominent chain codes is the Freeman chain
code (FCC) [Fre61]. It constitutes a compact representation of a 2D
discrete contour by using the numbers 0-3 (4-connected) or 0-7 (8-
connected) on a rectangular lattice. The vertex chain code (VCC),
proposed by Bribiesca [Bri99], follows the vertices around pixels,
i.e., the VCC of a single pixel is 1111 (its four edges), compared to
its FCC of 0. When dealing with a DCC, such as the VCC, the recon-
struction of a shape’s contour requires finding a rotationally invariant
start position, transforming the code into slope changes, and inte-
grating these along the code. Liu and Žalik [LŽ05] proposed a more
compact FCC-based relative chain code by encoding the forward
direction as zero and the other directions as Huffman code (with a
trailing zero, or at most 7 bits long). Sánchez-Cruz et al. [SCBRD07]
assessed the compression efficiency of chain codes.

The FCC can also describe discrete 3D curves on cubic lat-
tices [Fre74]. Bribiesca [Bri00] presented a relative 3D chain code
based on the directional changes of a polyline. Encoding the changes
of a 3D contour only in right (0) and left (1) leads to a binary
code [Bri04]. Trees, as described by Bribiesca [Bri08], can also be
expressed by a relative chain code, where a single chain element can
take any number between 0-4 and branches are modeled with paren-
theses. Sánchez-Cruz et al. [SCLVC14] presented another relative
chain code for 3D curved trees. The code comprises 72 different
directional changes, divided into three groups of 24 directions each
and coded with a single alphabetical letter. Strnad et al. [SKNŽ20]
proposed a compressed chain code for 3D tree structures that allows
building different levels-of-detail (LoDs).

2.2. Fourier Descriptors

Fourier descriptors (FDs) can be used to describe and analyze shapes
according to similarity, symmetry, and mirroring. For example, they
are used in biology [IU02] to differentiate grain types [MPJ12], plant
leaves [CO17], or rice grain [IEUH15]. A comprehensive overview
of object or shape descriptors is given by Nixon and Aguado [NA02]
and Yang et al. [YKR08].

Fourier descriptors (FDs) were employed by Zahn and Roskies
[ZR72] for closed planar contours of 2D shapes. The contours are
arc-length parametrized and mapped to a periodic function of period
2π. These functions are then expanded as a Fourier series, whose
coefficients comprise the FDs, which consist of pairs of harmonic
amplitude and phase angle. By FCC-coding discrete 2D contours,
their shape can be expressed as the loci of several connected ellipses,
leading to elliptic Fourier descriptors (EFDs) [KG82]. The authors
describe several EFD-based features for discriminating shapes and
how to normalize EFDs to be independent of starting point location,
translation, and size. Lin and Hwang [LH87] proposed orientation-
and translation-independent invariants for EFD-based shape charac-
terization. They also mention that a shape is usually characterized
by lower order harmonics and that three to six harmonics might
be sufficient. This is one of the motivations for modeling vessel
cross-sections with EFDs, since their LoD can be controlled and
adapted to specific applications. Aguado et al. [AMZ99] describe
a generalized cylinder as a sweep surface along a trajectory with
different top and bottom cross-sections expressed by EFDs. Inter-
mediate cross-sections are interpolated in the Fourier domain. To
perform a meaningful interpolation, a suitable point correspondence
between the two modeled cross-sections is necessary. This can be
done either with arc-length parametrization or based on landmarks.
The (axial) reslicing of shapes by interpolation of EFD coefficients
was discussed by Jeong and Radke [JR07] with respect to different
organs, such as prostate, bladder or kidney. By resampling the result-
ing contours at equal angles from the center of the shape, successive
slices have the same number of contour points. Finding suitable
point correspondences in ADs might be difficult, because the lumina
can be concave and revolve around each other. Sato et al. [SIK∗17]
investigated EFDs as an effective predictor of aortic enlargement
in TBAD. They calculated 20 harmonics of the true lumen and per-
formed a principal component analysis to evaluate the variation of
the coefficients.
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2.3. Vessel Modeling

Vascular surface modeling can be categorized into model-based
vs. model-free and implicit vs. explicit. Model-based approaches
assume a cross-section model, e.g., circular or elliptical, whereas
model-free methods extract a surface, e.g., from point clouds. For a
comprehensive overview, the reader is referred to [HLW∗20].

Explicit methods usually create the vessel surface either di-
rectly from a centerline by connecting the vertices of consec-
utive cross-sections [HPSP01] (explicit model-based) or from
point clouds [WWL∗10] (explicit model-free). Common diffi-
culties of explicit vascular modeling are highly curved regions
and branches [HLT12]. Implicit algorithms are based on im-
plicit functions or distance-fields and produce smooth surfaces.
Implicit model-free approaches usually fit a surface to a point-
cloud [SOB∗07, QLCH20] and then reconstruct the surface using
iso-surface extraction. Since our work belongs to the implicit model-
based approaches, we subsequently discuss the relevant works in
detail, but focus on their cross-sectional representations.

Li and Tian [LT09] introduced piecewise algebraic (PA) splines
for modeling freeform 2D implicit curves. Their explicit form al-
lows fast evaluation with a controlled degree of smoothness with
respect to the initial polygon. A suitable smoothness may depend on
the target application and the desired degree of interpolation. Later,
Li and Tian [LT11] proposed partial shape-preserving (PSP) splines
for a given control polygon as the composition of primitive basis
functions, such as the piecewise polynomial smooth unit step func-
tion [LGW06, Li07]. Like PA splines, PSP splines provide control
over blending strength, but limit the blending to a certain range. This
is particularly useful when blending vascular cross-sections, as done
by Hong et al. [HLT12]. They implicitly model generalized cylin-
ders [AMZ99] with PA splines and blend them longitudinally with
PSP splines. Kretschmer et al. [KGPS13] used spline-based cross-
sections for implicit vascular modeling of high-quality meshes even
at furcations. Undesired sharp blending and bulging are avoided
by employing a gradient-based blending operation [GBC∗13].
Smooth blending of 2D cross-sections can be achieved either by
weighted blending [HLW∗18] or by interpolating between a re-
duced number of cross-sections [KGPS13]. Undesirable deviations,
e.g. caused by noise or segmentation artifacts, between successive
cross-sections can be reduced by constraining their shape, e.g., to
an ellipse [KGPS13, HLW∗18]. Hong et al. [HLW∗18] used ellipse-
constrained radial basis functions [LWP∗04] to model vascular cross-
sections and PSP splines for blending. Eigen et al. [EWD∗18] seg-
mented the inner and outer vessel wall of ADs with active contour
models and used compactly supported radial basis functions for
surface reconstruction. In comparison, we consider the aorta with its
branches and propose a model for both lumina and the outer vessel
wall. Hong et al. [HLW∗20] subdivided the centerline of a vessel
branch into segments and modeled them as intersection of orthogo-
nal implicit functions. Cross-sections are modeled by a polynomial
curve fit to local contour points. Abdellah et al. [AGL∗20] rendered
large vascular networks based on metaballs.

In summary, implicit model-based approaches mainly describe
cross-sections with splines or radial basis functions, optionally con-
strained by ellipses. We subsequently describe the implicit genera-
tion of smooth surfaces with cross-sections modeled by EFDs.

3. Methods

Motivated by the ultimate goal to create surface representations
of ADs directly from 3D segmentation masks that are suitable for
computational fluid dynamics (CFD) simulations [BVS∗20], we
propose the following workflow (see Fig. 1): (a) create a vessel tree
that represents the AD and its multiple lumina well, (b) extract and
reconstruct the inner, luminal contours of each flow channel as well
as the common outer vessel wall, and (c) combine the individual
cross-sections into branches and smoothly blend these together to
form the final lumen and wall surfaces. In the subsequent sections,
we describe each step of our workflow in detail.

3.1. Vessel Tree Extraction

As input, we start with the 3D segmentation mask of the aorta and
some of its branches, mainly including the arteries of the arch and
the abdominal aorta [MSS∗16]. This mask consists of background,
true lumen, and optionally, if existing, false lumen.
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branches with multiple lumina
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Assemble vessel tree
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Extract contours

Convert to chain-code
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Figure 1: Workflow of our proposed approach. The steps connected
with a single line (1-8) are only computed once per data set, whereas
the steps connected with multiple lines (9-16) are computed when-
ever the number of harmonics, the number of reconstructed contour
points, or the thickness of the vessel wall is changed. All rendering
steps use OpenGL compute shaders, indicated by the GPU icon, while
the other parallel steps are executed on the CPU using OpenMP.
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incorrectincorrect correctcorrect

left renal arteryleft renal artery

sup. mesenteric arterysup. mesenteric artery

Figure 2: Comparison between an incorrect (left) and correct (right)
vessel tree for ADs. As pointed out, the left renal artery only connects
to the true lumen (red) and therefore must branch from the true
lumen centerline (red) of its parent and not from the combined true
and false lumen centerline (black). Same for the superior mesenteric
artery with the false lumen (blue).

Simply extracting the skeleton of the combined true and false
lumen masks does not lead to a suitable vessel tree, because branches
connected to only one of the lumina would be erroneously connected
to the center of the entire aorta and might contain parts of both
lumina, as shown in the upper bifurcation of Fig. 2 and demonstrated
in its left image. Alternatively, if we would consider both flow
channels independently, we would not be able to extract matching
contours of true and false lumen for the same cross-section. This is
important for the measurement and comparison of both lumina.

To obtain a suitable vessel tree for ADs, we first compute the
skeleton of the entire combined true and false lumen 3D segmen-
tation mask, convert it to a graph representation, and only keep
branches containing a dissection; all other branches are removed.
We then compute the skeleton of the true lumen segmentation and
keep branches consisting of true lumen only. This step is afterwards
repeated for the false lumen. As illustrated in the lower bifurcation
and the right image of Fig. 2, the centerlines of branches with a sin-
gle lumen are not connected to the centerlines of branches with both
lumina—the centerline of such a branch is defined as the centerline
of the combined true and false lumen 3D segmentation masks. This
ensures that individual flow channels are connected to their correct
parent lumen.

Then, we smooth (binomial filter) the 3D points of each branch
and represent them as an interpolating parametric curve C(u) =
(x(u),y(u),z(u))T , with C(u) : R → R3. To get an implicit sur-
face of the aortic vasculature, we must create an affine mapping
M : R3 → R3, which transforms a point P from the embedding
(world) space into the parameter—multiplanar reformation (MPR)
or tangent [KGPS13]—space of the curve, P̂ = M(P). We define
this mapping as rotation minimizing frame (RMF), the local or-
thonormal frame, which consists of an ordered triplet of vectors
U(u) = (r(u),s(u), t(u)), with r(u)× s(u) = t(u) [WJZL08]. Any
given point P̂ = (Pr,Ps,Pt) ∈ R3 in the MPR space, which is de-
fined by centerline point Ci and orthonormal frame Ui = (ri,si, ti),
is mapped to world space by:

M : R3→ R3, (1)

M(P) = UT
i (P−Ci) , (2)

with its inverse mapping of

M−1 : R3→ R3, (3)

M−1(P̂) = Ui P̂+Ci , (4)

where the orthogonal matrix Ui has ri,si, ti as columns. Without a
given orthonormal frame Ui, the mapping M(P) from world to MPR
space is not unique and could lead to multiple points [KGPS13].

We then sample the centerline C(u) at equidistant intervals d and
obtain a discrete polyline with points (C0, . . . ,Cm). The 3D seg-
mentation mask is then resampled in planes perpendicular to the
centerline at these points, using their respective orthonormal frames.
The sampling planes are defined by the orthogonal generating vec-
tors ri and si. This results in a MPR volume for each branch. Since
the true lumen usually rotates around the false lumen and changes
its shape at the same time, we have to take samples close enough
to capture these details. However, dense sampling could result in
irregularities and non-smooth surfaces [KGPS13].

MPR resampling could lead to over-segmentation at bifurcations.
Hong et al. [HLT12] reduce the effects of this problem by rejecting
local contours when they exceed the size of the resampling plane.
This approach cannot be used for dissections, because already small
over-segmentations could include parts of another lumen and cause
surface artifacts when reducing the number of EFD harmonics. A
possible solution could be a direct segmentation of branches in
MPR space, e.g. using the algorithm of Hahn et al. [HMH∗20] and
a correction similar to ellipse fitting [MZS∗18]. As this is not the
main focus of this work but rather an independent subproblem, we
consider this future work and corrected such cases manually.

3.2. Contour Extraction

Once we created the MPR volume for each aortic branch, we ex-
tract the contours of each lumen, convert them to a chain code and
calculate their EFDs. Compared to blood vessels with a single flow
channel, we must take into account that multiple channels may start
anywhere along the centerline of a branch, may reconnect multiple
times, and may merge before the end. The blood enters proximally
through the primary intimal tear into the false lumen and can re-
enter downstream (distally) through the so-called re-entry tear into
the true lumen. All other intermediate communications are called
fenestrations [DMNNF16, AAB∗19].

For each vessel branch, we extract the contours of all lumina slice-
by-slice (in axial slices along the z-axis) in MPR space. Since we
know the true and false lumen masks (see Fig. 3a), we extract their
contours separately with the approach of Seo et al. [SCS∗16]. As a
result we get a list of pixels with their corresponding 2D positions
and classes (straight-line, inner corner, outer corner, and inner-outer
corner, see Fig. 3b). We then convert this list of absolute pixel
positions to a 4-connected FCC (see Fig. 3c) by classifying the
movements between successive points accordingly [KG82]. An 8-
connected FCC (see Fig. 3d) can be obtained by ignoring pixels
classified as inner corners. If not explicitly mentioned, we always
use an 8-connected FCC.

Let T be the perimeter of the contour or Euclidean length of the
1D periodic signal of its corresponding FCC. If we move a point
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straight linestraight line
inner cornerinner corner

inner-outer cornerinner-outer corner
outer cornerouter corner

(a) (b)

FCC4FCC4 FCC8FCC8

(c) (d)

Figure 3: Contour extraction. (a) shows the input image with the
true lumen mask in red. (b) displays the result of the contour tracer.
A reconstructed EFD contour with 10 harmonics is displayed from
a 4-connected FCC in red (c) and an 8-connected FCC in green (d).

p along the contour, starting from s, the elapsed time t denotes the
(Euclidean) length of the contour from s to p. The Fourier series
expansions in x- and y-direction is then given [KG82, LH87] as:[

x(t)
y(t)

]
=

[
A0
C0

]
+

N

∑
n=1

[
an bn
cn dn

][
cos 2πnt

T
sin 2πnt

T

]
, (5)

where A0 and C0 are the DC components, N the number of harmon-
ics, and an,bn,cn,dn the Fourier coefficients. The Fourier coeffi-
cients are calculated as follows:[

an bn
cn dn

]
=

2
ω2∆tk

K

∑
k=1

[
∆xk
∆yk

]
[1 −1]

[
cosωtk sinωtk
cosωtk−1 sinωtk−1

]
(6)

where ω = 2πn
T and K is the number of chain code elements and

∆x, ∆y the x- and y-shift from the previous chain code element to
the current one. Each movement of the FCC is associated with a
length, where even directions have length one and odd directions
have length

√
2, on a rectangular 2D lattice [KG82]. The length of

a contour is defined as the sum of its movement lengths. The DC
components A0 and C0 are computed as described below:

A0 =
1
T

K

∑
k=1

[
∆xk
2∆tk

(t2
k − t2

k−1)+ξk(tk− tk−1)

]
, (7)

C0 =
1
T

K

∑
k=1

[
∆yk
2∆tk

(t2
k − t2

k−1)+δk(tk− tk−1)

]
, (8)

ξ1 = 0, and ξk =
k−1

∑
j=1

(
∆x j−

∆xk
∆tk

∆t j

)
for k > 1 , (9)

δ1 = 0, and δk =
k−1

∑
j=1

(
∆y j−

∆yk
∆tk

∆t j

)
for k > 1 . (10)

The final EFD of a contour consist of four Fourier coefficients per
harmonic and two DC components corresponding to the center of
the contour [KG82, NA02]. Several contours reconstructed with a
different number of harmonics are shown in Fig. 4.

To avoid non-smooth or highly curved contours, which could be
caused by noisy segmentations, the cross-sectional shape can be
blended [KGPS13] or restricted [LWP∗04, HLW∗18] by another

(a) 1 harmonic (b) 2 harmonics (c) 3 harmonics

(d) 5 harmonics (e) 10 harmonics (f) 20 harmonics

Figure 4: EFDs of true and false lumen contours reconstructed
with a different number of harmonics. Increasing the number of
harmonics, successively adds higher frequency shape information.
(Slight contour overlaps are caused by the line thickness selected
for illustration purposes)

(a) (b)

Figure 5: Vessel walls with varying thickness. (a) shows a wall
thickness of 1 mm for both lumina. (b) uses 4 mm for the true lumen
and 1 mm for the false lumen to clearly depict their difference.

shape, e.g., an ellipse. These methods cannot be used for dissections
because the shape of the lumina can change considerably longitudi-
nally, which could lead to unwanted communication. With EFDs, we
can control the smoothness of the cross-sectional shape by changing
the number of harmonics for reconstruction. When decreasing the
number of harmonics, we successively remove higher frequency
shape information and keep only lower-level shape features.

Once we reconstructed the cross-sectional contours of the existing
lumina, we compute the outer vessel wall (see Fig. 5). We dilate
each lumen with a circular structuring element, where the radius
is the desired wall thickness. The vessel wall contour is then the
convex hull [And79] of both dilated lumina. Modeling the wall with
a different thickness for the true and false lumen reflects the under-
lying anatomy of a dissection (see Fig. 5b). Since the false lumen
delaminates the wall and reaches into the media aortic wall layer,
the wall of the false lumen is thinner, making it more susceptible
to high pressure. This is also important for CFD simulations and
fluid-structure growth simulations of false lumen growth [Hum09].
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3.3. Rendering

To render the entire vessel tree, we calculate three local distance
volumesL(x,y,z) in MPR space for each branch, namely, one for the
true lumen, one for the false lumen (if existing), and one for the outer
vessel wall. Similar to Kretschmer et al. [KGPS13] we compute
the Euclidean signed distance field for every contour polygon (z-
slice, see Fig. 6a) of the true lumen, false lumen and the vessel wall,
with a positive sign inside and a negative sign outside the contour
(see Fig. 6b) [Qui30]. From this state on there is no conceptual
difference between a flow channel and a branch.

Next, all local distance volumes are combined into a global dis-
tance volume G(x,y,z) that describes the distance to the iso-surface.
We use separate distance volumes for the inner lumen surface (true
and false lumen) and the outer vessel wall, but the approach is the
same for both. By discretizing the global volume into a 3D lat-
tice, we loop through each voxel and transform its index position
P = (u,v,w) into world or physical coordinate space P = (x,y,z).
We model the implicit surface of a branch’s lumen as the weighted
sum of its cross-sectional contours (z-axis in MPR space). To calcu-
late the contribution of a flow channel to point P, we need to find
the k-th centerline point that is closest to this point:

k = argmin
k∈{0,...,m}

‖Ck−P‖. (11)

The implicit surface of a lumen is then described in MPR space as:

Φ =
k+l

∑
j=k−l

L(P̂r, P̂s, j)B(P̂t), (12)

where L(x,y,z) is the local MPR distance volume of the lumen, B(t)
is the PSP spline [LT11], P̂ = M(P) using orthonormal frame U j,
and l is the blending range, specified in number of centerline points.
The PSP spline is defined as:

B(t) = Bm
[a,b],δ(t) = Hm(

b− t
δ

)−Hm(
a− t

δ
), (13)

with a≤ b, and Hm(x) being the smooth unit step function [LGW06].
This ensures that cross-sections are smoothly blended within the
interval [a,b]. Unless otherwise specified, we set a=−d/2, b= d/2,
m= 3, and δ= d in our experiments, where d = 3 mm is the distance
at which we MPR-resampled a centerline. The blending range is
default to l = 5.

There are several reasons for limiting the blending of cross-
sections to a specific range:

1. We do not need to partition the centerline into subsegments nor
limit their MPR spaces with their bounding boxes [HLT12].

2. If we do not limit B(t) [HLT12], this would lead to an undesired
fusion of U-shaped blood vessels like the aortic arch. This is
caused by the ambiguous mapping between world and MPR
space, since a point could also be transformed to a small t-value
(z-coordinate) at another centerline point.

3. If we used B(k− j) [HLW∗18] in Equation 12 instead of B(t),
branches would tend to extrude beyond their start- and end-points
in our implementation. B(k− j) was always 1 for points in the
negative half-space of the start-point’s cross-section plane, since
their distance from the start-point is not considered [HLW∗18,
Eq. 6]. The same applies to points beyond the end-point, but in
the positive half-space.

(a) (b)

(c) (d)

Figure 6: Distance field computation. (a) shows the true and false
lumen contours using six harmonics. The slight overlap of the con-
tours is caused by the line thickness selected for illustration pur-
poses. (b) displays the local distance field of the true lumen with
inside being positive (orange) and outside being negative (blue).
The global distance field of both lumina is shown in (c) and their
corresponding geometry, including the wall, is presented in (d).

Once we computed a lumen’s implicit surface Φ at point P, we
blend it with the global distance volume G(u,v,w) using the smooth
maximum function [Li07]:

maxn,γ(G,Φ) =
1
2
(G+Φ+ |G −Φ|n,γ), (14)

where | · |n,γ is the smooth absolute function of degree n and blend-
ing range γ. Unless otherwise specified, n = 2 and γ = 0.5 in our
experiments. All existing lumina are blended into a single distance
volume and form one implicit surface. The same procedure is re-
peated for the vessel wall, leading to a separate wall surface. The
final surfaces are then extracted with marching cubes [SEL12] using
iso-value 0.5 (see Fig. 6c).

To render the lumina with different colors (see Fig. 6d), we clas-
sify each voxel of the final distance volume into true or false lumen.
This is accomplished by passing the current lumen mask to the
blending shader and writing it into the global classification volume
whenever the local value Φ is larger than the global value (before
blending with Equation 14) at the same position.

To demonstrate the possibilities of an implicit AD model, we
created a phantom communication that should model the primary
intimal tear of the dissection (see Fig. 7). It is spherical and in-
cluded into the global lumen distance volume just before iso-surface
extraction (recall Fig. 1, step 14).
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(a) (b)

Figure 7: A spherical phantom communication. (a) shows only the
true lumen with the communication attached to it. (b) displays how
this leads to the communication between the two flow channels.

4. Results

In this section we present several surfaces of ADs created with
different EFDs. First, we show a phantom data set that demonstrates
our approach on several true and false lumen arrangements as well
as other vascular pathologies, such as stenoses. We then present two
patients with different manifestations of ADs.

The phantom data set (see Fig. 8) resembles a CTA data set that
consists of tissue and a straight tube in the middle. The tube is filled
with contrast-enhanced blood and divided into two parts, separated
by the high-grade stenosis (number 9) in the middle. Along the tube,
we simulate several vascular pathologies and present for each a 3D
visualization of the reconstructed surfaces and the corresponding
2D slice with the reconstructed contours, using 10 harmonics.

The upper part of the phantom data set is intended to show that
our approach is able to deal with the high variability of lumen
arrangements in aortic dissections. The main and most common
lumen arrangements are, from top to center:

1. a small eccentric false lumen that gradually transforms into:
2. a large eccentric false lumen that rotates around the true lumen

and successively occupies more cross-sectional area, until only
3. a crescent-shaped true lumen remains, which is very narrow. If

the false lumen re-enters the true lumen, it may shrink again until
4. a small false lumen remains, which then disappears.

As the reconstructed surfaces show, our approach copes well with
all these simulated cases, even when true and false lumen rotate
around each other.

The purpose of the lower part of the phantom data set is to
demonstrate the generalizability of our approach to vascular patholo-
gies other than dissections. We present common forms of vascular
stenoses that are usually examined by specific visualization tech-
niques [MMV∗13]. The pathologies are modeled with calcified or
soft plaque and displayed in blue. The remaining vessel lumen is
depicted in red. Typically, a vascular narrowing can be caused by:

5. a small eccentric calcification,
6. a concentric calcification that goes around the entire vessel wall,
7. a large eccentric calcification,
8. a large eccentric soft plaque, and
9. a high-grade concentric stenosis.

Number 6, the concentric calcification, presents a limitation of our
approach, as the true lumen surface inside the false lumen is missing.
With this exception, all types and forms of plaque are also properly

9

1
small

eccentric
false lumen

2
large

eccentric
false lumen

3
crescent-
shaped

true lumen

4

small false
lumen

5
small

eccentric
calcification

6

concentric
calcification

7
large

eccentric
calcification

8
large

eccentric
soft plaque

Figure 8: A tubular phantom data set. The upper part (1-4) consists
of common true and false lumen shapes encountered in the dissected
aorta. Separated by the narrow stenosis (9), the lower part (5-8)
shows usual shapes of plaque, either calcified or soft. Whereas the
upper part demonstrates that our approach is suitable to represent
aortic dissections, the lower part generalizes to other vascular
pathologies, such as stenoses.

managed by our approach. Thus, we can conclude that our approach
is also suitable for visualizing cross-sections of vascular diseases
other than aortic dissections.

Fig. 9 shows Patient 1 with a TBAD starting in the descending
thoracic aorta and leading to the abdominal aorta. The proximal entry
tear is located in the descending thoracic aorta and the distal re-entry
tear in the abdominal aorta. The left overview image shows the entire
aorta created with 10 harmonics and a vessel wall thickness of 2 mm
for the true lumen and 1 mm for the false lumen. Fig. 9a shows the
aortic arch arteries from within the aorta. The true and false lumina
are presented separately in Fig. 9b. By also visualizing the vessel
wall, it becomes apparent how large the false lumen is compared to
the true lumen. It is also clearly visible how the two lumina rotate
around each other longitudinally. Fig. 9c demonstrates how branch
centerlines are connected only to their corresponding parent lumen
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(a)

true lumentrue lumen false lumenfalse lumen

(b)

(c)

1 harmonic 3 harmonics 20 harmonics10 harmonics

(d)

Figure 9: Patient 1 with a TBAD from the descending thoracic aorta
into the abdominal aorta. (a) shows how the aorta connects the arch
arteries from the inside. (b) displays only the true lumen (left) and
false lumen (right) with the vessel wall. (c) demonstrates how the
branches are properly connected to their parent lumen. (d) displays
the effect of different harmonics on the lumen and wall surfaces.
When using only one harmonic, true and false lumen merge.

(recall Fig. 2). The effect of the harmonics is presented in Fig. 9d.
One harmonic causes the lumina to merge, whereas 20 harmonics
add too much high frequency information. A good compromise
between smoothness and accuracy is within 3-10 harmonics.

The aorta of Patient 2 (see Fig. 10) comprises a long dissection
that begins in the arch and extends far into the iliac arteries. The
descending thoracic aorta is strongly dilated with a large false lumen
and the branches in the abdominal aorta are properly connected to
their parent lumen (see Fig. 10a). An abstraction of the dissected
aorta is presented in Fig. 10b. Only one harmonic is used and the
number of reconstructed contour points is reduced to four (left) and
three (right). The overall shape of the aorta is still clearly visible, but
the rotation of the false lumen around the true lumen becomes more
apparent. A small dissection in one of the arch arteries is shown
in Fig. 10c. The dissection in the iliac bifurcation is well preserved,
as demonstrated with a cut through both iliac arteries (see Fig. 10d).

(a) (b)

(c) (d)

Figure 10: Patient 2 with a TBAD from the end of the aortic arch
far down into the iliac arteries. (a) shows both lumina (left), the
true lumen (middle), and the false lumen (right). (b) presents an
abstraction of the dissected aorta, created with only one harmonic
and four (left) vs. three (right) contour points. (c) shows a zoom-in of
a small dissection in one of the arch arteries. (d) shows a cut through
the iliac arteries close to the iliac bifurcation to demonstrate how
the dissection continues across branches.

Table 1: Performance of our approach in minutes and milliseconds.
The steps with their numbers refer to the workflow (see Fig. 1).

Step Phantom Patient 1 Patient 2

Construct vessel tree (2-4) predefined ≈30 min ≈30 min
Create MPR volumes (5) 45.58 ms 53.18 ms 66.56 ms
Extract contours & EFDs (6-8) 21.85 ms 17.12 ms 26.98 ms
Reconstruct all contours (9-10) 12.99 ms 15.11 ms 22.33 ms
Compute local distance fields (11) 0.98 ms 4.58 ms 6.14 ms
Create lumen distance field (12) 0.52 ms 0.90 ms 0.90 ms
Create wall distance field (13) 0.02 ms 0.07 ms 0.07 ms
Extract lumen surface (15) 1181.50 ms 1884.98 ms 2547.39 ms
Extract wall surface (15) 655.51 ms 1424.87 ms 1647.34 ms

Number of lumen triangles 3 482 435 1 273 667 1 788 774
Number of wall triangles 2 640 860 1 296 410 1 616 108
MPR-resample distance 1 mm 3 mm 3 mm
Global distance volume size 512 × 512 × 768

We determined the required times (see Table 1) of steps 2 to 15 of
our workflow (recall Fig. 1). Measurements were taken on an Intel
Core i7-8750H CPU @ 2.20 GHz with 32 GB RAM and an NVIDIA
GeForce RTX 2070 with 8 GB VRAM and driver version 452.06.
Our approach was implemented in C++ with Qt 5.12.1 for the
user interface. We ported the marching cubes algorithm [SEL12]
to OpenGL compute shaders and adapted it to support anisotropic
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G. Mistelbauer et al. / Implicit Modeling of Patient-Specific Aortic Dissections with Elliptic Fourier Descriptors

volumes, such as the global distance volume. Constructing the vessel
trees (steps 2-4) for Patients 1 and 2 took the most time overall. This
is due to finding appropriate threshold values for pruning spurious
branches during skeletonization and subsequent semi-automatic
assembly. Steps 5 to 8 are computed (CPU, OpenMP) only once
for a data set and together require less than 100 ms. Steps 9 to 15
are computed whenever the number of harmonics is changed. To
assess their performance, we averaged them over harmonics one to
ten. Steps 9 and 10 (CPU, OpenMP) are below 30 ms, while steps 11
to 13 (GPU, OpenGL) are below 10 ms. Extracting the lumen and
the outer vessel wall surfaces (step 15, GPU, OpenGL) required
most time during rendering.

5. Evaluation

To evaluate our approach, we conducted a user study with eight
participants in the form of a questionnaire (see Fig. 11). Participants
included one clinical imaging technologist (P1) and five radiologists
(P2-P6), two with less than 10 years of experience and the others
with more than 15 years. Participants P7 and P8 had technical ex-
pertise (biomedical imaging and engineering), both with more than
10 years of experience. Before completing the questionnaire, the
approach was explained and a demonstration video was shown.

All participants rated our approach somewhat better or much
better than the current clinically used visualization tools such as
volume rendering (Q1, 5-point Likert scale: 4.63±0.52). The abil-
ity to display the true lumen, false lumen and outer vessel wall
separately was universally rated as useful (Q2, 7-point Likert scale:
6.13±0.64) because it facilitates the perception of the intertwined
and overlapping flow channels commonly seen in aortic dissection.

All participants found our approach suitable (Q3, 7-point Likert
scale) for the intended applications: quantifying aortic diameters
or dimensions (6.25±1.04), CFD computations (6.25±1.04), 3D
printing of models (5.88± 1.64), statistical analysis and model-
ing (6.38± 0.52), surgery planning (6.13± 0.35), and visualizing
changes over time (6.25±0.71).

Our approach was then evaluated for the same intended appli-
cations as in Q3, but with regard to importance in clinical applica-
tions (Q4, 7-point Likert scale). The quantification of aortic diame-
ters or dimensions, surgery planning, and visualization of changes
over time were rated very important (6.25± 1.04, 6.13± 1.46,
(6.5± 0.76), respectively). CFD computations, 3D printing, and
statistical modeling were considered as neutral to moderately im-
portant (4.63±2.39, 4.63±2.0, 4.88±2.17, respectively).

The next question examined the importance of our method for
research and future development (Q5, 7-point Likert scale). In all
but four fields, the ratings were more positive than Q4, clinical appli-
cations, with scores of moderately important or higher: quantifying
aortic diameters or dimensions (6.0± 0.76), CFD computations
(6.38±0.52), 3D printing of models (5.63±1.6), statistical analy-
sis and modeling (6.38±0.52), surgery planning (5.13±2.1), and
visualizing changes over time (6.13±1.73).

Regarding the limitation of displaying circumferential cross-
sections (Q6, 7-point Likert scale), six participants rated at least
slightly acceptable (5.13±1.55), one participant was neutral, and
another rated unacceptable.

P1 P2 P3 P4 P5 P6 P7 P8
much worse (1) somewhat worse (2) about the same (3) somewhat better (4) much better (5)

Q1: How do you rate the visualization for aortic dissections compared
to clinical, traditional or current volume rendering?

not at all
useful (1)

low
usefulness (2)

slightly
useful (3) neutral (4) moderately

useful (5)
very

useful (6)
extremely
useful (7)

Q2: Specifically, how do you rate the ability to display true lumen,
false lumen, and outer wall separately?

totally
unsuitable (1) unsuitable (2) slightly

unsuitable (3) neutral (4) slightly
suitable (5) suitable (6) perfectly

suitable (7)
Q3: Please rate this technique in terms of suitability for. . .
quantifying aortic diameters or dimensions:
CFD computations:
3D printing of models:
statistical analysis and modeling:
surgery planning:
visualizing changes over time:

not at all
important (1)

low
importance (2)

slightly
important (3) neutral (4) moderately

important (5)
very

important (6)
extremely

important (7)
Q4: Please rate this technique in terms of importance for clinical appli-
cation for. . .
quantifying aortic diameters or dimensions:
CFD computations:
3D printing of models:
statistical analysis and modeling:
surgery planning:
visualizing changes over time:

not at all
important (1)

low
importance (2)

slightly
important (3) neutral (4) moderately

important (5)
very

important (6)
extremely

important (7)
Q5: Please rate this technique in terms of importance for research
and future development for. . .
quantifying aortic diameters or dimensions:
CFD computations:
3D printing of models:
statistical analysis and modeling:
surgery planning:
visualizing changes over time:

totally un-
acceptable (1)

un-
acceptable (2)

slightly un-
acceptable (3) neutral (4) slightly

acceptable (5) acceptable (6) perfectly
acceptable (7)

Q6: Please rate the limitation that circumferential dissections cannot
be currently modeled in terms of acceptability:

clinical technical

4

6

7
7
7
6
6
7

7
5
6
5
7
7

7
7
6
7
6
7

7

5

5

6
7
2
7
7
5

4
5

2
6
5
5

5
6
2
6
2
2

2

4

6

7
7
7
7
6
7

6
5
5
6
6
6

6
7
5
6
5
7

5

4

6

4
4
6
6
6
6

7
1
2
2
7
7

5
6
7
7
5
6

6

5

7

7
6
6
6
6
7

7
7
6
6
7
7

6
6
6
6
7
7

6

5

6

6
6
6
6
6
6

6
1
3
1
3
6

6
6
6
6
2
6

5

5

6

6
6
6
6
6
6

6
6
6
6
7
7

6
6
6
6
7
7

4

5

7

7
7
7
7
6
6

7
7
7
7
7
7

7
7
7
7
7
7

6

Figure 11: Evaluation of our approach.

We also investigated the preferred number number of harmonics.
To this end, we presented the participants 2D contours, analogously
to Fig. 4, for harmonics 1-10, 12, 16, and 20. Participants chose 6,
7, 8, 9 (3×), 12, 20, with an average of 10.

Regarding other applications of our visualization, participants
reported: patient communication, patient education, planning of
complex surgical cases, and navigation during surgery. Other com-
ments included patient risk classification, medical devices, aortic at-
las, and left ventricle segmentation from cardiac magnetic resonance
imaging as well as functional analysis. One participant explicitly
mentioned, this work is clearly a stepping stone to other analyses.

6. Discussion and Limitations

There exist various alternative models for representing a contour by
either a parametric or an implicit function. Cubic Hermite splines
like Catmull-Rom splines as used by Kretschmer et al. [KGPS13]
can be constructed efficiently without solving a linear system, and
also the evaluation at a parameter is fairly inexpensive. The ap-
proximation of a signed distance field with implicit functions does
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not need or depend on a parametrization. A popular choice for
multivariate interpolation are radial basis functions as used, e.g.,
in [LWP∗04, HLW∗18, EWD∗18]. Interpolation with implicit func-
tions, requires samples not only on the contour but also inside and
outside. The latter off-contour samples are ideally taken from offset
curves, which are unfortunately unknown. In practice they are gen-
erated from small offsets in normal direction. The fitting depends on
the choice of samples and can give unacceptable results like topology
changes for isocurves. Such effects cannot be effectively controlled.
This lack of robustness makes them a questionable choice for med-
ical applications. An alternative are piecewise implicit functions
like PA splines [LT09, HLT12], which can be constructed directly
from closed polylines. However, they may trade smoothness for
interpolation, and their evaluation may be too expensive.

An alternative are Poisson surface reconstruction (PSR) methods,
that generate an implicit surface from an unstructured point cloud.
These methods are efficient and robust, possibly include regulariza-
tion to enforce smooth/fair surfaces, which makes them often the
method of choice for generic implicit surface reconstruction prob-
lems. We do not use PSR, because we need to solve a very specific
problem: We already have a model assumption on the geometry of
the vessel surface from the centerlines and an appropriate “struc-
tured” sampling. A PSR could not use this information. Moreover,
the vessel model defines the topology of the reconstruction. The
standard PSR methods cannot provide any guarantees on topology.
There is recent work on topology priors [BGGSSG20], but it remains
unclear whether our setup could benefit from this more complex
approach. Finally, our solution fits the purpose, is considerably sim-
pler and more efficient: PSR is a global method (we blend slices)
and requires either the solution of a large sparse linear system or
diagonalizing the linear operator by changing to a spectral basis.

The representation of contours in the Fourier domain as used in
this paper provides a number of advantages: Firstly, the construc-
tion is efficient for both, computing the Fourier coefficients and
reconstructing polylines from harmonics. Secondly, it inherently
provides an analysis of the shape as different levels of geometric de-
tail are encoded in different frequency bands: Reconstruction from
only the first harmonics provide a very smooth but coarse approx-
imation. The reconstruction becomes more accurate when adding
more harmonics, as finer geometric detail is encoded in higher fre-
quencies. Note that with better approximation and fine details the
reconstructed contours appear less smooth (see Fig. 4). A potential
drawback of harmonic analysis is the lack of interpolation unless all
harmonics are used for reconstruction. We tend to see this rather as
an advantage than as disadvantage due to smoother reconstruction
and the fact that the approximation appears robust and generally
sufficient for our purpose.

To avoid misalignment of successive cross-sections, the sampling
should not be too sparse, since the lumina tend to twist around each
other and change their cross-sectional shape. For this reason, we
resampled the vessel centerlines at regular intervals with d = 3 mm.
An alternative would be spline-based interpolation, defined by the
cross-sections’ centers of gravity [KGPS13].

The surface representation with EFDs and subsequent implicit
surface rendering also allows the user to reduce the discretization
artifacts of contour lines. This is done by choosing an appropri-

ate number of harmonics for the given application. One relevant
example is the geometric model generation as an input for CFD
simulations, where the user will rely on a smooth yet accurate sur-
face representation. If fluid-structure interaction simulations are per-
formed, the possibility to extract a wall model is especially relevant.
The possibility to incorporate varying wall thickness for true and
false lumen wall respectively can be used to increase the accuracy
of the resulting model, as supported by Q2.

Another interesting application of the rendered surface model
could be to investigate the effects of small scale spatial inaccura-
cies as they are increasingly present with the inclusion of higher
harmonics. These effects could be studied with regard to clinical
measurements as well as subsequent CFD simulations based on the
respective surface representation.

Our approach has two limitations. The first limitation deals with
merging of true and false lumen when the number of harmonics
is too small, i.e., less than three in our experiments (see Fig. 4
and Fig. 9d). A potential solution could use the local distance fields
to correct the overlapping regions. The second limitation concerns
the rare event of circumferential dissections (see Fig. 8 number 6).
The reason for this is modeling the lumina with a single contour.
Therefore, the distance field of the missing true lumen is overwritten
inside the false lumen during smooth maximum blending. A possible
solution would model lumina with two contours, an inner and an
outer one, and track both [SCS∗16]. However, this was considered
acceptable in its current state (Q6).

7. Conclusion and Future Work

We presented an approach that creates high-quality surface repre-
sentations for ADs. By using EFDs as cross-section representation,
we can control the smoothness of the generated surface interactively
and adapt it to application specific requirements. We demonstrated
our approach on two different patients with ADs, and showed that
the dissection smoothly continuous across vessel branches. By ren-
dering the outer vessel wall, the degree of false lumen dilatation
becomes quickly apparent. To this end, we showed an abstracted
representation of an AD, by reducing the number of reconstructed
contour points and the harmonics.

As we mentioned in the introduction, one application of the pre-
sented EFD-based surface representation is to obtain reliable mea-
surements of ADs that are of clinical interest, such as maximum
aortic diameter, true and false lumen volume or cross-sectional area,
connectivity of branches to true and false lumen and others. With our
approach, all features can be automatically extracted along the whole
aorta, as long as a segmentation mask exists. While creating such
segmentation masks manually is time-consuming, we are currently
exploring data-driven approaches to obtain them automatically or
semi-automatically with the help of machine learning algorithms, as
surveyed in the work of Pepe et al. [PLRP∗20].
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