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Abstract/Kurzfassung

Multiple-scattering theory (MST) is a very efficient technique for calculating the electronic prop-
erties of an assembly of atoms. It provides explicitly the Green function, which can be used in
many applications such as magnetism, transport and spectroscopy. This work gives an overview
on recent developments of multiple-scattering theory. One of the important innovations is the
multiple scattering implementation of the self-interaction correction approach, which enables re-
alistic electronic structure calculations of systems with localized electrons. Combined with the
coherent potential approximation (CPA), this method can be applied for studying the electronic
structure of alloys and as well as pseudo-alloys representing charge and spin disorder. This for-
malism is extended to finite temperatures which allows to investigate phase transitions and ther-
mal fluctuations in correlated materials. Another novel development is the implementation of
the self-consistent non-local CPA approach, which takes into account charge correlations around
the CPA average and chemical short range order. This formalism is generalized to the relativistic
treatment of magnetically ordered systems. Furthermore, several improvements are implemented
to optimize the computational performance and to increase the accuracy of the KKR Green func-
tion method. The versatility of the approach is illustrated in numerous applications.

Eine effiziente Methode, die elektronischen Eigenschaften eines Ensembles von Atomen zu be-
rechnen, ist die Vielfachstreutheorie. Sie liefert explizit die Greensche Funktion, die in einer Viel-
zahl von Anwendungen genutzt werden kann, wie Magnetismus, elektronischer Transport oder
Spektroskopie. Diese Arbeit gibt einen Überblick über die jüngsten Entwicklungen im Rahmen
der Vielfachstreutheorie. Eine der bedeutensten Neuerungen ist die Implementation von Selbst-
wechselwirkungskorrekturen im Rahmen des Vielfachstreuformalismus. Diese erlauben erlauben
eine realistische Beschreibung der elektronischen Struktur für stark lokalisierte Elektronen. Die-
se Methode kann in Kombination mit der coherent potential approximation (CPA) ebenso zur
Beschreibung von Legierungen und Pseudolegierungen verwendet werden. Dieser Formalismus
beinhaltet auch eine Beschreibung für endliche Temperaturen, die die Untersuchung von Pha-
senübergängen oder thermischen Fluktuationen in korrelierten Systemen gestattet. Eine weitere
Neuentwicklung ist die Implementation eines selbskonsistenten Ansatzes für die nicht-lokale CPA,
der Ladungswechselwirkungen um das CPA Mittel und chemische kurzreichweitige Ordnung be-
rücksichtigt. Dieser Formalismus ist auf eine relativistische Beschreibung magnetisch geordneter
Systeme erweitert worden. Weiterhin wurden zahlreiche Verbesserungen ausgearbeitet, die die
numerische Effizienz optimieren und die Genauigkeit der KKR Greens Funktionsmethode erhö-
hen. Die Vielseitigkeit des Ansatzes wird anhand verschiedener Anwendungen dargestellt.





1. Introduction

Multiple scattering theory is one of the most popular approaches in modern computational solid
state physics. It was initiated by Lord Rayleigh in his pioneering work, focused on solving the
Laplace equation for the dielectric constant of an inhomogeneous system [1]. Later, the theory
of Rayleigh was extended by Kasterin [2] and Ewald [3] who applied it for related problems in
optics. In condensed matter physics the multiple-scattering theory was first used for the calcu-
lation of stationary electronic states by Korringa [4]. Kohn and Rostoker extended the multiple
scattering theory on solving the eigenvalue problem for periodic lattices [5, 6]. Since these pub-
lications the theory has come to be known as the Korringa-Kohn-Rostoker (KKR) method for the
calculation of electronic structure. After these first publications the KKR method has become
very popular among the physicists. The main advantage of the KKR method was a small set of
equations and rapid convergence contrary to competing techniques at that time such as the aug-
mented plane wave (APW) approach by Slater [7]. First calculations with the KKR method were
done by Ham and Segall [8] who used tabulated structure constants. Later the KKR approach was
widely used and further developed for electronic structure calculations, in the 1960’s using model
crystal potentials and in the seventies in a self-consistent manner within the density functional
theory (DFT) in the local spin density (LSD) approximation.

With the advance of the linearized band theory methods by O. K. Andersen [9] the KKR lost its
attractiveness because of a complex energy dependency of matrix elements and slow convergency
of the structure constants. Although these new methods rely on the multiple-scattering theory,
they use the Rayleigh-Ritz variational scheme and are faster in their implementation.

A new impetus in the KKR development was given after reformulation of the multiple scattering
theory in terms of the Green function [10–12]. The method became demanded for problems
requiring explicitly the Green function. One of such successful applications was the implemen-
tation of the coherent potential approximation (CPA) [13] within the multiple-scattering the-
ory [14–16]. This approach is a mean-field theory and designed for studies of substitutionally
disordered alloys. Later, it was suggested to use the Green function method also to study the
electronic structure of impurities and defects in various host materials [17, 18]. In this approach
the Green function of an impurity or an ensemble of atoms embedded in a particular system can
be determined in an elegant way by solving a Dyson equation which is associated with the host
material via a reference Green function. Thus, already in the seventies the multiple scattering
theory became a popular tool for the study of disorder and defects in solids.

Since the KKR method provides explicitely the Green function, this makes it attractive for the
calculations of spectroscopic quantities. In the seventies Pendry developed a multiple scatter-
ing approach for low energy electron diffraction (LEED), thus providing a powerful tool for the
study of solid surfaces [19]. Later, he and co-workers used a similar scheme for a study of the
photoemission [20, 21]. Based on a one-step model this method describes the excitation pro-
cess, the transport of the photoelectron to the surface as well as the escape into the vacuum
as a single quantum-mechanical coherent process including all multiple scattering events. This
theory was further developed and refined by a number of scientists [22–26]. The formalism of
Pendry was later generalized for self-consistent calculations of surfaces and interfaces [27, 28].
The KKR Green function method was as well successfully applied for theoretical description of
core-level photoemission[29], Compton scattering [30], X-ray absorption spectroscopies [31, 32],
magneto-optics [33, 34], Auger electron spectroscopies [35–37], correlated two-electrons spec-
troscopies [38, 39]. Approval of the KKR method in spectroscopy was appreciably favored by the
development of fully relativistic multiple-scattering theory [40–42].

The multiple-scattering theory was intensively used for development of first-principles approaches
for magnetism. Györffy and co-workers developed a mean-field theory of magnetic phase tran-
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sitions in metals [43]. Based on this theory the disordered local moment (DLM) approach was
developed for electronic structure and magnetic susceptibility of paramagnetic systems [44, 45].
At the same time a multiple-scattering formalism for the dynamical magnetic susceptibility was
formulated and applied to paramagnetic and ferromagnetic materials [46]. Later, a multiple-
scattering approach for the calculation of exchange parameters in classical Heisenberg model
was elaborated by using the force theorem and Lloyd’s formula [47]. The first ab-initio theory for
crystals with non-collinear spin configurations was formulated in terms of a KKR method [48].
Numerous fully-relativistic multiple-scattering implementations were intensively used for calcu-
lations of the magneto-crystalline anisotropy of ordered and disordered systems [49–51].

The next step in the evolution of the multiple scattering theory was initiated with the screening
transformation introduced by Andersen and Jepsen in the linearized muffin-tin orbital (LMTO)
method [52]. In multiple-scattering theory this transformation enables to formulate the KKR
problem in terms of a screened reference system with a rapidly decaying Green function [53]. In
contrast to the free-particle propagator the reference Green function has a finite spatial extent and
can be easily Fourier transformed according to the symmetry of the problem. Due to decoupling
of remote lattice sites, semi-infinite systems such as surfaces and interfaces can be treated in an
elegant way by using a special iterative technique [54, 55]. The screened KKR matrix becomes
tridiagonal or partially sparse. This makes it possible to calculate efficiently electronic structures
of large systems with a computational effort of O(N).

With the advance of all these recent developments and growing computational facilities in the
last fifteen years the KKR Green function method became very attractive for first-principle self-
consistent studies of a wide range of materials. It was successfully applied in condensed matter
physics to conventional systems like bulk, surfaces, interfaces and as well as to exotic materials
such as nanowires [56] and clusters with many thousands of atoms [57] . However, later expe-
rience with the KKR exposed that most existing self-consistent implementations of the KKR have
deffitionces in several aspects.

One of the most serious problems is the angular momentum convergence. The cut-off lmax of
the angular momentum is the primary convergence parameter of the Green function. As it was
pointed out by Butler [58], in principle the multiple-scattering theory is exact in the limit lmax →
∞. In practice the KKR calculations have a finite truncation of the angular momentum which is
limited by computational resources, which prevents accurate studies of many properties such as
the total energy, structural and magnetic phase diagrams, relaxations and surface reconstructions.
A slow convergence of the Green function also leads to inaccuracies in the determination of Fermi
level, which poses great difficulties in the estimation of the band gap in semiconductors and
half-metals. Therefore, a solution for this problem opens new application fields for the multiple-
scattering theory.

Another serious problem originates from the LSD approximation which fails to describe systems
with localized electrons. This problem is general for any first-principles approach within the LSD
approximation, which entails the unphysical interaction of an electron with itself. If some local-
ized electrons are present in the system, like 3d-electrons in the transition metal oxides, the local
density approximation can be essentially improved in this respect by the so-called self-interaction
correction (SIC) [59]. In this approach self-interactions of single particle charges, which are
present in the LSD approximation, can be removed for the localized electrons. Until now, this
approximation was implemented only in variational methods [60, 61]. An implementation of
the SIC in the KKR method would be appreciated since it opens new perspectives in numerical
first-principles simulations thanks to a straightforward determination of the Green function and
a possible generalization to alloys via the CPA. Moreover, the Green function formalism allows to
account for static spin fluctuations via the DLM approach and extend the SIC method in a natural
way to finite temperatures.

Motivated by the wide-ranging functionality of the multiple scattering theory, we developed a
first-principle Green function approach designed for electronic structure calculations of ordered
and disordered systems for arbitrary symmetries. We have tried to give account of all experi-
ence gained in this field during the past fifty years and extend the method for new applications.
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We succeeded to improve essentially numerics of the KKR method, which can provide now total
energy calculations with accuracy comparable to well established all-electron variational meth-
ods. To apply our method to systems with localized electrons we developed a multiple scattering
implementation of the SIC approach and extended it to finite temperatures.

In this thesis I present new aspects of the multiple-scattering theory, which were elaborated dur-
ing the few years, and demonstrate the efficiency of our method in numerous applications such
as magnetism, transport and spectroscopy. The thesis is subdivided in two general parts. The first
methodological part includes a brief overview of the KKR method, a discussion about convergence
properties of the Green function and the main features of the SIC approach in the multiple scat-
tering formalism. At the end of this part, I introduce the KKR method for layered systems, since
surfaces and interfaces were of main interest in my research activity. Some chapters of this part
are illustrated by examples, which are not yet published. The second part of the thesis consists
of important recent publications, which demonstrate our approach in solving various problems of
condensed matter physics.

Most results, presented in this thesis, were obtained with the multiple-scattering program HUT-
SEPOT that was developed in a close collaboration of research groups at the Max Planck Institute
of microstructure physics (A. Ernst), Daresbury Laboratory (M. Lüders, Z. Szotek, W. M. Tem-
merman), University of Halle (M. Däne, D. Ködderitsch, G. Fischer, W. Hergert) and University of
Bristol (D. A. Rowlands and B. L. Györffy). Some parts of the package were elaborated with es-
sential contributions from J. Henk, L. M. Sandratskii, P. Bruno, I. D. Hughes, J. B. Staunton, P. J.
Durham, P. Strange, Y. Wang and G. M. Stocks. This work would have not been possible without
helpful consultations with R. Zeller, P. H. Dederichs, H. Ebert, J. Berakdar, B. Yu. Yavorsky, I.
Maznichenko, I. Mertig, A. Svane, S. Ostanin, J. Kudrnovský, H. Akai, T. Schulthess, L. Szunyogh,
and P. Weinberger.



2. Brief overview of the multiple-scattering theory

The KKR method solves the wave equation using Green functions and, in principle, is quite gen-
eral. This method has a number of useful features which make it attractive for many applications
in the solid state physics. In particular, it separates the purely geometric aspects of the crystal
lattice from the dynamics associated with the atoms which constitute the material. Each value
of energy and crystal momentum is dealt with directly and independently of any others, with no
recourse to a variational principle and no need for orthogonalization. Due to the complex energy
integration, the KKR-Green function method is computationally very efficient and is able to solve
the geometry problem of an impurity in the bulk or on the clean surfaces without replacing it by
an ersatz geometry such as a finite cluster or a supercell. Moreover, the availability of the Green
function allows applications to disorder alloys, transport and spectroscopy problems.

2.1. Multiple-scattering theory for ordered systems

Generally, the application of multiple scattering theory for describing electrons in condensed
matter systems involves representing each scattering site (atom or ion) as a potential of a finite
range. It is convenient to divide the space into distinct sub-volumes so that scattering from a
particular scatterer terminates before scattering by another commences. In this case the crystal
potential can be written as

V (r) =
∑

n

Vn(r −Rn) ≡
∑

n

Vn(rn), (2.1)

where Vn(r) is an individual contribution of an atom on site Rn. Here rn = r −Rn denotes the
vector between the given vector r from the origin and the vector Rn of the atomic site n (see
Figure 2.1). If the potentials of individual scatterers do not overlap and are isotropic, one obtains
the so-called muffin-tin approximation (MTA). For many systems it is a good approximation to
reality and calculations based on it can be fruitful. In the case of a large anisotropy one can use
a cell potential expanded in spherical harmonics YL(r) to fill the space in atomic and interstitial
regions:

Vn(rn) =
∑
L

VnL(rn)YL(rn) . (2.2)

The Kohn-Sham equation can be presented in terms of the Green function:

[−∆r + V (r)− E]G(r, r′;E) = −δ(r − r′). (2.3)

Most important for electronic structure calculations, the Green function G(r, r′;E) of a perturbed
system H is connected to the Green function G0(r, r′;E) of an unperturbed system H0 by the
Dyson equation (in the operator representation):

G(E) = G0(E) + G0(E)V G(E) = (2.4)

= G0(E) + G(E)V G0(E) = (2.5)

= G0(E) + G0(E)T (E)G0(E), (2.6)
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Figure 2.1. Space separation in the multiple scattering expansion

with V = H − H0 the perturbation potential. In the equation (2.6), the scattering matrix T is
defined. Iterating equation (2.4) or equation (2.5), one obtains the following implicit equation
for T:

T (E) = V + V G0(E)T (E) (2.7)

According to the separation of single-site and crystal quantities in the KKR method, the Green
function of the crystal potential is constructed via a Dyson equation starting from the Green
function of an isolated potential. In terms of free-particle Green function G0(r, r′;E) in the
real-space representation the Dyson equation for the single-site Green function is given as

Gs(r, r′;E) = G0(r, r′;E) +
∫

dr′′
∫

dr′′′G0(r, r′′;E)t(r′′, r′′′;E)G0(r′′′, r′;E) , (2.8)

where the t-matrix, which is diagonal for a spherical potential, describes the scattering from a
single-site potential. The free-particle Green function can be expanded in the angular momentum
basis as follows

G0(r, r′;E) = −ip
∑
L

jl(pr<)h+
l (pr>)YL(r)Y ∗

L (r′) , (2.9)

where jl(z) and hl(z) are respectively spherical Bessel and Hankel functions and p =
√

E. Defin-
ing the matrix elements of the single-scattering t-matrix as

tnLL′(E) =
∫

drn

∫
dr′njl(prn)t(rn, r′n;E)jl′(pr′n)YL(rn)Y ∗

L (r′n) , (2.10)

one obtains the following expression for the single-scattering Green function:

Gs(rn, r′n;E) =
∑
LL′

Zn
L(rn;E)tnLL′(E)Zn×

L′ (r′n;E)−
∑
L

Zn
L(r<;E)Jn×

L (r>;E). (2.11)
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The building blocks of the Green function are the regular, ZL(r;E), and irregular, JL(r;E),
solutions of the radial Schrödinger equation at the given (complex) energy E,

Zn
L(rn;E) =

∑
L′

Zn
LL′(rn;E)YL′(rn) , (2.12)

Zn×
L (rn;E) =

∑
L′

Zn
LL′(rn;E)Y ∗

L′(rn) ,

Jn
L(rn;E) =

∑
L′

Jn
LL′(rn;E)YL′(rn) .

The radial parts of Zn
L(rn;E) and Jn

L(rn;E) functions are matched to spherical Bessel jl(z) and
Hankel hl(z) functions outside the potential range (r ≥ S) [62]:

Zn
LL′(rn;E) = jl(prn)tnLL′(E)−1 − iph+

l (prn)δLL′ ,

Jn
LL′(rn;E) = jl(prn)δLL′ . (2.13)

The t-matrix and corresponding phase shifts can be determined from the normalization conditions
of the wave functions [63].

For any assembly of atoms the scattering operator T (E) can be obtained from equations (2.1)
and (2.7):

T (E) =
∑

n

tn(E) +
∑
n 6=m

tn(E)G0(E)tm(E) + ... (2.14)

The equation (2.14) separates naturally into partial sums which are characterized by fixed site
indices n and m at the leftmost and rightmost single-site t-matrix, respectively. Thus, one can
define [12]:

T (E) =
∑
nm

τnm, (2.15)

with τnm(E) the scattering path operator which comprises all possible scattering events between
the two cells n and m. In real-space multiple scattering theory the Green function for any ar-
rangement of atoms can be expressed in terms of the scattering path operator τnm(E):

G(rn, r′m;E) =
∑
LL′

Zn
L(rn;E)τnm

LL′(E)Zm
L′(r′n; ε)

−
∑
L

Zn
L(r<;E)Jm

L (r>;E)δnm (2.16)

For general electronic systems, the τ -matrix is implicitly given in terms of the t-matrix and the
structure constants g(E) representing the free-electron Green function and can be found from the
matrix equation:

τ(E)nm =
{
[t(E)−1 − g(E)]−1

}
nm

. (2.17)

The formula (2.17) is the main equation of the KKR Green function method. It yields a complete
separation of the potential aspects of a material, expressed in the scattering matrices, from the
structural aspects, embodied in the structure constants g(E) of the underling lattice. The structure
constants g(E) can be obtained from the equation (2.9) in real space and generalized for any
symmetric case by a corresponding Fourier transformation according to symmetry properties of



2.1 Multiple-scattering theory for ordered systems 7

r

Rn

Sα

r’
Sβ

βnr’

mr α

Rm

x

y

z

Figure 2.2. Unit cell division of a periodic solid

the problem. In case of 3D periodic solids the lattice Fourier transformation of the structure
constants is defined as follows:

gαβ
LL′(k, E) =

1
N

∑
mn

gmα,nβ
LL′ (ε)eik·Rmn , (2.18)

where Rm and Rn are direct lattice vectors, α and β denote positions inside the unit cell (Fig-
ure 2.2). Then, the scattering path operator in momentum space can be calculated by solving the
following Dyson equation:

ταβ(k;E) =
{
[tα(E)−1 − gαβ(k;E)]−1

}
αβ

. (2.19)

A similar transformation can be performed in case of two- or one-dimensional periodicities.

Unfortunately, in many cases the direct evaluation of the Fourier transformed structure constants
is a highly non-trivial task, mainly due to long-range spatial dependence and slow convergence
in real-space. One of the elegant ways to solve this problem is the use of the so-called screening
transformation [52, 53]. The main idea is related to the Dyson equation (2.17) which can be
easily reformulated with respect to a new reference medium. The free-particle Green function can
be replaced by the Green function of the reference system, which can be chosen to have desirable
properties such as being more localized spatially then the conventional structure constants. The
scattering path operator of a real system can be obtained via the following Dyson equation:

τ = −∆m−1 + ∆m−1
(
1−∆mτr

)−1
, (2.20)

where τr is the scattering path operator of the reference medium and ∆m = t−1 − t−1
r is the

difference of the inverse single-scattering matrices defined by the impurity potential, t and that
of the reference medium, tr. One possible choice for the reference system is a repulsive con-
stant potential medium that is strong enough to raise the bottom of its conduction band above
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the energy region of interest [53]. The scattering path operator of this reference systems has a
short-range spatial extent and can be easily Fourier transformed. Due to rapid convergence of
screened structure constants the KKR matrix becomes sparse or tridiagonal which allows to speed
up and efficiently optimize electronic structure calculations of large systems. For semi-infinite
layered structures such as surfaces and interfaces the screened KKR matrix has an infinite block-
tridiagonal form and can be exactly inverted using special methods such as the principle layer
and decimation techniques [55, 64, 65]. This feature is very important for spectroscopy and
transport applications because electrons are not artificially confined as in a supercell or a finite
slab. In the same manner the screening transformation can be applied as well for nanowires and
nanotubes [56]. One possible application of screened KKR method may be to very large systems
consisting of hundreds or thousands of different atoms. In this case the matrices that must be in-
verted are relatively sparse and can be efficiently treated with special numerical techniques [66].

The concept of reference systems can be generalized for any kind of impurities or defects embed-
ded into a host material [17]. Once the Green function of the host is known, the Green function
of the system with impurity can be evaluated by the Dyson equation (2.20). Since crystals with
impurities may not have any translational symmetry, the Green function of the reference system
has to be transformed to the real-space representation. It can be done after solving the KKR
problem for the host material in the momentum space. The Green function of the perturbed
system (2.20) can be easily evaluated by matrix inversion in real space. In the limit of a single
impurity approximation it is quite straightforward to generalize this formalism for random sub-
stitutional alloys. In this approach a single impurity is embedded into a periodic self-consistent
medium that is averaged over all possible alloy components. This formalism is known as the
coherent potential approximation and will be considered in the next chapter.

2.2. Multiple-scattering theory for disordered systems

With regard to ordered, especially, three dimensional periodic systems, the equation (2.17) can
be easily solved for the energy E and for the k vector in the first Brillouin zone of the reciprocal
lattice. In this case the size of the KKR matrix can be restricted by the size of the unit cell and
angular momentum expansion that essentially accelerates the computational speed. The systems
with the broken translational symmetry such as clusters, impurities and alloys can be treated by
the real-space multiple scattering theory. But solving the KKR equation is limited by the size of the
matrix equation (2.17) which can be very large for realistic materials. However, in many random
alloys a periodic lattice can be kept, but lattice sites are randomly occupied by atoms of differ-
ent species. The effective Schrödinger equation for such systems can be solved for a particular
configuration which distributes the atoms of the different species over the lattice sites consistent
with their concentrations, then it can be statistically averaged over all possible configurations and
finally Fourier transformed. Solving this problem is still a difficult task that may be simplified in
some mean field approach. The most accurate mean field is the coherent potential approximation
(CPA)[13] which in combination with the multiple scattering method provides the first principle
KKR-CPA electronic structure computational scheme for random alloys[62, 67].

Virtual crystal approximation. A random substitutional alloy is the simplest type of disorder,
which is a material characterized by an underling regular lattice, but all its sites are randomly
occupied by either atomic species. The probability of finding a given type of an atom on any
lattice site is determined by the relative concentration of that species of atoms within the crystal.
This involves an assumption that the site occupancies are uncorrelated, i.e. any short-range cor-
relations or long-range correlations which may exist are neglected. In the case of weak scattering
the alloy potential may be assumed to be periodic with the same potential associated with every
site and averaged over different atomic types with concentrations ci and individual potentials Vi:

VC(r) =
∑

i

ciVi(r) . (2.21)
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Figure 2.3. Schematic representation of the CPA condition for a binary alloy. The sites labeled "C" are
occupied by a coherent potential, while sites labeled "A" and "B" are occupied by impurity potentials.

This assumption constitutes the virtual crystal approximation (VCA). The Schrödinger equation
for a periodic system with this potential can be solved in standard manner. The virtual crystal
approximation is converged at the band edges and it is exact for small perturbations.

Average t-matrix approximation. In systems with localized electronic states the individual
atomic potentials become large and the VCA can not correctly describe the electronic structure of
the alloy. For small concentrations one can neglect inter-site scattering and permit only the scat-
tering of individual scattering centers. In this so-called average t-matrix approximation (ATA) the
scattering center is characterized by a single-scattering t-matrix which is averaged over individual
single-site scattering ti-matrices placed on every site of the effective ordered lattice, i.e.

tATA(E) =
∑

i

citi(E). (2.22)

For very diluted alloys the ATA can provide relatively accurate results due to the small inter-
site correlations at low concentrations. With increasing concentration the inter-site scattering
becomes more and more important, and the accuracy of the ATA decreases even further. The
average t-matrix approximation is simply a non-self-consistent version of the coherent potential
approximation which is generally accepted as the best mean field theory available at the present
time for calculating the electronic properties of random substitutional alloys.

Conventional coherent potential approximation. The coherent potential approximation is also
built upon scattering theory. In this approximation impurities are embedded into a reference
medium which consists of a system with a coherent t-matrix, tC , on each scattering site. The CPA
condition for obtaining the coherent medium is that, on the average, the additional scattering
due to replacing a coherent t-matrix by impurity t-matrices, ti, should vanish (see Fig. 2.3). In
terms of the scattering matrix T (E) this condition can be written as

TC(E) =
∑

i

ciTi(E). (2.23)

Here TC(E) describes scattering from the ordered array of coherent potentials, while Ti(E) de-
scribe the scattering from the systems in which the coherent potential is placed on every site
except of central one on which, respectively, the individual atom is located. From the equa-
tion (2.15) the CPA condition for τ -matrices is given in the following way:

τnm
C (E) =

∑
i

ciτ
nm
i (E). (2.24)

In practice the above condition has to be satisfied only for n = m = 0, i.e.

τ00
C (E) =

∑
i

ciτ
00
i (E). (2.25)
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The scattering path operator of the coherent medium can be evaluated from the following KKR
equation (for three-dimensional periodical solids):

τ00
C (E) =

1
ΩBZ

∫
dk

1
(t−1

C (E)− g(k;E))
. (2.26)

Here ΩBZ is the volume of the Brillouin Zone(BZ) and g(k;E) are structure constants in the
momentum space representation. As the coherent τ -matrix is known, the impurity τ -matrices τ00

i

can be obtained from the Dyson equation

τ00
i =

τ00
C

1 + τ00
C (t−1

i − t−1
C )

. (2.27)

The CPA condition (2.25) is an additional self-consistency condition to the usual charge or poten-
tial self-consistency. The following coherent scattering matrix

tnew
C =

{
τ00
c (

∑
i ciτi)−1 − 1

(
∑

i ciτi)−1
+ t−1

C

}−1

(2.28)

provides a working equation to be iterated to solve equations (2.26) and (2.27).

The CPA equations can be easily generalized for any boundary conditions. In contrast to the
ATA and other single-site theories, the CPA is exact in both the weak-scattering and the narrow
band limits. It has been successfully applied for electronic structure studies of bulk materials,
surfaces, interfaces and clusters. However, the CPA remains a single-site approximation and
environmental effects on scattering properties are neglected, except on average. This limitation
does not allow to investigate fluctuations around the CPA average and to elucidate the influence of
atomic short-range order. Such multi-site effects can be systematically taken into account using a
non-local coherent potential approximation (NLCPA) introduced by Jarrell and Krishnamurthy [68]
in the context of a tight-binding model Hamiltonian as the static version of the dynamical cluster
approximation. This theory was recently derived within the KKR framework [69–71] [P1,P2].

Nonlocal coherent potential approximation. In the nonlocal CPA multiple scattering theory one
introduces an effective medium represented by the corresponding coherent single-site t̂-matrix,
the scattering path operator τ̂ and the effective structure constant corrections δ̂G to usual KKR
structure constants that take into account all multi-site scattering correlations due to the disorder
configurations [69–71]. The scattering path operator of this medium describing the average
propagation of an electron from site i to site j is given by

τ̂ ij = t̂δij +
∑
k 6=i

t̂
[
G(Rij) + δ̂G(Rij)

]
τ̂ ij . (2.29)

Here a circumflex symbol denotes an effective medium quantity. Since the effective medium is
translationally invariant, the scattering path operator can be obtained from the k-space integral
representation:

τ̂ ij =
1

ΩBZ

∫
ΩBZ

dk
[
t̂−1 −G(k)− δ̂G(k)

]−1

eik·(Ri−Rj) . (2.30)

Solving this problem is a highly non-trivial task. The main difficulty is to preserve translational
invariance and to formulate a consistent treatment in reciprocal space. In the NLCPA this problem
is solved by mapping it onto a self-consistently embedded impurity cluster problem, where the
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Figure 2.4. a) Nc = 4 real-space cluster cell for 2D square lattice. The linear length of the tile is L = 2a,
where a is the lattice constant. b) Corresponding reciprocal-space cluster cells. The solid line denotes the
1st BZ. Each tile is centered on a cluster momentum K (dashed line).

configurationally averaged impurity cluster has Born-von Karman boundary conditions imposed.
This means that the range of nonlocal scattering correlations included in the medium is restricted
by the size of the cluster, but significantly the full translational symmetry of the underlying lattice
is retained. This essentially means reducing the size of a conventional lattice to contain only a
cluster of Nc sites, so that the edges of the cluster map round to the other end along each axis.
Since the lattice constant is unchanged, the boundaries of the BZ will remain the same, however
it will now contain only Nc evenly spaced k points referred to as the set of cluster momenta
{Kn}, where n = 1, .., Nc. Therefore the conventional lattice Fourier transform used in Nc →∞
limit reduces to the cluster Fourier transform

1
Nc

∑
Kn

eiKn·(RI−RJ ) = δIJ , (2.31)

which relates the real space cluster sites {I} to the corresponding set of cluster momenta {Kn}.
The cluster momenta will correspondingly be centered at a set of Nc reciprocal-space tiles which
divide up the first Brillouin zone of the lattice. By constructing these coarse graining cells it
must be possible to surround the cluster sites with a space-filling tile, the principle axes of which
must point along a high symmetry direction of the underling lattice. An example cluster and tile
for a square lattice in 2D is shown in Fig. 2.4. In contrast to a supercell approach the size and
shape of the real space tiles surrounding the cluster sites corresponds to the size and shape of the
reciprocal tiles surrounding the cluster momenta, thus preserving the point-group symmetry of
the underlying lattice.

With application of the coarse graining procedure the effective structure constant corrections
δ̂G(k) can be approximated within each of the Nc tiles by the Nc "coarse-grained" values δ̂G(Kn),
each centered at Kn. Then by using Eq. (2.31) one has

δ̂G(RIJ) =
1

Nc

∑
Kn

δ̂G(Kn)eiKn·(RI−RJ )

δ̂G(Kn) =
∑
J 6=I

δ̂G(RIJ)e−iKn·(RI−RJ ) (2.32)

with I and J denoting the cluster sites at RI and RJ , respectively. The scattering path operator
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in reciprocal and real space may be now represented by the set of coarse-grained values

τ̂(Kn) =
Nc

ΩBZ

∫
ΩKn

dk
[
t̂−1 −G(k)− δ̂G(Kn)

]−1

(2.33)

τ̂ IJ =
1

ΩBZ

∑
Kn

{∫
ΩKn

dk
[
t̂−1 −G(k)− δ̂G(Kn)

]−1
}

eiKn·(RI−RJ ) . (2.34)

It is now straightforward to generalize the conventional KKR-CPA in real space and determine
the medium by mapping onto an impurity cluster problem. The effective medium scattering path
operator may be rearranged in the form

τ̂ IJ = t̂IJ
cl +

∑
K,L

t̂IK
cl ∆̂KLτ̂LJ (2.35)

where the effective cluster t-matrix

t̂IJ
cl = t̂IδIJ +

∑
K

tI
[
G(RKL) + δ̂G(RIK)

]
t̂KJ
cl (2.36)

describes all scattering within the cluster, while the cavity function ∆̂IJ [72] describes all scat-
tering outside of the cluster. Since ∆̂IJ describes the medium outside and is independent of the
contents of the cluster, it may be used to obtain the impurity cluster path matrix

τ IJ
γ = tIJ

cl,γ +
∑
K,L

tIK
cl,γ∆̂KLτLJ

γ , (2.37)

where the impurity cluster t-matrix is defined by

tIJ
cl,γ = tIγ +

∑
K

tIγG(RKL)tKJ
cl,γ (2.38)

for fixed impurity cluster configuration γ. In other words, the effective cluster has simply been
replaced by an "impurity" cluster of real t-matrices with configuration γ and free-space struc-
ture constants "embedded" in the effective medium. The KKR-NLCPA self-consistency condition
demands that there is no additional scattering from the cluster on the average

τ̂ IJ =
∑

γ

Pγτ IJ
γ . (2.39)

Here Pγ is the probability of the configuration γ occurring. The set of numbers {Pγ} contains
the weights for the configurations γ with

∑
γ Pγ = 1. The effective medium t-matrix and struc-

ture constant corrections are thus determined from a self-consistent solution of Eq. (2.34) and
Eq. (2.39).

The KKR-NLCPA method has relatively low computational cost in comparison with super-cell
based methods since the BZ integration does not scale with the cluster size. The accuracy of the
method depends only on the number of cluster sites Nc and becomes exact as Nc →∞.

One of the advantages of the NLCPA is the feasibility to study short-range order effects which is
not possible with the conventional CPA method. Short-range order may be included by appropri-
ate weighting the configurations in the equation (2.39) provided the translational invariance is
preserved.
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More details about the self-consistent NLCPA approach can be found in the publications supple-
mented in the second part of the thesis.

In the first paper [P1] we present the sell-consistent non-local KKR-CPA method and give a de-
tail description of the implementation. In this work we focus on the methodological aspects of
the density functional theory for the NLCPA approach. In particular, the Madelung energy and
corresponding charge transfer are discussed in details, supported with calculations of Cu50Zn50,
Cu60Pd40 and Cu77Ni23 alloys. We present a way to include short-range order and show how the
total energy varies as a function of SRO.

In the next paper [P2] we present a fully relativistic formulation of the KKR-NLCPA method,
which is designed for treatment of magnetically-ordered alloys. We elaborate on several im-
provements for the basic algorithm and a symmetrization of the fundamental coarse-graining
procedure, which make it possible to optimize efficiently computational performance of the NL-
CPA method. The flexibility and power of the resulting implementation is demonstrated by appli-
cation to the alloy system Fe50Pt50.

2.3. Observable quantities and Lloyd formula

Once the scattering path operator is known, the corresponding Green function associated with an
individual atomic type can be evaluated from the formula

Gα,γ(rI , rJ ;E) =
∑
LL′

Pα,γZα,γ
L (rI ;E)τ IJ

α,γ;L,L′(E)Zα,γ×
L′ (rJ ;E)−

−
∑
L

Pα,γZα,γ
L (rI<;E)Jα,γ×

L (rI>;E)δIJ ,
(2.40)

where Pα,γ denotes the probability of a cluster configuration with an α-atom at the site I in
cluster with configuration γ. The formula (2.40) is general for the KKR-NLCPA, KKR-CPA and
KKR for ordered systems because the NLCPA formalism reduces to the conventional CPA at the
number of cluster sites Nc = 1 and γ = 1 and, in its turn, the KKR-CPA method amounts to the
conventional KKR approach at α = 1.

The site-diagonal part of the Green function (2.40) can be used for the calculation of the charge
density and the density of states (DOS). The charge density inside the cluster γ of type α located
at the site I is given by the expression

ρI
α,γ(rI) = − 1

π
Im

∫ EF

∞
Gα,γ(rI , rI ;E)dE , (2.41)

whereas the corresponding DOS is given by

nI
α,γ(E) = − 1

π
Im

∫
Gα,γ(rI , rI ;E)drI , (2.42)

where EF denotes the Fermi energy. The integral over rI above can be taken over the con-
ventional unit cell at site I, because, through symmetry, the space enclosed by the conventional
Wigner-Seitz cells surrounding the cluster sites is equivalent to that enclosed by the tile used for
constructing the cluster. In case of the CPA or NLCPA (α 6= 1, γ 6= 1) the total configurationally
averaged charge density and DOS per site are simply evaluated by

ρI(rI) =
∑
α,γ

Pα,γρI
α,γ(rI) (2.43)

nI(E) =
∑
α,γ

Pα,γnI
α,γ(E) (2.44)



14 2. Brief overview of the multiple-scattering theory

The total average Green function and charge densities are obtained by summing over all γ, and
any site in the cluster can be chosen to be site I since all cluster sites are equivalent after averaging
over al γ.

The integrated density of states can be evaluated using the Lloyd formula[73, 74], which pro-
vides an analytical integration over energy and over all space and directly gives the number of
states as a function of energy. Due to its excellent convergence properties the Lloyd formula is
very important in the modern multiple scattering theory. Nevertheless the implementation of
the Lloyd formula is quite a difficult problem. Analytical properties of terms entering the Lloyd
formula hinder its direct implementation. The Lloyd formula entails a logarithmic determinant
of the KKR matrix, which is a complex multivalued function of energies and reciprocal vectors.
Zeroes of the KKR determinant are complex since the KKR matrix is not Hermitian. One of
the serious difficulties is to find the determinant phase throughout the Brillouin zone at the en-
ergy at which the number of states is calculated. Despite of these problems the Lloyd formula
was successfully implemented in many multiple-scattering codes [30, 75–81]. However, in most
implementations the Lloyd formula was used for impurity problems to calculate Friedel charge
density oscillations. The convergence properties of the Lloyd integrated density of states were
not demanded. Significant progress has been achieved after the extension of the Lloyd formula
to complex energies[30, 75–77], which allows to apply it in many applications requiring integra-
tion over a complex energy contour. Nevertheless, due to numerical problems with the complex
multivalued logarithm of the KKR determinant, the Lloyd integrated density of states was rarely
used as a constituent of self-consistent calculations.

However, we have found an elegant way to solve these problems and to incorporate the Lloyd
formula in self-consistent calculations. The terms entering the Lloyd formula can be regrouped
in a special manner, so that the most time-consuming k-dependent part, the KKR matrix, is trans-
formed into a new form, which is a complex single-valued function for all k vectors and can be
directly evaluated at a particular energy. Only one single-site term, namely the logarithmic deter-
minant of the Jost function, remains to be multivalued, whose phase can be easily corrected using
analytical properties of a complex logarithmic function. Here I give an expression of the Lloyd
formula for the complex generalized integrated density of states as it is implemented in the HUT-
SEPOT code, which is general for ordered (α = 1, γ = 1, δ̂G(Kn;E) = 0 ) and disordered (α 6= 1,
γ 6= 1) systems:

Z̄(E) =Z0(E)− 1
πΩBZ

{∑
Kn

∫
ΩKn

dk ln
www1− t̂(E)

[
δ̂G(Kn;E) + G(k;E)

]www}
−

− 1
πNc

∑
α,γ

Pα,γ ln
ww1−

[
tα,γ(E)− t̂(E)

]
τ̂(E)

ww +
1

πNc

∑
α,γ

Pα,γ ln ‖χαγ(E)‖ ,

(2.45)

where Z0(E) is a generalized complex integrated density of states of a reference system (free
particles or a reference medium) and χ(E) is the Jost function obtained from the regular solution
of the Schrödinger equation. The equation (2.45) enables direct calculations of the integrated
density of states

N(E) = ImZ̄(E) (2.46)

at a single energy in the complex plane without knowledge of the logarithmic function phases
at other energy points. Since the Lloyd formula has extraordinary convergence properties in
the angular momentum summation and spatial integration, the equation (2.45) can be used for
accurate estimation of the valence band energy and correction of the charge density (2.41) and
density of states (2.42) that can be performed at each energy. It is quite essential for applications
such as structural and magnetic phase transitions, phase stability properties and relaxations. The
convergence properties of the Green function and Lloyd corrections will be discussed in Sec. 3.1.
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2.4. Multifunctional KKR Green function code HUTSEPOT

Most of the results presented in this thesis have been obtained with the multifunctional code
HUTSEPOT based on the multiple scattering theory and designed for electronic structure calcu-
lations of ordered and disordered systems such as bulk materials, surfaces, interfaces and atomic
clusters embedded in different hosts. The development of the code was started in Daresbury Lab-
oratory (A. Ernst, Z. Szotek, W. M. Temmerman and P. J. Durham). Initially it was designed for
non-self-consistent calculations of photoemission spectra using a real-space Green function ap-
proach [82]. Later the code was extended to two-dimensional systems and made self-consistent.
With help of L. Szunyogh and P. Weinberger we implemented the screening transformation and
decimation technique which enables correct numerical treatment of semi-infinite systems such as
surfaces and interfaces [65]. The real-space photoemission program was adopted for 2D geome-
try and made use of self-consistent potentials [26].

Since 1999 the HUTSEPOT code has been developed mainly in three institutions: Max Planck
Institute of microstructure physics (Halle), Daresbury Laboratory (U. K.) and University of Halle
in active cooperation with the University of Bristol and the University of Warwick. It has been
generalized to bulk materials, surfaces, interfaces and real-space clusters (A. Ernst, M. Lüders,
M. Däne, D. Ködderitsch). For treatment of disorder, the CPA has been implemented in all code
modules. Later on the HUTSEPOT has also been extended to allow the first self-consistent non-
local CPA calculations (D. A. Rowlands, A. Ernst, J. B. Staunton, B. L. Györffy) [P1].

The code makes use of various potential shape constructions. We implemented the muffin-
tin (MT) concept, atomic sphere approximation (ASA) and Voronoi polyhedra for unit cell divi-
sion. The potentials and charge densities can be represented in both spherical and non-spherical
approximations. The full-potential approach together with implemented Lloyd formula improves
convergence properties of the Green function essentially and enables electronic structure calcula-
tions with an accuracy comparable to other well established methods. Moreover, full convergence
of the Green function with relative small angular momentum truncation makes it possible to study
semiconducting and insulating materials.

The HUTSEPOT is the first multiple scattering theory based code, specially designed for electronic
structure studies of systems with localized electrons. These systems cannot be correctly described
within the LSD approximation since it contains an unphysical interaction of electrons with them-
selves, which is quite considerable for localized electrons. This interaction can be removed with
the self-interaction correction (SIC) [59]. We implemented a simplified version of the SIC [P5]
using the single-site approximation for strongly localized electrons. This opens new application
fields for multiple scattering theory, for instance, transition metal oxides, rare-earth and actinide
compounds.

With the aim of studying the electronic transport we implemented an approach to compute con-
ductances of tunnel junctions within the framework of the Landauer-Büttiker theory [83]. Com-
bined with a self-consistent Green function method this approach is intensively used for calcula-
tions of tunnel junctions in realistic systems [P7,P8]. This part of the HUTSEPOT code will be
extended for computing conductances in real-space to describe transport processes in scanning
tunnelling microscopy (this work is now in progress).

Recently we have implemented the calculation of exchange interaction parameters and adiabatic
spin waves using magnetic force theorem [47] in the multiple-scattering formalism (A. Ernst, G.
Fischer, M. Däne, W. Hergert and L. M. Sandratskii). The critical temperature of magnetic transi-
tions can be evaluated both in the mean-field and random-phase approximations. We have used
this part of the HUTSEPOT code to study magnetic properties of transition metal oxides and di-
luted magnetic semiconductors. At the moment we are developing a non-adiabatic spin dynamic
approach using the frequency-dependent magnetic susceptibility (P. Buczek, L. M. Sandratskii, A.
Ernst and P. Bruno).

The HUTSEPOT is efficiently parallelized using various numerical algorithms. Different loops are
optimized using MPI, OPENMP and combined MPI+OPENMP libraries. Especially effective is a
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hybrid MPI+OPENMP method when different parallelization schemes are used to span enclosed
loops, for instance, for the energy and k integrations. Applying a special MPI groups technique
the processors can be separated into different groups, each of them can be used for solving a
particular problem. This enables efficient calculations of various structures with many hundreds
of atoms. For large systems the HUTSEPOT achieves near linear scaling with 1000 processors on
IBM SP5 computers.



3. Total energy and convergence properties of the KKR method

The aim of most first-principles methods is to perform accurate total energy calculations. In prin-
ciple, density functional theory can provide the exact total energy if the corresponding exchange-
correlation energy is known. For real systems the exchange-correlation energy is difficult to
determine and it is usually approximated by some known functionals obtained for some more
simpler systems. One of the most popular approaches is the local spin density approximation,
in which the exchange-correlation energy of an inhomogeneous system is approximated by the
exchange-correlation energy of a homogeneous but interacting electron gas, which can be evalu-
ated accurately, e.g., by using Quantum Monte Carlo techniques. In many cases the LSDA works
well and has already been widely used for three decades for a great variety of systems. How-
ever, the accuracy of total energy calculations does not depend only on the approximation for
the exchange-correlation energy. The crucial point is the choice of an appropriate method for
solving DFT equations. The multiple-scattering theory can in principle provide a very accurate
solution of the DFT equations if the Green function converges well with respect to the number of
angular momentum states. As it was already pointed out in the literature [58, 84, 85], the total
energy, provided with standard KKR implementations, converges very slowly with this number,
which hinders the use of the multiple scattering theory for many applications requiring accurate
total energy calculations. Here there is presented a scheme of the total energy calculation in the
HUTSEPOT code. The approach is discussed to accelerate the convergence of the Green function.

3.1. Total energy

Since the self-consistent charge density (2.42) is known, the total energy can be calculated. Here
the total energy expression is given as it is implemented in the HUTSEPOT code for the NLCPA
approach [86] (the conventional CPA is a particular case of this with γ = 1, α 6= 1 and it reduces
for ordered systems with γ = 1, α = 1):

E[ρ] =EF N(EF )−
∫ EF

−∞
dE N(E)− 1

Nc

∑
α,γ

Pα,γ

∑
I

∫
drIρα,γ(rI)Vα,γ(rI)+

+
1
2

1
Nc

∑
α,γ

Pα,γ

∑
I,J

[∫
drI

∫
dr′

J
ρα,γ(rI)ρα,γ(r′J)
|rI − r′J −RIJ |

− 2
∫

drI

ρα,γ(rI)ZJ
α,γ

|rI −RJ |

]
+

+
1
2

1
Nc

∑
α,γ

Pα,γ

∑
I,J 6=I

ZI
α,γZJ

α,γ

RIJ
+

+
1
2

1
Nc

∑
α,γ

Pα,γ

∑
I

∑
n/∈C

[∫
drI

∫
dr′

n
ρα,γ(rI)ρ̄(r′n)
|rI − r′n −RIn|

− 2
∫

drI
ρα,γ(rI)Z̄n

|rI −RIn|

]
+

+
1
2

1
Nc

∑
α,γ

Pα,γ

∑
I

∑
n/∈C

ZI
α,γZ̄n

RIn
+

+
1

Nc

∑
α,γ

Pα,γ

∑
I

∫
drIρα,γ(rI)V xc

α,γ [ρα,γ(rI)] , (3.1)

where N(E) is the integrated density of states, ρα,γ(rI) is the charge density, Vα,γ(rI) is the
effective crystal potential of type α inside the cluster γ located at the site I, and V xc

α,γ [ρα,γ(rI)]
is the corresponding exchange-correlation potential. The average density and nuclear charges
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placed on all sites outside the clusters are given by

ρ̄(rn) =
1

Nc

∑
I

∑
α,γ

Pα,γρα,γ(rI) , (3.2)

Z̄n =
1

Nc

∑
I

∑
α,γ

Pα,γZI
α,γ . (3.3)

The first three terms in the equation (3.1) represent the configurationally averaged kinetic single
particle energy. It can be seen that the fourth, the fifth and the sixth terms involve the Coulomb
interaction between all cluster sites for each fixed impurity configuration γ resulting from the
fact that there will be a net (and different) overall charge on each cluster site. After the average
over all configurations γ is taken, charge neutrality will be restored. The off-diagonal part of
the equation (3.1) above (i.e., when I 6= J) arises from charge correlations between the cluster
sites, such terms being absent in the conventional single-site KKR-CPA expression. The Madelung
energy contribution to the total internal energy per site, which is missing in the single site KKR-
CPA, may therefore be calculated as

EM =
1
2

1
Nc

∑
α,γ

Pα,γ

∑
I,J 6=I

∫ ∫
drIdr′

J

[
{ρα,γ(rI)− ZI

α,γδ(rI)}{ρα,γ(r′J)− ZJ
α,γδ(r′J)}

|rI − r′J −RIJ |

]
.

(3.4)

The seventh, eighth and ninth terms in Eq. (3.1) represent the contributions from the average
electronic and nuclear charges outside the cluster. The last term in Eq. (3.1) is the exchange-
correlation energy. Finally, it is important to appreciate that charge neutrality will always be
restored after averaging over all the cluster configurations since the KKR-NLCPA is, by construc-
tion, a translationally invariant method.

The expression for the total energy in Eq. (3.1) is given in a general form, which is valid for
ordered and disordered systems. In practice this formula has to be implemented according to
the density and potential representations. In our method we use different approaches which
makes the code flexible and adaptive for wide range of systems. Validity and advantages of these
approaches will be discussed in the next chapter.

A new aspect of the total energy expression (3.1) is the Madelung energy (3.4) and the corre-
sponding charge transfer effects, which are included self-consistently via the Madelung term of
the crystal effective potential. Fig. 3.1 illustrates these effects in bcc Cu50Zn50 alloy. This system
was investigated using the self-consistent KKR-NLCPA method for Nc = 1 (conventional CPA) and
Nc = 2 (nonlocal CPA with 2 cluster sites). To analyze the effect of self-consistency we performed
calculations of the DOS using nonlocal CPA approach for fixed potentials obtained with the con-
ventional KKR-CPA method. The comparison of this DOS with the conventional CPA results is
shown in Fig. 3.1(a). First note that there is little observable difference in the total DOS com-
pared to the KKR-CPA calculations given in the same figure. This is expected as the size of the
cluster is very small. Nevertheless, in a dramatic departure from the conventional KKR-CPA calcu-
lation where only single-site Cu and Zn components exist, here the component contributions from
four possible cluster configurations are apparent. A self-consistent KKR-NLCPA DOS is presented
in Fig. 3.1(b). It is clear that there is now an observable difference between the total DOS results
obtained with the self-consistent KKR-NLCPA compared to the conventional CPA. This difference
is plotted in Fig. 3.1(c) and integrates to zero since there are the same number of electrons per
site in both cases. This difference arises from the charge transfer between the cluster sites at
certain energy regions. Since Cu50Zn50 alloy is in the "split-band" regime, these energy regions
are well separated and occur at places where the DOS has a large weight.
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Figure 3.1. (a) Total average DOS for disordered bcc Cu50Zn50 using both KKR-CPA and KKR-NLCPA (non-
SCF) with Nc = 2. Also shown are the contributions from the four possible cluster configurations measured
at the first site-i.e., Cu for Cu-Cu, Cu-Zn, and Zn for Zn-Cu, Zn-Zn. (Owing to translational invariance,
measurement at the second site would give the same results with a simple reversal of the labels.) (b) Same
as above but using the new self-consistent filed SCF-KKR-NLCPA. (c) Plot of the difference between the total
SCF-KKR-CPA and total SCF-KKR-NLCPA results.
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Finally, there is a fairly obvious general comment to be made with regards to the total energy
calculations within the multiple scattering theory. In contrast to any variational method, results
obtained with the KKR Green function approach might be very sensitive to approximations and
parameters, which have to be introduced by the implementation of the method. Any inconsistency
with the formal multiple scattering theory can lead to a severe sacrifice in accuracy. Aspects of
convergence of the KKR Green function will be discussed in the next section.

3.2. Convergence properties of the KKR Green function

The KKR Green function has always a proper asymptotic energy behavior due to its construction
and can be in principle evaluated exactly at any energy, which makes this method attractive for
the spectroscopy or applications in the many body physics. However, the analytical expression
for the Green function (2.16) is exact in the limit of L →∞. In practice, the angular momentum
summations in Eq. (2.16) are truncated at some reasonable lmax making the electronic wave func-
tion or the corresponding density of states to be only approximately normalized. This truncation
error can lead to inconsistent results, especially in semiconductors or in applications requiring
very accurate total energy calculations. Since the electronic wave functions are not normalized,
the Fermi level cannot be determined accurately. In semiconductors the Fermi level is incorrectly
placed in the valence band. Since the normalization error depends strongly on lmax, the Fermi
level is not accurately determined and this leads to a slow convergence of the total energy with
lmax. An additional error in the normalization arrises due to numerical integration of the Green
function over the unit cell and energy in equations (2.41) and (2.42).

However, in the multiple-scattering theory the normalization can be achieved by applying the
Lloyd formula (2.46) which allows the integrated density of states to be evaluated directly at
any energy using only determinants of scattering matrices. The Lloyd formula increments the
integrated density of states exactly by one every time the determinant of the secular matrix goes
through zero regardless of the truncation in angular momentum. Thus, the integrated density
of states (2.46) converges very rapidly with the angular momentum. The normalization of the
truncated Green function (2.16) can be forced by multiplying with a factor

A(E) =
NLloyd(E)

E∫
∞

n(ε)dε

, (3.5)

Figure 3.2. Total DOS of Ga0.95Mn0.05As for the majority (blue line) and minority (red line) spin channels:
(a) KKR-CPA without Lloyd correction; (b) KKR-CPA with Lloyd correction.
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where n(E) is the total density of states, Eq. (2.42), obtained from the truncated Green func-
tion (2.16). This procedure is similar to the normalization of basis functions in a variational
method. This Lloyd correction can be applied as well on the charge density, so that it can be used
in the self-consistency process. The efficiency of this normalization scheme is demonstrated in
Fig. 3.2. In the left panel there is shown the spin-resolved total DOS of Ga0.95Mn0.05As calculated
from the truncated Green function (2.16) without any additional normalization. In both spin
channels the DOS exhibits metallic behavior although it is well known as a half metal with an
integer net magnetic moment per magnetic impurity. The Fermi level crosses the valence band
in the minority spin channel where a band gap is expected. The estimated net magnetic mo-
ment µ = 3.26µB is significantly lower than the expected one, namely µ = 4µB . Self-consistent
inclusion of the Lloyd correction (3.5) provides the electronic structure (Fig. 3.2b) which is com-
parable with results obtained with other methods [87, 88]. The net magnetic moment is µ = 4µB

and there is a band gap in the minority spin channel.

In metals the truncation error is not so visible in the DOS as in semiconductors since the electronic
states are partially occupied and, although, the Fermi level may not be correct but it does not oc-
cur in a principally wrong position. However, the truncation problem is general for any material,
first of all, affecting the total energy. To demonstrate this fact we performed convergence tests
for the total energy of copper. Copper is well studied with various first-principle methods. Since
it has a close packed crystal structure and it is metallic, one expects rather fast convergence of
the total energy with respect to the number of the basis functions. Our KKR results are presented
in Fig. 3.3. For the tests we used different shape approximations for the potential representation.
The results for the muffin-tin approximation are presented in panels (a) and (b). The convergence
of the total energy without Lloyd correction (panel (a)) is non-systematic and can be explained
by the fluctuation of the Fermi level. The curve for lmax = 2 is not even shown here because
it falls completely out of the picture. The lmax = 3 curve is occasionally close to the results for
lmax = 6, at which the total energy starts to converge. An acceptable accuracy is achieved at
angular momentum truncation lmax ≥ 9. The use of the Lloyd correction accelerates substan-
tially the convergence of the total energy (panel (b)) and makes possible to perform accurate
calculations already with lmax = 3 (see results for equilibrium lattice constants in Fig. 3.3(e)).
The total energy converges absolutely for lmax ≥ 6. The same convergence behavior of the total
energy of copper is obtained using the full-charge density and full-potential approximations (the
tests are not shown here because of the similarity). The muffin-tin, full-charge density and full-
potential approximations give very similar results, because the interstitial region is narrow and
non-spherical contributions to the total energy are negligible (at least for lattice constant calcu-
lations). Therefore, for close packed structures the MT approximation is quite reasonable and in
many cases preferable due to numerical stability and simplicity.

In contrast to the MTA, another popular spherical potential approach, ASA, provides inadequate
results within the KKR method. Without the Lloyd correction the equilibrium lattice constant is
estimated to be 6% lower than the experimental one (Fig. 3.3(c)). Although the Lloyd correction
improves continuously the convergence of the total energy, the error in the equilibrium lattice
constant is still too large (Fig. 3.3(d)). The main reason for the failure of the ASA is the construc-
tion of this approximation, in which the atomic spheres overlap, that leads to incorrect scattering
of electrons in the crystal. Thus, the KKR-ASA is completely inadequate for total energy calcula-
tions, although the DOS and spectral function, evaluated with the ASA, are visually comparable
with the MTA or full potential results. The wrong scattering contribution can be corrected with
the so-called ASA-MT approach [89]. It relies on overlapping atomic spheres for the calculation
of the kinetic energy, similar to the atomic sphere approximation, however, a shape correction is
used that has the same form as the interstitial treatment in the non-overlapping muffin-tin ap-
proach. The inter-site Coulomb energy is evaluated using the Madelung energy as computed in
the MT approach, while the on-site Coulomb energy is calculated using the ASA.

Obviously, the representation for the crystal potential is an additional parameter in first principles
calculations. More general is the full potential approximation, but unfortunately it can be very
time consuming and not always numerically stable. Moreover, some applications, for instance,
the self-interaction correction, are still not yet formulated in the full potential representation
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and, therefore, it is desirable to have a method which has more choices for the potential shape.
In the HUTSEPOT package there are implemented all established potential representations, which
makes the code flexible and efficient for various applications in condensed matter physics. Validity
of the implemented approximations is illustrated in Fig. 3.4. Here there are shown the errors in
equilibrium lattice constants evaluated for several materials using the ASA, ASA-MTA, MTA and
full-charge density (FCDA) approaches in the local density approximation. The full-potential
results are very close to the FCDA and are omitted here.

The important conclusion following from these tests is that the atomic sphere approximation
yields substantial error in the estimation of equilibrium lattice constants which is much larger
than to be expected from the LSDA. The error becomes larger when the charge density has a larger
weight in the overlapping region like in Ce, TiO2 and manganese stabilized zirconia. However,
it can provide reasonable results for structures with many atoms per unit cell by manipulating
atomic radii as it was achieved in GaAs case shown in Fig. 3.4. The muffin-tin approximation
seems to be adequate and efficient in close packed structures, especially for monoatomic unit
cells. The combination of the ASA and MTA improves generally accuracy of the total energy
calculations but for structures with large interstitial region it has a tendency to overestimate the
equilibrium lattice constant.

Next, we consider the angular momentum convergence of magnetic properties calculated with
the multiple-scattering theory. Many of these properties, such as Curie temperature and magneto-
crystalline anisotropy, are usually estimated from the energy difference of various magnetic con-
figurations, calculated at a fixed unit cell volume. As it was demonstrated above, the truncated
multiple-scattering does not provide an absolute convergence of the total energy. If the total
energy would have the same truncation error in different magnetic configurations, one can ex-
pect, the difference of the total energies would have a better convergence than the total energy
itself. To verify this statement we investigated the angular momentum convergence of the local
magnetic moment and Curie temperature of bcc iron. The calculations were performed self-
consistently in ferromagnetic, antiferromagnetic and paramagnetic states using the muffin-tin
approximation. The Curie temperature was estimated in the mean-field approximation from the
difference of the total energies of ferromagnetic and paramagnetic configurations. The results of
the truncated and Lloyd corrected KKR methods are presented in Fig. 3.5. The magnetic moments
and Curie temperature, obtained with the truncated KKR method, have a very slow convergence
behavior, while the Lloyd correction provides generally converged results with cut-off lmax ≥ 3.
A very interesting fact is, that the magnetic moments, calculated with the truncated KKR method,
converge differently in different magnetic configurations. Obviously, it can be attributed to the
single-scattering part of the Green function, because structure constants are potential indepen-
dent and calculated practically on the same energy mesh (the Fermi level changes only slightly
in these tests). This means that the convergence of the Green function depends strongly on the
character of resonance states. In antiferromagnetic and paramagnetic cases 3d-resonances are
more narrow than in ferromagnetic state. This affects the convergence of the Green function and
leads to inconsistent results for the Curie temperature (Fig. 3.5(d)).

In the appended publications [P3,P4] we demonstrate the efficiency of our approach on electronic
and magnetic structure studies of diluted magnetic semiconductors. In the reference [P3] we ex-
plain a photoemission experiment in the GaMnAs system, in which a weakly dispersive electronic
band near the Fermi level is observed. We investigate the formation of this band which is closely
related to the presence of the Mn interstitial impurities. In another study [P4], we propose the
Mn-stabilized Zirconia as a new potential high-TC ferromagnetic spintronics material. From the
basis of ab initio electronic structure calculations which include the effects of thermally excited
magnetic fluctuations, we predict Mn-stabilized cubic zirconia to be ferromagnetic above 500 K.
We find this material, which is well known both as an imitation diamond and as a catalyst, to be
half-metallic with the majority and minority spin Mn impurity states lying in zirconia’s band gap.
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Figure 3.3. Convergence of the total energy of copper calculated using KKR-MTA and KKR-ASA with and
without Lloyd correction. Equilibrium lattice constants are marked as black circles. Total energy vs. lattice
constants: (a) KKR-MTA without the Lloyd correction, (b) KKR-MTA with the Lloyd correction, (c) KKR-ASA
without the LLoyd correction, (d) KKR-ASA with the Lloyd correction. (e) Convergence of the equilibrium
lattice constant with truncation angular momentum
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Figure 3.5. Angular momentum convergence of magnetic properties of Fe (bcc): (a) local magnetic moment
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3.3. Application: Electronic structure of MgxZn1−xO alloys

Due to slow convergence properties a truncated KKR method fails to describe correctly structural
properties of low packing density systems. The Lloyd correction together with a full potential
approximation make it possible to carry out a structural optimization of such systems. Here there
is presented a study of structural properties of MgxZn1−xO alloys which can exhibit rock salt,
hexagonal and wurtzite structures in accordance with the alloy composition.

In the recent years, much effort has been devoted to research on the MgxZn1−xO alloy systems
due to their attractive properties for optoelectronic applications in ultraviolet region. Mostly,
this interest arises from such properties of zinc oxide (hexagonal wurtzite structure) as a high
piezoelectric coefficient, photoconductivity, and transparency in the visible and infrared ranges.
The application field of this semiconductor can be considerably extended if it is alloyed with
different concentrations of MgO (rock salt structure). This can enable varying the structure from
the hexagonal wurtzite (WZ) to the rock salt (RS) phase and tuning the fundamental band gap
from 3.25 to 7.7 eV.

To investigate phase transitions in MgxZn1−xO alloys, we used a scheme suggested for wurtzite-
to-rock-salt transformation in GaN [90] and successfully applied to study structural deformations
in MgO [91] and ZnO [92]. According to this scheme, the wurtzite-to-rock-salt transition can be
described as a homogenous strain deformation from the wurtzite to the rock-salt by passing an
intermediate hexagonal structure (HX), which the authors in [90] referred to as h-MgO. The first
step occurs by linearly increasing the internal parameter u with continously decreasing the c/a
ratio. At u=1/2 the space group changes from P63mc to P63/mmc. Then, by uniaxial compress-
ing along the [101̄0] direction and decreasing the c/a ratio, the intermediate HX structure can be
transformed to the rock-salt. The ideal crystal structure parameters for these three structures are
presented in Table I in the Reference [91]. To perform the total energy minimization we used
appropriate unit cells of an orthorhombic lattice with the space group Cmc21 (see Fig.3.6), which
is a common subgroup for all these three structures [93]. In our calculations we fixed the param-
eter v and b/a which are determined by the geometry. The internal parameter u and c/a ratio
were obtained by the energy minimization for pure ZnO and MgO compounds and chosen to be
fixed for MgxZn1−xO alloys. The equilibrium volumes, bulk modulus, pressure and enthalpy were
calculated at T = 0 from the total energy fitted to the Murnaghan equation. Lattice vibrations,
finite temperature effects, relativistic corrections were not considered in the current work.

Pure MgO and ZnO Due to the large number of internal parameters a full structure optimiza-
tion of MgxZn1−xO alloys is quite a difficult task. Apart from usual structural parameters, the
alloy composition is an additional degree of freedom, which complicates the problem further-
more. Therefore, we cut the number of variable parameters concentrating mostly on volume
changes in WZ, HX and RS structures by varying the composition of the alloys. However, since
the KKR method was never used for optimizations of wurtzite and hexagonal structures, we
performed more extensive calculations for pure ZnO and MgO materials varying the internal pa-
rameter u and c/a ratio following the procedure suggested in Ref. [91]. The results for both zinc
and magnesium oxides in the wurtzite and rock-salt structure, obtained with the KKR method,
are presented in Table 3.1. There we have shown the main structural parameters, the equilib-
rium volumes, bulk modulus, equilibrium pressure, c/a ratio and internal parameter u, which are
compared with experiments and some well established theoretical approaches: pseudo-potential
plane waves (PPW), linear combination of atomic orbitals (LCAO) and FP-LMTO methods.

Since it is important to establish the validity of the KKR method for the structure optimization,
we compare our results only with calculations performed within the density functional approx-
imation, namely, the LSDA. It has to be mentioned that our simulations for both ZnO and MgO
in various structures were carried out in the same unit cell on the same approximation level,
while almost all presented results were obtained either for zinc or magnesium oxides. Generally,
our calculations are in good agreement with experimental data and results of other theoretical
approaches. A better agreement is achieved with all-electrons methods, especially with the works
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Figure 3.6. Views of WZ (a), HX (b) and RS (c) crystal structures.

of Limpijumnong and co-workers [91, 92]. A possible reason being that we performed structural
optimizations applying the scheme suggested in those works. Also, the 3d-electrons of zinc and
2p-electrons of magnesium were treated in the same manner. Only the equilibrium pressure for
the rock-salt-to-hexagonal phase transition in magnesium oxide does not agree well with the re-
sults obtained by Limpijumnong and co-workers. This can be related to the instability of MgO
wurtzite and hexagonal structures, that can be responsible for discrepancies in various total en-
ergy calculations. Moreover, due to the negative pressure, the WZ and HX phases of pure MgO
cannot be realized experimentally, which makes it impossible to compare theoretical results with
experiment. A very important point is that our calculations reproduce well the c/a ratio and
internal parameter u. Previous implementations of the multiple scattering theory were not able
to optimize these structural parameters in open structures due to the slow angular momentum
convergence of the Green function.

MgxZn1−xO After establishing that our results for pure ZnO and MgO are consistent with the
structural properties obtained with other methods and experiments, we have applied the same
approach to study MgxZn1−xO alloys, using the CPA method. For that, we have fixed the c/a ratio
and internal parameter u to the values of 1.6 and 0.38 in wurtzite structure and to the values of
1.2 and 0.5 in hexagonal structure, respectively, because we have found them depending weakly
on the atom species (see Table 3.1). Therefore, varied are only the structure type, concentration
of the atom species and volume of the unit cell. The results of our total energy calculations are
summarized in Fig. 3.7. There we show the formation enthalpy of a structure α in MgxZn1−xO
alloys

∆Hα(MgxZn1−xO) = Eα(MgxZn1−xO)− xERS(MgO)− (1− x)EWZ(ZnO) (3.6)

of a structure α in MgxZn1−xO alloys, taken relative to the most stable forms of ZnO (WZ)
and MgO (RS) compounds, [104] with black lines marking the phase separations. It is seen
that the formation enthalpy is positive for all volumes and concentrations. This is in agreement
with previous theoretical studies of MgxZn1−xO, made with an accurate cluster expansion ap-
proach [96, 104]. There are two global minima, pure ZnO in wurtzite and pure MgO in rock-salt
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structure, which means that the alloy has a tendency to phase separation when the integration of
different constituents into the medium cannot be maintained [104].

Scanning with the CPA method the continuous range of concentrations, we have found generally
five extremal cases: xZn =0.0, 0.29, 0.48, 0.67, 1.0 Four of them are presented in Fig. 3.8. In
Fig. 3.8a the total energies of pure MgO (xZn=0.00) in different phases are shown. The rock-
salt structure exhibits the global minimum at the volume of 18.19 Å3/pair which is about 2%
smaller than the experimental value (see Table 3.1). By applying a negative pressure along the
tangent line the rock-salt phase is going to the hexagonal structure in agreement with the work
of Limpijumnong and co-workers [91]. According to the phase diagram (Fig. 3.7), the hexag-
onal phase is always an intermediate phase between the rock-salt and wurtzite structures, at
0.00 ≤ xZn ≤ 0.67. Although RS-to-HX transition pressure is increasing with the content of zinc,
it remains negative at whole range of concentrations (see Fig. 3.9). At xZn=0.29 the rock-salt-
to-hexagonal and from hexagonal-to-wurtzite transitions occur at the same pressure (Fig.3.8b).
For xZn > 0.67 the total energy in the hexagonal structure is always higher than in rock-salt and
wurtzite phases and a direct wurtzite-to-rock-salt transition at positive pressure is possible. At
xZn=0.67 (see Fig. 3.8 and Fig. 3.10) this phase transition takes place at zero pressure, which is
consistent with the work of Sanati and co-worker [104] and observed experimentally in ZnO-MgO
hetero-structures [105]. With increasing the concentration of zinc, the wurtzite phase is always
favorable and the pressure, which is needed for a wurtzite-to-rock-salt transition, is positive and
rising continuously upwards (see Fig. 3.9). Finally, at xZn = 0.48 the HX-to-WZ transition is pos-
sible at zero pressure and the corresponding total energies relative to RS phase are the same (see
Fig. 3.10).

Summarizing, we investigated the phase transition from wurtzite to rock-salt structure in
MgxZn1−xO. Comparing total energies of wurtzite, hexagonal and rock-salt structures, we found
that the WZ phase is only stable for xZn > 0.67, which is in good agreement with experiment. For
lower concentration of zinc a transformation from the rock-salt to wurtzite is possible by passing
through intermediate hexagonal structure and applying a negative pressure. Calculated structural
parameters of MgxZn1−xO alloys are generally in agreement with previous theoretical investiga-
tions and experiment. Thus, the Lloyd corrected KKR-CPA method within the full-charge density
approximation provides an adequate description of binary alloys with low packing densities for
whole range of concentrations.
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Table 3.1. The equilibrium volumes V0, c/a ratio, internal parameter u, bulk modulus B0 and transition
pressure P for pure ZnO and MgO, obtainted in current work and by various methods within the LSDA and
compared with experiment.

Current work Other methods Experiment
ZnO, wurtzite structure

V0 (Å3/pair) 22.83 22.80 a, 22.87 b, 23.78 c, 22.93 d 23.81 e, 23.80 f

c/a 1.602 1.610 a , 1.614 b , 1.605 c , 1.617 d 1.602 e , 1.602 f

u 0.381 0.380 a , 0.379 b , 0.380 d 0.382 e , 0.382 f

B0(GPa) 154 162 a , 162 b , 154 c , 162 d 143 e , 183 f

ZnO, hexagonal structure
V0 (Å3/pair) 22.12
c/a 1.200
B0(GPa) 165

ZnO, rock-salt structure
V0 (Å3/pair) 18.88 18.70 a , 18.98 b , 19.45 c , 18.87 d 19.60 e , 19.48 f

B0(GPa) 201 210 a , 206 b , 200 c , 211 d 202 e , 228 f

phase transitions in ZnO
VWZ/VRS 1.21 1.22 a , 1.20 b , 1.22 c , 1.22 d 1.21 e , 1.22 f

PWZ→RS (GPa) 8.6 8.2 a , 6.6 b , 8.0 c , 8.7 d 9.1 e , 8.7 f

MgO, wurtzite structure
V0 (Å3/pair) 23.41 22.53 c , 22.50 gg

c/a 1.601 1.550 c , 1.620 g

u 0.380 0.380 g

B0(GPa) 121 131 c , 137 g

MgO, hexagonal structure
V0 (Å3/pair) 21.71 20.90 g

c/a 1.200 1.200 g

B0(GPa) 135 148 g

MgO, rock-salt structure
V0 (Å3/pair) 18.19 18.03 b , 17.54 d , 17.80 g , 18.65 h 18.67 i, 18.75 j

B0(GPa) 167 186 b , 170 c , 178 g , 172 h 172 i, 169 k

phase transitions in MgO
VHX/VRS 1.19 1.17 g

PRS→HX (GPa) -8.5 -16.2 g

VWZ/VRS 1.24 1.28 d , 1.26 g

PRS→WZ (GPa) -11.1 -8.4 g

aReference [92]: PPW
bReference [94]: LCAO
cReference [95]: PPW
dReference [96]: PPW
eReference [97]
fReference [98]
gReference [91]: FP-LMTO
hReference [99]: FP-KKR
iReference [100]
jReference [101]
iReference [102]
kReference [103]
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Figure 3.7. Formation enthalpy of MgxZn1−xO alloys.
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Figure 3.8. Relative total energies of MgxZn1−xO alloys in rock-salt (black solid line), hexagonal (green
dashed line) and wurtzite (blue dotted line) structures at four different concentrations: (a) xZn=0.0 (pure
MgO), (b) xZn=0.29, (c) xZn=0.67, (d) xZn=1.0 (pure ZnO). Total energies in cases (a), (b) and (c) are
taken relative the RS phase at xZn=0.0 and in (d) – relative the WZ phase at xZn=1.0
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4. Multiple scattering theory for correlated systems

Most first principles calculations of condensed matter systems are based on density functional
theory in the local spin density approximation. While for many materials this is an excellent
approach, it fails for a class of systems containing localized d- or f -electrons which are character-
ized by strong correlation effects. The origin of these correlations is a strong Coulomb interaction,
which can not be correctly taken into account by the LSDA, since it is designed for systems with
itinerant electrons. A useful scheme to describe the static limit of these correlations is the self-
interaction corrected local spin density approximation (SIC-LSDA) [106, 107]. In particular, it
can determine whether an electron is delocalized or localized, i.e. whether its orbital is a part of
valence state or not. This leads to a determination of the number of valence states and a nominal
valence, as demonstrated by numerous calculation on rare earth, actinides, transition metal ox-
ides (TMO), including the parent compounds of the high TC materials and materials exhibiting a
colossal magnetoresistance [108–114].

The full SIC-LSD scheme is unfortunately difficult to implement [115]. This is due to repeated
transformations from reciprocal space (k-space) to real space to evaluate the self-interaction po-
tential and the back transformation to k-sapce to solve the band-structure problem. So far most
applications of the full SIC formalism have been implemented in the LMTO-ASA band-structure
method [9]. A simpler scheme could lead to a new functionality and applications such as an
inclusion of dynamical valence and spin fluctuations or an alloy description with the coherent-
potential approximation.

Motivated by these aims we have developed a new single-site SIC-LSD approach [P5], referred
to as local self-interaction (LSIC) formalism, which is an approximation to the full approach, but
implemented in the multiple scattering theory. It is based on the experience that more than 98%
of the electron is localized on the site under consideration. A localized state has a very sharp
resonance in its phase shift, associated with a large Wigner-delay time on a particular site. This
allows us to make a single-site approximation to determine the SIC charge density and the SIC
potential.

One of the advantages of the multiple-scattering implementation of the SIC-LSD formalism is
that it can be easily generalized to include the coherent potential approximation, extending the
range of applications to random alloys. In addition, one can use it to treat static correlation be-
yond the LSDA by studying pseudoalloys whose constituents are composed e.g. of two different
states of a given system: one delocalized, described by the LSD potential, and another localized,
corresponding to the SIC-LSD potential. Combined with the disordered local moment (DLM) for-
malism for spin fluctuations [43], this allows also for different orientations of the local moments
of the constituents involved.

4.1. Self-interaction in multiple scattering theory

It has been pointed out by Perdew and Zunger [59] that density functional theory schemes, like
the local spin density approximation, suffer from a spurious self-interaction of the electrons. In
principle, this self-interaction term should vanish exactly, as it does in the Hartree-Fock theory. In
practice, however, this cancellation is incomplete. Perdew and Zunger suggested an approximate
solution to this problem, which was constructed for finite systems but is here extended to solids
in a novel way as compared to previous implementations for solids [115, 116].

The usual representation of the total energy within the LSDA-DFT formalism in the Kohn-Sham
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approach [117] is

ELSDA[n↑, n↓] =
occ∑
ασ

〈φασ| − ∇2|φασ〉+ Eext

+EH[n] + ELSDA
xc [n↑, n↓], (4.1)

where φασ ’s are the Kohn-Sham orbitals, (ασ is a combined index labeling the orbital and spin
(↑ or ↓), respectively), nασ = |φασ|2, nσ =

∑occ
α nασ, n = n↑ + n↓. Eext is the external potential

energy functional, EH is the Hartree energy

EH[n] =
∫

dr

∫
dr′

n(r)n(r′)
|r− r′|

, (4.2)

and ELSDA
xc is the LSD approximation to the exchange-correlation energy functional. On the basis

of the above, Perdew and Zunger proposed a self-interaction corrected LSDA energy functional
on an orbital by orbital basis

ESIC−LSDA[{nασ}] = ẼLSDA[n↑, n↓]−

−
occ∑
ασ

(EH[nασ] + ELSDA
xc [nασ, 0]), (4.3)

by subtracting explicitly the self-Coulomb and self-exchange and self-correlation energy of all
occupied orbitals. ẼSIC−LSDA[n↑, n↓] is of the same structure as ELSDA[n↑, n↓] but with the orbitals
φασ minimizing the self interaction corrected energy. This correction restores the property that
the true functional E[n] should have, namely that the self-Coulomb energy exactly cancels the
self-exchange and self-correlation energy for every single orbital, EH[nασ] + Eexact

xc [nασ, 0] = 0. It
leads to an orbital dependent SIC-potential seen by an electron in orbital φασ,

V SIC−LSDA
eff,ασ (r) = Vext(r) + VH[n](r) + V LSDA

xcσ [n↑, n↓](r)︸ ︷︷ ︸
V LSDA

eff,σ

−VH[nασ](r)− V LSDA
xc,σ [nασ, 0](r)︸ ︷︷ ︸

V SIC(r)

, (4.4)

with the external lattice potential Vext(r), and

VH[n](r) = 2
∫

dr′
n(r′)
|r− r′|

, (4.5)

V LSDA
xc,σ [n↑, n↓](r) =

δELSDA
xc [n↑, n↓]

δnσ
. (4.6)

This self-interaction correction vanishes exactly for extended states. In order to apply the SIC
scheme to solids, the approach by Perdew and Zunger has to be generalized. This is achieved
by introducing localized Wannier orbitals, for which the SI correction remains finite. In general,
both localized and delocalized states lead to a local minimum of the SIC-LSD energy functional.
The choice of states which have to be self interaction corrected is not unique. Therefore different
configurations of such states have to be tested to find the one with the lowest energy which
defines the ground state. For each configuration, one can define the valency by

Nval = Z −Ncore −NSIC (4.7)

where Z is the atomic number, Ncore is the number of core (and semicore) states and NSIC is the
number of localized or self-interaction corrected states.
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The generalization of the Perdew and Zunger idea used in our formalism is based on the notion
of resonances in scattering theory, which are the reminiscence of atomic states in the solid [P5].
Core states are represented by bound states at negative energies, where the imaginary part of
the generalized complex phase shift jumps abruptly by π. Localized valence states still have very
sharp resonances but band-like states are characterized by slowly varying phase shifts. In order
to remove the spurious self-interaction we consider the problem of electrons moving in an array
of scatterers. As already mentioned, an electron which shows localized behavior has a sharp
resonance in its phase shift, associated with a large Wigner-delay time on a particular site. To
determine the SIC charge we will consider for a moment the atomic limit, i.e., the situation where
the scatterers are far apart. In this case the single site t-matrix and the local multiple scattering τ -
matrix coincide, and all occupied states correspond to bound states. In this limit each bound state
contributes exactly the charge of one electron, and this charge can be calculated by integrating the
diagonal of the spectral function just around the energy of the bound state. In order to be able to
decompose the charge density (Eq.(2.41)) into distinguishable channels, which reflect the crystal
symmetry of the system, we choose symmetry adapted spherical harmonics. They are defined by
applying a unitary transformation to the ordinary real (or complex) spherical harmonics, such
that the on-site scattering matrix becomes diagonal. In order to be consistent with the muffin-tin
or atomic sphere approximation, we only keep the spherical part of the channel densities. In this
case, the local τ ii matrix becomes diagonal in symmetry adapted spherical harmonics. Different
l belong to different irreducible representations. Therefore it is sufficient to consider each l block
separately and to diagonalize the submatrices with given angular momentum separately. This
defines a so called channel labeled by L̃ = (l, m̃) which we use for the correction. In the following
we denote the representation were the local τ matrix is diagonal by using indices with a tilde. In
general this channel is a linear combination of the original angular momentum channels.∑

m1,m2

U†
(lm̃,lm1)

τ ii
(lm1,lm2)

(ε) U(lm2,lm̃′) = δm̃m̃′ τ̃ ii
lm̃(ε) =: τ ii

L̃
(ε) . (4.8)

The regular solution transforms to a solution representing the channel:

Zi
L̃σ

= Zi
lm̃σ(ri; ε) =

∑
m1

U†
(lm̃,lm1)

Zi
lm1σ(ri; ε) (4.9)

and the other functions (e.g. J i
L̃σ

) respectively. It is easy to verify that the required transforma-
tion matrix U is, in fact, independent of the energy ε. This transformation to symmetry adapted
spherical harmonics also ensures that the degeneracy of states, which are localized, is conserved.
In this symmetrized representation, the Green’s function becomes diagonal with respect to this
quantum number. Hence we can decompose the spin resolved charge density into its L̃ compo-
nents and define the charge of a state, characterized by its principle quantum number n, angular
momentum L̃ and spin σ:

nSIC
nL̃σ

(r) = − 1
π

∫ E2

E1

dε ImGL̃,σ(r, r; ε), (4.10)

where the energies E1 and E2 lie slightly below and above the energy of the state nLσ. The
integration should enclose only the localized state, but for simplicity we use the usual valence
contour, ranging from the bottom of the valence band to the Fermi energy.

The charge density, calculated in the proposed way, is used to construct the effective self-
interaction free potential V SIC−LSDA

eff,iL̃σ
(r) from Eq. (4.4). In our approach we only consider the

spherically symmetric part of the SIC density and SIC potential. Hence, each of these L̃ depen-
dent potentials gives rise to a t-matrix which is is diagonal in l and m̃. Formally, these l-dependent
spherical potentials can be combined in the form of a semi-local potential:

V (r, r′) =
∑
L̃

Y ∗
L̃

(r̂)δ(r − r′)VL̃(r)YL̃(r̂′) . (4.11)

Such potential gives rise to a diagonal t-matrix, where each matrix element tL̃ corresponds to the
spherical potential VL̃(r). The single-site scattering matrix including the self-interaction correc-
tion of some channels can be written as:

ti,corr

L̃σ
= ti

L̃σ
(1− δL̃,L̃cδσ,σc) + ti,SIC−LSDA

L̃cσ
δL̃,L̃cδσ,σc , (4.12)
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where ti
L̃σ

is the t-matrix calculated from the effective potential V LSDA
eff,σ (r), and ti,SIC−LSDA

L̃σ
is

calculated from the SI-corrected potential V SIC−LSDA

eff,iL̃σ
(r). This corrected tcorr-matrix is then used

in Eq.(2.17) to calculate the new, SI-corrected, scattering path matrix τ̃ . From the latter the new
SIC-LSDA charge density is calculated, and the process is iterated until self-consistency is reached.

The multiple scattering SIC approach is discussed in details in the attached publication [P5]. In
this paper, we introduce the formalism of the local SIC approximation within the multiple scatter-
ing theory and illustrate this method on the application to the Ce α-γ transition. Ce, being the first
element containing an f electron, has an interesting phase diagram, showing, in particular, the
iso-structural (fcc–fcc) α-γ phase transition which is associated with a 15–17% volume collapse
and quenching of the magnetic moment. In order to describe the ground state properties of Ce,
we have calculated the total energy for different volumes using the LSDA approach for α-phase
and the SIC formalism with correcting one f -electron, occupying in sequence all possible f -states,
for γ-state. The ground state properties of Ce are generally in good agreement with experiments,
demonstrating the applicability of the SIC formalism. At finite temperature we describe Ce as a
pseudo-alloy of α and γ-Ce atoms. The calculated critical temperature overestimates the experi-
mental one by a factor of two, which is still reasonable considering that the critical temperature
is very sensitive to various details of the calculation. The slope of the phase separation line is in
very good agreement with the experiment. In the paper we discuss as well many methodological
aspects of the multiple scattering SIC approach and propose a roadmap for the development of
the method towards the dynamical mean-field theory.

In the next publication [P6], we apply the self-interaction correction together with the DLM
approach for the magnetic susceptibility [44, 45] to investigate magnetic and structural properties
of heavy rare earth elements. Using gadolinium as a prototype for all heavy rare elements, we
generate a unified magnetic phase diagram, which links the magnetic structures of the heavy
rare earth to their lattice parameters and c/a ratio. In addition, we discover that the well known
"lanthanide contraction" plays a separate, completely distinct role in determining the magnetic
properties of the heavy rare earths.

4.2. Application: Electronic structure of transition metal oxides

The 3d transition metal oxides (TMO’s) exhibit a rich variety of electronic and magnetic phenom-
ena, and they have attracted a lot of attention over the last decades, in particular concerning the
nature of the band gap and the excitation spectrum in general. In the ground state the TMO’s
crystallize in the rock-salt structure and exhibit antiferromagnetic ordering of type 2 (AF II), with
planes of opposite spins being repeated in alternating order along the [111] direction, defining
two sublattices consisting of spin-up and spin down metal ions, respectively. The TMO’s are Mott-
Hubbard insulators (some of them are also of charge-transfer type) and belong to the class of
strongly correlated systems. The origin of correlations in TMO’s is a strong Coulomb-repulsion
on the transition metal sites, which leads to localisation of electrons and insulating behavior even
though the d-bands are partially filled. Due to the highly correlated nature of the electron in-
teraction in the TMO’s, theoretical investigations employing first-principles methods to describe
the electronic structure of these materials are difficult. The LSD approximation fails to describe
correctly certain properties of these oxides, predicting too small magnetic moments and gaps or
even metallic behavior for CoO and FeO. Several approaches beyond the LSD approximation have
been applied for a realistic description of the TMO’s. Among them is the LDA+U method [118],
which achieves an effective Hubbard-splitting of d-bands using an effective Hubbard-U param-
eter. Another promising method appears to be the LDA-DMFT approach, which combines band
structure and many-body theory, the dynamical mean field theory (DMFT)[119]. However, these
methods suffer from uncertainty of the external parameter U, which is difficult to obtain from
first-principles. In contrast to these methods, the SIC-LSD approach provides indeed a parameter
free ab-initio description for the electronic structure of the TMO’s. Several investigations of TMO’s
within the SIC approximation have been made during the last decades [61, 120, 121]. Applying
this approach to TMO’s yields an improved electronic structure of these compounds which is then
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Figure 4.1. Total energies of different SIC configurations of NiO calculated in dependence of the lattice
constant for all possible 2+ and 3+ configurations, which are labeled by their local symmetry, namely t2g

and eg. The energy zero is set to the ’global’ minimum of the different configurations. The lowest energy
was found for the high symmetry state where 8 d-channels are corrected (Ni has 8 d-electrons) with valency
2+.

manifested in magnetic moments and band gaps which are in accord with experiments. All these
calculations have been done with the full SIC-LSD LMTO implementations. The main goal of the
current study is to demonstrate the validity of the LSIC approximation on the TMO’s comparing
the LSIC results with previous studies and experiment.

Prototypical TMO: NiO. For a detail comparison of the SIC-LSD KKR method with SIC-LSD
LMTO implementations, we chose NiO as a prototypical transition metal oxide, which was ex-
tensively studied both with theory and experiment. In order to find the absolute minimum of
the SIC-LSD functional, one has to explore various manifolds of localized and delocalized states.
To determine the valence configuration we performed total energy calculations of all possible
configurations localizing particular electron (3d-)states by applying to these the SI corrections.
In agreement with [120] and [61] we found the lowest total energy corresponding to the Ni
valency of 2+, when all d-electrons in one channel and 3 t2g electrons in another spin channel
are localized and have to be SI corrected. This corresponds to fullfiling the first Hund’s rule
(maximizing the spin moment). Any other configuration has a higher total energy (see Fig. 4.1).
Single-scattering properties of a nickel site and NiO density of states corresponding to the low-
est total energy configuration are demonstrated in Fig. 4.2. In Fig. 4.2(a) the shifts for the SI
corrected and uncorrected d channels of Ni are shown. It can be seen that the uncorrected d
states have a very sharp resonance just below the Fermi level. The steep resonance corresponds
to a long Wigner delay time and indicates the state is already well localized. The self-interaction
corrected d states are split according to the crystal symmetry and shifted down in energy by about
10 eV. The corresponding resonances are getting sharper, so the SI corrected d channels become
bound states. The uncorrected d states are effectively shifted upwards so that the band gap opens
up (the corresponding total DOS and d projected contributions are shown in Fig. 4.2(b).
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The density of states of NiO, calculated with the SIC-LSD KKR method, is in good agreement with
results, obtained with the full SIC-LSD LMTO implementation [61]. This can be seen in Fig. 4.3.
There we present the NiO DOS, estimated with both implementations, and compare them with
the LSD KKR calculations. Since we use the KKR method, it is not expected to get a full agreement
with the SIC-LSD LMTO calculations, especially regarding the position of the SIC corrected Ni-d
states, but they are very similar. Other properties to compare are the band gap and the local spin
moment, see the table 4.1.

TMO series. We extended our studies to the series on TMO’s which occur in the rock-salt AF II
as discussed in the beginning of this section. The results in comparison to [61, 120] are shown
in table 4.1. Figure 4.4 shows a significant improvement of the SIC-LSD calculations of the equi-
librium lattice constant, local magnetic moment and the band gap in comparison to the LSD
approach. For all TMO’s the equilibrium lattice constants, obtained within the LSD approxi-
mation, are too small, while our SIC-LSD calculations overestimate them slightly and show the
correct trend over the whole series. The same trend can be seen for local magnetic moments
on the transition metals, which are getting larger in comparison to the LSDA results and are in
good agreement with the experimental values except for CoO (this is due to not taking spin orbit
coupling into account which will increase the moment). Our local moments are comparable as
well to results obtained with the full SIC-LSD LMTO implementations. Applying the SIC-LSD
approach increase systematically the size of band gaps for all TMO’s. However, the band gap is
an excited state property and can not be correctly described with the SIC-LSD method, since the
latter is designed for description of the ground state.

In summary, we demonstrated the efficiency of the LSIC approach on the study of electronic
properties of transition metal oxides. Our results are in very good agreement with results obtained
with existing full SIC-LSD LMTO implementations and experiment. This fact demonstrates the
validity of the simplified SIC approximation, and opens new possibilities for electronic structure
studies of correlated systems. Its great potential, and in some way superiority, arises from the
local and multiple-scattering aspects through which the method lends itself easily to various
generalizations and extentions on the account of the straightforward determination of the one-
electron Green function.

Table 4.1. Lattice constants, local magnetic moments and the band gaps for the series of transition metal
oxides of our implementation, two other implementations and the corresponding experimental values. The
values in round brackets for the magnetic moment are calculated at the experimental lattice constant. Our
results compared to the experimental values can be seen in figure 4.4.

Compound
MnO FeO CoO NiO CuO

lattice constant [Å]
LSD KKR 4.22 4.17 4.04 3.98 4.08
SIC-LSD KKR 4.45 4.39 4.31 4.24 4.27
Expt. 4.446[122],4.44[123] 4.326[124] 4.26[123, 125] 4.176[126],4.17[123] 4.245[125]

local magnetic moment on TM [µB]
LSD KKR 4.07(4.27) 3.25(3.39) 2.20(2.33) 0.84(0.97) 0(0)
SIC-LSD KKR 4.60(4.60) 3.68(3.66) 2.69(2.68) 1.68(1.67) 0.76(0.76)
Expt. 4.79∗,4.58∗ 3.32∗ 3.35∗[127], 3.8∗ 1.77∗,1.64∗,1.90∗ 0.65∗

SIC-LSD LMTO[120] 4.49 3.54 2.53 1.53 0.65
SIC-LSD LMTO[61] 4.64 3.55 2.59 1.49 0.64

bandgap [eV]
LSD KKR 0.32 0 0 0 0
SIC-LSD KKR 3.29 3.40 2.76 3.44 1.79
Expt. 3.6-3.8∗ 2.4[128],2.5[129] 2.4∗ 4.3∗,4.0∗,4.3[130] 1.37∗

SIC-LSD LMTO[120] 3.98 3.07 2.81 2.54 1.43
SIC-LSD LMTO[61] 3.57 3.25 2.51 2.66 1.00
∗ taken from ref. [120], for detailed references see references therein.
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line) implementations compared to the LSD KKR calculation. The SIC results of the two different implemen-
tations are very similar.
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Å

) Experiment
SIC-LSDA
LSDA

MnO FeO CoO NiO CuO
0

1

2

3

4

5

M
ag

ne
tic

m
om

en
t(

B
)

MnO FeO CoO NiO CuO
0

1

2

3

4

B
an

d
ga

p
(e

V
)
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to the experimental value because spin orbit coupling is not included in the calculation.



5. Multiple scattering theory for surfaces and interfaces

One of the attractive features of the multiple-scattering theory is the separation of the structural
information and potential dependent single-scattering parts. This provides flexibly to apply the
KKR Green function method to systems with arbitrary geometry. To adapt a multiple scattering
formalism to a particular geometry one has to modify adequately the structure constants and take
into consideration appropriate boundary conditions. This flexibility makes the KKR Green func-
tion method very attractive for study of low dimensional systems. In particular, first-principles
treatments of electronic structure of surface and interface have been provided within a number of
Green function formalisms. One of the first multiple scattering approaches for surfaces was intro-
duced by Pendry for the analysis of LEED[19] and photoemission spectra [20]. Later, this method
was generalized for self-consistent calculations [27, 28]. With advance of the screening transfor-
mation for structure constants [52, 53] various implementations of the Green function method
have been proposed to study the electronic structure of surfaces and interfaces [55, 64, 65]. The
screened structure constants have a finite spatial extent and can be easily Fourier transformed
corresponding to the symmetry of the problem. The screened KKR matrix for layered systems
has a band form and can be efficiently inverted using a special technique with a computational
effort of O(N). The short-range character of screened structure constants allows to take properly
into account the semi-infinite nature of surfaces and interfaces. This makes the screened KKR
method particularly attractive for spectroscopy and transport applications, for which any artifical
confinement such as a supercell or a finite slab ruins the correct physical picture due to unphysical
interaction between the boundaries.

Many modern experimental methods in surface physics, such as the scanning tunnel spec-
troscopy (STM) or photoemission, require an in-depth theoretical interpretation of their results.
The importance of this fact motivated us to develop a KKR Green function method for semi-infinite
systems. This method is a part of HUTSEPOT code and designed to study electronic, magnetic
and transport properties of ordered and disordered surfaces and interface. Below presented are
the main features of this formalism based on the References [53, 55, 64, 65, 131] and focus on
an application of this approach to the photoemission spectroscopy.

5.1. Korringa-Kohn-Rostoker method for semi-infinite systems

As mentioned earlier, in the multiple scattering theory the calculation of the electronic structure
is centered around the evaluation of the one-electron Green function (2.16), from which we may
calculate the density of states, the charge density and, subsequently, the total energy. The key
equation of the multiple scattering theory is the Dyson equation

τ(E)ij =
{
[t(E)−1 − g(E)]−1

}
ij

(5.1)

for the scattering path operator τ(E)ij connecting sites i and j. Here ti(E) is the potential
dependent single-scattering t-matrix and g(E) are real-space structure constants describing the
free-particle propagator in the angular momentum representation. For systems with a two-
dimensional (2D) lattice symmetry, such as surfaces or interfaces, it is advantageous to incorpo-
rate this symmetry into the formalism and perform the 2D Fourier transformations. The lattice-
site vectors Ri can be decomposed as follows:

Ri = R‖ + Suα (5.2)
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Figure 5.1. Schematic representation of a semi-infinite system, consisting of two semi-infinite regions L and
R separated by a interface spacer I.

with u referring to the atomic position within a plane, and α labeling different planes. Employing
the 2D Fourier transformed τ matrix,

τuα,vβ
L,L′ (k‖; ε) =

∑
R‖

eik‖R‖ τL,L′(R‖;Suα,Svβ ; ε) , (5.3)

and the corresponding 2D Fourier transformation for structure constants g(E), the Dyson equa-
tion (5.1) can be reformulated as

τuα,uβ(k‖;E) =
{
[t(E)−1 − g(k‖;E)]−1

}
uα,vβ

, (5.4)

where k‖ is a vector in the 2D Brillouin zone. This equation has to be solved for the appropriate
boundary conditions. A semi-infinite system, corresponding to a surface or interface problem,
is schematically presented in Fig.5.1. It consists of two semi-infinite subsystems, L (left) and
R (right), which are separated by an interface I. The L subsystem can be referred as a host (bulk)
system, where properties can be calculated using a 3D KKR method. The right side R may be
another host material or vacuum. The interface region I is of main interest because this region
is supposed to include all layers which are perturbed by the physical interface. It should be
stressed that the left and right regions are semi-infinite and therefore, electrons in the whole
system are not confined due to artificial boundaries such as a supercell or slab construction. This
means that in order to solve the equation (5.4) one has to invert an infinite KKR matrix. The
next serious problem is the evaluation of the Fourier transformed structure constants. A direct
Fourier transformation of the real-space structure constants is not possible because of their slow
convergence. This can be done with the Ewald technique [3], separating the sum over direct
lattice vectors into two terms, both converging either in the direct or reciprocal spaces. The
Ewald method for 2D structure constants was introduced by Kambe [132–134]. Evaluation of
the Kambe structure constants is very time consuming and, moreover, the use of them makes it
difficult to take into account the infinite number of layers in the equation (5.4). A more elegant
way is to work with screened structure constants, which have short range spatial extent and can
be easily Fourier transformed by direct summation over the lattice vectors as given in Eq. (5.3).
Another important consequence of the short-range structure constants is the block-tridiagonal
form of the KKR matrix, which can be represented as follows:

τ(k‖;E)−1 ≡ M =

 MLL MLI 0
MIL MII MIR

0 MRI MRR

 . (5.5)

The scattering path operator τII(k‖;E), which refers to the interface–interface block, can be
evaluated from the following equation:

τII(k‖;E) =
[
MII −MIL(MLL)−1ML,I −MIR(MRR)−1MR,I

]−1
. (5.6)
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The main difficulty of the equation (5.6) lies in the last two terms, which include products of
infinite matrices. This problem can be solved by introducing the so-called principal-layers parti-
tioning [64, 131], where the structure constants are assumed nonzero only for nearest neighbor
principal layers:

[
MIL(MLL)−1ML,I

]PQ
= M10∆LM01δP,1δQ,1 (5.7)[

MIR(MRR)−1MR,I

]PQ
= M01∆RM10δP,NδQ,N .

Here P , Q are principal layer indices and the quantities ∆L and ∆R are related to the surface
Green function in a tight-binding formalism [55, 64, 131]. The equations (5.7) can be effectively
solved using the so-called decimation technique [135, 136], which is based on an iterative algo-
rithm for treating infinite band matrices. Since the screened structure constants couple only a few
neighboring layers, e.g., the nearest and next nearest layers, one can use a special algorithm for
the matrix inversion [137] and, therefore, the number of computational steps needed to calculate
the diagonal block matrices Eq. (5.6) scales linearly with the number of layers in the interface
region. After solving the Dyson equation (5.4) the scattering path operator in this region can be
evaluated by the following 2D Brillouin zone integral:

τL,L′(R‖;Suα,Svβ ; ε) =
1
Ω

∫
dk‖τ

uα,vβ
L,L′ (k‖; ε)e−ik‖R‖ , (5.8)

where Ω is the volume of the two-dimensional Brillouin zone.

Once the layer-resolved scattering path operator (5.8) is determined, one can evaluate the one-
electron Green function (2.16) and the corresponding density of states, charge and magneti-
zation densities, the effective potentials and the total energy of the interface region. For the
self-consistency it is very important to solve properly the Madelung problem taking into account
appropriate boundary conditions. In our implementation we followed prescriptions suggested
in [27, 28, 64] and extended the method to a full-potential approach.

After the self-consistent potentials of the interface region are established, the Green function may
be used for many applications in surface and interface physics such as transport or angle-resolved
photoemission.

Numerous successful applications of our method are presented in the appended publications.

In the references [P7,P8] we apply our method to study Fe/MgO/Fe(001) magnetic tunnel junc-
tion. This system is of particular interest because of a significant tunnel magnetoresistance effect,
which was observed in this system. To study the impact of the crystal structure on Fe/MgO
interface we calculate the electronic structure and the ballistic conductance within the Landauer-
Büttiker theory. The conductance was estimated using omni2k [138] code on the bases of the
self-consistent potentials obtained with using the HUTSEPOT program. Our calculations show
large TMR values in the symmetric interface configuration, while asymmetric interface config-
uration decreases substantially the TMR effect. We explain this different behavior by interface
resonance states induced by the FeO layer, which in the case of a symmetric magneto tunnel
junction are present on both sides of the spacer. This leads to a strong enhancement of the
conductance through these states.

In the next publication[P9], we focus on the Coulomb staircase in small Fe islands in Fe/MgO/Fe
tunnel junction. The experimental analysis of the Coulomb staircase energetics reveals the ex-
pected linear behavior for electrostatic interaction. For ferromagnetic Fe islands, however, a
significant offset of 1 eV was found, which is missing in the case of nonmagnetic Pd islands. This
effect is explained by the spin dependence of the electronic transport across the MgO barrier in
combination with a quasi-half-metallic density of states of the Fe islands, as corroborated by our
first-principles electronic-structure calculations.

A study of surface relaxations of TiO2 (110) (a combined study with HUTSEPOT and CRYS-
TAL [139] codes) is presented in the publication [P10]. Successful structure determination en-
tailed the development of adjustable parameter free self-consistent phase shifts, which provide
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a more reliable description of the electron scattering than traditional approaches. The resulting
optimized structure is remarkably consistent with that emerging from recent state of the art ab
initio calculations. Additionally, the impact of soft surface vibrational modes on the structure de-
termination has been investigated. It was found that the soft surface mode identified in this study
has no significant bearing on the interpretation of the LEED-IV data, in contrast to suggestions in
the literature.

A combined experimental and theoretical study of a giant spin splitting in the long-range sur-
face alloy Bi/Ag(111) is presented in the reference [P11]. The long-range ordered surface alloy
Bi/Ag(111) is found to exhibit a giant spin splitting of its surface electronic structure due to spin-
orbit coupling, as is determined by angle-resolved photoelectron spectroscopy. First-principles
electronic structure calculations (HUTSEPOT and omni2k) fully confirm the experimental find-
ings. The effect is brought about by a strong in-plane gradient of the crystal potential in the
surface layer, in interplay with the structural asymmetry due to the surface-potential barrier. As a
result, the spin polarization of the surface states is considerably rotated out of the surface plane.

As a further example we present a formalism for calculating the angle-resolved photoemission
based on our KKR Green function implementation.

5.2. Application: First-principles angle-resolved photoemission

In the photoemission process an electron absorbs a photon with the energy ~ω and is excited into
a formally unoccupied state. If its energy is high enough to overcome the surface barrier, the elec-
tron can escape into the vacuum and eventually reach the detector. On its way through the solid
the electron undergoes scattering processes with the lattice, the other electrons, and the phonons.
The former will be treated by the multiple scattering theory, while the latter processes are many-
particle processes, which are accounted for by the self-energy. The whole process can be described
by non-equilibrium many-particle perturbation theory, as presented by Caroli et al. [140]. The
lowest-order diagram of the expansion by Caroli et al. corresponds to the independent-particle
picture of the photoemission [141]. Several efficient computational schemes, using a multiple-
scattering description, have been developed within the independent particle approximation. In
particular, the one-step model of the photoemission, developed by Pendry[20] using the layer
KKR method has been successfully used in this field. This theory has been implemented in many
flavors [21, 41, 142], but most of them are too complicated and restricted to special symmetries
of the system. Here I describe a first-principles computational approach to the photoemission,
based on multiple-scattering theory within the independent-particle approximation. The main
advantage of this method is a unified treatment of the electronic structure and the photocurrent,
using the Green function approach developed by Györffy and Stott [12] and the concept of the
non-relativistic real-space theory for the photoemission by Durham [22].

Following the concept of the real-space photoemission formalism, the Green functions in the
photocurrent formula can be expressed through the scattering matrix, τ , in the real-space rep-
resentation. The real-space multiple-scattering theory offers a fertile field for investigations of
systems with arbitrary arrangement of atoms. By making the appropriate Fourier transformation
the formalism can easily be specialized to more symmetric systems, such as surfaces or multi-
layers.

In the present approach the self-consistent potentials for the photocurrent calculations have been
obtained using the same formalism as for the photocurrent. We have implemented the KKR
method both in the unscreened (Kambe [132–134]) as well as screened representation of the
method [53, 64].

Here we will use the lowest order diagram of the expansion by Caroli [140] only, in which the
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photocurrent at distance R is given by:

R2Jλ(ε, ω) =
k

4π

1
(cπ)2

∫
d3r

∫
d3r′ Ψ>(r;k) Ôλ(r) ImGr(r, r′; ε)×

×Ôλ†(r′) Ψ∗
>(r′;k) Θ(EF − ε) Θ(ε + ω − Vvac), (5.9)

where Gr(r, r′; ε) is the retarded Kohn-Sham Green function of the system, EF is the Fermi energy
and Vvac is the vacuum potential.

Ôλ(r) =
1
2c

[
Aλ(r)p̂− p̂Aλ(r)

]
(5.10)

describes the interaction with λ-polarised light, and Ψ>(r;k) is the so-called time-reversed LEED
state, representing electrons leaving the solid into the vacuum. It is derived from the asymptotic
form of the Green function and can be expressed via

Ψ>(r,k) = eikr +
∫

d3r′eikr′v(r′)Gr(r′, r; ε̃), (5.11)

where k is a wave vector of the emitted electron. We can now insert the KKR form of the Green
function (2.16) into the LEED state (5.11) and the expression for the photocurrent (5.9), and
obtain its scattering matrix representation. This can be decomposed into two contributions, ac-
cording to the on-site and off-site terms in the scattering matrix representation of the Green
function

R2Jλ(ε, ω) = Mλ(ε, ω) + Iλ(ε, ω) . (5.12)

For systems with a 2D lattice symmetry the off- and on-site contributions are respectively:

Mλ(ε, ω) = N
4πk

(cπ)2ω2
Im

∑
uα
vβ

∑
LL′

∑
L2L′

2

Uuα
L2

(k, ε̃)eiqSuα

×

F
uαλ(1)
L2L (ε, ω)τuα,vβ

LL′ (k‖ + q‖; ε)F
vβλ(2)
L′

2L′ (ε, ω)×

e−iqSvβ

Uvβ∗
L′

2
(k; ε̃) (5.13)

Iλ(ε, ω) = N
4πk

(cπ)2ω2
Im

∑
uα

∑
LL′

Uuα
L (k, ε̃) Duα,λ

LL′ (ε, ω) Uuα∗
L′ (k; ε̃), (5.14)

where we have introduced the definitions

Uuα
L (k, ε̃) =

∑
L1

il1 Y ∗
L1

(k̂)
∑
vβ

eikSvβ

τvβ,uα
L1L (k‖; ε̃) (5.15)

F
uαλ(1)
LL′ (ε, ω) =

∫
d3ruαZuα

L (ruα, ε̃) χ̃λ
uα(ruα) Z̄uα

L′ (ruα; ε) (5.16)

F
uαλ(2)
LL′ (ε, ω) =

∫
d3ruαZuα∗

L (ruα, ε̃) χ̃λ
uα(ruα) Zuα

L′ (ruα; ε) (5.17)

Duαλ
L2L′

2
(ε, ω) =

∑
L

∫
d3ruα

∫
d3r′i Zuα

L2
(ruα; ε̃) χ̃λ

uα(ruα)Z̄uα
L (r<; ε)×

Juα
L (r>; ε) χ̃λ

uα(r′uα) Zuα∗
L′

2
(r′uα; ε̃). (5.18)

To demonstrate the method described above, we choose the well studied copper surface, and,
in particular, we investigate the features of the sp-band, seen on the (100) surface, and the
surface-state on (111) surface. The potentials for the respective calculations were determined
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self-consistently using the layer-KKR method, presented in Sec. 5.1. The potentials for the in-
terface system, consisting of 10 Cu layers and three layers of empty spheres (to represent the
vacuum) have been updated self-consistently. In what follows we refer to the surface layer of this
system as S and to the subsequent layers below the surface as S−1, S−2, . . . . The empty sphere
layers are denoted by S1, S2, . . . . The boundary conditions for both infinite half spaces are such
that the Cu bulk potential has been used for all layers from S−11 to S−∞ and the empty sphere
potential of the outermost vacuum layer, S3, has been repeated for S4 to S∞. In the calculations
these infinite half spaces have been treated with the decimation technique [137]. Therefore the
potentials, used for the (100) and (111) surfaces differ from each other. As a demonstration of
this, we show in Table 5.1 the evaluated work functions, which were then used in the photoemis-
sion calculations.

present work Turek Skriver Experiment
Cu (100) 5.25 5.21 5.26 4.59
Cu (111) 5.46 5.16 5.30 4.94

Table 5.1. Workfunctions Φ in eV obtained in this method compared with other theoretical and with
experimental values, both taken from references [143, 144]
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Figure 5.2. Photocurrent of Cu (100) at 21.2 eV in the ΓXULK -plane. The calculations were performed
with hole linewidth of 0.05 eV and an electron linewidth of 1.3 eV. 11 Cu layers and 10 vacuum layers were
contributing to the photocurrent, and the KKR matrix was inverted for a system of 16 Cu and 15 empty
sphere layers.

Figure 5.2 shows a series of photoemission spectra for different emission angles. What can be
clearly observed here is the d-band feature at binding energies between -2 and -4 eV, and the sp-
band reaching up to the Fermi-level. These results are in good agreement with the experimental
spectra and previous calculations [145]. As another example of our photoemission approach, we
study the surface state on the (111) surface of copper. The experimental [146] and calculated
results for the total photocurrent at 21.2 eV photon energy are shown in Figs. 5.3 and 5.4. The
surface state is clearly observed at -0.9 eV in the calculations. Since it is only visible with p-
polarised light, one can already conclude that the state has Λ3 symmetry. The position of the
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surface state in the theory is about 0.4 eV lower than in the experiment. This error is related to
the LSD approximation, which is known to fail on correct description of surface states in nobel
metals.

Thus, we demonstrated, that our method can reproduce experimental spectra. For an interpreta-
tion of photoemission experiments we combine a photocurrent study with investigating the Bloch
spectral function calculated with the same method. This combination provides insight into the
nature of the photoemission peaks. Another strong point of this method is that the self-consistent
calculation and the calculation of the spectral functions and the photocurrent are based on the
same method and are preformed with the same code. More details of our approach can be found
in the related papers [26, 82].

An example of a photoemission study in the Ag/V (001) multilayer system is presented in the
attachment [P12]. Quantum-well states in the Ag films show the typical dispersion with film
thickness, but their spectral densities differ significantly from those of model systems. Ab initio
calculations for several systems (bulk, surfaces, interfaces, and thin films) reveal as origins band-
structure effects and hybridization between Ag and V states. Quantization effects show up as
intensity oscillations in the constant-initial-state mode of photoelectron spectroscopy.
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Figure 5.3. Experimental photocurrent of Cu (111) at 21.2 eV normal emission.
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Figure 5.4. Polarisation resolved photocurrents of Cu (111) at 21.2 eV normal emission.



6. Conclusion and outlook

In this thesis there are presented some novel aspects of the multiple-scattering theory, designed
for first-principles electronic structure calculations of complex materials.

One of the important new features is the multiple scattering implementation of the self-interaction
correction (SIC) approach, which enables realistic electronic structure calculations of systems
with localized electrons. This formalism is generalized to the coherent potential approxima-
tion (CPA), extending the application area to random alloys. A combination of the SIC approach
and the CPA allows for descriptions of static charge and spin fluctuations in terms of a pseudoalloy,
composed of the delocalized and localized states with different orientations of the local magnetic
moment. The generalization of this formalism to finite temperatures opens for the SIC approach
new application fields such as phase transitions or thermal fluctuations in correlated materials.
The functionality of this method was demonstrated on the application to the Ce α-γ transition,
on the study of magnetic and structural properties of rare earth elements and transition metal
oxides.

Another important innovation of this thesis is the implementation of the self-consistent non-local
CPA (NLCPA) approach, which takes into account charge correlations around the CPA average and
chemical short range order. Several improvements for the basic algorithm and a symmetrization
of the fundamental coarse-graining procedure were elaborated to optimize the computational
performance of the NLCPA method. This formalism was extended to the relativistic treatment of
magnetically ordered systems. The power of the NLCPA scheme was demonstrated by applications
to Cu50Zn50, Cu60Pd40, Cu77Ni23 and Fe50Pt50 random alloys.

Many conceptual improvements of the KKR Green function formalism were suggested in this
work. The most important of them is the implementation of the Lloyd formula, which signif-
icantly accelerates the angular momentum convergence of the Green function and minimizes
errors due to the truncation of the angular momentum summations. A combination of the Lloyd
correction with the full charge density or full potential approaches enables very accurate total en-
ergy calculations which are comparable to well established all-electron full-potential variational
methods.

All these new features are implemented within the multifunctional KKR Green function code HUT-
SEPOT, which is designed to study structural, electronic, magnetic, transport and spectroscopic
properties of ordered and disordered systems with arbitrary symmetries. The versatility of the
method is illustrated in numerous applications presented in the appended publications.

The presented formalism has a flexible design and is being constantly developed and improved.
The great potential of this method is the straightforward determination of the one-electron Green
function, which is an important constituent of many applications. Presently, a GW approximation
for the description of excited state properties and a non-adiabatic spin dynamic approach are
under construction. Further development of this method can be proposed to a first-principles
dynamical mean field theory (DMFT). This can be achieved by the inclusion of dynamical valence
and spin fluctuations in the framework of the SIC-LSD formalism. In this respect, short-range
correlations of spin and charge fluctuations in many-electron systems can be described with the
NLCPA approach.
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