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1. Introduction

Cubic zirconia (c-ZrO2) is an industrially attractive material that has a wide range of

applications. It is used in automotive sensors [1] and solid electrolyte fuel cells [2, 3]

because of its high-temperature ionic conductivity. Besides, cubic zirconia is known

to be widely utilized in jewelry as a remarkable substitute of natural diamonds. Other

phases of zirconium dioxide, i.e. the tetragonal and monoclinic modifications, are of

high interest due to the transformation toughening of materials involving the

tetragonal-to-monoclinic transformation [5, 6] as well as ferroelastic behavior of the

metastable t’-ZrO2 phase [7]. Both phenomena can increase the strength and fracture

toughness of zirconia-containing ceramics. The former is used in zirconia toughened

alumina alloys (ZTA) known for their high wear resistance [8]. The tetragonal phase

may also be dispersed as precipitates in a cubic zirconia matrix leading to the so-

called partially stabilized zirconia (PSZ). Owing to precipitation hardening, these

materials have a high flow stress up to high temperatures [9]. That the plastic

properties of the different zirconia-based materials can be understood, an in-depth

background in the microprocesses of deformation of cubic zirconia single crystals is

indispensable, mostly because the material is a frequently used component of other

ceramics.

There have been several attempts of investigating plastic deformation of cubic

zirconia single crystals so far, and during different periods of time [4, 10-27]. Cubic

zirconia is a high-temperature phase of zirconia. It can be stabilized down to room

temperature by adding aliovalent oxides, particularly Y2O3 or CaO [28-30]. The

previous papers on deformation of cubic zirconia single crystals dealt primarily with

the dependence of the flow stress on the temperature and the concentration of the

stabilizer as well as the defect microstructure of deformed specimens, i.e. with studies

of the dislocation structure and of point defects [31-35]. From the studies of the

dislocation structure and macroscopic deformation parameters, several dislocation

mechanisms have been identified (for a review, see [17]). The mechanisms govern the

flow stress of the zirconia single crystals at different temperatures. These are lattice

friction at low temperatures, thermally activated overcoming of localized obstacles
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and athermal long-range dislocation interactions at intermediate temperatures, and

dislocation recovery at high temperatures.

In spite of the substantial amount of work done on the plastic deformation of cubic

zirconia, the basic deformation processes are still incompletely understood. Firstly,

most of the former studies were performed at high temperatures, particularly at

1400°C. Only the experiments of Teracher et al. [15] under a confining pressure and

of the plasticity group at the Max Planck Insitute in Halle [4, 17-22, 46, 47] span the

temperature range below about 1200°C revealing the dislocation mechanisms listed

above. However, the latter experiments are restricted mostly to a single specimen

orientation and a single concentration of the yttria stabilizer. Therefore, it is not clear

whether these mechanisms act on all possible slip systems in zirconia. Secondly, very

little is known about the ways that yttria dopant influences the flow stress. In view of

this, the objective of this thesis is to carry out a detailed study on the plastic

deformation of c-ZrO2 with two main series of experiments:

- activation of other slip systems by applying another sample orientation with the same

yttria concentration as that done so far in [4] and the related papers;

- using other (higher) stabilizer concentrations with the same sample orientation as

that done so far.

To achieve these goals, compression experiments are conducted in air at a constant

strain rate at various temperatures. The microstructure after deformation is

investigated by transmission electron microscopy. It was tried to attain experimental

temperatures as low as possible, taking due account that cubic zirconia single crystals

is very brittle at these temperatures. All the experiments are aimed at clarifying the

deformation mechanisms on different slip systems of cubic zirconia and at the part of

the yttria stabilizer in controlling the flow stress.
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Fig. 2.1.1. Definition of the
orientation factor

2. Introduction to plastic deformation of crystals

As we know from fundamentals of plastic deformation of crystalline solids (e.g. [36]),

Hooke’s law is valid only in the elastic region of deformation. With increasing stress,

the proportionality between the stress and strain gradually vanishes, and a range of

plasticity occurs. Unlike the elastic range where deformation is fully reversible,

applying a stress in the anelastic region results in a permanent plastic strain.

2.1. Microscopic models of plastic deformation of crystalline solids

2.1.1. Critical resolved shear stress

In crystalline materials, plastic deformation usually occurs by glide on slip planes

along certain slip directions. A slip plane and a slip direction constitute a slip system.

Glide can thus be understood as sliding or successive displacement of one plane of

atoms over another one in a certain direction.

That a dislocation can start moving on its glide

plane, a characteristic shear stress is required.

Consider a cubic crystal illustrated in Fig. 2.1.1.

Let it be deformed in compression, 
�

fc  being a

compressive force applied normal to the face Ao

of the crystal. This produces a stress oc A/f=σ .

Assume a dislocation on a slip plane A sl.  with

the Burgers vector 
�

b  and a force 
�

fb  acting along

its direction. The shear stress resolved on the slip

plane A sl.  due to the applied stress equals

)d,ncos( )d,bcos( 
A
f

A
f

o

c

sl.

b
�

�

��

��

==τ (2.1.1)

where 
�

d  is the direction of compression axis, �n  is the normal to the slip plane. This

equation is Schmid’s law [37], and the product of cosines is called the orientation

factor ms . Consequently, eq. (2.1.1.) becomes

τ σ= × ms (2.1.2)

b

n

d

Ao

A sl.

fc
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with

)d,ncos( )d,bcos(ms

�

�

��

= (2.1.3)

It is possible to define a critical resolved shear stress (CRSS), above which the plastic

deformation sets in as slip on a given slip plane.

Microscopically, slip is realized by the motion of line defects in the crystal structure,

that is dislocations. While moving through a crystal, dislocations bring about the

plastic strain ε pl. . If moving dislocations of a density ρ m  are displaced by a distance

x each, the plastic strain will be ε ρpl. s mm bx= . The derivation of this equation with

respect to time yields the Orowan equation

bvsm mpl.
ρε =� (2.1.4)

where v is the velocity of the moving dislocations. The Orowan equation establishes a

direct connection between the macroscopic parameter �ε pl.  and the microscopic one v.

2.1.2. Thermal activation of dislocation motion

Consider a dislocation gliding in the x direction under an applied resolved shear stress

τ  which gives rise to a force bτ  per unit length of the line (for a review, see [38]).

Assume the dislocation encounters obstacles, each of which produces a resisting force

rf , as sketched in Fig. 2.1.2. The forces depend on the position of the dislocation with

respect to the obstacle. The obstacles can be of different nature. Let the spacing of the

obstacles along the dislocation line be l , so that the applied forward force on the line

per obstacle is blτ . At the temperature of 0 K, glide will cease if blτ  is less than the

obstacle strength fmax , and the dislocation line will stop at the position x1. In order to

overcome the barrier, the line must move to x2, which can occur on account of

thermal atomic fluctuations at temperatures above 0 K. In this case, an energy has to

be supplied

� τ−∆
2

1

x

x
r bl)dx*(f=G (2.1.5)

where G∆  is the change in the Gibbs free energy between the two states x1 and x2.
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On the other hand, when a dislocation oscillates with an attempt frequency χ  (≤ an

atomic vibration frequency) at a given temperature, it successfully overcomes

G/kT)exp( ∆−χ  barriers per second. Hence, the dislocation velocity becomes

�
�

�
�
�

� ∆=
kT
G-expv κν (2.1.6)

where κ  is the forward distance of

the dislocation after a successful

activation. Substituting this

dislocation velocity into the

Orowan equation of the

macroscopic plastic strain (2.1.4)

yields an Arrhenius rate equation for

the plastic strain rate

� � exp( )ε ε
pl. o

G
kT

= − ∆ (2.1.7)

where oε�  is the pre-exponential factor, which is supposed to be constant.

According to [39, 41-43] (for a review, see [40]), the Gibbs free energy of activation

(lightly shaded area in the Fig. 2.1.2.) is given by

W∆−∆−∆=∆−∆−∆∆ STU VSTU=G τ (2.1.8)

where ∆U  is the change of the internal energy, ∆S , the change of the activation

entropy, ∆V, the activation volume, and ∆W is the so-called work term (dark shaded

area in Fig. 2.1.2) that reflects the work done on the system by the shear stress τ

during thermal activation

xlb=W ∆∆ τ (2.1.9)

with ∆x = x2 –x1. Besides, ∆ ∆U T S−  is the Helmholtz free energy

∆ ∆ ∆F = U T S− (2.1.10)

Consequently, formula (2.1.8) becomes

xlbF=G ∆−∆∆ τ (2.1.11)

The quantity lb x∆  is the activation volume introduced above

xlb=V ∆∆ (2.1.12)

x1 x2

f

fmax

∆G

τ∆ ∆V= W
τbl

r

Fig. 2.1.2. The resisting force fr  versus
distance x for the thermal barriers that
oppose dislocation motion
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The activation volume can be understood as the activation area swept by a dislocation

segment of length l  over the activation distance ∆x multiplied by the Burgers vector

of the dislocation. This quantity is also given by the thermodynamical relation

T)G(=V
∂τ

∂∆−∆ (2.1.13)

The activation volume can be determined from macroscopical deformation

experiments by logarithmic differentiation of the Arrhenius equation (2.1.7), taking

eq. (2.1.13) into account, too

T

o

ln
kT=V

�
�
�
�

�

�

�
�
�
�

�

�

∆
∂τ

ε
ε∂
�

�

(2.1.14)

Assuming �ε o const= , this equation can be converted, so that it contains only

experimentally measurable quantities [40]

sT m
1lnkT=V �

�

�
�
�

�

∆
∆

σ
ε� (2.1.15)

where ms is the orientation factor introduced above. The term in parentheses is the

inverse strain rate sensitivity r. It will be described in chapter 2.3.

Logarithmic differentiation of eq. (2.1.7) with respect to the temperature yields the

thermodynamical activation enthalpy

H=
T
GTG=

T

ln
kT

*

o2 ∆�
�

�
�
�

� ∆−∆
�
�
�
�

�

�

�
�
�
�

�

�

τ

τ

∂
∂

∂
ε
ε∂
�

�

(2.1.16)

where S=
T
G ∆−�
�

�
�
�

� ∆

τ∂
∂  is the entropy change mentioned above. Schöck has shown

that under the assumption that the main contribution to the activation entropy results

from the temperature dependence of the shear modulus µ, the Gibbs free energy of

activation can be calculated [39]

dT
dT1

Vm
dT
dT+H

=G
s

µ
µ

σµ
µ

−

∆
∆ (2.1.17)
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This formula contains only measurable quantities, as do the equations (2.1.15) and

(2.1.16)

2.2. Dislocation mechanisms controlling plastic deformation of crystals

Fundamentally, the motion of a dislocation is opposed by two different types of

barriers: short-range interactions with dislocations that can be overcome by thermal

activation described in the chapter 2.1. and long-range interactions due to, for

instance, dislocations on parallel slip planes that cannot be surmounted with the help

of thermal activation. Thus, the (shear) flow stress comprises two contributions: the

thermal component τ * and the athermal component τ i  (e.g. [38]). Hence,

τ τ τ= +* i (2.2.1)

The long-range component τ i  leads to a local decrease in the applied stress τ , so that

only the component τ *  acts to overcome the short-range obstacles. τ *  is therefore

called the effective stress. Dislocation mechanisms governing the plastic deformation

of solids will be hereafter considered with respect to their contributions to the thermal

and athermal parts of the flow stress.

2.2.1. Thermally activated contribution

Lattice friction (Peierls mechanism)

Because of the periodicity of the crystal structure, a moving dislocation in a crystal

experiences a potential energy, or more exactly a free energy, of displacement that

varies with the lattice periodicity. This potential energy is called the Peierls potential.

The stress necessary for the dislocation to surmount it is named the Peierls stress (for

reviews, see [44-48]). In the case of a screw dislocation at 0 K, this stress is given by

)
b

a2exp(
)-(1

2
.fr.

π
ν
µτ −= (2.2.2)

where µ  is the shear modulus, ν , Poisson’s ratio, and a, the interplanar distance

between neighboring glide planes. Twice the amplitude of the periodic part of the

Peierls potential is called the Peierls energy, and it is related to the Peierls stress by

πτ ab/U fr.fr. = (2.2.3)



2.2.       Dislocation mechanisms controlling plastic deformation of crystals

8

Consider the influence of temperature on the dislocation movement. At a finite

temperature, a dislocation cannot be completely straight, and it does not overcome the

Peierls barrier simultaneously all along its line but contains so-called kinks due to

thermal fluctuations. Two kinks of opposite sign (a kink pair) place short dislocation

segments into the adjacent lattice energy valleys (energy minima), the distance

between which equals the distance between two neighboring rows atoms, i.e. the kink

height h.

Under a small applied stress, the

kinks undergo a diffusive drift,

thereby bringing about the glide

motion of the entire dislocation.

Consider a kink in a screw

dislocation, and let τ  be the shear

stress component in the glide plane,

acting in the direction of 
�

b  (Fig.

2.2.1.) The velocity of the kink is then

kT
bhD

kk

τυ = (2.2.4)

where Dk is the diffusion coefficient of the kinks. In the limit of small external stress,

the concentration of the kinks is almost equal to their thermal equilibrium

concentration

c = 2
d

F
kTk

kexp −�
�
�

�
�
�

∆
(2.2.5)

where d is the shortest repeat distance along the dislocation line, thus being of the

magnitude order of b. All these kinks have a drift velocity given by the equation

(2.2.4), with the positive and negative kinks drifting in opposite directions. The net

velocity of the dislocation normal to itself is then

kkhc= υυ (2.2.6)

Combining the three equations (2.2.4) to (2.2.5) yields the dislocation velocity

�
�

�
�
�

� ∆
−=

kT
F

expD
kT d
bh2 k

k

2τυ (2.2.7)

y

x

h

b

k

Fig. 2.2.1. A kink moving with
a velocity υ k  under an applied stress
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It can be shown that this relation is valid in a broad range of stresses [44]. The kink

formation energy can be expressed by the Peierls energy

)(2U)h/2(=F fr.k
Γπ∆ (2.2.8)

where Γ  is the line tension.

Chemical hardening: solution and precipitation hardening

Solution hardening is defined as an increase of the flow stress of a crystal containing

non-diffusing foreign atoms dissolved in its lattice owing to interactions between the

atoms, so-called solute atoms, and dislocations in the crystal. The dislocations are

hindered by these interactions. At zero temperature, their movement is possible only if

the applied shear stress is higher than a critical shear stress τ c  [49, 50]. At the critical

stress, the force a dislocation exerts on the obstacles blcτ  is just high enough to

overcome the interaction force of the obstacles. In addition to electrical interactions in

ionic crystals and semiconductors, the origin of the local interaction forces fint may be

due to the paraelastic interaction on account of a size misfit between the solute atoms

and the matrix as well as due to the dielastic interaction because of a modulus misfit

between them. There may also be interactions owing to a possible non-spherical

symmetry of the stress fields of the point defects.

Real crystalline solids frequently contain a certain amount of precipitates, that is

extrinsic particles. Dislocation interaction with these defects causes the so-called

precipitation hardening. Two different cases of such interactions may occur. The

particles may be either impenetrable or penetrable for dislocations [51]. In the former

case, a dislocation is forced by the applied stress to bow around the particle and by-

pass it. The by-passing dislocation leaves a loop around the particle. This mechanism

was suggested by Orowan and is therefore called the Orowan mechanism. In the latter

case, the particle is sheared by the dislocation as the latter moves through the crystal.

This can only occur if the interface between the particle and the matrix is coherent.

The coherent interface does not show any geometric discontinuity in the atomic

arrangement.

Both the Orowan and the cutting mechanisms can be discussed in terms of the

interaction of a single dislocation with a linear array of particles of diameter D and a
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center to center distance l between them. This discussion leads to an expression for

the critical resolved shear stress needed for the dislocation to overcome a row of

equidistant obstacles in the slip plane as shown in Fig. 2.2.2. The dislocation line is

pressed against the row by the applied stress and bends between the particles with a

bending angle ψ .

The angle ψ  depends on inter-particle distance l, their diameter D, the increase in the

applied shear stress ∆τ  due to the interaction with the particles, the magnitude of the

Burgers vector b, and the line tension Γ  according to the equation

∆ Γτ ψb(l - D) = 2 sin (2.2.9)

The right part of this equation describes the pinning force exerted by each particle on

the dislocation

f sinpin = 2Γ ψ (2.2.10)

Depending on the origin of the interaction between the particle and the dislocation,

there exists a maximum force fm, which the particle can sustain. Its value depends on

the distance of the slip plane with respect to the particle center. If this maximum force

is reached before the bending angle becomes 90°C, the particle will be cut by the

dislocation. However, in the case that the bending angle becomes 90°C before fm is

reached, the dislocation by-passes the particle by the Orowan mechanism. Assuming

this is the beginning of plastic deformation at 0 K, the following equations indicate

the increase in CRSS, ∆τ o :

Cutting mechanism D))-b(l/(fmo =∆τ  for fm < 2Γ (2.2.11)

Orowan mechanism D))-b(l/(2o Γ=∆τ  for Γ≥ 2fm (2.2.12)

D

l
ψ

Fig. 2.2.2. Interaction of a
dislocation with a row of obstacles
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If the precipitates are small, they can be treated similarly to the solute atoms. In this

case, the obstacles interact with the dislocations only along a short part of their total

length. The obstacles can then be called localized obstacles or point obstacles (D=0)

in eq. (2.2.11). Up to this point in our approach, the obstacles were considered to be

arranged in a regular array. In practice, they are distributed irregularly, which can be

treated in many cases by a random arrangement, as shown in the Fig. 2.2.3. In this

case, the average obstacle spacing becomes dependent on the stress, and eq. (2.2.11)

thus reads

f bl(m c c= τ τ ) (2.2.13)

The statistical problem was treated for

the first time by Friedel [52]. The

average spacing between obstacles is

l = (2 b c)c
1/3Γ / τ (2.2.14)

where c is the atomic fraction of foreign

atoms. Combining the last two equations

yields

τ c m
3/2 1/2 2 1/2f c b (2 )= / Γ (2.2.15)

This formula describes the contribution of a random array of localized obstacles to the

flow stress at zero temperature. At finite temperatures, this theory has to be combined

with the theory of thermal activation, described in chapter 2.1.2. The Orowan process

is always of athermal nature.

2.2.2. Athermal contribution to the flow stress

Consider two screw dislocations 1 and 2

lying parallel to the z axis (Fig. 2.2.4.) [38,

53]. Assume that y is constant. The

interaction force per length between the two

screw dislocations with respect to the

motion in x direction is

22

2

x yx
x

2
b=f

+π
µ (2.2.16)

The maximum interaction force is obtained

l

0

y

x

1

2
x, y

Fig. 2.2.3. Dislocation in a field
of point obstacles

Fig. 2.2.4. Interaction between two
screw dislocations
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by differentiation of this equation with respect to the coordinate x of dislocation

motion with subsequently equating the result to zero, which yields

0=
)y(x

xy
2
b

x
f

222

222
x

+
−=

π
µ

∂
∂

(2.2.17)

and hence

y4
b=f

2

 xmax π
µ± (2.2.18)

According to Taylor’s theory, the critical shear stress to move one dislocation in the

array of other parallel dislocations can be identified as the stress required to force two

dislocations lying on parallel slip planes of a minimum spacing y  past each other

against their elastic interaction just defined. Hence,

y4
b

p π
µ=τ (2.2.19)

Should the stress exceed the interaction force between the two dislocations, they can

pass against each other. The minimum slip plane distance is considered to be some

fraction of the average mutual dislocation distance. In an array of parallel dislocations

of a density ρ , the average distance is 2/1−ρ≈ , so that the contribution of the

interaction between parallel dislocations to the flow stress can be rewritten as

1/2
p 2

b ρ
π

µατ = (2.2.20)

where πα 2/  is a numerical constant of about 0.5.

2.2.3. Work-hardening and recovery

During deformation, the dislocation density increases, giving rise to an increase in the

athermal component of the flow stress, in accordance with eq. (2.2.20). The increase

of the flow stress is called work-hardening. Recovery is a thermal diffusional

rearrangement of crystal defects where internal strains present in a crystal are

relieved. Such a rearrangement may result in dislocation migration and annihilation

leading to energetically favorable dislocation arrays like subgrain boundaries, with the

subsequent growth of the subgrains [54, 55]. This phenomenon is named

polygonization. When it takes place, the flow stress of a crystal decreases, and the

latter becomes more ductile. Apart from the poligonization, the decrease of the flow
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stress is also associated with mutual annihilation of dislocations (e.g. [36]). There are

several recovery controlled creep models of crystals known up to date, and we will

briefly consider the most essential points of these. Firstly, we assume that the applied

stress of creep is a function of time and strain [56]

εε
∂ε
∂σ

∂
∂σσ

ε

d+dt =ddt
t

=d rec
t

ΘΥ−�
�

�
�
�

�+�
�

�
�
�

� (2.2.21)

where Υrec and Θ  are defined as the

recovery rate and the work-hardening

rate, respectively (Fig. 2.2.5.). During

creep at constant stress, the last

formula turns into the Bailey-Orowan

equation. Consequently, the steady

state strain rate can be expressed

�
( /
( /

ε ∂σ ∂
∂σ ∂ε

ε
st

t

t)
)

= − (2.2.22)

and it is reduced to

�ε st
rec=

Υ
Θ

(2.2.23)

2.3. Macroscopic compression experiments

The previous chapters show that the flow stress measured during a deformation

experiment depends on the temperature and the strain rate applied owing to the

thermal part of the flow stress. Furthermore, the deformation behavior is a function of

the crystal orientation in accordance with Schmid’s law. Since the microstructure of

the sample is changed during the deformation as a result of dislocation production and

annihilation, the deformation behavior depends also on the degree of the sample

deformation. Therefore, the crystal microstructure should be considered a function of

the strain [57, 58].

2.3.1. The stress-strain curve

One of the macroscopic methods to study plastic deformation consists in compression

tests along a defined deformation axis. The material is deformed at a constant strain

0
=                         

0t
=recY

→∆
�
�

�
�
�

�

∆
∆Θ

→∆
�
�

�
�
�

�

∆
∆

σε
σ

σ

σ

∆t

∆ε
−∆σ

+∆σ

=                         
t

=recY �
�

�
�
�

�

∆
∆Θ�

�

�
�
�

�

∆
∆

ε
σσ

Fig. 2.2.5. Schematic display for
estimating recovery and work-hardening
rates
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rate and temperature, and the stress-

strain or deformation curve, i.e. a plot

of the stress applied to the sample

versus its strain, is measured (e.g.

[59]). It can have several different

regions, two of them being the yield

point and work-hardening ranges, as

shown in Fig. 2.3.1. The former

constitutes a phenomenon where after

the stress reaches a maximum (the

“upper yield point”), a finite amount of plastic deformation occurs at decreasing

stress, so that the flow stress drops to the level of the “lower yield stress”, after which

the plastic deformation can occur without adding to the stress. This interval is called

the steady state. After that, work-hardening starts taking place, that is the flow stress

increases constantly as the strain rises. The work-hardening may be of various origins

[36]. Mainly, the increase of the flow stress is a consequence of the increasing

dislocation density. This can be due to the mutual interaction between dislocations

moving on parallel slip planes, as was described by eq. (2.2.20) of chapter 2.2.2.

Besides, dislocations moving on non-parallel slip planes intersect each other. Hence,

the produced elastic interactions give rise to the flow stress, with the latter depending

on the dislocation density in a similar way as eq. (2.2.20) says. In addition, dislocation

intersections result in the formation of jogs, the motion of which contributes to the

flow stress, too. The work-hardening coefficient is inferred from eq. (2.2.21), and

according to [60], becomes

Θ = ∂σ
∂ε ε� , T

(2.3.1)

The total strain during a compression experiment consists of elastic and plastic parts

pl.pl.el.
E/ ε+σ=ε+ε=ε (2.3.2)

where ε el.  is a function of compressive stress according to Hooke’s law. E is Young's

modulus. As a result, the total strain rate �ε  contains elastic and plastic parts

E/pl. σ+ε=ε ��� (2.3.3)

up.

 l.

Fig. 2.3.1. Schematic representation of the
yield point effect. σ up.  and σ l.  are the
upper and lower yield stresses, respectively
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By means of special tests within the macroscopic deformation experiments, one can

identify the parameters of thermal activation described in chapter 2.1.2. Their

numerical values allow one to conclude on the mechanisms controlling the plastic

deformation, which were discussed in chapter 2.2.

2.3.2. The strain rate sensitivity

The dependence of the flow stress on the plastic strain rate can be expressed using the

so-called strain rate sensitivity:

pl.

.
ln

=r
ε

σ

∂

∂ (2.3.4)

or the stress exponent

σ∂
ε∂

ln
ln=m*
�

(2.3.5)

The strain rate sensitivity can be measured by a strain rate cycling experiment. It

consists in an instantaneous change of the strain rate �ε  of the compression

experiment, so that one can identify the resulting stress increment ∆σ  and hence r

according to eq. (2.3.4)

Another way to obtain the strain rate sensitivity is to do stress relaxation tests. These

are a sudden stop of the loading process where the sample continues to deform at a

diminishing strain-rate and under the action of a decreasing stress, while the total

strain remains constant [61, 62]. Therefore, the plastic part of the strain rate becomes

proportional to the negative stress rate according to equation (2.3.3)

E/pl σε �� −= (2.3.6.)

If one plots the logarithm of the negative stress rate versus the decreasing stress, one

obtains the so-called relaxation curve of the test, the inverse slope of which is the

strain rate sensitivity r.

2.3.3. The temperature sensitivity

The temperature sensitivity of the flow stress 
T∆

∆− σ  is measured by means of

temperature cycling tests. During such a test, the sample is unloaded, the specimen

temperature is increased or decreased, and the sample is reloaded. Hence, an
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increment of the flow stress ∆σ  appears. Using eq. (2.1.16) and keeping in mind that

ετ

τ
τ

εεεε
�

����

T
*

/ln
T
/ln

T

oo

∂
∂

∂
∂

−=
∂

∂
 [53], the activation enthalpy can be calculated

�
�

�

�

�
�

�

�

+
�
�

�
�
�

�

∆
σ∆∆

21
21 rr

2
T

TkT -=H (2.3.7)

where k is the Boltzman constant, T1 and T2 are temperatures before and after the

change takes place, and r1 and r2 are the strain rate sensitivities before and after the

cycle. This equation deals with the proper averages of the temperatures and strain rate

sensitivities before and after the temperature change.
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3. Cubic zirconia single crystals

3.1. Structure and phase relationship of cubic zirconium dioxide

Pure zirconia (ZrO2) undergoes two crystallographic transformations between room

temperature and its melting point: monoclinic to tetragonal at ≈1170°C and tetragonal

to cubic at ≈2370°C. The volume changes associated with these transformations are

sufficiently large, so that thermal

deviations through the

transformations tend to shatter

objects made of pure zirconia.

The high-temperature tetragonal

and cubic forms can be stabilized

with a variety of oxide additions,

one of which is yttria (Y2O3) [28,

29, 63]. The relevant phase

diagram is shown in Fig. 3.1.1.

According to it, cubic zirconium

dioxide exists down to room

temperatures when the concentration

of yttria is higher than 8mol%. When investigated, cubic zirconia is mostly stabilized

with 10mol% Y2O3, so as to make sure that the tetragonal phase does not affect the

data on the cubic phase.

Cubic zirconia has the ideal

calcium fluorite (CF2) structure

[65, 66, 22]. Its lattice parameter is

0.517 nm. The zirconium atoms

are situated in an fcc lattice, i.e. at

the corners of the cubic elementary

cell as well as at the halves of the

�110� directions. Oxygen atoms lie at the

quarters of �111� directions (Fig. 3.1.2.).

Zirconium

Oxygen

Fig. 3.1.1 Phase diagram of the
ZrO2-Y2O3 system [64]

Fig. 3.1.2. Ideal cubic zirconia
elementary cell
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The space group of the structure had been believed to be Fm3m until this was proved

not to be the case. According to neutron and X-ray scattering analysis [67] and to

convergent beam electron diffraction [63], it was revealed that oxygen atoms are

displaced from their ideal position by up to 0.05 nm along the �100� or �111� axes, and

the space group P43m  was identified.

The cations of oxides stabilizing the cubic form of zirconia down to room temperature

are of lower valance than Zr. To maintain charge neutrality, either cation interstitials

or anion vacancies must form. In zirconia alloys, anion vacancies are generated. These

are thought to be largely responsible for the stabilization of the cubic phase. There is

also substantial evidence that the stabilizing cations are incorporated by substituting

zirconium.

The precise mechanism of stabilization of cubic zirconia with Y2O3 is not clear so far.

According, e.g., to [66], compensating anion oxygen vacancies must appear in the

system ZrO2-Y2O3, in order to maintain the charge balance of the composition

because zirconium valence is higher than that of yttrium. The compensating oxygen

vacancies are in some way spaced in the ZrO2-Y2O3 lattice, as are Y solute cations

[68]. Besides, each charge-compensating oxygen vacancy is generated by every two

substitutional Y atoms. There are three possibilities for the position of this vacancy

(Fig. 3.1.3.). Further, it was postulated in the same paper that the model 3 was most

consistent, i.e. no Y ion is in a nearest neighbor position of the oxygen vacancy.

Model 1: Y-Vo-Y Model 2: Y-Vo-Zr

Y Zr

Model 3: Zr-Vo-Zr

oxygen vacancy

Fig. 3.1.3. Schematic illustration of three models for cation-oxygen vacancy
association in cubic zirconia stabilized with yttrium oxide [68]
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Hence, it is inferred that the distance between yttrium and oxygen ions must remain

constant (Y maintains eightfold coordination), and this was in turn calculated to 0.233

nm. However, the mechanism whereby the oxygen vacancies retain cubic zirconia at

room temperatures remains a point to clarify.

Elastic constants of single crystals of yttria-stabilized zirconia

That one can study dislocation mechanisms controlling the flow stress of a crystalline

material, one has to be familiar with its elastic constants. In the case of cubic

zirconium dioxide, only three elastic constants C11, C12 as well as C44 have to be

introduced. There are a number of papers on the elastic constants of cubic zirconia

with respect to the yttria concentration and temperature [28, 69-71]. Temperature

dependencies of the constants are shown in Fig. 3.1.4. One can conclude from the

figure that the elastic constants decrease with increasing temperature. Unlike this, the

effect of yttria dopant concentration is somewhat more complicated since an increase

of the latter adds to C12 and C44 but diminishes C11, the explanation of which was

given in the framework of a shell model and forces of interaction in fluorite structures.

Fig. 3.1.4. Elastic constants of cubic zirconia single crystals at
different yttria concentrations and temperatures up to 700°C [28]

Fig. 3.1.5. Elastic constants of c-ZrO2 at two concentrations
of yttria and different temperatures [71]
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The figure 3.1.5. features other data on the elastic constants of cubic zirconia,

measured by Brillouin scattering experiments. The dependencies are similar to those

shown above both qualitatively and quantitatively.

Point defect structure of cubic zirconia

The properties of point defects influence the plastic deformation in many ways. At

high temperatures, dislocation climb is controlled by diffusion. Besides, the motion of

dislocations may be impeded by point defect segregation or by reorientation of defect

clusters in the stress field of the dislocations (e.g. [44]). That the incorporation of two

yttrium ions into the cubic zirconia lattice is accompanied with the formation of an

anion vacancy in order to preserve electrical neutrality, as well as the fact that such

vacancies are not arranged randomly, was already described in the subchapter 3.1 of

this doctoral thesis. It is also known there is a strong tendency for such vacancies to

cluster in pairs as well as a weaker tendency for the clusters to form even larger

aggregates having Zr3Y4O12 as the structural unit [34].

Oxygen vacancies and substitutional yttrium atoms tend to form dipoles. This

tendency was shown by [35, 31, 32] using mechanical loss (internal friction)

experiments. In turn, it leads to an atomic model of the cubic fluorite cell where

oxygen ions corresponding to 8-fold coordination are situated around the site of a Zr4+

ion which is occupied by a substitutional dopant ion (Y3+). The oxygen vacancy may

be positioned at one of eight nearest neighbor sites around the dopant ion with �111�

orientation of the dipole axis in each case. The mobility of the vacancies decreases

with increasing yttria content, whereas the diffusivity of Zr via oxygen vacancies

increases with rising concentration of Y2O3.

3.2. Dislocation plasticity in cubic zirconia single crystals

3.2.1. Glide planes, Burgers vectors, and slip geometry of c-ZrO2

Basically, the main slip system of the calcium fluorite structure is of the type

{001}1/2�110�. It was observed in [72] together with the secondary slip system
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{110}1/2�110�, although the secondary slip was reported to occur on {001}1/2�110�,

too. That dislocations can also glide on {111} planes was postulated in [73] for

UO2 whose structure is similar to that of ZrO2. In all the cases, the Burgers vector is

1/2�110� (see [74]).

More or less the same situation has been observed in cubic zirconium dioxide by

several investigators. Initially, the glide system {001}1/2�110� was observed in [27,

10], the so-called easy slip system. The compression axis was �112�. This axis is

called a soft orientation because it activates single slip on the system with the cube

plane whose orientation factor is 0.47 (the highest possible at this deformation axis in

cubic zirconia). In [11-13] and later in [23], the {001}1/2�110� primary slip system

was postulated; the experiments have been mostly performed at 1400°C. Apart from

compression experiments at a constant strain rate, a few sets of indentation tests with

yttria-stabilized cubic zirconia have been carried out by [24, 25, 65] at temperatures

up to 1000°C. Repeatedly, these indicated {001}1/2�110� slip.

Some of the above-stated

papers have also dealt with

secondary slip planes

possible in c-ZrO2 deformed

along the [112] compression

direction, which appeared to

be of the {111} type,

specifically (111)1/2[ 011]

and ( 1 11)1/2[101] with the

orientation factors of 0.41. These

are shown in figure 3.2.1

together with the primary slip plane.

In recent years, many sets of compression experiments along the [112] axis on cubic

zirconia doped with yttria have been carried out in a broad range of lower

temperatures; their results are found elsewhere [4, 18-21]. According to the post-

(001) (111)
(111)

--

[1
10
]-

[011]
- [101]

[111]

[110]

[112]

-

-

Fig. 3.2.1. Slip systems of cubic zirconia single
crystals deformed along �112 � axis [11]
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mortem optical and transmission electron microscopy analyses, the {001} slip plane

has been unambiguously confirmed the primary slip plane with the Burgers vector

1/2�110�. As far as secondary slip systems are concerned, these have been identified

as (010) and (100), their Burgers vector directions being [101] and [ 011]. This result

is rather unusual since the orientation factor of the secondary cube planes is 0.35 at the

�112� axis, whereas that of {111} planes is 0.41, and CRSS of the secondary cube

planes was concluded to be actually the same as that of {111} planes [14].

In the case of the deformation along the �100� compression direction, one cannot but

admit a serious lack of experimental data. The compression axis is chosen in order to

suppress the easy glide on the cube planes and activate other glide systems. In [10],

the duplex {111}1/2�110 �

slip was revealed at

1300°C, which was later

confirmed by [78], the

experimental temperatures

having been not higher

than 500°C, as well as in

[14] at 1400°C. The

orientation factor of the

slip system is 0.41. That the

{111}1/2�110� slip systems are

engaged during the deformation along the �100� axis was questioned in [16], and four

equivalent {110}1/2�110� systems with the orientation factor 0.5 were believed to be

activated instead, which was somewhat later confirmed in [4, 19]. These investigators

did not, however, go lower than 1150°C. All the slip systems possible in cubic

zirconia single crystals deformed in �100� compression direction are exhibited in the

Fig. 3.2.2 as a summary of the above-described studies.

3.2.2. Compression experiments at a constant strain rate

Macroscopic compression experiments on cubic zirconia single crystals have a long

historical tradition that spans more than a dozen years. We will briefly analyze some

(101)1/2[101]

(111)1/2[110]

(110)1/2[110]

-

-

-

Fig. 3.2.2. Slip systems of cubic zirconia
single crystals deformed along �100 � axis
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of these results, whereas a comprehensive review can be found in [17]. The first

attempt to study plastic deformation of ZrO2 fully stabilized with Y2O3 was made in

[27], where the deformation of the material was investigated along the �112�

compression axis at 1400°C at a strain rate of 1.3*10-5 s-1. All the studied samples

exhibited apparent well-defined upper and lower yield points followed by a

transitional region leading to flow with zero work hardening, which proved to be

similar to the dependence observed in [30], where plastic deformation of calcia

stabilized cubic zirconia was analyzed. The flow stress increased with increasing yttria

content whose maximum value was 18.0 mol%. In [10], fully stabilized zirconia

single crystals were studied at 1400°C with the same strain rate as in [27] along three

different compression axes: �100�, �111�, and �112�. The stress-strain curves of the

�111� and �112� crystals showed the yield point effect and modest work hardening

thereafter, whereas those of the �100� samples did not exhibit any yield point effect at

all, yet a considerable work hardening region occurred, which was accounted for the

difference between single and duplex slip of the deformation in �112� or �111� and

�100�, respectively, according to the opinion of the investigators. In [12-14], plastic

deformation of cubic zirconia was studied in the �112� axis in the temperature range

from 1200°C up to 1500°C. The relevant stress-strain curves did not show the yield

point effect at 1200-1300°C, which was explained by an increased work hardening

rate and decreased recovery rate with decreasing temperature.

The dependence of the flow stress of cubic zirconia single crystals on the yttria

concentration was investigated in [23] by compression tests at 1400°C. When the

dopant concentration was up to 18mol%, the stress-strain curves exhibited the yield

point. Unlike it, the stress-strain curves of the crystals stabilized with a higher yttria

content did not show the yield drop, but were serrated, which was understood by the

formation of Lüders bands in these samples. The maximum of the flow stress was

observed with the sample doped with 21mol% yttria, which was subsequently proved

in [16, 26].

A study of plastic deformation of fully stabilized zirconia doped with three different

concentrations of yttria (10, 12.5, and 15mol%) has been carried out by [15]. The
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investigators made three sets of compression experiments along �112� from 250°C up

to 550°C under confining hydrostatic pressure lest the samples have broken before the

plastic deformation began. The basic strain rate was chosen 2*10-4 s-1. It was found in

the framework of the research that the flow stress of cubic zirconia single crystals

increased with increasing yttria content up to a maximum at 15mol%, and it is with

that concentration that the yield point effect was observed at 450°C, being absent in

all the other cases, whereas work hardening was registered during most of the

experiments. As to the compression experiments along the �100� axis, these were

performed on ZrO2-10mol%Y2O3 single crystals from 350°C up to 500°C with the

same basic strain rate as in the case of the soft mode. The apparent stress-strain curves

showed the yield point effect at all temperatures barring 400°C, the flow stress of the

curves being higher than that obtained on ZrO2-10mol%Y2O3 during the deformation

along �112� at the respective temperatures, which might be because the �112�

compression samples had mostly broken before any essential portion of plastic

deformation could be attained.

Over the recent ten years, several series of macroscopic compression experiments on

cubic zirconia have also been performed, most fundamental of these being [4, 17-22]

carried out in the plasticity group in

the MPI of Microstructure Physics in

Halle. They studied the plastic

deformation of ZrO2-10mol%Y2O3

single crystals along the �112�

compression axis in the temperature

range from 500°C, for it was the

lowest possible experimental

temperature, up to 1400°C at the basic

strain rate 10-6 s-1, although several

additional tests were made at 10-4 s-1 at

1400°C. All the experiments were carried

out in air environment. According to the

results of the research, the flow stress of

Fig. 3.2.3. Stress-strain curves of
ZrO2-10mol%Y2O3 in �112 � [4]
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the cubic zirconia decreases gradually with increasing experimental temperature, as

shown in  the Fig. 3.2.3. Similarly to the previous research, the yield drop occurs at

1400°C but disappears from 1200°C down to 700°C, the relevant stress-strain curves

exhibiting work-hardening instead.

Below 600°C, the yield drop starts to take place again. Within the performed

compression experiments, SRC and SR tests were made. The results of these were

used to calculate the strain rate

sensitivity of the flow stress. The

flow stress is very sensitive to the

strain rate near 1400°C and down

from 600°C, the interval from 800°C

up to 1200°C being the least sensitive

to the experimental strain rate. The

temperature dependence of the strain

rate sensitivity below 1250°C is

presented in Fig. 3.2.4. It shows that

the strain rate sensitivity decreases constantly

with increasing temperature, being less than

10 MPa from about 800°C up to 1200°C.

The same group of researchers studied plastic deformation of cubic zirconia single

crystals in the �100� compression direction, too, but one cannot help admitting a lack

of relevant experimental data. The experiments were carried out at 1400°C with the

basic strain rates 10-4 s-1 and 10-6 s-1, and another test was made at 1150°C at 10-6 s-1.

The stress-strain curves show the yield point effect at 1400°C with both strain rates,

but it does not appear in the 1150°C compression experiment.

Apart from the compression experiments, high-temperature creep behavior of yttria

stabilized zirconia single crystals as well as the influence of the yttria concentration on

this behavior have been investigated [75-77]. The concentration of yttria was from 9.4

up to 21mol%, and the entire range of the experimental temperatures lay between

Fig. 3.2.4. Temperature dependence
of the strain rate sensitivity of ZrO2-
10mol%Y2O3 in �112 � [4]



3.2.       Dislocation plasticity in cubic zirconia single crystals

26

1300°C and 1800°C. The creep behavior was explained in terms of a transition

between glide and climb controlled creep. As regards the yttria concentration

dependence of the creep rate in that the latter increased with decreasing yttria content,

it was accounted for by assuming a strong dependence of cation diffusion on the

concentration of yttria. The decrease of the creep rate at constant stress with

increasing yttria concentration is explained by a strong dependence of the cation

diffusion coefficient on the latter.

3.2.3. Dislocation microstructure of cubic zirconia

Transmission electron microscopy

analysis of ZrO2 single crystals

stabilized with yttria followed the

deformation experiments described in

the previous subchapter. We will

briefly announce some of the most

essential results of these. In [21], the

dislocation microstructures of 10mol%

cubic zirconia single crystals

deformed at 700°C - 1150°C in the

�112� compression direction were investigated (further 700°C-sample, 800°C-sample,

etc.). The dislocations were found to be concentrated in localized bands that were

separated by dislocation-free regions of a width in the order of 10 µm. The dislocation

density inside the bands was 2*1013 m-2. Most of the dislocations were identified to be

of screw character. Besides, dipoles of the screw dislocations were detected. Quite the

same picture was observed by [20], although edge dislocations, loops, and debris were

found, too. The screw dislocations were jogged and bowed out between pinning

points, while the edge dislocations were rather smooth. At temperatures of 870°C and

1150°C, single crystals of cubic zirconia doped with 10mol% yttria were studied by in

situ straining with the �112� tensile axis inside a high-voltage electron microscope

[18, 90]. Unlike the above-mentioned investigations, at 1150°C, dislocations or half-

loops of distinctive edge character were observed, rarely screw dislocations, and so-

called alpha-shaped dislocation configurations. These alpha-shaped configurations

Fig. 3.2.5. Dislocation density in the
{001}1/2�110� slip system versus
temperature [4]
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consisted of a straight screw segment and a more or less bowed edge one. These

configurations are intermediate stages of dislocation multiplication. In addition, a high

number of dislocation loops occurred. It was also reported that the dislocations were

created instantaneously in a region larger than the area under observation of about 15

µm in diameter. The dislocations moved very jerkily at jump distances usually larger

than the viewing area. One in situ experiment was started at 1150°C, after which the

temperature was reduced down to 870°C, so as to compare both microstructures. At

870°C the dislocation loops were much smaller and the screw dislocations were curly-

shaped. The glide behavior was similar to that observed at 1150°C. The dislocations

moved very jerkily, too, but their jump distances were shorter. These were measured

as 0.3 µm.

In [78], the dislocation microstructure of cubic zirconia single crystals deformed at

250°C - 550°C in compression was studied by TEM. Long screw dislocation segments

with numerous pinning points and dislocation loops were observed. At 250°C, the

loops were elongated in the screw orientation leaving behind screw dipoles. Long

dipolar loops of screw character resulted from a local recombination of these dipoles.

At 550°C, the edge components of the loops were longer than at 250°C, but the screw

segments still dominated. That dislocations of screw character were hindered by

pinning points at temperature lower than 900°C was also registered by [4, 17, 21]. At

500°C, dislocation density was so high that the individual dislocations could not be

discerned. A temperature dependence of dislocation density is presented in the Fig.

3.2.5. In the same temperature range, pairs of dislocations were detected. These lay

practically on neighbouring slip planes, and their Burgers vectors were anti-parallel.

Such dislocation pairs could appear due to mutual impeding of the two constituent

separate dislocations as they glided beside one another. Sometimes, one of the two

could overcome the mutual attraction, so that it moved over some distance. Finally, it

reached out another dislocation and became hindered again.

In [27], the dislocation microstructure of a 9.4mol% cubic zirconia single crystal

deformed at 1400°C in the �112 � compression was studied, and many curved

dislocations together with small dislocation loops were observed. Also, various
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dislocation reactions were believed to occur. In [10], the dislocation network of a

1200°C sample was compared with that of a 1400°C. In both cases, dislocation loops

were observed, but the dislocation density of the 1400°C sample was lower than that

of the 1200°C, which was somewhat later confirmed with the results of [13]. Similar

loops as well as dislocation dipoles were determined by [12] where 1400°C samples

were investigated at different levels of deformation. The dipoles were guessed to form

by pinning of screw dislocations by solute or impurity atoms. In turn, the loops

formed out of the dipoles by climb and/or cross-slip. Besides, a number of dislocation

nodes was observed, particularly at high deformation level. These were guessed to

originate from the intersection of primary and secondary slip planes in cubic zirconia

single crystals according to the following dislocation reaction:

1
2

[110 ] + 1
2

[ 101 ] → 1
2

[ 01 1 ]

The formation of nodes and dislocation loops were also detected by [77, 79] where

high-temperature creep of cubic zirconia was studied from 1300°C up to 1600°C.

Cross slip was reported to occur, too.

3.2.4. Microprocesses of plastic deformation of cubic zirconia single crystals.

Typical dislocation models (lattice friction, athermal interaction between parallel

dislocations, thermal recovery, to name but a few) controlling plastic deformation of

crystalline materials are presented in the subchapter 2.2 of this doctoral dissertation.

Let us now take an insight into the models, insofar as these have to do with zirconia

single crystals deformed at different temperatures.

As has been already pointed out, a certain number of Y ion – O vacancy dipoles exists

in cubic zirconia. These may give rise to contributions to the flow stress by

reorientation in the stress field of moving dislocations, the so-called Snoek effect. The

latter can in turn cause transient effects after changes of the strain rate. However, since

the stress increments owing to these are negligibly small [17], elastic interactions

between dislocations and isolated point defects as well as small clusters of such

defects cannot be of importance in the plastic deformation of cubic zirconia. As

discussed and presented in [4, 17, 22], from 1000°C up to 1200°C, plastic

deformation of cubic zirconia is controlled by athermal long-range interactions
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between parallel dislocations (Taylor hardening). Furthermore, dislocations can be

hindered by jogs in this temperature region, thereby forming dislocation loops.

At temperatures from 1000°C down to nearly 600°C, the solution-hardening may take

place [27, 10, 26]. It is assumed in this model that a gliding dislocation takes a zig-

zag” configuration when it interacts with an array of transient pinning points, each

pinning point comprising a cluster containing solute atoms (and possibly other point

defects). Such a cluster contains Y3+ ions and charge compensating oxygen vacancies.

In order to unpin the dislocation from the cluster, one has to supply an amount of

stress.

In the same temperature range, precipitation hardening is believed to influence the

flow stress of cubic zirconia single crystals in that dislocations interact with localized

obstacles of possibly hafnium nature [21]. A similar model has been proposed for the

deformation of cubic zirconia matrix with tetragonal ZrO2 precipitates, too [27].

Unlike these, zirconium nitride (ZrN) precipitates were observed in c-ZrO2 [79]. The

origin of these is probably due to absorption of atmospheric nitrogen by liquid

zirconia when the crystals are produced in air or by the skull melting process, the

essence of which was also proved by [80, 81].

In [46, 47], the mechanisms controlling the plastic deformation were supposed to

change gradually from the pinning by localized obstacles to the lattice friction below

700°C. The authors stated that kink pairs formed on segments of dislocations bowing

out under the action of an applied stress, that is the authors did not separate both

mechanisms but considered them to act simultaneously. With the pinning by localized

obstacles predominant, the experimental activation volume appeared relatively large,

which corresponded to low values of the strain rate sensitivity, whereas the lattice

friction being of more influence, the activation volume was empirically found low,

and high values of the strain rate sensitivity were thus obtained.

At the temperatures of 1300°C - 1600°C, thermal recovery takes place and governs

plastic deformation of cubic zirconia [26, 75-77, 4, 19], i.e. a mechanism of
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dislocation annihilation. The rate of the annihilation is controlled by a diffusional

processes where dislocation climb is involved.

3.2.5. Aim of the present doctoral thesis

While the plastic deformation of cubic zirconia single crystals doped with 10mol%

Y2O3 has been thoroughly investigated in the soft mode, i.e. involving macroscopic

compression experiments along the �112� axis, the plastic deformation of cubic

zirconia in the �100� compression direction is not very well studied. Moreover, the

existing papers on the �112� material are geared primarily to cubic zirconia single

crystals stabilized with 10mol% yttria, and there are only a couple of studies of cubic

zirconium dioxide doped with any other concentration of Y2O3.

With respect to the aforesaid, the objective of the present doctoral dissertation is to

investigate the plastic deformation of cubic zirconia single crystals doped with 10

mol% yttria in the �100� compression direction, expressly and extensively. In order to

achieve this, compression experiments with a constant strain rate in air environment is

to be used. Since the deformation in the �100� direction suppresses glide on the easy

{100} planes, other slip systems must be activated at the deformation in this axis.

That one can analyse the slip systems after relevant compression samples have been

deformed, transmission electron microscopy observations are to be applied.

As the second part of this thesis, the plastic deformation of cubic zirconia single

crystals stabilized with 15 and 20mol% yttria will be investigated, so that the

concentration dependence of the flow stress of the material could be empirically found

out. Finally, an interwoven and elaborated dependence of the flow stress of cubic

zirconia on the concentration of yttria dopant and the deformation direction is to be

postulated. According to the magnitude of experimental variables such as the strain

rate sensitivity of the flow stress yielding the activation volume as well as the results

of transmission electron microscopy analyses, the dislocation mechanisms responsible

for the plastic deformation of cubic zirconia are to be determined.
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4. Experimental

4.1. Macroscopic deformation experiments

The macroscopic deformation experiments were

carried out in a single screw testing machine of the

type Instron 8562 (Fig. 4.1.1.) in compression. It

works by lifting the lower push rod gradually against

the upper one by means of an electromechanical

screw drive, so that a sample, inserted between both

rods, can be deformed (Fig. 4.1.2.). When the screw is

displaced, its position is registered, as well as the

relevant load is measured by a load gage, and the

change of the degree of the sample deformation is

determined,

too, all of which can be used for working out

a compression experiment. As a rule, only

the change of the strain at a finite strain rate

and the load are used. The deformation

machine is digitally controlled. It enables to

register both digital and analogue data. The

temperature of the experiment can be set with

an oven, which operates in air environment

as a rule. As a potential reader is referred to

the handbooks of the Instron company for a

detailed description of the machine and the

deformation process [82], these are dealt with in

the following only briefly.

The upper and lower push rods are made of aluminum oxide (Al2O3). Their length is

310 mm, the width of their walls is 8 mm. The material of the upper and lower anvils

is silicon carbide (SiC). Since the anvils are rather sensitive to the damaging imprint

of the sample during compression, silicon carbide pads are inserted between the

Fig. 4.1.1. Single-screw
testing machine Instron 8562

Fig. 4.1.2. A location of a sample
during a compression test in
Instron 8562

SiC pads

SiC anvil

sample

thermo 
elements

sensor rods

 push rod
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sample grip faces and the anvils, for protection. These protective pads are 10 mm in

diameter.

The load measuring gage is manufactured to function up to a maximum loading force

of 10 kN. Because of durability of the aluminum oxide machine parts, the maximum

loading force of 1 kN is set. The compression stress σ  is calculated from the

measured load and the initial cross-section of the deformed sample

σ =
f

A
c

�

(4.1.1)

Conveniently, the measuring gage of the strain is manufactured in such a way that the

deformation process can be registered in close proximity of the sample. This gage is

called the Linear Variable Displacement Transducer (LVDT). It is embedded in a

water-cooled flange below the lower push rod. Information on the sample deformation

degree is carried by three aluminum oxide sensor rods to the LVDT, one of which

records the position of the lower surface of the lower pad, and the other two touch the

upper SiC anvil. By means of a swing system, an average magnitude of the positions

of both upper sensor rods is obtained. From this and the position of the lower anvil,

the distance difference between the upper anvil and the lower pad is registered. Since

the imprint of the sample into the anvils as well as the deformability of the preventing

pads can be neglected on account of the high-temperature strength and stiffness of

silicon carbide and the large cross-section of the pads, the measured displacement is

almost equal to the sample deformation, according to the above-introduced procedure.

During a compression experiment at a constant strain rate, the compliance of the

frame of the Instron 8562 can be neglected because of the digital closed-loop

operation of the machine in strain control. Mostly, compression samples are deformed

only by a few percent of strain, because of which the strain is approximately computed

as the difference between the initial value jo and the variable value j of the strain

recording divided by the initial length of the sample.

o

o

p
jj

=
−ε (4.1.2)

In order to acquire scientific data within a compression experiment, the deformation

machine is equipped with a General Purpose Interface Bus (GPIB) of National

Instruments Corporation [83] and the data are lead to a PC using a program in
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Turbopascal [4]. The program can be used for data acquisition and storage, although

the control of an experiment is carried out manually. During such an experiment, data

are recorded either after a step of 2 N load or of 0.2 µm strain. Also, the program

enables to set other steps of both strain and load. The course of experiment can be

displayed on the monitor as a stress-strain diagram, and it is also shown in form of

curves written by the recorders simultaneously.

That compression experiments can be conducted at high temperatures, the

deformation machine is equipped with an oven of the firm Severn Furnaces Limited

[84]. An array of six molybdenum disilicide heating elements are mounted parallel to

the furnace axis to provide symmetrical radial heating of the working chamber. The

furnace is regulated with a Eurotherm 818 P controller. Its highest possible

temperature is 1500°C. The outer face of the oven and the bases of the rods are water-

cooled using a COLORA FK 3500 heat exchanger. In order to protect the push rods

from a thermal shock, the oven’s temperature can be changed by 12 K per minute,

both at heating and cooling. The upper push rod is provided with two additional

thermoelements, so that the temperatures near the upper and lower ends of the

compression sample can be measured.

Before a compression test at both high and low temperature is started, one has to make

sure that the grip faces of the sample fit the upper and lower pads in that the sample

faces and the surfaces of anvils should be as parallel as possible, in order to achieve

uniaxial loading. Furthermore, to avoid temperature gradients near the sample, two

convex ceramic shields are placed in the oven, so that these encircle the sample

completely. Finally, the oven is closed and clamped. A compression experiment can

be started as soon as the experimental temperature is constant, and the strain

oscillations are lower than 0.02 µm/min.

Mostly, experiments are performed at a constant strain rate, although the latter is

changed in order to carry out strain rate cycling tests (SRC) for the sake of obtaining

the strain rate sensitivity of the flow stress, or the deformation process is stopped

when making relaxation tests (SR). That the temperature sensitivity of
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the flow stress can be obtained, the temperature cycling tests are conducted, too.

When the temperature is being changed, the sample should partially be unloaded, so

that the plastic strain will not change, unregistered. If a compression experiment is

finished by quickly unloading the sample at constant temperature, the elastic stiffness

of the sample can be determined.

4.2. Transmission electron microscopy experiments
The dislocation structure of the deformed compression samples of cubic zirconia was

investigated by transmission electron microscopy techniques. As a device for the

experiments, the JOEL High-Voltage Electron Microscope JEM 1000 (HVEM) was

used, a microscope that makes for in-depth studies of the dislocation structure of

crystalline solids. Since the maximum acceleration voltage of the microscope is 1000

kV as well as its penetrating power is about 2.8 times that of a 100 kV transmission

electron microscope, investigated specimens can be fairly thick [85]. In the same

reference, a reader can also find the apparatus and principle of work of this

microscope. Although cubic zirconia single crystals doped with yttria are electrically

non-conductive, the specimens did not need coating because of the high accelerating

voltage.

4.3. Diffraction patterns and dislocation contrast in a TEM

4.3.1. Diffraction of electrons

Because of the small wave-length of electrons λ , a

very small diffraction angle is characteristic of the

electron beam when the latter leaves the surface of

the specimen. Therefore, the reflecting lattice planes

are nearly parallel to the primary electron beam (see

[86]). Assume a crystalline specimen and the

primary beam falling onto its surface (Fig. 4.3.1.).

According to the figure, L is the distance between

the specimen and the photographic film (camera

length), ß is the Bragg angle, and R the distance on

the photographic plate between the transmitted beam
4.3.1. The basics of electron
diffraction

Primary
beam

L

Diffracted
beam

R

Transmitted
beam

Sample's
diffracting
lattice planes
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and a diffraction spot. Besides, ß approximately equals to R/2L since the diffraction

angle is small. Consequently, the Bragg equation can be written as

λL = Ra (4.3.1)

where a is the interplanar spacing. When electrons are of the same energy, the product

λL  is constant. Therefore, a conclusion can be drawn that the distance R of each

diffraction spot from the primary beam is inversely proportional to the interplanar

spacing a, as well as the position vector of each diffraction spot 
�

R  is normal to its

relevant diffracting plane.

Diffraction patterns of crystals are

interpreted by the model of a reciprocal

lattice. While the definition of a reciprocal

lattice and its unit vectors can be found

elsewhere [86], we confine to a statement

which is, however, essential to

transmission electron microscopy

a
1 =g� (4.3.2)

where �g  is the position of the lattice points of a reciprocal lattice, or the reciprocal

lattice vector, as shown in Fig. 4.3.2. Hence, eq. (4.3.1) can be rewritten

R =  Lgλ (4.3.3)

Following the equations and statements introduced in this chapter, diffraction patterns

can be constructed and indexed. One assumes to look from above -- along the

direction of the primary beam -- onto the crystal and considers which planes with what

a-values are parallel to the beam. Besides, one has to take into account the extinction

law, which says reflections occur only on planes with unmixed indices.

4.3.2. Dislocation contrast

Dislocation contrast and extinction will be considered below only insofar as these are

relevant to the objective of this dissertation; a kinematic theory of diffraction to

explain contrast observation in transmission electron microscopy can be found

elsewhere [86].

Fig. 4.3.2. A scheme on the relation
between real and reciprocal space

aa 2

g = 1/a1 1

g = 1/a2 2

1
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When the electron beam encounters a dislocation or rather a space wherein lattice

planes are bent due to the distortion caused by the dislocation, the intensity of the

directly transmitted beam will be reduced (and that of the diffracted beam increased).

As a result, the dislocation will appear as a dark line in the bright-field image (or as a

bright line in a dark-field image). This line can also be invisible, which may be

exploited to determine the Burgers vector of the dislocation.

A dislocation is invisible when its Burgers vector is orthogonal to the imaging vector

of the reciprocal lattice (e.g. [87]), that is when
�

�

g b = 0⋅ (4.4.4)

More generally, only a screw dislocation is invisible when imaged with a reflection

for which eq. (4.4.4) is valid. If the specimen is tilted in the microscope to find two

different diffraction vectors �g1  and �g2  for which the dislocation line is invisible, its

Burgers vector must be perpendicular to both �g1  and �g2  and therefore has the

direction of � �g g1 2× . For an edge dislocation, all planes parallel to its line are bent,

which is why an edge dislocation does not disappear completely when imaged with
�

�

g b = 0⋅ , but a very small contrast is still present. However, its Burgers vector can

still be determined.

4.4. Preparation of samples

4.4.1. Macroscopic compression samples

In this work, three sets of cubic zirconia single crystals were used. The first of these

was ZrO2-10mol%Y2O3 single crystals oriented for the deformation in the �100� axis.

The second and the third sets were both oriented along �112� for easy glide on {100}

planes, but the dopant concentration of these was different, namely 15mol% and

20mol% yttria. The crystals were oriented using the Laue back-reflection X-ray

technique.

Compression samples were made according to the following scheme: the oriented

crystals were cut into small bars by a wire saw and boron-carbide slurry, taking due

account of the compression axes of the samples. In order to make their opposite sides

parallel, these were ground with a Multipol precision polishing machine using a
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mixture of boron-carbide powder and glycerine. Finally, the samples were

successively polished with diamond pastes whose polishing particles were 3 µm and 1

µm in diameter, respectively. For this, a Minimet polishing machine was used.

Since edges of a rectangular deformation sample often contain microcracks that can

become sources of unplanned and undesirable brittle fraction even before any

essential portion of plastic deformation can be attained [88, 89], these were polished

with abrasive paper, after which they were finally polished with 6 µm down to 1 µm

diamond pastes sprayed onto the rough side of photographic paper. On account of the

high brittleness of cubic zirconia single crystals, particularly of high concentrations of

Y2O3, many compression samples were irretrievably damaged so that they could not

be studied in compression. Otherwise, the samples were as closely as possible 2*2*8

mm3.

4.4.2. Transmission electron microscopy specimens

That the dislocation structure of cubic zirconia single crystals can be investigated,

some of the compression samples deformed along �100� were used to prepare

transmission electron microscopy foils. The specimens were cut into slices about 400

µm in thickness, ground and polished in the same way as the compression samples

discussed above. The final thickness of the specimens was from 150 µm to 200 µm.

After that, the specimens were dimpled with copper and rubber wheels, successively,

so that the final thickness in the center of the specimens was about 40 µm. Further, the

specimens were thinned down to 1 µm by ion milling with argon ions of 3-5 kV and a

beam current up to 3 mA, after they had been glued onto aluminum ringlets for further

convenient handling.
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5. Experimental results of the compression experiments

In the following chapters, the results of the performed compression experiments are

presented considering two points of view, namely the dependence of the plastic

properties of ZrO2-10mol%Y2O3 single crystals on the orientation of the deformation

axis as well as that of zirconia single crystals oriented along the soft �112� axis on the

yttria concentration.

5.1. Effect of the deformation axis

Typical stress-strain curves of the compression experiments with ZrO2-10mol%Y2O3

single crystals deformed along the �100� axis in air are shown in Fig. 5.1.1.

The basic strain rate of all the experiments along this compression axis was 10-5 s-1,

except an experiment at 800°C done at 10-6 s-1 and an experiment at 1150°C

performed at 10-4 s-1 (these are not shown in the figure but nevertheless used for the

further evaluation).

Fig. 5.1.1. Stress-strain curves of ZrO2-10mol%Y2O3 deformed
in the �100 � compression direction
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Within all compression tests, SRC and SR experiments have been carried out to

measure the strain rate sensitivity of the flow stress. The behavior of the flow stresses

of the displayed curves is compared to that shown in Fig. 3.2.2 and obtained before

[4], where the deformation axis was �112�, and the stain rate 10-6 s-1.

According to the shape of the curves of specimens deformed along �100�, three

temperature ranges can be distinguished. In the range from 1400°C down to about

1200°C, a yield point effect does not occur after the primary loading, but takes place

after almost every change of the strain rate. No work hardening is observed in this

temperature range, which is also the case for the curves of the samples deformed

along �112�. In the intermediate temperature range from 1100°C down to 800°C, the

deformation curves along �100� do not exhibit a yield point effect during primary

loading, but work hardening is registered. The stress-strain curves along �112� show

the same phenomena at intermediate temperatures, the upper limit of which is

1200°C, though. Finally, the low temperature region starts occurring at 650°C for

�100� and at 600°C for �112� compression axes. In this region, a very pronounced

yield drop effect occurs after the initial loading without any work hardening thereafter.

However, yield drop effects appear after stress relaxation tests. The work hardening

rates of the �100� deformation curves are listed in Tab. 5.1.1. together with those

obtained by [4] for the �112� deformation.

Table 5.1.1. The work hardening rates of ZrO2-10mol%Y2O3 single crystals deformed along
the �100� and �112� [4] compression axes.

Temperature Work hardening coefficient, Θ [GPa]
[°C] �100� compression axis �112� compression axis
1400 0.770 -0.769

1300 0.631 -
1200 4.641 5.736

1000 4.738 4.711
900 3.970 7.032
800 9.573 6.994
700 3.198 4.574
600 -1.711 -2.812
550 -7.570 -5.908
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According to the table, the work hardening coefficient is very small or even negative

at high temperatures for both compression directions. Since the intermediate

temperature region for the �112� deformation starts from 1200°C, the values of the

work hardening are larger at this compression axis than those for the �100� direction at

the same temperature. For both orientations, the hardening coefficients increase with

decreasing temperature, but they begin decreasing below 800°C. Below this

temperature, the work hardening disappears, and the corresponding coefficients are

again negative.

For the deformation in the �100� compression direction, the yield stress (critical flow

stress) is displayed in Fig. 5.1.2 as a function of temperature. In addition, the

temperature dependence of the yield stress along �112� is shown in this figure, too.

These values are estimated from the stress-strain curves exhibited in Fig. 3.2.2. Since

several of the stress-strain curves of both compression axes did not contain yield point

effects, the yield stresses were obtained by extrapolation of the stress-strain curves to

zero plastic strain.

Fig. 5.1.2. Temperature dependence of the flow stress of c-ZrO2

stabilized with 10mol%Y2O3 along �100 � and �112 � axes
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As shown in Fig. 5.1.2., the yield stresses of both orientations are the same only at

1400°C, being somewhat lower than 200 MPa. From 1200°C down to 800°C, the

critical flow stress values of the specimens deformed along �100� are almost twice as

high as those of the samples deformed along �112�. The values of the yield stresses

along �100� increase from 400 MPa up to 800 MPa with decreasing temperature; the

values of those along �112�, from 200 MPa up to 400 MPa, respectively. Below

800°C, the difference in the yield stresses between both orientations remains

approximately constant. Their maximum magnitudes constitute 1400 MPa for the

�100� and 800 MPa for the �112� compression direction.

The temperature sensitivity of the �100� flow stress obtained from temperature cycling

tests is shown in Fig. 5.1.3. It was calculated using the following method: After the

temperature of a compression experiment had been changed, the corresponding stress

increment was measured. This increment was between the first steady state and the

second steady state, both of which straddled the temperature alteration.

When a work hardening region occurred after the temperature had been altered, the

hardening coefficient was also taken into consideration in order to amend the upper

flow stress, in which case the latter was obtained using the formula

Fig. 5.1.3. Temperature sensitivity of the flow stress
T/∆∆σ  of ZrO2-10mol%Y2O3 along the �100 � and

�112 � axes
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εσσ ∆Θ−= *rel.up. , where up.σ  is the flow stress of the second steady state, rel.σ  is

the starting stress of the relaxation test adjacent to the temperature cycling experiment

after the temperature is changed, Θ  is the hardening coefficient along the stress-strain

curve between this relaxation and the position, up to which the work hardening was

measured, and ε∆  is the strain increment between the reloading part of the stress-

strain curve and the relaxation test adjacent to the temperature cycling experiment

after the temperature is altered.

Finally, the calculated stress increment was divided by the temperature difference, the

result of which constituted the temperature sensitivity. For comparison, the

temperature sensitivity of the flow stress of ZrO2-10mol%Y2O3 along �112� is also

shown in the figure. While the temperature sensitivity of the flow stress of the cubic

zirconia single crystals deformed in the �112� compression direction decreases

constantly from 0.8 MPa/K down to 0.3 MPa/K in the temperature range 600 -

1100°C and increases up to 0.9 MPa/K at 1400°C, that of the flow stress of the cubic

zirconia single crystals deformed in the �100� axis decreases from about 0.9 MPa/K

down to 0.4 MPa/K within the temperature range of 650 - 1000°C and rises to 0.9
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MPa/K after a little higher than the latter temperature. It remains constant till around

1150°C and then decreases, reaching 0.56 MPa/K at 1400°C.

As mentioned above, stress relaxation tests have been carried out within the

compression experiments with the ZrO2-10mol%Y2O3 deformed in �100�. Typical

relaxation curves are shown in Fig. 5.1.4.

Primary relaxation curves differ from repeated relaxation curves in that the latter start

after the reloading of primary relaxation tests before the yield point effect can occur.

Therefore, one may say that the amount of plastic strain attained between the primary

relaxation and the following repeated relaxation is very low. Repeated relaxations are

performed in order to study the change in the microstructure of the material during

relaxations.

The form of the relaxation curves in Fig. 5.1.4. is mostly convex upwards, except the

relaxation curves of the compression experiment done at 1000°C whose forms are

concave. This may indicate that there are two different dislocation processes involved

during these relaxations, whereas a continually convex form suggests a single

dislocation process, as is the case with the other relaxation curves.

Fig. 5.1.4. Typical stress relaxation curves during compression experiments on ZrO2-
10mol%Y2O3 deformed in �100 �. The strain is near 1 %. Solid symbols correspond to
primary relaxation curves; open ones, to repeated relaxation curves.
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As was already mentioned in chapter 2.3.2., the inverse slope of the relaxation curves

constitutes the strain rate sensitivity. In order to estimate the slope of the curves

shown in Fig. 5.1.4., the data were approximated using polynomial regression of the

type 2c + b + a = )ln(- σσσ� . Hence, the strain rate sensitivity corresponding to the

deformation before the relaxation test was calculated according to )2c+b/(1r σ= ,

where σ  is the stress at the beginning of the stress relaxation test.

Since the strain rate sensitivity of the flow stress along �100� depended on the plastic

strain attained, the dependence of r on temperature should be displayed at a certain

magnitude of the plastic strain. This strain should be the same for all compression

experiments. Therefore, the values of the strain rate sensitivity were plotted versus the

plastic strain and were then extrapolated to zero magnitude of strain. Finally, the

extrapolated values were plotted in Fig. 5.1.5. against the temperatures of the

compression experiments together with the values of the strain rate sensitivity derived

from strain rate cycling tests. Taking due account of the data scatter, the curves for the

�100� and �112� axes are qualitatively equal. Both start at about 45 MPa at low

Fig. 5.1.5. Strain rate sensitivity of ZrO2-10mol%Y2O3. The deformation axes are
�100 � (squares) and �112 � (triangles) [4]. Solid symbols correspond to SR tests;
open ones, to SRC tests.
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temperatures, manifest a minimum from 800°C to 1000°C and increase again up to 40

MPa at 1400°C. The two values at 1000°C correspond to the two ranges of the

inversely curved stress relaxation curves.

In Fig. 5.1.5., one also notices that the strain rate sensitivity along �100� measured

from strain rate cycling experiments differs considerably from that of stress relaxation

tests in the temperature range from 1000°C up to 1300°C. This is because the values

of r derived from the strain rate cycling tests were so few that they could not be

extrapolated to zero plastic strain but were plotted at whatever plastic strains they had

been obtained.

5.2. Effect of yttria content

Typical stress-strain curves of the compression experiments with ZrO2-15mol%Y2O3

single crystals deformed along the �112� axis in air are shown in Fig. 5.2.1. The basic

strain rate of this set of experiments was 10-5 s-1. Let us compare the behavior of the

stress-strain curves of this material with that of ZrO2-10mol%Y2O3 studied in [4]

along the same compression axis (Fig. 3.2.2.).

Fig. 5.2.1. Stress-strain curves of ZrO2-15mol%Y2O3

deformed in the �112 � compression direction
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In general, only the curves at 1400°C and 800°C have a similar shape for both

concentrations of yttria stabilizer, although at 1400°C, the yield point effect after each

stress relaxation test is more pronounced for the 15mol% material. The yield drop

effect occurs at 800°C for the ZrO2-15mol%Y2O3 single crystals, too, which is not

observed for the 10mol% material. Unlike the stress-strain curves of the 10mol%

cubic zirconia deformed along �112�, in the temperature range from 1300°C down to

some temperature above 800°C, serrated flow occurs at the 15mol% material. The

serrations are particularly noticeable at 1000°C. Their amplitude along the axis of

stresses is the highest at this temperature.

Fig. 5.2.2. displays typical stress-strain curves of ZrO2-20mol%Y2O3 deformed in the

�112� compression orientation in air. The flow stress of the 20mol% material is

approximately equal to that of the 15mol% material at the respective temperatures.

The compression test at 1000°C obviously failed at about 0.5 % total strain, which is

why its flow stress did not become higher than that of the experiment at 1400°C.

Serrated flow occurs at high temperatures, being less prominent at 1475°C. The yield

point effect is observed only at 800°C, though this may well be just a very unstable

deformation.

Fig. 5.2.2. Stress-strain curves of the ZrO2-20mol%Y2O3

deformed in the �112 � compression axis
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For the stress-strain curves of the 15mol% material, the work-hardening coefficient

was measured. It amounted to 1.85, 2.12, and 1.85 GPa at 800°C, 1000°C, and

1200°C, respectively. These are about half the values of those of the 10mol%

material. For the 20mol% material, the work-hardening coefficient was zero.

Fig. 5.2.3. presents the temperature dependence of the yield stresses of the 15 and

20mol% materials together with that of the 10mol% material taken from Fig. 3.2.2.

The yield stresses of the three materials decrease with increasing temperature, and the

data of the 20 and 15mol% materials are almost equal. The two materials of high

yttria content show a higher flow stress than that of the 10mol% material. This

difference increases from about 100 MPa at 800°C up to 200 MPa at 1400°C.

Fig. 5.2.4. compares the temperature sensitivity of the flow stress of the 15 and

20mol% yttria materials with that of the 10mol% zirconia. −( /∆ ∆σ T)  was again

determined from temperature cycling tests. Considering the scatter of the data, the

values are equal for all materials at the respective temperatures. They decrease from

about 0.6 MPa/K down to 0.1 MPa/K in the temperature range from 700 – 1200°C

and then increase again, the temperature sensitivity of the 15mol% material being the

Fig. 5.2.3. Temperature dependence of the flow stress of ZrO2-15 and
20mol%Y2O3 deformed in �112 � versus that of ZrO2-10mol%Y2O3 [4]
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highest at 1400°C. It amounts to 1.5 MPa/K. This magnitude is almost twice as high

as that of the 10mol% zirconia and three times higher than that of the 20mol%

material at this temperature.

As with the ZrO2-10mol%Y2O3 deformed in the �100� compression direction,

relaxation tests were also performed with the 15mol% material, several of which are

shown in Fig. 5.2.5. Their form is similar to that of most relaxation curves of the

10mol% cubic zirconia deformed along �100�, which is convex.

Fig. 5.2.4. The temperature sensitivity of the flow stress of ZrO2-15 and
20mol%Y2O3 deformed in �112 � versus that of ZrO2-10mol%Y2O3 [4]
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The strain rate sensitivity r of the flow stress of the 15 and 20mol% materials was

calculated from the SR and SRC tests using the methods described in Section 5.1.

When the serrated flow took place, the strain rate sensitivity could not be estimated by

this method. However, r was finally determined, albeit by another method. It consisted

in plotting the decreasing stresses of the relaxation tests versus time. Then, two

successive parts of the curves were approximated using above regressions. That the

approximated stress-time curves did not contain stress drops was essential.

Along each regression interval, two time points t1 and t2 were selected. Using these,

the corresponding stresses were calculated by 2
i2i1i tA+tA+A=σ  and the stress rate

by �σ i 1 2A + 2A t= . Finally, the strain rate sensitivity r was determined using the

formula r =
ln{

∆σ
σ σ� � }1 2

.

The results of the extrapolation of the strain rate sensitivity to zero plastic strain are

demonstrated in Fig. 5.2.6. Within the scatter of the data, the strain rate sensitivities of

all the three materials are equal. These decrease from 50 MPa at 500°C down to

almost zero between 1000°C and 1200°C and start increasing thereafter.

Unfortunately, only a single (very high) value is available for the 20mol% material

above 1400°C.

Fig. 5.2.5. Typical relaxation curves during compression experiments on the ZrO2-
15mol%Y2O3 in �112 �. The plastic strain is near 1 %.

150 200 250 300 350 400
-5

-4

-3

-2

-1

0

1

 1.23 %

1400°C

ln
{(-

dσ
/d

t) 
[M

P
a/

s]
}

σ [MPa]
240 260 280 300 320 340 360

-5

-4

-3

-2

-1

0

1

 1.10 %

1300°C

ln
{(

d-
σ/

dt
) [

M
P

a/
s]

}

σ [MPa]



5.3.       Plastic instabilities in cubic zirconia single crystals

50

5.3. Plastic instabilities in cubic zirconia single crystals

As already mentioned in section 5.2., the plastic deformation along the �112�

orientation may become unstable within some ranges of the stabilizer concentration,

the deformation temperature, and the strain rate. The unstable behavior consists in

rapid load drops along the stress-strain curve, and the drops are followed by a

reloading phase. The phenomenon may be called serrated yielding or the Portevin-

LeChatellier (PLC) effect. Hence, the plastic instabilities along the stress-strain curve

are conveniently called “serrations”.

In order to study the ranges where the plastic instabilities occur, deformation

experiments were in most detail carried out on the material containing 15mol% yttria

at different temperatures and strain rates of 10-6 and 10-4 s-1 in addition to the standard

strain rate of 10-5 s-1. Fig. 5.3.1 presents a deformation curve at a standard strain rate

of 10-5 s-1 at temperatures between 1300°C and 800°C. This figure shows that the

deformation takes place in an almost stable way at 1300°C, turns unstable between

Fig. 5.2.6. Strain rate sensitivity of ZrO2-15 and 20mol%Y2O3. The deformation axis
is �112 �. Open symbols correspond to SRC tests; solid ones, to SR tests
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1300°C and 1160°C and becomes stable again between 900°C and 800°C, although

the plastic instabilities occur at 800°C when the strain rate is diminished to 10-6 s-1.

The phenomenon is displayed in the next figure more thoroughly. Stable deformation

at 800°C and a strain rate of 10-5 s-1 becomes unstable by changing the strain rate to

10-6 s-1 (Fig. 5.3.2a), but becomes stable again with the same rate change at about

1350°C (Fig. 5.3.2b).

Fig 5.3.1. Stress-strain curve of ZrO2-15mol%Y2O3

deformed in �112 � from 1300°C to 800°C.

Fig. 5.3.2. Parts of the stress-strain curves of ZrO2-15mol%Y2O3

deformed in �112 �; a: 800°C, b: 1350°C.
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Fig. 5.3.3 summarizes all plastic instabilities occurring in the 15mol% material. Their

amplitude along the corresponding stress-strain curves, which is measured in MPa,

was chosen to represent the magnitude of plastic instabilities. Since this variable

turned out to depend both on the experimental temperature and strain rate, a three-

dimensional plot was needed.

According to the plot, the lower border of the instability range shifts from about

750°C at a strain rate of 10-6 s-1 to probably 950°C at 10-4 s-1, i.e. no serrations take

place below these temperatures at the respective strain rates.

The magnitude of plastic instabilities attains 24-28 MPa at small strain rates and

temperatures from 800°C to 1000°C, whereupon the amplitude starts to decrease

down to 12-17 MPa with increasing temperature. This value exceeds the amplitude of

serrations at 10-4 s-1 at yet higher temperatures, which ranges from 8 MPa up to 12

MPa.

Well expressed plastic instabilities had not been observed on cubic zirconia with

10mol% yttria. At 20mol% yttria and a strain rate of 10-5 s-1, the upper border of the

Fig. 5.3.3. The temperature and strain rate effects on the
amplitude of the plastic instabilities in ZrO2-15mol%Y2O3

deformed in �112 �
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instability range is shifted to higher temperatures above 1450 °C with respect to the

15mol% crystals. The lower border is below the brittle to ductile transition

temperature.

When serrated flow takes place, the shape of the stress-strain curves depends on the

temperature as demonstrated by Fig. 5.3.4.

In the middle of the instability range, the stress drops are occurring very fast (Fig.

5.3.4a). The reloading curves are straight. Their slope σ�  divided by the strain rate of

�ε  = 10-6 s-1 yields GPa 125/dd =εσ  (straight line at the left side). Within the

experimental accuracy, this value equals the stiffness modulus S of the sample

measured during unloading. Thus, the reloading takes place in the elastic mode. If the

lower border of the stability range is

approached at 800 °C, the yield drop

becomes more smooth (Fig. 5.3.4b). At an

even lower temperature of 780°C (Fig.

5.3.4c), the deviation of the reloading curve

from a straight line indicates that plastic

deformation occurs during the reloading,

too. The serrations are mainly controlled

by the stress levels where the stress drop

starts

Fig. 5.3.4. The temperature effect of the shape of the stress-strain
curves in ZrO2-15mol%Y2O3 deformed in �112 �, -16 s 10−=ε�

Fig. 5.3.5. The effect of the strain rate
on the serrations in ZrO2-20mol%Y2O3

deformed along �112 � at 1400°C
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and ends. As a consequence, the increase of strain during one serration, i.e. during one

stress drop, is almost independent of the strain rate, as demonstrated by the strain rate

change in Fig. 5.3.5. Besides, there is no change of the average stress level after

changing the strain rate, i.e. the strain rate sensitivity obtained from a strain rate

change experiment is close to zero (Fig. 5.2.6.).

The stress drop during a serration corresponds to plastic deformation under a

decreasing stress. Apart from the superimposed (slow) drive rate of the testing

machine, this situation is similar to that during a stress relaxation test. This is shown

in Fig. 5.3.6. It compares the dynamic deformation behavior during the relaxation with

that during the stress drops of the serrations.

On the ordinate, the quantity ln (S �ε t - �σ ) is plotted. ε� t equals the imposed total strain

rate of the machine during deformation and is zero during relaxation. With this

quantity, both the drops during serrations and the relaxation curves can be plotted

using one and the same scale. The figure presents, as open symbols, the data from the

serrations of the part of the stress-strain curve at 10-6 s-1 of Fig. 5.3.2a shown with a

Fig. 5.3.6. Dynamic deformation behavior of the stress drops
of plastic instabilities in ZrO2-15mol%Y2O3 deformed in
�112 � in comparison with that during stress relaxation tests
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higher resolution in Fig. 5.3.4b (S1 to S4). The plot contains two horizontal dashed

lines indicating the strain rates of 10-6 and 10-5 s-1. While the imposed average strain

rate during the serrated yielding was 10-6 s-1, the plastic deformation rate during the

stress drops was always higher than 10-6 s-1. Since the serrations start occurring on the

condition of almost elastic loading, they should correspond to repeated relaxations.

The data of a stress relaxation test (R3 in Fig. 5.3.2a), which occurred in the stable

range at 10-5 s-1 after the unstable range had taken place, is plotted as full symbols.

This relaxation is started out of the steady state deformation. Thus, the curves of

serrations and of the relaxation test are related to each other in the same way as do the

repeated relaxations and the original ones, e.g. in Fig. 5.1.4. taken from the material

with 10mol% yttria. Repeated relaxations start at lower relaxation rates than primary

relaxation curves, though both types of the curves tend to coincide at low relaxation

rates. Similar curves are obtained for the 15 and 21mol% materials. Consequently,

stress relaxation curves describe the dynamic deformation behavior during serrations

Fig. 5.3.7. The relaxation behavior of the stable deformation versus
that of the instabilities in ZrO2-15mol%Y2O3 deformed along �112 �.
a, d: stable deformation; b,c: instabilities
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at low deformation rates. At the lower end of the relaxation curve, the relaxation rate

falls down to very low values as will be discussed below. For the serrations, these low

rates do not occur.

Because of the resemblance between the dynamic deformation behavior during the

stress drops at serrated yielding and stress relaxation experiments, the latter can be

used to study the dynamic deformation behavior in the instability range in more detail.

Fig. 5.3.7 compares the relaxation behavior in the stable deformation range with that

in the instability range at different temperatures.

At about 720°C, the deformation is stable and the stress versus time plots of the

relaxations exhibit usual continuous smooth curves (Fig. 5.3.7a). In the instability

range, relaxation tests should be started near the tips of the reloading curves.

Frequently, the stress remains at the level of the stop of the deformation machine and

decreases only after some incubation time passes (curves 1 and 3 in Fig. 5.3.7b). After

the drop, the stress is constant again. Sometimes, further drops may occur (curves 1

and 3). The stress drops are presented at a higher time resolution in Fig. 5.3.7c. At

first, the stress relaxes in the usual way. However, if a certain (low) relaxation rate is

Fig. 5.3.8. Arrhenius plot of the minimum relaxation rates
in ZrO2-15mol%Y2O3 deformed in �112 �
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reached, the stress versus time curves show a sharp knee. Then, the stress remains

constant, i.e. the relaxation rate drops to zero. This stress level is only slightly below

the lower stress level of the serrations. The zero relaxation rate is even observed at

780 °C, where the deformation is stable again. The observed behaviour indicates that

the material deforms continuously only if the strain rate exceeds a defined minimum

strain rate. Below it, the deformation is statically blocked. At high temperatures

slightly below the upper border of the instability range, the relaxation rate does not

decrease to zero, as shown in the relaxation curves of Fig. 5.3.7d. At these

temperatures, the specimens relax to stress levels far below the lower level of the

serrations. Fig. 5.3.8 exhibits an Arrhenius plot of the minimum relaxation rates. A

straight line fits the data points relatively well. Its slope corresponds to an activation

energy of about 2.7 eV.

Strain rates which correspond to relaxation rates above the solid line should allow

unstable deformation. Strain rates corresponding to relaxation rates below the solid

line are impossible for serrated flow to occur. The dashed horizontal lines mark

experimental strain rates of 10-6, 10-5 and 10-4 s-1. These lines intersect the Arrhenius

curve at the points corresponding to temperatures of 784°C, 874°C and 977°C. These

temperatures agree well with the lower limits of the instability range in Fig. 5.3.3.

The processes which cause the locking of dislocations in the instability range may also

lead to transient phenomena at other deformation conditions, e.g., at stress relaxation

tests and the following reloading in the stable deformation ranges. As shown for the

relaxation test R1 in Fig. 5.3.2a and some relaxations in the 802°C section of Fig.

5.3.1, prominent yield drop effects appear during reloading after the relaxations at

deformation conditions close to the lower border of the instability range. Within this

range, the yield drop effects after changes of the deformation conditions are

suppressed by the serrated flow. In conclusion, plastic instabilities occur if the strain

rate drops below a temperature dependent minimum strain rate below which the

deformation is statically blocked. The minimum rates obey an Arrhenius-type relation

with the temperature with an activation energy of 2.7 eV.
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6. Microstructure of deformed cubic zirconia single crystals

In this chapter, the microstructures of some of the deformed ZrO2 samples are

presented. The microstructures were investigated by optical interference and

birefringence microscopy as well as by transmission electron microscopy in the

HVEM as described in Chapter 4.2. The Burgers-vectors were determined by taking

micrographs of the same specimen area at different g
r

-vectors and using contrast

extinctions according to g
r

⋅b
r

 = 0. That the slip planes engaged in dislocation glide

could be identified, wide-tilting experiments in the transmission electron microscope

were performed.

6.1. Optical microscopy of cubic zirconia

Fig. 6.1.1. demonstrates the stress-birefringence patterns of ZrO2-10mol%Y2O3

deformed in the 〈100〉 compression direction at 1100°C, i.e. in the intermediate

temperature range of low strain rate sensitivities.

           a      b

The images correspond to the (010) and (001) side faces. On both faces, well defined

slip bands run in the 〈110〉 directions. Surface steps are only visible in 〈100〉

Fig. 6.1.1. Stress-birefringence patterns of ZrO2-10mol%Y2O3

deformed along 〈 100 〉 at 1100°C with -15 s 10−=ε&  till % 5.2=ε ;
( 010 ) and (001 ) observation planes, respectively
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directions. This is consistent with the activation of slip on the four equivalent sets of

planes of {110} type with non-zero orientation factor.

Fig. 6.1.2. displays the stress-birefringence patterns of the same material deformed in

the same compression direction at 1400°C. Unlike intermediate temperatures, the slip

                  a    b

bands are now much finer and more homogeneously distributed. In the particular case,

slip is concentrated on two sets of orthogonal {110} planes, as no contrast appears on

the face in Fig. 6.1.2b.

In the following, results are presented on the ZrO2-15mol%Y2O3 material deformed in

the 〈112〉 compression direction. At low temperatures in the range of stable

deformation, only single Lüders bands develop near the ends of the sample. These

bands grow to a remarkable width so that the specimens has a kinked shape.

According to Fig. 6.1.3. taken from a specimen deformed at 1000°C, i.e. in the range

of unstable deformation, slip is now localized in several narrow Lüders bands still at

the ends of the compression sample. The orientation of the bands at an angle of about

54.74° with respect to the compression direction on the {110} face and of 90° on the

{111} face corresponds to the easy slip system on {100} glide planes.

Fig. 6.1.2. Stress-birefringence patterns of ZrO2-10mol%Y2O3

deformed along 〈 100 〉 at 1400°C with -15 s10−=ε&  till % 8.2=ε ;
( 001 ) and (010 ) observation planes, respectively
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                    a      b

Fig. 6.1.4. displays the stress-birefringence patterns of the same material deformed at

1200°C.

         a       b

The dislocation bands on parallel {100} planes propagate now over the entire length

of the sample. The distance between the Lüders bands decreases with increasing

temperature so that the slip becomes quite homogeneous at 1400°C as shown in Fig.

6.1.5.

Fig. 6.1.3. Stress-birefringence patterns of ZrO2-15mol%Y2O3

deformed in 〈 112 〉 at 1000°C with -15 s10−=ε&  till % 5.1=ε ;
(110 ) and (111) observation planes, respectively

Fig. 6.1.4. Stress-birefringence patterns of ZrO2-15mol%Y2O3

deformed in 〈 112 〉 at 1200°C with -15 s 10−=ε&  till % 8.1=ε ;
(110 ) and (111) observation planes, respectively
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                 a      b

6.2. Transmission electron microscopy in the HVEM

The following series of figures presents the dislocation structure of ZrO2-

10mol%Y2O3 crystals deformed along 〈100〉 at different temperatures. In the

micrographs, the compression direction is indicated by the vector d
r

. All micrographs

were taken near [001] poles perpendicular to the {001} side faces. It was tried to

identify the activated slip planes by the following criteria. In the projection used, two

sets of orthogonal slip planes run in 〈110〉 directions and are oriented edge-on.

Dislocations on these planes should therefore be imaged as straight lines. The other

two sets of orthogonal {110} planes intersect the specimen surface along the [010]

direction and are inclined with respect to the surface by 45°, so that the dislocations

may show their curved shape. {111} planes intersect the specimen surface always

along 〈110〉 directions and are also inclined, so that the respective dislocations may

show a curved shape, too. In addition, the directions of the Burgers vectors were used

to back up the identification of the slip planes.

At low temperatures, slip is concentrated in slip bands, as shown by optical

microscopy for the intermediate temperature range in Fig. 6.1.1. The following figures

Fig. 6.1.5. Stress-birefringence patterns of ZrO2-15mol%Y2O3

deformed in 〈 112 〉 at 1400°C with -15 s 10−=ε&  till % 5.3=ε ;
(110 ) and (111) observation planes, respectively



6.2.       Transmission electron microscopy in the HVEM

62

show crystal regions within these bands. Fig. 6.2.1. is a micrograph of a sample

deformed at 700°C.

The Burgers vectors of the dislocations are 1/2[110] or 1/2[1 10]. The straight

dislocations in the lower part of the figure run parallel to these directions and belong

therefore to {110} slip planes. The bowed-out dislocations in the upper part of the

figure extend on {111} planes. The bowing of short dislocation segments results from

pinning of the dislocations by localized obstacles.

Fig. 6.2.2. displays the dislocation structure of a sample deformed at 800°C. In Fig.

6.2.2.a., dislocations of all possible slip systems with non-zero orientation factors are

imaged. In Fig. 6.2.2.b., a few dislocations of 1/2[101] or 1/2[ 101] Burgers vectors

are extinguished. In Fig. 6.2.2.c., dislocations of 1/2[110] Burgers vectors and in Fig.

6.2.1. Microstructure of ZrO2-10mol%Y2O3 deformed
along 〈100 〉 at 700°C till % 3.1=ε , shown with the
[ 020 ] g

r
-vector at [001 ] pole
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      a         b

      c         d

6.2.2.d. those of 1/2[1 10] Burgers vectors are not visible. These dislocations belong

to {111} slip planes rather than to {110} ones. The angle between the {111} slip

planes and {001} observation plane is 54.74°. If the dislocations belonged to {110}

slip planes, they would appear as straight lines at the [001] zone axis, which they do

not do. The dislocations have the bowed-out shape again.

Fig. 6.2.3. displays the microstructure of a specimen deformed at 900°C. In this

figure, dislocations are located in two bands, separated by a region of a lower

dislocation density. Since many dislocations are straight and oriented parallel to the

6.2.2. Microstructure of ZrO2-10mol%Y2O3 deformed along 〈100 〉 at 800°C till
% 1.1=ε , shown with different diffraction vectors at the [001 ] zone axis. a:

g
r

= [200 ], b: g
r

= [020 ], c: g
r

= [ 022 ], d: g
r

= [220 ].
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direction of the diffraction vector [2 20], they should belong to the (110)1/2[1 10] slip

system. Besides, there is a number of curved dislocations that are randomly oriented.

In accordance with the Burgers vector analysis, these glide on the {101} planes.

             a             b

Fig. 6.2.3. Dislocation structure of ZrO2-10mol%Y2O3

deformed along 〈 100 〉 at 900°C till % 2.2=ε , shown with
the [220 ] g

r
-vector at [001 ] zone axis

6.2.4. The microstructure of ZrO2-10mol%Y2O3 deformed along 〈100 〉 at 1050°C
till %1.2=ε , shown with two different diffraction vectors with the [100 ] pole. a:
g
r

= [200 ], b: g
r

= [ 022 ].
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Fig. 6.2.4. presents the dislocation structure of the sample deformed at 1050°C. With

the g
r

 vector in Fig. 6.2.4.a, all dislocations of slip systems with non-zero orientation

factors are visible. Many of the dislocations have 1/2[110] or 1/2[1 10] Burgers

vectors as shown for the latter set in Fig. 6.2.4b. Since they are quite straight, slip

occurs on {110} planes rather than on {111} planes. Some dislocations are curved,

too.

Fig. 6.2.5. of the specimens deformed at the high temperatures of 1300°C (a) and

1400°C (b) were taken with a g
r

 vector showing all relevant dislocations. Using the

above criteria, the dislocations may belong again to both {111} and {110} slip planes.

It is characteristic of the high temperatures that the dislocations are distributed

homogeneously, in contrast to low and intermediate temperatures. Besides, the

dislocations do not bow out between localized obstacles anymore.

 a              b

Summarizing the qualitative observations, it may be stated that both {110} and {111}

slip planes are activated at all temperatures during deformation along 〈100〉, where the

easy slip systems with {100} planes are out of stress. Slip is localized at low

temperatures and becomes homogeneous at high temperatures. At low temperatures,

the dislocations bow out between localized obstacles. This mechanism ceases above

about 1050°C.

6.2.5. The microstructure of ZrO2-10mol%Y2O3 deformed along 〈100 〉 at
1300°C and 1400°C till % 8.2=ε , shown with g

r
= [200 ]
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In order to obtain quantitative data from the microstructure, the dislocation density ρ

was measured from about four selected micrographs for each temperature by counting

the numbers of intersections of the dislocation lines N1 and N2 with two orthogonal

grids of straight lines of lengths P1 and P2 according to ρ = (N1/P1 +  N2/P2)/t. The

specimen thickness t was estimated from the projected length of dislocations crossing

the specimen on a known slip plane. As demonstrated by Fig. 6.2.6, the dislocation

Fig. 6.2.6. Dislocation density of ZrO2-10mol%Y2O3 deformed in
〈100 〉 as a function of temperature

Fig. 6.2.7. Dislocation segment length of ZrO2-
10mol%Y2O3 deformed in 〈100 〉 as a function of
temperature
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density is constant up to 1250°C and decreases rapidly above this temperature.

Furthermore, the average length of bowed-out dislocation segments was determined at

different temperatures. For this, micrographs were selected showing dislocations with

easily visible cusps at obstacles along their lines like Fig. 6.2.2. The cusps at the

obstacles are marked by either a reduced or an increased electron microscopy contrast.

The average segment length was taken as evaluated dislocation line length dl per

number of cusps m: m/ll ds = . The segment length increases from about 70 nm at

700°C to 150 nm at 800°C to 900°C (Fig. 6.2.7.). At high temperatures, the

dislocations are not pinned anymore, as stated above.

A few micrographs were also taken from a ZrO2-15mol%Y2O3 crystal deformed along

〈112〉 at 1200°C. Fig. 6.2.8 gives such an example. Dislocations on the {100} easy

slip plane are imaged edge-on and appear in very narrow slip bands indicating planar

slip. The broader band contains dislocations that belong to the {111} slip planes.

6.2.8. The microstructure of ZrO2-15mol%Y2O3 deformed along
〈100 〉 at 1400°C till % 8.1=ε , shown with g

r
= [200 ]
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7. Discussion of the experimental results

7.1. Introduction

In this chapter, the results of the compression experiments on cubic zirconia single

crystals of chapter 5 will be discussed on the basis of the cubic zirconia

microstructure presented in chapter 6. In this doctoral thesis, the data on the

dislocation structure are available mainly for ZrO2-10mol%Y2O3 deformed in the

�100� compression axis.

In previous works of other working groups, the plastic deformation of cubic zirconia

single crystals was mostly studied in compression along �112� where dislocations with

1/2�110� Burgers vectors were activated on the soft {100} cube planes [10 to 14].

Apart from the experiments between 350°C and 500°C under a confining pressure

[78], most of the research was done near 1400°C or even higher temperatures. The

deformation in the �100� compression direction, where the easy slip systems are not

activated, was not thoroughly studied before. A few attempts are shortly mentioned in

chapter 3.2. of this doctoral thesis.

However, the results of the present experiments performed in the scope of this

dissertation can be compared with the results of the 10mol% material deformed in the

�112� soft orientation. The latter were obtained during earlier studies of the plasticity

group at the MPI of Microstructure Physics [e.g. 4, 19, 21, 26, 46, 47, 90], so that

these data are treated as reference data, as already done in the preceding text.

According to them, dislocation models were proposed for the different temperature

ranges for the deformation of ZrO2-10mol%Y2O3 along �112�. These were the lattice

friction (Peierls mechanism) with a low value of the activation volume of about 2 b3 at

temperatures below 600°C, where b is the absolute value of the Burgers vector,

localized obstacles and jogs from 600°C to 1000°C with increasing values of the

activation volume, athermal deformation between 1000°C and 1200°C with very high

activation volumes, and recovery at higher temperatures.
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According to the elastic theory of interactions between moving dislocations and other

dislocations, as well as with other crystal defects, the interaction forces are, in the

framework of isotropic elasticity theory, proportional to the shear modulus (e.g. [39,

40, 44]). As the shear modulus weakly depends on the temperature, it is useful to

normalize the flow stress with respect to the shear modulus in order to separate its

influence on the temperature dependence of the flow stress from other temperature-

dependent processes like the thermally activated overcoming of obstacles. In order to

consider the elastically anisotropic nature of zirconia, the energy factor Ks of screw

dislocations of 1/2�110� Burgers vectors calculated by anisotropic elasticity theory is

used instead of the shear modulus. The K factors substitute the shear modulus in most

formulae of interaction forces and energies. The values of sK  are equal for the {100}

and {111} slip planes in ZrO2. They were calculated in [4] using the formulae

presented in [44]. The elastic constants were taken from [71]. Since the Ks values in

[4] were available only for several fixed temperatures, these were extrapolated to the

temperatures, at which the compression experiments were done in this work.

The calculated values of the normalized flow stresses σ/Ks are presented in Fig. 7.1.1.

Only the flow stresses of cubic zirconia stabilized with 10mol% yttria alter with

Fig. 7.1.1. The dimensionless stress σ/Ks of cubic zirconia
(screw dislocations) stabilized with different contents of yttria
and deformed along �100 � and �112 � versus temperature
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changing temperature in both orientations of the compression axis. The curve for the

�112� orientation shows a very weak dependence above about 1000°C. The flow

stresses of the 15 and 20mol% materials are almost independent of the temperature

within the experimental accuracy of the data.

As outlined above, the flow stress of cubic zirconia single crystals consists of several

components, each of which dominates within a corresponding temperature range, and

each of which contributes to the flow stress in a different way. In the following, it will

be attempted to estimate these diverse contributions for the material stabilized with

10mol% yttria deformed in the �100� compression direction, since most of the

microstructural data are available for these deformation conditions. Afterwards, the

influence of the different yttria contents will be discussed, in particular with respect to

the plastic instabilities.

7.2. Flow stress contributions for ZrO2-10mol%Y2O3: Comparison

between deformation along the �100� and �112� compression directions

As shown in chapter 5.1. and in Fig. 7.1.1., the flow stresses of ZrO2-10mol%Y2O3

deformed in the �100� and �112� compression axes exhibit different dependencies on

the temperature. The flow stress along �100� is mostly higher than that along �112�.

Both flow stresses are equal only at 1400°C. The differences should be related to the

different glide planes activated. At high temperatures, recovery controls the

deformation, so that the shear stresses along both orientations become the same.

As described above several times, slip on the easy {100} planes is activated during

deformation along �112�. As to the microstructure of ZrO2-10mol%Y2O3 deformed in

the �100� compression axis, the stress-birefringence observations of chapter 6.1. are

most consistent with the slip on {110} planes, while the transmission electron

microscopy studies of chapter 6.2. showed dislocations arranged on {111} and {110}

planes at the same time, the former type prevailing. It may therefore be assumed that

slip on both types of the planes is simultaneously active. This is in contrast to the

result in [19], where slip was observed only on {110} planes during deformation
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along �100� at 1400°C. The present experiments refer mostly to lower temperatures.

Thus, the {111} planes may become active at lower temperatures.

In the following, the athermal component of the flow stress iτ  is considered. It results

from long-range interactions between parallel dislocations τp (Taylor hardening) and

the back stress of bowed-out dislocation segments τb

bpi τττ += (7.2.1)

The calculation of τp is based on eq. (2.2.20). The shear modulus µ  is replaced by the

energy factor Ks, so that eq. (2.2.20) reads now [20]

πρατ 2/Kbf 2/1
pmp = (7.2.2)

α is a dimensionless factor of about 8 and fpm a dimensionless maximum interaction

force between two parallel dislocations on parallel slip planes. Since the factors Ks

and the fpm values were available only for {100} and {111} slip planes, the current

calculations were hence done for {100} planes for the �112� compression direction

and for {111} planes for the �100� direction in cubic zirconia single crystals. The

interaction forces fpm amount to 0.3 for the {100} planes and to 0.66 for the {111}

planes [4, 17]. The dislocation densities were taken from Fig. 6.2.6 of chapter 6.2. of

this doctoral thesis. Accordingly, Fig. 7.2.1. presents the respective Taylor

7.2.1. The Taylor hardening contribution pτ  of the athermal

component of flow stress iτ  of ZrO2-10mol%Y2O3 deformed
along �100 � and �112 � versus temperature
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components τp of the flow stress. In this thesis, all stresses calculated theoretically are

expressed as shear stresses τ. To compare them with the experimentally obtained

engineering stresses σ = τ/ms, the orientation factor ms has to be taken into account.

In the �100� orientation, τp slowly decreases from about 65 MPa between 700°C and

1250°C, but then abruptly falls down to 30 MPa at 1400°C. The rapid decrease

originates from the decrease in the dislocation density, which in turn should result

from recovery at high temperatures. The Taylor component of the flow stress along

�112� decreases rapidly at low temperatures but gradually above about 700°C. The

highest values along �100� result form the higher value of fpm on {111} planes.

The total athermal component of the flow stress τi also contains the back stress τb

from the bowing of dislocation segments. The back stress can be calculated from the

line tension of the dislocations and the equilibrium radius of curvature of dislocation

segments under stress. The latter can only be measured by in-situ straining

experiments in an electron microscope. For deformation along �112�,  τb was found to

be of the same order of magnitude as τp [90, 17]. Since in-situ experiments were not

carried out in the scope of this doctoral dissertation, the back stress of dislocations

could not be calculated. Thus, Fig. 7.2.1. represents a lower limit of the athermal

stress τi. Considering the orientation factor ms = 0.41 for the {111} planes, the

athermal stress components may be in the range of one fourth to one half of the total

flow stress at, e.g. 900°C. Hence, other components have to contribute to the flow

stress, in agreement with the strong temperature dependence of the latter.

In order to estimate the thermal part of the flow stress, the activation parameters of

deformation shall be discussed in more detail. Fig. 7.2.2. shows the logarithm of the

activation volume calculated by eq. (2.1.15) from the strain rate sensitivity r of the

compression experiments whose results are shown in Figs. 5.1.5. and 5.2.6. The

orientation factors mentioned above were taken into consideration. The data for ZrO2-

10mol%Y2O3 deformed in the �112� compression direction were taken from [4].

According to the plot, the activation volumes of the four materials behave in a similar

way. Starting with small values at low temperatures, V∆  increases upwards until the

temperature of about 1000°C, where it begins to decrease with a further rise of the
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temperature. Up to about 1000°C, the activation volumes of ZrO2-10mol%Y2O3 are

equal for both orientations. They are well consistent with the model of overcoming

localized obstacles as discussed in [21, 46, 17] for the �112� orientation. This model is

propped up by the shape of dislocations, e.g., in Figs. 6.2.1. and 6.2.2., where

dislocations bow out between pinning centers. With the help of the formula 2.1.12.,

the activation distance V/2lb3x ∆=∆  can be estimated, where l is again the obstacle

distance along the dislocation line whose magnitude is taken from Fig. 6.2.7. The

factor of 3/2 is included in order to consider the Friedel statistics of the overcoming of

localized obstacles [52, 40]. The result is an activation distance of the order of

magnitude of 0.5 b. Similar relations between the activation volume and the segment

length are observed also in other materials showing bowed-out dislocation segments

(e.g. [91]).

The activation enthalpies of deformation H∆  were calculated from the temperature

sensitivities in Figs. 5.1.3. and 5.2.4. and the strain rate sensitivities in Figs. 5.1.5. and

7.2.2. The logarithm of the activation volume V∆  of cubic
zirconia single crystals stabilized with different contents of
yttria and deformed in two different axes versus
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5.2.6 using eq. (2.1.16). For the 10mol% material deformed in the two orientations,

the activation enthalpies display very similar values in the whole temperature range.

From 600°C up to 1000°C, they increase from 3-6 eV up to 40-50 eV and then

decrease again to values below 10 eV (Fig. 7.2.3.).

Fig. 7.2.3. The activation enthalpy of cubic zirconia stabilized
with different concentrations of yttria and deformed along �100 �
and �112 �

Fig. 7.2.4. Gibbs free energy of activation for ZrO2-
10mol%Y2O3 as a function of temperature
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For a complete discussion of the thermally activated processes of deformation, the

Gibbs free energy of deformation ∆G in the Arrhenius equation (2.1.7) has to be

calculated. This is done by eq. (2.1.17), where the shear modulus is again replaced by

Ks. The result is presented in Fig. 7.2.4. As expected, ∆G is lower than ∆H.

In order to calculate the total activation energy ∆F to overcome the obstacles, the

work term W∆  from eq. (2.1.9) has to be estimated, too. First, the effective shear

stress *τ  will be determined. It is given by the formula (2.2.1) as the difference

between the applied (resolved) shear stress τ  and the athermal component of the flow

stress described above and presented in Fig. 7.2.1. The applied shear stress τ is

described by the equation 2.1.2 as the product of the flow stress and the orientation

factor of the activated glide planes.

Fig. 7.2.5. demonstrates the dependence of the effective stress *τ  on the temperature.

Since the back stress τb is not considered, these data are the upper limits of τ*. The

effective stresses of ZrO2-10mol%Y2O3 deformed along �100� and �112� are equally

low at 1300-1400°C, but start increasing and differing with decreasing temperature in

accordance with different processes controlling the dislocation mobility on the

different slip planes.

7.2.5. The effective stress of ZrO2-10mol%Y2O3 deformed
along �100 � and �112 �
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Fig. 7.2.6. displays the calculated work term W∆ . The work terms of deformation

along the two orientations show a similar temperature dependence. They are small

only at high temperatures.

Finally, the Gibbs free energy and the work term can be added to yield the Helmholtz

Fig. 7.2.6. The work term of ZrO2-10mol%Y2O3 deformed in
�100 � and �112 � compression directions

Fig. 7.2.7. Helmholtz free energy of activation for ZrO2-
10mol%Y2O3 as a function of temperature
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free energy ∆F of activation plotted in Fig. 7.2.7. It is about 7.7 eV at 700°C. This

value characterizes the obstacles which pin the dislocations as very strong ones.

The discussion has shown that below about 1050°C the thermal part of the flow stress

of ZrO2-10mol%Y2O3 can well be described by the strong localized obstacles visible

by the bowed-out shape of dislocations in the electron micrographs like Figs. 6.2.1.

and 6.2.2. The curly shape of dislocations disappears above about 1050°C. The nature

of the obstacles is not clear. It is argued in [46] that some of them are jogs but most

are small precipitates containing nitrogen, based on the observations in [79]. In

conclusion, localized obstacles play an important role in the deformation along both

orientations �100� and �112�. However, for deformation along �100� this interaction

seems to prevail up to higher temperatures than for �112�. This difference may explain

the higher flow stress along �100� as well as its non-vanishing temperature sensitivity.

A suitable explanation of the differences between deformation along �100� and �112�

would also be the occurrence of different lattice friction stresses (Peierls stresses) on

the different slip planes. Using formula (2.2.2), the Peierls stresses at zero temperature

were estimated for screw dislocations on the {100}, {110} and {111} slip planes. The

relevant planes should be {400}, {220} and {222}. Only the exponential factor of the

formula was considered in order to distinguish between the stresses on the three

planes. The results of the calculations are displayed in the following table.

Slip plane Interplanar
distance a, nm

Ratio a/b Exponential factor exp(-2πa/b),
screw dislocations

{400} 0.129 0.354 0.108

{220} 0.182 0.5 4.32*10-2

{222} 0.149 0.409 7.65*10-2

Hence, the Peierls stress at absolute zero temperature should be the highest for {100}

slip planes, which contradicts the experimental observation that these planes are the

easy planes. Since this model does not consider the ionic character of bonds in

zirconia, it does not produce congruent data. Unfortunately, atomistic calculations of

the Peierls stress at zero temperature are not available, yet. The Peierls stress at a
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finite temperature is described by eqs. (2.2.4) to (2.2.8). It is shown in [46, 47] that the

low temperature increase of the flow stress and particularly the strong rise of the

strain rate sensitivity at about 500°C for compression along �112� can well be

explained by a superposition of the mechanisms of localized obstacles and the Peierls

mechanism, where the latter dominates at low temperature. For deformation along

�100�, the crystals are brittle below 500°C. At 550°C, the activation volume in Fig.

7.2.2. is about 15 b3, which is consistent with the Peierls mechanism. Besides, the

flow stress in Fig. 5.1.2 shows the same strong increase below 600°C for both

deformation orientations. It may therefore be concluded that the Peierls stress acts

also on non-cube slip planes below about 600°C, but is apparently negligibly small at

higher temperatures.

In the temperature range between about 800°C and 1200°C, both the activation

volumes and the activation energies become large. For deformation along �112�,

where the activation volume is particularly large, this was explained by only athermal

processes controlling the flow stress. For the �110� orientation, the contribution of

Taylor hardening to the flow stress in Fig. 7.2.1. is larger than for �112�, which may

indicate that a part of the flow stress difference between both orientations is due to

different athermal contributions, in addition to the preservation of the contribution due

to the overcoming of localized obstacles up to higher temperatures. The activation

volume of about 300 b3 for the �100� orientation is well in the range for localized

obstacles. The large value of the activation energies cannot be explained at present.

As to the ZrO2-10mol%Y2O3 deformed in the �100� compression axis, there is an

interesting peculiarity at 1000°C. The stress relaxation curves of Fig. 5.1.4.c show an

inverse curvature, thus consisting of two parts, a steep one at the beginning and a flat

one at lower relaxation rates, each of which can be characterized by its own value of

the strain rate sensitivity of the flow stress in Fig. 5.1.4. The steep part with a small

strain rate sensitivity and a large activation volume of about 250 b3 (Fig. 7.2.2.)

corresponds to the processes controlling the dislocation mobility, i.e. the overcoming

of localized obstacles. The large value of the strain rate sensitivity indicates the onset

of recovery, which will dominate at higher temperatures.
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Above 1250°C, the dislocation density decreases rapidly and the athermal component

of the flow stress does the same, too. At 1400°C, both the total flow stresses in Fig.

5.1.2. and their Taylor components in Fig. 7.2.1. are the same for the �100� and �112�

compression axes. At high temperatures, the deformation along �112� is strongly

influenced by recovery [26, 19, 17], which is also true for deformation along �100�. In

this case, it is appropriate to express the strain rate sensitivity in terms of the stress

exponent m* defined by the eq. (2.3.5). It can be calculated from the strain rate

sensitivity r by

/rm* σ= (7.2.3)

The results are presented in Fig. 7.2.8. From 1200°C up to 1400°C, the stress

exponent decreases from around 15 down to 5. This agrees with recovery controlled

deformation, where m* should be around 4 (e.g. [92]). The activation energies are

about ∆G = 4.8eV and ∆F = 5.4 eV. If recovery controls the deformation, the

activation energy should be equal to the self-diffusion energy. In a binary material,

this should be the cation diffusion. The activation energy of Zr diffusion is found to

be in the range of 4.5 to 5.5 eV [32, 93, 94], thus well agreeing with the present

deformation data. The diffusion coefficient decreases with increasing yttria content

[95]. This should be one reason of the dependence of the flow stress on the yttria

Fig. 7.2.8. The stress exponent of ZrO2-10mol%Y2O3

deformed in �100 � and �112 � compression directions
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concentration at high temperatures [26]. The recovery type of deformation at high

temperatures is also expressed in the dislocation structure in Fig. 6.2.5. showing a

homogeneous distribution of dislocations.

7.3. Dependence of the deformation parameters of cubic zirconia on the

yttria content

In this chapter, the effect of the yttria content on the flow stress of cubic zirconia

single crystals will be discussed. As shown in Fig. 7.1.1., the flow stresses of the 15

and 20mol% materials in the �112� compression axis are higher than that of the

10mol% material, particularly at high temperatures. Besides, these flow stresses are

almost independent of the temperature in contrast to that of the 10mol% cubic

zirconia single crystals. On the other hand, the strain rate sensitivity of the flow stress

is virtually independent of the yttria concentration except at the highest experimental

temperature. In the early papers (e.g. [27]), the concentration dependence of the

deformation parameters is explained by solution hardening described in chapter 2.2.,

i.e. the direct interaction between dislocations and non-diffusing solutes where the

contribution to the flow stress depends on the solute concentration according to eq.

(2.2.15.). It is discussed for the first time in [26] that this direct influence of the

solutes cannot influence the flow stress at the high temperatures of the present

experiments. Part of the flow stress difference is certainly due to a different athermal

contributions owing to different dislocation densities. Unfortunately, reliable

dislocation density data are not available for the higher yttria concentrations.

An important issue in understanding the plastic deformation behavior of cubic

zirconia with higher yttria concentrations is the occurrence of plastic instabilities, i.e.

serrated flow stress region. This phenomenon was already observed in [16] for ZrO2

containing 18 and 20mol%Y2O3 deformed along �112�. First, the present results given

in chapters 5.2. and 5.3. are briefly compared with those obtained in [16]. At 1400°C,

serrations take place at a strain rate of ~10-5 s-1 for the 20mol% material. This is also

the case in this work, although the corresponding flow stresses are different, being

almost 400 MPa in this work and about 300 MPa in [16]. Cubic zirconia stabilized

with 18mol% yttria did not yield a serrated region during an experiment done at



7.3.       Dependence of the deformation parameters of c-ZrO2 on the yttria content

81

1400°C with 10-5 s-1 [16], and ZrO2-15mol%Y2O3 studied at the same strain rate and

temperature in this dissertation did not exhibit any serrations, either. With decreasing

temperature, the occurrence of plastic instabilities was observed both in [16] and in

this work for the 18 and 15mol% materials, respectively. According to the results of

the stress-birefringence and TEM experiments, the glide systems engaged in slip are

of the {100} type for both papers. In [16], it is stated that instabilities always occur if

the flow stress exceeds 300 MPa. This does not agree with the measurements of this

study at lower temperatures, where the deformation is stable again although the flow

stress is high (Fig. 5.3.3.). The stability limits in [16] correspond only to the high-

temperature stability border of this study.

In order to classify plastic instabilities, Estrin and Kubin [96] start by analyzing

changes of the flow stress of a specimen due to changes in the plastic strain and the

strain rate [97]

εεσ �rdlndd pl. +Θ= (7.3.1)

where Θ  is the work-hardening coefficient and r is the strain rate sensitivity. Linear

stability analysis leads then to the ensuing instability criterion

0r/)( <−Θ σ (7.3.2)

Thus, instabilities can either occur if the numerator becomes negative, which are

called h instabilities, or if r becomes negative, which are denominated strain rate-

softening or s instabilities. Since hardening coefficients of about 2 GPa are registered

for the 15mol% material, the numerator of eq. (7.3.2) is positive. In the middle of the

instability range at about 1000°C, the strain rate sensitivity assumes very small values

in Fig. 5.2.6., but remains positive, too, with all yttria contents. None the less, the

corresponding serrations are considered to be strain rate-softening instabilities, in

contrast to the conclusion in [16]. A recently refined theoretical analysis of the

stability conditions [97], which considers not only localization of slip in time but also

in space, shows that instabilities may occur, too, if the strain rate sensitivity is small

but still positive. In the theory, it is distinguished between the instantaneous strain rate

sensitivity ri, which originates from the strain rate sensitivity of the dislocation

mobility and is measured, e.g., at the beginning of stress relaxation tests, and a steady

state strain rate sensitivity rs, which results from changes in the dislocation structure

and appears only after some time or strain passes after such a test start. It is measured
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in strain rate change tests from the differences in the steady state levels of stress

before and after the strain rate change. In accordance with the theory, rs is close to

zero as discussed in connection with Fig. 5.3.5. while ri amounts to 5 MPa under the

conditions of this figure. It may therefore be concluded that the present instabilities

are essentially s instabilities where the small value of the numerator in eq. (7.3.2.)

because of the low work-hardening coefficient may contribute to the unstable

behavior, too. The occurrence of s instabilities is in agreement with the oscillatory

behavior of the stress-strain curve and with the localization of slip presented in Figs.

6.1.3 and 6.1.4. At 1400°C, where the deformation is stable, slip is homogeneous

(Fig. 6.1.5.).

The oscillatory deformation behavior during a deformation test is frequently related to

dynamic strain aging (DSA). This mechanism results from the dynamic interaction of

moving dislocations with diffusing point defects. The respective instabilities are

usually referred to as the Portevin LeChatelier (PLC) effect. It may be caused by the

Suzuki, Snoek or Cottrell effects. Mostly, the theory of the instabilities is based on the

theory of the Cottrell effect. It is assumed that moving dislocations are aged while

they are temporarily held up by barriers which have to be overcome by thermal

activation. According to [97], the Gibbs free energy of activation of the dislocation

mobility may be considered to increase with the waiting time tw of a dislocation

waiting for activation

[ ] *V)t(expG)G(t wDSAw τη ς ∆−−∆−∆=∆ ∞G (7.3.4.)

where ∞∆G  and DSAG∆  denote the free activation energy of a completely aged

dislocation segment and the maximum increase of the free activation energy due to

DSA, respectively, η  is the characteristic rate of DSA, which is proportional to the

solute mobility, and ζ  is the characteristic aging exponent, depending on the

strengthening mechanism and the type of diffusion. Setting tw = Ω/ �ε , where Ω is an

elemental strain after activation of all dislocations, introducing ∆G from eq. (7.3.4.)

into the Arrhenius relation eq. (2.1.7.) and solving it for τ*, one obtains the

dependence of τ* on the strain rate or temperature schematically plotted in Fig. 7.3.1.

At low strain rates or high temperatures, the point defect atmosphere can easily follow

the dislocation. The flow stress contribution increases with increasing �ε  or decreasing

T. Above the maximum, the atmosphere cannot follow the dislocation leading to a
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decreasing flow stress contribution. Finally, the defects do not diffuse anymore in the

time scale of the moving dislocation so that the defects act as localized obstacles with

a positive strain rate dependence again. The figure demonstrates that at a fixed strain

rate, the unstable range, i.e. that with a falling stress contribution at decreasing

temperature, is embedded within two stable ranges, one at high temperatures and one

at low ones. The present results in Fig. 5.3.3. show for the first time both these limits

of the instability range in cubic zirconia, the high-temperature one already observed in

[16] and additionally the low-temperature one.

As described in chapter 5.3., the plastic behavior during the load drops of the stress-

strain curves is similar to that during the relaxation tests. As shown in Fig. 5.3.7.c, in

the instability range the relaxation rate abruptly becomes zero after it falls below a

critical minimum rate. This is a new phenomenon demonstrating that the dislocations

become fully pinned in the instability range. Therefore, deformation rates lower than

the minimum rates do not occur during the load drops of the serrations. However, the

phenomenon of strain aging is obvious not only in the instability range but also during

stable deformation. It was discussed already at the end of chapter 5.3. that yield drop

effects appear after stress relaxation tests in the stable ranges below the unstable one

(e.g. R1 in Fig. 5.3.2.a.). These yield drop effects are due to the blocking of

dislocations by the dynamic strain aging. Similar effects are observed also in the

Fig. 7.3.1. Schematic diagram of the dependence of the friction stress on
the strain rate or temperature caused by dynamic strain aging [97].
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10mol% yttria material deformed in the �100� orientation in the whole range between

650°C and 1400°C, with a minimum at about 1000°C as discussed in connection with

Fig. 5.1.1. They are also observed in the 10mol% material during deformation along

�112� at temperatures below 1000°C [21]. It is demonstrated there that the amplitude

of the yield drops increases with increasing aging time. The different kinds of

transient effects, which occur after changing the deformation conditions, point at the

occurrence of dynamic strain aging in all cubic zirconia materials. Strain aging is

connected with an additional contribution to the flow stress which has never been paid

attention to before. It may account for part of the difference in the flow stress between

the 10mol% material and the materials containing higher concentrations of yttria. In

intermetallic materials, similar diffusion processes in the dislocation cores may give

rise to a flow stress anomaly, i.e. an increasing flow stress at increasing temperature

(e.g. [100]). The constancy of the flow stress in the normalized diagram of Fig. 7.1.1.

of the 15 and 20mol% materials below the recovery range, i.e. the missing of the

usual decrease with increasing temperature, may be an expression of the flow stress

anomaly connected with the dynamic strain aging.

The activation energy of 2.7 eV obtained from the Arrhenius plot of the minimum

relaxation rates in Fig. 5.3.8. should correspond to the activation energy of the

diffusion of the responsible point defects. The occurrence of the instabilities is clearly

influenced by the yttria content of the materials. In this respect, one has to recall that

the incorporation of every two yttrium ions into ZrO2 necessitates the appearance of

an oxygen vacancy. The yttrium ions are substitutionally solved on zirconium sites.

At low temperatures, the oxygen vacancies tend to associate with the incorporated

yttrium ions to form elastic dipoles along �111�, the stress-induced reorientation of

which gives rise to peaks of the internal friction [35, 31, 93]. However, these peaks

are below about 400°C so that this mechanism (induced Snoek effect) cannot be the

origin of the observed dynamic strain aging. Besides, direct segregation of oxygen

vacancies to dislocations can also not cause the strain aging since their mobility has

an activation energy of only about 1 eV [98]. Thus, most probably the yttrium ions

themselves are the diffusing species giving rise to the strain aging. The activation

energy of 2.7 eV from Fig. 5.3.8. is lower than the energy of yttrium diffusion of 4.4
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eV [99]. This is probably due to the fact that the diffusion is of short-range character

restricted to a region close to the dislocation cores.

Near 1400°C, recovery also influence the deformation of the 15 and 20mol%

materials. Due to the strong dependence of the cation diffusion coefficient on the

yttria concentration [95], the recovery is reduced for the materials with a higher

concentration yielding a higher flow stress as discussed first in [26].
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8. Conclusions

In the scope of this thesis, a thorough investigation of the plastic deformation of cubic

zirconia single crystals was done by compression experiments at a constant strain rate

including stress relaxation, strain rate cycling, and temperature cycling tests. For the

first time, the deformation behavior of ZrO2-10mol%Y2O3 along the �100�

compression direction, as well as of ZrO2-15mol%Y2O3 and 20mol%Y2O3 along the

�112� compression direction was studied in a wide temperature range between 1400°C

and the lowest temperatures possible above the brittle to ductile transition. The results

were compared with those obtained by other investigators who studied the

deformation behavior of ZrO2-10mol%Y2O3 along �112�.

The microstructure of deformed specimens was studied by optical stress-birefringence

microscopy and by transmission electron microscopy in a high-voltage electron

microscope operating at 1 MeV. According to the stress-birefringence observations,

{110} slip planes were activated in ZrO2-10mol%Y2O3 deformed along �100�, where

the easy slip systems with {100} planes are out of stress. However, the transmission

electron micrographs are mostly consistent with {111} slip planes being engaged,

although some micrographs show clearly {110} slip planes, too. Since data of the

anisotropic elasticity theory were not available for deformation on {110} planes, the

interpretation of the deformation along the �100� compression axis was based on glide

on {111} planes.

The flow stress of ZrO2-10mol%Y2O3 deformed along �100� exceeds that along �112�

at low and intermediate temperatures owing to the different slip planes activated in

these specimen orientations. The difference in the flow stresses decreases with

increasing temperature and vanishes at 1400°C. The processes which control the

plastic deformation of cubic zirconia deformed along �100� were identified according

to the activation parameters of deformation and the microstructural observations in the

TEM. The athermal stress component arising from Taylor hardening calculated from

the dislocation density is higher for the {111} planes with respect to the {100} planes

because of a stronger mutual interaction between parallel dislocations. Below 600°C,

the lattice friction (Peierls) mechanism acts in cubic zirconia deformed both in the
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�100� and �112� compression directions. This mechanism was concluded from the

high values of the strain rate sensitivity leading to small activation volumes in the

order of 15 b3. Above 600°C up to 1050°C, the thermally activated overcoming of

obstacles by the moving dislocations becomes dominating. Within this temperature

range, the activation volume increases up to about 300 b3 which, however, is smaller

than that for deformation along �112�. In this temperature range, the dislocations bow

strongly out between the obstacles. The obstacle distances are between 200 and 500 b

yielding an activation distance of a fraction of b. The obstacles are probably small

precipitates containing nitrogen.

At 1000°C, the stress relaxation curves show an inverse curvature with two ranges of

a different strain rate sensitivity. This points to different dislocation mechanisms

responsible for the deformation behavior of cubic zirconia deformed in the �100�

compression axis at different strain rates. One of the processes at high strain rates is

the thermally activated dislocation motion discussed above. Apparently, the other

mechanism is the onset of recovery where dislocations start to annihilate. The

recovery becomes the dominating thermally activated process at the highest

experimental temperature of 1400°C. In the recovery range, the stress exponent is

about 5 and the Gibbs free energy of activation equals the cation diffusion energy,

which is both consistent with recovery controlled high-temperature deformation.

The flow stresses of ZrO2-15mol%Y2O3 and 20mol%Y2O3 along �112� are higher

than that of ZrO2-10mol%Y2O3 and do almost not depend on the temperature.

Besides, a region of instabilities in the corresponding stress-strain curves occurs from

about 1000°C up to 1350°C at a strain rate of 10-5 s-1. For the first time, the lower

limit of the instability range was observed for cubic zirconia. The borders of the

instability range shift to higher temperatures with increasing strain rates. The

instabilites are explained on account of the Portevin LeChatelier effect caused by so-

called dynamic strain aging. This is a diffusional process in the dislocation cores

probably of the yttrium added in order to stabilize the cubic structure of zirconia. The

strain aging leads to complete locking of the dislocations below a temperature

depending deformation rate. The higher flow stress of the crystals with a higher yttria

content results from an additional contribution by the strain aging and, in the recovery
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range, from suppressed recovery owing to the reduced diffusion coefficient by the

increased yttria concentration.
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