

Identifizierung und rekombinante Herstellung von Phospholipase D-Isoenzymen aus Weißkohl (*Brassica oleracea* var. capitata)

Dissertation

zur Erlangung des akademischen Grades doktor rerum naturalium (Dr. rer. nat.)

vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Halle-Wittenberg Fachbereich Biochemie/Biotechnologie

von Ines Schäffner (geb. Pannenberg) geb. am 20. Januar 1974 in Erlabrunn/Erzgebirge

Gutachterin/Gutachter:

- 1. Frau Prof. Dr. Renate Ulbrich-Hofmann
- 2. Herr Prof. Dr. Uwe T. Bornscheuer
- 3. Herr PD Dr. Ivo Feußner

Halle (Saale), den 5. Juli 2001

Inhaltsverzeichnis

Abkürzungen	3
1. Einleitung	5
2. Theoretischer Teil	8
2.1. Überblick über die PLD-Familie – Vorkommen und Klassifizierung	8
2.2. Die Funktion der pflanzlichen PLDs im biologischen System	10
2.3. Strukturmerkmale der Enzyme der PLD-Superfamilie	13
2.3.1. Bisher bekannte mRNA-Sequenzen	13
2.3.2. Das HKD-Motiv	16
2.3.3. Die C2-Domäne	17
2.4. Der Katalysemechanismus der Endonuklease Nuc als Vertreter der PLD-Superfamilie .	20
2.5. Charakterisierung von Phospholipase D aus Weißkohl	24
2.6. Phospholipase D in der Phospholipidsynthese	25
3. Materialien	27
3.1. Geräte	27
3.2. Antikörper	27
3.3. Oligonukleotide	28
3.4. Plasmide und Vektoren	30
3.5. E. coli-Stämme	30
3.6. Kulturmedien	30
4. Methoden	31
4.1. RNA-Präparation	31
4.1.1. Isolierung von Gesamt-RNA aus Weißkohl	31
4.1.2. Isolierung von mRNA aus Weißkohl	31
4.2. DNA-Präparation	31
4.2.1. Isolierung genomischer DNA aus Weißkohl	31
4.2.2. Isolierung von Plasmid-DNA aus <i>E. coli</i>	31
4.3. Größen- und Konzentrationsbestimmung von Nukleinsäuren	32
4.3.1. Größenbestimmung von DNA und RNA	32
4.3.2. Konzentrationsbestimmung von DNA und RNA	32
4.4. Herstellung von Genfragmenten mittels PCR bzw. RT-PCR	32
4.5. Klonierungstechniken	33
4.6. Sequenzierung von Plasmiden	33
4.7. Transformation von Plasmidvektoren in E. coli	33
4.8. Anzucht und Kultivierung der E. coli-Stämme	34
4.9. Expression der klonierten Gene pld1 und pld2 in E. coli	34
4.9.1. Herstellung löslicher aktiver PLD1 und PLD2	34
4.9.2. Herstellung von PLD1- und PLD2-inclusion bodies	34
4.10. Proteinreinigung von PLD1 und PLD2	34
4.10.1. Zellaufschluß und Reinigung von löslicher PLD1 und PLD2	34

	4.10.2. Isolierung von IB-Material von PLD1 und PLD2	35
	4.11. Renaturierung von PLD1 und PLD2 inclusion bodies	35
	4.12. Bestimmungsmethoden	37
	4.12.1. Bestimmung der Proteinkonzentration	37
	4.12.1.1. BCA-Test	37
	4.12.1.2. Bradford-Test	37
	4.12.2. Bestimmung der PLD1- und PLD2-Hydrolyseaktivität	37
	4.12.2.1. Standardtest	37
	4.12.2.2. Modifizierter Standardtest für die Aktivitätsbestimmung von renaturiertem	
	IB-Material	38
	4.12.2.3. Einfluß des pH-Wertes und der Ca ²⁺ -Konzentration im Reaktionspuffer auf	
	die PLD-Hydrolyseaktivität	38
	4.12.3. Bestimmung der PLD1- und PLD2-Transphosphatidylierungsaktivität	39
	4.13. SDS-PAGE	39
	4.14. Proteinsequenzierung	39
	4.15. Western-Blot-Techniken	40
5.	Ergebnisse und Diskussion	41
	5.1. Identifizierung und Charakterisierung zweier Isoenzyme von PLD aus Weißkohl	41
	5.1.1. Bestimmung der Nukleotidsequenz der mRNAs von PLD1 und PLD2	41
	5.1.2. Ermittlung der Genstruktur von pld1 und pld2	44
	5.1.3. Vergleich der Genstrukturen der beiden Isoenzyme aus Weißkohl mit denen	
	anderer pflanzlicher PLD α s	45
	5.1.4. Analyse der Primärstrukturen von PLD1 und PLD2	46
	5.2. Klonierungs- und Expressionsstudien von PLD1 und PLD2	50
	5.2.1. Herstellung und Expression von Fusionskonstrukten der PLD1	51
	5.2.2. Herstellung und Expression des Tag-freien Konstruktes	52
	5.2.3. Klonierung und Expression von PLD2	54
	5.2.4. Optimierung der IB-Erzeugung von PLD1 und PLD2	54
	5.3. Reinigung der löslichen PLD-Isoenzyme	55
	5.3.1. Präparation des Bakterien-Rohextraktes	55
	5.3.2. Ca ²⁺ -vermittelte hydrophobe Interaktionschromatografie	55
	5.4. Versuche zur Rückfaltung von PLD1 und PLD2 inclusion bodies	58
	5.5. Biochemische Charakterisierung der Isoenzyme	61
	5.5.1. N-terminale Sequenzierung von PLD1 und PLD2	61
	5.5.2. Ermittlung der spezifischen Hydrolyseaktivität von PLD1 und PLD2	62
	5.5.3. Bestimmung der Hydrolyseaktivität von PLD1 und PLD2 in Abhängigkeit vom	
	pH-Wert und von der Ca ²⁺ -Konzentration	62
	5.5.4. Ermittlung der Transphosphatidylierungspotenz von PLD1 und PLD2	64
6.	Zusammenfassung	65
7.	Literaturverzeichnis	68
A	nhang	I-X

Abkürzungen

A	Adenin
Amp ^r	Ampicillin-Resistenz
BICIN	N,N-Bis(2-hydroxyethyl)-glycin
bp	Basenpaare
BSA	Rinderserumalbumin, Fraktion V
С	Cytosin
cDNA	complementary DNA (komplementäre DNA)
CDP	Cytidindiphosphat
DAG	Diacylglycerol
DEPC	Diethylpyrocarbonat
DNA	desoxyribonucleic acid (Desoxyribonukleinsäure)
DNase	Desoxyribonuklease
dNTP	desoxy-Ribonukleosidtriphosphat
DTT	Dithiothreitol
E. coli	Escherichia coli
EDTA	Ethylendiamintetraessigsäure
G	Guanin
GdnHCl	Guanidinhydrochlorid
GSH	reduziertes Glutathion
GSSG	oxidiertes Glutathion
HEPES	N-(2-Hydroxyethyl)piperazin-N'-(2-ethansulfonsäure)
IB	inclusion body (Einschlußkörper)
IP ₃	Inositol-1,4,5-trisphosphat
IPTG	Isopropyl-β-D-thiogalactopyranosid
IRD800	Fluoreszenz-Farbstoff zur Sequenzierung von DNA
Kan ^r	Kanamycin-Resistenz
kb	Kilobasen
kDa	Kilodalton
LB	Luria-Bertani Kulturmedium
MES	2-Morpholinoethansulfonsäure
mRNA	messenger ribonucleic acid (Boten-Ribonukleinsäure)
NCBI	National Center for Biotechnology Information, NIH Bethesda, MD, USA
OD _{xnm}	optische Dichte bei einer Wellenlänge von x nm
ORF	open reading frame (offener Leserahmen)
PA	Phosphatidsäure
PAGE	Polyacrylamid-Gelelektrophorese
PBS	phosphate buffered saline (Phosphat-gepufferte Kochsalzlösung)
PC	Phosphatidylcholin (Lecithin)
PCR	Polymerasekettenreaktion
PE	Phosphatidylethanolamin
PEG 6000	Polyethylenglycol mit molekularer Masse von ca. 6000 g/mol
Pfu	Pyrococcus furiosus
PI	Phosphatidylinositol
PIP ₂	Phosphatidylinositol-4,5-bisphosphat

PLA ₁ , PLA ₂	Phospholipase A ₁ , Phospholipase A ₂
PLC	Phospholipase C
PLD	Phospholipase D
pNP	para-Nitrophenol
PpNP	Phosphatidyl-para-nitrophenol
RACE	"rapid amplification of cDNA ends" (Amplifikation von cDNA-Enden)
RNA	ribonucleic acid (Ribonukleinsäure)
RNase	Ribonuklease
rpm	revolutions per minute (Umdrehungen pro Minute)
RT-PCR	PCR nach mRNA-abhängiger Reverstranskriptase-Reaktion
SDS	sodium dodecyl sulfate (Natriumlaurylsulfat)
Т	Thymidin
Tris	Tris-(hydroxymethyl)-aminomethan
tRNA	transfer ribonucleic acid (Transfer-Ribonukleinsäure)
U	unit (Einheit), 1 U = 1 μ mol/min
Vol.	Volumenteile

Ein- und Dreibuchstaben-Code für proteinogene Aminosäuren

A, Ala	Methionin	M, Met
C, Cys	Asparagin	N, Asn
D, Asp	Prolin	P, Pro
E, Glu	Glutamin	Q, Gln
F, Phe	Arginin	R, Arg
G, Gly	Serin	S, Ser
H, His	Threonin	T, Thr
I, Ile	Valin	V, Val
K, Lys	Tryptophan	W, Trp
L, Leu	Tyrosin	Y, Tyr
	A, Ala C, Cys D, Asp E, Glu F, Phe G, Gly H, His I, Ile K, Lys L, Leu	A, AlaMethioninC, CysAsparaginD, AspProlinE, GluGlutaminF, PheArgininG, GlySerinH, HisThreoninI, IleValinK, LysTryptophanL, LeuTyrosin

1. Einleitung

Phospholipasen (PLA₁, PLA₂, PLC und PLD) gehören zur Enzymklasse der Hydrolasen. Sie katalysieren die enzymatische Spaltung der Esterbindungen in natürlich vorkommenden Glycerophospholipiden an verschiedenen Positionen (Abb. 1.1). In der Natur sind sie weit verbreitet und haben unterschiedliche Funktionen. Manche von ihnen sind Verdauungsenzyme, während andere wichtige Komponenten von Signalwandlungssystemen darstellen. In der Biotechnologie werden einige Phospholipasen als Biokatalysatoren für die Gewinnung von Phospholipiden verwendet. Darüber hinaus sind sie prädestiniert als Werkzeug zur Untersuchung biologischer Membranen und ihrer Lipidkomponenten in der Grundlagenforschung.

Abb. 1.1. Wirkungsspezifität der verschiedenen Phospholipasen.

Innerhalb der Phospholipasen nimmt PLD (EC 3.1.4.4.) eine Sonderstellung ein, da dieses Enzym neben der von allen Phospholipasen katalysierten Hydrolyse auch eine Umesterung durchführen kann. Diese als Transphosphatidylierung bezeichnete Reaktion wurde in Pflanzen erstmalig von Ferrari und Benson (1961) entdeckt und spielt insbesondere bei der auch kommerziell angewandten Synthese von Phospholipiden eine große Rolle (Review in Servi, 1999). Dabei wird der im Verlauf der Enzymkatalyse gebildete Phosphatidylrest anstelle von Wasser auf einen primären oder sekundären Alkohol übertragen (Abb. 1.2)

Während man für die Umesterung früher vor allem PLD aus Weißkohl nutzte, wird heute industriell meist PLD aus Mikroorganismen, insbesondere Streptomyces species, verwendet, da ihre Transphosphatidylierungspotenz gegenüber der Hydrolyse weitaus höher ist als beim Weißkohl-Enzym. Jüngste Arbeiten zeigten jedoch, daß der Einsatz von PLD aus Weißkohl in einigen Fällen vorteilhaft ist, weil dieses Enzym im Gegensatz zu den mikrobiellen PLDs eine relativ geringe Substratspezifität besitzt. So ist es in der Lage, Alkylphosphatester, die als Cytostatica Bedeutung haben, umzuestern (Aurich et al., 1997). Es liegt daher nahe, durch gentechnologische Methoden die Transphosphatidylierungspotenz der PLD aus Weißkohl zu erhöhen, um das Enzym für industrielle Anwendungen interessanter zu gestalten. Nachteilig wirkten sich jedoch die noch immer geringen Kenntnisse zur Struktur und zum Mechanismus dieses Enzym aus. Im Gegensatz zu PLA₂ und PLC, von denen die Proteinstruktur, die enzymatische Funktion in vivo und der Katalyse-Mechanismus schon relativ früh aufgeklärt werden konnten (Reviews in Rebecchi und Pentyala, 2000, Six und Dennis, 2000, Ulbrich-Hofmann, 2000), erfolgte der Durchbruch bei der Erforschung der PLD erst vor kurzem. Nachdem man die Bedeutung dieses Enzyms bei der Signaltransduktion in Tieren und auch in Pflanzen erkannte, wuchs das Interesse, das Protein zu charakterisieren und seine Struktur aufzuklären. Viele mRNA-Sequenzen wurden seitdem veröffentlicht. Für die Kristallisation der PLD ist die Gewinnung des Enzyms aus den pflanzlichen und tierischen Organismen in ausreichenden Mengen und in hoher Reinheit erforderlich. Ziel der vorliegenden Arbeit war es, PLD aus Weißkohl als ihre traditionelle Quelle (Brassica ausreichenden oleracea var. capitata) in Mengen zu isolieren, um die molekularbiologischen Grundlagen für die Gewinnung ausreichender Mengen an PLD sowie für ihre gentechnologische Veränderung, z. B. durch Punktmutationen im katalytischen Zentrum oder in der regulatorischen C2-Domäne, zu erarbeiten. Dazu

sollte das entsprechende Gen kloniert und zur heterologen Expression in *E. coli* gebracht werden. Zunächst war es erforderlich, das kodierende Gen zu isolieren und dessen Nukleotidsequenz zu ermitteln. Nach der Aufklärung der Genstruktur war das ORF (open reading frame, offener Leserahmen) in einen geeigneten Plasmidvektor einzubauen und die DNA stabil im Wirtsorganismus *E. coli* zu integrieren. Durch die Optimierung der pld-Expression sollte die PLD-Ausbeute maximiert werden, um so die günstigsten Voraussetzungen für die Reinigung des Enzyms zu schaffen. Nach erfolgter Reinigung des Enzyms sollten schließlich einige besonders interessante enzymatische Eigenschaften der rekombinanten PLD, wie das Verhältnis von Hydrolyse- und Transphosphatidylierungsgeschwindigkeit und die Aktivierung durch Ca²⁺-Ionen in Abhängigkeit vom pH-Wert, ermittelt werden.

2. Theoretischer Teil

2.1. Überblick über die PLD-Familie – Vorkommen und Klassifizierung

Wie eine Fülle von Literaturdaten zeigt, kommen PLDs in allen Organismenreichen vor. PLD-Aktivität konnte in Mikroben (Arcano-, Corynebakterien, Vibrio damsela, vielen Streptomyces-Arten, Saccharomyces cerevisiae, Streptoverticillium cinnamoneum u. a.), in tierischen Organismen (u. a. Taufliege, Fadenwurm, Ratte, Maus, Hamster, Rind, Mensch) und in Pflanzen (Ackerschmalwand, Karotte, verschiedenen Kohlsorten, Erdnuß, Rizinus, Reis, Mais, Tabak, Tomate, Baumwolle, Soja u. a.) nachgewiesen werden (Reviews in Heller, 1978, Dennis, 1983, Waite, 1987). In einigen Lebewesen wurden sogar mehrere Isoenzyme entdeckt, die man in verschiedenen Entwicklungsstadien oder auf bestimmte Gewebetypen begrenzt findet (Dyer et al., 1994, Dyer et al., 1996) und die sich in ihren Eigenschaften hinsichtlich Molekularmasse, pH-Optimum oder Ca²⁺-Abhängigkeit und in ihrer Regulation unterscheiden.

In Mikroorganismen wurde mit Ausnahme von Hefe (Review in Rudge und Engebrecht, 1999) und *Streptomyces cinnamoneum* (Ogino et al., 2001) jeweils nur eine PLD-Form gefunden. Die von Hefe gebildete PLD1, deren Aminosäuresequenz keine Homologien zu anderen Mitgliedern der PLD-Familie aufweist, ist Ca²⁺-unabhängig und kann, wie die meisten anderen bisher bekannten PLDs, Transphosphatidylierungsreaktionen ausführen (Waksman et al., 1996). PLD2, die strukturell nicht verwandt ist mit PLD1, benötigt dagegen 0,1 µM - 1 mM freies Ca²⁺ und ist, wie die kürzlich identifizierte Metallionen-unabhängige PLD2 aus *Streptoverticillium cinnamoneum* (Ogino et al., 2001), nicht in der Lage, Umesterungen durchzuführen (Waksman et al., 1997). Man vermutet deshalb, daß diese Enzyme Vertreter einer neuartigen PLD-Familie sein könnten.

Bei den tierischen Vertretern (z. B. Ratten-, Maus- oder menschliche PLD) findet man zwei Isoenzymtypen, die jeweils Phosphatidylinositol-4,5-bisphosphat (PIP₂) als Cofaktor benötigen. PLD1 hat meist eine niedrige Basalaktivität, kann aber durch Proteinkinase C, ADP-ribosylierungsfaktor (ARF), Rho, Rac und Cdc42 synergistisch aktiviert werden (Hammond et al., 1995, Colley et al., 1997a). PLD2 besitzt *in vitro* ohne Aktivierung durch oben genannte Faktoren ihre volle Aktivität, *in vivo* jedoch liegt sie inhibiert vor (Colley et al., 1997b). Aus diesen beiden sequenz-homologen Typen, die sich nur durch das Vorkommen einer 116 Aminosäure langen loop-Region in der PLD1-Form unterscheiden, gehen durch alternatives Spleißen weitere Isoenzyme hervor. So enthält hPLD1a (h von *human*, NCBI-Accession-Nr. siehe Tab. 2.1. in Kapitel 2.3.1) im

Vergleich zu hPLD1b im zweiten Drittel ein zusätzliches Exon aus 38 Aminosäuren bei ansonsten identischen Sequenzen. hPLD2a ist bis auf 11 zusätzliche Aminosäuren identisch zu hPLD2b.

Diese Numerierung der PLD-Typen wurde für Maus-PLDs übernommen. mPLD1 und mPLD2 (m von *murine*) sind zu 60 % identisch, und auch hier existieren weitere Spleißvarianten. mPLD1 kommt, wie im Falle der hPLD1, in den beiden Varianten mPLD1a und mPLD1b vor (Colley et al., 1997a, Redina und Frohman, 1998b), wobei wiederum mPLD1a um das 38 Aminosäuren umfassende Exon größer ist als mPLD1b. Von mPLD2 wurden 4 alternativ gespleißte Isoenzyme gefunden (mPLD2, mPLD2si-a, mPLD2si-b und mPLD2si-c, Redina und Frohman, 1998a), die bis auf die Deletion von teilweise mehreren aufeinanderfolgenden Exonbereichen identisch sind. Die erst kürzlich gefundene mPLD3 (Pedersen et al., 1998) weist nur geringe Homologien zu mPLD1 und mPLD2 auf.

Im Gegensatz dazu sind die pflanzlichen PLDs in α -, β - und γ -Typen unterteilt. Diese Definition wurde von der Arbeitsgruppe von X. Wang (Manhattan KS, USA) eingeführt, die sich mit PLD-Isoenzymen aus der Ackerschmalwand (Arabidopsis thaliana) beschäftigt und beim Durchsuchen einer genomischen DNA-Bank des Arabidopsis-Genomprojektes bisher mindestens 7 verschiedene Isoenzyme gefunden hat, von denen mindestens 5 tatsächlich in der Pflanze exprimiert werden (Dyer et al, 1995, Pappan et al., 1997, Qin et al., 1997, Qin et al., 1999). Die erste identifizierte Form wurde mit PLD α bezeichnet. Sequenzvergleiche zeigen, daß alle bis dahin gefundenen pflanzlichen PLDs (Mais, Reis und Rizinus) und viele weitere neu sequenzierte PLDs (z. B. aus Pimpinelle, Craterostigma, Tomate oder Tabak) in diese Gruppe eingeordnet werden können (Tab. 2.1). Alle diese Enzyme zeichnen sich durch den sehr hohen Ca²⁺-Ionen-Bedarf (20-100 mM) in vitro und ein im sauren Bereich liegendes pH-Optimum aus (pH 4,5-5,5, Pappan und Wang, 1999b). Bei der Isolierung von PLD aus Reis und Rizinus stellte man fest, daß in Abhängigkeit von Wachstums- und Entwicklungsbedingungen verschiedene Varianten des PLD α -Typs auftreten können, die mit PLDa1, PLDa2 und PLDa3 bezeichnet wurden (Dyer et al., 1994, Young et al., 1996). PLD α 1 war meist in keimenden Samen und in jungen Blättern lokalisiert. PLD α 2 trat in allen Wachstumsstadien auf und war am häufigsten vertreten, während PLDa3 nur im Stadium der Seneszenz nachgewiesen werden konnte.

Kurze Zeit später identifizierte man die zweite PLD in Arabidopsis, die nur 40 % Aminosäure-Identität zum α -Typ aufwies. Diese neue Form (β -Typ) unterscheidet sich auch in den enzymatischen Eigenschaften vom α -Typ. So liegt z.B. das pH-Optimum bei pH 7,0-7,5, und die für die Aktivität optimale Ca²⁺-Konzentration beträgt nur 50 μ M (Qin et al., 1997). Die beiden nächsten Isoenzyme, wegen ihrer hohen SequenzÜbereinstimmung von 87 % PLDγ1 und PLDγ2 benannt, sind mit 66 % Identität der β-Form am nächsten verwandt (nur 41 % Identität zur α-Form) und haben auch ähnliche Eigenschaften. Sie benötigen wie PLDβ PIP₂ als Cofaktor und erreichen ihre höchste Aktivität bei einem neutralen pH-Wert und in Gegenwart von 50 µM Kalziumionen (Qin et al., 1997, Qin et al., 1999). Inzwischen wurden noch drei weitere Insoenzyme in *Arabidopsis thaliana* entdeckt (Wang, 2000). Ihre Bezeichnung (PLDγ3, PLDδ1 und PLDδ2) richtete sich nach dem Grad der Homologie zu den bereits bekannten Isoenzymen. Pflanzliche PLDs, die nicht dem α-Typ angehören, konnten auch in Reis, Baumwolle und Tabak identifiziert werden (Tab. 2.1). Sie ließen sich jedoch nicht eindeutig dem β- oder γ-Typ zuordnen.

2.2. Die Funktion der pflanzlichen PLDs im biologischen System

Die sehr große Isoenzym-Vielfalt weist bereits auf die Möglichkeit der Beteiligung an verschiedensten Funktionen der PLD in Pflanzen hin. Generell werden drei Bereiche diskutiert, in denen die PLD eine wichtige Rolle spielt (Review in Wang, 2000):

1. Lipidabbau auf Grund der Hydrolyseaktivität des Enzyms, 2. Beteiligung an zellulärer Regulation, z. B. Signaltransduktion, und 3. Membranumgestaltung durch Transphosphatidylierungsreaktionen. Während insbesondere die Rolle der PLD beim Lipidabbau während des Membranalterns oder durch äußere Streßfaktoren schon sehr früh erkannt und untersucht wurde, zog die zweite Funktion erst in den letzten Jahren die Aufmerksamkeit auf sich, nachdem in den Säugerzellen ein ähnlicher Mechanismus der Signaltransduktion aufgeklärt werden konnte. Für die Funktion der PLD bei der Regenerierung von Membranen lieferten verschiedene Arbeitsgruppen erste Hinweise.

Der starke Lipidabbau bei der Zerkleinerung und Homogenisierung von Reiskleie (Contardi und Ercoli, 1932) und Möhrengewebe (Hanahan und Chaikoff, 1947) führte überhaupt zur Entdeckung von PLD-Aktivität. Dies waren die ersten Hinweise auf die Aktivierung von PLD unter streßinduzierten Bedingungen (mechanische Verwundung von Pflanzengewebe). Später wurde der Einfluß weiterer Streßfaktoren, wie z.B. Insektenbefall, Pathogenangriff (Young et al., 1996), Gefrierschock oder osmotischer Streß (Chetal et al., 1982, Frank et al., 2000) auf die PLD-Hydrolyseaktivität analysiert. In allen Fällen stieg der PLD-Gehalt im betroffenen Gewebe und auch in naher Umgebung davon an, was auf eine interne Signalweiterleitung schließen läßt. Diese streßinduzierte Membranzerstörung läßt sich folgendermaßen erklären: Durch mechanische Verwundung von Zellen oder Frosteinfluß wird die Membran porös und somit durchlässig für Ca²⁺, das aus seinem Speicherreservoir in die Zellen einströmt.

Ein steigender Kalziumspiegel erhöht die PLD-Aktivität, und durch erhöhte Hydrolyse von Phospholipiden entsteht Phosphatidsäure (PA), die einen wichtigen Signalmetabolit sowohl in Pflanzen als auch in Tieren darstellt (Abb. 2.1).

Abb. 2.1. Bedeutung der Phosphatidsäure (PA) im Netzwerk der PLD-Aktivierung.

Grüne Pfeile bedeuten Aktivierung, rote Pfeile Inhibierung, und schwarze Pfeile stehen für chemische Reaktionen. DAG-PPi, Diacylglycerolpyrophosphat; IP3, Inositol-1,4,5-trisphosphat; PE, Phosphatidylethanolamin; PI, Phosphatidylinositol; PIP, Phosphatidylinositol-4-phosphat (nach Wang, 1999)

PA bildet in Membranen bei Anwesenheit von Ca²⁺-Ionen bevorzugt hexagonale Phasen aus (Cullis et al., 1986). Deren Einlagerung in noch funktionsfähige Membranen bewirkt eine Destabilisierung der Bilayer – in einigen Fällen bis hin zu deren Zerstörung - und erhöht deren negative Ladung, was zu Veränderungen im Ionenstrom führen kann. Weiteres Ca²⁺ dringt in die Zellen ein und aktiviert wiederum PLD. Dies stellt einen effektiven Weg zur Signalamplifikation dar. PA kann auch durch PA-Phosphatase dephosphoryliert werden zu Diacylglycerol (DAG), einem weiteren wichtigen Signalstoff. Dieser wird durch einige Vertreter der PLAs oder unspezifischer Acylhydrolase abgebaut, die beide ebenfalls durch PA aktiviert werden können (Abb. 2.1) und lyso-PA und langkettige ungesättigte Fettsäuren freisetzen (Lee et al., 1997). Diese gehen anschließend in den Oxylipin-Signalweg ein (Munnik et al., 1998). Als Resultat dieser Signalkaskaden entstehen dann die bekannten Streßantworten, wie z. B. Membran-Seneszenz und -abbau bis hin zum Zelltod (Abb. 2.2). Die gleichen Reaktionen werden auch bei der Behandlung von Pflanzenblättern mit Abscisinsäure und Ethylen beobachtet (Fan et al., 1997, Lee et al., 1998), was auf eine Beteiligung der PLD bei der Antwort auf den Phytohormon-induzierten Streß schließen läßt (Abb. 2.2).

Diese Beteiligung der PLD bei der Signaltransduktion spielt auch im tierischen Organismus eine wichtige Rolle. Hier übernimmt die Proteinkinase C, die durch PA aktiviert werden kann, die DAG-Synthese. Phosphatidylinositol-4-phosphat-5-kinase synthetisiert daraus PIP₂, einen potentiellen Aktivator aller bisher gefundener PLD-Isoenzyme (Liscovitch et al., 1994).

An dieser Stelle soll die mögliche Rolle von PLD bei der Membranumgestaltung und -reorganisation erwähnt werden. Wie bereits oben beschrieben, entstehen bei der Hydrolyse PA und eine freie Kopfgruppe. PA hat eine sehr kurze Lebensdauer und wird entweder dephosphoryliert zu DAG, das als Intermediat zur Herstellung von Phosphatidylcholin (PC), PE und Triacylglycerol dient, oder PA fungiert als Substrat der

CDP-Diacylglycerol-Synthase, die daraus CDP-DAG herstellt, einen wichtigen Phospholipide, Ausgangsstoff für die Synthese der sauren wie z. Β. Phosphatidylglycerol, PI, Phosphatidylserin und Cardiolipin (Kent, 1995). Die dafür benötigten Kopfgruppen werden entweder neu synthetisiert, was einen hohen Aufwand bedeutet, oder sie können aus der oben genannten PLD-katalysierten Hydrolyse weiterverwendet werden (Abb. 2.2). Auch die Transphosphatidylierungsreaktion der PLD, die in Pflanzen noch nicht direkt nachgewiesen werden konnte, kann vermutlich die zeit- und energieaufwendige Neusynthese von Phospholipiden vermeiden helfen. Dies alles führt zu einer schnellen Veränderung der Membranzusammensetzung, die vor allem bei Zellwachstum, -Differenzierung oder Streßbeantwortung benötigt wird (Wang, 2000). Daß bei diesen biologischen Mechanismen tatsächlich PLD beteiligt ist, konnte bereits mehrfach gezeigt werden. Junges und schnell wachsendes Gewebe in Rizinus weist eine gesteigerte PLD α -Expression auf (Xu et al., 1997). Auch keimende und wachsende Samen aus Reis (Ueki et al., 1995) und Rizinus (Xu et al., 1997, Ryu und Wang, 1998) zeigen eine hohe PLDα-Aktivität. Deshalb wird eine mögliche Beteiligung der PLD an der Lipidmobilisierung bei der Samenkeimung diskutiert. Zien et al. (2001) lieferten durch umfangreiche Studien über die Lipidzusammensetzung vor und nach induziertem Verwundungsstreß in PLD α -unterdrückten bzw. nicht-genmanipulierten Arabidopsis-Pflanzen weitere Hinweise für die Rolle der PLD α bei der Membranlipid-Umgestaltung.

2.3. Strukturmerkmale der Enzyme der PLD-Superfamilie

2.3.1. Bisher bekannte mRNA-Sequenzen

Vor Beginn dieser Arbeit waren pflanzliche PLDs aus Rizinus, Reis, Mais und aus Arabidopsis (Tab. 2.1) in *E. coli* kloniert und zumindest die mRNA-Sequenz bestimmt. Später kamen weitere mRNA-Sequenzen pflanzlicher PLDs hinzu, z. B. aus der Wiederauferstehungspflanze, Baumwolle, Tabak, Tomate, Pimpinelle und Kuhbohne (Tab. 2.1). Eine koreanische Arbeitsgruppe publizierte später eine unvollständige mRNA-Sequenz, die der von PLD2 aus Weißkohl dieser Arbeit entspricht.

Auch verschiedene tierische und mikrobielle PLDs wurden in ihrer mRNA-Sequenz aufgeklärt (Tab. 2.1). Dazu gehören PLDs aus der Taufliege, dem Fadenwurm, Rind, Hamster, Mensch, der Ratte und Maus sowie aus Arcanobacterium haemolyticum, Candida albicans, verschiedene Corynebakterien, Saccharomyces cerevisiae, verschiedene Streptomyces-Arten, Streptoverticillium cinnamoneum und Vibrio damsela.

Tab. 2.1. Überblick über bereits sequenzierte mikrobielle, pflanzliche und tierische PLDs.Die Daten stammen aus der Genbank des NCBI. Bei PLD-Enzymen ohne Angabe derIsoenzymform steht ein Fragezeichen.

Organismus	Isoenzym	Referenzen	Accession-Nr.
Arcanobacterium haemolyticum	PLD	Cuevas & Songer, 1993	L16583
Candida albicans	PLD	Kanoh et al., 1998	AB010810
Corynebacterium diphtheriae	PLD	McNamara et al., 1995	140839
Corynebacterium pseudotuberculosis	PLD	Songer et al., 1990	AAA64910
	PLD	McNamara et al., 1995	AAA99867
Corynebacterium ulcerans	PLD	McNamara et al., 1995	L16585
Saccharomyces cerevisiae	PLD1	Honigberg et al., 1992,	P36126
		Rose et al., 1995,	
		Waksman et al., 1996	
	PLD2	Waksman et al., 1997	NC_001142
Streptomyces acidmyceticus	PLD	Hasegawa et al., 1992	E03429
Streptomyces antibioticus	PLD	lwasaki et al., 1994	D16444
Streptomyces chromofuscus	PLD	Dinh et al., 1995 (N-term.)	AAB34906
Streptomyces species	PLD	Takahara et al., 1993	E05514
Streptoverticillium cinnamoneum	PLD1	Ogino et al., 1999	AB007132
Vibrio damsela	PLD	McNamara et al., 1995	AAA27515
Ackerschmalwand	PLDα	Dyer et al, 1995	AB017071
(Arabidopsis thaliana)	PLDβ	Pappan et al., 1997	U90439
	PLDγ1	Qin et al., 1997	AL161532
	PLDγ2	Qin et al., 1999	AL161532
	PLDδ?	nicht publiziert	AF322228
	PLDδ?	nicht publiziert	AB031047
Baumwolle (Gossypium hirsutum)	PLDβ/γ?	Cui und Brown, 1999	AF159139
Kuhbohne (Vigna unguiculata)	PLDα	El Maarouf et al., 1999	AAB51392
		El Maarouf et al., 2000	
Mais (<i>Zea mays</i>)	PLDα	Ueki et al., 1995	D73410
Pimpinelle (Pimpinella brachycarpa)	PLDα	Cha et al., 1997	U96438
Reis (<i>Oryza sativa</i>)	PLDα	Ueki et al., 1995	AB001920
	PLD?	Ueki et al., 1995	AB001919
Rizinus (<i>Ricinus communis</i>)	PLDα	Wang et al., 1994	AAB37305
Tabak (Nicotiana tabacum)	PLDα	Lein und Saalbach, 2001	Z84822
	PLDγ?	nicht publiziert	AF195614
		(Sequenz unvollständig)	

Tomate (Lycopersicon esculentum)	PLDα	Almquist und Paliyath, 2000	AF201661
	PLDα	Whitaker et al., 2001	AF154425
Weißkohl	PLDα1*	Pannenberg et al.,	AF090445
(<i>Brassica oleracea</i> var. capitata)		1998	
	PLDα2*	Pannenberg et al.,	AF090444
		1998	
	PLDα2	Kim et al., 1999	U85482
Wiederauferstehungspflanze	PLDα1	Frank et al., 2000	AJ133001
(Craterostigma plantagineum)	PLDα2	Frank et al., 2000	AJ133000
Fadenwurm (Caenorhabditis elegans)	PLD?	Wilson et al., 1994	U55854
	PLD?	nicht publiziert	AB028889
Hamster (Cricetulus griseus)	PLD1	nicht publiziert	AAB53631
Maus (<i>Mus musculus</i>)	PLD1	Colley et al., 1997a	AAC84041
	PLD2	Colley et al., 1997b,	AAC24519
		Redina und Frohman,	
		1998a und 1998b	
	PLD3	Pedersen et al., 1998	NM011116
Mensch (<i>Homo sapiens</i>)	PLD1a	Hammond et al., 1995	AAB49031
	PLD1b	Hammond et al., 1995	AAB49031
	PLD2a	nicht publiziert	AF038440
	PLD2b	nicht publiziert	AF038441
	GPI-PLD	Tsang et al., 1992	L11702
	GPI-PLD	Tsang et al., 1992	L11701
	PLD2?	Lopez et al., 1998	NM002663
	PLD2?	Steed et al., 1998	AF033850
Ratte (Rattus norvegicus)	PLD?	Katayama et al., 1998	BAA24577
	PLD1a	Yoshimura et al., 1996	BAA24076
	PLD1b	Yoshimura et al., 1996	BAA24077
	PLD2	Yoshimura et al., 1996	BAA24078
	PLD2	Yoshimura et al., 1996	P70498
Rind (Bos taurus)	PLD?	Scallon et al., 1991	M60804
Taufliege (Drosophila melanogaster)	PLD?	Adams et al., 2000	AE003784
	PLD?	nicht publiziert	AF228314

* im Rahmen dieser Arbeit aufgeklärt

2.3.2. Das HKD-Motiv

Vergleicht man die abgeleiteten Aminosäuresequenzen der in Tabelle 2.1 zusammengefaßten bisher sequenzierten PLDs, so stellt man fest, daß die PLDs innerhalb der Organismenreiche sehr hohe, zwischen den Reichen jedoch sehr niedrige Homologien aufweisen. So sind beispielsweise die pflanzlichen α -Typ-PLDs zu 74–95 % identisch, jedoch nur 10-20 % identisch mit den mikrobiellen oder tierischen PLDs. Trotz dieser zum Teil großen Sequenzunterschiede gibt es Bereiche, die mit wenigen Ausnahmen in allen bisher sequenzierten Proteinen hoch konserviert sind. Diese Homologiebereiche wurden mit I, II, III und IV bezeichnet (Morris et al., 1996, Ponting und Kerr, 1996, Sung et al., 1997). Innerhalb dieser Bereiche sind wiederum hochkonservierte Aminosäuren vorhanden, die man auch in anderen Phospholipidsynthetisierenden Enzymen finden kann, wie z. B. in Cardiolipin-Synthase und Phosphatidylserin-Synthase (Review in Morris et al., 1996). Diese Aminosäuren bilden ein Motiv, das aus den Aminosäuren Histidin, einer beliebigen Aminosäure, Lysin, vier hydrophoben Aminosäuren, einem Aspartatrest, 4 beliebige, 2 hydrophobe Aminosäuren, Glycin und einer kleinen Aminosäure, meist Glycin, Serin oder Threonin, besteht. Da alle PLDs und oben genannte Synthasen dieses sogenannte HKD-Motiv enthalten (mit wenigen Ausnahmen kommt dieses Motiv sogar doppelt vor), wurden diese Enzyme zu einer neuen Familie, der PLD-Superfamilie, zusammengefaßt (Koonin, 1996, Ponting und Kerr, 1996. Waite, 1999). Auch einige Endonukleasen, Toxine (z. B. Ymt aus Yersinia pestis) und Pockenvirus-Proteine (envelope proteins) werden wegen der dort ebenfalls vorhandenen HKD-Motive dieser Familie zugeordnet. Die Vermutung, daß diese Aufeinanderfolge von stark konservierten Aminosäuren eine wichtige Rolle bei der Enzymkatalyse spielt, konnten Sung et al. (1997, 1999) durch zielgerichtete Mutationen dieser Reste in der menschlichen PLD1 und Maus-PLD2 bestätigen. Tauscht man die in den beiden HKD-Motiven lokalisierten Aminosäuren gegen ähnliche Reste aus, so läßt sich in vitro und in vivo keine PLD-Aktivität mehr nachweisen. Die in der Nähe befindlichen Glycin/Serin/Threonin-Reste wurden als wichtig, aber nicht essentiell, für die Katalyse gefunden. Sie spielen wahrscheinlich bei der räumlichen Orientierung anderer Aminosäuren in der Proteinstruktur eine untergeordnete Rolle. Für den Katalysemechanismus wurden zwei Modelle vorgeschlagen: 1.) Jedes HKD-Motiv kann unabhängig vom anderen arbeiten oder 2.) jedes Motiv stellt jeweils eine Hälfte des katalytischen Zentrums dar. Da jedoch eine Punktmutation in einem HKD-Motiv die gesamte PLD-Aktivität zerstörte (Sung et al., 1997), konnte das erste Modell sehr schnell verworfen werden. Einen weiteren Beweis für die Gültigkeit des zweiten Modells lieferten Xie et al. (1998, 2000). Sie fanden durch Deletionsmutationen in der

Rattenhirn-PLD1 heraus, daß einzeln exprimierte N- oder C-terminale PLD-Fragmente, die jeweils nur ein HKD-Motiv enthalten, keine PLD-Aktivität zeigen. Mischt man die beiden exprimierten und gefalteten Fragmente in vitro, so läßt sich ebenfalls keine PLD-Aktivität nachweisen. Wurden jedoch beide Fragmente in COS7-Zellen koexprimiert, assoziierten sie zum vollständigen Molekül, das die volle Enzymaktivität aufwies. Aus dieser Beobachtung wurde geschlossen, daß diese Assoziation beider Domänen möglicherweise während der Translation geschieht und bestimmte Faltungsprozesse ermöglicht, die zur Ausbildung der korrekten Struktur führen. Desweiteren wurden von den Autoren die konservierten hydrophoben Aminosäuren (Leucin, Isoleucin und Valin) innerhalb und nahe der beiden HKD-Motive gegen Alanin ausgetauscht und das Transphosphatidylierungsverhalten untersucht. Bei allen Mutanten war die Enzymaktivität niedriger als bei der Wildtyp-PLD. Deshalb wurde auch diesen in allen PLDs hochkonservierten hydrophoben Resten Bedeutung für die eine Katalyse zugeschrieben. Mittels Immunpräzipitation konnte nachgewiesen werden, daß die oben beschriebene Assoziation der beiden Hälften des katalytischen Zentrums in diesen Mutanten nur schwach ist bzw. überhaupt nicht auftritt (Xie et al., 2000).

Zusammenfassend kann man feststellen, daß die konservierten Aminosäurereste in beiden HKD-Motiven essentiell für die katalytische Funktion des Enzyms und für die Interdomänen-Assoziation sind.

2.3.3. Die C2-Domäne

Als eine weitere Gemeinsamkeit in allen eukaryontischen PLDs - außer der Hefe- und menschlichen PLD - ist das Vorkommen einer C2-Domäne zu betrachten (Review in Nalefski und Falke, 1996, Wang, 2000). Diese etwa 115-130 Aminosäuren-umfassende Domäne kommt auch in anderen Phospholipid-bindenden Proteinen vor, die über Kalziumionen reguliert werden und die mit zellulären Membranen interagieren, z. B. in Ca²⁺-abhängigen Isoenzymen der Proteinkinase C (PKC α , PKC β , PKC γ , PKC δ , PKC ϵ , PKC η , PKC θ), Phosphoinositid-spezifische PLCs (PLC- β I-IV, PLC- γ I-II, PLC- δ I-IV), PI-3-kinasen, cytosolische PLA₂ oder Synaptotagmin I-VIII. Die C2-Domäne gehört neben der bereits gut untersuchten Ca²⁺-bindenden EF-Hand (Helix-Loop-Helix-Motiv, z. B. in Calmodulin, Phosphoinositid-spezifischer PLC und Ca²⁺-abhängigen Proteinkinasen) und dem Annexin-Faltungsmotiv (4 Tandem-Repeats, jedes aus 5 α -Helices, bisher nur in Annexinen gefunden) zu den Kalzium-regulatorischen Motiven (Review in Kopka et al., 1998). Die Funktionen dieser C2-Domäne sind vielfältig. Sie vermittelt die Ca²⁺-abhängige Translokation löslicher Proteine zu den Membranen (z. B. bei cytosolischer

PLA₂ oder PLD), die Ca²⁺- und Phospholipid-abhängige Aktivierung von Enzymen (z. B. bei PKCα/β/γ), und sie unterstützt die Ca²⁺-vermittelte Selbstassoziation (z. B. von Synaptotagmin I). Die ersten durch Kristallisation aufgeklärten Proteine mit C2-Domäne waren Synaptotagmin I und Phosphoinositid-spezifische PLC-δ1. Diese beiden und alle anderen bisher untersuchten C2-Domänen bestehen aus einem 8-strängigen antiparallelen β-Sandwich, das aus einem Paar von 4-strängigen β-Faltblättern zusammengesetzt ist (Abb. 2.3.A). Man unterscheidet aufgrund der unterschiedlichen Reihenfolge der β-Stränge zwei Faltungstopologien (Abb. 2.3.B): die Topologie I (in Synaptotagmin I) und die Topologie II (in PLC-δ1).

Abb. 2.3. Die Struktur der C2-Domäne. (nach Nalefski und Falke, 1996)

- A) Bänderstruktur der C2-Domäne von Synaptotagmin I.
- B) Schematische Darstellung der β-Faltblattanordnungen in den C2-Domänen von Synaptotagmin I (Topologie I) und PLC-δ1 (Topologie II).

Die C2-Domänen der pflanzlichen PLDs können aufgrund ihrer Sequenz-Homologie zu PLC- δ 1 dem Faltungstyp II zugeordnet werden. Mittels Kalzium-Bindungsstudien an Punktmutanten der C2-Domänen von Synaptotagmin und PLC- δ 1 konnten die Ca²⁺-bindenden Aminosäuren ermittelt werden (Sutton et al., 1995, Shao et al., 1996). Dies sind 4 in den Loopregionen (zwischen den β-Strängen) befindliche Aspartat- oder Glutamat-Reste, von denen nur zwei in den pflanzlichen PLD α s konserviert sind (Nalefski und Falke, 1996). Die anderen beiden wurden evolutionär zu Asparagin und Glutamin umgewandelt (siehe auch Anhang, Seite VIII). Damit entfallen zwei potentielle Ca²⁺-Bindungsstellen, und das hat möglicherweise die unter 2.1. erwähnte unterschiedliche Ca²⁺-Abhängigkeit von PLD α gegenüber PLD β , PLD γ 1 und PLD γ 2 aus *Arabidopsis thaliana* zur Folge.

Die Ca²⁺-vermittelte Phospholipidbindung der C2-Domäne kann durch 2 Modelle beschrieben werden (Review in Nalefski und Falke, 1996, Zheng et al., 2000). Im ersten Modell bindet das Ca²⁺-Ion sowohl an eine saure Aminosäure der C2-Domäne (Aspartat oder Glutamat) als auch an das Phospholipid simultan durch elektrostatische Wechselwirkungen und ohne große Konformationsänderungen, so daß ein Ternärkomplex entsteht. Dieses Modell, auch "bridging Ca²⁺-Modell" genannt, konnte für die sekretorische PLA₂ (Scott et al., 1990, Thunnissen et al., 1990) und für Annexin V (Swairjo et al., 1995) bestätigt werden. Das zweite Modell beschreibt eine durch Ca2+-Bindung induzierte Konformationsänderung in der C2-Domäne, so daß funktionelle Gruppen exponiert werden, die eine Membranbindung ermöglichen. Dies können entweder hydrophobe Reste sein, die in die hydrophoben Membranbestandteile eindringen können, oder geladene Seitenketten, die spezifisch an die verschiedenen Kopfgruppen der Phospholipide binden können. Eine solche Konformationsänderung wurde durch Fluoreszenz- und CD-spektroskopische Messungen bei der cytosolischen PLA₂ (Scott et al., 1990, Thunnissen et al., 1990) und pflanzlicher PLD α/β (Zheng et al., 2000) nachgewiesen.

Es ist weiterhin bekannt, daß die C2-Domänen von pflanzlichen PLDs außer Kalziumionen auch Phospholipide und PIP₂ binden können (Zheng et al., 2000). Die separat exprimierte C2-Domäne von PLD α bindet PC in Anwesenheit von millimolaren, die von PLD^β hingegen schon bei mikromolaren Konzentrationen an freiem Kalzium, was wiederum durch das Fehlen der 2 von insgesamt 4 sauren Aminosäuren bei PLD α erklärt werden kann. Von PLD β und PLD $\gamma 1/\gamma 2$ ist bekannt, daß sie PIP₂-abhängig sind (Qin et al., 1997). PLD α hingegen kann zwar, wie die anderen Isoenzyme auch, in Abwesenheit von Ca²⁺-Ionen PIP₂ binden und wird dadurch sogar aktiviert, benötigt es jedoch nicht für die Enzymkatalyse (Qin et al., 1997). Diese Aktivierbarkeit von PLD α wird durch ein sogenanntes PIP₂-Bindungsmotiv innerhalb der C2-Domäne reguliert. Es besteht aus dem stark basischen Motiv B(x)xxxBxBB bzw. der inversen Sequenz BBxBxxxxB (B...Arginin oder Lysin, x...jede beliebige Aminosäure) und wurde auch in anderen PIP₂-bindenden Proteinen, wie Gelsolin, Villin und PLC, gefunden (Review in Wang, 2000). PLD β und PLD γ 1/ γ 2 besitzen in ihrer C2-Domäne kein vollständiges PIP₂-Bindungsmotiv. Dennoch kann auch die C2-Domäne von PLDβ PIP₂ binden, das wie bei PLD α durch Ca²⁺-Ionen verdrängt wird.

Die C2-Domäne stellt also eine universelle multifunktionelle regulatorische Domäne dar, die es ermöglicht, auf verschiedene zelluläre Veränderungen, wie z. B. verringerte oder erhöhte Kalziumkonzentrationen oder Bildung von second messenger-Molekülen wie PIP₂ zu reagieren und Enzyme zielgerichtet zu aktivieren.

2.4. Der Katalysemechanismus der Endonuklease Nuc als Vertreter der PLD-Superfamilie

Bereits Stanacev und Stuhnke-Sekalec (1970) konnten durch [³H]-markiertes Phosphatidylglycerol zeigen, daß es bei der Herstellung von Cardiolipin durch Phospholipase D aus Weißkohl einen Phosphatidyl-Enzymkomplex geben muß und daß die Reaktion nach einem Ping-Pong-Mechanismus ablaufen könnte. Diese Vermutungen wurden durch Gottlin et al. (1998) bestätigt, die [³²P]-markiertes Phosphat mit der Endonuklease Nuc aus *Salmonella typhimurium*, einem Vertreter der PLD-Superfamilie, mischten, das entstandene Intermediat in diesem Zustand halten und untersuchen konnten. Durch Zugabe von [¹⁸O]-markiertem Wasser bei der Hydrolyse von PC durch Phospholipase D aus *Streptomyces chromofuscus* konnten Holbrook et al. (1991) nachweisen, daß statt der C-O- die P-O-Bindung gespalten wird, weil sich ¹⁸O am Ende des Experimentes in der Phosphatidsäure befand und nicht am freigesetzten Cholin.

Obwohl mit Hilfe von Punktmutationen die an der Katalyse beteiligten Aminosäuren innerhalb der HKD-Motive ermittelt werden konnten, war jedoch noch nicht bekannt, welcher von den konservierten Resten die kovalente Bindung zum Phosphor des Phospholipids eingeht. Hier lieferten Gottlin et al. (1998) durch Punktmutationen in Nuc den Beweis, daß nur Histidin aus dem HKD-Motiv in der Lage ist, den Phosphoenzymkomplex einzugehen. Ersetzt man diese Aminosäure gegen eine andere, so kann das kovalent verknüpfte Intermediat nicht mehr gebildet werden. Ein Jahr später gelang es Stuckey und Dixon (1999), die Endonuklease Nuc in Anwesenheit des Inhibitors Wolframat zu kristallisieren und ihre Sekundär- und Tertiärstruktur mittels Röntgenkristallstruktur-Analyse aufzuklären. Das katalytische Zentrum mit allen beteiligten Aminosäuren konnte rekonstruiert werden (Abb. 2.4). Da dieses Enzym nur eines statt zwei HKD-Motiven besitzt, lagern sich zwei Moleküle sattelförmig zu einem Dimer zur Bildung des katalytischen Zentrums zusammen. Neben den beiden Histidinen sind auch die Lysine des HKD-Motivs und in der Nähe befindliche Asparagin-Reste wesentlich an der Bindung des Phosphates beteiligt. Abb. 2.4. Einblick in das Wasserstoffbrücken-Netzwerk des katalytischen Zentrums von Nuc aus Salmonella typhimurium. Die gestrichelten Linien geben mögliche Wasserstoffbrücken und ihre Längen in Angström an. Die Indices A und B bezeichnen zwei verschiedene Monomere. (nach Stuckey und Dixon, 1999, bearbeitet)

Stuckey und Dixon (1999) schlugen folgenden Katalysemechanismus vor (Abb. 2.5): Im ersten Schritt greift der Imidazol-Stickstoff des Histidins aus Molekül A das Phosphoratom des Substrates nukleophil an, und es entsteht das Phosphoenzym-Intermediat. Das Histidin des Moleküls B fungiert als Säure, die den Sauerstoff des freigesetzten Alkohols protoniert. Im zweiten Schritt des Ping-Pong-Mechanismus wird dieses Intermediat durch ein aktiviertes Wassermolekül hydrolysiert, und das entstandene Phosphatidat wird vom Enzym freigesetzt. Die in Abb. 2.5 eingezeichneten, den Histidinen benachbarten Glutamat-Reste stabilisieren möglicherweise die ionischen Formen der Histidin-Reste durch Erniedrigung des effektiven pK_a-Wertes (Stuckey und Dixon, 1999).

Abb. 2.5. Der Zweischritt-Katalysemechanismus. (nach Stuckey und Dixon, 1999, bearbeitet)

Da die HKD-Motive in allen Vertretern der PLD-Superfamilie sehr stark konserviert sind, ist dieser Reaktionsmechanismus - mit kleineren Variationen - auf alle diese Enzyme übertragbar. Dies zeigten kürzlich Leiros et al. (2000), denen es gelang, die bisher erste PLD (aus *Streptomyces sp.*, PMF) zu kristallisieren (Abb. 2.6) und das aktive Zentrum näher zu untersuchen. Dabei wurde festgestellt, daß statt des Glu_B122 in Abb. 2.5 ein Aspartat-Rest die Wasserstoffbrücke zum Imidazol-Stickstoff ausbildet. Das zweite Asp ist zu weit entfernt und erlaubt keine Verbrückung mit dem zweiten Histidin. Im Unterschied zur Endonuklease, wo beide Histidin-Reste aufgrund der Dimerbildung gleichberechtigt sind, ist das Nukleophil in der PLD aus *Streptomyces species* ausschließlich das Histidin des N-terminalen HKD-Motivs, während es bei der PLD aus *Streptomyces antibioticus* das Histidin der C-terminalen Domäne ist (Iwasaki et al., 1999).

Abb. 2.6. Proteinstruktur der PLD aus *Streptomyces sp.*, PMF. Das Molekül ist in der Reihenfolge der Aminosäuren von dunkelblau bis rot gefärbt. L1 und L2 bezeichnen zwei flexible Loopregionen in räumlicher Nähe der Andockstellen des Enzyms an die Membran. (nach Leiros et al., 2000)

Erst kürzlich erschien die erste Kristallstruktur einer pflanzlichen PLD aus Kuhbohnen (*Vigna unguiculata*), die rekombinant in Insektenzellen hergestellt und isoliert werden konnte (Abergel et al., 2001). Die Kristallisation weiterer Vertreter der PLD-Superfamilie wird weitere Einsichten in den Katalysemechanismus ermöglichen.

2.5. Charakterisierung von Phospholipase D aus Weißkohl

Bei der Untersuchung der Phospholipidzusammensetzung und des –stoffwechsels in Pflanzen beobachteten Contardi und Ercoli (1932) erstmalig einen PC-Abbau in Reiskleie. Das dafür verantwortliche Enzym, Phosphatidylcholinphosphatidohydrolase oder kurz Phospholipase D, fand man später auch in anderen Pflanzen, unter anderem in Sojabohnen, Mais, Reis, Gerste, Weizen, Rizinus, Raps, Karotten, Wirsing- und Weißkohl (Hanahan und Chaikoff, 1947, Davidson und Long, 1958, Chetal et al., 1982, Wang et al., 1993b, Ueki et al., 1995, Novotna et al., 1999). Im Folgenden soll die PLD aus Weißkohl näher betrachtet werden.

Dieses Enzym konnte erstmalig mittels Ca²⁺-vermittelter Affinitätschromatografie an Octylsepharose und Anionenaustauschchromatografie aus Weißkohlgewebe in hoher Reinheit isoliert werden (Lambrecht und Ulbrich-Hofmann, 1992). Die Molekülmassen von 87 (Lambrecht und Ulbrich-Hofmann, 1992) bzw. 90,2 kDa (Abousalham et al., 1993) wurden mittels SDS-PAGE bestimmt. Das Enzym liegt als Monomer vor und besteht, wie bereits unter 2.3.2 und 2.3.3 beschrieben, aus einer katalytischen und einer regulatorischen Domäne. Im Gegensatz zu Arabidopsis thaliana und Brassica napus wurden in Weißkohl bisher nur Isoenzyme des α -Typs nachgewiesen. Diese PLD wird durch Ca²⁺-Ionen im millimolaren Bereich und durch einen sauren pH-Wert aktiviert. In Anwesenheit der optimalen Ca²⁺-Konzentration von 40-45 mM liegt das ermittelte pH-Optimum der PLD bei pH 5,5-5,7 (Lambrecht und Ulbrich-Hofmann, 1992). Abousalham et al. (1993) beschrieben eine Verschiebung des pH-Optimums in den neutralen Bereich bei einer Verringerung der Ca²⁺-Konzentration auf 10 mM. Der isoelektrische Punkt liegt bei pH 4,7 (Lambrecht und Ulbrich-Hofmann, 1992, Abousalham et al., 1993). Weitere potentielle Aktivatoren sind anionische Amphiphile, z. B. SDS, Triphosphoinositide, Monocetylphosphat (Dawson und Hemington, 1967), PA (Jung et al., 1989), 1,3-Diacylglycero-2-sulfat und 1,3-Diacylglycero-2-phosphat (Dittrich et al., 1998). Inhibierend auf die PLD wirkten neben EDTA Cholin, Ethanolamin, Protaminsulfat (Dawson und Hemington, 1967), 1,3-Diacylglycero-2-phosphocholin (Dittrich et al., 1998, Haftendorn et al., 2000), Lyso-PE (Ryu et al., 1997), Alkylphosphatester (Dittrich et al., 1996, 1998) und Aluminiumfluorid (Li und Fleming, 1999). Die Zugabe von 4-Chlormercuribenzoat (Yang et al., 1967), Diethylpyrocarbonat (Lee et al., 1989, Secundo et al., 1996) oder 4-Bromphenacylbromid (Lee et al., 1989) führten zur Inaktivierung des Enzyms, woraus die Autoren auf eine mögliche Anwesenheit von freien Cystein-Sulfhydrylgruppen, Histidin- und Lysinresten im aktiven Zentrum schlossen. Wie neuere Arbeiten zeigten, wird das aktive Zentrum aus 2 HKD-Motiven gebildet (2.3.2).

Das Substratspektrum der PLD aus Weißkohl reicht von PC, PE, PG und PS über Phosphatidylinositiden, Cardiolipin, Plasmalogen (Heller, 1978) bis hin zu Alkylphosphatestern, z. B. Hexadecylphosphocholin (Dittrich et al., 1996, 1998). Bei der Transphosphatidylierungsreaktion werden bevorzugt primäre Alkohole, z.B. Glycerol oder Methanol, aber auch sekundäre und N-heterozyklische Alkohole akzeptiert (Aurich et al., 1997, Hirche et al., 1997).

Die bei der sekretorischen PLA₂ beschriebene Grenzflächenaktivierung (Review in Scott und Sigler, 1994) tritt auch bei den PLDs auf. Das bedeutet, daß das Enzym durch ein in aggregierter Form vorliegendes Substrat aktiviert wird (Dittrich et al., 1998). Die Enzymkatalyse wird entweder in wäßrigen Puffersystemen oder an der Grenzfläche zwischen Pufferphase und organischem Lösungsmittel (z. B. Diethylether, Ethylacetat oder n-Hexan) durchgeführt. In biphasischen Systemen spielt der Grenzflächendruck, der mit der Packungsdichte der PC-Aggregate korreliert (Hirche und Ulbrich-Hofmann, 1999), eine große Rolle. Da die Enzymaktivität nicht nur von der Art des Substrates und von der Enzymkonzentration abhängig ist, sondern auch von der physikalischen Gestalt des Substrates - die wiederum vom verwendeten organischen Lösungsmittel beeinflußt wird - und insbesondere von der Struktur und Dynamik der Grenzfläche, ist es schwierig, allgemeine kinetische Daten, wie z. B. K_m, V_{max} o. ä., anzugeben. Eine kinetische Analyse der PLD für verschiedene Substrate zeigte, daß das Hill-Modell zur Beschreibung der v/S-Kurven gut geeignet ist (Dittrich et al., 1998).

2.6. Phospholipase D in der Phospholipidsynthese

Aufgrund ihrer ausgeprägten Transphosphatidylierungsfunktion (Abb. 1.1) wird PLD schon seit vielen Jahren zur Modifizierung der polaren Kopfgruppe in Phospholipiden verwendet. Dabei stellte PLD aus Weißkohl, meist als Rohsaft oder in partiell gereinigter Form angewandt, die traditionelle Enzymquelle dar (Dawson, 1967; Kovatchev und Eibl, 1978; Juneja et al., 1987), während in jüngerer Zeit PLDs aus *Streptomyces species*, von denen einige eine höhere Transphosphatidylierungsaktivität aufweisen, bevorzugt werden (Tab. 2.2). Eine ausführliche Zusammenstellung der durch PLD katalysierten Reaktionen und Synthesebeispiele sind in Servi (1999) und Ulbrich-Hofmann (2000) zu finden. In jüngerer Zeit hat PLD aus Weißkohl wiederum erneut Aufmerksamkeit auf sich gezogen, weil sich ihr Reaktionsspektrum auch auf Alkylphospholipide (Aurich et al., 1997) ausdehnen läßt.

(nach Ulbrich-Hofmann, 2000, ausgewählte Beispiele)

Eingeführte Kopfgruppe	PLD-Quelle	Referenz
Aliphatische primäre Alkohole	Streptomyces sp.	Okahata et al., 1995
	Weißkohl	Dawson, 1967
		Eibl und Kovatchev, 1981
		Sale et al., 1989
	Wirsingkohl	Yang et al., 1967
Aliphatische sekundäre Alkohole	Streptomyces sp.	D'Arrigo et al., 1994
Ethylenglycol	Weißkohl	Dawson, 1967
Alkandiole	Weißkohl	Kovatchev und Eibl, 1978
Glycerol	Weißkohl	Dawson, 1967
		Lee et al., 1985
		Juneja et al., 1987
	Wirsingkohl	Yang et al., 1967
Dihydroxyaceton	Streptomyces sp.	Takami und Suzuki, 1994
Phosphatidylglycerol	Streptomyces sp.	D'Arrigo et al., 1996
	Weißkohl	Stanacev et al., 1973
Zyklische nichtaromat. Alkohole	Streptomyces sp.	D'Arrigo et al., 1994
Ethanolamin	Streptomyces mediocidicus, Streptoverticillium cinnamoneum, S. hachijoense	Nakajima et al., 1994
	Weißkohl, Streptomyces chromo- fuscus, S. prunicolor u. a. S. sp.	Juneja et al., 1988
	Weißkohl	Dawson, 1967
		Smith et al., 1978
	Wirsingkohl	Yang et al., 1967
D- und L-Serin	Streptomyces chromofuscus	Diaz et al., 1998
	Streptomyces prunicolor	Sakai et al., 1996
	Streptomyces sp.	Okahata et al., 1995
	Weißkohl, Streptomyces chromo- fuscus, S. prunicolor u. a. S. sp.	Juneja et al., 1989
	Wirsingkohl	Comfurius und Zwaal, 1977
Nucleoside	Streptomyces sp.	Shuto et al., 1987, 1995, 1996
		Wang et al., 1993a
Saccharide	Actinomadura sp.	Kokusho et al., 1993
	Streptomyces sp.	Wang et al., 1993a
Peptide	Streptomyces sp.	Wang et al., 1993a
		Okahata et al., 1995
L-Ascorbinsäure	Streptomyces lydicus u. a.	Nagao et al., 1991
Arsenocholin	Weißkohl, Streptomyces sp.	Hirche et al., 1997
N-heterozyklische Alkohole	Weißkohl, Streptomyces sp.	Hirche et al., 1997
		D'Arrigo et al., 1996

3. Materialien

3.1. Geräte

Die folgende Liste enthält allgemein verwendete Geräte, die nicht zu speziellen Methoden zugeordnet werden konnten.

Eppendorf (Hamburg):	Thermomixer 5436 und compact
H+P Labortechnik (Oberschleißheim):	Dampfsterilisator Varioklav
Heidolph (Kelheim):	Horizontalschüttler unimax 1010
Heraeus (Hanau):	Sicherheitswerkbank HERAsafe,
	Zentrifuge Biofuge pico
Hettich (Tuttlingen):	Rotofix 32 Zentrifuge
Janke & Kunkel IKA-Labortechnik:	Horizontalschüttler KS250 basic,
	Vibrofix VF1 Electronic Vortex
Medizin & Labortechnik (Hamburg):	Dampfsterilisator GTA 50
Metrohm (Filderstadt):	pH-Meter 691 mit variomag Elektronik-
	Rührer
Sartorius (Göttingen):	Analysenwaage
Sigma (Deisenhofen):	Kühlzentrifuge 2K15

3.2. Antikörper

Streptavidin-Alkalische Phosphatase-Konjugat (IBA, Göttingen) QIAexpress Anti-His Antikörper aus der Maus (Qiagen, Hilden) Anti-Maus-IgG aus Esel (Amersham Pharmacia Biotech, Freiburg) Anti-PLD1-Antiserum aus Kaninchen (Eurogentec, Niederlande) Anti-Kaninchen-IgG aus Esel (Amersham Pharmacia Biotech, Freiburg)

3.3. Oligonukleotide

Alle Oligonukleotide wurden, soweit nicht anders vermerkt, von der Firma MWG-Biotech (Ebersberg) hergestellt und HPLC-gereinigt.

Primer für cDNA-Synthese:

cDNA-Bank:	oligo(dT) ₁₈ (Amersh	ham-Pharmacia Biote	ch, Freiburg)
Fragment 1 (s.u.):	5'-Primer: 5'-AG	A AGA ACG TGT AAG	G-3'
Fragmente 2 und 3 (s.u.):	Oligo(dT) ₁₈ (Amers	sham-Pharmacia Biote	ch, Freiburg)
Fragment 4 (s.u.):	Oligo dT-3sites A	Adapter Primer (aus	3'-RACE Kit von
	TaKaRa, Kyoto, Ja	apan)	

Herstellung der PCR-Produkte für die Sequenzierung der cDNAs:

Fragment 1:	F1fw	5'-GAT CGT TGC GTA SAG CTG TGT T-3'
	F1rv	5'-AAG ATY CAC GTS AAR CTC CAG TAC TT-3'
Fragment 2:	F2fw	5'-ACT TTN CAY GCT ACC ATC TAT GA-3'
	F2rv	5'-CAT CAG GGT TAC GAG GAC AGA G-3'
Fragment 3:	F3fw	5'-AAG ATC CAT GTG AAR CTB CAG TAC TT-3'
	F3rv	5'-CGG AAR CCA TGG ATC TG-3'
Fragment 4:	F4fw	5'-CTG ATC TAG AGG TAC CGG ATC C-3'
	F4rv	5'-GGG AGG CTA CCA ACC ACA TCA C-3'

Herstellung der PCR-Produkte für die Sequenzierung der genomischen DNA:

PLD1:	PLD1pre	5'-CTC TGA CCA CCG ACT CCG AT-3'		
	PLD1post	5'-ACC ACA CCA ACG ACC AAC TTA T-3'		
	F1rv, F2fw, F2rv, F3 fw, F3rv, F4fw: siehe oben			
PLD2:	PLD2pre	5'-CAC CAC CGA TTT AGT TTC AAG G-3'		
	PLD2post	5'-GCA GCA GCA ATG TAG AGA CAG T-3'		
	F1rv, F2fw, F2rv, F3 fw, F3rv, F4fw: siehe oben			

Herstellung der PLD1- und PLD2-Matrizen:

PLD1:	PLD1pre	5'-CTC TGA CCA CCG ACT CCG AT-3'
	PLD1post	5'-ACC ACA CCA ACG ACC AAC TTA T-3'
PLD2:	PLD2pre	5'-CAC CAC CGA TTT AGT TTC AAG G-3'
	PLD2post	5'-GCA GCA GCA ATG TAG AGA CAG T-3'

Herstellung der PLD1- und PLD2-Inserts für die Klonierung in pRSET5a PLD1: Iso1fw 5'-GGA ATT CCA TAT GGC TCA GCA TCT GCT GCA TGG-3' Iso1rv 5'-CCC AAG CTT TCA TTA GGT TGT CAG GAT TGG C-3'

PLD2: Iso2fw 5'-GGA ATT CCA TAT GGC CCA GCA TCT GTT ACA CGG-3' Iso2rv 5'-CCC AAG CTT CTA TTA AGT TGT AAG GAT TGG AGG CA-3'

Herstellung des PLD1-Inserts für die Klonierung in pASK-IBA6 und -IBA7N-IBA-6/75'-AGC TCG GAA GAC CTG CGC GCG CAG CAT CTG CTG

CAT GGT ACT TTG CAC GCT A-3'

C-IBA-6/7 5'-TAT GCG GAA GAC CTT ATC ATT AGG TTG TCA GGA TTG GCG GCA AGT AGT CAG A-3'

Herstellung des PLD1-Inserts für die Klonierung in pET20b(+) (mit His-tag)
HisPrime fw 5'-ATT ATC TAG AGA AGG AGA TAT ACA TAT GGC GCA GCA TCT-GCT GCA T-3'
HisPrime rv 5'-CCC AAG CTT TCA TTA GGT TGT CAG GAT TGG C-3'

Herstellung des PLD1-Inserts für die Klonierung in pGEX4T-2 GSTprime fw 5'-GAA GAT CTC AGC ATC TGC TGC ATG GTA C-3' GSTprime rv 5'-GCG AAT TCT CAT TAG GTT GTC AGG ATT GG-3'

Herstellung des C-terminalen PLD1-Fragmentes (für Immunisierung)
C-Term-fw 5'-GGA ATT CCA TAT GGC TCA GGG CTT AGA GG-3'
C-Term-rv 5'-CCC AAG CTT TCA TTA GGT TGT CAG GAT TGG C-3'

Sequenzierungsprimer:

Alle Sequenzierungsprimer wurden von der Firma MWG-Biotech (Ebersberg) hergestellt, am 5'-Ende mit IRD800 modifiziert und HPLC-gereinigt.

M13 universal:	5'-TGT AAA ACG ACG GCC AGT-3'
M13 reverse:	5'-GGA AAC AGC TAT GAC CAT G-3'
KS:	5'-TCG AGG TCG ACG GTA TC-3'
T7 Promotor:	5'-CGA AAT TAA TAC GAC GAC TCA-3'
T7 Terminator:	5'-GCT AGT TAT TGC TCA GCG GTG G-3'
IBA6/7 forward:	5'-GAG TTA TTT TAC CAC TCC CT-3'
IBA6/7 reverse:	5'-ACG CAG TAG CGG TAA ACG-3'

Sonde 2 forward:	5'-GAG CAG AGA TGG AGA AAG CA-3'
Sonde 2 reverse:	5'-TTA CCA CCY TGC TTT CTC CAT CTC TG-3'

3.4. Plasmide und Vektoren

pASK-IBA6 / pASK-IBA7	Amp ^r (IBA Göttingen)
pCR-Script Amp SK(+)	Amp ^r (Stratagene, Heidelberg)
pET20b(+)	Amp ^r (Calbiochem-Novabiochem, Schwalbach)
pGEX 4T-2	Amp ^r (Amersham-Pharmacia Biotech, Freiburg)
pRSET5a	Amp ^r (modifiziert, Dr. T. Schmidt, IBA Göttingen)
pUBS520	Kan ^r (Dr. U. Brinkmann, Epidauros Biotechnology Bernried)

3.5. E. coli-Stämme

E. coli XLI blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F' proAB
	lacl ^q ∆M15(<i>lac</i> Z) Tn10 <i>(tet</i> ′)] (Stratagene, Heidelberg)
E. coli BL21(DE3)	E. coli B F ⁻ dcm ompT hsdS _B (r _B ⁻ m _B ⁻) gal 1 (DE3)
	(Calbiochem-Novabiochem, Schwalbach)

3.6. Kulturmedien

Die Anzucht der *E. coli*-Stämme erfolgte in LB-Medium (1 % NaCl [Merck, Darmstadt], 1 % Trypton und 0,5 % Hefeextrakt [Difco GmbH, Augsburg]) bzw. in 2 x YT (1 % NaCl, 2 % Trypton, 1 % Hefeextrakt) unter den im Methodenteil angegebenen Kultivierungsbedingungen.

4. Methoden

4.1. RNA-Präparation

4.1.1. Isolierung von Gesamt-RNA aus Weißkohl

Die Gesamt-RNA aus Weißkohl konnte unter Verwendung des RNeasy Plant Kits (Qiagen, Hilden) gewonnen werden. Ausgehend von 2 g grob zerkleinertem, jungem Weißkohlgewebe (Weißkohl, Sorte Lennox, vom Wochenmarkt Halle) wurde zunächst durch Schockfrieren in flüssigem Stickstoff und Mörsern feines Pulver hergestellt, das nach Anleitung des Kit-Herstellers weiterverarbeitet wurde. Alle verwendeten Glas- und Plastikgeräte wurden vor Benutzung mit 0,1 %igem DEPC-Wasser (DEPC von Sigma, Deisenhofen) gespült, um RNase-Kontaminationen zu verhindern.

4.1.2. Isolierung von mRNA aus Weißkohl

Aus der bereits gewonnenen Gesamt-RNA aus Weißkohl (siehe 4.1.1.) wurde unter Verwendung des Oligotex mRNA Midi Kits (Qiagen, Hilden) mRNA isoliert. Alle verwendeten Glas- und Plastikgeräte wurden vor Benutzung mit 0,1 %igem DEPC-Wasser gespült, um RNase-Kontaminationen zu verhindern.

4.2. DNA-Präparation

4.2.1. Isolierung genomischer DNA aus Weißkohl

Um die genomische DNA aus Weißkohl zu isolieren, wurden 2 g inneres Blattgewebe mit einer Schere grob zerkleinert. Anschließend wurde das Gewebe mit wenig feinem Seesand gemischt, in flüssigem Stickstoff gefroren und mit Mörser und Pistill zu Puder gerieben. Danach folgten Zellaufschluß, Proteinpräzipitation und DNA-Isolierung unter Verwendung des Puregene DNA-Isolierungs-Kits (Gentra, Minneapolis, USA).

4.2.2. Isolierung von Plasmid-DNA aus E. coli

Die Isolierung der Plasmid-DNA erfolgte unter Verwendung des QIAprep Spin Miniprep Kits (Qiagen, Hilden).

4.3. Größen- und Konzentrationsbestimmung von Nukleinsäuren

4.3.1. Größenbestimmung von DNA und RNA

Zur Größenbestimmung von Nukleinsäuren wurde die Agarosegelelektrophorese nach Ausubel et al. (1987ff, Stand 2001) verwendet (:Consort E 321 power supply und Easy Cast Elektrophoresesystem von AGS, Heidelberg, Agarose von Eurogentec, Belgien, Bromphenolblau von Serva, Heidelberg). Als Größenstandards dienten die Molekulargewichtsmarker 1kb-Leiter (GIBCO BRL, Eggenstein) und 100 bp-DNA-Leiter (New England Biolabs, Frankfurt/M.).

4.3.2. Konzentrationsbestimmung von DNA und RNA

Neben der Agarosegelelektrophorese nach Ausubel et al. (1987ff, Stand 2001), die unter Verwendung der 1kb-Leiter (GIBCO BRL, Eggenstein) zur Abschätzung der Nukleinsäurekonzentration diente, wurde eine Absorptionsmessung bei 260 nm durchgeführt ($A_{260} = 1 \approx 40 \ \mu g/ml$ Einzelstrang-RNA, $A_{260} = 1 \approx 50 \ \mu g/ml$ Doppelstrang-DNA, Spectrophotometer DU 7400 von Beckmann, München).

4.4. Herstellung von Genfragmenten mittels PCR bzw. RT-PCR

Die isolierte mRNA wurde mit Superscript II RNase H⁻ Reverse Transcriptase (Gibco BRL, Eggenstein) und unter Verwendung des Oligo(dT)₁₈-Primers (Amersham-Pharmacia Biotech, Freiburg) in eine einzelsträngige cDNA übersetzt (dNTPs von Hybaid-AGS, Heidelberg). Diese cDNA diente als Matrize für die anschließenden PCR-Untersuchungen, die mit Pfu-DNA-Polymerase (Promega, Mannheim) und den sequenzspezifischen Primern F2fw, F2rv für Fragment 2 sowie F3fw und F3rv für Fragment 3 (Primersequenzen unter 3.3.) durchgeführt wurden (TRIO-Thermoblock von Biometra, Göttingen). Für die Herstellung der cDNA von Fragment 1 (dem 5'-Ende der mRNA) wurde der Primer 5'-AGA AGA ACG TGT AAG G-3' eingesetzt. Nach der Zyklisierung dieser cDNA mittels T4-RNA-Ligase (5'-RACE-Kit, TaKaRa, Kyoto, Japan) wurde eine PCR mit Pfu-DNA-Polymerase und den Primern F1fw und F1rv durchgeführt. Zur Herstellung der cDNA von Fragment 4 (entspricht dem 3'-Ende der mRNA) diente wiederum die isolierte mRNA als Matrize und der Primer Oligo dT-3sites-Adapter des 3'-RACE-Kits (TaKaRa, Kyoto, Japan). Bei der anschließenden PCR wurden die Primer F4fw und F4rv verwendet. Alle entstandenen PCR-Produkte wurden

quantitativ über eine Agarosegel-Elektrophorese aufgetrennt und mittels QIAquick Gelextraktionskit (Qiagen, Hilden) gereinigt.

Bei der Herstellung der vier analogen Fragmente für die Sequenzierung der genomischen DNA wurde ähnlich verfahren, wobei die isolierte genomische DNA als Matrize bei der PCR eingesetzt wurde. Die verwendeten Primer sind unter 3.3. aufgeführt.

4.5. Klonierungstechniken

Alle Standardtechniken, wie Restriktionsschnitte von PCR-Produkten und von Plasmidvektoren (Restriktionsendonukleasen von New England Biolabs, Frankfurt/M. und Hybaid-AGS, Heidelberg), Reinigung der entstandenen DNA-Fragmente (mittels Ethanolfällung oder gelelektrophoretischer Trennung) und Ligationsreaktionen (Shrimp Alkalische Phosphatase von USB, Cleveland, USA, T4-DNA-Ligase von GIBCO BRL, Eggenstein), erfolgten nach Ausubel et al. (1987ff, Stand 2001). Nach jedem Klonierungsschritt wurden die Plasmide sequenziert.

4.6. Sequenzierung von Plasmiden

Nach der Konzentrationsbestimmung der isolierten Plasmide wurden 200 fmol der zu sequenzierenden DNA entnommen und mittels SequiTherm EXCEL II DNA-Sequencing Kit (Epicentre, Madison, USA) vorbereitet (Omn-E PCR Cycler von Hybaid-AGS, Heidelberg). Die Nukleotidsequenz der entstandenen DNA wurde schließlich im LiCor 4000 DNA-Sequenzierer (LiCor, Lincoln, NE) ermittelt.

4.7. Transformation von Plasmidvektoren in E. coli

Die Transformation der Plasmidvektoren in *E. coli* erfolgte mittels Elektroporation im Gene Pulser II (BioRad, München). Anschließend wurden die transformierten Bakterienzellen auf LB-Agarplatten (SELECT Agar von Gibco BRL, Eggenstein) mit entsprechenden Antibiotika (Ampicillin und Kanamycin von ICN, Meckenheim) als Selektionsmarker verteilt und bei 37 °C inkubiert (Brutschrank Kelvitron von Heraeus, Hanau).

4.8. Anzucht und Kultivierung der E. coli-Stämme

LB-Medium mit entsprechendem Antibiotikum (80 µg/ml Ampicillin / 50 µg Kanamycin) wurde mit einer einzelnen Bakterienkolonie einer bei 37 °C inkubierten LB-Agarplatte beimpft und bei 180 rpm und 37 °C über Nacht geschüttelt (Multitron-Schüttelinkubator HT von Infors, Bottmingen, Schweiz). Diese Flüssigkultur diente zur Isolierung von Plasmid-DNA oder als Vorkultur für Expressionsversuche.

4.9. Expression der klonierten Gene pld1 und pld2 in E. coli

4.9.1. Herstellung löslicher aktiver PLD1 und PLD2

Die Hauptkultur (2 x YT mit 80 μ g/ml Ampicillin und 50 μ g/ml Kanamycin) wurde 1:50 mit einer Übernachtkultur von *E. coli* BL21 (DE3), die die Plasmide pUBS520 und pRSET5a-pld1 bzw. pRSET5a-pld2 enthielt, beimpft und bei 15 °C mit 180 rpm 3 bis 4 Tage lang geschüttelt, bis die OD_{600nm} ca. 8 erreichte (Spectrophotometer U-1100 von Hitachi, Tokio, Japan).

4.9.2. Herstellung von PLD1- und PLD2-inclusion bodies

2 x YT-Medium mit 80 µg/ml Ampicillin und 50 µg/ml Kanamycin wurde 1:50 mit einer Übernachtkultur von *E. coli* BL21 (DE3), die die Plasmide pUBS520 und pRSET5a-pld1 bzw. pRSET5a-pld2 enthielt, beimpft. Diese Hauptkultur wurde bei 30 °C mit 180 rpm bis zu einer OD_{600nm} von 0,5-1 geschüttelt, mit 0,5 mM IPTG (Roth GmbH, Karlsruhe) induziert und 2 bis 3 Tage bei 15 °C weitergeschüttelt, bis die OD_{600nm} ca. 8 erreichte.

4.10. Proteinreinigung von PLD1 und PLD2

4.10.1. Zellaufschluß und Reinigung von löslicher PLD1 und PLD2

Die Zellen wurden durch 10 minütiger Zentrifugation bei 8000 g und 4 °C geerntet (Zentrifuge Sorvall RC 5C Plus von Kendro, Hanau). Das Pellet wurde in Aufschlußpuffer (30 mM PIPES [Merck, Darmstadt], pH 6,5 und 5 mM EDTA [Amersham Pharmacia Biotech, Freiburg]) resuspendiert (Ultraturrax T25 von Janke & Kunkel IKA-Labortechnik) und durch Hochdruck aufgeschlossen (GAULIN

Homogenisator von APV, Lübeck). Nach Entfernen der unlöslichen Zellbestandteile duch Zentrifugation bei 30 000 g und 4 °C wurde der Überstand mit einer 1 M CaCl₂-Stammlösung (Serva, Heidelberg) bis zu einer Endkonzentration von 50 mM Ca²⁺ versetzt und bei 6000 g erneut zentrifugiert. Die Proteinlösung wurde mit einer Flußrate von 0,5 ml/min auf eine Octylsepharose-Säule (20 ml Octylsepharose CL-4B von Amersham Pharmacia Biotech, Freiburg, Säulenabmessungen: Durchmesser 20 mm, Höhe 350 mm) aufgetragen (Peristaltik-Pumpe P-1 von Amersham Pharmacia Biotech, Freiburg), die vorher mit 30 mM PIPES-Puffer, pH 6,5 / 50 mM CaCl₂ äquilibriert wurde. Nach Waschen der Säule mit demselben Puffer und anschließend mit 10 mM PIPES-Puffer / 30 mM CaCl₂ wurde das Protein mit 5 mM PIPES-Puffer / 0,1 mM EDTA eluiert. Alle Fraktionen wurden mittels Bradford-Test (Kapitel 4.12.1.2) auf den Proteingehalt und mit dem Standardtest (Kapitel 4.12.2.1) auf PLD-Aktivität untersucht.

4.10.2. Isolierung von IB-Material von PLD1 und PLD2

Die Präparation von IB-Material erfolgte nach Rudolph et al. (1996) Nach Zellernte durch Zentrifugation wurde das Pellet in Aufschlußpuffer 1 (0,1 M Tris-HCl pH 7, 1 mM EDTA) resuspendiert und mit Lysozym (Merck, Darmstadt) versetzt. Nach Zellaufschluß durch Hochdruck wurde DNase I (RNase-frei, von Hybaid-AGS, Heidelberg) zugegeben, 30 min bei Raumtemperatur inkubiert und mit 0,5 Volumen Aufschlußpuffer 2 (60 mM EDTA, 6 % Triton X-100, 1,5 M NaCl pH7) 30 min bei 4 °C inkubiert. Nach Zentrifugation der IBs bei 30 000 g und 4 °C folgten 4 Waschschritte mit 0,1 M Tris-HCl pH 7 und 20 mM EDTA. Die isolierten IBs wurden im festen Zustand bei –20 °C gelagert.

4.11. Renaturierung von PLD1 und PLD2 inclusion bodies

Nach 2 stündigem Rühren von 0,5 g IBs in 10 ml Solubilisierungspuffer (6 M GdnHCl [NIGU Chemie GmbH Waldkraiburg] oder 8 M Harnstoff [ICN Meckenheim]), 0,1 M Tris-HCl, pH 8,0, 0,1 M DTT [Sigma, Deisenhofen] und 1 mM EDTA) bei 24 °C und Zentrifugation bei 10 000 g wurde die Proteinkonzentration der Lösung durch Messung der Absorption bei 280 nm bestimmt (Ultrospec 3000 von Amersham Pharmacia Biotech, Freiburg). Zur Reduzierung des störenden Einflusses von DTT wurden die Lösungen 1:5 mit 8 M Harnstoff verdünnt. Als Blindwert diente der entsprechende Solubilisierungspuffer derselben Verdünnung. Als Extinktionskoeffizienten wurden die
mittels ProtParam (http://expasy.ch/tools/protparam.html) aus der Primärsequenz abgeleiteten Werte von 1,335 M⁻¹ cm⁻¹ für PLD1 und 1,346 M⁻¹ cm⁻¹ für PLD2 verwendet. Zur Optimierung des Renaturierungsprozesses wurden Natriumacetatpuffer pH 5,5, MES-Puffer pH 6,5, Tris-HCI-Puffer pH 6,9-7,4, HEPES-Puffer pH 7,5 und BICIN-Puffer pH 9,0 (alle Puffersubstanzen von Sigma, Deisenhofen) in einer Konzentration von jeweils 50 mM getestet, die jeweils 20 mM CaCl₂, 0,5 M Arginin (Ajinomoto Co., Inc. Tokyo, Japan) sowie 5 mM DTT enthielten.

Eine Proteinlösung mit je 60 µg Protein wurde mit 2 ml der oben genannten Puffer bzw. der Renaturierungspuffer aus Tabelle 4.1 verdünnt und bis zu 7 Tage bei 8 °C im Dunkeln inkubiert. Nach 2, 5 und 7 Tagen wurde die PLD-Aktivität mittels modifiziertem Standardtest (siehe unter 4.12.2.2.) untersucht.

Tabelle 4.1. Zusammensetzung der verwendeten Renaturierungspuffer für die Rückfaltung von PLD1- und PLD2-IBs. Der Basispuffer enthielt 50 mM Tris-HCl, pH 7,1 (bei 8 °C), 10 mM DTT, 1 mM EDTA und 10 mM CaCl₂.

Zusatz	verwendete Konzentration
DTT*	0-20 mM
GSSG / GSH (Serva, Heidelberg)	1 mM / 5 mM
PEG 6000 (Merck, Darmstadt)	0,1-0,4 g/l
Glycerol	10-40 % (v/v)
Arginin-Hydrochlorid	0,2-1,0 M
Triton X-100 (Merck, Darmstadt)	5-20 mM
Tween 20 (Serva, Heidelberg)	0,005-0,05 % (v/v)
CaCl ₂	5-100 mM
Harnstoff	0,3-1,2 M
GdnHCl	0,2-1,0 M
Tris-HCI	0,4-1,0 M
1 mg/ml Triton X-100 und PC	0,1-0,4 mg/ml
(aus Hühnereiern, Lipoid GmbH, Ludwigshafen)	
* Herstellung von Basispuffer ohne DTT	

4.12. Bestimmungsmethoden

4.12.1. Bestimmung der Proteinkonzentration

Die Mehrzahl der Proteinbestimmungen wurde mit dem BCA-Test durchgeführt. Da dieser Test jedoch durch reduzierende oder chelatbildende Komponenten gestört wird, wurde für EDTA- oder DTT-haltige Proteinlösungen der Bradford-Test eingesetzt.

4.12.1.1. BCA-Test

Hierzu wurde das BCA Protein Assay Kit von Pierce (Rockford, USA) verwendet. Diese Methode beruht auf dem kolorimetrischen Nachweis eines Bicinchoninsäure/Cu⁺-Farbkomplexes, der durch die reduzierende Wirkung von Proteinen auf Cu²⁺-Ionen und anschließender Inkubation mit Bicinchoninsäure entsteht (Smith et al., 1985). Als Referenzprotein wurde BSA (Pierce, Rockford, USA) im Konzentrationsbereich 0-1 mg/ml genutzt.

4.12.1.2. Bradford-Test

Dieser Test basiert auf der Methode nach Bradford (1976), bei der Proteine durch Coomassie-Brillantblau-Einlagerung kolorimetrisch nachgewiesen werden können (Bradford-Reagens von Sigma, Deisenhofen). Als Referenzprotein wurde BSA im Konzentrationsbereich 0-75 µg/ml verwendet.

4.12.2. Bestimmung der PLD1- und PLD2-Hydrolyseaktivität

4.12.2.1. Standardtest

Dieser Aktivitätsbestimmung liegt der bereits etablierte PLD-Test von D'Arrigo et al. (1995) zugrunde, bei dem aus PpNP freigesetztes pNP bei 405 nm bestimmt werden kann. Folgende Komponenten waren im Test enthalten:

 20 µl Substrat (10 mM PpNP [hergestellt von Frau Dr. R. Schöps, Institut für Biotechnologie Halle, nach D'Arrigo et al. (1995)], 10 % Triton X-100, 10 mM SDS)

- 50 µl Enzymlösung
- 156 µl 100 mM Natriumacetatpuffer pH 5.5 / 77 mM Kalziumchlorid (Endkonzentration im Test: 65 mM Natriumacetat pH 5.5, 50 mM CaCl₂)
- 14 μ l bidest. H₂O.

Die Enzymlösung wurde 5 min bei 30 °C vortemperiert und nach Zusatz von 20 µl Substrat (s.o.) 10 min bei 30 °C inkubiert. Danach wurde der Test durch Zugabe von 60 µl Stoplösung (1 M Tris-HCl pH 8,0 und 0,1 M EDTA) abgestoppt und die Extinktion E_1 bei 405 nm gemessen (Ultrospec 3000 von Amersham Pharmacia Biotech, Freiburg und Mikrotiterplatten-Lesegerät MR7000 von Dynatech, Denkendorf). Als Blindwert E_0 diente der gleiche Ansatz, der jedoch sofort gestoppt und gemessen wurde. Die Extinktionsänderung $\Delta E = E_1 - E_0$ ist dabei proportional zur eingesetzten Enzymmenge und liegt im linearen Bereich der Progreßkurve.

Für die Erstellung der Eichreihe wurden statt der Enzymlösung 50 µl pNP-Lösung (Sigma, Deisenhofen) im Konzentrationsbereich 0-1 mM verwendet.

Eine Einheit (1 U) Enzym hydrolysiert 1 µmol PpNP bei 30 °C in einer Minute.

4.12.2.2. Modifizierter Standardtest für die Aktivitätsbestimmung von renaturiertem IB-Material

Da die Renaturierung von IBs bisher mit geringen Renaturierungsraten erfolgte, wurde die Inkubationszeit des oben beschriebenen Standardtests von 10 auf 180 min verlängert. Als Blindwert diente der Meßwert, der durch Verwendung des Renaturierungspuffers anstelle der Enzymlösung erhalten wird.

4.12.2.3. Einfluß des pH-Wertes und der Ca²⁺-Konzentration im Reaktionspuffer auf die PLD-Hydrolyseaktivität

Um die Abhängigkeit der PLD-Hydrolyseaktivität vom pH-Wert und von der Ca²⁺-Konzentration zu bestimmen, wurde anstelle des im oben genannten Standardtests verwendeten Reaktionspuffers ein Puffer mit 60 mM Tris-HCI, 20 mM Natriumacetat, 20 mM Glycin eingesetzt, dessen pH-Wert im Bereich von 5,0 bis 8,5 mit Essigsäure oder Natronlauge eingestellt wurde, und dem 0-100 mM CaCl₂ zugesetzt wurde (Abousalham et al., 1993).

4.12.3. Bestimmung der PLD1- und PLD2-Transphosphatidylierungsaktivität

Die Transphosphatidylierungsaktivität der beiden PLDs im Bakterienrohextrakt wurde nach Hirche et al. (1996) im Zweiphasensystem Diethylether/Acetatpuffer bestimmt. Als Substrat diente DO-PC (Lipoid GmbH, Ludwigshafen) und als Akzeptoralkohol Glycerol (Amersham Pharmacia Biotech, Freiburg). Das Reaktionsmedium bestand aus Diethylether (Ethanol-frei, Sigma Deisenhofen), Natriumacetatpuffer, pH 5,6, und CaCl₂. Nach Starten der Reaktion durch Zugabe des Enzyms wurden nach 5, 10, 15 20, 25 und 30 min der organischen Phase Proben entnommen und mittels HPTLC (HPTLC-Platten: Silicagel 60 von Merck, Darmstadt, TLC Applicator AS 30 von Desaga, Wiesloch, Laufmittel: Chloroform:Methanol:Ammoniak=70:40:10, pH 12, Chloroform und Methanol von Sigma, Deisenhofen, Ammoniak von Roth GmbH, Karlsruhe) und Densitometrie ausgewertet (CD60 Densitometer von Desaga, Wiesloch). Als Standards dienten DO-PC, DO-PG (Sigma, Deisenhofen) und DO-PA (Sigma, Deisenhofen) in unterschiedlichen Konzentrationen.

4.13. SDS-PAGE

Die Proteinlösungen wurden, je nach Bedarf, durch Fällung mit Natriumdesoxycholat und Trichloressigsäure (nach Arnold und Ulbrich-Hofmann, 1999, Natriumdesoxycholat von Sigma, Deisenhofen, Trichloressigsäure von Roth GmbH, Karlsruhe), Waschen mit Ethanol und Lösen in Probenpuffer (4 % (v/v) Glycerin, 23 mg/ml SDS [Roth GmbH, Karlsruhe], 12,5 % (v/v) Sammelgelpuffer und 2 % (v/v) β -Mercaptoethanol [FERAK Laborat GmbH, Berlin]) konzentriert und nach Laemmli (1970) gelelektrophoretisch getrennt (Mighty Small II SE250/SE260-Elektrophoresekammer von Amersham Pharmacia Biotech, Freiburg, Acrylamid/Bisacrylamid-Lösung von Merck, Darmstadt). Die Gele wurden eine Stunde in Coomassielösung (Serva, Heidelberg) gefärbt und 2 x 5 min mit Entfärbelösung 1 (5 Vol. bidest. Wasser, 1 Vol. 100 %ige Essigsäure [Roth GmbH, Karlsruhe] und 4 Vol. Ethanol) sowie nach Bedarf in Entfärbelösung 2 (91 Vol. bidest. Wasser, 7 Vol. Essigsäure und 2 Vol. Glycerol) entfärbt.

4.14. Proteinsequenzierung

Nach der SDS-PAGE wurden die Gele in Blotting-Puffer (50 mM Borat [Roth GmbH, Karlsruhe], pH 9,0, 20 % Methanol) äquilibriert. Das Blotten auf Selex 20 Blot-Membranen (Schleicher und Schuell GmbH, Dassel) erfolgte mit demselben Puffer unter Verwendung einer Fast Blot-Apparatur (Biometra, Göttingen) bei 5 mA/cm² für 3 Stunden.

Nach kurzem Färben mit Coomassielösung (enthielt 40 % (v/v) Methanol, 10 % (v/v) Essigsäure) und Entfärben mit 40 % (v/v) Methanol und 10 % Essigsäure wurden die zu sequenzierenden Banden durch Dr. Rücknagel (Max-Planck-Forschungsstelle "Enzymologie der Proteinfaltung", Halle) ausgeschnitten, entfärbt und N-terminal sequenziert.

4.15. Western-Blot-Techniken

Nach der SDS-PAGE wurden die Proteine, wie unter 4.14. beschrieben, auf Nitrozellulose-Membranen (Sartorius, Göttingen) geblottet und kurz mit PBS-Puffer gespült. Anschließend wurde die Membran in folgenden Lösungen bei Raumtemperatur inkubiert:

- PBS mit 4 % Milchpulver (Blocklösung, Skim Milchpulver von Unipath Ltd., Basingstoke, England), 1 h
- primärer AK in Blocklösung (Verdünnung nach Anleitung des Herstellers), 2 h
- PBS, 5 mal je 5 min
- Blocklösung, 1 h
- sekundärer AK in Blocklösung, 1,5 h
- PBS + 0,05 % Tween 20, 3 mal je 5 min
- PBS, 3 mal je 5 min

Aufgrund ihrer Enzymaktivität (meist Meerrettich-Peroxidase) konnten die gebundenen sekundären AK mittels ECL-Western Blotting Detection Kit (Amersham Pharmacia Biotech, Freiburg) nachgewiesen werden (Röntgenfilme HyperFilm-ECL von Amersham Pharmacia Biotech, Freiburg, Entwickler/Fixierer von Sigma, Deisenhofen).

5. Ergebnisse und Diskussion

5.1. Identifizierung und Charakterisierung zweier Isoenzyme von PLD aus Weißkohl

Wie einleitend dargestellt, war das primäre Ziel dieser Arbeit die rekombinante Herstellung von PLD aus Weißkohl. Voraussetzung für die Klonierung des kodierenden Genbereiches ist jedoch eine genaue Kenntnis der Nukleotidsequenz und des Aufbaus des pflanzlichen PLD-Gens. Sequenzdaten-Recherchen im Internet (NCBI GenBank unter http://www.ncbi.nlm.nih.gov) vor Beginn der Arbeiten ergaben keinerlei Hinweise auf bereits identifizierte PLD-Gene aus Weißkohl. Deshalb mußte zunächst das entsprechende Gen gefunden und vollständig sequenziert werden.

Bei der Analyse der mRNA-Sequenz der PLD nach Sequenzierung verschiedener Teilfragmente stellte sich schließlich heraus, daß in Weißkohl zwei strukturell sehr ähnliche Isoenzyme vorhanden sind, die nach der Reihenfolge ihrer Entdeckung mit PLD1 und PLD2 bezeichnet wurden.

5.1.1. Bestimmung der Nukleotidsequenz der mRNAs von PLD1 und PLD2

Zur Ermittlung der Nukleotidsequenz der mRNAs für PLD1 und PLD2 wurde zunächst die Gesamt-RNA von inneren Blättern eines Weißkohl-Kopfes der Sorte Lennox isoliert, aus der anschließend die mRNA gewonnen wurde. Die mRNA wurde dann unter Verwendung von Reverstranskriptase und Oligo(dT)₁₈-Primern in eine komplementäre DNA (cDNA) übersetzt (Abb. 5.1). Das Design der degenerierten Primer (F2fw, F2rv, F3fw und F3rv) für die anschließenden PCRs wurde auf der Basis der bereits bekannten Nukleotidsequenzen der PLD-Gene aus Zea mays (Mais), Oryza sativa (Reis) und Ricinus communis (Rizinus) mittels Suche nach homologen Bereichen vorgenommen. Es zeigte sich, daß die zwei davon abgeleiteten Primerpaare zwar genspezifisch banden, aber immer zwei unterschiedlich lange PCR-Produkte lieferten. Die Sequenzierung der erhaltenen zentralen Genfragmente 2 und 3 (Abb. 5.1) nach Subklonierung in den pCR-Script Amp SK(+)-Vektor ergab erste Hinweise auf das Vorhandensein zweier Isoenzyme in Weißkohl. Die noch fehlenden nichtkodierenden 3'und 5'-Bereiche der mRNAs wurden unter Verwendung von RACE-Methoden (rapid amplification of cDNA ends) vervollständigt. Hierzu wurde das 5'-Ende der mRNA (Fragment 1, Abb. 5.1) mit Reverstranskriptase und einem im Fragment 2 bindenden Primer in eine cDNA umgeschrieben, mittels T4 RNA-Ligase zyklisiert und in der

darauffolgenden PCR als Matrize verwendet. Das 3'-Ende der mRNA (Fragment 4, Abb. 5.1) konnte unter Verwendung eines 3'-RACE Kits und einem in Fragment 3 bindenden Primer amplifiziert werden. Die entsprechenden PCR-Produkte wurden ebenfalls in den pCR-Script Amp SK(+)-Vektor subkloniert und das Konstrukt in *E. coli* XL1 blue transformiert.

Die durch Sequenzierung der 4 Fragmente ermittelten mRNA-Sequenzen von PLD1 und PLD2 wurden in der Genbank von NCBI veröffentlicht (Accession Nr. **AF090444** und **AF090445**). Sie können folgendermaßen charakterisiert werden:

Die mRNA von PLD1 besteht aus 2793 Nukleotiden. Das ORF kodiert für ein Protein mit 810 Aminosäuren. Die mRNA von PLD2 enthält 2702 Nukleotide mit einem ORF für ein aus 812 Aminosäuren bestehendes Protein. Die Nukleotid-Sequenzen von PLD1 und PLD2 sind im kodierenden Bereich zu 87,5 % identisch. In den nichtkodierenden 3'- und 5'-Bereichen konnten keine Sequenzidentitäten festgestellt werden. Die ermittelten mRNA-Nukleotidsequenzen von PLD1 und PLD2 sind zusammen mit der Genstruktur im Anhang aufgeführt (Seiten I-VI).

5.1.2. Ermittlung der Genstruktur von pld1 und pld2

Eukaryontische Gene enthalten im Gegensatz zu den prokaryontischen Genen Exonund Intronstrukturen. Da die Introns bei der mRNA-Synthese posttranskriptional herausgespleißt werden, ist für ihre Sequenzierung die Gewinnung genomischer DNA erforderlich. Diese wurde aus Weißkohlgewebe isoliert und als Matrize für die darauffolgenden PCRs verwendet. Aufgrund der Kenntnis der in den nichtkodierenden 3'- und 5'-Enden der beiden Gene stark voneinander abweichenden Nukleotidsequenzen konnten in diesen Bereichen bindende pld1- und pld2-genspezifische Primer (PLD1pre und -post; PLD2pre und -post, siehe 3.3.) verwendet und die entsprechenden PCR-Produkte für PLD1 und PLD2 getrennt hergestellt werden. Die so erhaltenen PCR-Produkte dienten wiederum als Matrizen für die darauffolgenden PCRs mit den Primern PLD1pre + F1rv, F2fw + F2rv, F3fw + F3rv, F4fw + PLD1post für die PLD1-Fragmente 1-4 und PLD2pre + F1rv, F2fw + F2rv, F3fw + F3rv, F4fw + PLD2post für die PLD2-Fragmente 1-4. Diese Gen-Fragmente wurden in pCR-Script Amp (SK+) subkloniert und sequenziert. Die erhaltenen Sequenzdaten (siehe Anhang, Seiten I-VI) wurden in der Genbank des NCBI veröffentlicht (Accession-Nr. AF113918 und AF113919) und sind in Tabelle 5.1 zusammengefaßt. Beide Isoenzyme enthalten in ihrer Gensequenz 3 Introns. Intron 1 liegt upstream vom Startcodon, die Introns 2 und 3 befinden sich innerhalb des kodierenden Bereiches. Alle drei Introns der beiden Isoenzyme besitzen eine unterschiedliche Sequenz, nur die Exonsequenzen von pld1 und pld2 untereinander sind in hohem Maße homolog. Die Positionen der Introns 2 und 3 innerhalb der pld1- und pld2-Gene sind vergleichbar. Intron 2 beginnt hinter dem Triplett AAG, das für ein konserviertes Lysin kodiert (Lys32 bei PLD1). Intron 3 unterbricht das für ein konserviertes Valin (Val667 bei PLD1) kodierende Triplett GTT hinter G.

	pld1	pld2
Länge der genomischen DNA (bp)	3449	3614
Intron-Regionen		
Intron 1	bp 27 - bp 367	bp 33 - bp 456
Intron 2	bp 472 - bp 663	bp 560 - bp 647
Intron 3	bp 2567 - bp 2970	bp 2554 - bp 3154

Tabelle 5.1. Sequenzdaten von pld1 und pld2 aus Weißkohl.

5.1.3. Vergleich der Genstrukturen der beiden Isoenzyme aus Weißkohl mit denen anderer pflanzlicher PLD α s

Neben den hier ermittelten Weißkohl-Gensequenzen für PLD1 und PLD2 sind inzwischen noch weitere Gensequenzen pflanzlicher PLDs bekannt (Abb. 5.2): für PLD aus Reis, Rizinus und PLD α aus Arabidopsis im Rahmen des Genomprojektes. Vergleicht man die Genstrukturen miteinander, so lassen sich folgende Aussagen treffen:

- 1. Alle fünf PLD-Gene enthalten drei Introns.
- 2. Die Positionen der Introns im Gen sind konserviert. Intron 1 liegt bei allen Genen upstream vom Startcodon, Intron 2 und 3 liegen innerhalb des ORF.
- Alle Intronbereiche haben unterschiedliche Längen in den verschiedenen Pflanzengenen. Intron 2 besteht aus 88 (Weißkohl-PLD2) bis 1442 bp (Rizinus-PLD), während Intron 3 zwischen 84 (*Arabidopsis*-PLDα) und 869 Basenpaare (Rizinus-PLD) enthält.

Abb. 5.2. Vergleich der Exon/Intron-Struktur verschiedener pflanzlicher PLD-Gene.

(blau: Exonstrukturen E1-E4, gelb: Intronstrukturen I1-I3. Die Positionen von Start- und Stopcodon sind eingezeichnet)

5.1.4. Analyse der Primärstrukturen von PLD1 und PLD2

Von der ermittelten Nukleotidstruktur der ORFs von PLD1 und PLD2 wurden unter Verwendung des Programmes GeneRunner (Hastings Software) die beiden Protein-Primärstrukturen abgeleitet (Anhang, Seite VII). Die Aminosäuresequenz für PLD1 enthält neben dem Startmethionin 809 Aminosäuren. PLD2 ist um 2 Aminosäuren länger. Beide Sequenzen sind zu 91 % identisch, und die Homologie, die auch chemisch ähnliche Aminosäuren einbezieht, liegt bei 96 %. Die Sequenzvergleiche wurden mit http://dot.imgen.bcm.tmc.edu:9331 vorgenommen. Die mittels ProtParam (http://www.expasy.ch/tools/protparam.html) abgeleiteten Molekularmassen von 91,8 und 92,1 kDa kommen den experimentell ermittelten Daten von 87 (Lambrecht und Ulbrich-Hofmann, 1992) bzw. 90,2 kDa (Abousalham et al., 1993) nahe und zeigen, daß es sich hier um zwei sehr große Proteine mit vermutlich komplexer Sekundär- und Tertiärstruktur handelt. Die aus Weißkohl isolierte PLD hat in der SDS-PAGE die gleiche molekulare Masse wie die rekombinante PLD2 (Dr. R. Schöps, unveröffentlichte Daten). Die Aminosäurezusammensetzung beider Isoenzyme ist in Tabelle 5.2. dargestellt.

Tabelle 5.2. Aminosäurezusammensetzung von PLD1 und PLD2 aus Weißkohl.

(berechnet mittels ProtParam unter http://www.expasy.ch/tools/protparam.html)

Aminosäure	PLD1	PLD2
Alanin	50 (6.2 %)	48 (5.9 %)
Arginin	48 (5.9 %)	45 (5.5 %)
Asparagin	24 (3.0 %)	28 (3.5 %)
Asparaginsäure	65 (8.0 %)	64 (7.9 %)
Cystein	8 (1.0 %)	8 (1.0 %)
Glutamin	33 (4.1 %)	28 (3.5 %)
Glutaminsäure	53 (6.6 %)	57 (7.0 %)
Glycin	64 (7.9 %)	63 (7.8 %)
Histidin	32 (4.0 %)	31 (3.8 %)
Isoleucin	61 (7.5 %)	58 (7.2 %)
Leucin	58 (7.2 %)	60 (7.4 %)
Lysin	40 (4.9 %)	42 (5.2 %)
Methionin	18 (2.2 %)	19 (2.3 %)
Phenylalanin	35 (4.3 %)	34 (4.2 %)
Prolin	41 (5.1 %)	43 (5.3 %)
Serin	48 (5.9 %)	46 (5.7 %)
Threonin	33 (4.1 %)	36 (4.4 %)
Tryptophan	15 (1.9 %)	15 (1.8 %)
Tyrosin	29 (3.6 %)	30 (3.7 %)
Valin	54 (6.7 %)	56 (6.9 %)

Beide PLDs enthalten, wie auch andere pflanzliche, tierische und auch mikrobielle Vertreter der PLD-Superfamilie, eine große Anzahl an Cysteinen. Da die Suche mittels PSORT (http://psort.nibb.ac.jp) keine Hinweise auf N-terminale Signal-Sequenzen und andere Targetsequenzen für den Transport in den Zellkern, die Mitochondrien, Peroxisomen, Chloroplasten oder Vakuolen für PLD1 und PLD2 ergab, wurde vermutet, daß beide Isoenzyme auch in den Pflanzen intrazellulär vorkommen und die SH-Gruppen deshalb in reduzierter Form vorliegen sollten (Fahey et al., 1977). Diese Vermutung konnte für unsere PLD2 inzwischen bestätigt werden (Hwang et al., 2001). Aus Tabelle 5.2. geht weiterhin hervor, daß in beiden PLDs ein hoher Prozentsatz an aliphatischen hydrophoben Aminosäuren existiert (Leu, Val, Ile: 21,4 %). Sind diese Proteine tatsächlich im Cytosol der Weißkohlzellen lokalisiert, sollten ihre hydrophoben Aminosäuren im Inneren des Proteins verborgen sein. Das hätte eine sehr kompakte Struktur zur Folge. Andererseits wird jedoch vermutet, daß die Proteine zumindest temporär an der Zellmembran gebunden sein müssen, um die Funktion des

Membranabbaus oder der Membranumbildung erfüllen zu können. Dafür wäre ein hoher Anteil an oberflächenexponierten hydrophoben Proteinbereichen erforderlich.

Die isoelektrischen Punkte beider Isoenzyme ProtParam konnten mittels (http://www.expasy.ch/tools/protparam.html) aus der Primärstruktur ermittelt werden und liegen bei pH 5,6 und 5,4 für PLD1 bzw. PLD2. Diese relativ niedrigen Werte resultieren aus dem hohen Anteil saurer Aminosäuren, der in PLD1 und PLD2 bei ca. 15 % (Asp + Glu) liegt. Dem stehen nur 11 % basische Aminosäuren (Lys + Arg) gegenüber. Da die beiden isoelektrischen Punkte lediglich aus der Primärstruktur von PLD1 und PLD2 berechnet und somit der Einfluß von sterischen Abschirmungen der Ladungen vernachlässigt wurde, ist es nicht verwunderlich, daß die Werte von dem experimentell ermittelten Wert von 4,7 (Lambrecht und Ulbrich-Hofmann, 1992, Abousalham et al., 1993) für PLD aus Weißkohl abweichen.

Vergleicht man die PLD-Primärstrukturen von PLD1 und PLD2 mit denen anderer pflanzlicher (Anhang, Seiten VIII-X), tierischer oder mikrobieller PLDs (Tab. 5.3), so läßt sich ein hoher Verwandtschaftsgrad zu den pflanzlichen Vertretern des α -Typs erkennen (74-95 %). Weniger hohe Sequenzidentitäten werden beim Vergleich mit den pflanzlichen PLDs des β - oder γ -Typs festgestellt (39-68 %). Tierische oder mikrobielle PLDs weisen mit 12-20 % den geringsten Verwandtschaftsgrad zu PLD1 und PLD2 aus Weißkohl auf.

Organismus	Sequenzidentität	Sequenzidentität	Acc. Nr.
	zu PLD1 [%]	zu PLD2 [%]	(NCBI)
Arabidopsis thaliana (PLDα)	95	92	AB017071
Arabidopsis thaliana (PLDβ)	40	39	U90439
Arabidopsis thaliana (PLDγ1)	41	41	AL161532
Arabidopsis thaliana (PLDγ2)	44	44	AL161532
Nicotiana tabacum (PLDα)	80	80	Z84822
<i>Oryza sativa</i> (PLDα)	77	77	AB001920
<i>Oryza sativa</i> (PLDβ oder -γ)	68	68	AB001919
Pimpinella brachycarpa (PLDα)	74	74	U96438
Ricinus communis (PLDα)	81	80	L33686
Vigna unguiculata (PLDα)	82	81	U92656
<i>Zea may</i> s (PLDα)	77	77	D73410
Homo sapiens (GPI-PLD)	17	18	L11701
Rattus norvegicus (PLD2)	20	20	P70498
Arcanobacterium haemolyticum	13	12	L16583
Candida albicans	14	15	AB010810
Corynebacterium pseudotuberculosis	13	12	L16586
Corynebacterium ulcerans	12	13	L16585
Streptomyces acidmyceticus	16	18	E03429
Streptomyces antibioticus	18	17	BAA03913
Streptomyces species	17	17	E05514
Streptoverticillium cinnamoneum	17	16	AB007132
Vibrio damsela	17	18	L16584

Tabelle 5.3. Vergleich der Aminosäuresequenzen von PLD1 und PLD2 aus Weißkohl mit der anderer pflanzlicher, tierischer und mikrobieller PLDs.

Wie alle anderen bereits bekannten PLDs (Kapitel 2.3.1) haben auch PLD1 und PLD2 aus Weißkohl das duplizierte HKD-Motiv (Abb. 5.3 und Anhang, Seiten IX und X), das für die PLD-Aktivität essentiell ist (Kapitel 2.3.2). Im N-Terminus beider Isoenzyme befindet sich die aus ca. 130 Aminosäuren bestehende C2-Domäne (Abb. 5.3 und Anhang, Seite VIII), die für die Ca²⁺-vermittelte Phospholipidbindung verantwortlich ist (Kapitel 2.3.3).

Die C2-Domäne von PLD1 und PLD2 aus Weißkohl enthält wie die anderen pflanzlichen PLDs vom α -Typ statt der beim β - und γ -Typ üblichen vier nur zwei der konservierten sauren Aminosäurereste (Glu38 und Asp97 in PLD1; Glu39 und Asp98 in PLD2). Wie bereits unter 2.3.3 erwähnt, sind die unterschiedlichen Ca²⁺-Bindungsaffinitäten von PLD α gegenüber PLD β - oder PLD γ wahrscheinlich darauf zurückzuführen.

Wie in einigen wenigen pflanzlichen PLDs des α -Typs (PLD α aus *Arabidopsis* und aus Tabak) liegt in der C2-Domäne von PLD1 und PLD2 aus Weißkohl ein PIP₂-Bindungsmotiv mit der konservierten Sequenz K/RxxxRxRK (Abb. 5.3 und Anhang, Seite VIII).

Abb. 5.3. Strukturmotive der PLDs aus Weißkohl und Arabidopsis.

Die Sequenzen stammen aus der NCBI-Genbank. (Tab. 2.1)

5.2. Klonierungs- und Expressionsstudien von PLD1 und PLD2

Aufgrund der hohen Homologien im N- und C-terminalen Bereich der pld1- und pld2-Gene wurden zunächst, wie bereits unter 5.1.2. beschrieben, mit Hilfe der pld1- und pld2-genspezifischen Primerpaare (PLD1pre und PLD1post sowie PLD2pre und PLD2post) aus der cDNA Isoenzym-spezifische Matrizen hergestellt. Diese wurden bei der abschließenden PCR (5.2.1. und 5.2.2.) zur Einfügung der entsprechenden Restriktionsschnittstellen für die Klonierung in das gewünschte Expressionssystem verwendet.

Aufgrund der sehr starken Homologie der Primärstrukturen von PLD1 und PLD2 kann davon ausgegangen werden, daß sich beide Isoenzyme bei der heterologen Expression in *E. coli* ähnlich verhalten. Deshalb wurden zur Ermittlung des optimalen Expressionssystems für die Expression von pld1 und pld2 nur für PLD1 verschiedene Konstrukte hergestellt. Zur Vereinfachung der anschließenden Reinigung von PLD1 wurden zunächst Fusionsproteine mit N- und C-terminalen Tags konstruiert (5.2.1.). Darüberhinaus wurde auch ein Tag-freies Konstrukt für die Expression von PLD1 gewählt (5.2.2.). Die entsprechenden Expressionssysteme sind in Tabelle 5.4 dargestellt und charakterisiert.

Vektor	Resistenz	Promotor	Expression	Charakterisierung des Tags
pRSET5a	Amp	Т7	cytosolisch	kein Tag
pASK-IBA6	Amp	Tetracyclin	periplasmatisch	StrepII-tag, N-terminal
pASK-IBA7	Amp	Tetracyclin	cytosolisch	StrepII-tag, N-terminal
pET20b(+)	Amp	Τ7	cytosolisch	His-tag, C-terminal
pGEX 4T-2	Amp	tac	cytosolisch	GST-tag, N-terminal

Tabelle 5.4. Charakterisierung der Expressionsvektoren für PLD1.

5.2.1. Herstellung und Expression von Fusionskonstrukten der PLD1

Als Reinigungsmodule wurden StrepII-, His- und GST-Fusionstags verwendet (Tab. 5.4). Im Falle des N-terminalen StrepII-tags wurden bei der PCR die bereits hergestellte und oben erwähnte Isoenzym 1-spezifische Matrize, Pfu-DNA-Polymerase und die beiden Primer N-IBA-6/7 und C-IBA-6/7 eingesetzt. Das PCR-Produkt sowie die beiden Vektoren pASK-IBA7 bzw. pASK-IBA6 für cytosolische oder periplasmatische Expression wurden nach der Reinigung mittels Agarosegel-Elektrophorese und Gelextraktionskit mit *Bsa*l geschnitten, mit Ethanolfällung gereinigt und konzentriert, ligiert und in *E. coli* XL1 blue transformiert. Ungewollte Punktmutationen bei der PCR konnten durch die Sequenzierung des Inserts ausgeschlossen werden.

Zur Konstruktion der PCR-Produkte für die His-tag-Fusion wurden die Primer HisPrime fw und HisPrime rv (Schnittstellen für *Xba* I und *Hin*d III), für die GST-Fusion die Primer GSTprime fw und GSTprime rv (Schnittsellen für *Bam*H I and *Eco*R I) verwendet. Die PCR-Produkte und die zugehörigen Vektoren (Tab. 5.4) wurden mit den entsprechenden Restriktionsenzymen geschnitten und mittels Ethanolfällung gereinigt und konzentriert. Nach Ligation und Transformation in *E. coli* XL1 blue wurde die Insertsequenz wiederum durch Sequenzierung überprüft. Auch hier konnten keine Punktmutationen festgestellt werden.

Bei allen beschriebenen Expressionskonstrukten wurden die Plasmide mit pld1-Insert in den Expressionsstamm *E. coli* BL21 (DE3) transformiert, der bereits das Plasmid pUBS520 für die Bereitstellung der zwar in Eukaryonten recht häufigen, jedoch in Prokaryonten seltenen tRNAs für die Arginin-kodierenden Tripletts AGA und AGG enthielt (Brinkmann et al., 1989). Nach Anzucht der Transformanten auf Agarplatten wurden Übernacht-Kulturen angesetzt. Diese Flüssigkulturen dienten als Vorkulturen und wurden zum Beimpfen der Hauptkultur verwendet.

Um die Expression der Fusionskonstrukte zu optimieren, wurde zunächst die Induktorkonzentration variiert. Nach Erreichen einer OD_{600nm} von 0,5 wurden im Falle

der Plasmide pGEX-4T-2-pld1 und pET20b(+)-pld1 0-2 mM IPTG zugesetzt. Im Falle der Plasmide pASK-IBA6-pld1 und pASK-IBA7-pld1 wurde die Anhydrotetracyclin-Konzentration zwischen 0 und 200 µg/l variiert. In allen Fällen wurden Proben entnommen und die Zellen mit Proteinextraktionspuffer aufgeschlossen. Nach Zentrifugation wurde der Überstand auf PLD-Aktivität getestet bzw. die Proteinextrakte mittels SDS-PAGE analysiert. Alle PLD1-tag-Fusionskonstrukte zeigten bei allen Induktorkonzentrationen keine PLD-Hydrolyseaktivitäten sowie kaum erkennbare Banden entsprechender Größe im Acrylamid-Gel bzw. im Western-Blot (AK gegen StrepII-tag und His-tag, nicht gezeigt).

Da ein Absenken der Kultivierungstemperatur und der damit verbundenen Anpassung der Faltungsbedingungen und Herabsetzung der Proteolysegeschwindigkeit in *E. coli* auch Verbesserungen bei der Expression erzielen kann (Schein und Noteborn, 1988), wurde im nächsten Schritt die Temperatur zwischen 15 und 37 °C variiert. Auch dies brachte nicht den gewünschten Erfolg. Es wird vermutet, daß N- oder C-terminale Tags die Ausbildung der räumlichen Struktur des Enzyms negativ beeinflussen.

5.2.2. Herstellung und Expression des Tag-freien Konstruktes

Zur Herstellung des Tag-freien Konstruktes wurden bei der PCR die bereits genannte Isoenzym 1-spezifische Matrize, die beiden Primer Iso1fw und Iso1rv sowie Pfu-DNA-Polymerase verwendet. Nach Reinigung des PCR-Produktes durch Ethanolfällung und Restriktionsverdau mit *Nde* I und *Hin*d III wurde die DNA in den mit *Nde* I und *Hin*d III linearisierten Vektor pRSET5a (Tab. 5.4) kloniert und in *E. coli* XL1 blue transformiert. Nach der Plasmidpräparation konnten Punktmutationen mittels Sequenzierung des Inserts ausgeschlossen werden.

Auch dieses Plasmid wurde in den Expressionsstamm *E. coli* BL21 (DE3) transformiert, der bereits das Plasmid pUBS520 enthielt. Zur Optimierung der Expression des Tagfreien pld1-Gens wurde, wie unter 5.2.1. beschrieben, die Induktorkonzentration zwischen 0 und 2 mM variiert. Im Gegensatz zu den Fusionskonstrukten konnte hier bei niedrigen IPTG-Konzentrationen PLD-Aktivität gemessen werden (Abb. 5.4 A). Mit Erhöhung der Induktorkonzentration verringerte sich die PLD-Aktivität, aber die Zunahme der PLD1-Banden im SDS-Polyacrylamid-Gel mit steigender IPTG-Konzentration (ab 0,1 mM) deutet auf die zunehmende Bildung von falsch gefaltetem inaktiven Protein in Form von IBs hin (Abb. 5.4 B). **Abb. 5.4. Einfluß der IPTG-Konzentration bei der Induktion auf die PLD1-Menge und Aktivität.** (pRSET5a-pld1 und pUBS520 in *E. coli* BL21(DE3), Kultivierungstemperatur: 20 °C, Medium: 2xYT mit 80 μg/ml Ampicillin und 50 μg/ml Kanamycin, Probennahme bei maximaler OD_{600nm} nach Induktion, PpNP-Test)

A: PLD1-Aktivitätsbestimmung mittels PpNP-Test; **B**: SDS-PAGE der Proben, IPTG-Konzentrationen: 0 mM (Bahn 1), 0,1 mM (Bahn 2), 0,5 mM (Bahn 3), 1 mM (Bahn 4) und 2 mM (Bahn 5) sowie Molekulargewichtsstandard (Bahn 6).

Im nächsten Schritt wurde die Temperatur zwischen 15 und 37 °C variiert, ohne die Expression durch IPTG-Zugabe zu induzieren. Hier zeigte sich, daß bei niedrigen Temperaturen eine höhere PLD-Aktivität erhalten werden konnte (Abb. 5.5). Im gewählten Temperaturbereich war bei 15 °C die PLD1-Ausbeute maximal.

Abb. 5.5. Einfluß der Kultivierungstemperatur auf die PLD1-Aktivität.

(pRSET5a-pld1 und pUBS520 in *E. coli* BL21(DE3), Medium: 2xYT mit 80 μg/ml Ampicillin und 50 μg/ml Kanamycin, Probennahme bei maximaler OD_{600nm}, PLD-Aktivitätsbestimmung mittels PpNP-Test)

Die Variation des pH-Wertes des Kulturmediums zwischen pH 5,5 und 7,5 und die Zugabe von bis zu 10 mM Kalziumchlorid zum Medium erbrachte keine weitere Erhöhung der Expressionsrate.

Die optimierten Bedingungen für die Expression von PLD1 in aktiver, löslicher Form lassen sich folgendermaßen zusammenfassen:

- Kulturmedium: 2xYT pH 7,0
- Kultivierung bei 15 °C bis zu einer OD_{600nm} von 6-8 (ca. 3 Tage)
- keine Induktion.

5.2.3. Klonierung und Expression von PLD2

Da sich alle Fusionsvarianten bei der Klonierung und Expression von PLD1 als ungeeignet erwiesen, wurde bei der Klonierung von PLD2 auf jegliche Fusionskonstrukte verzichtet und nur das Tag-freie Konstrukt von PLD2 hergestellt.

Wie einleitend in Abschnitt 5.2 dargelegt, wurde auch hier zunächst eine PCR mit den Primern PLD2pre und PLD2post, die das am 3'- und 5'-Ende verlängerte ORF von PLD2 amplifizierte, durchgeführt. Darauf folgte die abschließende PCR mit den Primern Iso2fw und Iso2rv, die der Einführung der Restriktionsschnittstellen *Nde* I und *Hin*d III in das PCR-Produkt diente. Nach dem Restriktionsverdau des PCR-Produktes und des Vektors pRSET5a mit *Nde* I und *Hin*d III folgten Reinigung durch Ethanolfällung, Ligation, Transformation und Sequenzüberprüfung, wie bereits bei PLD1 beschrieben. Aufgrund der bereits optimierten Expression von pld1 wurde hier auf eine erneute umfangreiche Untersuchung verzichtet, da keine großen Unterschiede zu erwarten waren. Nur die IPTG-Konzentration und die Kultivierungstemperatur wurden, wie bei PLD1 beschrieben, variiert. Wie vermutet, wurden auch hier die gleichen Ergebnisse erzielt. Ohne Induktion und bei 15 °C konnte die höchste PLD-Aktivität erreicht werden (Daten nicht gezeigt).

5.2.4. Optimierung der IB-Erzeugung von PLD1 und PLD2

Wie bei der unter 5.2.2 beschriebenen Optimierung der pld1-Expression festgestellt wurde, entstanden bei der Zugabe von mindestens 0,1 mM IPTG unlösliche und inaktive IBs. Die Expressionsrate wurde jedoch trotz Erhöhung der IPTG-Konzentration im Kulturmedium (1 bzw. 2 mM) nicht wesentlich gesteigert (Abb. 5.4.B). Wie bei der Produktion der löslichen, aktiven Enzyme konnte die IB-Ausbeute durch das Absenken der Kultivierungstemperatur auf 15 °C beträchtlich gesteigert werden (Abb. 5.6).

Abb. 5.6. Einfluß der Kultivierungstemperatur auf die IB-Menge von PLD1 bei Induktion mit 0,5 mM IPTG. SDS-PAGE der Proben bei Kultivierungstemperaturen von 15 °C (Bahn 1), 24 °C (Bahn 2), 30 °C (Bahn 3), 37 °C (Bahn 4) und Molekulargewichtsmarker (Bahn 5). (pRSET5a-pld1 und pUBS520 in *E. coli* BL21 (DE3), LB mit 80 μg/ml Ampicillin und 50 μg/ml Kanamycin, Probennahme bei maximaler OD_{600nm}).

5.3. Reinigung der löslichen PLD-Isoenzyme

5.3.1. Präparation des Bakterien-Rohextraktes

Nach der Zellernte durch Zentrifugation wurden die PLD1- oder PLD2-enthaltenden Bakterien in Aufschlußpuffer homogenisiert und unter Hochdruck mechanisch aufgeschlossen. In der löslichen Fraktion wurden zunächst die PLD-Aktivität und die Proteinkonzentration bestimmt. Dabei wurden Enzymaktivitäten für PLD1 bis zu 37,5 µmol min⁻¹, für PLD2 bis zu 62,5 µmol min⁻¹ je Liter Bakterienkultur erhalten. Die sich anschließende chromatografische Reinigung machte den Zusatz von Kalziumchlorid bis zu einer Endkonzentration von 50 mM erforderlich. Der dabei entstandene Niederschlag wurde durch Zentrifugation abgetrennt. Da dieses Pellet auch PLD enthielt, wurde die Enzymaktivität noch einmal im Überstand bestimmt. Der Verlust an PLD1 bzw. PLD2 bei diesem Verfahren betrug 38,8 bzw. 27,8 % (Tab. 5.5).

5.3.2. Ca²⁺-vermittelte hydrophobe Interaktionschromatografie

Die sehr effiziente Reinigung von PLD in nur einem Schritt wurde von Lambrecht und Ulbrich-Hofmann (1992) entwickelt. Diese Reinigungsmethode beruht auf der Bindung von PLD aus Weißkohl an hydrophoben Materialien in Anwesenheit von hohen Ca²⁺-Konzentrationen (ca. 50 mM). Zur Elution des gebundenen Enzyms werden dem Protein Kalziumionen durch Zugabe geringer Mengen an EDTA entzogen. Diese elegante Reinigungsmethode erwies sich auch für die Gewinnung der rekombinanten PLD

geeignet und wurde ohne Änderungen sowohl für die Reinigung von PLD1 als auch PLD2 angewandt. In beiden Fällen konnte eine sehr hohe Reinheit (bis zu 90 % bezogen auf die Proteinkonzentration) erzielt werden. In Abbildung 5.7.A ist das Reinigungsprofil der Affinitätschromatografie an Octylsepharose am Beispiel der PLD2 dargestellt. Die meisten Proteine wurden unter den gewählten Bedingungen nicht an das Säulenmaterial gebunden. Sowohl Durchlauf (Fraktionen 1-9) als auch Waschfraktionen (Fraktionen 10-16) enthalten keine PLD-Aktivität. Nur in den Elutionsfraktionen 17-22 konnte aktives Protein nachgewiesen werden. Abbildung 5.7.B zeigt eine typische Reinigung von PLD1 und PLD2. Bei den gereinigten Proben (Bahnen 4 und 6) sind nur wenige verunreinigende bakterielle Proteinbanden zwischen 67 und 94 kDa zu erkennen. Als Negativkontrolle wurde der Rohextrakt aufgetragen, der die Expression von Vektor pRSET5a ohne pld1- oder pld2-Inserts in BL21 (DE3) zeigt. Aus der Abbildung 5.7 B ist ersichtlich, daß in der Position der PLD-Banden auch einige bakterielle Proteine zu finden sind. Aufgrund der gewünschten Nicht-Induktion durch IPTG-Zugabe nahmen die PLD1- und PLD2-Banden im Rohextrakt im Verlauf der Kultivierung nicht sichtbar zu. Der Versuch des Nachweises der PLD-Banden im Rohextrakt mittels Western-Blot scheiterte, da die Herstellung von geeigneten Antikörpern nicht erfolgreich war. Ein eigens für diese Zwecke erzeugtes C-terminales PLD1-Fragment (Aminosäurereste 606-809), hergestellt durch PCR unter Verwendung der beiden Primer C-Term-fw und C-Term-rv, Subklonierung in pRSET5a und Gewinnung der IBs, lieferte nach Immunisierung von Kaninchen nicht den gewünschten Antikörper. Ein Antikörper, der gegen ein N-terminales Peptid (Aminosäurereste 37-52 der PLD1 aus Weißkohl) gerichtet war, erwies sich als wenig stabil und mit vielen Kreuzreaktionen behaftet. Ein von Prof. Dr. Verger und Mitarbeitern (Laboratoire de Lipolyse Enzymatique, Marseille Cedex, Frankreich) entwickelter und uns zur Verfügung gestellter Antikörper gegen PLD aus Sojabohnen führte ebenfalls nicht zum Erfolg.

Abb. 5.7. Reinigung der PLD1- und PLD2-Isoenzyme mittels Ca²⁺-vermittelter Affinitätschromatografie.

- A) Reinigungsprofil der Affinitätschromatografie von PLD2 an Octylsepharose.
- B) SDS-PAGE von PLD1 und PLD2. Bahn 1: Molekulargewichtsmarker, Bahn 2: Expression des Vektors ohne pld1 und pld2 (Negativkontrolle), Bahn 3: Bakterien-Rohextrakt mit PLD1, Bahn 4: gereinigte PLD1, Bahn 5: Bakterien-Rohextrakt mit PLD2, Bahn 6: gereinigte PLD2.

In Tabelle 5.5 sind die Reinigungsfaktoren und Enzymausbeuten bei der Reinigung dargestellt. Obwohl die Zellen nicht durch Zugabe von IPTG induziert wurden, konnten bei der Expression beachtliche Mengen an PLD1 und PLD2 in aktiver, löslicher Form gebildet werden. Die spezifischen Hydrolyseaktivitäten der Rohextrakte übersteigen mit 0,06-0,11 U/mg für PLD1 bzw. 0,12-0,15 U/mg für PLD2 den in der Literatur angegebenen Wert von 5 mU/mg für ein Fusionsprotein von PLD2 aus Weißkohl mit Glutathion-S-Transferase (Kim et al., 1999) um ein Vielfaches, obwohl das hier verwendete Substrat 1,2-Di-[1-¹⁴C]-palmitoyl-PC wesentlich besser umgesetzt werden sollte als das von uns verwendete synthetische Substrat PpNP.

Die für die Reinigung an Octylsepharose notwendige CaCl₂-Zugabe zum Rohextrakt bewirkte allerdings eine Reduzierung der PLD-Menge durch Bildung eines Präzipitates, so daß die Ausbeuten nach diesem Schritt nur noch 61,2 % für PLD1 bzw. 72,2 % für PLD2 betrugen. Bei der sich anschließenden Affinitätschromatografie konnten 75,0 % (PLD1) bzw. 62,5 % (PLD2) der aufgetragenen Aktivität wieder eluiert werden. Für die Enzymausbeute des gesamten Reinigungsverfahrens ergeben sich demzufolge 45,9 % für PLD1 bzw. 45,0 % für PLD2.

Aus einem Liter Kultur konnten somit 7,5 mg PLD1 bzw. 6,25 mg PLD2 im Rohextrakt erhalten werden, von denen bis zu 3,4 mg bzw. 2,8 mg Protein in reiner Form isoliert werden konnten.

Reinigungsschritt	spezifische PLD-Aktivität		Reinigungsfaktor		PLD-Aktivitäts-	
	(U/mg)				ausbeute (%)	
	PLD1	PLD2	PLD1	PLD2	PLD1	PLD2
Bakterien-Rohextrakt	0,06-0,11	0,12-0,15	1	1	100	100
Überstand nach CaCl ₂ - Zugabe und Zentrifugation	0,05-0,09	0,10-0,12	ca. 0,8	ca. 0,8	61,2	72,2
Ca ²⁺ -vermittelte hydrophobe Chromatografie	5,0-8,8	10,0-12,5	ca. 83	ca. 83	45,9	45,0

Tabelle 5.5. Ausbeute von PLD1 und PLD2 bei der Reinigung aus dem Bakterien-Rohextrakt.

5.4. Versuche zur Rückfaltung von PLD1 und PLD2 inclusion bodies

Wie bereits unter 5.2. dargestellt, wurden bei Verwendung von 0,5 mM IPTG zur Induktion der Expression PLD1 und PLD2 überwiegend in Form von IBs gebildet. Diese wurden nach Zellernte durch Zentrifugation, Homogenisierung der Bakterien in Aufschlußpuffer und nach mechanischem Zellaufschluß mittels Hochdruck nach Rudolph et al. (1996) präpariert. Anschließend wurden die IBs in DTT-haltigem GdnHCIbzw. Harnstoff-Solubilisierungspuffer gelöst und die Enzymkonzentration bestimmt. Alle Versuche zur Renaturierung der Enzyme blieben bisher unbefriedigend. Trotzdem sollen sie im folgenden kurz beschrieben werden. Die Renaturierungsversuche wurden jeweils bei 8 °C durchgeführt. Bei der Renaturierung wurden den Renaturierungsansätzen nach 2, 5 und 7 Tagen Proben entnommen, die mittels modifiziertem PpNP-Test auf ihre PLD-Aktivität hin untersucht wurden. Zur Optimierung des Renaturierungsprozesses wurde zunächst der pH-Wert des Puffers zwischen 5,5 und 9,0 variiert. Die Messungen ergaben eine Optimumskurve. Die Verwendung von Tris/HCI-Puffer pH 7,1 erwies sich dabei als optimal (Daten nicht gezeigt). Im nächsten Schritt wurde versucht, die optimalen Reduktions-/Oxidationsbedingungen durch Zusatz von DTT bzw. einem GSSG/GSH-Gemisch als Redoxsystem einzustellen. Während die PLD-Aktivität im Glutathion-haltigen Puffer auch nach 5-7 Tagen sehr gering blieb, stieg sie im DTThaltigen Puffer über einen Zeitraum von 5 Tagen stetig an, wonach sie ein Plateau erreichte (Daten nicht gezeigt). Diese Begünstigung der Faltung des Proteins unter reduzierenden Bedingungen ist neben der Feststellung, daß keine Signalsequenzen existieren, ein weiterer Hinweis darauf, daß das aktive Enzym im Cytosol vorliegt und keine Disulfidbrücken enthält. Im Gegensatz dazu wurde von der PLD aus Streptomyces antibioticus berichtet, daß dieses extrazelluläre Enzym Disulfidbrücken enthält, die essentiell sind für die Bildung der Tertiärstruktur und deren Ausbildung ein frühes Stadium der korrekten Proteinfaltung beeinflußt (Iwasaki et al., 2000).

Desweiteren wurde der Einfluß verschiedenster Medienzusätze auf die Renaturierungs-Ausbeute untersucht. Hierzu wurden dem Basispuffer, der in den meisten Fällen 50 mM Tris-HCl, pH 7,1 (bei 8 °C), 10 mM DTT, 1 mM EDTA und 10 mM CaCl₂ enthielt, stabilisierende Zusätze wie PEG 6000 (0,1-0,4 g/l, siehe Abb. 5.8), Glycerol (0-40 % (v/v)) und L-Arg (0-1 M, Abb. 5.8), Detergenzien, wie z. B. Triton X-100 (0-20 mM) und Tween 20 (0,005-0,05 % (v/v)), destabilisierende Substanzen, z. B. Harnstoff (0-1,2 M) und GdnHCl (0-1 M), aber auch andere Zusätze, wie z. B. CaCl₂ (0-100 mM, siehe Abb. 5.9), Tris-HCl (bis zu 1M), 1 mg/ml Triton X-100 kombiniert mit Ei-PC (0,1-0,4 mg/ml) und das reduzierende Agens DTT (bis zu 20 mM) (Review in Rudolph et al., 1996), zugefügt.

Abb. 5.8. Einfluß von L-Arginin und PEG 6000 auf die Renaturierung von solubilisierten PLD1-IBs. Der Basispuffer enthielt 50 mM Tris-HCl, pH 7,1 (8 °C), 10 mM DTT, 1 mM EDTA und 10 mM CaCl₂. Die IBs wurden in 8 M Harnstoff mit 0,1 M Tris-HCl-Puffer, pH 8, 0,1 M DTT und 1 mM EDTA solubilisiert (30 μ g/ml Protein, Rückfaltung bei 8 °C, Probennahme nach 2, 5 und 7 Tagen).

Abb. 5.9. Einfluß der CaCl₂-Konzentration auf die Renaturierung von solubilisierten PLD1-IBs. Der Basispuffer enthielt 50 mM Tris-HCl, pH 7,1 (8 °C), 10 mM DTT, und 1 mM EDTA. Die IBs wurden in 6 M GdnHCl mit 0,1 M Tris-HCl-Puffer, pH 8, 0,1 M DTT und 1 mM EDTA solubilisiert und anschließend gegen 4 M GdnHCl dialysiert (50 μg/ml Protein, Rückfaltung bei 5 °C, Probennahme nach 2 Tagen).

Grundsätzlich wurden bei allen Renaturierungsversuchen nur sehr geringe PLD-Aktivitäten gemessen, so daß die Inkubationszeit des Standardtests auf 3 bzw. 5 Stunden ausgedehnt werden mußte, um meßbare Extinktionsänderungen zu erhalten. Geringe Verbesserungen der Faltung des Proteins brachten der Zusatz an PEG 6000 (0,2 g/l, Abb. 5.8), Glycerol (10-20 %) und Detergenz (Tween 20 und Triton X-100). Auch die Zugabe von CaCl₂ im Bereich 10-15 mM zeigte eine geringe Aktivitätssteigerung (Abb. 5.9). Alle anderen Substanzen verbesserten die Faltung nur unwesentlich oder verschlechterten sie sogar (z. B. Harnstoff, GdnHCl oder Arginin). Die Ausbeute lag bei allen Versuchen bei maximal nur 0,06 % bezogen auf die spezifische Hydrolyseaktivität des löslichen Enzyms. Da durch Renaturierung von PLD1-IBs mit allen getesteten Substanzen keine befriedigende Enzymausbeute erzielt werden konnte, wurde auf weitere Versuche zur Renaturierung der IBs verzichtet und der Expression ohne Induktion der Vorrang gegeben, zumal in diesem Fall das Enzym in aktiver, reiner Form isoliert werden konnte.

5.5. Biochemische Charakterisierung der Isoenzyme

Die rekombinant gewonnenen Isoenzyme bilden die Grundlage für weiterführende biochemische Charakterisierungen der PLD. Im Rahmen dieser Arbeit wurden bereits einige ausgewählte Versuche zur Beantwortung besonders interessanter Fragen durchgeführt.

5.5.1. N-terminale Sequenzierung von PLD1 und PLD2

Beide Isoenzyme wurden nach der Reinigung an Octylsepharose mittels SDS-PAGE durch Blotten auf eine Mikrosequenzierungsmembran übertragen und durch Dr. Rücknagel (Max-Planck-Forschungsstelle "Enzymologie der Proteinfaltung", Halle) Nterminal sequenziert. Bei beiden Isoenzymen stimmten die ermittelten Sequenzen Ala-GIn-His-Leu-Leu mit der von der Gensequenz abgeleiteten Methionin-freien Nterminalen Aminosäuresequenz, die für PLD1 und PLD2 identisch ist, überein. Das läßt die Schlußfolgerung zu, daß für die Entfaltung der vollen Enzymaktivität bis auf die Methionin-Abspaltung keine posttranslationalen Prozessierungen am N-Terminus notwendig sind. Dies steht im Widerspruch zu den Angaben von Abousalham et al. (1993), die aus Weißkohl gereinigte PLD ansequenzierten. Aus unseren Ergebnissen läßt sich ableiten, daß die von Abousalham et al. untersuchte PLD um 36 N-terminale Aminosäuren verkürzt war. Es wird vermutet, daß diese PLD-Präparation mit kürzeren Fragmenten verunreinigt war und der vollständige N-Terminus möglicherweise wegen einer Blockierung nicht bestimmt werden konnte. Diese Vermutung wird durch eigene Befunde in der Arbeitsgruppe (R. Schöps, unveröffentlicht) gestützt. Bisher ist es nicht gelungen, den N-Terminus des aus Weißkohl isolierten Enzyms (aufgrund des Laufverhaltens in der SDS-PAGE vermutlich die Isoform 2) aufgrund einer Blockierung zu bestimmen. Auch von Novotna et al. (1999) wird eine N-terminale Blockierung der Raps-PLD berichtet.

5.5.2. Ermittlung der spezifischen Hydrolyseaktivität von PLD1 und PLD2

Die spezifische Hydrolyseaktivität der gereinigten PLD1- und PLD2-enthaltenden Eluate der Ca²⁺-vermittelten hydrophoben Interaktionschromatografie wurde durch Messung der PLD-Aktivität und der Proteinkonzentration bestimmt. Zur Ermittlung der hydrolytischen Aktivität wurde der PpNP-Test verwendet, bei dem Phosphatidyl-pnitrophenol als Substrat diente und die Menge an freigesetztem p-Nitrophenol bei einer Wellenlänge von 405 nm bestimmt wurde. Dieser Test wurde ursprünglich von D'Arrigo et al. (1995) entwickelt, um die PLD-Aktivität aus verschiedenen Mikroorganismen (*Streptomyces species, S. chromofuscus*) und aus Wirsingkohl zu bestimmen. Der PpNP-Test ließ sich jedoch auch auf die PLD aus Weißkohl übertragen, da diese in Übereinstimmung mit Hirche et al. (1997) ebenso Substrate mit sekundären Alkoholen akzeptiert.

Die Proteinkonzentration in den Elutionsfraktionen wurde mittels Bradford-Test bestimmt. Die ermittelten spezifischen Aktivitäten von PLD1 und PLD2 betragen, wie in Tabelle 5.5 angegeben, 5,0-8,8 bzw. 10,0-12,5 µmol min⁻¹ mg⁻¹. Demnach besitzt PLD2 eine höhere katalytische Wirkung.

5.5.3. Bestimmung der Hydrolyseaktivität von PLD1 und PLD2 in Abhängigkeit vom pH-Wert und von der Ca²⁺-Konzentration

Bereits 1953 bestimmte Kates das pH-Optimum der Hydrolyseaktivität von PLD aus Weißkohl, das bei pH 5,0-5,8 lag (Kates, 1953). Davidson und Long (1958) beschrieben eine Aktivierung der PLD aus Wirsingkohl durch Zugabe von Ca²⁺-Ionen. Abousalham et al. (1993) berichteten, daß das pH-Optimum der PLD aus Weißkohl in den sauren Bereich verschoben wird, wenn die Ca²⁺-Menge im Test erhöht wird. In Gegenwart von 10 mM CaCl₂ lag das Optimum bei pH 7,5. Bei Anwesenheit von 25 mM CaCl₂ wurde ein pH-Optimum von 6,0 gefunden. Die höchste Aktivität wurde bei 45 mM CaCl₂ gemessen, wobei sich das pH-Optimum unter diesen Bedingungen bei pH 5,5 befand. Die Untersuchung der Aktivität der beiden rekombinanten Isoenzyme in Abhängigkeit vom pH und der Kalziumkonzentration sollte Aufschluß darüber geben, ob diese Verschiebungen durch die beiden von uns identifizierten PLD-Isoenzyme verursacht werden. PLD1 und PLD2 wurden einzeln bei verschiedenen pH-Werten (pH 5,0-8,3) und CaCl₂-Konzentrationen (10-100 mM) inkubiert und ihre Aktivitäten bestimmt (Abb. 5.10). Es konnte gezeigt werden, daß PLD1 und PLD2 unabhängig von der CaCl₂-Konzentration im Aktivitätstest das gleiche pH-Optimum für die Hydrolyseaktivität von pH 5,5-5,6 haben. Die höchste Aktivität wurde in Gegenwart von 45 mM Kalziumchlorid

erreicht. Bei höheren Konzentrationen stieg sie nicht weiter an. In Abwesenheit von Kalziumionen betrug die Aktivität beider Isoenzyme weniger als 10 % der Aktivität beim pH-Optimum.

Die von Abousalham et al. (1993) gefundene Abhängigkeit des pH-Optimums von der Ca²⁺-Konzentration konnte weder mit PLD1 noch mit PLD2 bestätigt werden. Es muß jedoch betont werden, daß sich der hier verwendete Aktivitätstest mit PpNP als Substrat von dem von Abousalham et al. durchgeführten Test unterschied, so daß mögliche Einflüsse des pH-Wertes oder der Ca²⁺-Konzentration auf die Substratbeschaffenheit (Oberflächenladung, Struktur o. ä.) nicht ausgeschlossen werden können. Eine weitere mögliche Erklärung könnte die Anwesenheit von bisher beim Weißkohl noch unbekannten PLD-Isoenzymen des β - oder γ -Typs ähnlicher Größe sein, da eine amerikanische Arbeitsgruppe für die PLD β - und PLD γ -Isoenzyme aus *Arabidopsis thaliana* ein pH-Optimum im neutralen Bereich angegeben hat (Qin et al., 1997, Pappan und Wang, 1999a).

5.5.4. Ermittlung der Transphosphatidylierungspotenz von PLD1 und PLD2

Bis auf die höhere spezifische Hydrolyseaktivität von PLD2 konnten bisher noch keine weiteren Unterschiede zwischen PLD1 und PLD2 festgestellt werden. Um das Verhalten der Isoenzyme bei der Katalyse der Transphosphatidylierungsreaktion zu untersuchen, wurde der von Hirche et al. (1996) entwickelte Aktivitätstest, der in Anwesenheit von DO-PC und Glycerol im Diethylether/Acetatpuffer-Zweiphasensystem durchgeführt wird, verwendet. Nach der Dünnschichtchromatografie wurden die nach Entwicklung der HPTLC-Platten erhaltenen Banden densitometrisch ausgewertet und die Initialgeschwindigkeiten für Transphosphatidylierung (v_T) und Hydrolyse (v_H) berechnet. Die erhaltenen Werte sind in Tabelle 5.6 dargestellt. Das Verhältnis dieser beiden Parameter (v_T/v_H) ist ein Maß für die Transphosphatidylierungspotenz der PLD. Betrachtet man dieses Verhältnis für beide Isoenzyme, so ergeben sich keine signifikanten Unterschiede. Sowohl für PLD1 als auch für PLD2 war die Umesterungsrate zweimal höher als die Hydrolyserate, d. h. ein Drittel des DO-PC wurde zu DO-PA hydrolysiert, wohingegen die restlichen zwei Drittel zu DO-PG umgesetzt wurden. Dagegen hat PLD2, wie bei der unter 5.4.2. ermittelten Hydrolyseaktivität, auch hier eine höhere Transphosphatidylierungsaktivität als PLD1.

Tabelle 5.6. Initialgeschwindigkeiten der Transphosphatidylierung (v_T) und Hydrolyse (v_H) von DO-PC in Anwesenheit von Glycerol für PLD1 und PLD2 im Diethylether/Puffer Zweiphasensystem.

	Initialgeschwindigk	,		
isoenzym aus vveiiskoni	V _T	V _H	V _T /V _H	
PLD1	$23,0\pm0,7$	12,7 ± 1,9	$1,8 \pm 0,3$	
PLD2	33,9 ± 7,3	$18,2 \pm 0,4$	$1,9 \pm 0,4$	

6. Zusammenfassung

Mit der vorliegenden Arbeit sollten die molekularbiologischen Grundlagen für die Aufklärung der Proteinstruktur und für die gentechnologische Veränderung der enzymatischen Eigenschaften von Phospholipase D aus Weißkohl geschaffen werden. Um das für industrielle Synthesen neuartiger Phospholipide noch nicht ausreichend erforschte Enzym proteinchemisch besser charakterisieren zu können, sollte ein Verfahren zur Gewinnung dieses Enzyms in größeren Mengen und hoher Reinheit entwickelt werden. Die Klonierung des zugehörigen Gens und dessen heterologe Expression in einem geeigneten Mikroorganismus, vorzugsweise *E. coli*, erschienen dabei als das Mittel der Wahl. Aufgrund fehlender Informationen über die PLD-Genstruktur in Weißkohl wurden zunächst Datenbankrecherchen durchgeführt, um pflanzliche, strukturell ähnliche PLDs zu finden, aus denen Primerstrukturen abgeleitet werden konnten, die für die Herstellung von Genfragmenten mittels PCR und deren Sequenzierung notwendig waren.

Bei der Analyse der ermittelten Nukleotidsequenz einiger Fragmente zeigte sich, daß in Weißkohl zwei strukturell sehr ähnliche pld-Gene exprimiert werden, die nach der Reihenfolge ihrer Entdeckung mit pld1 und pld2 bezeichnet wurden. Beide Gene enthalten 3 Introns, von denen eines upstream vom Startcodon liegt, die anderen beiden befinden sich im ORF an vergleichbaren Positionen. pld1 codiert für ein Protein mit 810 Aminosäuren, PLD2 ist um zwei Aminosäuren länger. Beide Primärstrukturen sind zu 91 % identisch (und zu 96 % ähnlich) und weisen hohe Homologien zu anderen pflanzlichen PLD-Vertretern auf. Da beide Isoenzyme dem PLDα-Typ aus Arabidopsis thaliana am stärksten ähneln – bei dieser Pflanze entdeckte man auch β - und γ -Typen – wurden sie den PLD α s zugeordnet. Wie bei allen anderen pflanzlichen PLDs wurden auch in PLD1 und PLD2 aus Weißkohl die beiden hoch konservierten, für die Aktivität essentiellen HKD-Motive und die für die Kalziumbindung verantwortliche C2-Domäne im N-Terminus der Proteine gefunden. Es wurde angenommen, daß es sich bei beiden Isoenzymen um intrazelluläre Enzyme handelt, da mittels Signalseguenzrecherche kein Hinweis auf das Vorhandensein einer Signalsequenz gefunden wurde. Das steht im Widerspruch zu Literaturbefunden (Abousalham et al., 1993), die für das Weißkohlenzym eine um 36 Aminosäuren verkürzte Sequenz nach N-terminaler Proteinsequenzierung als die aktive Enzymspezies ansehen und die zusätzliche Sequenz als Propeptid betrachten.

Die Expression beider pld-Gene in *E. coli* gelang mittels Klonierung in den Vektor pRSET5a. Dieser Vektor, der weder N- noch C-terminale Tags enthält, hat sich als

vorteilhaft erwiesen, da alle anderen Konstrukte, die eine Fusion mit C- oder Nterminalen Tags zur Vereinfachung der Reinigung enthielten (StrepII-, His- und GST-Tag), keine oder nur eine sehr geringe Expressionsrate aufwiesen.

Mit den in pRSET5a klonierten Genen für PLD1 und PLD2 gelang es, nach Optimierung der Expressionsbedingungen PLD-Hydrolyseaktivitäten von 37,5 µmol min⁻¹ für PLD1 und 62,5 µmol min⁻¹ für PLD2 im Bakterien-Rohextrakt pro Liter Kultur anzureichern. Dabei hat sich die Kultivierung der *E. coli*-Zellen bei einer Temperatur von 15 °C und bei einem pH von 7,0 als optimal erwiesen. Während ohne Induktion mittels IPTG die Expression der beiden Gene in Form des aktiven löslichen Enzyms in den genannten Aktivitätsausbeuten gelang, wurde nach Induktion mittels IPTG die Expression in Form von inclusion bodies beobachtet. Bisher ist jedoch die Renaturierung nur mit unbefriedigenden Ausbeuten verlaufen.

Beide in löslicher, aktiver Form aus dem Rohextrakt isolierten Isoenzyme konnten mit der Ca²⁺-vermittelten Affinitätschromatografie an Octylsepharose gereinigt werden. Da aufgrund der für die Reinigung benötigten Kalziumchlorid-Zugabe jedoch große Mengen an PLD1 und PLD2 kopräzipitierten (38,8 bzw. 27,8 %), lag die Enzymausbeute bezogen auf die Aktivität bei insgesamt nur 45,9 und 45,0 %. Der Reinigungsfaktor betrug ca. 83 für beide Isoenzyme. Die beiden gereinigten Isoenzyme zeigen gegenüber dem synthetischen Substrat PpNP eine spezifische Hydrolyseaktivität von 5,0-8,8 bzw. 10,0-12,5 µmol min⁻¹ mg⁻¹. Diese Werte stimmen mit dem der aus Weißkohl isolierten PLD gut überein. Auch die gelelektrophoretischen Eigenschaften sind vergleichbar. Das deutet darauf hin, daß auch in der Pflanze keine Signalsequenzabspaltung und keine größenverändernden, posttranslationalen Modifizierungen erfolgen. Die Proteinsequenzierung der N-Termini ergab den bereits vom ORF abgeleiteten, jedoch Metfreien N-Terminus.

Beide Isoenzyme entfalten ihre höchste Aktivität in Anwesenheit von ca. 45 mM CaCl₂. Ohne Zugabe von Ca²⁺-Ionen beträgt die Hydrolyseaktivität weniger als 10 %. Die pH-Optima der PLD1 und PLD2 liegen bei pH 5,5-5,6, unabhängig von der CaCl₂-Konzentration im PpNP-Test. Dies steht im Widerspruch zu Literaturangaben (Abousalham et al., 1993), wo für eine PLD-Präparation aus Weißkohl ein weiteres pH-Optimum bei pH 7,5 in Anwesenheit von 10 mM Ca²⁺ angegeben wird.

Der Vergleich der Messung der Transphosphatidylierungsaktivitäten der beiden rekombinanten Isoenzyme ergab keine gravierenden Unterschiede. Die im Diethylether/Acetatpuffer-Zweiphasensystem gemessene Transphosphatidylierungsrate von Hühnerei-PC in Anwesenheit von Glycerol und Wasser war etwa doppelt so hoch wie die Hydrolyserate. In Bezug auf die Hydrolyse- und Transphosphatidylierungs-aktivität zeigte PLD2 eine höhere Katalyserate als PLD1.

Zusammenfassend kann festgestellt werden, daß beide Isoenzyme nach dem beschriebenen Verfahren in ausreichender Menge und Reinheit für weiterführende Struktur- und Funktionsuntersuchungen bereitgestellt werden können. Darüber hinaus erlauben die gewonnenen molekularbiologischen Erkenntnisse zu PLD1 und PLD2 gezielte Veränderungen der Proteinstruktur zur Modifizierung ihrer Stabilitäts- und Katalyseeigenschaften.

7. Literaturverzeichnis

- Abergel C, Abousalham A, Chenivesse S, Riviere M, Moustacas-Gardies AM, Verger R (2001) Crystallization and preliminary crystallographic study of a recombinant phospholipase D from cowpea (*Vigna unguiculata* L.Walp).*Acta Crystallogr. D Biol. Crystallogr.* 57, 320-322
- Abousalham A, Riviere M, Teissere M, Verger R (1993) Improved purification and biochemical characterization of phospholipase D from cabbage. *Biochim. Biophys. Acta* 1158, 1-7
- Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor Miklos GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, Woodage T, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng

XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC (2000) The genome sequence of *Drosophila melanogaster*. *Science* 287, 2185-2195

- Almquist KC, Paliyath G (2000) Cloning and sequencing of a full-length cDNA coding for phospholipase D alpha (Accession No. AF201661) from tomato (PGR 00-013). *Plant Physiol.* 122, 292
- Arnold U, Ulbrich-Hofmann R (1999) Quantitative protein precipitation from guanidine hydrochloride-containing solutions by sodium deoxycholate/trichloroacetic acid. *Anal. Biochem.* 271, 197-199
- Aurich I, Dürrschmidt P, Hirche F, Ulbrich-Hofmann R (1997) Transesterification of alkylphosphate esters by phospholipase D. *Biotechnol. Lett.* 19, 875-879
- Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmann JG, Smith JA, Struhl K (Hrsg., 1987ff, Stand 2001) Current Protocols in Molecular Biology. *Wiley & Sons*, Cambridge
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72, 248-254
- Brinkmann U, Mattes RE, Buckel P (1989) High-level expression of recombinant genes in *Escherichia coli* is dependent on the availability of the dnaY gene product. *Gene* 85, 109-114
- Cha YY, Lee K-W, Kim JC, Han TJ, Lee WS, Cho SH (1997) Nucleotide sequence of a cDNA encoding phospholipase D (Accession No. U96438) from Pimpinella brachycarpa (PGR 97-092). *Plant Physiol.* 114, 1135
- Chetal S, Wagle DS, Nainawatee HS (1982) Phospholipase D activity in leaves of waterstressed wheat and barley. *Biochem. Physiol. Pflanzen* 177, 92-96
- Colley WC, Altshuller YM, Sue-Ling CK, Copeland NG, Gilbert DJ, Jenkins NA, Branch KD, Tsirka SE, Bollag RJ, Bollag WB, Frohman MA (1997a) Cloning and expression analysis of murine phospholipase D1. *Biochem. J.* 326, 745-753

- Colley WC, Sung T-C, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ, Frohman MA (1997b) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. *Curr. Biol.* 7, 191-201
- Comfurius P, Zwaal RFA (1977) The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. *Biochim. Biophys. Acta* 488, 36-42
- Contardi A, Ercoli A (1932) Über die enzymatische Spaltung der Lecithine und Lysocithine. *Biochem. Z.* 261, 275
- Cuevas WA, Songer JGL (1993) Arcanobacterium haemolyticum phospholipase D is genetically and functionally similar to Corynebacterium pseudotuberculosis phospholipase D. *Infect. Immun.* 61, 4310-4316
- Cui X, Brown RM Jr (1999) Molecular cloning of a phospholipase D gene from cotton fibers (Accession No. AF159139). (PGR99-119). *Plant Physiol.* 120, 1207
- Cullis PR, Hope MJ, Tilcock CPS (1986) Lipid polymorphism and the roles of lipids in membranes. *Chem. Phys. Lipids* 40, 127-144
- D'Arrigo P, de Ferra L, Pedrocchi-Fantoni G, Scarcelli D, Servi S, Strini A (1996) Enzyme-mediated synthesis of two diastereomeric forms of phosphatidylglycerol and of diphosphatidylglycerol (cardiolipin). *J. Chem. Soc. Perkin Trans.* 1, 2657-2660
- D'Arrigo P, de Ferra L, Piergianni V, Ricci A, Scarcelli D, Servi S (1994) Phospholipase D from Streptomyces catalyses the transfer of secondary alcohols. *J. Chem. Soc. Chem. Comm.* 14, 1709-1710
- D'Arrigo P, de Ferra L, Piergianni V, Selva A, Servi S, Strini A (1996) Preparative transformation of natural phospholipids catalyzed by phospholipase D from *Streptomyces. J. Chem. Soc. Perkin Trans.* 1, 2651-2656
- D'Arrigo P, Piergianni V, Scarcelli D, Servi S (1995) A spectrophotometric assay for phospholipase D. *Anal. Chimica Acta* 304, 249-254

- Davidson FM, Long C (1958) The structure of the naturally occurring phosphoglycerides: Action of cabbage-leaf phospholipase D on ovolecithin and related substances. *Biochem. J.* 69, 458-466
- Dawson RMC (1967) The formation of phosphatidylglycerol and other phospholipids by the transferase activity of phospholipase D. *Biochem. J.* 102, 205-210
- Dawson RMC, Hemington N (1967) Some properties of purified phospholipase D and especially the effect of amphipathic substances.. *Biochem. J.* 102, 76-86
- Dennis EA (1983) Phospholipases, in P. Boyer, ed., *The enzymes.* Vol. 16, 307-353, Academic Press, New York
- Diaz C, Balasubramanian K, Schroit AJ (1998) Synthesis of disulfide-containing phospholipid analogs for the preparation of head group-specific lipid antigens: generation of phosphatidylserine antibodies. *Bioconjug. Chem.* 9, 250-254
- Dinh TT, McClure GD, Kennerly DA (1995) Purification and N-terminal sequence analysis of *Streptomyces chromofuscus* phospholipase D. *Int. Arch. Allergy Immunol.* 107, 69-71
- Dittrich N, Haftendorn R, Ulbrich-Hofmann R (1998) Hexadecylphosphocholine and 2modified 1,3-diacylglycerols as effectors of phospholipase D. *Biochim. Biophys. Acta* 1391, 265-272
- Dittrich N, Nössner G, Kutscher B, Ulbrich-Hofmann R (1996) Alkylphosphate esters as inhibitors of phospholipase D. *J. Enzyme Inhibition* 11, 67-75
- Dyer JH, Ryu SB, Wang X (1994) Multiple forms of phospholipase D following germination and during leaf development of castor bean. *Plant Physiol.* 105, 715-724
- Dyer JH, Zheng L, Wang X (1995) Cloning and nucleotide sequence of a cDNA encoding phospholipase D from Arabidopsis. *Plant Physiol.* 109, 1497-1499
- Dyer JH, Zheng S, Wang X (1996) Structural heterogeneity of phospholipase D in 10 dicots. *Biochem. Biophys. Res. Commun.* 221, 31-36
- Eibl H, Kovatchev S (1981) Preparation of phospholipids and their analogs by phospholipase D. *Methods Enzymol.* 72, 632-639
- El Maarouf H, Carriere F, Riviere M, Abousalham A (2000) Functional expression in insect cells, one-step purification and characterization of a recombinant phospholipase D from cowpea (*Vigna unguiculata* L. Walp). *Protein Eng.* 13, 811-817
- El Maarouf H, Zuily-Fodil Y, Gareil M, d'Arcy-Lameta A, Pham-Thi AT (1999) Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of *Vigna unguiculata* L. Walp. differing in drought tolerance. *Plant Mol. Biol.* 39, 1257-1265
- Fahey RC, Hunt JS, Windham GC (1977) On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. *J. Mol. Evol.* 10, 155-160
- Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest arabidopsis leaves. *Plant Cell* 9, 2183-2196
- Ferrari RA, Benson AA (1961) The path of carbon in photosynthesis of the lipids. *Arch. Biochem. Biophys.* 93, 185-192
- Frank W, Munnik T, Kerkmann K, Salamini F, Bartels D (2000) Water deficit triggers phospholipase D activity in the resurrection plant *Craterostigma plantagineum*. *Plant Cell* 12, 111-123
- Gottlin EB, Rudolph AE, Zhao Y, Matthews HR, Dixon JE (1998) Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate. *Proc. Natl. Acad Sci. USA* 95, 9202-9207
- Haftendorn R, Schwarze G, Ulbrich-Hofmann R (2000) 1,3-Diacylglycero-2phosphocholines – synthesis, aggregation behaviour and properties as inhibitors of phospholipase D. *Chem. Phys. Lipids* 104, 57-66

- Hammond SM, Altshuller YM, Sung TC, Rudge SA, Rose K, Engebrecht J, Morris AJ, Frohman MA (1995) Human ADP-ribosylation factor-activated phosphatidylcholinespecific phospholipase D defines a new and highly conserved gene family. *J. Biol. Chem.* 270, 29640-29643
- Hanahan DJ, Chaikoff IL (1947) A new phospholipidsplitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping. *J. Biol. Chem.* 169, 699-705
- Hasegawa M, Ota N, Aisaka K (1992) Production of Phospholipase D-K. Patent: JP 1992088981-A 1 (23-MAR-1992) Kyowa Hakko Kogyo CO LTD

Heller M (1978) Phospholipase D. Adv. Lipid Res. 16, 267-326

- Hirche F, Koch MHJ, König S, Wadewitz T, Ulbrich-Hofmann R (1996) The influence of organic solvents on phospholipid transformations by phospholipase D in emulsion systems. *Enzyme Microb. Technol.* 19, 1-9
- Hirche F, Schierhorn A, Scherer G, Ulbrich-Hofmann R (1997) Enzymatic introduction of N-heterocyclic and As-containing head groups into glycerophospholipids. *Tetrahedron Lett.* 38, 1369-1370
- Hirche F, Ulbrich-Hofmann R (1999) The interfacial pressure is an important parameter for the rate of phospholipase D catalyzed reactions in emulsion systems. *Biochim. Biophys. Acta* 1436, 383-389
- Holbrook PG, Pannell LK, Daly JW (1991) Phospholipase D-catalyzed hydrolysis of phosphatidylcholine occurs with P-O bond cleavage. *Biochim. Biophys. Acta* 1084, 155-158
- Honigberg SM, Conicella C, Espositio RE (1992) Commitment to meiosis in Saccharomyces cerevisiae: involvement of the SPO14 gene. Genetics 130, 703-716

- Hwang I-S, Park S-J, Roh T, Choi M-U, Kim HJ (2001) Investigation of sulfhydryl groups in cabbage phospholipase D by combination of derivatization methods and matrixassisted laser desorption/ionization time-of-flight mass spectrometry. *Rapid Commun. Mass Spectrom.* 15, 110-115
- Iwasaki Y, Horiike S, Matsushima K, Yamane T (1999) Location of the catalytic nucleophile of phospholipase D of *Streptomyces antibioticus* in the C-terminal half domain. *Eur. J. Biochem.* 264, 577-581
- Iwasaki Y, Nakano H, Yamane T (1994) Phospholipase D from Streptomyces antibioticus: cloning, sequencing, expression, and relationship to other phospholipases. *Appl. Microbiol. Biotechnol.* 42,:290-299
- Iwasaki Y, Nishiyama T, Kawarasaki Y, Nakano H, Yamane T (2000) Importance of disulfide bridge formation on folding of phospholipase D from Streptomyces antibioticus. J. Biosci. Bioeng. 89, 506-508
- Juneja LR, Hibi N, Inagaki N, Yamane T, Shimizu S (1987) Comparative study on conversion of phosphatidylcholine to phosphatidylglycerol by cabbage phospholipase D in micelle and emulsion systems. *Enzyme Microb. Technol.* 9, 350-354
- Juneja LR, Kazuoka T, Goto N, Yamane T, Shimizu S (1989) Conversion of phosphatidylcholine to phosphatidylserine by various phospholipases D in the presence of L- and D-serine. *Biochim. Biophys. Acta* 1003, 277-283
- Juneja LR, Kazuoka T, Yamane T, Shimizu S (1988) Kinetic evaluation of conversion of phosphatidylcholine to phosphatidylethanolamine by phospholipase D from different sources. *Biochim. Biophys. Acta* 960, 334-341
- Jung K, Koh E, Choi M-U (1989) Catalytic properties of phospholipase D using phosphatidic acid as an activator. *Bull. Korean Chem. Soc.* 10, 595-600
- Kanoh H, Nakashima S, Zhao Y, Sugiyama Y, Kitajima Y, Nozawa Y (1998) Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus, *Candida albicans*. *Biochim. Biophys. Acta* 1398, 359-364

Katayama K, Kodaki T, Nagamachi Y, Yamashita S (1998) Cloning, differential regulation and tissue distribution of alternatively spliced isoforms of ADP-ribosylation factor-dependent phospholipase D from rat liver. *Biochem. J.* 329, 647-652

Kates M (1953) Lecithinase activity of chloroplasts. Nature 172, 814-815

Kent C (1995) Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64, 315-343

- Kim D-U, Roh T, Lee J, Noh J, Jang Y-J, Hoe K-L, Yoo H-S, Choi M-U (1999) Molecular cloning and functional expression of a phospholipase D from cabbage (*Brassica oleracea* var. *capitata*). *Biochim. Biophys. Acta* 1437, 409-414
- Kokusho Y, Tsunoda A, Kato S, Machida H, Iwasaki S (1993) Production of various phosphatidylsaccharides by phospholipase D from *Actinomadura sp.* strain No. 362. *Biosci. Biotech. Biochem.* 57, 1302-1305
- Koonin EV (1996) A duplicated catalytic motif in a new superfamily of phosphohydrolases and phospholipid synthases that includes poxvirus envelope proteins. *Trends In Biochemical Sciences* 21, 242-243
- Kopka J, Pical C, Hetherington AM, Müller-Röber B (1998) Ca²⁺/phospholipid-binding C2 domain in multiple plant proteins: novel components of the calcium-sensing apparatus. *Plant Mol. Biol.* 36, 627-637
- Kovatchev S, Eibl H (1978) The preparation of phospholipids by phospholipase D. *Adv. Exp. Med. Biol.* 101, 5221-5226
- Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. *Nature* 227, 680-685
- Lambrecht R, Ulbrich-Hofmann, R (1992) A facile purification procedure of phospholipase D from cabbage and its characterization. *Biol. Chem. Hoppe-Seyler* 373, 81-88
- Lee H, Choi M-U, Koh E-H (1989) Purification and characterization of the active site of phospholipase D. *Korean Biochem. J.* 22, 487-493

- Lee S, Hibi N, Yamane T, Shimizu S (1985) Phosphatidylglycerol synthesis by phospholipase D in a microporous membrane bioreactor. *J. Ferment. Technol.* 63, 37-44
- Lee S, Suh S, Kim S, Crain RC, Kwak JM, Nam H-G, Lee Y (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. *Plant J.* 12, 547-556
- Lee SH, Chae HS, Lee TK, Kim SH, Shin SH, Cho BH, Cho SH, Kang BG, Lee WS (1998) Ethylene-mediated phospholipid catabolic pathway in glucose-starved carrot suspension cells. *Plant Physiol.* 116, 223-229
- Lein W, Saalbach G (2001) Cloning and direct G-protein regulation of phospholipase D from tobacco. *Biochim. Biophys. Acta* 1530, 172-183
- Leiros I, Secundo F, Zambonelli C, Servi S, Hough E (2000) The first crystal structure of a phospholipase D. *Structure Fold. Des.* 8, 655-667
- Li L, Fleming N (1999) Aluminium fluoride inhibition of cabbage phospholipase D by a phosphate-mimicking mechanism. *FEBS Lett.* 461, 1-5
- Liscovitch M, Chalifa V, Pertile P, Chen C-S, Cantley LC (1994) Novel function of phosphoinositole 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. *J. Biol. Chem.* 269, 21403-21406
- Lopez I, Arnold RS, Lambeth JD (1998) Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. *J. Biol. Chem.* 273, 12846-12852
- McNamara PJ, Cuevas WA, Songer JG (1995) Toxic phospholipases D of *Corynebacterium pseudotuberculosis*, *C. ulcerans* and *Arcanobacterium haemolyticum*: cloning and sequence homology. *Gene* 156, 113-118
- Morris AJ, Engebrecht J, Frohman MA (1996) Structure and regulation of phospholipase D. *TIPS* 17, 182-185

- Munnik T, Irvine RF, Musgrave A (1998) Phospholipid signalling in plants. *Biochim. Biophys. Acta* 1389, 222-272
- Nagao A, Ishida N, Terao J (1991) Synthesis of 6-phosphatidyl-L-ascorbic acid by phospholipase D. *Lipids* 26, 390-394
- Nakajima J, Nakashima T, Shima Y, Fukuda H, Yamane T (1994) A facile transphosphatidylation reaction using a culture supernatant of actinomycetes directly as a phospholipase D catalyst with a chelating agent. *Biotechnol. Bioeng.* 44, 1193-1198
- Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: Structural and functional diversity. *Protein Science* 5, 2375-2390
- Novotná Z, Ká J, Daussant J, Sajdok J, Valentová O (1999) Purification and characterization of rape seed phospholipase D. *Plant Physiol. Biochem.* 37, 531-537
- Ogino C, Negi Y, Daido H, Kanemasu M, Kondo A, Kuroda S, Tanizawa K, Shimizu N, Fukuda H (2001) Identification of novel membrane-bound phospholipase D from *Streptoverticillium cinnamoneum*, possessing only hydrolytic activity. *Biochim. Biophys. Acta* 1530, 23-31
- Ogino C, Negi Y, Matsumiya T, Nakaoka K, Kondo A, Kuroda S, Tokuyama S, Kikkawa U, Yamane T, Fukuda H (1999) Purification, characterization, and sequence determination of phospholipase D secreted by *Strepoverticillium cinnamoneum*. *J. Biochem*. 125, 263-269
- Okahata Y, Niikura K, Ijiro K (1995) Simple transphosphatidylation of phospholipids catalysed by a lipid-coated phospholipase D in organic solvents. *J. Chem. Soc., Perkin Trans.* 1, 919-925
- Pannenberg I, Mansfeld J, Ulbrich-Hofmann R (1998) Identification of two isoenzymes (Acc. Nos. AF090444 and AF090445) of phospholipase D from cabbage (*Brassica oleracea* var. *capitata*). *Plant Physiol.* 118, 1102

- Pappan K, Qin W, Dyer JH, Zheng L, Wang X (1997) Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDβ, from *Arabidopsis. J. Biol. Chem.* 272, 7055-7061
- Pappan K, Wang X (1999a) Molecular and biochemical properties and physiological roles of plant phospholipase D. *Biochim. Biophys. Acta* 1439, 151-166
- Pappan K, Wang X (1999b) Plant phospholipase Dα is an acidic phospholipase active at near-physiological Ca²⁺ concentrations. *Arch. Biochem. Biophys.* 368, 347-353
- Pedersen KM, Finsen B, Celis JE, Jensen NA (1998) Expression of a novel murine phospholipase D homolog coincides with late neuronal development in the forebrain. J. Biol. Chem. 273, 31494-31504
- Ponting CP, Kerr ID (1996) A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: Identification of duplicated repeats and potential active site residues. *Protein Science* 5, 914-922
- Qin W, Dyer JH, Zheng L, Wang X (1999) Isolation and nucleotide sequence of the fourth phospholipase D (Accession No. AF138281), PLD-γ2, from Arabidopsis. *Plant Physiol.* 120, 635
- Qin W, Pappan K, Wang X (1997) Molecular heterogeneity of phospholipase D (PLD): Cloning of PLD γ and regulation of plant PLD γ , - β , and - α by polyphosphoinositides and calcium. *J. Biol. Chem.* 272, 28267-28273
- Rebecchi MJ, Pentyala SN (2000) Structure, function, and control of phosphoinositidespecific phospholipase C. *Physiol. Reviews* 80, 1291-1335
- Redina OE, Frohman MA (1998a) Organization and alternative splicing of the murine phospholipase D2 gene. *Biochemistry* 331, 845-851
- Redina OE, Frohman MA (1998b) Genomic analysis of murine phospholipase D1 and comparison to phospholipase D2 reveals an unusual difference in gene size. *Gene* 222, 53-60

- Rose K, Rudge SA, Frohman MA, Morris AJ, Engebrecht J (1995) Phospholipase D signaling is essential for meiosis. *Proc. Natl. Acad. Sci. U.S.A.* 92, 12151-12155
- Rudge SA, Engebrecht J (1999) Regulation and function of PLDs in yeast. *Biochim. Biophys. Acta* 1439, 167-174
- Rudolph R, Böhm G, Lilie H, Jaenicke R (1996) Folding proteins. in Creighton TE, ed.; *Protein Function: A practical approach.* University Press, Oxford
- Ryu SB, Karlsson BH, Özgen M, Palta JP (1997) Inhibition of phospholipase D by lysophosphatidylethanolamine, a lipid-derived senescence retardant. *Proc. Natl. Acad. Sci. U.S.A.* 94, 12717-12721
- Ryu SB, Wang X (1998) Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves. *Biochim. Biophys. Acta* 1393, 193-202
- Sakai M, Yamatoya H, Kudo S (1996) Pharmacological effects of phosphatidylserine enzymatically synthesized from soybean lecithin on brain functions in rodents. *J. Nutr. Sci. Vitaminol.* 42, 47-54
- Sale MFO, Cestaro B, Mascherpa A, Monti D, Masserini M (1989) Enzymatic synthesis and thermotropic behaviour of phosphatidylethanol. *Chem. Phys. Lipids* 50, 135-142
- Scallon B, Fung WJ, Tsang C, Li S, Kado-Fong H, Huang KS, Kochan JP (1991) Primary structure and functional activity of phosphatidylinositolglycan specific phospholipase D. *Science* 252, 446-448
- Schein CH, Noteborn MHM (1988) Formation of soluble recombinant proteins in *Escherichia coli* is favored by lower growth temperature. *Bio/Technology* 3, 151-154
- Scott DL, Sigler PB (1994) Structure and catalytic mechanism of secretory phospholipases A₂. *Adv. Protein Chem.* 45, 53-88
- Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB (1990) Interfacial catalysis: The mechanism of phospholipase A₂. *Science* 250, 1541-1546

- Secundo F, Carrea G, D'Arrigo P, Servi S (1996) Evidence for an essential lysyl residue in phospholipase D from *Streptomyces sp.* by modification with DEPC and pyridoxalphosphate. *Biochemistry* 35, 9631-9636
- Servi S (1999) Phospholipases as synthetic catalysts. *Topics in Current Chemistry* 200, 127-158
- Shao X, Davletov BA, Sutton RB, Südhof TC, Rizo J (1996) Bipartite Ca²⁺-binding motif in C₂ domains of synaptotagmin and protein kinase C. *Science* 273, 248-251
- Shuto S, Awano H, Fujii A, Yamagami K, Matsuda A (1996) Nucleosides and nucleotides .155. Synthesis, antitumor effects, and possible enzymatic activation mechanism of 5'-phosphatidyl-2'-deoxy-2'-methylenecytidine (DMDC). *Bioorg. Med. Chem. Lett.* 6, 2177-2182
- Shuto S, Itoh H, Sakai A, Nakagami K, Imamura S, Matsuda A (1995) Nucleosides and nucleotides. 137. Antitumor phospholipids with 5-fluorouridine as a cytotoxic polar head: synthesis of 5'-phosphatidyl-5-fluorouridines by phospholipase D-catalyzed transphosphatidylation. *Bioorg. Med. Chem.* 3, 235-243
- Shuto S, Ueda S, Imamura S, Fukukawa K, Matsuda A, Ueda T (1987) A facile one-step synthesis of 5'-phosphatidylnucleosides by an enzymatic two-phase reaction. *Tetrahedron Lett.* 28, 199-202
- Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A₂ enzymes: classification and characterization. *Biochim. Biophys. Acta* 1488, 1-19
- Smith GA, Montecucco C, Bennett JP (1978) Isotopic labeling of phosphatidylcholine in the choline moiety. *Lipids* 13, 92-94
- Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. *Anal. Biochem.* 150, 76-85
- Songer JG, Libby SJ, landolo JJ, Cuevas WA (1990) Cloning and expression of the phospholipase D gene from *Corynebacterium pseudotuberculosis* in *Escherichia coli*. *Infect. Immun.* 58, 131-136

- Stanacev NZ, Stuhne-Sekalec L (1970) On the mechanism of enzymatic phosphatidylation. Biosynthesis of cardiolipin catalyzed by phospholipase D. *Biochim. Biophys. Acta* 210, 350-352
- Stanacev NZ, Stuhne-Sekalec L, Domazet Z (1973) Enzymatic formation of cardiolipin from phosphatidylglycerol by the transphosphatidylation mechanism catalyzed by phospholipase D. *Can. J. Biochem.* 51, 747-753
- Steed PM, Clark KL, Boyar WC, Lasala DJ (1998) Characterization of human PLD2 and the analysis of PLD isoform splice variants. *FASEB J.* 12, 1309-1317
- Stuckey JA, Dixon JE (1999) Crystal structure of a phospholipase D family member. *Nature Struct. Biol.* 6, 278-284
- Sung T-C, Roper RL, Zhang Y, Rudge SA, Temel R, Hammond SM, Morris AJ, Moss B, Engebrecht J, Frohman MA (1997) Mutagenesis of phospholipase D defines a superfamily including a *trans*-golgi viral protein required for poxvirus pathogenicity. *EMBO J.* 16, 4519-4530
- Sung T-C, Zhang Y, Morris AJ, Frohman MA (1999) Structural analysis of human phospholipase D1. *J. Biol. Chem.* 274, 3659-3666
- Sutton RB, Davletov BA, Berghuis AM, Südhof TC, Sprang SR (1995) Structure of the first C2 domain of synaptotagmin I. A novel Ca²⁺/phospholipid-binding fold. *Cell* 80, 929-938
- Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA (1995) Ca²⁺-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. *Nature Struct. Biol.* 2, 968-974
- Takahara M, Houriyou K, Imamura S (1993) DNA having genetic information of phospholipase D-P and its use. Patent: JP 1993252935-A 1 (05-OCT-1993); Shokuhin Sangyo Kouso Kinou Henkan Gijutsu Kenkyu Kumiai
- Takami M, Suzuki Y, (1994) Synthesis of novel phosphatidylhydroxyacetone via transphosphatidylation reaction by phospholipase D. *Biosci. Biotech. Biochem.* 58, 2136-2139

- Thunnissen MMGM, Ab E, Kalk KH, Drenth J, Dijkstra BW, Kuipers OP, Dijkman R, de Haas GH, Verheij HM (1990) X-ray structure of phospholipase A₂ complexed with a substrate-derived inhibitor. *Nature* 347, 689-691
- Tsang TC, Fung W-JC, Levine J, Metz CN, Davitz MA, Burns DK, Huang K-S, Kochan JP (1992) Isolation and expression of two human glycosylphosphatidylinositol phospholipase D (GPI-PLD) cDNAs, *FASEB J.* 6, 1922
- Ueki J, Morioka S, Komari T, KumashiroT (1995) Purification and characterization of phospholipase D from rice and cloning of cDNA for phospholipase D from rice and maize. *Plant Cell Physiol.* 36, 903-914
- Ulbrich-Hofmann R (2000) Phospholipases. In U Bornscheuer, ed, *Enzymes in Lipid Modification*, Wiley-VCH, Weinheim, 219-262
- Virto C, Svensson I, Adlercreutz P (2000) Hydrolytic and transphosphatidylation activities of phospholipase D from savoy cabbage towards lysophosphatidylcholine. *Chem. Phys. Lipids* 106, 41-51
- Waite M (1987) The phospholipases. *Handbook of Lipid Research*, Vol. 5, Plenum Press, New York
- Waite M (1999) The PLD superfamily: insights into catalysis. *Biochim. Biophys. Acta* 1439, 187-197
- Waksman M, Eli Y, Liscovitch M, Gerst JE (1996) Identification and characterization of a gene encoding phospholipase D activity in yeast. *J. Biol. Chem.* 271, 2361-2364
- Waksman M, Tang X, Eli Y, Gerst JE, Liscovitch M (1997) Identification of a novel Ca²⁺dependent phosphatidylethanolamine- hydrolyzing phospholipase D in yeast bearing a disruption in *PLD1. J. Biol. Chem.* 272, 36-39
- Wang P, Schuster M, Wang YF, Wong CH (1993a) Synthesis of phospholipid inhibitor conjugates by enzymatic transphosphatidylation with phospholipase D. J. Am. Chem. Soc. 115, 10487-10491

- Wang X (1999) The role of phospholipase D in signaling cascades. *Plant Physiol.* 120, 645-651
- Wang X (2000) Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions. *Prog. Lipid Res.* 39, 109-149
- Wang X, Dyer JH, Zheng L (1993b) Purification and immunological analysis of phospholipase D from castor bean endosperm. *Arch. Biochem. Biophys.* 306, 486-494
- Wang X, Xu L, Zheng L (1994) Cloning and expression of phosphatidylcholinehydrolyzing phospholipase D from *Ricinus communis* L. *J. Biol. Chem.* 269, 20312-20317
- Whitaker BD, Smith DL, Green KC (2001) Cloning, characterization, and functional expression of a phospholipase $D\alpha$ cDNA from tomato fruit. *Physiol. Plantarum*, in press
- Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, Coulson A, Craxton M, Dear S, Du Z, Durbin R, Favello A, Fulton L, Gardner A, Green P, Hawkins T, Hillier L, Jier M, Johnston L, Jones M, Kershaw J, Kirsten J, Laister N, Latreille P, Lightning J, Lloyd C, McMurray A, Mortimore B, O'Callaghan M, Parsons J, Percy C, Rifken L, Roopra A, Saunders D, Shownkeen R, Smaldon N, Smith A, Sonnhammer E, Staden R, Sulston J, Thierry-Mieg J, Thomas K, Vaudin M, Vaughan K, Waterston R, Watson A, Weinstock L, Wilkinson-Sproat J, Wohldman P (1994) 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. *Nature* 368, 32-38
- Xie Z, Ho W-T, Exton JH (1998) Association of N- and C-terminal domains of phospholipase D is required for catalytic activity. *J. Biol. Chem.* 273, 34679-34682
- Xie Z, Ho W-T, Exton JH (2000) Association of the N- and C-terminal domains of phospholipase D. J. Biol. Chem. 275, 24962-24969
- Xu L, Zheng S, Zheng L, Wang X (1997) Promoter analysis and expression of a phospholipase D gene from castor bean. *Plant Physiol.* 115, 387-395

- Yang SF, Freer S, Benson AA (1967) Transphosphatidylation by phospholipase D. J. *Biol. Chem.* 242 (3): 477-484
- Yoshimura S, Nakashima S, Ohguchi K, Sakai H, Shinoda J, Sakai N, Nozawa Y (1996) Differential mRNA expression of phospholipase D (PLD) isozymes during cAMPinduced differentiation in C6 glioma cells. *Biochem. Biophys. Res. Commun.* 225, 494-499
- Young SA, Wang X, Leach JE (1996) Changes in the plasma membrane distribution of rice phospholipase D during resistent interactions with *Xanthomonas oryzae* pv oryzae. *Plant Cell* 8, 1079-1090
- Zheng L, Krishnamoorthi R, Zolkiewski M, Wang X (2000) Distinct Ca²⁺ binding properties of novel C2 domains of plant phospholipase D α and β . *J. Biol. Chem.* 275, 19700-19706
- Zien CA, Wang C, Wang X, Welti R (2001) In vivo substrates and the contribution of the common phospholipase D, PLDα, to wound-induced metabolism of lipids in *Arabidopsis. Biochim. Biophys. Acta* 1530, 236-248

Anhang

Genstruktur von pld1 und pld2 aus Weißkohl

blau: Exonbereiche (im ORF: Großbuchstaben) gelb: Intronbereiche grün: Start- und rot: Stopcodon

Exon 1 mRNA PLD1 gagettetetetaateacggateagatecegaaetettegtetteeteetetgaeeace 60 11 DNA PLD1 -----ctctgaccacc mRNA PLD2 -----acagattcttcttcctctcaccaccgatttagttt 37 DNA PLD2 -----caccaccgatttagttt 17 mRNA PLD1 gactccgatctcgca-----75 DNA PLD1 gactccgatctcgcagttagtctttctctctctctctgtgaatctcacccgcttgttt 71 mRNA PLD2 52 caaggaatcttgcaa-----DNA PLD2 caaggaatettgeaa<mark>gttagtetttetetgaatetettttgtaeatteategetttgaat</mark> 77 mRNA PLD1 ------75 DNA PLD1 ataggattacaaatcttttagagttgaaccagataacactgttctggtctgattatgatt 131 mRNA PLD2 52 DNA PLD2 ctttcttaagttgtctgcacgtgtttttaagtaattagaaaccgtagatttagtggttag137 75 mRNA PLD1 ------DNA PLD1 ${\tt tgttatatatatatattttbgttacaaacatagcgatcgggttgagttttgtgtttga$ 191

mRNA PLD2 _____ 52 DNA PLD2 197 Intron 1 75 mRNA PLD1 ------DNA PLD1 tgatcgttgactattgacttatgagcgagatcagtgactcttgtttcaaaattttgaatt 251 52 mRNA PLD2 DNA PLD2 tatttaaggtatattacacatattaaaaaaatttaatacactcgtttgattattatttt 257 75 mRNA PLD1 -----DNA PLD1 tccttgcattttgcttgtcttttcgactccagatcttgaagttccttggatctcgcttta311 mRNA PLD2 52 _____ DNA PLD2 agttttatcaataaagttccaccatttataattttagtttttgatttatgttttagtttt317 75 ttattttttttgtacaatcaaacatgatgtgttgtacaaaatgattgttggtgcag----367 DNA PLD1 52 DNA PLD2 377 75 mRNA PLD1 ------

Start

mRNA PLD1	gtgataaa ATG GCGCAGCATCTGTTGCATGGTACTTTGCACGCTA	120
DNA PLD1	gtgataaaATGGCGCAGCATCTGTTGCATGGTACTTTGCACGCTA	412
mRNA PLD2	atca ATG GCGCAGCATCTGTTGCACGGGACTTTGCACGCTA	93
DNA PLD2	aatatgtgttgaacggaagatca ATG GCGCAGCATCTGTTGCACGGGACTTTGCACGCTA	497

mRNA PLD1	CGATCTATGAAGTTGATGACCTCCACACTGGTGGACTCAGGTCCGGCTTCTTCGGCA	177
DNA PLD1	CGATCTATGAAGTTGATGACCTCCACACTGGTGGACTCAGGTCCGGCTTCTTCGGCA	469
mRNA PLD2	CCATCTATGAAGTTGATGCCCTCCACACTGGTGGTCTCAGGTCTGCAGGCTTCCTTGGCA	153
DNA PLD2	CCATCTATGAAGTTGATGCCCTCCACACTGGTGGTCTCAGGTCTGCAGGCTTCCTTGGCA	557
	Introp 2	
	indon 2	

MRNA PLDI	AG	1/9
DNA PLD1	AG <mark>gtaatagctttttcttctttttttattttcttcacatttattctccatttttt</mark>	529
mRNA PLD2	AG	155
DNA PLD2	$\operatorname{AG}_{\operatorname{g}}$	617

Intron 2

mRNA PLD1 DNA PLD1 mRNA PLD2	tttattttttgattcctttgttcaagtcattcctttggtctctcccacgtggaaatgaa	179 589 155				
DNA PLD2	ttgatctttattttctgtattaact					
mRNA PLD1		179				
mRNA PLD2 DNA PLD2		155 642				
	Exon 3					
mRNA PLD1 DNA PLD1 mRNA PLD2 DNA PLD2	ATTCTGGCTAATGTAGAAGAGACCATTGGTGTTGGCAAAGGAGAAA <mark>aaaaaaaattcag</mark> ATTCTGGCTAATGTAGAAGAGACCATTGGTGTTGGCAAAGGAGAAA ATTATATCAAATGTTGAAGAGACAATTGGTTTCGGCAAAGGAGAAA <mark>ttcag</mark> ATTATATCAAATGTTGAAGAGACAATTGGTTTCGGCAAAGGAGAAA	225 709 201 693				
mRNA PLD1	CACAGCTGTACGCAACGATCGATCTCCAAAGAGCCAGAGTTGGTCGAACAAGAAAGA	285				
DNA PLD1 mRNA PLD2 DNA PLD2	CACAGCTGTACGCAACGATCGATCTCCAAAGAGCCAGAGTTGGTCGAACAAGAAAGA	769 261 753				
mRNA PLD1	AGGACGAAGCCAAAAACCCAAAATGGTACGAGTCCTTTCACATCTACTGCGCCCACTTGG	345				
DNA PLDI mRNA PLD2 DNA PLD2	AGGACGAAGCCAAAAAACCCCAAAATGGTACGAGTCCTTTCACATCTACTGCGCCCACTTGG CAGACGAGCCCAAGAACCCAAAGTGGTATGAGTCCTTCCACATCTACTGTGCCCACATGG CAGACGAGCCCAAGAACCCAAAGTGGTATGAGTCCTTCCACATCTACTGTGCCCACATGG	829 321 813				
mRNA PLD1 DNA PLD1	CTTCCGACATCATCTTCACCGTCAAGGACGACAACCCCATCGGCGCCACCCTCATCGGAA CTTCCGACATCATCTTCACCGTCAAGGACGACAACCCCCATCGGCGCCACCCTCATCGGAA	405 889				
mRNA PLD2 DNA PLD2	CTTCAGACATCATCTTCACCGTTAAAGACGATAACCCCCATAGGAGCCACACTCATCGGGA CTTCAGACATCATCTTCACCGTTAAAGACGATAACCCCCATAGGAGCCACACTCATCGGGA	381 873				
mRNA PLD1	GAGCCTACGTCCCCGTCGACCAAGTCATCCACGGCGAGGAAGTCGACCAGTGGGTTGAGA	465				
DNA PLD1	GAGCCTACGTCCCCGTCGACCAAGTCATCCACGGCGAGGAAGTCGACCAGTGGGTTGAGA	949				
DNA PLD2	GAGCGTACGTCCCTGTCGACGACGTCATCAACGGCGAGGAAGTAGAAAAATGGGTTGAGA GAGCGTACGTCCCTGTCGACGAAGTCATCAACGGCGAGGAAGTAGAAAAATGGGTTGAGA	933				
mRNA PLD1	TATTAGACAACGACAGAAACCCCATCCACGGAGGGTCCAAGATCCACGTGAAGCTCCAGT	525				
DNA PLD1	TATTAGACAACGACAGAAACCCCATCCACGGAGGGTCCAAGATCCACGTGAAGCTCCAGT	1009				
DNA PLD2	TCCTGGACGACGACGGGACCCCAATCCACGGGGGGGGTCCCAGGTTCACGTCAAACTCCAGT TCCTGGACGACGACGGGAACCCCAATCCACGGGGGGGGTCCCAGGTTCACGTCAAACTCCAGT	993				
mRNA PLD1	ACTTCCGCCGTCGAGGCGGATCGTAACTGGAACCAAGGTATCAAGAGCGCTAAGTTCCCTG	585				
MRNA PLDI mRNA PLD2	ACTTCGGCGTCGAGGCGGATCGTAACTGGAACCAAGGTATCAAGAGCGCTAAGTTCCCTG ACTTCGCCGTTGAGGCGGATCGAAACTGGAACATGGGAGTCAAAAGCGCTAAGTTCCCTG	1069 561				
DNA PLD2	ACTTCGCCGTTGAGGCGGATCGAAACTGGAACATGGGAGTCAAAAGCGCTAAGTTCCCTG	1053				
mRNA PLD1	GAGTCCCTTACACGTTCTTCTCCCAGAGGCAGGGATGCAAAGTCTCTCTC	645				
DNA PLD1	GAGTCCCTTACACGTTCTTCTCCCCAGAGGCAGGGATGCAAAGTCTCTCTC	1129 621				
DNA PLD2	GAGTGCCTTACACGTTCTTCTCCCCAGAGACAGGGCTGCAAAGTTTCTTTGTACCAAGGCG	1113				
mRNA PLD1	CTCACATTCCGGACAACTTCGTCCCGAGGATCCCTCTCGCTGGAGGGAAGAACTACGAGC	705				
DNA PLD1	CTCACATTCCGGACAACTTCGTCCCGAGGATCCCTCTCGCTGGAGGGAAGAACTACGAGC	1189				
DNA PLD2	CTCATGTTCCGGATAACTTCGTCCCCAAGATTCCTCTCGCTGGTGGGAAGAACTACGAGC	1173				
mRNA PLD1	CTCAGAGGTGCTGGGAGGATATTTTCGACGCGATAAGCAACGCGCAGCATATGATCTACA	765				
UNA PLD1	CTCAGAGGTGCTGGGAGGATATTTTCGACGCGATAAGCAACGCGCAGCATATGATCTACA	1249 7/1				
DNA PLD2	CTCACAGATGCTGGGAGGATATTTTCGACGCGATAACCAACGCGAAACATTTGATCTACA	1233				
mRNA PLD1	TCACTGGATGGTCTGTGTATACTGAGATTGCCTTGGTTAGAGACTCCAGGAGGCCGAAGC	825				
DNA PLD1	TCACTGGATGGTCTGTGTATACTGAGATTGCCTTGGTTAGAGACTCCAGGAGGCCGAAGC	1309				
DNA PLD2	TTACTGGATGGTCTGTTTACACTGAGATCACTTTGGTGAGAGACTCGAGGAGGCCTAAAC	1293				

	Ex013	
mRNA PLD1	CTGGAGGAGACGTGACCGTTGGCGAGCTGCTTAAAAAGAAAG	885
		1200
DNA PLDI	CIGGAGGAGACGIGACCGIIGGCGAGCIGCIIAAAAAGAAAG	1309
mRNA PLD2	CAGGAGGTGATATGACTCTCGGCGAGTTACTTAAAAAGAAAG	861
DNA PLD2	CAGGAGGTGATATGACTCTCGGCGAGTTACTTAAAAAGAAAG	1353
		1000
mRNA PLD1	TTCTTCTCCTTGTGTGGGATGATAGAACATCCGTCGATGTGTTGAAGAAAGA	945
	ͲͲϹͲͲϹͲϹϹͲͲϾͲϾϹϾϪͲϾϪͲϪϾϪϪϹϪͲϹϹϾͲϹϾϪͲϾͲϾͲϾϪϪϾϪϪϪϾϪ	1429
DNA FIDI		1729
mRNA PLD2	TTCTGTTACTTGTGTGGGACGACAGAACCTCCGTTGATGTTTTAAAAAAAGACGGTCTCA	921
DNA PLD2	TTCTGTTACTTGTGTGGGACGACAGAACCTCCGTTGATGTTTTAAAAAAAGACGGTCTCA	1413
mRNA PLD1	TGGCTACTCATGATGAAGAAACGGAGAATTTCTTCAGAGGAAGCGACGTTCATTGTATTC	1005
DNA PLD1	TGGCTACTCATGATGAAGAAACGGAGAATTTCTTCAGAGGAAGCGACGTTCATTGTATTC	1489
רת האתת		001
	I GOLIACICACIGAIGAAGACACIGAGAAACIACII CAACGGIAGCGAAGIGCAI I GIGIGI	201
DNA PLD2	TGGCTACTCACGATGAAGACACTGAGAACTACTTCAACGGTAGCGAAGTGCATTGTGTGT	1473
mRNA PLD1	TCTGTCCTCGTAACCCTGATGACGGTGGTAGCATAGTCCAGAACTTGCAGGTCTCAGCCA	1065
		1 - 1 0
DNA PLDI	ICIGICCICGIAACCCIGAIGACGGIGGIAGCAIAGICCAGAACIIGCAGGICICAGCCA	1549
mRNA PLD2	TGTGTCCACGTAACCCTGACGACGGTGGTAGCATAGTCCAAAACTTGCAAGTCTCAGCCA	1041
DNA PLD2	TGTGTCCACGTAACCCTGACGACGCTGGTAGCATAGTCCAAAACTTGCAAGTCTCAGCCA	1533
		1000
		1107
mrna pldi	TGTTCACGCACCATCAGAAGATCGTTGTTGTGGACAGCGAGATGCCGAGCCGAGGAG	1122
DNA PLD1	TGTTCACGCACCATCAGAAGATCGTTGTTGTGGACAGCGAGATGCCGAGCCGAGGAG	1606
יתית האסm		1101
UIKINA PLDZ	IGIICACGCACCACCAGAAGAICGIAGIIGIGGACAGCGAGGTGCCGAGGCCAAGGAGGAG	TTOT
DNA PLD2	TGTTCACGCACCAGCAGAAGATCGTAGTTGTGGACAGCGAGGTGCCGAGCCAAGGAGGAG	1593
MDNI LUI		1100
IIIKINA PLDI	GIICACAGAIGAGGAGGAICGIGAGIIIIGIIGGIGGGAICGAIC	TTOZ
DNA PLD1	GTTCACAGATGAGGAGGATCGTGAGTTTTGTTGGTGGGATCGATC	1666
mRNA PLD2	GGTCGGAGATGAGGAGGATCATGAGCTTTGTCGGAGGTATTGATCTCTGCGACGGACG	1161
		1 < 5 2
DNA PLDZ	GGTCGGAGATGAGGAGGATCATGAGCTTTGTCGGAGGTATTGATCTCTGCGACGGACG	1653
mRNA PLD1	ACGACACTCCTTTCCACTCCTTGTTCAGGACGTTGGACACTGTCCACCACGACGACTTCC	1242
	<u>λ</u> . λ γ α α α α α α α α α α α α α	1726
		1720
mRNA PLD2	ACGACACTCCTTTCCCACTCCTTGTTCAGGACGTTGGACACGGTGCACCACGATGACTTCC	1221
DNA PLD2	ACGACACTCCTTTCCACTCCTTGTTCAGGACGTTGGACACGGTGCACCACGATGACTTCC	1713
D111 D1 D1		1 2 0 0
MRNA PLDI	ACCAGCCTAACTTCACCGGCGCCGCCATCACCAAAGGCGGGCCGAGGGAGCCTTGGCACG	1302
DNA PLD1	ACCAGCCTAACTTCACCGGCGCCGCCGACCAAAGGCGGGCCGAGGGAGCCTTGGCACG	1786
רת האתת		1 2 0 1
IIIRINA PLDZ	AICAGCCIAACIICACCGGIGCIICGAICACCAAAGGIGGICCIAGGGAGCCIIGGCAGG	1201
DNA PLD2	ATCAGCCTAACTTCACCGGTGCTTCGATCACCAAAGGTGGTCCTAGGGAGCCTTGGCAGG	1773
mRNA PLD1	ACATCCACTCTCGCCTCGAAGGTCCCCATCGCTTGGGATGTTTTGTACAACTTCGAGCAGA	1362
DNA DID1		1040
DNA PLDI	ACATCCACTCTCGCCTCGAAGGTCCCATCGCTTGGGATGTTTTGTACAACTTCGAGCAGA	1846
mRNA PLD2	ACATCCACTCTCGTCTCGAAGGTCCAATCGCTTGGGATGTTTTGTACAACTTCGAGCAGA	1341
	۵ C ۵ T C C ۵ C T C T C C C ۵ ۵ C C T C C ۵ ۵ T C C C ۵ T C C 7 T C C ۵ C C C 0 C C 0 C C 0 C C 0 C C 0 C C 0 C	1833
		1000
		1 4 0 0
MKNA PLDI	GGTGGAGCAAGCAAGGTGGTAAAGACATTCTCGTTAAGCTGAGGGAGCTTAGTGATATCA	1422 1
DNA PLD1	GGTGGAGCAAGCAAGGTGGTAAAGACATTCTCGTTAAGCTGAGGGAGCTTAGTGATATCA	1906
MDNIA DI D2		1/01
		1000
DNA PLDZ	GATGGAGCAAGCTAGGTGGTAAAGACATTCTCGTTAAGTTGAGAGAGCCTTAGTGATATTA	T883
mRNA PLD1	TCATCACACCTTCTCCCGTTATGTTCCAAGAGGATCACGACGTGTGGAATGTGCAGCTGT	1482
1 ב ב		1066
DNA FIDI	ICATCACACCITCICCCGITATGITCCAAGAGGATCACGACGIGIGGAATGIGCAGCIGI	1900
mRNA PLD2	TCATCACTCCTTCTCCTGTTATGTTCCAAGAGGATCACGACGTGTGGAACGTCCAGCTCT	1461
DNA PLD2	TCATCACTCCTTCTCCTGTTATGTTCCAAGAGGATCACGACGTGTGGAACGTCCAGCTCT	1953
	ͲͲϪϹϪͲϤϹϪͲϤϹϪϹϤͲϤϤϪϾϤͲϤϤͲϤϤϤͲϤϤϤͲϤϤϤͲϤϪϤͲϤϪϤͲϤϪ	1 = 1 0
		1912
DNA PLDI	TTAGATUCATUGAUGGTGGAGCTGCTGCTGGGTTCCCTGAGTCGCCTGAAGCTGCTGCTG	2026
mRNA PLD2	TTAGATCTATAGACGGTGGAGCTGCCGCTGGGTTTCCTGATTCACCTGAAGTAGCTGCTG	1521
יריזת גואת	ͲͲͽϲͿͽͲϲͲͽͲͽϲͽϲϲϲϲͲϲϲϲϲϲͲͲϲϲͲϲϫͲϲͽϲϲͲϲͽϫϲͲͽ	2012
צענדע אוניס	TINGTICIAINGACGGIGGAGCIGCGCIGGGIIICCIGAIICACCIGAAGIAGCIGCIG	2013
mRNA PLD1	AAGCTGGTCTTGTGAGTGGTAAGGATAACATCATTGATAGAAGCATCCAAGATGCTTACA	1602
DNA PLOI	AAGCTGGTCTTGTGAGTGGTAAGGATAACATCATTGATAGAAGCATCCAAGATGCTTACA	2086
mDNA DIDO		1 - 0 1
ULKINA PLDZ	AAGCIGGIIIGGIAAGIGGIAAGGACAAIGICAIIGACAGGAGTATCCAAGACGCTTACA	ΤΟΩΤ
DNA PLD2	AAGCTGGTTTGGTAAGTGGTAAGGACAATGTCATTGACAGGAGTATCCAAGACGCTTACA	2073
mRNA PLD1	TTCACGCTATCCGTCGCGCTAAAGACTTCATCTACATTGAGAATCAGTACTTCCTTGGAA	1662
		2140
DINA PLDI	IICACGCIAICCGICGCGCIAAAGACIICAICIACAIIGAGAATCAGTACTTCCTTGGAA	⊿⊥40
mRNA PLD2	TTCACGCCATAAGACGTGCTAAAGACTTCATCTATATCGAGAACCAGTACTTCCTTGGAA	1641
DNA PLD2	TTCACGCCATAAGACGTGCTAAAGACTTCATCTATATCGAGAACCAGTACTTCCTTGGAA	2133

	EXUL 3	
mRNA PLD1	GCTCTTTTGCTTGGCCAGCTGATGGTATCACTCCTGAGGACATCAACGCTCTGCACTTGA	1722
		2206
DNA PLDI		1701
MRNA PLDZ	GCTCCTTTGCTTGGGCTGCTGATGGTATCACTCCTGAAGACATCAATGCCCTGCATCTGA	1/01
DNA PLD2	GCTCCTTTGCTTGGGCTGCTGATGGTATCACTCCTGAAGACATCAATGCCCTGCATCTGA	2193
mRNA PLD1	TCCCAAAAGAGCTGTCCTTAAAGATCGTTAGCAAGATTGAGAAGGGAGAGAAGTTCAGGG	1782
DNA PLD1	TCCCAAAAGAGCTGTCCTTAAAGATCGTTAGCAAGATTGAGAAGGGAGAAAGTTCAGGG	2266
mRNA PLD2	TCCCAAAGGAGTTGTCTCTCAAGATCGTTGACAAGATCGAGAAAGGAGAGAAGTTTAGGG	1761
DNA PLD2	TCCCAAAGAGTTGTCTCTCAAGATCGTTGACAAGATCGAGAAAGGAGAGAAGTTTAGGG	2253
		2200
1 הדם גאפייי	ͲͲͲϪͲϹͲͲϹϹͲϹϹϹϹϪͲϹͲϹϹϹϹϹϪϪϹϹͲϹͲͲϹϹϹϹϪϹϪϹͲϹϹϪͲϹϪϹͲϹϹϪ	1812
IIIINIA FUDI		1012
DNA PLDI	TITATGI I GI GG I GCCGATGI GGCCGAAGGI CI I CCGGAGAGI GCATCAGI GCCAAGCI A	2320
mRNA PLD2	T"I"TATGT"IGIGGT"ICCGATGIGGCC'IGAAGGTATCCCGGAGAGIGCATCGGIGCAAGCIA	1851
DNA PLD2	TTTATGTTGTGGTTCCGATGTGGCCTGAAGGTATCCCGGAGAGTGCATCGGTGCAAGCTA	2313
mRNA PLD1	TATTGGATTGGCAGAGGAGGACCATGCAGATGATGTACAAGGATATTGTTCAAGCTCTTA	1902
DNA PLD1	TATTGGATTGGCAGAGGAGGACCATGCAGATGATGTACAAGGATATTGTTCAAGCTCTTA	2386
mRNA PLD2	TATTGGATTGGCAGAGGAGGACCTTGGAGATGATGTACAAGGATGTTACTCAGGCTCTCA	1881
DNA PLD2	TATTGGATTGGCAGAGGAGGACCTTGGAGATGATGTACAAGGATGTTACTCAGGCTCTCA	2373
MRNA PL.D1	GGGCTCAGGCTTAGAGGAAGATCCTAGAAACTATCTGACCTTCTTCTCCCTTACCAAAACC	1962
		2446
DIA FIDI		1041
MRNA PLDZ	GGGCTCAGGGGTTGGAGGAAGATCCTAGGAACTATCTGACGTTCTTCTGCCTTGGAAACC	1941
DNA PLDZ	GGGCTCAGGGGTTGGAGGAAGATCCTAGGAACTATCTGACGTTCTTCTGCCTTGGAAACC	2433
mRNA PLD1	GTGAGGTTAAGAAAGAAGGAGAGTATGAGCCAGCAGAGAGACCAGACGCTGACTCGAGCT	2022
DNA PLD1	GTGAGGTTAAGAAAGAAGGAGAGTATGAGCCAGCAGAGAGACCAGACGCTGACTCGAGCT	2506
mRNA PLD2	GCGAGGTTAAGAAAGAAGGAGAGTATGAGCCTGCGGAGAGACCAGACCCTGACACAGACT	2001
DNA PLD2	GCGAGGTTAAGAAAGAAGGAGAGTATGAGCCTGCGGAGAGACCAGACCCTGACACAGACT	2493
mRNA PLD1	ататсаассосасаасаассасстсостсатсатстасстссасассаааатсатсатс	2082
		2566
DINA FILDI		2000
MRNA PLDZ		2001
DNA PLDZ	ATATGAGGGCGCAAGAGGCACGTCGCTTCATGATCTACGTCCATAGCAAAATGATGATTG	2553
	Intron 3	
mRNA PLD1		2082
DNA PLD1	gtaagtttactaattcattaaaaaaaacatatctcctaaatagcaatttttttccttttc	2626
mRNA PLD2		2061
DNA PLD2	gtaagtttacatacaatcttcaatagacctgggcgtttttaaccaattccgaaaaaacca	2613
mRNA PLD1		2082
DNA PLD1		2686
mPNA DLD2		2061
	a set a gast t t gas gat a gast a sat gat a gat a gt t t t gggt t t ggt a gag gas a g	2672
DIA FIDZ	aalacyattiyaatalaytalaaatyttayytattityyyttiyytatayttiyaatt	2075
		2000
MRNA PLDI		2082
UNA PLDI	<pre>ctctagtttaatattcaaaatagaatttattaatcaataaaaaaattaaattattttaca</pre>	2746
mRNA PLD2		2061
DNA PLD2	<mark>gaatccaaagtaagatccgattatatcctaaattatttaaatctaaataatattttaaca</mark>	2733
mRNA PLD1		2082
DNA PLD1	ttctaaaccaattctaatctcatcttctaaacattaaactctaaactttaaccaqtaaac	2806
mRNA PLD2		2061
DNA PLD2		2793
mRNA PLD1		2082
		2866
MA LUL		2000
IIIKINA PLDZ		2001 2052
DNA PLDZ	lyaatttigttigttatttöäätättttägttäätttägatagtttäädäägttttt	∠853
D		0000
mRNA PLD1		2082
DNA PLD1	${\tt attttttttttttgaaaaacttgatttagtgctatccaatggtttttttaaaaaaaa$	2926
mRNA PLD2		2061
DNA PLD2	aatcatattttgtgaatagtttatatattttgaatatattttcgttagtttcattagttt	2913

Intron 3

mRNA PLD1		2082
DNA PLDI	ttggataaatgcatgtgtgatttacttgacgtctcac	2963
DNA PLD2	tttttctaggtttttggatgattttaaacattggttataacttgatccgaactaaaccag	2061 2973
mRNA PLD1		2082
DNA PLD1		2963
mRNA PLD2		2061
DNA PLD2	${\tt gaaggaatcgaagtgaacccgatctaaaattagtaaaaccccaaatagaacttatgcatg}$	3033
mRNA PLD1		2082
DNA PLD1		2963
mrna pld2 Dna pld2	gtgccgaaaattcgaaacaaccaaacctgaacacccaagcctactcttcggttataaaac	2061 3093
mRNA PI.D1		2082
DNA PLD1	tttgca	2969
mRNA PLD2		2061
DNA PLD2	ctagagagtttttgcatatatatatgcgtgtgtgtgtgactcacttgacctatttgca	3153
mRNA PLD1	-TTGACGATGAATATATCATCATTGGATCTGCTAACATCAACCAGAGGTCGATGGATG	2141
DNA PLD1	gTTGACGATGAATATATCATCATTGGATCTGCTAACATCAACCAGAGGTCGATGGATG	3029
mRNA PLD2	-TTGACGATGAGTACATTATCGTCGGGTCTGCTAACATCAACCAGAGGTCAATGGATGG	2120
DNA PLD2	gTTGACGATGAGTACATTATCGTCGGGTCTGCTAACATCAACCAGAGGTCAATGGATGG	3213
	Exon 4	
mRNA PLD1	GCGAGGGACTCTGAGATTGCAATGGGAGGCTACCAACCACATCACTTGTCACATAGACAA	2201
DNA PLD1	GCGAGGGACTCTGAGATTGCAATGGGAGGCTACCAACCACATCACTTGTCACATAGACAA	3089
mRNA PLD2	GCAAGGGACTCTGAGATAGCAATGGGAGGGTATCAACCACATCACTTGTCACATAGACAA	2180
DNA PLD2	GCAAGGGACTCTGAGATAGCAATGGGAGGGTATCAACCACATCACTTGTCACATAGACAA	3273
mRNA PLD1	CCAGCTCGTGGACAGATCCATGGGTTCCGCATGTCACTCTGGTACGAACACCTAGGAATG	2261
DNA PLD1	CCAGCTCGTGGACAGATCCATGGGTTCCGCATGTCACTCTGGTACGAACACCTAGGAATG	3149
mRNA PLD2	CCAGCTCGTGGCCAGGTCCATGGGTTCCGTATGTCACTCTGGTACGAACACTTGGGAATG	2240
DNA PLD2	CCAGCTCGTGGCCAGGTCCATGGGTTCCGTATGTCACTCTGGTACGAACACTTGGGAATG	3333
mRNA PLD1	CTCGATGAGACCTTCCTCGATCCATCAAGCGTGGAATGCATTGAGAAAGTTAACCGCATT	2321
DNA PLD1	CTCGATGAGACCTTCCTCGATCCATCAAGCGTGGAATGCATTGAGAAAGTTAACCGCATT	3209
mRNA PLD2	CTCGACGAGACGTTCCTAGATCCCTCGAGCTTGGAATGCATTGAGAAAGTTAACCGCATT	2300
DNA PLD2	CTCGACGAGACGTTCCTAGATCCCTCGAGCTTGGAATGCATTGAGAAAGTTAACCGCATT	3393
mRNA PLD1	TCTGACAAGTATTGGGACTTATACTCGAGCGAGTCACTTGAACATGACCTTCCCGGTCAC	2381
DNA PLD1	TCTGACAAGTATTGGGACTTATACTCGAGCGAGTCACTTGAACATGACCTTCCCGGTCAC	3269
mRNA PLD2	GCTGATAAGTACTGGGACTTTTACTCAAGCGAGTCACTGGAACATGACCTTCCTGGTCAC	2360
DNA PLD2	GCTGATAAGTACTGGGACTTTTACTCAAGCGAGTCACTGGAACATGACCTTCCTGGTCAC	3453
mRNA PLD1	TTGCTACGCTACCCTGTTGATGTAGACGGTGAAGGTGACGTCACTGAGTTTCCCCGGATTT	2441
DNA PLD1	TTGCTACGCTACCCTGTTGATGTAGACGGTGAAGGTGACGTCACTGAGTTTCCCCGGATTT	3329
mRNA PLD2	TTGCTGCGCTACCCGATTAGTGTGGACAATGAAGGTAATATCACTGAGCTTCCAGGATTT	2420
DNA PLD2	TTGCTGCGCTACCCGATTAGTGTGGACAATGAAGGTAATATCACTGAGCTTCCAGGATTT	3513
mRNA PLD1	GAGTTCTTCCCTGACACAAAGGCTCGTATCCTTGGAACCAAATCTGACTACTTGCCTCCA	2501
DNA PLD1	GAGTTCTTCCCTGACACAAAGGCTCGTATCCTTGGAACCAAATCTGACTACTTGCCTCCA	3389
mRNA PLD2	GAGTTCTTCCCAGACTCAAAGGCCCGTATCCTCGGAAACAAAGTAGACTACCTGCCTCCA	2480
DNA PLD2	GAGTTCTTCCCAGACTCAAAGGCCCGTATCCTCGGAAACAAAGTAGACTACCTGCCTCCA	3573
	Stop	0 - -
MRNA PLD1	ATCCTTACAACCTAGgtttcacttgggtatgccttaacaatgaacttctctgtctttgaa	2561
UNA PLD1	ATCCTTACAACCTAGgtttcacttgggtatgccttaacaatgaacttctctgtctttgaa	3449
MKNA PLD2	ATCCTTACAACTTAAgetcactgtctctacattgctgctgcagtagetttgaataaattg	2540
DNA PLD2	ATCCTTACAACT TAA geteactgtetetaeattgetgetge	3614
mRNA PLD1	taaactgagtgtctgtgtctacttttagaactaataagttggtcgttggtgtggtatgtt	2621
MA PLD1		3449
DNA PLDZ	ayuyucucucucucucuactaccucuayauccuaataaguugyuyuyaugataagcac	∠000 3614

mRNA PLD1 DNA PLD1	gcattttcacccctttggttttaattcgtgcaatgacatggtgagaatgttagctttgtg	2681 3449
mRNA PLD2 DNA PLD2	ttttgtactcctttaatttggttttatgttcgtacaatgacatggtgatgatgtagcttt	2660 3614
mRNA PLD1 DNA PLD1 mRNA PLD2 DNA PLD2	atctttatttatttaccttcttttgtttgttatgcatctttgaacttatgaaccttata gtgatctttatctaccttctttatgttcgaaaaaaaaaa	2741 3449 2702 3614
mRNA PLD1 DNA PLD1 mRNA PLD2 DNA PLD2	tttgatattttgtttttattaattgaacatcgtgccaaaaaaaa	2793 3449 2702 3614

Primärstruktur von PLD1 und PLD2 aus Weißkohl

blau: identische Aminosäuren gelb: Sequenzunterschiede

PLD1	MAQHLLHGTLHATIYEVD <mark>D</mark> LHTGGLRS <mark>-</mark> GF <mark>F</mark> GKI <mark>LA</mark> NVEETIG <mark>V</mark> GKGETQLYATI	54
PLD2	MAQHLLHGTLHATIYEVD <mark>A</mark> LHTGGLRS <mark>A</mark> GF <mark>L</mark> GKI <mark>IS</mark> NVEETIG <mark>F</mark> GKGETQLYATI	55
PLD1	DLQ <mark>R</mark> ARVGRTRKI <mark>K</mark> DE <mark>A</mark> KNPKWYESFHIYCAH <mark>L</mark> ASDIIFTVKDDNPIGATLIGRA	109
PLD2	DLQ <mark>K</mark> ARVGRTRKI <mark>T</mark> DE <mark>P</mark> KNPKWYESFHIYCAH <mark>M</mark> ASDIIFTVKDDNPIGATLIGRA	110
PLD1	YVPVD <mark>Q</mark> VIHGEEV <mark>DQ</mark> WVEILD <mark>N</mark> DRNPIHG <mark>G</mark> SKIHVKLQYF <mark>G</mark> VEADRNWN <mark>Q</mark> GIKSA	164
PLD2	YVPVD <mark>E</mark> VI <mark>N</mark> GEEV <mark>EK</mark> WVEILD <mark>D</mark> DRNPIHG <mark>E</mark> SKIHVKLQYF <mark>A</mark> VEADRNWN <mark>M</mark> G <mark>V</mark> KSA	165
PLD1	KFPGVPYTFFSQRQGCKVSLYQ <mark>D</mark> AH <mark>I</mark> PDNFVP <mark>R</mark> IPLAGGKNYEP <mark>Q</mark> RCWEDIFDAI	219
PLD2	KFPGVPYTFFSQRQGCKVSLYQ <mark>G</mark> AH <mark>V</mark> PDNFVP <mark>K</mark> IPLAGGKNYEP <mark>H</mark> RCWEDIFDAI	220
PLD1	<mark>S</mark> NA <mark>QHMIYITGWSVYTEI<mark>A</mark>LVRDSRRPKPGGD<mark>V</mark>T<mark>V</mark>GELLKKKA<mark>S</mark>EGVRVLLLVWD</mark>	274
PLD2	TNA <mark>K</mark> HLIYITGWSVYTEI <mark>T</mark> LVRDSRRPKPGGD <mark>M</mark> TLGELLKKKA <mark>T</mark> EGVRVLLLVWD	275
PLD1	DRTSVDVLKKDGLMATHDE <mark>E</mark> TEN <mark>F</mark> FRGS <mark>D</mark> VHC <mark>I</mark> LCPRNPDDGGSIVQNLQVSAMF	329
PLD2	DRTSVDVLKKDGLMATHDE <mark>D</mark> TEN <mark>Y</mark> F <mark>N</mark> GS <mark>E</mark> VHC <mark>V</mark> LCPRNPDDGGSIVQNLQVSAMF	300
PLD1	THHQKIVVVDSE <mark>M</mark> PS <mark>R-</mark> GGS <mark>Q</mark> MRRI <mark>V</mark> SFVGGIDLCDGRYDTPFHSLFRTLDTVHH	383
PLD2	THHQKIVVVDSE <mark>V</mark> PS <mark>QG</mark> GGS <mark>E</mark> MRRI <mark>M</mark> SFVGGIDLCDGRYDTPFHSLFRTLDTVHH	385
PLD1	DDFHQPNFTGA <mark>A</mark> ITKGGPREPW <mark>H</mark> DIHSRLEGPIAWDVLYNFEQRWSKQGGKDILV	438
PLD2	DDFHQPNFTGA <mark>S</mark> ITKGGPREPW <mark>Q</mark> DIHSRLEGPIAWDVLYNFEQRWSKQGGKDILV	440
PLD1	KLRELSDIIITPSPVMFQEDHDVWNVQLFRSIDGGAAAGFP <mark>E</mark> SPE <mark>A</mark> AAEAGLVSG	493
PLD2	KLRELSDIIITPSPVMFQEDHDVWNVQLFRSIDGGAAAGFP <mark>D</mark> SPE <mark>V</mark> AAEAGLVSG	495
PLD1	KDN <mark>I</mark> IDRSIQDAYIHAIRRAKDFIYIENQYFLGSSFAWAADGITPEDINALHLIP	548
PLD2	KDN <mark>V</mark> IDRSIQDAYIHAIRRAKDFIYIENQYFLGSSFAWAADGITPEDINALHLIP	550
PLD1	KELSLKIV <mark>S</mark> KIEKGEKFRVYVVVPMWPEG <mark>L</mark> PESASVQAILDWQRRT <mark>MQ</mark> MMYKD <mark>IV</mark>	603
PLD2	KELSLKIV <mark>D</mark> KIEKGEKFRVYVVVPMWPEG <mark>I</mark> PESASVQAILDWQRRT <mark>LE</mark> MMYKD <mark>VT</mark>	605
PLD1	QALRAQGLEEDPRNYLTFFCLGNREVKKEGEYEPAERPD <mark>A</mark> D <mark>SS</mark> YM <mark>K</mark> AQEARRFMI	658
PLD2	QALRAQGLEEDPRNYLTFFCLGNREVKKEGEYEPAERPD <mark>P</mark> D <mark>TD</mark> YM <mark>R</mark> AQEARRFMI	660
PLD1	YVH <mark>T</mark> KMMIVDDEYII <mark>I</mark> GSANINQRSMDGARDSEIAMGGYQPHHLSHRQPARGQ <mark>I</mark> H	713
PLD2	YVH <mark>S</mark> KMMIVDDEYII <mark>V</mark> GSANINQRSMDGARDSEIAMGGYQPHHLSHRQPARGQ <mark>V</mark> H	715
PLD1	GFRMSLWYEHLGMLDETFLDPSS <mark>V</mark> ECIEKVNRI <mark>S</mark> DKYWD <mark>L</mark> YSSESLEHDLPGHLL	768
PLD2	GFRMSLWYEHLGMLDETFLDPSS <mark>L</mark> ECIEKVNRI <mark>A</mark> DKYWD <mark>F</mark> YSSESLEHDLPGHLL	770
PLD1	RYP <mark>VD</mark> VD <mark>G</mark> EGDVTEFPGFEFFPDTKARILGTKSDYLPPILTT	810
PLD2	RYP <mark>IS</mark> VD <mark>N</mark> EG <mark>NI</mark> TELPGFEFFPD <mark>S</mark> KARILG <mark>N</mark> KVDYLPPILTT	812

Aminosäuresequenzen bisher bekannter pflanzlicher PLDs vom a-Typ

grün: β-Faltblattstrukturen in der C2-Domäne (übernommen aus Pappan et al., 1997)

gelb: saure Ca²⁺-bindende Aminosäuren

blau: PIP₂-bindendes Motiv, rot: HKD-Motive

	β1		β2	β3	
Weißkohl-PLD1	MAQHLLHGTLHATI	YEVDDLHTGGLRS	GFFGKILANV	ETIGVGKGETQLYATIDL	56
Weißkohl-PLD2	MAQHLLHGTLHATI	YEVDALHTGGLRSA-	GFLGKIISNV <mark>H</mark>	ETIGFGKGETQLYATIDL	57
Arabidopsis	MAQHLLHGTLHATI	YEVDALHGGGVRQ	GFLGKILANV	ETIGVGKGETQLYATIDL	56
CratPLD1	MAQILLHGTLHVTI	YEVDQLHSGGGGN	FFTKLKANI	ETVGFGKGTPKIYASIDL	55
CratPLD2	MARILLHGTLHVTV	YEVDRLHAGGGGN	IFSKLRANI	EKVGFGKGTPKIYASIDL	55
Mais	MAQILLHGTLHATI	FEAESLSNPHRATGO	APKFIRKLVEGI <mark>H</mark>	DTVGVGKGATKIYATVDL	60
Pimpinella	MAKTLLHGTLHVTI	FEVDHLKAGSVVVFS	ESLRRTLRKPLV-	LAKGTPKIYASIDL	55
Reis	MAQMLLHGTLHATI	FEAASLSNPHRASGS	APKFIRKFVEGI <mark>I</mark>	DTVGVGKGATKVYSTIDL	60
Rizinus	MAQISLHGTLHVTI	YEVDKLHSGGGPH	FFRKLVENI	ETVGFGKGVSKLYATIDL	55
Tabak	MAQILLHGTLHVTI	YEVDNLQKEGGGH	FFSKIKEHV <mark>I</mark>	ETIGFGKGTPAIYATVDL	55
Tomate	MAQIQLHGTLHVTI	FEVDNLQGEEEGG	HFFSKIKQHF <mark>I</mark>	ETVGIGKGTPKLYATIDL	56
Vigna	MAQILLHGTLHATI	YEVDELHGGGGG	NFFSKLKQ NI	ETVGIGKGVTKLYATIDL	55
	PIP ₂ β4	ß5	<u>66</u>	67	
Weißkohl-PLD1	ORARVGRTRKIKDE.	AKNPKWYESFHIYCA	HLASDIIFTVK <mark>D</mark> I	ONPIGATLIGRAYVPVDOV	116
Weißkohl-PLD2	OKARVGRTRKITDE	PKNPKWYESFHIYCA	HMASDIIFTVK <mark>D</mark> I	ONPIGATLIGRAYVPVDEV	117
Arabidopsis	OKARVGRTRKIKNE	PKNPKWYESFHIYCA	HLASDIIFTVK <mark>D</mark> I	ONPIGATLIGRAYIPVDOV	116
CratPLD1	EKARVGRTRMIEHE	PNNPRWYESFHIYCA	.HMASNVIFTVK <mark>D</mark> I	ONPIGATLIGRAYIPVQEI	115
CratPLD2	EKARVGRTRMIEHE	PTNPRWYESFHIYCA	HLASNIIFTVK <mark>D</mark> I	ONPIGATLIGRAYVPVRDV	115
Mais	EKARVGRTRMISNE	PVNPRWYESFHIYCA	.HMAADVIFTVKII	ONSIGASLIGRAYLAVODL	120
Pimpinella	DKARVGRTRMIENE	PNNPKWNESFHIYCG	HPSTNVIFTVK <mark>D</mark> I	ONPIGATLIGRAYLPVHEL	115
Reis	EKARVGRTRMITNE	PINPRWYESFHIYCA	.HMASNVIFTVKII	ONPIGATNIGRAYLPVOEL	120
Rizinus	EKARVGRTRILENE	OSNPRWYESFHVYCA	HOASNVIFTVK <mark>D</mark> I	ONPIGATLIGRAYVPVEEL	115
Tabak	EKARVGRTRKIKNE	PNNPRWYESFHIYCA	HMASNVIFTVK <mark>D</mark> I	ONPIGATLIGRAYVPVEEL	115
Tomate	EKARVGRTRIIENE	PKNPRWYESFHIYCA	.HMASNVIFTIK <mark>D</mark> I	ONPFGASLIGRAYVPVEEL	116
Vigna	EKARVGRTRIIENE	TTNPKWNESFHIYCG	HLASNIIFTVK <mark>D</mark> I	ONPIGATLIGRAYVPVSEV	115
	80				
Woigkobl DI	po THOREVDOWVETID	NDDNDTUCCCVTUN		IOCTRONEDCUDVEECO	176
Weißkoni-PLDI	INCREVENENTE	NDRNPINGGSKINVN	LQIFGVEADRINNI	NQGIKSAKFPGVP11FFSQ	177
Weilskoni-PLDZ	INGEEVERWVEILD	NDBNDTOCCCVTUV	LQIFAVEADRINNI	MGVKSAKFPGVPIIFFSQ	176
Crat DID1	INGEEVDQWVEILD	NDRNPIQGGSRIHVN		IDCINCURVDCUDVTEDAO	175
Crat. PLDI		NDAMPISGESAIAVA		TRGINSVRIPGVPIIFFAQ	175
Maia	LDGEELDRWVELLD	NNANPIRGESAIHVA	LQFFDVARDLINNI	NRGINSINIPGVPIIPPAQ	170
Dimpinollo	LGGEEIDKWLEID	ENREPVGD-SKIHVN EDVNDIGEOGVIUVV	LQIFDVGRDRNWA	ARGVRSINIPGVPIIPPSQ	175
Primprinerra	INCEPTORM DICD	EDANPISEGSAINVA	LQIFDIIQDRNWA	Angiksski povperov	170
Pizinuc	INGEEIDRWIDICD	NINKESVGE-SKIHVN FDVNDVUGGEVIUVV	LQIFDVSKDRNWA TOVEEVTKDDNWA	COLLEGKADCUDALAECO	175
Tabak	IDGEEIDKWVEIDD	DEMNDTAECOVIUV			175
Tapak	LEGEEIDKWVEIDD	KEMNPIAEGSKIHVN VEMNDTAECOVIUVV	LQFFDVSRDPNWI		176
Vigna	TEGEEIDKMAEIUD	TEKNPIEGGSKIHVR	LOYFDVI.KDRNW	ARGIRSPKYPGVPIIFFAQ	175
v i gila					1,3
Weißkohl-PLD1	ROGCKVSLYODAHI	PDNFVPRIPLAGGKN	YEPORCWEDIFD	AISNAOHMIYITGWSVYTE	236
Weißkohl-PLD2	ROGCKVSLYOGAHV	PDNFVPKIPLAGGKN	YEPHRCWEDIFD	AITNAKHLIYITGWSVYTE	237
Arabidopsis	ROGCKVSLYODAHI	PDNFVPRIPLAGGKN	YEPORCWEDIFD	AISNAKHLIYITGWSVYAE	236
CratPLD1	RTGCKVSLYODAHV	PDSFIPDIPLSGSNN	YDPHRCWEDVFD	AISNAKHLIYITGWSVYTE	235
CratPLD2	RKGCKVTLYQDAHI	PDNFIPEIPLSGSNS	YSPHRCWEDVFDA	AISNAKHLIYITGWSVYTE	235
Mais	RQGCKVTLYQDAHV	PDNFVPRIQLADGKN	YEPHRCWEDIFD	AISKAQHLIYITGWSVYTE	239
Pimpinella	RPGCRISLYQDAHV	PDNFVPKIPLSGGKF	YEPHRCWEDVFD	AITNAKHFIYITGWSVYTE	235
Reis	RQGCKVTLYQDAHV	PDNFIPKIPLADGKN	YEPHRCWEDIFD	AISNAQHLIYITGWSVYTE	239
Rizinus	RQGCKVSLYQDAHI	PDKFVPQIPLAGGNY	YEPHRCWEDVFD	AITNAKHLIYITGWSVYTE	235
Tabak	RTGCRVSLYQDAHV	PDNFIPKIPLSGGKY	YEPHRCWEDIFD	AIINAKHLIYITGWSVYTE	235
Tomate	RPGSRVSLYQDAHV	PDNFIPKIPLSGGKY	YEPHRCWEDIFD	AITNAKHLIYITGWSVYTE	236
Vigna	RQGCKVFLYQDAHV	PDNFVPKIPLAGGKN	YEAHRCWEDIFD	AITNAKHLIYITGWSVYTE	235

Weißkohl-PLD1 Weißkohl-PLD2 Arabidopsis CratPLD1 CratPLD2 Mais Pimpinella Reis Rizinus Tabak Tomate	IALVRDSRRPKPGGDVTVGELLKKKASEGVRVLLLVWDDRTSVDVLKKDGLMATHDEETE ITLVRDSRRPKPGGDVTIGELLKKKASEGVRVLLLVWDDRTSVDVLKKDGLMATHDEDTE IALVRDSRRPKPGGDVTIGELLKKKASEGVRVLLLVWDDRTSVDVLKKDGLMATHDEETE ITLIRDSRREKPGGEITLGELLKKKASEGVNVLMLVWDDRTSVGLLKKDGLMATHDEETE IPLIRDSRREKPGGDITLGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETA FALIRDTRRPKPGGDVTLGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETE ITLVRDSNRPKPGGDVTLGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETE ISLIRDSRRPKPGGDITLGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETE ISLIRDSRRPKPGGDITLGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETE ISLIRDSRRPKPGGDITLGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETE ITLVRDSRRQKPGGDITLGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETE ITLVRDSRRQKPGGDITLGELLKKKASEGVKVLMLVWDDRTSVGLLKKDGLMATHDQETE	296 297 295 295 299 295 299 295 295 295 295
Vigna	ISLIRDSRRPKAGGDQTIGELLKKKASEGVRVLMLVWDDRTSVGLLKKDGLMATHDEETE	295
Weißkohl-PLD1 Weißkohl-PLD2 Arabidopsis CratPLD1 CratPLD2 Mais Pimpinella Reis Rizinus	1. HKD-Motiv NFFRGSDVHCILCPRNPDDGGSIVQNLQVSAMFTHHQKIVVVDSEMP-SR-GGSQMRRIV NYFNGSEVHCVLCPRNPDDGGSIVQNLQVSAMFTHHQKIVVVDSEVP-SqgGGSEMRRIM NFFRGSDVHCILCPRNPDDGGSIVQSLQISTMFTHHQKIVVVDSEMP-SR-GGSEMRRIV HYFQGTDVHCVLCPRNPDDGGSFVQDLQISTMFTHHQKIVVDSDLP-SGGSDKRRIV NYFHGTDVNCVLCPRNPDDGGSFVQDLQISTMFTHHQKIVVVDBLP-SGGSDKRRIV EYFRDSNVHCVLCLRNPDDGGGIIQGLTISTIFTHHQKIVVVDSEMPtSGSENRRVV NYFHGSDVNCVLCPRNPDDSGSIVQDLSISTMFTHHQKIVVVDHELP-NQGSQQRRIV HFFQNTDVHCVLCPRNPDDGGSFVQDLQISTMFTHHQKIVVVDHELP-NQGSQQRRIV	354 356 352 352 356 352 356 352 356
Tabak	QFFQGTEVNCVLCPRNPDDGGSIVQSLQIGTMFTHHQKIVVVDSELP-SGESEKRRIL	352
Vigna	QFFRDTDVHCVLCPRNPDDGGSFVQDIQISIMFIHHQKIIVVDSALP-SGELEKRRIL QFFRDTDVHCVLCPRNPDDGGSIVQDLQISTMFTHHQKIVVVDSALP-GG-GGSDKRRIV	353
Weißkohl-PLD1 Weißkohl-PLD2 Arabidopsis CratPLD1 CratPLD2 Mais	SFVGGIDLCDGRYDTPFHSLFRTLDTVHHDDFHQPNFTGAAITKGGPREPWHDIHSRLEG SFVGGIDLCDGRYDTPFHSLFRTLDTVHHDDFHQPNFTGASITKGGPREPWQDIHSRLEG SFVGGIDLCDGRYDTPFHSLFRTLDTVHHDDFHQPNFTGAAITKGGPREPWHDIHSRLEG SFVGGIDLCDGRYDTPFHSLFRTLDTAHHDDFHQPNYTGAAITKGGPREPWHDIHSRLEG SFVGGIDLCDGRYDTPFHSLFRTLDTAHHDDFHQPNFTGAVIAKGGPREPWHDIHSRLEG SFIGGIDLCDGRYDTQYHSLFRTLDTVHHDDFHQPNFEGGSIKKGGPREPWHDIHSRLEG	414 416 414 412 412 412
Pimpinella	SFVGGIDLCDGRYDTPFHSLFRTLDTAHHDDFHQPNFEGAAITKGGPREPWHDIHSRLEG	412
Reis Rizinus	SFVGGLDLCDGRYDTQYHSLFRTLDSTHHDDFHQPNFATASIKKGGPREPWHDIHSRLEG SFVGGLDLCDGRYDSPFHSLFRTLDSAHHDDFHOPNFAGASIEKGGPREPWHDIHSRLEG	416 412
Tabak	SFVGGIDLCDGRYDTPFHSLFRTLDTAHHDDFHQPNFPDGAITKGGPREPWHDIHSRLEG	412
Tomate Vigna	SFVGGIDLCDGRYDTPFHSLFRTLDTAHHDDFHQPNFADGSITKGGPREPWHDIHSRLEG SFVGGLDLCDGRYDTAFHSLFRTLDTAHHDDFHQPNFPGAAITKGGPREPWHDIHSRVEG	413 413
Weißkohl-PLD1	PIAWDVLYNFEQRWSKQGGKDILVKLRELSDIIITPSPVMFQEDHDVWNVQLFRSIDGGA	474
Arabidopsis	PIAWDVMINFEQRWSKQGGKDILVKLRDLSDIIITPSPVMFQEDHDVWNVQLFRSIDGGA	474
CratPLD1	PIAWDVLFNFEQRWKKQGGKDVLLNLREIDD-IIPPTSVTYHDDPETWNVQLFRSIDGGA	471
CratPLD2	PIAWDVLFNFEQRWKKQAGRDLLINLREIED-IIPPTPVTYDDDQETWNVQLFRSIDGGA	471
Pimpinella	PVAWDVLFNFEQRWRKQGGKDLLVKLRELQDVIIPPSPVTFPDDDETWNVQLFRSIDEGA	472
Reis	$\verb"PIAWDVLYNFEQRWRKQGGKDLLLQLRDLSDTIIPPSPVMFPEDRETWNVQLFRSIDGGA$	476
Rizinus	PIAWDVLFNFEQRWRKQGGKDLLIQLRELEDVIIPPSPVMYPDDFEAWNVQLFRSIDGGA	472
Tomate	PIAWDVLFNFEQRWRKQGGKDVLVNFRELDDVIIPPSPVMYPDDHETWNVQLFRSIDGGA	473
Vigna	PIAWDVLFNFEQRWRKQGGKDILAPLRELEDVIIPPSPVTFPDDHETWNVQLFRSIDGGA	473
Weißkohl-PLD1	AAGFPESPEAAAEAGLVSGKDNIIDRSIQDAYIHAIRRAKDFIYIENQYFLGSSFAWAAD	534 536
Arabidopsis	AAGFPESPEAAAEAGLVSGKDNIIDRSIQDAYIHAIRRAKDFIIIENQIFLGSSFAWAAD	534
CratPLD1	AFGFPDTPEEAAKSGLVSGKDNIIDRSIQDAYIQAIRRAKNFIYIENQYFLGACFGWDSN	531
CratPLD2	AFGFPETPEEAAKAGLVSGKDNIIDRSIQDAYIQAIRRAKNFIYIENQYFLGGCFGWDSN	531
Mais Pimpinella	AFGFPEIPEEAAKAGLVSGKENIIVRSIODAYIHAIRGPKIFIYIENOYFLGSSYGWKPE	530 532
Reis	AFGFPDTPEEAAKAGLVSGKDQIIDRSIQDAYIHAIRRAKNFIYIENQYFLGSSYAWKPE	536
Rizinus	AFGFPETPEDAPEAGLVSGKDNIIDRSIQDAYIHAIRRAKNFIYIENQYFLGSSFGWSPD	532
Tabak	AFGFPETPEDAAKAGLVSGXDNIIDRSIQDAYIHAIRRAKNFIYIENQYFLGSSYDWQSD	532
Iomate Vigna	AFGFPDTPEDAAKAGLVSGKDNIIDKSIQDAYIHAIRRAKNFIYIENQYFLGSCADWQCD AFGFPDTPEDAAKAGLVSGKDNIIDRSIODAYIHAIRRAKNFIYIENOYFLGSSESWNND	533 533
		222

Weißkohl-PLD1	GITPEDINALHLIPKELSLKIVSKIEKGEKFRVYVVVPMWPEGLPESASVQAILDWQRRT	594
Weißkohl-PLD2	GITPEDINALHLIPKELSLKIVDKIEKGEKFRVYVVVPMWPEGIPESASVQAILDWQRRT	596
Arabidopsis	DIKVEDVGALHLIPKELSLKIVSKIEKGEKFRVYVVVPMWPEGIPESASVQAILDWQRRT	594
CratPLD1	DIKVEDVGALHLIPKELSLKIVSKIEAGERFTVYIVVPMWPEGIPESASVQAILDWQRRT	591
CratPLD2	GIKPEEIGALHLIPKELSLKIVSKIEAGERFTVYVVVPMWPEGIPESASVQAILDWQRRT	596
Mais	GIKPEDIGALHLIPKELSLKIVSKIEAGERFTVYVVVPMWPEGIPESGSVQAILDWQRRT	592
Pimpinella	GIKPEDIGALHLIPKELALKVVSKIEAGERFTVYVVVPMWPEGIPESGSVQAILDWQRRT	596
Reis	DIKVEDIGALHLIPKELALKVVSKIEAGERFTVYVVVPMWPEGIPESASVQAILDWQRRT	592
Rizinus	DIKVEDIGALHVIPKELALKIVSKIEAGERFTVYVVVPMWPEGIPESASVQAILDWQRRT	592
Tabak	DIKVEDIGALHVIPKELALKIVSKIEAGERFTVYVVVPMWPEGIPESASVQAILDWQRRT	592
Tomate	DIKVEDIGALHVIPKELALKIVSKIEAGERFTVYVVVPMWPEGIPESASVQAILDWQRRT	593
Vigna	DIKVEDIGALHVIPKELALKIVSKIEAGERFTVYVVVPMWPEGIPESASVQAILDWQRRT	593
Weißkohl-PLD1 Weißkohl-PLD2 Arabidopsis CratPLD1 CratPLD2 Mais Pimpinella Reis Rizinus Tabak Tomate Vigna	MQMMYKDIVQALRAQGLEEDPRNYLTFFCLGNREVKKEGEYEPAERPDADSSYMKAQEAR LEMMYKDVIQALRAQGLEEDPRNYLTFFCLGNREVKKEGEYEPAERPDPDTDYMRAQEAR MEMMYKDVVQALQAKGIEEDPRNYLTFFCLGNREVKKGGEYEPAEKPDPDTDYMRAQEAR MDMYKDVVQALQAKGIEEDPRNYLTFFCLGNREVKKSGEYEPEQPEPDSDYLKAQEAR MDMYKDVVQALRAKGIEEDPRNYLTFFCLGNREVKKGGEYEPEEPPEDDTDYIRAQEAR MEMMYTDIAQALEANGIEANPKDYLTFFCLGNREVKQGGEYEPEEPPEDDTDYIRAQEAR MEMMYKDIIQALQANGIEEDPRNYLTFFCLGNREVKQGGEYPEEEPPEDDTDYSRAQEAR MEMMYKDIVQALKANGIEEDPRNYLTFFCLGNREVKQGGEYPEEQPEADTDYSRAQEAR MEMMYKDIVQALKANGIIEDPRNYLTFFCLGNREVKKSGEYEPAEKPEPDTDYIRAQEAR MEMMYKHIVQALKANGIIEDPRNYLTFFCLGNREVKKSGAYEPSETPEPDSDYIRAQEAR MEMMYKCIVQAMNAKGIEEDPRNYLTFFCIGNREVKKSGEYEPAEQPEDSNYMRAQEAR IEMMYKDVVQALRAKGSDEDPRNYLTFFCLGNREVKKSGEYEPAEQPEDSDYQRAQEAR	654 656 651 651 656 652 652 652 652 653 653
Weißkohl-PLD1 Weißkohl-PLD2 Arabidopsis CratPLD1 CratPLD2 Mais Pimpinella Reis Rizinus Tabak Tomate Vigna	2. HKD-MOIV RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGGYQPHHLSHRQPARGQIHG RFMIYVHSKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGGYQPHHLSHRQPARGQVHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGGYQPHHLSHRQPARGQIHG RFMIYVHAKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPYHLNTRNRARGQIHG RFMIYVHAKLMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPYHLNTRNRARGQIHG RFMIYVHAKLMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPYHLATRQPARGQIHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPYHLATRQPARGQIHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPHHLATREPARGQIHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPHHLATREPARGQIHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPHHLATREPARGQIHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPHHLATREPARGQIHG RFMIYVHSKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPHHLATREPARGQIHG RFMIYVHSKMMIVDDEYIIVGSANINQRSMDGARDSEIAMGAYQPHHLATREPARGQIHG RFMIYVHSKMMIVDDEYIIVGSANINQRSMDGARDSEIAMGAYQPHHLATREPARGQIHG RFMIYVHSKMMIVDDEYIIVGSANINQRSMDGARDSEIAMGAYQPHLATREPARGQIHG RFMIYVHTKMMIVDDEYIIVGSANINQRSMDGARDSEIAMGAYQPHLATREPARGQVHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPHLATSKPARGQVHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPHLATSKPARGQVHG RFMIYVHTKMMIVDDEYIIIGSANINQRSMDGARDSEIAMGAYQPYHLATSKPARGQVHG	714 716 714 711 716 712 716 712 716 712 713 713
Weißkohl-PLD1	FRMSLWYEHLGMLDETFLDPSSVECIEKVNRISDKYWDLYSSESLEHDLPGHLLRYPVDV	774
Weißkohl-PLD2	FRMSLWYEHLGMLDETFLDPSSLECIEKVNRIADKYWDFYSSESLEHDLPGHLLRYPISV	776
Arabidopsis	FRMSLWYEHLGMLDETFLDPSSLECIEKVNRISDKYWDFYSSESLEHDLPGHLLRYPIGV	771
CratPLD1	FRMALWYEHLGMLDETFLEPDSEECVRKVNHVADKYWDLYASEELEKDLPGHLLRYPIGI	771
CratPLD2	FRMALWYEHLGMLDEAFLEPENEECVRKVNEIADRYWELYASEELENDLPGHLLRYPVEI	776
Mais	FRMSLWYEHLGMLDDTLALPESVDCVQKVNEVAEKYWDLYSSDDLEQDLPGHLLSYPIGV	772
Pimpinella	FRMSLWYEHLGMLDDTLALPESVDCVQKVNTVADKYWDLYSSETLENDLPGHLLRYPIGV	776
Reis	FRMALWYEHLGMLDDTFQRPESLECVQKVNRIAEKYWDLYSSDDLQQDLPGHLLSYPIGV	772
Rizinus	FRMALWYEHLGMLDDFFLHPESEECVRKVNQMAEKYWDLYSSETLENDLPGHLLRYPIGV	777
Tabak	FRMALWYEHLGMLDETFLHPESEECVRKVNQMAEKYWDLYSSESLERDLPGHLLRYPIGV	772
Tomate	FRMALWYEHLGMLDETFLHPESEECVRKVNQIADKYWDLYSSESLERDLPGHLLRYPIGV	773
Vigna	FRMALWYEHLGMLDETFQHPESEECVRKVNQIADKYWDLYSSESLERDLPGHLLRYPIGV	773
Weißkohl-PLD1	DGEGDVTEFPGFEFFPDTKARILGTKSDYLPPILTT	810
Weißkohl-PLD2	DNEGNITELPGFEFFPDSKARILGNKVDYLPPILTT	812
Arabidopsis	ASEGDITELPGFEFFPDTKARILGTKSDYLPPILTT	810
CratPLD1	SSDGEVTELPGTEFFPDTKARVLGTKSDYLPPILTT	807
CratPLD2	AGDGGVTELPGAEFFPDTKARVLGAKSDYLPPILTT	807
Mais	TADGSVTELPGMENFPDTRARVLGNKSDYLPPILTT	812
Pimpinella	ASEGNVTELPGTEFFPDTKARVLGAKSDFLPPILTT	808
Reis	ASDGVVTELPGMEYFPDTRARVLGAKSDYMPPILTS	812
Rizinus	ASEGDVTELPGTEFFPDTKARVLGAKSDYLPPILTT	808
Tabak	ASEGDVTELPGAEHFPDTKARVLGTKSDYLPPILTT	808
Tomate	ASEGDITELPGHEFFPDTKARVLGTKSDYLPPILTT	809
Vigna	ASEGDITELPGHEFFPDTKARILGAKADYLPPILTT	809

Danksagung

Die vorliegende Arbeit wurde vom 1. Oktober 1997 bis 28. Februar 2001 am Institut für Biotechnologie der Martin-Luther-Universität Halle-Wittenberg in der Arbeitsgruppe Technische Enzymologie bei Frau Prof. Dr. Renate Ulbrich-Hofmann angefertigt.

Frau Prof. Renate Ulbrich-Hofmann möchte ich ganz herzlich für die Vergabe des interessanten Dissertationsthemas, ihr großes Interesse am Fortgang der Arbeiten und die vielen hilfreichen Diskussionen danken. Auch wenn sie mir nicht immer bei den besonders hartnäckigen molekularbiologischen Problemen helfen konnte, so war sie dennoch sehr verständnisvoll, geduldig und aufmunternd.

Frau Dr. Johanna Mansfeld danke ich für die Einführung in die molekularbiologischen Methoden, ihre unermüdliche Unterstützung während der experimentellen Durststrecken sowie die guten Tips zur Erstellung dieser Arbeit.

Danken möchte ich auch Frau Dr. Regina Schöps für die Bereitstellung des PpNP-Substrates und die wertvollen Informationen zur PLD aus Weißkohl.

Herr Dr. Rücknagel half mir bei der N-terminalen Sequenzierung der Proteine. Herr Dr. Ulrich Brinkmann stellte unserem Institut das Plasmid pUBS520 zur Verfügung. Die Arbeitsgruppe von Prof. Dr. Robert Verger lieferte den Antikörper gegen PLD aus Sojabohnen.

Mein Dank gilt ebenso der gesamten Arbeitsgruppe für die vielen anregenden Diskussionen und dem angenehmen Arbeitsklima.

Ein ganz besonderes Dankeschön geht an meinen Mann Jörg, meine Eltern und meine Schwester, die mich in allen Lebenslagen tatkräftig unterstützten und mir immer hilfsbereit zur Seite standen.

Lebenslauf

Name:	Ines Schäffner, geb. Pannenberg
Geburtsdatum:	20. Januar 1974
Geburtsort:	Erlabrunn/Erzgebirge
Familienstand:	verheiratet seit 1999 mit Jörg Schäffner
Wohnsitz:	Schillerplatz 12, 06198 Salzmünde
Schulbildung:	
1980-1988	Besuch der Oberschule in Grünhain
1988-1992	Besuch der Spezialschule mathematisch-naturwissenschaftlich-
	technischer Richtung in Chemnitz
	Abschluß: allgemeine Hochschulreife
Studienzeit:	
1992-1997	Studium der Biochemie an der Martin-Luther-Universität Halle- Wittenberg, Anfertigung der Diplomarbeit zum Thema "Versuche zur Klonierung von Phospholipase D aus <i>Brassica</i> <i>oleracea</i> " in der Arbeitsgruppe Technische Enzymologie am Institut für Biotechnologie bei Prof. Dr. Renate Ulbrich-Hofmann
Oktober 1997 – März 2000	Anfertigung der Promotionsarbeit zum Thema "Identifizierung und rekombinante Herstellung von Phospholipase D- Isoenzymen aus Weißkohl (<i>Brassica oleracea</i> var. capitata)" am Institut für Biotechnologie bei Prof. Dr. Renate Ulbrich- Hofmann, AG Technische Enzymologie mit einem Stipendium nach dem Graduiertenförderungsgesetz des Landes Sachsen- Anhalt
seit April 2000	Fortsetzung der Promotionsarbeit im Rahmen eines DFG- Projektes (Nr. MA 2033/3-1) in der gleichen Arbeitsgruppe
Auszeichnungen:	 Forschungsstipendium der Max-Buchner-Stiftung (Mai 1998 - Mai 2000) DECHEMA-Studentenpreis 1998

Erklärung

Hiermit erkläre ich, daß ich mich mit der vorliegenden wissenschaftlichen Arbeit erstmals um die Erlangung des Doktorgrades bewerbe, diese Arbeit selbständig und ohne fremde Hilfe verfaßt, nur die von mir angegebenen Quellen und Hilfsmittel benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Halle, den 5. Juli 2001