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Abstract

Distributed memory machines provide large computing power, but the development

process for a specific parallel algorithm on a specific machine is complex due to the

complicated runtime behaviour caused by communication overhead and load imbal-

ance. We consider a powerful multi-dimensional scheduling embedded into a tool for

generating parallel programs with mixed task and data parallelism.

The program generation starts with a user provided specification of the maximum

degree of task and data parallelism of the method to be implemented. In several

derivation steps, the system adapts the degree of parallelism to a specific target ma-

chine. The therefore used scheduling is based on the genetic algorithm paradigm. Our

scheduling takes not only decisions on the execution order (independent modules can

be executed consecutively by all processors available or concurrently by independent

groups of processors) and on the mapping of processors to tasks, but also on appropri-

ate data distributions and module implementation versions (for each module there are

several implementation version available, e.g., taken from a predefined set of library

functions). Data redistribution operations and communication domain management

operations are added, if necessary. The obtained parallel frame program can be trans-

lated in any imperative language augmented by a message passing library supporting

groups.

The efficiency of our system was demonstrate by several examples.

Zusammenfassung

Parallelrechner, insbesondere solche mit verteiltem Speicher, bieten eine hohe Rechenka-

pazität, weisen aber eine komplexe Programmierbarkeit auf. Die vorliegende Arbeit

beschreibt ein Werkzeug zur Generierung von parallelen Programmen mit gemischter

Daten- und Funktionsparallelität auf Rechner mit geteiltem Speicher. Das Werkzeug

stützt sich auf ein vielseitiges multidimensionales Scheduling, welches ebenfalls in der

vorliegenden Arbeit beschrieben wird.

Die Programmgenerierung geht von einer vom Benutzer angegebenen Spezifikation

der zu implementierenden Anwendung aus. Diese Spezifikation beschreibt die poten-

tiell vorhandene Parallelität der Anwendung, der anschließend von unserem System

in mehreren Ableitungsschritten an den Gegebenheiten eines Zielrechners angepasst

wird. Das von uns entwickelte Scheduling, das auf genetische Algorithmen basiert,

entscheidet nicht nur über die Reihenfolge der Abarbeitung (voneinander unabhängige

Module können einer nach dem anderen von allen Prozessoren datenparallel abgear-

beitet werden oder sie können gleichzeitig, funktionsparallel, von disjunkten Gruppen

von Prozessoren abgearbeitet werden) und darüber welche Prozessoren den einzelnen

Modulen für die Abarbeitung zugeordnet werden, sondern trifft auch Entscheidungen

über die geeignete Datenverteilung und über die jeweils einzubindende Implemen-

tierungsversion (dem System können für einzelne Module mehrere Implementierun-

gen, zum Beispiel unterschiedliche Bibliotheksfunktionen, zur Auswahl vorliegen).

Datenumverteilungsoperationen und Operationen zur Verwaltung der Kommunika-

tionsumgebung werden, bei Bedarf, dem erstellten parallelen Rahmenprogramm hin-

zugefügt. Das Rahmenprogramm wird unter Verwendung einer imperativen Program-

miersprache und einer Kommunikationsbibliothek, die hierarchische Prozessorgrup-

penstrukturen unterstützt, in einem parallelen Programm umgewandelt.

Die Einsatzfähigkeit und Effizienz unseres Ansatzes wurde an verschiedenen Beispielen

erprobt.
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1 Introduction

Massively parallel systems promised to increase computing performance by sev-
eral orders of magnitude. The recognition of this fact leads to intensified research
in the field of parallel and distributed system in the eighties. Most of the re-
search projects concentrated on hardware aspects. The results of these projects,
massively parallel computer systems based on various architectures, provide a
large computing power, but they are not broadly accepted up to this day, espe-
cially because of the costly development process. Due to the complex runtime
behaviour caused by communication overhead and load imbalance, developing
an efficient parallel version of an algorithm takes a lot of time. G. Papadopoulos
from MIT commented this fact with the sentence: ”It appears to be easier to
build parallel machines than to use them.” [49]

In order to design efficient parallel programs, it is often useful to exploit
different kind of potential parallelism. Depending on their different nature, i.e.,
especially depending on their granularity, detection mechanisms for potential
parallelism are quite different varying from automatic detection to user speci-
fication. At the finest granularity level, operation parallelism is detected by a
compiler during the code generation and used by an instruction scheduler to
exploit different functional units of a processor.

Data parallelism occurs when the same operations have to be applied to dif-
ferent data and it can be detected by parallelizing compilers using loop trans-
formation techniques. Data parallelism means that the same operations are
executed, independently from each other, by different processors on different
data. The granularity level reached depends on the amount of data which can
be processed by a processing unit.

Task parallelism (often also called function, method, or control parallelism)
represents parallelism on program parts’ level, i.e., independent program parts
can be executed on different processors or processor groups, where processors of
the same group interact in a data parallel manner. Task parallelism has a coarse
granularity, most applications have only a small degree of task parallelism. Nev-
ertheless, the simultaneous exploitation of task and data parallelism can lead
to significantly faster programs than the sole exploitation of data parallelism
[52, 53]. This is especially interesting for parallel machines with a large number
of processors.

Important classes of applications imply a potential of mixed task and data
parallelism. In the area of scientific computing there are, e.g., methods for or-
dinary differential equations like extrapolation methods, iterated Runge-Kutta
methods [56], or implicitly iterated Runge-Kutta methods [55], methods which
exhibit a medium grain parallelism. These methods compute several indepen-
dent approximation vectors in each time step and determine the final solution
vector by combining them. The approximation vectors computed in each time
step are independent and the computations can be performed concurrently. In
the area of physical simulations there are several applications which combine
different simulation methods. For example, environmental models [6] combine
atmospheric, surface water, and ground water models, each requiring different
numerical simulations which can be computed in parallel to each other.

In principle, there are two different approaches for implementing parallel ap-
plications: a bottom-up oriented technique starts with a non-parallel implemen-
tation of an application and detects, usually via loop transformation techniques,
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the application’s potential of (essentially data) parallelism. A top-down oriented
approach starts with a user provided parallel description of the application and
adapts via program transformation techniques the degree of parallelism to the
possibilities of a target machine. This approach exploits in essence task paral-
lelism, but it also offers the possibility of exploiting parallelism at data level by
using data parallel program parts.

In this thesis, we describe a tool for generating programs with mixed task
and data parallel execution on distributed memory machines (DMMs) based on
the TwoL (Two Level parallelism) model proposed by Rauber and Rünger [54].
Our system is based on the concepts of exploitation of task and data parallelism,
separation of design decisions and implementation, use of imperative program-
ing language augmented by message passing library [28, 29]. The generation
of parallel programs with mixed task and data parallelism starts from a user
provided high level specification which is subsequently automatically translated
with the herein described compiler tool into a description of a parallel imple-
mentation. The implementation description, containing task and data parallel
parts, can then be translated into message passing programs based on hierar-
chically structured communication contexts. The separation between task and
data parallel level is maintained during the entire program generation process,
allowing at the same time specific information flow between the levels. The
automatic translation steps are guided by runtime estimation formulas which
include a concise model of the target machine.

Even though the detection and efficient exploitation of different kinds of
parallelism often lead to efficient parallel programs, right from start, when gen-
erating a parallel program, it is difficult to determine how to exploit the par-
allelism detected, in order to obtain an optimal implementation on a specific
parallel machine. Using pure data parallelism, we have small computation costs
and possibly high collective communication costs. The problem of finding a
data distribution that minimize the resulting communication overhead is NP-
complete [43, 42]. Using task parallelism, we reduce the number of participating
processors for a task and this on its part reduces the internal communication
costs. On the other hand, a reduced number of processors increases the pure
computation time. The management of processor groups involved, however, also
causes some overhead. The problem of selecting the most efficient execution or-
der and to determine the size of processor groups accordingly is NP-complete
[26].

We propose an algorithm based on a genetic algorithm [33] approach that
provides a static scheduling solution. Our algorithm not only determines an
execution order of a given set of tasks and assigns processor groups for the
execution of individual tasks, but also selects the suitable implementation for
each particular task, and specifies the data distributions.

I thank my advisor, Thomas Rauber, for introducing me in the research
area of parallelizing compilers and for providing agreeable and fruitful working
conditions. I thank Gudula Rünger and Wolf Zimmermann for their support.
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2 Related Work

Work related to the TwoL approach includes studies on new parallel programing
paradigms [47], computation models [3, 20, 69], performance prediction tech-
niques [24, 37, 25, 50], scheduling tools, and parallelizing compilers.

There are various problems to investigate, when constructing parallelizing
compiler tools. In the attempt of offering a tool for parallel programing, the
systems emphasize different aspects of the problem: high level coordination
language [4, 40, 39, 14, 5], partitioning, placement, and code generation [11, 41],
monitoring and debugging [10, 13, 18].

PARSA (PARallel program Scheduling and Assessment) environment [63] as-
sists on the developing of parallel programs in distributed memory multiproces-
sors systems. To achieve this goal, PARSA is a visual, interactive environment
to assist users in scheduling their parallel programs on a target architecture.
The interactive nature of PARSA allows the choice of many scheduling meth-
ods. In addition, PARSA provides an environment that allows users to play
”what if” scenarios in order to evaluate or fine-tune their parallel programs and
choose a suitable architecture for the execution of the application.

One of the basic ideas of our system is to eliminate the need for system
architecture and scheduling considerations during the programing phase of par-
allel application development. A similar basic idea can be found in PARSA.
Although the PARSA approach and TwoL are similar in spirit, there are im-
portant differences. The objectives of PARSA and TwoL, to assist users in the
development of their parallel programs on a target architecture, as well as the
idea to allow users to specify an application without regard to system architec-
tural considerations, are resembling. But whereas PARSA uses data parallelism
and works on data parallel applications at operation level, TwoL combines task
and data parallelism and works mainly at task level. The systems already start
with the user specification on the respective granularity level and keep this level
in all subsequent steps.

Integration of data and task parallelism has been an active research topic in
the last years. In the area of parallelizing compilers there are compiler based
approaches, like Parafrase-2 [48], Fx [66], and Paradigm [8], language based
approaches, like Fortran M [31] and Opus [45], and graphical approaches like
Opus [17], CODE [7], and CASCH [38]. In the following, we compare our
approach to language and compiler based approaches which included support
to combine task and data parallelism.

Parafrase-2 is a multilingual vectorizing/parallelizing compiler [48] imple-
mented as a source to source code restructuring tool. Parafrase-2 distinguishes
data (or horizontal) partitioning and task (or vertical) partitioning. These terms
correspond to the TwoL terms data parallelism and task parallelism, respec-
tively. Parallelism in Parafrase-2 is obtained via automatic parallelism detec-
tion in programs and via program transformation. This feature is an important
difference to TwoL, where parallelism is user provided. Parafrase-2 has a con-
venient user interface and provides a way for user interaction at several levels
during the transformation process. Although the partitioning (packaging of
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parallelism) phase is carried out at compile time, task scheduling is considered
to be a dynamic process. Tasks which are ready to execute are queued in a
ready-task queue. Each idle processor tries to dispatch the next available task
from the queue. In contrast, TwoL provides a static scheduling process which
decides to compile time for task order and for load balancing.

Fortran M [31, 32] is a language based approach basically consisting on a
small set of extensions to Fortran. Fortran M provides language constructs for
creating tasks and channels and for sending and receiving messages. Program
components can be combined using sequential, parallel, or concurrent compo-
sition. In parallel and concurrent composition, the process serves as the basic
building block. A process can encapsulate data, computation, concurrency, and
communication, it has a well defined interface to the rest of the program.

In contrast to the Fortran M approach, our approach is more directed to-
wards the combination of fine and medium grain parallelism, in TwoL different
modules cannot communicate with each other, communication is located on a
higher level. Besides, Fortran M does not support the derivation of parallel
implementation, i.e., it provides mapping constructs to specify that a program
executes in a virtual processor array and to locate a process within these pro-
cessors, but the programer must decide on the execution order of processes and
on the data distributions by himself.

Fx The Fx approach allows task parallelism by providing directives to parti-
tion processors into subgroups and to assign computations to different subgroups
(task regions) [66]. Computations of a specific subgroup are executed in a data
parallel way. The Fx compiler provides a mapping tool for grouping subroutine
calls to modules and for mapping processors to modules [67]. Although the Fx
approach is similar in spirit to the TwoL approach, there are some important
differences: task regions in Fx cannot be nested lexically whereas TwoL allows
in principle a hierarchical structure of modules. On the other hand allows Fx
a dynamic nested partitioning of processors by allowing (recursive) procedure
calls with internal partitioning of processors whereas TwoL requires all task co-
ordination to be performed on the upper level of the program derivation process.
Currently, recursive modules on the upper task coordination level are not al-
lowed, although they can be included in principle. The Fx model is primarily a
programing approach in which the programer has to decide on task partitioning
and assignment of tasks to processor groups. Hence, Fx provides only a limited
support for the derivation of parallel implementations. The TwoL model is more
a specification approach in which the programer is responsible for specifying the
available task parallelism, but the final decision whether available task paral-
lelism will be exploited and how processors should be partitioned into groups is
taken by the compiler. Therefore, TwoL provides a framework for the complete
derivation process in which support tools can be integrated quite naturally. The
mapping tool provided by Fx [67] is based on static runtime expressions that
do not take into consideration the structure of subroutines; the subroutines’
parameter are determined by separate runtime tests for each application. A
model that is similar to the task parallelism model of Fx has been added to
High Performance Fortran [35] as an approved extension.
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Paradigm The Paradigm compiler [8, 50, 52] provides a framework that ex-
presses task parallelism by a macro data-flow graph which has been derived
from the hierarchical task graphs used in the Parafrase compiler [9]. Nodes in
the macro data-flow graph correspond to basic parallel tasks or loop constructs,
edges correspond to precedence relations that exist between tasks. Nodes and
edges are weighted with processing and data transfer costs both of which depend
on the number of processors used for the execution. Scheduling and allocation
algorithms for macro data-flow graphs are described in [50, 51] considers the gen-
eration of array distributions between tasks. The allocation algorithm decides
on the number of processors to use for each node and the scheduling algorithm
decides on a scheme of execution for the allocated nodes. The goal is to select
a strategy that minimizes the execution time of the macro data-flow graph.

There are two main differences between Paradigm and the TwoL approach.
First, Paradigm expects as input a sequential program whereas TwoL starts
with a specification that expresses the maximum degree of parallelism. This
requires different derivation procedures in both approaches. Second, the run-
time prediction of Paradigm is based on measured execution times of the tasks,
whereas TwoL uses a runtime prediction method for the design of task programs.

Scheduling techniques used in compiler tools are quite different. Casavant
[15] presents an interesting classification of process scheduling methods; this
classification is also used in [64]. We take over these categories when compar-
ing scheduling tools. According to this classification, our scheduling is a global
suboptimal static approximate method where the solution space is searched ac-
cording to a genetic algorithm search strategy.

Our scheduling is a static one, i.e., we assume that the task graph is known
beforehand and it does not change during computation. Thus, our scheduling
is not related to the vast literature on dynamic load balancing in parallel and
distributed computing. We assume that the multiprocessor system is uniform
and nonpreemptive; that is, the processors are identical and a processor com-
pletes the current task before executing a new one. Our schedule provides a
mapping of tasks to processors, but above all it gives an execution ordering
that minimizes the execution time of the entire task graph. Finally, we cannot
fairly characterize our scheduling by simply comparing scheduling results with
results obtained by other systems from the literature; our scheduling is a multi-
dimensional scheduling, it provides task ordering, mapping, but it also selects
implementation versions with appropriate data distributions. Thus, because at
most partial results could be compared, we leave such comparisons and limit to
analyze the results.

We will compare our scheduling with suboptimal static methods using ge-
netic algorithms as approximating method to find an optimal solution. No one of
the compared methods uses various implementation variants for tasks or various
data distributions for parameters, as our scheduling does.

The schedule from Hou et al. [36] works on homogenous environments, and
the schedule from Wang, Siegel et al. [71] works on heterogeneous computing
environments. Both approaches use tasks with known, i.e., measured and fixed,
computation costs. Due to the dimension of the problem handled, the individ-
uals of the genetic algorithm population have to code only information about
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tasks and about processors, whereas individuals in our system have a third
dimension to code information related to implementation variants and data dis-
tribution. Fitness evaluation has to fit with the problem definition, i.e., fitness
evaluation is always adjusted for the problem and herewith system specific.

Corrêa et al. [19] propose a combined approach, where a genetic algorithm is
improved with the introduction of some knowledge about the scheduling prob-
lem represented by the use of a list heuristic in the crossover and mutation
genetic operations. Dhodhi et al. [22] have a similar idea, their technique is
based on problem-space genetic algorithms. It combines the search power of
genetic algorithms with list scheduling heuristic in order to reduce the comple-
tion time and to increase the resource utilization. These systems, also, work
with fixed computation costs. Our system uses runtime prediction formulas
which are parametrized with the actual processors assigned and the actual data
distribution selected.

New scheduling approaches, presented by Ahmad et al. [1] and De Falco
et al. [21], deal with parallelizing the scheduling algorithm itself. This is an
interesting future development for our system, too, especially due to the fact
that our genetic algorithm approach offers an almost natural parallelization
interface.
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3 System Overview

Our system clearly separates task parallelism from data parallelism. The sepa-
ration between the two levels is preserved during the design and implementation
phases while allowing specific information to flow between the two levels. Here-
with, the model is able to combine well known results in the detection of data
parallelism with the design of task parallelism of a specific application.

Parallel

decisions
Design

frame program

specification

C+MPIImplementation

Target  machine 
model

Implementation
versions

Module 

Figure 1: System overview.

This clear separation is used to divide the work between programer and com-
piler system. Figure 1 gives a rough overview of the system. The programer
specifies an algorithm as a module specification, i.e., a specification of the algo-
rithm with the maximum degree of task parallelism available. Additionally, the
programer provides a specification for the data parallel modules used.

The compiler translates the module specification into a full specification of
a parallel program, the parallel frame program, with mixed task and data par-
allelism. Here, several implementation versions for the tasks can be taken into
consideration. The design decisions taken include scheduling of independent
tasks, assignment of processor groups to tasks, selection of appropriate imple-
mentation versions for tasks, and data distribution specification.

The design decisions for exploiting parallelism are entirely separated from the
generation (implementation) of parallel code. The result of the design decisions
step, the parallel frame program, can be translated by a syntax directed pass in
any imperative language augmented with a message passing library supporting
groups. We have chosen C as the imperative language and the message passing
interface MPI.

Figure 2 gives a more detailed overview of the parts of the system described
in this thesis. This figure also illustrates in which order this thesis treats the
different system aspects.

• The module specification, including the syntax of the module specification
language used by the programer for the method’s specification, is described
in Section 4.

• The module graph (Section 5) is an intermediate data structure which
makes module specification information easier accessible and which trans-
fers relevant information from the module specification to the subsequent
design decision step.
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Figure 2: System elements.

• Fundamental information related to the design decisions step, especially
definition of the scheduling problem, description of the runtime estimation,
and specification of the target machine, can be found in Section 6.

• The main design decision problems, i.e., task scheduling, assignment of
processor groups to tasks, selection of appropriate implementation ver-
sions, and data distribution specification, are resolved by a genetic algo-
rithm approach (denoted in the figure as GA scheduling)which is described
in Section 7.

• Relevant scheduling information is summarized into a scheduling graph.
This intermediate data structure is used to concentrate design decisions,
eliminate redundancy, and make design information easier accessible. See
therefore Section 8.

• Design decisions are fixed in parallel frame programs. The syntax of the
description language used is described in a separate section, see therefore
Section 9.

• The algorithm which fixes the implementation information into a parallel
frame program has several distinct steps described sequentially. First, we
transform the scheduling graph information and construct a parallel frame
program skeleton. This step is described in Section 10. Subsequently,
data distribution modules are added and the therefore used communication
environment is established. These steps are detailed in Section 11.

• The implementation of parallel frame programs into C+MPI is a simple
syntax driven program transformation step, not described in this thesis.
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4 Module Specification

In this section we describe the syntax of the module specification language, a
small coordination language. The programer uses this language to specify on a
high level the method to be implemented. The module specification indicates the
maximum degree of task and data parallelism within the specified method. Task
parallelism is indicated by corresponding language concepts, data parallelism is
”hidden” inside data parallel program parts.

4.1 Syntax of the Module Specification Language

Module specification A module specification is a non-executable program
which (only) indicates the maximum degree of parallelism without giving an
exact execution order of tasks or specifying a data distribution of variables. A
module specification (Figure 3 specifies the language’s syntax) is hierarchically
structured and consists of a set of composed modules.

Composed modules consist on a number of tasks where each task is either an
activation of another composed module or of a basic module. Composed modules
only specify the structure of the task parallelism, they do not contain direct
operations on data. Tasks in composed modules may be executed concurrently
(‖ operator, parfor loop) or sequentially (◦ operator and for loops). There is
no dependence between modules executed in parallel.

Basic modules Direct operations on data are hidden within basic module
activations. Basic modules are data parallel programs, i.e., the same operations
are applied to multiple elements of a data structure. Basic modules are provided
as executable parallel programs parts or functions operating on arbitrary data,
e.g., taken from a library, or in form of a high-level data parallel specification
(cf. [29] for details).

Module expressions are expressions consisting of module activations executed
concurrently or sequentially. Syntactically, module expressions are statements
(cf. Figure 3).
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module specification→ program identifier comp module set

comp module set→ comp module comp module set

| ε
comp module→ module module decl

assign statements end
module decl→ identifier ( parameters )
parameters→ param param list

| ε
param list→ , param param list

| ε
param→ param type identifier : data type

param type→ in | out | ε
data type→ struct type elem type

struct type→ mat | vec | ε
elem type→ char | int | float | double
c parameters → identifier id list

| ε
id list→ , identifier id list

| ε
statements→ stmt stmt list

stmt list→ op sign stmt stmt list

| ε
op sign→ ‖ | ◦
stmt→ identifier ( c parameters )

| f statements g
| for ( enum expr ) statements

| parfor ( enum expr ) statements

| if ( simple expr ) statements

simple expr→ identifier relop identifier

| ε
enum expr→ identifier = bound .. bound

| ε
bound→ identifier | number
comments→ [ text without brackets ]

Figure 3: Syntax of the module specification language.

Restrictions The module specification does not contain any specification
which anticipate implementation decisions. Module activations specify the I/O
behaviour of the activated composed or basic module, without giving details on
data distribution or processor groups used. Variables in conditional expressions
for loops and for conditionals (enum expr and simple expr) are restricted to be
scalars only. Additionally, these expressions do not contain variables or values
which refer to particular processors or to special data distributions. Currently,
recursive modules are not allowed, although they can be included in principle.

In order to keep the language simple, we use only a few elements. Not
included structures like, e.g., the conditional’s else-part or while-loops, may be
expressed by using the language elements.
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4.2 Example of a Module Specification

(01) module CG (in A:mat double,p:vec double,p0:vec double,w:vec double,

w0:vec double,r0:vec double,x:vec double,λ0:double,

out p:vec double,x:vec double,r:vec double)

(02) assign
(03) { for (k = 0..K)

(04) { mv prod (A,p,w)

(05) ◦ { vv prod (p,r0,tmp1)

(06) ‖ vv prod (w,p,λ1)

(07) ‖ vv prod (w,w,tmp2)

(08) ‖ vv prod (w,w0,tmp3)

(09) }
(10) ◦ { { op assign (tmp1,op,λ1,ξ)
(11) ◦ { { sv prod (ξ,p,tmp4)

(12) ◦ vv add (x,tmp4,x)

(13) }
(14) ‖ { sv prod (ξ,w,tmp5)

(15) ◦ vv sub (r,tmp5,r)

(16) } } }
(17) ‖ { { { op assign (tmp2,op,λ1, µ)
(18) ◦ sv prod (µ,p,tmp6)

(19) }
(20) ‖ { { op assign (tmp3,op,λ0, ν)
(21) ‖ vv assign (w,w0)

(22) }
(23) ◦ { sv prod (ν,p0,tmp7)

(24) ‖ assign(λ1,λ0)

(25) } } }
(26) ◦ { vv add (tmp6,tmp7,tmp6)

(27) ‖ vv assign (p,p0)

(28) }
(29) ◦ vv sub (w,tmp6,p)

(30) } } }
(31) }
(32) end

Figure 4: Composed module for conjugate gradient iteration.

The conjugate gradient method (CG) is a Krylow-space method [70] to
solve a system of linear equations Ax = b with a symmetric, positive-definite
coefficient matrix A ∈ IRM×M. In each iteration step k the method chooses a
search direction pk ∈ IRn and computes a new approximation xk ∈ IRn.

Module specification for the CG method Figure 4 shows a possible mod-
ule specification of the program for the CG method. The composed module CG
has an I/O behaviour which is specified by in/out parameters. There are basic
modules for matrix-vector multiplication (mv prod), for computing the scalar
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product (vv prod), for vector addition and subtraction (vv add, vv sub), for
multiplication of a vector with a scalar (sv prod), and for assignment of val-
ues for various data structures (vv assign, assign, and op assign). In an
iteration step, the mv prod module (line 04) must be executed first, before the
vv prod modules can be started. The different instances of vv prod (lines 05 to
08) may be executed in parallel. The computation continues with the execution
of a block (lines 10 to 30) containing two blocks executed concurrently. These
blocks (lines 10 to 16, and 17 to 30, respectively), on their part, contain several
basic modules executed sequentially or concurrently.

4.3 Section’s Summary and Outlook

In this section we described the syntax of the module specification language.
The language concepts, especially the ‖ and ◦ operators, offer the possibility
for describing task and data parallelism available within the specified method.
The programer provides for the maximum degree of parallelism of the method.
Subsequently, in several transformation and design decision steps, the system
will adapt the possible parallelism to the actual possibilities of a target machine.

As a larger example we gave the module specification of the conjugate gradi-
ent method. Subsequent examples will demonstrate the evolution of this module
specification through the system.
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5 Module Graph

In this section we describe a data structure which will be used by the next
phases of the system and which offer the opportunity of easily accessing the
information given by the user by means of the module specification.

In the following, first, we define some notions, thereafter we describe the
graph construction and specify information stored by the graph. The module
graph is constructed recursively, the rules to be applied to the basic language
components are described in detail.

From the design decisions point of view, a composed module contains two
significant information: the possible task execution order and the parameter
dependence. For our purposes, we concentrate this information into a directed
acyclic graph. Beside the graph information, additional data concerning the
module nodes is stored in annotations attached to each one of the nodes.

Module graph The module graph is an intermediate data structure which
transfers relevant information from the module specification to the design de-
cision step. We construct a module graph for each composed module. For a
module specification program consisting of several composed modules, several
independent module graphs are constructed.

Input/output modules For a module expression M we recursively define,
over the structure of the expression, the set IM of input modules and the set OM
of output modules. Intuitively, the set of input/output modules consists of the
modules which are ”visible” from outside the module expression. The formal
definition is as follows (M1 and M2 are module expressions, too):

IM(M) =




A for M = A, A basic module
IM(M1) for M = {M1}
IM(M1) ∪ IM(M2) for M = M1 ‖ M2

IM(M1) for M = M1◦ M2

OM(M) =




A for M = A, A basic module
OM(M1) for M = {M1}
OM(M1) ∪ OM(M2) for M = M1 ‖ M2

OM(M2) for M = M1◦ M2
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5.1 The Nodes

Nodes In principle, nodes of the module graph correspond to module acti-
vations inside the module expression. In the following we do not distinguish
between a node of the module graph and the corresponding module activation
of the composed module expression as long as the assignment is unambiguous.

The module graph contains one node for each module activation occurring
in the module specification program. For other language components, e.g.,
composed modules and loops, there are special rules for the generation of the
corresponding nodes. These rules are described in Section 5.3 below.

Parameter lists For a node A, IN(A)/OUT(A) represents the input/output
parameter list of the node. Let a be the i-th parameter of A. We define (cf.
Figure 5 for an example):

IN(A)[i] =
{

a a is an input parameter
NIL else

OUT(A)[i] =
{

a a is an output parameter
NIL else

module declaration: mv prod (in A:mat double,p:vec double,out w:vec double)

IN(mv prod)[0] = A OUT(mv prod)[0] = NIL

IN(mv prod)[1] = p OUT(mv prod)[1] = NIL

IN(mv prod)[2] = NIL OUT(mv prod)[2] = w

Figure 5: Example of an input/output parameter list.

Annotations The nodes of the module graph store in parameter annotations
additional information about the I/O parameters of the corresponding module
activations. The data type description of the parameters, especially the dimen-
sion of variables, is taken from the parameter description of the corresponding
module activation.

5.2 The Edges

The module graph contains two kind of edges: structure edges and data edges.
The computation order, specified by the structure and the operators of the
composed module, is expressed by so-called structure edges, the parameter de-
pendence is expressed by data edges.

Structure edges , drawn in the figures in this section by solid lines, result from
the structure of the module expression. Structure edges illustrate precedence
relations between modules, expressing whether a module has to be executed
before another one.
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Modules connected via a ‖ operator do not have any connecting structure
edges. For a module expression A◦ B, with a sequential compose operator, A, B
basic modules, the module graph contains the oriented structure edge (A,B). In
general, for a module expression M1◦ M2, the graph contains the set of oriented
structure edges {(A1,A2); A1 ∈ OM(M1), A2 ∈ IM(M2) }, see as an example
Figure 6.

Corresponding
module specification

{ A1 ‖ A2 ‖ A3 }
◦ { B1 ‖ B2 }  B1 

A1 A2 A3

B2

Figure 6: Module graph (structure edges).

Data edges , drawn in the figures by dashed lines, describe the parameter data
dependence. We use the usual visibility rules for variables in nested blocks,
the notions of successor and predecessor have to be applied accordingly. Note
that the successor/predecessor relation between module activations is given by
the structure edges between the corresponding nodes. If a module activation
A(. . .,[out]a) with an output parameter a is predecessor of module activation
B([in]a,. . .) with an input parameter a and there is no module activation C
with the following property: C is successor of A, C is predecessor of B, and C has
an output parameter a, then the directed data edge (A,B) has to be added to
the module graph.

Annotations to data edges store information about the corresponding pa-
rameters (cf. Figure 7); in the sections below we give additional information
about the data stored.

Corresponding module specification
[ for a better readability:
in/outs are indicated ]

{ A([in] a, b, [out] c) ‖ B([in] a, [out] d) }
◦{ C([in] d, out . . .) ‖ D([in] c, d, [out] . . .) }

B

 C D

A 

(c,c) 
(d,d) 

(d,d) 

Figure 7: Module graph (data edges).

Data operations A data edge (A, B) between two modules represents a data
transfer from module A to module B. Usually, such a transfer involves data
distribution operations. We denote with data operations of an edge (A, B) data
transfer operations from module A to module B represented by the edge (A, B),
i.e., data distribution operations concerning the parameters mentioned in the
annotations of (A, B).
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5.3 Composed Modules, Loops, and Conditionals

5.3.1 Composed Modules

Input/output node A composed module C is represented by two modules:
IM(C) = C0, OM(C) = C1.

The corresponding nodes C0, C1 represent the input/output node of the graph,
respectively. These two nodes represent the ”hull” of the module graph, they
are the connection points for the graph to the environment; edges, i.e., structure
and data edges, to/from the composed module C end/start at the node C0/C1,
respectively.

Let M be the module expression inside the composed module. There are
structure edges from C0 to M and from M to C1, namely the structure edges
{(C0,A); A ∈ IM(M)} and {(A,C1); A ∈ OM(M)}. Example: in Figure 8 the
structure (solid lines) edges (C0,A) and (A,C1).

Parameters There are also special rules to be applied to the parameters of
the composed module C. We define:

IN(C0) = IN(C), OUT(C0) = NIL,
IN(C1) = NIL, OUT(C1) = OUT(C).

The descriptions for the parameters in IN(C0) and OUT(C1) take the descrip-
tion of the corresponding parameters of C.

If a is an input parameter of C and A is a module activation inside the
composed module having a as an input parameter, and there is no module
activation B with: B is successor of C0, B is predecessor of A, and B has an output
parameter a, then an oriented data edge (C0,A) is generated. Analogously, for
an output parameter of the composed module an oriented data edge (A,C1) is
generated.

Note that in the case of the composed module, we connect input parameters
of the composed module to input parameters inside the composed module and
output parameters to output parameters.

The corresponding module specification
[ for a better readability: in/outs are
indicated, data types are left out ]

module C (in a, out c)
assign

{ A([in] a, [out] b)
◦ B([in] a, b, [out] c)
}
end

B(in a,b, out c)

 A (in a, out b)

C0 (in a) 

C1(out c)

(a,a)

(a,a) (b,b)

(c,c)

Figure 8: Module graph for a composed module.

Example In Figure 8 the data (dashed lines) edges (C0,A) and (C0,B) for
the input parameter a, and data edge (B,C1) for the output parameter c are
inserted.
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5.3.2 Sequential Loops

The idea behind the construction of subgraphs for sequential loops is to offer
a possibility to specify data distribution operations caused by looping, without
using backward edges and, thus, preserving an acyclic graph. Therefore, we
splitt the loop in two modules representing the beginning and the end of the loop,
respectively. Data distribution operations caused by the looping are substitute
by data operations from the inside of the loop towards the loops’ end module.

Input/output nodes A sequential for loop F is represented by two modules
F0 and F1; module F0 represents the input module, module F1 represents the
output module, i.e.,

IM(F) = F0, OM(F) = F1.

Corresponding module
specification with
sequential loop
[ for a better readability:
in/outs are indicated ]

P([in] . . . , [out] a, b)
◦ for(. . .)
{
{ A([in] a, b, [out] c, d)
◦ B([in] a, c, [out] b)
}
‖ C([in] b, d, [out] e)
}
◦ Q([in] e, . . .)

F0(in (a,A),(a,B),(b,A),(b,C),(d,C))

(b,(b,C)) [1]
(b,(b,A)) [1]
(a,(a,B)) [1]
(a,(a,A)) [1]

P (in ...,
     out a,b)

(d,(d,C)) [1]

A (in a,b,
     out c,d)

C (in b,d,
     out e)

(c,c) [n]

 B (in a,c,
      out b)

(b,(b,A)) [n]
(b,(b,C)) [n]

F1(in (a,A),(a,B),(b,A),(b,C),(d,C),
 out (b,B),(c,A),(d,A),(e,C)) 

(d,(d,C)) [n]

((e,C),e) [1] ((b,B),b) [1]
((c,A),c) [1]
((d,A),d) [1]
((e,C),e) [1]

Q (in e,
     out ...)

Figure 9: Module graph containing the subgraph for a sequential loop.

Figure 9 illustrates a subgraph corresponding to a fragment of a module
specification containing a sequential loop. The nodes corresponding to F0 and
F1 represent the interface of the sequential loop to module activations of the
composed module, i.e., they are the connection points for the subgraph. Struc-
ture edges from other modules of the composed module directed to the for loop
ends at the node F0. Structure edges from the for loop directed to other modules
of the composed module begins at the node F1. We construct the subgraph for
the sequential loop as if the expression F0 ◦ M ◦ F1 would be part of the composed
module (M denotes the module expression inside the loop).

Parameters F0 and F1 represent the loop’s interface; we determine the I/O
parameters of the loop and assign them to the new nodes. Data edges from
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outside the loop end at F0, data edges from the loop towards outside the loop
begin at F1.

The input parameters of the loop are input parameters of module activations
from inside the loop. These parameters get in the first iteration step their values
from outside the loop. In subsequent iteration steps, they (partly) may get the
values from inside the loop. These parameters are the input parameters of node
F0 and F1. For example, in Figure 9 the input parameters of the loop include
all input parameters of module A, all input parameters of module C, and from
the input parameters of module B only those parameters which are not ”fed” by
output parameters of module A, i.e., from module B only parameter a (parameter
c gets its value from the output parameter c of module A).

The output parameters of the loop are output parameters of the module ac-
tivations from inside the loop. Those are the output parameters of node F1.
In Figure 9, the list of output parameters includes the output parameters of
activations of modules A, B and C.

We are interested in the set of parameters ”visible” outside the loop, i.e.,
input parameters which get their values from outside the loop and output pa-
rameters which give their values to module parameters outside the loop. The
idea is that in order to represent the interface from the modules inside the
loop to the modules outside the loop, F0 and F1 need a precise description of
the parameters from inside the loop. We need for these parameters not only
the name but also additional information like, e.g., the data distribution. This
information is bound to the corresponding module activation.

In order to obtain this information, we enlarge for these nodes the informa-
tion stored in parameter lists and we define INp/OUTp as being the precise in-
put/output parameter list which considers not only the parameter name but also
the corresponding parameter description taken from the corresponding module
activation. Thus, an element (a,A) of a precise list includes not only a, the
parameters name, but also A, the id of the node corresponding to the concerned
module activation. See, e.g., in Figure 9 the parameter list for the node F1:
(a,A) means the parameter a with type and data distribution specified at the
activation of module A (in this example we do not make a difference between
module activation and the corresponding node id, unless the correspondence is
not clear), (a,B) means the parameter a with type and data distribution spec-
ified at module B.

Let M be the module expression inside the loop and let INp(M)/OUTp(M) be the
precise input/output parameter list of the loop. According to the explanations
above, we have:

IN(F0) = INp(M), OUT(F0) = NIL, (1)
IN(F1) = INp(M), OUT(F1) = OUTp(M),

i.e., the precise input parameter list of the loop is assigned as input parameter
list to both nodes F0 and F1, the precise output parameter list of the loop is
assigned as output parameter list to output node F1. Input node F0 has an
empty output parameter list.

Construction of precise parameter lists As next, we describe in detail the
construction rules for obtaining the precise lists INp(M) and OUTp(M). In order to
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construct a precise list, we first construct the set of non NIL elements included
in the list and subsequently we generate the precise list by sorting the elements
and adding the NIL elements required by the lists definition. We denote with
Set(Lp) the set of non NIL elements of a precise list Lp.

First, we introduce the operation \c, a coarse minus. When applied to two
sets Ap, Bp of precise elements, the operation eliminates the elements having
correspondings with the same parameter name in the second set. The operation
is defined as follows:

Ap \c Bp = { (a,A)∈Ap; there is no element (a,B)∈Bp }.
For example, let be the following fragment of a module specification (A, B, C,
and X are module activations, in/out parameters are indicated in comments):

X([out]a, c) ◦ {A([in]a, b) ‖ B([in]a) ‖ C([in]b)}.
By using the operation \c we determine the set of parameters which gets their
input values from modules located before module X:

{(a,A),(a,B),(b,A),(b,C)} \c{(a,X),(c,X)} = {(b,A),(b,C)}.

The construction of sets of precise elements is recursive, following the struc-
ture of the module expression concerned. For M, M1, M2 module expressions,
A module activation, we define recursively over the structure of M the sets
Set(INp(M)) and Set(OUTp(M)) which represent the sets of input/output param-
eters visible outside the concerned module expression M:

Set(INp(M)) =




{(a,A); a input parameter of A} for M = A
Set(INp(M1)) for M = {M1}
Set(INp(M1)) ∪ Set(INp(M2)) for M = M1 ‖ M2
Set(INp(M1)) ∪ (Set(INp(M2)) \c Set(OUTp(M1)))

for M = M1◦ M2

Set(OUTp(M))=




{(a,A); a output parameter of A} for M = A
Set(OUTp(M1)) for M = {M1}
Set(OUTp(M1))∪ Set(OUTp(M2)) for M = M1 ‖ M2
(Set(OUTp(M1)) \c Set(OUTp(M2))) ∪ Set(OUTp(M2))

for M = M1◦ M2
For F0 and F1, the input and output node of the sequential loop, we compute

the sets Set(IN(F0)), Set(IN(F1)), and Set(OUT(F1)) by using these construc-
tion rules and definition (1). The module expression M used in this case is the
module expression inside the sequential loop. We obtain the parameter lists
IN(F0), IN(F1), and OUT(F1) by lexicographically sorting the corresponding set
elements (first sorting criterion is the parameter name and second criterion is
the module name). Finally, in order to determine the parameter lists for F0
and F1, we have to determine the order of the elements. Therefore, the input
parameters are listed first, followed by the list of output parameters. As an
example, in Figure 9 the parameter lists of the nodes F0 and F1 are specified in
detail.

Nodes inside the sequential loop Nodes representing modules inside the
sequential loop are generated as usual. Their only special property is that mod-
ules inside the loop are performed repeatedly. A repeating annotation, attached
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to each one of the nodes inside the sequential loop, stores the number of loop
repetitions. If this information is not explicitly mentioned in the loop specifica-
tion, then a default value is assumed.

Structure edges Let M be the module expression inside the loop. Structure
edges inside M are constructed as usual. Additionally, there are structure edges
for connecting the nodes F0 and F1 to the nodes of M. They are constructed
as if the expression F0 ◦ M ◦ F1 would be part of the composed module, i.e., we
construct the structure edges {(F0,A); A∈ IM(M)} and {(B,F1); B∈ OM(M)}.
Example: in Figure 9 these are the edges (F0,A), (F0,B), and (B,F1), (C,F1),
respectively.

Data edges The repeated operations of a sequential loop are ’emulated’ by
the module graph in two ways: by nodes with a repeating annotation and which
represent the modules inside the loop, and by data edges which represent the
data distribution operations. There are several kinds of data edges, depending
on the data distribution operations represented: distributions performed only
once at the beginning or at the end of the loop, and distributions performed
in each loop iteration. In the following we describe each data edge type in
detail. Let M be the module expression inside the loop. All examples given
below refer to Figure 9. In this figure, we specified in brackets attached to
each data edge, the number of iterations to be performed for the data operation
represented: [n] represents a data operation which has to be performed for
each loop iteration, [1] means a data operations which is performed only once.
Actually, this information is derived from the repeating annotation (see above)
attached to nodes.

• There are data edges inside the subgraph corresponding to M, i.e., oriented
data edges (A,B) with A and B nodes corresponding to module activations
in M. These edges are generated as usual. Data operations represented by
these edges have to be performed for each loop iteration.
Example: data edge (A,B) for parameter c.

• There are data edges which represent data operations caused by connect-
ing the modules inside M to modules outside the loop. The corresponding
data operations are performed only once, at the beginning or at the end
of the loop.
Data edges for input data for module activations inside M, when data
is coming from module activations outside the loop, are represented by
oriented edges {(A,F0); A a node outside the loop subgraph}. The input
parameters of node F0 take the description of the corresponding input
parameters in M. This feature is preserved in all subsequent processes, cf.
Section 5.3.3. Data operations represented by these edges are performed
only once at the beginning of the loop.
Example: data edge (P,F0) for parameter a of module A (annotation
(a,(a,A))) and data edge (P,F0) for parameter a of module B (annotation
(a,(a,B))). Input parameter (a,A)/(a,B) of F0 takes the description of
the input parameter a of module activation A/B, respectively.
Data edges for output data from module activations in M going to module
activations outside the loop are represented by oriented edges {(F1,B); B a
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node outside the loop subgraph}. The output parameters of node F1 take
the description of the corresponding output parameters in M and preserve
this feature in all subsequent processes, see Section 5.3.3. Data operations
represented by these edges are performed only once at the end of the loop.

Example: data edge (F1,Q) for parameter e of module C (annotation
((e,C),e)). Output parameter (e,C) of F1 takes the description of out-
put parameter e of module activation C.

• There are data edges for looping, i.e., data edges which represent the data
operations caused by the sequential looping, and represented by oriented
edges {(A,F1); A ∈ M}. Data operations represented by these edges have
to be performed for each loop iteration. The input parameters of node F1
take the description of the corresponding input parameters from inside M
and preserve this feature in all subsequent processes.

Example: data edge (B,F1) for input parameter b of module A (annotation
(b,(b,A))), data edge (B,F1) for parameter b of module C (annotation
(b,(b,C))), and data edge (A,F1) for parameter d of module C (annota-
tion (d,(d,C))).

5.3.3 Context Dependent Information

An important function of input and output nodes of a sequential loop is to
transfer information about parameters inside the loop to modules outside the
loop. For technical reasons, we record the information about parameters in the
parameter lists of the respective input/output nodes, although the information
is not local to these nodes and cannot be fixed in these nodes. All information,
e.g., concerning data distribution, is fixed inside the loop at the nodes where
the parameter actually belongs.

We introduce an additional annotation called context dependence. Nodes
having this annotation have to get their information, e.g., information about
data distribution of parameters or about the processor group used, from another
node.

F0/F1, the input/output nodes of a sequential loop, are context dependent
nodes. Example: in Figure 9, input parameter (a,A) of F1 is only a wildcard,
the actual parameter is input parameter a in module A. Actually, node F1 has
no information concerning a, e.g., on data distribution, so that F1 always gets
this information from A.

Besides the sequential loop input and output nodes, we will see in Section 7
that input and output nodes of a composed module are also context dependent:
the input node depends from the output node and vice versa, this dependence
relation is reciprocal.

5.3.4 Parallel Loops

The meaning of a parfor loop is that several identical module expressions can
be performed concurrently. All these expressions are identical to the module
expression inside the parfor loop. The number of existing expressions is known
at compile time, i.e., as mentioned in Section 4.1, the conditional expression of
the parallel loop contains only scalars and has no reference to data distribution
or to processors used.
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The construction of the module graph for a parallel loop is in several points
similar to the construction of the graph for the sequential loop, so that we refer
to the previous Section 5.3.2 and we point out only differences. These differ-
ences are mainly caused by the fact that in parallel loops there is no iteration:
instances are performed concurrently, there is no data transfer between them.

A parallel parfor loop P is represented by two nodes: node P0 represents the
input node of the subgraph, node P1 represents the output node of the subgraph.
Let M be the module expression inside the loop and let INp(M)/OUTp(M) be the
precise input/output parameter list of the loop. We define:

IN(P0) = INp(M), OUT(P0) = NIL,
IN(P1) = NIL, OUT(P1) = OUTp(M),

i.e., the loop’s precise input parameter list is assigned as input parameter list to
node P0, the loop’s precise output parameter list is assigned as output parameter
list to output node P1. Input node P0 has an empty output parameter list, output
node P1 has an empty input parameter list.

Nodes P0 and P1 are the connection points of the parallel loop’s subgraph
with subgraphs corresponding to module activations of the composed module
situated outside the loop. Structure edges from outside the loop ends/begins at
node P0/P1, respectively, i.e.,

IM(P) = P0, OM(P) = P1.
Additionally, data edges for connecting the parallel loop to subgraphs corre-

sponding to module activations outside the loop ends/begins at P0/P1, respec-
tively. Data edges inside the loop are constructed as usual.

Corresponding module
specification with
parallel loop
[ for a better readability:
in/outs are indicated ]

P([in] . . . , [out] a, b)
◦ parfor(. . .)
{
{ A([in] a, b, [out] c, d)
◦ B([in] a, c, [out] b)
}
‖ C([in] b, d, [out] e)
}
◦ Q([in] e, [out] . . .)

P0(in (a,A),(a,B),(b,A),(b,C),(d,C))

P (in ...,
     out a,b)

A (in a,b,
     out c,d)

C (in b,d,
     out e)

(c,c) 

 B (in a,c,
      out b)

 out (b,B),(c,A),(d,A),(e,C)) P1(

Q (in e,
     out ...)

((b,B),b)
((c,A),c)
((d,A),d) 

((e,C),e)

(d,(d,C))(a,(a,A))
(a,(a,B))
(b,(b,A)) 
(b,(b,C))

Figure 10: Module graph containing a subgraph for a parallel loop.
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By using Figure 10, now we point out the specific attributes of the graph:

• There are data edges inside the subgraph corresponding to M, i.e., oriented
data edges (A,B) with A and B nodes corresponding to module activations
in M. These edges are generated as usual.
Example: data edge (A,B) for parameter c.

• There are data edges which represent data operations caused by connect-
ing modules inside M to modules outside the loop. The corresponding data
operations are performed only once, at beginning or end of the loop. Note
that such a data operation represents several data operations performed
concurrently, the number of concurrent repetitions depends on the num-
ber of loop iterations. For output data, it is on the programer to ensure a
correct data gathering.
Example: data edge (P,P0) for parameter a of module A (annotation
(a,(a,A))) and data edge (P,P0) for parameter a of module B (annota-
tion (a,(a,B))). Input parameter (a,A)/(a,B) of P0 takes the description
of the input parameter a of module activation A/B, respectively.
Data edge (P1,Q) for parameter e of module C (annotation ((e,C),e)).
Output parameter (e,C) of P1 takes the description of output parameter
e of module activation C.

5.3.5 Conditionals

Corresponding module
specification with a
conditional
[ for a better readability:
in/outs are indicated ]

P([in] . . . , [out] a, b)
◦ if(. . .)
{
{ A([in] a, b, [out] c, d)
◦ B(in a, c, [out] b)
}
‖ C([in] b, d, [out] e)
}
◦ Q([in] b, c, e, [out] . . .)

     out e)
C (in b,d,A (in a,b,

     out c,d)

(b,(b,C))
(b,(b,A))
(a,(a,B))
(a,(a,A))

P (in ...,
     out a,b)

(d,(d,C))

(c,c) 

I0(in (a,A),(a,B),(b,A),(b,C),(d,C))

 B (in a,c,
      out b)

 I1(out (b,B),(c,A),(d,A),(e,C)) 

((e,C),e)

Q (in b,c,e,
     out ...)

((b,B),b)
((c,A),c)
((d,A),d)

Figure 11: Module graph containing a subgraph for a conditional.
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The construction of the module graph for a conditional, is similar to the con-
structions described in previous sections. Figure 11 illustrates a module graph
containing a subgraph corresponding to a conditional. Let M be the module ex-
pression inside the conditional. The subgraph corresponding to M is constructed
as usual. The frame of the subgraph for a conditional is given by two nodes:
input node node I0 and output node I1 with

IN(I0) = INp(M), OUT(I0) = NIL,
IN(I1) = NIL, OUT(I1) = OUTp(M).

5.4 Example of a Module Graph

Figures 12 and 13 illustrate the module graph corresponding to the module
specification of the conjugate gradient iteration specified in Figure 4. The in-
formation contained in the composed module specification is transformed into a
module graph with 23 nodes (2 nodes for the composed module, 2 nodes for the
sequential loop, and 19 nodes for basic module activations), 43 structure edges,
and 53 data edges. In order to have a better overview of the graph, we illustrate
structure and data edges in two separate figures and we leave out annotations
to data edges.

5.5 Section’s Summary and Outlook

In this section we described the construction of the module graph, a directed
acyclic graph which records information given by the programer in the module
specification. The module graph does not contain more information than the
module specification but the information is easier accessible. In order to do so,
some technical construction was performed. In subsequent steps we will use
exclusively the module graph and we will reduce all questions concerning the
initial module specification to questions solely concerning the module graph.

The construction of the module graph is a recursive process, we described
in this section the construction steps for basic language elements, i.e., for mod-
ules (Section 5.1), composed modules (Section 5.3.1), loops (Section 5.3.2 and
5.3.4), and conditionals (Section 5.3.5), and we detailed the rules for connecting
subgraphs together (Section 5.2).

In Section 5.4 we illustrated the module graph constructed for the conjugate
gradient method.
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 7    op_assign

 3   vv_prod  4   vv_prod

 2    mv_prod

 21   for0

    0   CG_0

 5   vv_prod  6   vv_prod

 8    sv_prod  10    sv_prod  13    sv_prod  17    assign

 18    vv_add 11    vv_sub

 16    sv_prod

 9    vv_add

 20    vv_sub

 22   for1

    1   CG_1

 12   op_assign  14   op_assign  15   vv_assign

 19   vv_assign

Figure 12: Module graph (only structure edges) for the conjugate gradient iter-
ation. For the module specification confer Figure 4.
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    0   CG_0

 21   for0

 2    mv_prod

 4   vv_prod 3   vv_prod  5   vv_prod

 7    op_assign

 6   vv_prod

 12   op_assign  14   op_assign  15   vv_assign

 8    sv_prod  10    sv_prod  13    sv_prod

 18    vv_add 11    vv_sub 9    vv_add

 20    vv_sub

 19   vv_assign

 16    sv_prod  17    assign

 22   for1

    1   CG_1

Figure 13: Module graph (only data edges) for the conjugate gradient iteration.
For the module specification confer Figure 4.
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6 Design Decisions

Our design decision problem consists in determining the execution order of tasks,
on assigning groups of processors to tasks, and on selecting implementations
from several implementation versions which differ in the number of processors
and on the data distribution used, such that on a given target machine a min-
imal global execution time results. Because of non-linear execution times for
tasks and communication operations, it is usually difficult to select the most effi-
cient execution order and to determine the size of processor groups accordingly.
Already the ’simple’ problem of determining the execution order of tasks with
linear execution times is NP-complete [26]. Likewise, the problem of finding
a data distribution that provides a minimal communication overhead is NP-
complete [43, 42].

In this section we define the scheduling problem which we want to solve
and the technical frame in which design decisions are taken, i.e., we describe
the runtime estimation functions used for estimating the efficienty of a solution
proposed. Runtime includes computation and communication costs. Compu-
tation costs are estimated by means of runtime functions described and used
in [55, 56]. Communication costs are evaluated in dependence of the amount
of data transferred and of the point to point communication functions used
[57, 60, 34].

Design decisions are taken for a given target machine, the machine’s param-
eters are parameters of the runtime estimation and of the communication cost
estimation function.

6.1 Scheduling Problem

Scheduling Let {t1, . . . , tn} be a set of tasks corresponding to module acti-
vations in a module specification, and let {vti1 , . . . , vtimti} be the set of implemen-
tation versions available for a task ti, i = 1, . . . , n. Implementation versions
are provided, for example, as library functions. In a module specification sev-
eral module activations may correspond to the same module. Thus, for each
one of these activations the same implementation versions are available, i.e.,
{vti1 , . . . , vtimti} = {vtj1 , . . . , v

tj
mtj

} for ti, tj, i 6= j, being module activations
corresponding to the same module.

Let P be a set of identical processors. The scheduling is a function

s : {t1, . . . , tn} → IR× 2P × ∪n
i=1{vti1 , . . . , vtimti}
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with s(ti) = (si, pi, vi), si being the start time for the execution of task ti,
pi ⊆ P the group of processors executing ti, and vi an implementation version
available for ti.

Valid schedule Let comp time(ti, vi) be the computation costs (the compu-
tation time) which accrue when executing implementation version vi of task ti;
comm time(ti, vi) denotes the communication costs (cf. Section 6.3) associated
to (ti, vi).

A schedule is valid with reference to a given module graph if for all tasks
ti, tj, i, j = 1, . . . , n, the following conditions hold (condition 1 expresses that
dependent tasks have to be executed sequentially according to the precedence
relations; condition 2 expresses that independent tasks must be executed by
disjoint groups of processors if their execution time intervals overlap):

1. if there is an edge (ti, tj) in the module graph then
si + comp time(ti, vi) + comm time(ti, vi) ≤ sj.

2. if there is no path (ti, . . . , tj) or (tj, . . . , ti) in the module graph and
si ≤ sj ≤ si + comp time(ti, vi) + comm time(ti, vi) or
sj ≤ si ≤ sj + comp time(tj, vj) + comm time(tj, vj) then pi ∩ pj = ∅.

Scheduling problem The total execution time of a valid schedule s is:

T(s) = maxi=1,...,n{si + comp time(ti, vi) + comm time(ti, vi)}.
The scheduling problem is to determine a valid schedule that minimize the

total execution time T(s).

6.2 Runtime Estimation

The most important evaluation criteria of a parallel program is the total ex-
ecution time, i.e., the time between start and termination of the program’s
computation. As defined above, this time consists of the time needed for task
computation and the time needed for communication between tasks, i.e., for
data (re)distribution. The task computation time depends on the algorithm
implemented and on the data distribution used. Data distribution time de-
pends on the number of processors and on the data distribution used. The
choice of a suitable data distribution is an important issue of an efficient global
execution time [60].

Data distribution time Technically, data distribution is accomplished by
means of a (bijective) map from a global index set to a set of local index sets.
In order to determine an optimal data distribution that leads to a minimal
global execution time, we consider analitically derived execution time functions
that include information about various data distributions as parameters.

For describing data distribution we adapt the parameterized data distribution
proposed in [23] and [60]. According to this description, each data distribution
of a d dimensional array of size n0 × . . .× nd−1 among a set of p processors can
be described by a distribution vector of the form
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n/(m b ) superblocks

m  blocks1 

m  blocks0 

(0,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

b  elements

b  elements0 

1 

n/(m b ) superblocks 1  1

 0   0

distribution

vector :
((4, 3), (2, 6))

d = 2

m0 = 4

b0 = 3

m1 = 2

b1 = 6

Figure 14: Distribution of an n × n array among 8 processors (example taken
from [60]).

((m0, b0), . . . , (md−1, bd−1))

with p =
∏d−1

i=0 mi and 1 ≤ bi ≤ ni. The value mi specifies the number of
processors in dimension i. The value bi specifies the block size in dimension i.
For an example see Figure 14.

Such a distribution vector describes, depending on the actual parameter
values, various data distributions. For example, if bi = 1 for i = 1, . . . , d − 1,
then the vector describes a cyclic distribution, if mi ·bi = ni, the vector describes
a block distribution.

Thus, we have a uniform description for various data distributions and we
use this description to estimate the volume of data to be transferred for distri-
bution. We assume that each one of the source processors communicates with
each one of the destination processors of the distribution, i.e., we assume that
data is evenly distributed among the processors and, thus, the communication
costs are evenly distributed.

The communication itself is realized by single to single transfer, whose execu-
tion time depends on the parameters of the target machine model used: number
of processors, startup time for point to point communication, byte transfer time,
bandwidth of the interconnection network, see [12, 57, 34] for details.

In the examples presented, we used the runtime functions generated by [57]
for prediction of communication time. These functions are efficient and provide
accurate results for the examples used. As an example we present the runtime
formula for MPI on the IBM SP2 for the single-transfer operation (the values b
and p are the message size in bytes and the number of processors, respectively):

fcfsingle(b) = 211.8 · 10−6 + 0.030 · 10−6 · b [µsec].

The runtime functions generated in [34] are more precise but much more
complex. They have to be used for finer granulated runtime predictions. As an
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example see below the runtime formula fGPsingle predicting the execution time of
the single-transfer operation for MPI on the IBM SP2

fGPsingle(p, b) = ln(1+ ((11.339 · 10−6 · (b +
√
437.8 · b ) + e

√
b·10−7 ·

ln(e
4√

b + 25.995) · 0.010614) · ln(b+ 241.026) · 10−6·
(ln(b7/4 · 148.41 · 10−12 · b · (b + 10−6) + 10)·
log((b · 10−6 + 8103.083+ e

4√b) · (28 · b2 + 1.0986) · b · 4 + 4)
·1096.6 · (−13.81) · 10−6 + 218.826)) [µsec]

Computation time A composed module consists of tasks which represent ba-
sic modules, i.e., modules which are computed in a data parallel manner. Com-
putation time of a basic module can be measured time, e.g., for already available
library functions, or it can be an analytically derived estimation function. We
use a runtime estimation model for SPMD programs in message-passing style
[54]. Investigations for several applications from numerical analysis show that
the runtime prediction formulas describe the execution time accurately enough
to compare different execution schemes of the same application [60, 34].

6.3 Communication Costs

In this section we want to point out the communication costs associated to a
task. In terms of the module graph, communication costs are costs of data
operations (cf. Section 5.2) associated to data edges. For a data edge (ti, tj),
communication costs are costs for (re)distributing data from a group of proces-
sors pi to a group of processors pj.

Communication costs consist of costs for sending data and costs for receiving
data. For a task ti, costs for sending data are associated to data edges (ti, tk)
starting at ti, costs for receiving data are associated to data edges (tj, ti)
ending at ti.

Several communication operations performed by the same processors are as-
sumed to be worked off sequentially. comm costs((ti, tj)) denotes the communi-
cation costs associated to edge (ti, tj) and comm costs(ti, (ti, tj)) denotes the
part of comm costs((ti, tj)) associated to task ti. Thus, the communications
costs associated to task ti are:

comm costs(ti) =
∑

j comm costs(ti, (tj, ti)) +
∑

k comm costs(ti, (ti, tk))

Evaluation strategy In general, communication costs associated to an edge
(ti, tj) may be added completely/partially to the source task ti or/and to the
end task tj, depending on the execution time evaluation strategy used. Our
strategy is to add the communication costs completely to the source task, due
to the following considerations:

• Experiments made did not notify significant differences between the two
approaches: adding costs to source task or adding costs to receiving task.
Figure 15 illustrates the results of the two strategies (denoted in the figure
with source and destination, respectively) applied to a scheduling run
for the CG method. The experiments were made by using the runtime
formula for MPI on the IBM SP2 (cf. Section 6.2) for 4 processors, a
vector size of 300, and a maximum of 400 generations.
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Figure 15: Evolution of costs.

For each one of the strategies applied, the figure shows the evolution of
costs for the best individual found (denoted as best ) and the evolution
of average costs of individuals of the population (denoted as average ).
In this example, the difference between the final results of the two eval-
uation strategies, i.e., between the best individuals found, is very small,
less that 2%. One of the runs stopped about 250 generations because no
improvement was achieved in the last 100 generations.

• Independent of the strategy used, the receiving processors cannot start
with the execution of a task until the data is received, i.e., until the com-
munication time is expired.

• In the finally generated C+MPI program we use blocking send and receive
operations, i.e., the send processors are blocked until the send buffer can
be reclaimed. Similarly, the receive function blocks until the receive buffer
actually contains the contents of the message.

6.4 Target Machine

Even if we did not specify it explicitly until now, all design decisions refer to
a well defined target machine: a machine with a defined number of processors
and with a specific runtime behaviour.

The information about the target machine is implicitly coded into the infor-
mation used for the runtime evaluation:

- there is a given number of processors available,

- runtime formulas used for evaluating data transfer are derived from ex-
periments made on the target machine,
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- analytically derived estimation function for the computation time are also
derived from experiments made on a concrete machine, and

- run times for library functions are measured on a defined machine, too.

Thus, a solution for the scheduling problem is always a solution for the
scheduling problem on a well defined target machine.

6.5 Section’s Summary and Outlook

In this section we defined our scheduling problem (Section 6.1), which is en-
larged in comparison with usual scheduling problems. Our scheduling problem
is a multi-dimensional problem: we want to determine the execution order of
tasks and assign groups of processors to tasks, but we also want to select im-
plementation versions with appropriate data distribution, such that a minimal
global execution time on a well defined target machine results. For this quite
large optimization problem we use a genetic algorithm approach, an approach
which we detail in the next section.

Additionally, we described in this section the functions used for estimating
computation (Section 6.2) and communication costs (Section 6.3).
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7 Genetic Algorithms

The search space for our scheduling problem is vast (as mentioned in Section 1,
the problem is NP-complete [26]), a solution of the scheduling problem includes
besides the execution order of the tasks, the processor groups to be assigned to
each tasks, and for each task an individual version selected from a set of versions
which differ by implementation, data distribution, number of processors used,
and computation time consumed.

In this section we will describe how the scheduling problem can be solved
by using a genetic algorithm (GA) approach: we give an overview of the GA
paradigm, describe the problem’s coding, and the functions used.

7.1 Overview on the Genetic Algorithm Approach

initialize(population) (cf. Section 7.3)
while not good enough(fitness(population)) (cf. Section 7.6)

select(population)

mutation(population) (cf. Section 7.4)
crossover(population) (cf. Section 7.5)

Figure 16: Overview on the genetic algorithm.

The usual form of genetic algorithms was described by Goldberg [33]. GAs
are stochastic search techniques based on the mechanism of natural selection
and natural genetics. They start (cf. Figure 16) with an initial population, i.e.,
an initial set of random solutions which are represented by chromosomes. The
chromosomes evolve through successive iterations, called generations. During
each generation, the solutions represented by the chromosomes of the population
are evaluated using some measures of fitness. To generate the next generation,
new chromosomes are formed. The chromosomes involved in the generation of
a new population are selected according to their fitness values. Fitter chromo-
somes have higher probabilities of being selected. After several generations, the
algorithm converges to the best chromosome which represents the (sub)optimal
solution of the problem.
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7.2 The Chromosomes

Chromosomes An individual (a chromosome) represents a solution of the
scheduling problem by giving the relative execution order of the tasks, by se-
lecting for each task an appropriate version, and by associating to each task a
group of processors. A chromosome consists of 3 substrings of the same length:
task part, version part, and processor part (details below). Three genes (t, v, p)
belong together. The meaning is: a processor group p is available for the exe-
cution of version v of task t.

Example In Figure 17, the elements on position 3 belongs together, the mean-
ing is: a processor group coded by 15, i.e., the processors 0, 1, 2, and 3, details
below, is available for the execution of version 2 of task 5.

0 1 2 3 4 5 6 7 (position)

0 | 2 | 6 | 5 | 4 | 3 | 7 | 1 (task part)
14 | 8 | 3 | 2 | 1 | 0 | 0 | 14 (version part)
15 | 15 | 1 | 15 | 2 | 8 | 4 | 15 (procs part)

Figure 17: A chromosome.

Genes Chromosomes are build up by genes. A gene of the task part corre-
sponds to a node of the module graph. Due to technical reasons (cf. Section 5)
this is not an one to one correspondence to modules of the module specification,
but there is a bijective mapping between genes of the task part and nodes of
the module graph.

Remember that there are dependencies between tasks expressing whether
two tasks have to be executed sequentially (or can be executed concurrently),
which have to be meet by a valid schedule. Thus, the tasks in a valid schedule
are topologically sorted according to the module graph edges.

A gene of the version part represents a version of the corresponding task.
Each task has one or more versions, e.g., different library functions, which may
differ by the algorithm implemented, by the data distribution of parameters, or
by the number of processors needed for execution.

A gene of the processor part codes the processors available for executing the
corresponding task. We interpret the gene as a binary: a value 1 on position i
means that processor i is available for the execution of the corresponding task.

Examples All examples in the next subsections are parts of chromosomes
which code a schedule of the composed module from Figure 4. The task ids
refer to the nodes of the module graph illustrated in Figures 12 and 13.

7.3 Chromosome Initialization Operation

The initialization operation is called at the beginning of the GA process and
it generates the new individuals of the first population. The operation takes
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into consideration that a chromosome is build up of three distinguished parts.
First, the task part is initialized, subsequently, the version part, and, last, the
processor part genes get their values.

Initialization The genes of the task part are assigned randomly, each task
appears once. Subsequently, in order to obtain a valid schedule, the tasks are
topologically sorted according to the module graph edges. As an example see
Figure 18; the corresponding module graph is illustrated in Figures 12 and 13.

randomly 3 | 19 | 0 | 15 | 16 | 17 | 6 | 8 | 13 | 7 | 4 | 18 |

20 | 5 | 12 | 1 | 14 | 22 | 21 | 11 | 9 | 2 | 10

after sorting 0 | 21 | 2 | 5 | 4 | 6 | 3 | 14 | 12 | 13 | 7 | 8 |

9 | 15 | 17 | 16 | 18 | 19 | 20 | 10 | 11 | 22 | 1

Figure 18: Task part genes.

A task description stores for each task an individual set of possible versions.
For tasks corresponding to the same module the same versions (cf. Section 6.1)
are available. In a second step, each gene of the version part gets a randomly
selected value taken from the set of possible versions of the corresponding task.

The values of the processor part genes are assigned last. They have to fit with
the corresponding task and version values. Some implementations, i.e., some
task versions, predefine the number of processors needed, other implementations
allow a varying number of processors. In this case, the number of processors is
determined randomly. The group of processors used is initialized randomly, i.e.,
we determine randomly the processors and code the values binary.

Context dependence During the initialization operation there is a special
handling for the tasks 0 and 1. These tasks are dependent from each other,
both correspond to the composed module and represent the input and output
node of the module graph, nodes C0 and C1, respectively. Between the two nodes
there is a reciprocal dependence relation, i.e., they represent the same task and
thus, selected version and number of processors used have to be the same for
both. The relation is a context dependence relation, it was already introduced
in Section 5.3.3. This relation implies some extra operation for the tasks during
the GA process, too.

Experiments At the beginning of our experiments we generate each chromo-
some of the first population randomly. Experiments showed that the results
are better if the initial population includes ”good” individuals, e.g., if a part
of the initial population is taken from a previous (GA or another approach)
scheduling.
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7.4 Mutation Operation

The mutation operation generates a new individual by randomly changing a ran-
domly selected individual of the population. The position where the operation
is performed is randomly selected, too. There is no guarantee that a mutation
operation really achieves a change. For some values there is no valid alternative.
A scheduling chromosome fulfills some rules, e.g., tasks are topologically sorted,
and it is not always possible to make a change at a randomly selected position
without violating these rules. Different mutation operations are developed for
different parts of the chromosome.

Processor part mutation randomly changes the group of processors as-
signed to a task. If the corresponding task version does not expect a predefined
number of processors then, first, the number of processors is determined ran-
domly. Figure 19 shows the mutation operation on processor part position 2.
Version 3 of task 6 does not expect a predefined number of processors, so the
number of processors, 2, is determined randomly. Then, we randomly select
processors 1 and 2 (binary coded by 6).

position 0 1 2 3 4 5 6 7

initial 0 | 2 | 6 | 5 | 4 | 3 | 7 | 1 (task part)
chromosome 14 | 8 | 3 | 2 | 1 | 0 | 0 | 14 (version part)

15 | 15 | 1 | 4 | 2 | 8 | 4 | 15 (procs part)

resulted 0 | 2 | 6 | 5 | 4 | 3 | 7 | 1 (task part)
chromosome 14 | 8 | 3 | 2 | 1 | 0 | 0 | 14 (version part)

15 | 15 | 6 | 4 | 2 | 8 | 4 | 15 (procs part)

Figure 19: Processor part mutation operation at position 2.

position 0 1 2 3 4 5 6 7

initial 0 | 2 | 6 | 5 | 4 | 3 | 7 | 1 (task part)
chromosome 14 | 8 | 3 | 2 | 1 | 0 | 0 | 14 (version part)

15 | 15 | 1 | 4 | 2 | 8 | 4 | 15 (procs part)

resulted 0 | 2 | 6 | 5 | 4 | 3 | 7 | 1 (task part)
chromosome 14 | 8 | 4 | 2 | 1 | 0 | 0 | 14 (version part)

15 | 15 | 5 | 4 | 2 | 8 | 4 | 15 (procs part)

Figure 20: Version part mutation operation at position 2.
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Version part mutation randomly chooses a new version, if available, of the
corresponding task. Accordingly, the corresponding number of processors is
adapted, if necessary. Figure 20 shows the mutation operation at version part
position 2. The new version 4 of task 6 is randomly selected; this version needs
2 processors, so we randomly select processor 0 and 2 (binary coded by 5).

Task part mutation is more complex. The idea is to move a randomly selected
task without violating task dependencies. According to that, we look for the set
of neighbor tasks (neighborhood is to be seen inside the chromosome and not
inside the module graph) which can be performed in parallel with the selected
task and we try to change the relative order of these tasks by moving the selected
task.

Let ti be a task,

inlist(ti)={tj; tj task with (tj, ti) module graph edge}
be the set of direct predecessors of task ti in the module graph, and

outlist(ti)={tj; tj task with (ti, tj) module graph edge}
be the set of direct successors of ti.

The valid range of a task ti on position i in a chromosome is the set of
positions [pos1..pos2], pos1 ≤ i ≤ pos2, at which this task can be placed
without violating dependence rules (because there are no precedence relations
between ti and the tasks on these positions). We define:

pos1 =
{

0, if inlist(ti) = φ
max{j; tj ∈ inlist(ti)} + 1

pos2 =
{

maxposition, if outlist(ti) = φ
min{j; tj ∈ outlist(ti)} − 1

In particular, the valid range starts behind all tasks which have an outgoing
edge ending at the selected task and the valid range ends before any task having
an ingoing edge which starts at the selected task. The valid range contains only
tasks which have no dependence relation with the selected task and, thus, can
be executed concurrently with it.

The task part mutation operation randomly moves the selected task within
the valid range, corresponding versions and processor numbers are moved ac-
cordingly. In principle, each other permutation of the valid range elements may
be used for this operation. The valid range of a task can consist of only one
element (the initial position of the task) and the chromosome does not change.
Figure 21 illustrates the task part mutation operation. The initial chromosome
is on top, the result of the operation is on bottom. The valid range of task 3
from position 3 is between the positions 3 and 6, i.e., tasks 4, 5, and 6 can be
executed concurrently with task 3. For a graphical illustration of the situation
see Figure 12 and Figure 13. The new position 6 is randomly selected and the
genes are moved accordingly.

Context dependence The mutation operation includes a special handling for
the context dependent tasks. If a version or processor part mutation operation
is performed on one of these tasks, then the counterpart is changed accordingly.
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position 0 1 2 3 4 5 6 7 8

initial 0 | 21 | 2 | 3 | 6 | 5 | 4 | 7 | 1 (task part)
chromosome 12 | 5 | 10 | 1 | 1 | 0 | 3 | 0 | 12 (version part)

15 | 15 | 15 | 2 | 4 | 7 | 1 | 1 | 15 (procs part)

resulted 0 | 21 | 2 | 6 | 5 | 4 | 3 | 7 | 1 (task part)
chromosome 12 | 5 | 10 | 1 | 0 | 3 | 1 | 0 | 12 (version part)

15 | 15 | 15 | 4 | 7 | 1 | 2 | 1 | 15 (procs part)

Figure 21: Task part mutation operation at position 3 (valid range is 3..6;
randomly selected new position is 6).

7.5 Crossover Operation

The crossover operation generates a new individual by combining parts taken
from two parent individuals. At first, the child is a copy of its first parent. Then
we randomly select the crossover position and perform the actual crossover
operation by introducing information from the second parent into the child
chromosome. Different crossover operations are developed for different parts of
the chromosome.

Processor and version part crossover substitute processor and version in-
formation of the child by the corresponding information of the second parent.
In order to obtain a consistent individual, both corresponding information, i.e.,
version and processor number, are taken. This is not always mandatory, but we
spare tests which otherwise would be necessary. The operations are performed
starting at the selected position and continuing until the end of the chromosome
is reached. Context dependent tasks, e.g., task 0 and 1, are kept consistent.

position 0 1 2 3 4 5 6 7

first 0 | 2 | 3 | 5 | 4 | 6 | 7 | 1 (task part)
parent 22 | 12 | 0 | 2 | 0 | 0 | 0 | 22 (version part)

6 | 7 | 7 | 6 | 7 | 7 | 1 | 6 (procs part)

second 0 | 2 | 6 | 5 | 3 | 4 | 7 | 1 (task part)
parent 14 | 8 | 3 | 2 | 0 | 1 | 0 | 14 (version part)

15 | 4 | 1 | 7 | 9 | 5 | 2 | 15 (procs part)

child 0 | 2 | 3 | 5 | 4 | 6 | 7 | 1 (task part)
14 | 12 | 0 | 2 | 1 | 3 | 0 | 14 (version part)
15 | 7 | 7 | 7 | 5 | 1 | 2 | 15 (procs part)

Figure 22: Version part crossover operation at position 3.
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Figure 22 shows a version part crossover operation at position 3. Starting
at this position, the version and processor information from the second parent
are copied into the child chromosome, i.e., the information for the tasks 5,
4, 6, 7, and 1. Due to the context dependence relation between task 0 and
1, the information of task 0 is also changed, accordingly to the new values
corresponding to task 1.

Task part crossover puts the tasks of the child in the relative order of the
tasks of the second parent. Only tasks between selected crossover position and
end of the list are considered. For a consistent individual, the corresponding
information, i.e., version and processor number information, are moved accord-
ingly without changing the values. The positions of tasks 0 and 1 are predefined,
i.e., 0 is the source of the module graph and consequently it has always position
0 in the chromosome, tasks 1 is the sink of the module graph and has always
the last position in the chromosome. Thus, tasks 0 and 1 are not changed by
this operation.

In Figure 23 the tasks 4, 6, 7, and 1 are put in the relative order of the
second parent, i.e., 6, 4, 7, 1.

position 0 1 2 3 4 5 6 7

first 0 | 2 | 3 | 5 | 4 | 6 | 7 | 1 (task part)
parent 22 | 12 | 4 | 2 | 2 | 0 | 0 | 22 (version part)

10 | 15 | 2 | 9 | 8 | 4 | 1 | 10 (procs part)

second 0 | 2 | 6 | 5 | 4 | 3 | 7 | 1 (task part)
parent 21 | 18 | 4 | 0 | 2 | 4 | 0 | 21 (version part)

15 | 13 | 2 | 7 | 5 | 2 | 3 | 15 (procs part)

child 0 | 2 | 3 | 5 | 6 | 4 | 7 | 1 (task part)
22 | 12 | 4 | 2 | 0 | 2 | 0 | 22 (version part)
10 | 15 | 2 | 9 | 4 | 8 | 1 | 10 (procs part)

Figure 23: Task part crossover operation at position 4.

7.6 Fitness Function

Fitness is the driving force of the Darwinian natural selection and, likewise, of
GAs. It may be measured in many different ways. The accuracy of the fitness
function with respect to the application is crucial for the quality of the results
produced by the GA. Our fitness function evaluates the runtime of a program
whose task schedule is represented by a chromosome. The costs include all
computation and communication costs.

A chromosome codes unambiguously the relative order of tasks, their ver-
sions, and knows the processors used for each task. Task id, version number,
and processors exactly define an implementation of a task with a well defined
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data distribution. Thus, computation and communication costs can properly
be evaluated. Below we describe the general criteria for fitness evaluation.

7.6.1 General Criteria for Fitness Evaluation

Due to the structure of a schedule, the fitness evaluation process is a priori
not uniquely determined. Therefore we made the following general arrange-
ments. These arrangements have to be respected when evaluating the fitness of
a chromosome. (pi denotes the processor group associated to task ti.)

- The evaluation function considers tasks in the order they appear on the
chromosome. Let ti, ti+1 be two tasks, then first the costs for task ti
are evaluated, before costs evaluation for task ti+1 is performed. The
idea behind this procedure is that all tasks tj which have to precede,
according to the module specification, the current task ti are already
evaluated before starting the evaluation of ti.

- For each task ti, its input data has to be locally available, i.e., data
transfers have to be completed, before the task execution starts:

start time(ti) ≥ max{end time(tj); i>j, (tj, ti) data edge}
- Dependent tasks, i.e., tasks connected by module graph structure edges,

are executed sequentially, i.e., a task has to complete its execution before
the successor can be started:

start time(ti) ≥ max{end time(tj); i>j, (tj, ti) structure
edge}

- When starting the execution of a task ti, all processors qj executing ti
have to be available and they start the execution at the same time:

start time(ti) ≥ max{time(proc qj available); qj ∈ pi}
- All processors used for the execution of a task ti finish the execution at

the same time and are immediately available for other tasks.
time(proc qj available) = end time(ti) when qj ∈ pi

- Independent tasks executed by the same processors are executed sequen-
tially, i.e., a task has to complete its execution before a successor can be
started:

start time(ti) ≥ max{end time(tj); i>j, pj ∩ pi 6= φ}
- There is no rule to be respected for independent tasks executed by different

processors.

- Computation costs which accrue when executing a task ti have to be
considered when evaluating ti.

- Communications costs associated to a task ti have to be considered when
evaluating ti.

- Communication costs, i.e., costs for (re)distributing data from a group
of processors pi to a group of processors pj are associated to data edges
(ti, tj). In our implementation, these costs are completely added to the
source task ti (cf. Section 6.3). Generally, communication costs associ-
ated to a task ti are:
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comm costs(ti) =
∑

jcomm costs(ti,(tj, ti))

+
∑

kcomm costs(ti,(ti, tk))
where comm costs((ti, tj)) denotes the communication costs associated
to data edge (ti, tj) and comm costs(ti, (ti, tj)) denotes the part of
comm costs((ti, tj)) associated to task ti.

- Several communication operations performed by the same processor are
assumed to be worked off sequentially.

7.7 Parameters of the Genetic Algorithm

It is possible to vary several parameters of a GA run:

- The number of individuals to be taken from a previous (GA or other)
scheduling run. Experiments showed that we obtain better results (in
fewer time and better optimizations), if we initialize the first population
with some ’good’ individuals at the beginning of the GA run.

- The probability of mutation, i.e., the probability of changing a selected
individual by using the mutation operation.

- The probability of crossover, i.e., the probability of changing a selected
individual by using the crossover operation.

Figure 24 shows the evolution of costs for various probability parameters,
without initial individuals (pc denotes the probability of crossover, pm denotes
the probability of mutation). Due to the problem’s structure and the definition
of the operations involved, a crossover operation causes greater changes in the
average costs than a mutation operation. All runs found good scheduling so-
lutions. We decided to use a fifty-fifty probability for mutation and crossover
operations.
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Figure 24: Evolution of costs by using various GA probability parameters.
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7.8 Termination Step

The GA stops after having considered a predefined number of generation or if
no improvement is obtained during a predefined number of generations. The
runtime of the GA depends on the search space’s size and on the problem size,
see next section for more details.

7.9 Example of a GA Run

0 1 2 3 4 5 6 7 8 9 10 11 (position)

0 | 21 | 2 | 4 | 6 | 3 | 5 | 7 | 10 | 12 | 11 | 15 (task part)
9 | 0 | 3 | 3 | 3 | 3 | 3 | 0 | 2 | 0 | 3 | 3 (version part)
15 | 15 | 15 | 1 | 2 | 4 | 8 | 15 | 15 | 14 | 1 | 2 (procs part)

12 13 14 15 16 17 18 19 20 21 22 (position)

13 | 8 | 14 | 16 | 17 | 19 | 9 | 18 | 20 | 22 | 1 (task part)
4 | 3 | 0 | 4 | 0 | 3 | 3 | 3 | 0 | 1 | 9 (version part)
12 | 2 | 12 | 12 | 13 | 2 | 8 | 4 | 15 | 15 | 15 (procs part)

Figure 25: A chromosome for the conjugate gradient iteration.

In this section we continue the CG example used until now. Figure 25 il-
lustrates a chromosome for the CG iteration (cf. Figure 12 and 13 for the
corresponding module graph). For each basic module there are various variants
which basically differ in the number of processors, and on the data distribution
used for each parameter. We used for our experiments 28 different versions for
the composed module, 28 versions for the mv prod module, 5 versions for each
one of the other vector operations (vv prod, etc., a total of 14 modules), and
only one possibility for the scalar operations (assign and op assign, 4 mod-
ules). The tasks representing the input and output nodes of the sequential loop
depend from other tasks and therefore there are no variants to be specified for.
Theoretically, there are 282 · 514 possibilities to combine the module versions.
Additional possibilities are caused by different task permutations. The num-
ber of these permutations is determined by the number of operands of the ‖
expressions; in our example there are 4! · (2!)6 possibilities. The various pro-
cessor groups which can be assigned to each one of the tasks causes another
enlargement of the search space. For a target machine with p processors there
are

(
p
q

)
possibilities of selecting q processors, i.e., these possibilities are available

for each task using q processors.
Despite the volume of the search space, the GA run shows a good convergence

to an optimal solution. Figure 24 illustrates the evolution of costs during GA
runs with 100 chromosomes per generation, maximal 300 generations, a problem
size (vector size) of 300, and an assumed target machine with 4 processors. In
Figure 24, the GA runs stop after about 250 generation because no improvement
is achieved in the last 100 generations.
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A (sub)optimal solution of the GA run usually evolves over several gener-
ations, it is the result of GA operations on randomly selected positions; it is
unusual that a good individual occurs already in the first generation. In Figure
15 the evolution of costs of the best individual is good visible.

7.10 Section’s Summary and Outlook

In this section we described how our scheduling problem can be solved by using
a genetic algorithm approach. Therefore, we gave an overview of the genetic
algorithm approach (Section 7.1), and we described the coding of our problem in
terms of genetic algorithms, i.e., we coded tasks and their relative order, imple-
mentation versions, and processor groups assigned (Section 7.2). Subsequently,
we described the process’ initialization (Section 7.3), the mutation (Section 7.4),
and the crossover (Section 7.5) operations used by the GA algorithm for con-
structing the next generation. The fitness operation (Section 7.6) evaluates the
runtime of a program whose design decisions are represented by an individual
of the GA process; the therefore general evaluation criteria used are described
in Section 7.6.1. The GA process ends with the termination step described in
Section 7.8, the process parameters are described in Section 7.7.

In this section we continued our conjugate gradient example, an individual
describing a solution of the scheduling problem is given in Section 7.9.

In this section we solved the scheduling problem by using a genetic algorithm
paradigm which offer the possibility of inspecting very large search spaces. Until
now, scheduling algorithms do not deal with such multi-dimensional aspects of
the problem. Usually, they are limited to search a relative execution order of
tasks, and to assign to each task a group of processors, whereat the number
of processors is predefined, except for malleable tasks [46, 62]. By means of
the GA approach, we have the possibility to inspect large search spaces to find
a solution of the problem. The result of a GA run represents a (sub)optimal
solution of the scheduling problem, our fitness function evaluates the runtime,
i.e., the total computation and communication time of the solution represented
by the GA result. An individual, i.e., a result of the GA run, represents a
solution of the scheduling problem by giving the relative execution order of the
tasks, by selecting for each task an appropriate version with a well defined data
distribution, and by assigning to each task a group of processors.

As next, we have to fix these implementation decisions into a parallel pro-
gram (Section 9) which fits with the schedule found in the scheduling step. In
order to do that, first we interpret the scheduling information represented by the
scheduling result and store the scheduling information into a scheduling graph,
a data structure where the scheduling information is easier accessible and which
is used in subsequent steps to generate the parallel frame program. Beside this,
the transformation into a scheduling graph eliminates redundancy, so that the
quantity of information to be managed in the next steps is diminished, without
loss of information.
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8 Scheduling Graph

In this section we will interpret the result of the scheduling step and trans-
form them into a scheduling graph, an intermediate data structure, where the
scheduling information is directly accessible. The scheduling graph will be used
for constructing the parallel frame program which fix all design decisions taken.

Scheduling graph The scheduling graph is an intermediate data structure
which stores the relevant scheduling information and which is used for specifying
the corresponding parallel frame program. The scheduling graph does not store
the entire scheduling information, only elements relevant for constructing the
skeleton of the parallel frame program are included. Some elements, e.g., data
flow, are only partially considered, so that, for example, for adding the data
distribution modules (cf. Section 11) we still go back to information stored in
the module graph.

The information about the scheduling represented by a chromosome is stored
into the chromosome, i.e., relative tasks order, implementation version corre-
sponding to each task, and group of processors assigned to each task. Infor-
mation stored in a chromosome is often redundant, see, e.g., a situation like
the following one: let A, B, and C be tasks and the information is ”A has to be
performed before B and before C, and B has to be performed before C”. The
statement ”A has to be performed before B and B has to be performed before
C” furnish, from the scheduling point of view, the same information by using
only 2 instead of 3 relations between tasks. Our algorithm for constructing
the scheduling graph does not eliminate redundancy completely but it reduce it
considerably.

The procedure to obtain a program representing the solution of the GA
scheduling run consists of several steps. First of all, the scheduling graph is
constructed, and the algorithm which transforms the scheduling result into a
parallel program works on this data structure.

8.1 Constructing the Scheduling Graph

Below we use the notion of task in the meaning of ”task corresponding to a
gene of the task part of the chromosome” and we use for short task ti for
”task corresponding to the i-th gene of the task part of the chromosome” and
processor group pi for ”processor group corresponding to the i-th gene of the
processor part of the chromosome”.
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Nodes of the scheduling graph correspond to genes of the task part of the
chromosome, the correspondence is accomplished by means of a bijective map.
Thus, scheduling graph and module graph (Section 5) have the same node sets.
Annotations attached to nodes record additional information concerning the
scheduling, e.g., the group of processors assigned.

Edges The scheduling graph is a directed acyclic graph. The edges of the
scheduling graph express the relative order in which the tasks have to be exe-
cuted. The meaning of an edge (ti,tj) is that task ti has to be executed and
its execution has to be finished before execution of task tj is started. There are
three steps for constructing the scheduling graph edges, the steps are performed
sequentially, one after the other.

Step 1: Edges expressing a sequential execution order caused by the use
of common processors are constructed.
Let ti be a task which uses processor group pi. We compute for each
processor p ∈ pi a task tjp , with jp = max {k, k = 0..i − 1, tk uses
processor p}, being the last task which uses processor p before task ti
uses it. If there is no path (tjp , . . . , ti) into the scheduling graph, then
add edge (tjp , ti) to the scheduling graph.

Most of the sequential order dependencies are covered by edges constructed
in this first step. Beside these dependencies, there are dependencies between
tasks executed by disjoint groups of processors but nevertheless executed se-
quentially.

Step 2: Edges expressing a sequential execution order caused by the
structure of the initial module expression are constructed.
Let (ti, tj) be a structure edge of the initial module graph (cf. Section 5).
If there is no path (ti, . . . , tj) into the scheduling graph, then add edge
(ti, tj) to the scheduling graph.

Step 3: Analogously to the second step, edges expressing a sequential
execution order caused by the data flow are constructed.

In principle it is not necessary to separate step two and step three. We make
this distinction, and favor herewith structure edges, in order to obtain a module
expression with more similarity with the initial module specification. This effect
is a help for the user when checking the results of the scheduling step.

Example As an example see the scheduling graph in Figure 26. On the right,
we specify the processors assigned to each task. The task order used is the
relative task order specified by the scheduling (cf. the chromosome in Figure
25). All graph edges, except edge (17,19), are added during the first construction
step. Edge (17,19) is added in the second step because in the module graph there
is a structure edge between the nodes 17 and 19 (cf. module graph in Figure
12) and there is no path (17,...,19) into the scheduling graph. In this example
there is no edge added in the third construction step.
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task processors
0 ← {0,1,2,3}

21 ← {0,1,2,3}
2 ← {0,1,2,3}
4 ← {0}
6 ← {1}
3 ← {2}
5 ← {3}
7 ← {0,1,2,3}

10 ← {0,1,2,3}
12 ← {1,2,3}
11 ← {0}
15 ← {1}
13 ← {2,3}
8 ← {1}

14 ← {2,3}
16 ← {2,3}
17 ← {0,2,3}
19 ← {1}
9 ← {3}

18 ← {2}
20 ← {0,1,2,3}
22 ← {0,1,2,3}
1 ← {0,1,2,3}

Figure 26: A scheduling graph for the conjugate gradient iteration (cf. Figure
25 for the corresponding chromosome). The right figure shows the processor
group assigned.

The following lemma proves that the scheduling graph information respects
the scheduling expressed by a chromosome.

Lemma 1 (Scheduling graph information)
Let ti, tj, i < j, be genes of the task part of a chromosome. If task ti has to
be executed before task tj, then there is a path (ti, . . . , tj) inside the scheduling
graph.

Proof: From the scheduling point of view there are several reasons why a
task has to be executed before another task: there is a data flow between the
tasks, there are common processors assigned to the tasks, or the tasks use other
common resources. We prove the issues one by one.

1. If there is a data flow between the tasks ti, tj, then there is a data
edge (ti, tj) in the module graph. Then the lemma’s statement follows
according to the third construction step.

2. Let pi, pj be the processor groups assigned to ti, tj, respectively. Let
p ∈ pi ∩pj be a processor assigned to both tasks. We can demonstrate by
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induction using the scheduling graph’s first construction step that there
is either an edge (ti, tj) or a path (ti, . . . , tj) in the scheduling graph.

3. If the tasks ti, tj use common resources, then this fact has to be specified
initially in the module expression by means of a ◦ operator (see Section 4)
and, subsequently, in the module graph by a structure edge (see Section
5). The statement of the lemma results from the second construction step.

2

8.2 Section’s Summary and Outlook

We concentrated the design decisions taken by the scheduling step into a schedul-
ing graph where the information is easier accessible and where redundancy is
mostly eliminated. Subsequently, we proved the correctness of the scheduling
graph, i.e., we proved that the sequential order of tasks is conserved by the
scheduling graph.

The next sections will prove that the scheduling graph stores the informa-
tion necessary for constructing a parallel frame program, i.e., the next sections
show how the parallel frame program can be constructed by using the schedul-
ing graph information. The parallel frame program generation takes place in
three steps: first, we generate a program skeleton, subsequently program frag-
ments dealing with data distribution are added, and, finally, the communication
environment is established.
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9 Parallel Frame Program

A parallel frame program express the degree of parallelism that should be ex-
ploited for a given distributed memory machine. A parallel frame program
encloses beside a specification of the method to be implemented, all necessary
design decisions. Information about the structure of the method to be im-
plemented was specified in the module specification. We obtain the parallel
frame program by fixing distribution of variables, scheduling of modules, and
assignment of groups of processors to module activations. This information was
computed in the design decision step.

We divide the generation of the parallel frame program into three subsequent
steps: first, we generate a program skeleton, then we add data distribution op-
erations, and, in a third step, we add operations to manage the communication
domains. The program construction steps are described in Section 10 and 11.
In this section we introduce the syntax of the language used.

9.1 Syntax of a Parallel Frame Program

A parallel frame program has a structure which is similar to a module specifica-
tion (cf. Section 4) but contains additional information about data distribution,
assignment of processors to module activations, and about communication envi-
ronment. Figure 27 shows the language’s syntax. We will explain some details
on the example from Figure 28 which shows a fragment of a parallel frame pro-
gram for the conjugate gradient iteration implemented with 4 processors. The
complete parallel frame program can be found in Section 12.

In this example, for a better readability, we leave out all communication do-
main operations, i.e., generation/destruction of communicators and data trans-
fer operations, and show only a rough structure of the program. Additionally,
in order to distinguish several calls of the same module, we indexed them. This
feature is not part of the parallel frame program. In Figure 28 the four vv prod
calls (lines 05 to 08) and some scalar operations (lines 09 to 12) are executed con-
currently, the remainder of the operations are pure data parallel calls executed
sequentially. The parameters’ data distribution, e.g., denoted as vec(4, 75), is
indicated for each module call within the parameter list. For details on the pa-
rameterized data distribution see Section 6.2. Data distribution usually refers
to the processor group assigned to the module activation. For particular pa-
rameters it is also possible to indicate a processor group which differs from the
processor group assigned to the module, e.g., in line 01 scalar λ0 is located
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pfp program→ program identifier pfp module set

pfp module set→ pfp module pfp module set

| ε
pfp module→ module module decl f statements g
module decl→ identifier ( parameters )
parameters→ param param list | ε
param list→ , param param list | ε
param→ param type identifier : data descr

| comm descr

| proc group

param type→ in | out | ε
data descr→ data type ( number list ) data distrib

data type→ struct type elem type

struct type→ vec | mat | ε
elem type→ char | int | float | double
data distrib→ : proc group | ε
c parameters → c param c param list | ε
c param list→ , c param c param list | ε
c param→ identifier c param descr

| proc group

c param descr→ : ( number list ) c data distrib | ε
c data distrib→ : proc group | ε
proc group→ proc ( number list )
comm descr→ comm identifier

number list→ number | number list , number

statements→ stmt stmt list

stmt list→ op sign stmt stmt list

| ε
op sign→ ‖ | ◦
stmt→ identifier ( c parameters )

| f statements g
| for ( enum expr , comm descr ) statements
| parfor ( enum expr , comm descr ) statements
| if ( simple expr , comm descr ) statements

simple expr→ identifier relop identifier

| ε
enum expr→ identifier = bound .. bound

| simple expr

bound→ identifier | number
comments→ [ text without brackets ]

Figure 27: Syntax of the parallel frame program.

only on processor 3. This kind of processor specification is mostly used for
parameters of data distribution modules (for an example confer Section 11).

Usually, the processor group assigned to a module is not directly indicated.
For each module we indicate by means of the comm parameter the communicator
(cf. Section 11.2) used for the communication inside the module. A commu-
nicator specifies implicitly the set of processors concerned. An exception are
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(01) module CG (in A:mat double(4,75,1,1), p:vec double(4,75),
p0:vec double(4,75), w:vec double(4,75), w0:vec double(4,75),
r:vec double(4,75), r0:vec double(4,75), x:vec double(4,75),
λ0:double:proc(3), out p:vec double(4,75),
x:vec double(4,75), r:vec double(4,75), comm cCG[0,1,2,3])

(02) {
(03) for (k=0..K, cfor[0,1,2,3])

(04) { mv prod ([in] A:(4,75,1,1), p:(4,75), [out] w:(4,75), cmv prod

[0,1,2,3])

(05) ◦ { vv prod1 ([in] p:(1,300), r0:(1,300), [out] tmp1,proc(0))
(06) ‖ vv prod2 ([in] w:(1,300), p:(1,300),[out] λ1,proc(2))
(07) ‖ vv prod3 ([in] w:(1,300), w:(1,300), [out] tmp2,proc(1))
(08) ‖ vv prod4 ([in] w:(1,300), w0:(1,300), [out] tmp3, proc(3))

}
(09) ◦ { op assign1 ([in] tmp1, op, λ1, [out] ξ, proc(2))
(10) ‖ { op assign2 ([in]tmp3, op, λ0, [out] ν, proc(3))
(11) ◦ assign ([in] λ1, [out] λ0, proc(3)) }
(12) ‖ op assign3 ([in]tmp2, op, λ1, [out] µ, proc(1))

}
(13) ◦ sv prod1 ([in] ξ, p:(4,75),[out] tmp4:(4,75), csv prod1[0,1,2,3])

(14) ◦ vv assign ([in] w:(1,300), [out] w0:(1,300), proc(3))
(15) ◦ sv prod2 ([in] ξ, w:(4,75),[out] tmp5:(4,75), csv prod2[0,1,2,3])

(16) ◦ sv prod3 ([in] µ, p:(4,75),[out] tmp6:(4,75), csv prod3[0,1,2,3])

(17) ◦ sv prod4 ([in] ν, p0:(4,75),[out] tmp7:(4,75), csv prod4[0,1,2,3])

(18) ◦ vv sub ([in] r:(4,75), tmp5:(4,75),[out] r:(4,75), cvv sub)

. . . . . .

Figure 28: Fragment of a parallel frame program for the conjugate gradient
iteration with 4 processors. For the present, all communication domain man-
agement operations are left out. Brackets [. . .] include comments, indexes in the
module names are for a better overview only.

modules processed by a single processors, e.g., the vv prod modules in line 05
to 08. For these modules we indicate by means of the proc parameter the
processor assigned.

9.2 Section’s Summary and Outlook

In this section we specified the syntax of the language used for parallel frame
programs. The language has a similar structure as the module specification
language, but it is augmented by elements for specifying implementation rele-
vant information, i.e., with this language elements it is possible to fix the design
decisions taken.

The next sections will describe how to obtain the parallel frame program
from the scheduling graph constructed in Section 8. The construction of a
parallel frame program includes construction of a program skeleton, insertion of
data distribution modules, and communication management.
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10 Transforming Scheduling Graphs into
Parallel Frame Programs

The scheduling graph records the relative order which have to be meet by a
parallel frame program without specifying an exact execution order. Our goal
is to specify a parallel frame program which meets the relative order of the tasks
and which has a structure as compact as possible.

The first step when transforming scheduling graphs into parallel frame pro-
grams is the construction of a program skeleton. This section contains the tech-
nical details concerning division of program construction in manageable parts
and connection of generated program fragments. Beside this, we also demon-
strate the correctness of the program skeleton constructed, i.e., we demonstrate
that the program meets the design decisions taken before.

The general structure of the procedure for constructing parallel frame pro-
grams is shown in Figure 29. The procedure is recursive, we construct parallel
frame programs for subgraphs of the scheduling graph and compound resulting
program fragments according to composition rules. For a better readability, we
omit brackets in the constructed program as soon as possible, the operators
used are assumed to be left associative.

construct program (graph G)

{ while (node ti ∈ G not yet processed) (cf. Section 10.2)
select subgraph G(ti); (cf. Section 10.1)
P(G(ti)) = construct program(G(ti)); (cf. Section 10.3)
connect P(G(ti)) to already available (cf. Section 10.3)

program fragments;

}

Figure 29: Overview on constructing parallel frame programs.

10.1 Selecting Scheduling Subgraphs

The first step when constructing a parallel frame graph from a scheduling graph
is to select the working area (cf. Figure 29), i.e., to specify the subgraph to be
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transformed. A subgraph of the scheduling graph is specified by a subset of
nodes. Only nodes of this subset are processed by the current procedure. The
procedure ends when all nodes of the current subgraph are processed.

C1 

R 

F1

A

 B 

F0

C 

Q 

C0

Figure 30: Scheduling graph with selected subgraph.

The specification of subgraphs depends on the type of nodes involved. A
subgraph for a composed module, as well a subgraph for other block structures
with a well defined begin and end node, e.g., loops or conditionals, contains
the nodes corresponding to tasks inside the structure as well as the structure’s
input and output node. Generally, a scheduling graph corresponding to a block
structure contains the nodes which can be reached when starting at the input
node and from where the output node of the block can be reached. In order to
construct the corresponding parallel frame program, the transformation process
starts at the structure’s input node. In Figure 30 the shaded nodes specify a
scheduling subgraph for a sequential loop with input node F0 and output node
F1 (cf. Figure 9); the transformation process starts at F0.

The scheduling subgraph corresponding to a composed module is identical
with the initial scheduling graph. The starting node for the transformation
process is the node corresponding to the input node of the composed module,
e.g., in Figure 30 node C0.

10.2 Passing through Scheduling Subgraphs

When specifying the subgraph, the starting node for the process is specified,
too. Beginning at this node, the transformation function passes the scheduling
subgraph and constructs the corresponding parallel program fragments. Sub-
sequently, these program fragments are composed to a parallel frame program.
The general construction rules are described below, in Section 10.3 are some
additional details.

We do not have a priori any information about the structure of the scheduling
graph, except the fact that it is an acyclic graph. In the examples in this and
in the next section we will illustrate that the scheduling graph has a complex
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structure and it cannot be traversed straight ahead. The process often stops
and resumes.

Rules for passing through the graph Below, we describe the rules for
passing the graph and proceeding nodes. An explanatory example follows.

1. Going out from a node ti, the process visits all its neighbors connected
via outgoing edges.

2. The graph is passed top down and neighbor nodes are processed in lexico-
graphical order.

3. A node ti is processed only if it has a single predecessor and the node was
called by this predecessor, or if the processes for all its direct predecessor
nodes are already completed.

The consequence of these rules is that the pass through the graph is often
interrupted, but there are well defined rules for the process’ resumption.

Constructed program fragment

{ P(3) ‖ P(4) } ◦ { P(5) ‖ P(6) }

  3   4

  6  5

Figure 31: Scheduling graph (cross-joint structure).

  3   5   6   4

  P(3)||P(4)

  P(5)||P(6)

  {P(3)||P(4)}o{P(5)||P(6)}

  nodes

  t
im

e

  P(3)

  P(4)

  P(5)

  P(6)

Constructed
program fragment

{ P(3) ‖ P(4) }
◦{ P(5) ‖ P(6) }

Figure 32: Procedure call sequence for the scheduling graph from Figure 31
(program fragments are indicated where they are generated).

Example We use Figure 31 and Figure 32 to explain the rules specified above.
In Figure 31, when node 5 is processed during the first visit of this node, i.e.,
when coming from the procedure which process node 3, then we obtain the
program fragment { P(3) ◦ P(5)} ‖ P(4), which is not correct because P(4)
and P(5) have to be performed sequentially. If node 5 is processed during the
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second visit of this node, i.e., when the call for the procedure for node 5 comes
from the procedure which process node 4, then we obtain the program fragment
P(3) ‖ { P(4) ◦ P(5)}, which is also not correct because P(3) and P(5) have
to be performed sequentially. Thus, after proceeding the nodes 3 and 4, the
process has to be interrupted and it has to be restarted with the nodes 5 and
6. The corresponding program fragments, P(5) and P(6), have to be performed
sequentially to the program fragments P(3) and P(4), but P(5) and P(6) are
not dependent from each other and can be performed in parallel. Figure 31
shows the program constructed, Figure 32 shows the procedure calls used for
constructing this program.

Rules for resuming the process

1. A process can be restarted with nodes ready to be processed. Ready nodes
are nodes of the current subgraph whose predecessors, i.e., all their pre-
decessors, are already processed.
In our example, when the process is interrupted after nodes 3 and 4 are
processed, then the nodes of 5 and 6 fulfill this property, they are ready.

2. The process is restarted over and over with ready elements, until all ready
nodes are processed.

3. It is obvious that there are no edges between nodes of a ready set and, thus,
there is no dependence between the program fragments corresponding to
these nodes. These program fragments can be performed concurrently.
Example: in Figure 31, P(5) and P(6) are performed in parallel.

4. When we restart an interrupted process, then the constructed program
fragments are dependent from the program fragments constructed before,
thus the program fragments have to be performed sequentially.
Example: in Figure 31, P(5) ‖ P(6) is performed sequentially to the pro-
gram fragment constructed before.

Constructed program fragment
(by using the open chain rule)

P(2)
◦ P(3)
◦ { P(4) ‖ P(5) ‖ P(6) }
◦ P(7)

  2

  3

  4   5   6

  7

Figure 33: Scheduling graph (fork-joint structure with a bridge edge).

Next, we regard the example illustrated in Figure 33. When following the
rules described above, we obtain the program

P(2) ◦ P(3) ◦ { P(4) ‖ P(6)} ◦ P(5) ◦ P(7)

although there is no dependence between P(4), P(5), and P(6). The corre-
sponding procedure calls are illustrated in Figure 34. The problem is that when
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  nodes
  t

im
e

  2   3   4   7

  P(4)

  5   6

  P(6)
  P(3)o{P(4)||P(6)}

  P(5)

  P(2)oP(3)o{P(4)||P(6)}

  P(7)

  P(2)oP(3)o{P(4)||P(6)}oP(5)oP(7) 

Constructed
program fragment

P(2)
◦ P(3)
◦ { P(4) ‖ P(6)}
◦ P(5)
◦ P(7)

Figure 34: Procedure call sequence for the scheduling graph from Figure 33
without using the open chain rule (program fragments are indicated where they
are generated).

proceeding the nodes 4, 5, and 6, node 5 has an additional direct predecessor
(node 2) which is still in work, i.e., the procedure is not yet finished because the
process is working top down and it completes a node only after all son nodes
have been processed. In order to obtain an efficient program code which rep-
resents the actual dependencies, we adapt the rules specified above and allow
nodes in particular cases to be processed, although not all their direct prede-
cessors are completed.

  nodes

  t
im

e

  2   3   4   7

  P(4)

  5   6

  P(5)

  P(6)
  P(3)o{P(4)||P(5)||P(6)}

  P(2)oP(3)o{P(4)||P(5)||P(6)}

  P(7)
  P(2)oP(3)o{P(4)||P(5)||P(6)}oP(7) 

Constructed
program fragment

P(2)
◦ P(3)
◦ { P(4) ‖ P(5) ‖ P(6)}
◦ P(7)

Figure 35: Procedure call sequence for the scheduling graph from Figure 33
when using the open chain rule (program fragments are indicated where they
are generated).
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Open chain rule A node with more than one predecessor is processed if all
its predecessors are still in work when handling the affected node and if all its
predecessors are not yet completed, i.e., the procedures for its predecessors are
in a chain of ”open” recursive procedure calls.

For the scheduling graph from Figure 33 we illustrate in Figure 35 this chain
of open procedure calls: when node 5 is called, then the procedures for its
predecessors, i.e., 2 and 3, are still open. Figure 35 illustrates procedure calls
and program fragments constructed by using the open chain rule.

Lemma 2 (Correctness of open chain rule)
The open chain rule preserves the correctness of the resulting program, the par-
allel frame program constructed by means of this rule still fulfills the scheduling
rules defined by the scheduling graph.

Proof: Due to the fact that all these nodes, i.e., the affected node and
its ”open” predecessors, are on a path connected by graph edges, the program
fragment for the affected node is connected via ◦ operators (cf. Table 1 in Section
10.3) to the program fragments of its predecessors. Furthermore, the order of
the program fragments is given by the order of the nodes in the scheduling
graph. Thus, the resulting program meets the scheduling rules expressed by the
scheduling graph.

2

Note 1 A situation like in Figure 33 occurs due to the sequential construction
algorithm used for the scheduling graph (cf. Section 8). We obtain such a
graph, e.g., if (2,3), (2,5), (3,4), and (3,6) are edges caused by the use of
common processors and thus inserted first into the scheduling graph and (3,5)
is a structure or a data edge of the module graph and an edge (3,5) is added
to the scheduling graph during the second or third construction step because
until this time there is no path (3,...,5) into the scheduling graph.

Note 2 The situation illustrated in Figure 33 cannot occur with a node which
is an input/output node of a structure, i.e., node 3 cannot be an input node of a
loop or another block structure. The reason is that all edges caused by the use
of common processors and all structure edges from outside a loop pass across
the input/output node and they cannot bridge such a node.

10.3 Constructing and Connecting Program Fragments

The procedure for constructing parallel frame programs passes through the
scheduling graph and constructs program fragments for subgraphs. Table 1
shows the program construction rules for some subgraphs.

Nodes of a scheduling graph mostly represent activations of modules speci-
fied in the initial module specification. Additionally, there are ’technical’ nodes
conditioned by construction steps, e.g., input/output nodes for composed mod-
ules and for loops. The construction process for the parallel frame program
has to consider this fact. In this section we show which program fragments are
constructed for each particular node type.
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G P (G)

  t  i

• ti module node and #pi > 1
Create domain (proc (pi), cpi)

◦ Mti(x1 : dx1ti , . . . , xnti : d
xnti
ti , cpi)

◦ Free domain (cpi)

• ti module node and #pi = 1

Mti(x1 : dx1ti , . . . , xnti : d
xnti
ti , proc (pi))

• ti loop input node and #pi > 1
Create domain (proc (pi), cpi)
◦ Lti(i = 0, . . . , n, cpi)
{

• ti loop input node and #pi = 1
Lti(i = 0, . . . , n, proc (pi))
{

• ti conditional input node and #pi > 1
Create domain (proc (pi), cpi)
◦ Iti(. . . , cpi)
{

• ti conditional input node and #pi = 1
Iti(. . . , proc (pi))
{

• ti loop or conditional output node and #pi > 1
}
◦ Free domain (cpi)

• ti loop or conditional output node and #pi = 1
}

• ti composed module input node

Mti(x1 : dx1ti , . . . , xnti : d
xnti
ti , cpi)

{
• ti composed module output node
}

  t  i   t  j

• ti, tj module nodes
{P(ti)} ◦ {P(tj)}

• ti input node or tj output node
P(ti) P(tj)

• ti output node and tj module node
P(ti) ◦ {P(tj)}

• ti module and tj input node
{P(ti)} ◦ P(tj)

• ti output node and tj input node
P(ti) ◦ P(tj)

Table 1: Transforming scheduling graphs into parallel frame programs.
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In Table 1, let ti be a node of a scheduling graph, P(ti) denotes the parallel
program fragment corresponding to ti. Mti is the module activation correspond-
ing to ti, dxti denotes the data distribution of variable x in module activation
Mti , pi specifies the group of processors mapped to ti, and, thus assigned to
execute the corresponding program fragment, and cpi denotes a communication
environment including all processors of group pi.

Module activations The parallel frame program for a node ti representing a
module activation realizes a module call. In comparison with the initial module
specification (cf. Section 4), the module call contains additional data computed
by the design decisions step, i.e., a reference to the group of processors to be
used for executing the module call, and the parameters’ actual data distribution.
An example, but without communication domain management operations, can
be seen in Figure 28, line 04, a call of mv prod(. . .). The parameters’ data
distribution specified refers to the group of processors assigned for executing
the module activation. The group of processors is indirectly specified by means
of the communicator specification, e.g., comm cmv prod. As a help for the reader,
we indicated in comment brackets the processors concerned.

Composed modules The parallel frame program for a node representing an
input node of a composed module is similar to a module call, the program con-
tains design decision information and a program fragment for block begin, i.e.,
an opening curly bracket, is generated. This program fragment is concatenated
without any operator in front of the program fragment representing the block
inside the composed module. A parallel frame program for a node representing
an output node of a composed module is simply a program fragment for block
end, i.e., a closing curly bracket. This program fragment is concatenated with-
out any operator behind the program fragment representing the block inside the
composed module. Example: in Figure 28 lines 01 and 02 contain the program
fragment for the composed module and block begin, respectively. The program
fragment for block end is not indicated in this example.

Loops/Conditionals The parallel frame program fragment for a loop/con-
ditional is similar. For a loop/conditional input node we generate the program
code for loop/conditional begin, i.e., Lti(. . .) or Iti(. . .), respectively , and for
block begin, behind this we concatenate the code for the inner part of the
loop/conditional, and at the end the code for a block end. Note that the pro-
gram code for loop/conditional begin contains information about the processors
assigned to modules inside the loop/conditional. Example: in Figure 28, a se-
quential loop can be found in line 03, the block begin opening curly bracket in
line 04; the corresponding closing curly bracket is not indicated in this example.

Blocks The construction process conserves block structures specified by be-
gin/end or input/output nodes. In order to obtain a correct order for program
fragments for block begin, inner part of a block, and block end, we generate
apart these program fragments and combine them thereafter. Figure 36 details
the procedure; G(ti) denotes the subgraph for the structure having ti as begin
or input node, the · operator used denotes program concatenation, i.e., simple
string concatenation without additional operator symbol between operands.
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while (node ti ∈ G not yet processed)

if (ti is start node) // of a block, loop, etc.

specify corresponding end node t′i;
select subgraph G(ti);

select subgraph G′(ti)= G(ti)\{ti,t′i};
P(ti)=construct program (ti);

P(G′(ti))=construct program (G′(ti));
P(t′i)=construct program (t′i);
P(ti)= P(ti)· P(G′(ti))· P(t′i);
connect P(ti) to already available program;

else . . .

Figure 36: Transformation program for block structures.

Edges A scheduling graph edge (ti,tj) represents a sequential order of the
corresponding module activations, i.e., the module activation corresponding to
ti has to be completed before the module activation corresponding to tj can
be started. The program

{P(ti)} ◦ {P(tj)}
fulfills the requirements for execution order of program fragments. Brackets are
only added if necessary. If ti is an input or tj is an output node, then program
fragments are concatenated without operator and without brackets:

P(ti) P(tj)

If there are several edges (ti,tj1),. . .,(ti,tjn) with a common source and
no other edges between the nodes tj1 ,. . ., tjn (Figure 37 gives an example),
then the program fragments P(tj1),. . ., P(tjn) are independent and can be
performed in parallel. The following program fragment is generated:

{P(ti)} ◦ {P(tj1) ‖ . . . ‖ P(tjn)}

Constructed program fragment
P(3)
◦ { P(4) ‖ P(5) ‖ P(6) }

  3

  4   5   6

Figure 37: Scheduling graph (fork structure).

The following lemmas make statements concerning the structure of the re-
sulting parallel frame program going out from the structure of the scheduling
graph.

The first one, Lemma 3, proves that the program fragments are in the same
order like the corresponding nodes in the scheduling graph. A path (ti, . . . , tj)
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in the scheduling graph signals that the corresponding tasks have to be per-
formed sequentially. The lemma proves that the corresponding program frag-
ments respect this order. Lemma 4 proves that disjoint paths with common
source and end nodes produce parallel program fragments executed concur-
rently. The situations are illustrated in Figure 38.

  t

...

  t  j

 i+1
  t

  i

.

  t  i

...
.
..

  t

  t   t

  t  j

  r  u  t

  s   v

Figure 38: Scheduling graphs illustrating Lemma 3 (left) and Lemma 4.

Lemma 3 (Structure of the parallel frame program (1))
Let (ti, . . . , tj) be a path in the scheduling graph, let P(ti), . . . , P(tj) be the
program fragments corresponding to the nodes ti, . . . , tj, and let Pti→tj be the
parallel frame program fragment corresponding to the path (ti, . . . , tj) generated
by means of the construction steps described above.
Then, the program fragments P(ti), . . . , P(tj) occur in Pti→tj in the same order
as the corresponding elements ti, . . . , tj within the path. If we omit superfluous
brackets, then the program Pti→tj has the structure P1◦P2◦. . .◦Pn, 1 ≤ n ≤ j−i,
the program fragments P2, . . . , Pn−1 have a regular block structure, the program
fragments P1, Pn can be incomplete blocks if (ti, . . . , tj) contains solely the input
or solely the output node of a block.

Proof: We demonstrate the lemma by induction on k = j− i, the length of
the path.

k=1: Let (ti, tj) be an edge in the scheduling graph. We consider the
possibilities for the corresponding program fragments. Each one of the nodes ti
and tj may correspond to input, output, or module nodes. It is not necessary
to distinguish between the various input node types. In the following let X, X′

be one of the strings Mti(. . .), for(. . .), if(. . .), or another begin of a block or
loop structure. The following combinations can occur:

- ti and tj correspond to modules. Then Pti→tj ≡ {P(ti)} ◦ {P(tj)}
- ti corresponds to a module and tj corresponds to an input node. Then
Pti→tj ≡ {P(ti)} ◦ X{, one complete and one incomplete block.

- ti corresponds to a module and tj corresponds to an output node. Then
Pti→tj ≡ P(ti)}, an incomplete block.

- ti corresponds to an input node and tj corresponds to a module. Then
Pti→tj ≡ X{P(tj), an incomplete block.
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- ti and tj correspond to input nodes. Then Pti→tj ≡ X{X′{, an incomplete
block (the included block is uninteresting).

- ti corresponds to an input node and tj corresponds to an output node.
Then Pti→tj ≡ X{}, an (empty) block.

- ti corresponds to an output node and tj corresponds to a module. Then
Pti→tj ≡ } ◦ {P(tj)}, one complete and one incomplete block.

- ti corresponds to an output node and tj corresponds to an input node.
Then Pti→tj ≡ } ◦ X{, two incomplete blocks.

- ti corresponds to a module and tj corresponds to an output node. Then
Pti→tj ≡ P(ti)}, an incomplete block.

k → k + 1: The induction step is similar to the first step.

2

Lemma 4 (Structure of the parallel frame program (2))
Let (ti, tr, . . . , ts, tj) and (ti, tu, . . . , tv, tj), be paths in the scheduling graph
with (tr, . . . , ts) and (tu, . . . , tv) disjoint subpaths, and let Pti→tj be the corre-
sponding parallel frame program generated by means of the construction steps
described above.
Then the program Pti→tj has the structure P1 ◦ {Ptr→ts ‖ Ptu→tv} ◦ P3, where
P1, P3 can be incomplete blocks, if (ti, . . . , tj) contains solely the input or solely
the output node of a block.

Proof: For an illustration confer Figure 38 right. We demonstrate the lemma
by induction on k = j− i, the length of the path.

k=2: let (ti, tu, tj) and (ti, tr, tj) be paths with length 2 in the scheduling
graph, tu 6= tr. Like in Lemma 3, we consider the possibilities for the corre-
sponding program fragments. Each one of the nodes ti and tj can correspond
to input, output, or module nodes. tr and tu solely correspond to modules, they
cannot be input/output nodes because it is not possible to bridge input/output
nodes. In the following let X, X′ be one of the strings Mti(. . .), or for(. . .), or
another string generated for a block begin.

- ti and tj correspond to modules. Then Pti→tj ≡ {P(ti)} ◦ {P(tu) ‖
P(tr)} ◦ {P(tj)}

- ti corresponds to a module and tj corresponds to an input node. Then
Pti→tj ≡ {P(ti)} ◦ {P(tu) ‖ P(tr)} ◦ X{. The last block is incomplete.

- ti corresponds to a module and tj corresponds to an output node. Then
Pti→tj ≡ {P(ti)} ◦ {P(tu) ‖ P(tr)}}, one incomplete block.

- ti corresponds to an input node and tj corresponds to a module. Then
Pti→tj ≡ X{{P(tu) ‖ P(tr)} ◦ {P(tj)}, an incomplete block.

- ti and tj correspond to input nodes. Then Pti→tj ≡ X{{P(tu) ‖ P(tr)} ◦
X′{, an incomplete block.

- ti corresponds to an input node and tj corresponds to an output node.
Then Pti→tj ≡ X{{P(tu) ‖ P(tr)}}, a block.
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- ti corresponds to an output node and tj corresponds to a module. Then
Pti→tj ≡ } ◦ {P(tu) ‖ P(tr)} ◦ {P(tj)}. The first block is incomplete.

- ti corresponds to an output node and tj corresponds to an input node.
Then Pti→tj ≡ } ◦ {P(tu) ‖ P(tr)} ◦ X{. The first block and the last block
are incomplete.

- ti corresponds to a module and tj corresponds to an output node. Then
Pti→tj ≡ {P(ti)} ◦ {P(tu) ‖ P(tr)}}, an incomplete block.

k → k + 1: The induction step is similar to the first step.

2

10.4 Additional Examples

Beside the examples already given, we want to illustrate the management of
some typical scheduling graph structures. See in Figures 39, 41, 43, 42, 40, and
44 some typical joint, mesh, tree, and chain structures.

Constructed program fragment
{ P(4) ‖ P(5) ‖ P(6) }
◦ P(7)

  4   5   6

  7

Figure 39: Scheduling graph (joint structure).

Constructed program fragment
P(3)
◦ {{ P(4) ◦ {P(6) ‖ P(7) }}
‖ { P(5) ◦ {P(8) ‖ P(9) }}
}

  3

  4   5

  9  8  7  6

Figure 40: Scheduling graph (tree structure).

Constructed program fragment
{{{ P(3)
◦{{P(4) ◦ P(6) }
‖ { P(5) ◦ P(8) }

} }
◦ P(7)
}
◦ { P(9) ‖ P(10) }
}
◦ P(11)

  3

  5  4

  6   7   8

  9   10

  11

Figure 41: Scheduling graph (mesh structure).
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Constructed program fragment
{ P(3)
◦ {{{ P(4) ◦ { P(6) ‖ P(7)}
}
◦ P(10)}
‖ {{ P(5) ◦ { P(8) ‖ P(9)}}
◦ P(11)}}

}
◦ P(12)

  3

  5  4

  6   7   8   9

  11  10

  12

Figure 42: Scheduling graph (tree-mesh structure).

Constructed program fragment
{ P(3)
◦ { P(6)
‖ {{ P(4)

◦ { P(7)
‖ {{ P(5)

◦ { P(8) ‖ P(9)}
}
◦ P(10)}}

}
◦ P(11)}}

}
◦ P(12)

  3

  4

  5

  9  8  7  6

  10

  12

  11

Figure 43: Scheduling graph (large mesh structure).

Constructed program fragment
{ { { { { P(3)

◦ { P(4) ‖ P(5)}
}
◦ P(6)
}
◦ { P(7) ‖ P(8)}
}
◦ P(9)
}
◦ { P(10) ‖ P(11)}
}
◦ P(12)

  3

  5  4

  6

  8  7

  9

  11  10

  12

Figure 44: Scheduling graph (chain structure).
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10.5 Section’s Summary and Outlook

In this section we generated the skeleton of the parallel frame program which
meets the scheduling decisions taken in the sections before. The construction
process works on the scheduling graph. The process is recursive, a graph is
recursively divided in subgraphs for which we construct program fragments.
This program fragments are than connected together to a program. In order to
describe this process, we specified the procedure for selecting subgraphs (Sec-
tion 10.1) and we established the rules for passing through subgraphs (Section
10.2). Passing through a subgraph is a process which is often interrupted and
resumed, so we specified the rules for resuming the process, too. Additionally,
we optimized for a particular case the program constructed.

In Section 10.3 we specified the program parts constructed for atomic schedul-
ing graph elements, i.e., for nodes and edges, as well as the rules for connecting
constructed program parts together. In two lemmas we proved statements about
the structure of the program constructed. The section ends with some additional
examples (Section 10.4) which illustrate some typical scheduling graphs and the
corresponding parallel frame program fragments.

This program skeleton contains all significant information concerning con-
trol sequences, execution order of tasks, and assignment of processor groups,
but it lacks all data and processor management information. This information
will be added to the parallel frame program in the next section. We decided to
divide the construction of the parallel frame program into several steps, in order
to obtain a more readable (in the sense, more readable for the user) program
where the information is ”as local as possible”. For example, we generate the
communication environment necessary for a communication just before the com-
munication has to be done and not at the beginning of the program, although
the information is already available at the beginning.
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11 Data Distribution

In the section before we specified the execution order of tasks, but we did not
make any assumption about data distribution. In this section we describe in
detail the process of adding data distribution modules. First, we will insert
distribution modules, subsequently, in a separate step (cf. Section 11.2), we will
establish the communication environment necessary.

11.1 Inserting Data Redistribution Modules

The skeleton of the parallel frame program was constructed by means of the
scheduling graph which was specified only for this purpose. The scheduling
graph stores only a part of the data edges which represent the data flow between
module activations, i.e., it stores only data edges which are indispensable for a
correct relative order of the module activations. In this section we need the entire
data flow information, thus we work on the initial module graph constructed
in Section 5; all referred edges are module graph edges. In the following, we
complete Table 1 by outlining the data distribution modules inserted.

11.1.1 Modules

Figure 45 illustrates the program fragment constructed for module nodes. At
a node ti of the scheduling graph, each variable x has a well defined data
distribution dxti . This distribution was selected by the design decision process
from a set of possible data distributions. In the parallel frame program, the
module call Mti(. . .) of the module activation corresponding to node ti lists the
variables together with their data distributions and, additionally, it specifies
cMti , the communicator including all processors of pi, the group of processors
used for executing the module call.

Data distribution has to be inserted in order to ensure a correct data flow
between two module activations which use different data distributions. In terms
of our data structures, data distribution accrues when two nodes of the module
graph are connected via a data edge and the distribution of the corresponding
variable, stored in the scheduling graph, differs in the concerned modules. In
the following we indicate the rules for adding data distribution modules to the
parallel frame program.
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• ti module node

[ (th, ti) module graph data edge corresponding to x1, . . . , xk ]

[ (ti, tj) module graph data edge corresponding to y1, . . . , yl ]

Recv (x1 : dx1th : proc ph, x1 : dx1ti : proc pi, ch,i[ph ∪ pi])
◦ . . .
◦ Recv (xk : dxkth : proc ph, xk : dxkti : proc pi, ch,i[ph ∪ pi])
◦ Create domain (proc pi, cMti )◦ Mti ([in] x1 : dx1ti , . . . , xk : dxkti , [out] y1 : dy1ti , . . . , yl : dylti , cMti [pi])
◦ Free domain (cMti )
◦ Send (y1 : dy1ti : proc pi, y1 : dy1ti : proc pj, ci,j[pi ∪ pj])
◦ . . .
◦ Send (yl : dylti : proc pi, yl : dylti : proc pj, ci,j[pi ∪ pj])

Figure 45: Parallel frame program fragments with data distribution modules
for module nodes. Brackets [. . .] include comments.

module M(in a:vec double(3,200), out c:vec double(3,200), comm cM)
{ Send(a:(3,200):proc(1,2,3), a:(2,300):proc(1,2), cM,A)
◦ Recv(a:(3,200):proc(1,2,3), a:(2,300):proc(1,2), cM,A)
◦ Create domain (proc (1, 2), cA)
◦ A([in]a:(2,300),[out]b:(2,300), c:(2,1), cA)

◦ Free domain (cA)
◦ Send(b:(2,300):proc(1,2),b:(2,1):proc(1,2), cA,B)

◦ Send(b:(2,300):proc(1,2),b:(1,600):proc(3), cA,C)

◦ Send(c:(2,1):proc(1,2),c:(1,600):proc(3), cA,C)

◦ { { Recv(b:(2,300):proc(1,2),b:(2,1):proc(1,2), cA,B)

◦ Create domain (proc (1, 2), cB)
◦ B([in]b:(2,1), cB[1, 2])
◦ Free domain (cB)

}
‖ { Recv(b:(2,300):proc(1,2),b:(1,600):proc(3), cA,C)

◦ Recv(c:(2,1):proc(1,2),c:(1,600):proc(3), cA,C)

◦ C([in]b:(1,600), c:(1,600),[out]c:(1,600), proc(3))
◦ Send(c:(1,600):proc(3),c:(3,200):proc(1,2,3), cC,M)

}
}

◦ Recv(c:(1,600):proc(3),c:(3,200):proc(1,2,3), cC,M)

}

Figure 46: Parallel frame program sequence with data distribution modules.
Processors used are 1, 2, and 3. The corresponding module specification is
module M{A ◦ {B ‖ C}}. Brackets [. . .] include comments.

Data distribution modules A data edge (ti,tj) of the module graph repre-
sents a data flow from node ti to node tj. Let x be a variable which corresponds
to this data edge, i.e., x is output variable of ti and input variable of tj. If
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the data distributions dxti and dxtj are not identical, then a data distribution
module for x has to be inserted. For a data distribution operation, there are
two, usually distinct, processor groups involved: processor group pi realizes the
send and processors group pj realizes the receive part of the data transfer, re-
spectively. The processors of these two groups communicate via a well defined
common communicator denoted as ci,j (cf. Section 11.2 for details on establish-
ing the communicators). Thus, in order to distribute variable x, we insert two
modules, a send and a receive module. The send module (parameter’s in/outs
are indicated in comment brackets)

Send ([in]x : dxti : proc pi, [out] x : dxtj : proc pj, ci,j)

is inserted after P(ti), the program fragment corresponding to node ti. The
receive module

Recv ([in]x : dxti : proc pi, [out] x : dxtj : proc pj, ci,j)

is inserted before P(tj), the program fragment corresponding to node tj.
Send (x : dxti , . . .) and Recv (x : dxti , . . .) denote empty strings if node ti has no
ingoing or outgoing data edges annotated with x, respectively. In this case the
corresponding connecting ◦ operator is omitted, too.

Note 1 The module calls Send and Recv used for data distribution denote data
transfer operations performed between groups of processors. When generating
the corresponding program by using message passing libraries like, e.g., MPI,
these distribution operations have to be implemented by several point to point
communication operations.

Note 2 An output variable y of a module ti can be used by several differ-
ent modules tj1, . . ., tjk as input, thus several Send module calls have to be
generated, although in Figure 45 we indicated always only one such module per
variable. These modules are executed sequentially:

Send (y : dyti : proc pi, y : dytj1 : proc pj1 , ci,j1)
◦ Send (y : dyti : proc pi, y : dytj2 : proc pj2 , ci,j2)
◦ . . .
◦ Send (y : dyti : proc pi, y : dytjk : proc pjk , ci,jk)

Figure 46 illustrates a program fragment with data distribution modules.

11.1.2 Composed Modules

Input and output nodes for composed modules are similar to nodes correspond-
ing to basic modules, but concerning the data flow, input and output variables
of the composed module reverse roles. Figure 47 illustrates the parallel pro-
gram fragments constructed for a composed module. A module graph data edge
(C0,tj) represents a data flow from an input variable of the composed module to
an input variable of the inner module and data has to be redistributed according
to the data distribution dxtj required by the inner module. Data edges (th,C1)
for output variables of the composed module came from output variables of in-
ner modules and have to be redistributed in order to become the distribution
required by the parameter list of the composed module. In Figure 46, the very
first send-receive pair (with communicator cM,A) and the very last send-receive
pair (with communicator cC,M) represent such data distributions.
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• ti input node of a composed module, ti ≡ C0
[ (ti, tj) module graph data edge corresponding to x1, . . . , xk ]

Mti ([in] x1 : dx1ti , . . . , xk : dxkti , [out] y1 : dy1ti , . . . , yl : dylti , cMti [pi])
{
Send (x1 : dx1ti : proc pi, x1 : dx1tj : proc pj, ci,j[pi ∪ pj])

◦ . . .
◦ Send (xk : dxkti : proc pi, xk : dxktj : proc pj, ci,j[pi ∪ pj])

• ti output node of a composed module, ti ≡ C1
[ (th, ti) module graph data edge corresponding to y1, . . . , yl ]

Recv (y1 : dy1th : proc ph, y1 : dy1ti : proc pi, ch,i[ph ∪ pi])
◦ . . .
◦ Recv (yl : dylth : proc ph, yl : dylti : proc pi, ch,i[ph ∪ pi])
}

Figure 47: Parallel frame program fragments with data distribution modules
for composed module nodes. Brackets [. . .] include comments.

• ti input node of a sequential for loop, ti ≡ F0
[ (th, ti) data edge of the module graph, th outside the loop

Axi , i = 1, . . . , k nodes inside the loop ]

Recv (x1 : dx1th : proc ph, x1 : dx1Ax1 : proc pAx1 , ch,Ax1 [ph ∪ pAx1 ])
◦ . . .
◦ Recv (xk : dxkth : proc ph, xk : dxkAxk : proc pAxk , ch,Axk [ph ∪ pAxk ])

◦ Create domain (proc pi, cF)
◦ for(i = 0, . . . , n, cF[pi])
{

• ti output node of a sequential for loop, ti ≡ F1
[ (th, ti) data edge of the module graph, th inside the loop

(ti, tj) data edge of the module graph, tj outside the loop

Axi , i = 1, . . . , k, Byi , i = 1, . . . , l nodes inside the loop ]

Recv (x1: d
x1
th: proc ph, x1: d

x1
Ax1

: proc pAx1 , ch,Ax1 [ph ∪ pAx1 ])
◦ . . .
◦ Recv (xk: d

xk
th: proc ph, xk: d

xk
Axk

: proc pAxk , ch,Axk [ph ∪ pAxk ])
}
◦ Free domain (cF[pi])
◦ Send (y1 : dy1By1 : proc pBy1 , y1 : dy1tj : proc pj, cBy1 ,j[pBy1 ∪ pj])
◦ . . .
◦ Send (yl : dylByl : proc pByl , yl : dyltj : proc pj, cByl ,j[pByl ∪ pj])

Figure 48: Parallel frame program fragments with data distribution modules
for sequential loop nodes. Brackets [. . .] include comments.
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11.1.3 Sequential Loops

The parallel frame program fragments constructed for a sequential loop are
illustrated in Figure 48. Input and output nodes of the loops have no own
parameters, these nodes gather in their parameter lists parameter information
from inside the loop (cf. Section 5.3.2 for an overview on data edges occurring
in a subgraph for sequential loops). When a send or a receive operation is
generated for a parameter of such a node, then the corresponding information,
i.e., actual data distribution and group of processors involved, is taken from the
corresponding node located inside the loop. In Figure 48 let x be a parameter
overtaken from an inner node Ax, dxAx denotes the actual data distribution of
parameter x in Ax, and pAx denotes the group of processors mapped to the
module activation Ax.

(01) { Create domain(communicator for P)
(02) ◦ P(. . .)
(03) ◦ Free domain(communicator for P)
(04)-(07) ◦ Send(data generated by P)
(08) }
(09)-(13) ◦{ Recv(data generated outside the loop and used in the first iterat.)
(14) ◦ Create domain(communicator for for loop)
(15) ◦ for(. . .)
(16) {{{{ Create domain(communicator for A)

(17) ◦ A(. . .)
(18) ◦ Free domain(communicator for A)

(19) ◦ Send(data generated by A and used by subsequent
modules in the same iteration)

(20) ◦ Send(data generated by A and used in the next iteration)
(21) }◦{Recv(data used by B and generated by previous modules

in the same iteration )

(22) ◦ Create domain(communicator for B)
(23) ◦ B(. . .)
(24) ◦ Free domain(communicator for B)
(25)-(26) ◦ Send(data generated by B and used in the next iterat.)
(27) }
(28) }
(29) ‖ C(. . .)
(30) }
(31)-(33) ◦ Recv(data used in the next iteration)
(34) } // end for-loop

(35) ◦ Free domain(communicator for for loop)
(36)-(39) ◦ Send(data generated by the loop and used outside the loop)
(40) }
(41) ◦{ Recv(data used by Q)

(42) ◦ Create domain(communicator for Q)

(43) ◦ Q(. . .)
(44) ◦ Free domain(communicator for Q)

(45) }

Figure 49: Overview on a parallel frame program fragment with data distribu-
tion modules. For the module specification cf. Figure 9. Line numbers refer to
the detailed program in Figure 50.
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(01) { Create domain (proc(1, 2, 3), cP)
(02) ◦ P( . . . , [out] a :dP, b :dP, cP[1, 2, 3])
(03) ◦ Free domain (cP)
(04) ◦ Send( a :dP :proc(1, 2, 3), a :dA :proc(1, 2), cP,A[1, 2, 3])
(05) ◦ Send( b :dP :proc(1, 2, 3), b :dA :proc(1, 2), cP,A[1, 2, 3])
(06) ◦ Send( a :dP :proc(1, 2, 3), a :dB :proc(1, 2), cP,B[1, 2, 3])
(07) ◦ Send( b :dP :proc(1, 2, 3), b :dC :proc(3), cP,C[1, 2, 3])
(08) }
(09) ◦{ Recv( a :dP :proc(1, 2, 3), a :dA :proc(1, 2), cP,A[1, 2, 3])
(10) ◦ Recv( b :dP :proc(1, 2, 3), b :dA :proc(1, 2), cP,A[1, 2, 3])
(11) ◦ Recv( a :dP :proc(1, 2, 3), a :dB :proc(1, 2), cP,B[1, 2, 3])
(12) ◦ Recv( b :dP :proc(1, 2, 3), b :dC :proc(3), cP,C[1, 2, 3])
(13) ◦ Recv( d :d∗ :proc(∗), c :dC :proc(3), c∗,C[∗, 3])
(14) ◦ Create domain (proc(1, 2, 3), cF)
(15) ◦ for (. . . , cF[1, 2, 3])
(16) {{{{Create domain (proc(1, 2), cA)
(17) ◦ A([in] a :dA, b :dA, [out] c :dA, d :dA, cA[1, 2])
(18) ◦ Free domain (cA)
(19) ◦ Send( c :dA :proc(1,2), c :dB :proc(1,2), cA,B[1,2])
(20) ◦ Send( d :dA :proc(1,2), d :dC :proc(3), cA,C[1,2,3])
(21) }◦{Recv( c :dA :proc(1,2), c :dB :proc(1,2), cA,B[1,2])
(22) ◦ Create domain (proc(1, 2), cB)
(23) ◦ B([in] a :dB, c :dB, [out] b :dB, cB[1, 2])
(24) ◦ Free domain (cB)
(25) ◦ Send(b :dB :proc(1, 2), b :dA :proc(1, 2), cB,A[1, 2])
(26) ◦ Send(b :dB :proc(1, 2), b :dC :proc(3), cB,C[1, 2, 3])
(27) }
(28) }
(29) ‖ C([in] b :dC, d :dC, [out] e :dC, cC[3])
(30) }
(31) ◦ Recv( b :dB :proc(1, 2), b :dA :proc(1, 2), cB,A[1, 2])
(32) ◦ Recv( b :dB :proc(1, 2), b :dC :proc(3), cB,C[1, 2, 3])
(33) ◦ Recv( d :dA :proc(1, 2), d :dC :proc(3), cA,C[1, 2, 3])
(34) }
(35) ◦ Free domain (cF)
(36) ◦ Send( b :dB :proc(1, 2), b :d∗ :proc(∗), cB,∗[1, 2, ∗])
(37) ◦ Send( c :dA :proc(1, 2), c :d∗ :proc(∗), cA,∗[1, 2, ∗])
(38) ◦ Send( d :dA :proc(1, 2), d :d∗ :proc(∗), cA,∗[1, 2, ∗])
(39) ◦ Send( e :dC :proc(3), e :dQ :proc(1, 2, 3), cC,Q[1, 2, 3])
(40) }
(41) ◦{ Recv( e :dC :proc(3), e :dQ :proc(1, 2, 3), cC,Q[1, 2, 3])
(42) ◦ Create domain (proc(1, 2, 3), cQ)
(43) ◦ Q([in] e :dQ, . . . , cQ[1, 2, 3])
(44) ◦ Free domain (cQ)
(45) }

Figure 50: Parallel frame program fragment. ’*’ denotes modules or module
information coming from outside the program fragment illustrated.

Example Figure 9 illustrates the module graph for a sequential loop; as a gen-
eral rule we can say that Send and Recv module calls have to be constructed for
all data edges illustrated in this figure. Figures 49 and 50 illustrate a therefore
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constructed parallel frame program fragment. For data edges incoming to the
input node of the sequential loop and which represent data generated outside the
loop and used inside the loop, especially in the first iteration step, Recv module
calls are generated (lines 09-13). For data edges outgoing from the output node
of the loop and which represent data generated inside the loop and used by mod-
ules outside the loop, program code for Send module calls is generated (lines
36-39). These modules are performed only once, before beginning the loop, and
after end of the loop, respectively. Accordingly, these module calls have to be
placed outside the loop. Data edges incoming to the output node of the loop
represent data distribution operations for data generated in the loop and used
in the next iteration by modules inside the loop. These data operations have
to be performed each time when iterating the loop and, thus, have to be placed
inside the loop (Recv operations in lines 31-33). The corresponding Send calls
are inside the loop and are placed as usual after the module activations which
generate the corresponding data (lines 20 and 25-26, respectively).

11.1.4 Parallel Loops

• ti input node of a parallel parfor loop, ti ≡ P0
[ (th, ti) data edge of the module graph,

Axi , i = 1, . . . , k nodes inside the loop ]

Recv (x1 : dx1th : proc ph, x1 : dx1Ax1 : proc pAx1 , ch,Ax1 [ph ∪ pAx1 ])

◦ . . .
◦ Recv (xk : dxkth : proc ph, xk : dxkAxk : proc pAxk , ch,Axk [ph ∪ pAxk ])
◦ Create domain (proc pi, cP)
◦ parfor (cP[pi])
{

• ti output node of a parallel parfor loop, ti ≡ P1
[ (ti, tj) data edge of the module graph,

Byi , i = 1, . . . , l nodes inside the loop ]

}
◦ Free domain (cP[pi])
◦ Send (y1 : dy1By1 : proc pBy1 , y1 : dy1tj : proc pj, cBy1 ,j[pBy1 ∪ pj])
◦ . . .
◦ Send (yl : dylByl : proc pByl , yl : dyltj : proc pj, cByl ,j[pByl ∪ pj])

Figure 51: Parallel frame program with data distribution modules for parallel
loops.

Figure 51 illustrates the parallel frame program fragment constructed for
parallel loops. The principle is the same as before: we generate data distribution
module calls for each module graph data edge (an example of a module graph
with a parallel loop can be found in Figure 10).
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11.1.5 Conditionals

Figure 52 illustrates the parallel frame program fragment constructed for a
conditional, the corresponding module graph can be found in Figure 11.

• ti input node of a conditional, ti ≡ I0
[ (th, ti) data edge of the module graph,

Axi , i = 1, . . . , k nodes inside the conditional ]

Recv (x1 : dx1th : proc ph, x1 : dx1Ax1 : proc pAx1 , ch,Ax1 [ph ∪ pAx1 ])
◦ . . .
◦ Recv (xk : dxkth : proc ph, xk : dxkAxk : proc pAxk , ch,Axk [ph ∪ pAxk ])

◦ Create domain (proc pi, cI)
◦ if(. . . , cI[pi])
{

• ti output node of a conditional, ti ≡ I1
[ (ti, tj) data edge of the module graph,

Byi , i = 1, . . . , l nodes inside the conditional ]

}
◦ Free domain (cI[pi])
◦ Send (y1 : dy1By1 : proc pBy1 , y1 : dy1tj : proc pj, cBy1 ,j[pBy1 ∪ pj])
◦ . . .
◦ Send (yl : dylByl : proc pByl , yl : dyltj : proc pj, cByl ,j[pByl ∪ pj])

Figure 52: Parallel frame program with data distribution modules for condi-
tionals.

11.2 Establishing Communicators

Any point to point communication occurs within a well defined domain, the
communication domain. We use the notion of communicator in the sense defined
by MPI [65], as being the local representation of the global communication
domain. Other message passing libraries have similar notions. For message
passing libraries which do not support groups, collective communication on
subsets of the processors have to be simulated in more troublesome way.

In order to describe how to establish communicators, first, in Section 11.2.1,
we describe the data structure used, then, in Section 11.2.2 we establish the
communicators for the point to point communication domains.

11.2.1 Abstract Syntax Trees

In order to establish the communicators, we use abstract syntax trees. An ab-
stract syntax tree is a tree where each node is an operator and the son nodes
represent the corresponding operands. Our abstract syntax trees represent par-
allel frame programs. Therefore we use ◦ and ‖ operands, and, additionally, we
treat the composed module itself, loops, and conditionals like operators: the
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particular operator node is labeled by comp mod, for, parfor, or if, the left
son points to the abstract syntax tree or to the subtree corresponding to the
inner block of the loop or conditional, the right son is empty.

In order to use abstract syntax trees for representing parallel programs, we
have to take into consideration that we use several processors or groups of
processors and that processors can compute different program fragments. The
nodes of the abstract syntax tree have annotations which specify the set of pro-
cessors involved in the computation of the corresponding node or of the subtree
having this node as root. The semantics is as follows: for a specified processor
p, we consider only the nodes which have p in the annotations. It is obvious
that the abstract syntax trees corresponding to the operations performed by
each one of the processors are subtrees of the entire abstract syntax tree.

In the next sections, we establish communicators for various data distribu-
tions. The cases which have to be considered depend on the node’s type, i.e.,
module node, input/output node of a loop or a conditional, or composed module
node, and they depend on where the nodes are located, i.e., inside or outside a
loop or conditional.

11.2.2 Communicators for Module to Module Communication

All tasks within this section correspond to module activations. Within the
activation of send and receive modules we indicated in Section 11.1 the commu-
nicators for realizing the communication, but up to now we did not introduce
any operation for establishing the communication domain. The reason is that
when passing through the scheduling graph, the (global) information needed
for establishing the communication domains is locally not available. Figure 53
illustrates this. Here, data transfer has to be done between task 3 and 6, and 4
and 8, respectively. In Figure 53 data transfer is sketched by dashed lines, these
edges do not belong to the scheduling graph. In order to do, e.g., data transfer
from task 4 to task 8, a communication domain including processors 0, 1, and 2
has to be established (numbers in paranthesis represent processors mapped to
tasks). When processing node 4, which use solely processor 1, we do not have
any information about the state of processors 0 and 2, and, additionally, we do
not known, if processors 0 and 2 passes through this program point.

Corresponding program fragment

P(2)
◦ { { { P(3) ‖ P(4) }

◦ P(6)
}
‖ { P(5) ◦ P(7) }
}
◦ P(8)

  2

  3
 (0)

  4
 (1)

  5
 (2)

  7
 (2)

  6
 (0,1)

  8
 (0,2)

(0,1,2)

Figure 53: Scheduling graph with additional data distribution information.
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Corresponding program
fragment

P(2)
◦ { { { P(3) ‖ P(4) }

◦y P(6)
}
‖ { P(5) ◦ P(7) }
}
◦x P(8)

  (0,1,2)
  o

  x

  o
  (0,2)

  ||
  (0,1,2)

  o   o
  (2)

  (0,1)
  ||

  (0,1)   (2)   (2)

  (1)  (0)

  (0,1)

  (0,1,2)

  (0,1,2)

  P(2)

  P(6)   P(5)   P(7)

  P(4)  P(3)

  P(8)

  y

Figure 54: Abstract syntax tree.

Let us construct the parallel program fragment for this scheduling subgraph
and lookup particularly to the corresponding abstract syntax tree illustrated in
Figure 54. The x marked ◦ operator node is a common program point for the
processor from task 4 and the processors from task 8, all these processors pass
this program point, i.e., all these processors are in the node’s set of assigned
processors. The x-node is the first common predecessor of P(4) and P(8) in
the abstract syntax tree. Thus, we will establish the common communication
domain for the program fragments P(4) and P(8) in the vicinity of this program
point. Analogously, the y marked node is the common synchronization point
for the processor from task 3 and the processors from task 6.

Synchronization point A synchronization point for a set of processors which
execute a program is a program point which is passed by all processors of the
set, i.e., a synchronization point is a node of the abstract syntax tree which
includes in its set of assigned processors all processors concerned.

In general, for a data communication represented in the module graph by a
data edge (ti,tj), we have to find the already existing synchronization point
for the processor groups pi and pj, without adding new synchronization oper-
ations. For example, ◦ operator nodes inside the corresponding parallel frame
program represent natural synchronization points of the program. Thus, we
have to find the operator node which connects the two program fragments Pi
and Pj, containing P(ti) and P(tj), respectively. This operator node exists,
it is the first common predecessor of P(ti) and P(tj) (see Lemma 5 below).
After finding this node, we insert the program fragment for initiating the com-
munication domain so that the communicator is established before entering the
program fragment Pi and we insert the program fragment for closing the com-
munication domain after ending Pj. Therefore, the structure of the program
will be:

Create domain (proc pi ∪ pj, ci,j)
◦ { Pi ◦ Pj }
◦ Free domain (ci,j).
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Corresponding program
fragment

{Create domain((0, 1, 2), c4,8)
◦ {{P(2)
◦ {{{Create domain((0, 1), c3,6)

◦ {{P(3) ‖ P(4)}
◦y P(6)

}
}
◦ Free domain(c3,6)
}
‖ {P(5) ◦ P(7)}

}
}
◦x P(8)
}

}
◦ Free domain(c4,8)

 (0,1,2)
  o

 (0,1,2)

  P(8)

  o
  x(0,1,2)

domain
create

  o
 (0,1,2)

 (0,1,2)  (0,1,2)

(0,1,2)
domain
free  (0,1,2)

  o
 (0,1,2)

  P(2)

 (0,1,2)  (0,1,2)
  ||

 (0,1)
  o   o

 (2)

(0,1)
domain

 free  (2) (0,1) (0,1)
  o

 (2)

  P(5)   P(7)

 (0,1) (0,1)
  o

  y

 create
domain
(0,1)

 (0,1) (0,1)
  ||

  P(6)

 (1) (0)

  P(3)   P(4)

Figure 55: Abstract syntax tree with communication domain operations.

Example In Figure 55 we illustrate the result of this procedure for the ab-
stract syntax tree from Figure 54. Added nodes are shaded. In order to easier
distinguish the operators in the program fragment, we indexed with x/y the
◦ operators corresponding to the nodes marked. The modules Create domain
and Free domain create/free the communication domain consisting on the pro-
cessors indicated. For example, the domain for the communication between
nodes 4 and 8 is created in the very first line and freed in the last program
line. For readability reasons, the corresponding Send and Recv communication
operations are omitted.

Overview on the algorithm Figure 56 gives an overview on the algorithm
used for finding the synchronization points and adding the domain management
operations for module to module data transfer. Only the case that ti, tj are
both module nodes located on the same level, i.e., both outside a loop or con-
ditional, or both inside a loop or if statement, is considered. The right figure
illustrates the abstract syntax tree used within the algorithm for the case that
the concerned node x is a left son. For this algorithm we use the abstract syntax
tree (cf. Section 11.2.1) of the parallel frame program generated in Section 10.
Note that the algorithm works on the abstract syntax tree, but it also uses addi-
tional information stored in the module graph, e.g., information about variables
to which data edges correspond.
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∀ data edge (ti, tj) ∈ module graph

and ti, tj modules outside a loop

if( ∃ variable v ∈ annotation (ti, tj)
with dvti 6= dvtj)

// henceforth the algorithm works
// on the abstract syntax tree

{ x = find common pred(P(ti), P(tj));
cn = new node(create node, pi ∪ pj);
fn = new node(free node, pi ∪ pj);
o1 = new node(◦ node, px);
o2 = new node(◦ node, px);
fx = father(x);
o1.l son = cn;

o1.r son = x;

o2.l son = o1;

o2.r son = fn;

if (fx.r son == x) fx.r son = o2;

else fx.l son = o2;

}

 cn   x

  P(t )   P(t )  j  i

  o
  1  fn

  o
  2

  fx

Figure 56: Algorithm to add communication domain management operations
for module to module communication.

The next lemma proves the existence of synchronization points for all pos-
sible node types participating at a data transfer operation. Subsequently, com-
munication domain operations will be inserted in the vicinity of this point (see
below).

Lemma 5 (Synchronization points)
Let (ti, tj) be a data edge of the module graph, let ast be the abstract syntax
tree generated by means of the algorithm described in Section 10, and let pi, pj
be the processor groups assigned to the module activations concerned.

The synchronization point for the processors in pi and pj is either an ast
operator node labeled with ◦, or the root node of a for, parfor, or if labeled
subtree of ast, or the root node of ast.

Proof: The cases which have to be considered depend on the nodes’ type,
i.e., module node, input/output node of a loop or a conditional, or composed
module node, and depend on where the nodes are located, i.e., inside or outside
a loop or conditional.

Case 1: Let ti, tj be nodes corresponding to module activations, and let
ti, tj be both outside a loop or conditional, or let both be inside a loop or
conditional. According to Lemma 1 about scheduling graph information, for
a data edge (ti, tj) of the module graph there is a path (ti, . . . , tj) in the
scheduling graph. According to Lemma 3 and 4 about the structure of the
program, the corresponding parallel frame program is P1 ◦ P2 ◦ . . . ◦ Pn, i.e., the
corresponding part of ast has the form illustrated in Figure 57.

On their part, the program fragments Pl, l = 1, . . . , n, have (cf. proof
of Lemma 3 and 4) the form X{. . .P(tk) . . .} with X empty or X = for(),
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  P

  o

  P  n

  o

  1   P  2

Figure 57: Abstract syntax tree for P1 ◦ P2 ◦ . . . ◦ Pn.

X = parfor(), or X = if() for k = i, . . . , j. Particularly P1 = X{. . .P(ti) . . .}
and Pn = X{. . .P(tj) . . .}. Thus, pi and pj are subgroups of the processor group
assigned to the root of ast. It is obvious that all processors assigned to parts of
ast have to pass the root, an operator node labeled with ◦. Additionally, the
root of ast is the first common node for these processors.

Case 2: Let one of the nodes ti, tj be corresponding to a module activation
outside a loop or outside a conditional and the other node be corresponding to
the input/output node of a loop or a conditional.
In the corresponding parallel program P1 ◦ P2 ◦ . . . ◦ Pn, the P1 or the Pn part,
i.e., the part corresponding to the input/output node, is an incomplete block
(cf. proof of Lemma 3 and 4), but the proof can be done similarly to the first
case above.

Case 3: Let one of the nodes ti, tj be corresponding to a module activa-
tion inside a loop or conditional and the other node be corresponding to the
input/output node of the loop or conditional. Looked at more closely (cf. Sec-
tion 5), the only possible situation is that ti is inside a sequential loop and tj
is the output node of the loop. Data edge (ti, tj) represents data operations
caused by sequential looping (cf. Section 5.3.2) and which have to be performed
for each loop iteration. The loop’s root node, i.e., the for labeled ast node, is
synchronization point for the corresponding processors, all processors assigned
to the loop are elements of the for node’s processor set.

Case 4: Let one of the nodes ti, tj be corresponding to an input or output
node of the composed module. The data edges concerned represent data opera-
tions for the composed module’s input or output data. The ast’s root node, i.e.,
the comp mod labeled ast node, is synchronization point for the corresponding
processors, all processors assigned to the composed module are elements of the
root’s processor set.

2
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11.2.3 Communicators for Block Input/Output Nodes

Let (ti, tj) be a data edge and let one of the nodes be corresponding to the
input/output node of a loop or a conditional. As shown in the proof of Lemma
5, the case that the other node corresponds to a module activation outside the
loop or outside the conditional can be treated similarly to the module to module
case seen in Section 11.2.2.

  o

  o

  for

domain

  create

  free

domain

  i  P

Figure 58: Algorithm to add communication domain management operations
for module to for output node communication.

In the lemma’s proof, we also showed that the case that one of the nodes ti,
tj is corresponding to a module activation inside a loop or conditional and the
other node is corresponding to the input/output node of the loop or conditional,
can be reduced to: ti is inside a sequential loop and tj is the output node of
the loop. Figure 58 illustrates the algorithm to add communication domain
management operations.

11.2.4 Communicators for Composed Modules

Let (ti, tj) be a data edge where one of the nodes ti, tj corresponds to an input
or output node of the composed module. The data edges concerned represent
data operations for the composed module’s input or output data. The algorithm
to add communication domain management operations is similar to the case
above (Section 11.2.3).

11.3 Section’s Summary and Outlook

In this generation step, first we added data distribution modules to the program
skeleton constructed in the sections before. Therefore, we described in detail
the construction steps for adding data distribution modules to the program
fragments constructed for the basic language elements, i.e., for modules (Section
11.1.1), composed modules (Section 11.1.2), loops (Section 11.1.3 and 11.1.4),
and conditionals (Section 11.1.5).

Subsequently, we added communication environment management proce-
dures to the until then constructed parallel frame program. Therefore, we used
the abstract syntax tree of the program constructed in the steps before (Section
11.2.1), and we added the corresponding operations by means of this syntax tree
(Sections 11.2.2, 11.2.3, and 11.2.4). In a lemma we demonstrated the correct-
ness of our construction steps, i.e., we proved the existence of program points
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which are passed by the corresponding processors and, around these points, the
algorithm adds communication domain management operations. The next sec-
tion presents the complete parallel frame program for the conjugate gradient
method.

Now, the parallel frame program contains all information necessary for the
implementation of a parallel program for a specified target machine. The final C
program with MPI calls can be obtained by a simple transformation of this par-
allel frame program. We renounce to describe this syntax driven transformation
step.
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12 Example

Parallel frame program for the conjugate gradient iteration with 4 processors,
i.e., processors 0, 1, 2, and 3, and an assumed vector size of 300.

(01) module CG (in A:mat double(4,75,1,1), p:vec double(4,75),
p0:vec double(4,75), w:vec double(4,75), w0:vec double(4,75),
r:vec double(4,75), r0:vec double(4,75), x:vec double(4,75),
λ0:double:proc(3), out p:vec double(4,75), x:vec double(4,75),
r:vec double(4,75), comm cCG[0,1,2,3])

(02) { Create domain (proc (0,1,2,3), cCG,for)

(03) ◦ Send (w0:(4,75):proc(0,1,2,3), w0:(1,300):proc(3), cCG,for)

(04) ◦ Send (r0:(4,75):proc(0,1,2,3), r0:(1,300):proc(0), cCG,for)

(05) ◦ Send (p:(4,75):proc(0,1,2,3), p:(1,300):proc(0), cCG,for)

(06) ◦ Recv (w0:(4,75):proc(0,1,2,3), w0:(1,300):proc(3), cCG,for)

(07) ◦ Recv (r0:(4,75):proc(0,1,2,3), r0:(1,300):proc(0), cCG,for)

(08) ◦ Recv (p:(4,75):proc(0,1,2,3), p:(1,300):proc(0), cCG,for)

(09) ◦ Create domain (proc (0,1,2,3), cfor)

(10) ◦ for (k=0..K, cfor)

(11) {
(12) ◦ Create domain (proc (0,1,2,3), cvv sub2,for)

(13) ◦ Create domain (proc (0,1,2,3), cmv prod,vv prod2)

(14) ◦ Create domain (proc (0,1,2,3), cmv prod,vv prod3)

(15) ◦ Create domain (proc (0,1,2,3), cmv prod,vv prod4)

(16) ◦ Create domain (proc (0,1,2,3), cmv prod)

(17) ◦ mv prod ([in]A:mat(4,75,1,1), p:(4,75),[out]w:(4,75), cmv prod)

(18) ◦ Free domain (cmv prod)

(19) ◦ Send (w:(4,75):proc(0,1,2,3),w:(1,300):proc(1), cmv prod,vv prod2)

(20) ◦ Send (w:(4,75):proc(0,1,2,3),w:(1,300):proc(2), cmv prod,vv prod3)

(21) ◦ Send (w:(4,75):proc(0,1,2,3),w:(1,300):proc(3), cmv prod,vv prod4)

(22) ◦ Create domain (proc (0,1,2,3), cvv prod1 ,op assign1 )

(23) ◦ Create domain (proc (0,1,2,3), cvv prod2 ,op assign3 )

(24) ◦ Create domain (proc (0,1,2,3), cvv prod2 ,assign)

(25) ◦ {
(26) { vv prod1 ([in] p:(1,300), r0:(1,300), [out]tmp1, proc(0))
(27) ◦ Send ( tmp1:proc(0), tmp1:proc(2), cvv prod1 ,op assign1) }
(28) }
(29) ‖ { Recv (w:(4,75):proc(0,1,2,3), w:(1,300):proc(1),

cmv prod,vv prod2)

(30) ◦ vv prod2 ([in]w:(1,300), p:(1,300),[out] λ1,proc (2))

(31) ◦ Send (λ1:proc(2),λ1:proc(1), cvv prod2 ,op assign3)

(32) ◦ Send (λ1:proc(2),λ1:proc(3), cvv prod2 ,assign) }
(33) ‖ { Recv (w:(4,75):proc(0,1,2,3), [out]w:(1,300):proc(2),

cmv prod,vv prod3)

(34) ◦ vv prod3 ([in]w:(1,300), w:(1,300), [out] tmp2, proc(1))
(35) }
(36) ‖ { Recv (w:(4,75):proc(0,1,2,3), w:(1,300):proc(3),

cmv prod,vv prod4)

(37) ◦ vv prod4 ([in]w:(1,300), w0:(1,300), [out] tmp3, proc(3))
(38) }
(39) }
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(40) ◦ Free domain (cmv prod,vv prod4)

(41) ◦ Free domain (cmv prod,vv prod3)

(39) ◦ Free domain (cmv prod,vv prod2)

(42) ◦ Create domain (proc (0,1,2,3), cop assign1 ,sv prod1)

(43) ◦ Create domain (proc (0,1,2,3), cop assign2 ,sv prod4)

(44) ◦ Create domain (proc (0,1,2,3),cop assign3 ,sv prod3)

(45) ◦ { { Recv ( tmp1:proc(0), tmp1:proc(2), cvv prod1 ,op assign1)

(46) ◦ op assign1 ([in]tmp1, op, λ1, [out]ξ, proc (2))

(47) ◦ Send (ξ:proc(2), ξ:proc(0,1,2,3), cop assign1 ,sv prod1) }
(48) ‖ { op assign2 ([in]tmp3, op, λ0, [out]ν, proc (3))

(49) ◦ Send (ν:proc(3),ν:proc(0,1,2,3), cop assign2 ,sv prod4)

(50) ◦ Recv (λ1:proc(2),λ1:proc(3), cvv prod2 ,assign)

(51) ◦ assign ([in]λ1,[out]λ0, proc(3)) }
(52) ‖ { Recv (λ1:proc(2),λ1:proc(1), cvv prod2 ,op assign3)

(53) ◦ op assign3 ([in]tmp2, op, λ1, [out]µ, proc(1))
(54) ◦ Send (µ:proc(1),µ:proc(0,1,2,3), cop assign3 ,sv prod3) }
(55) }
(56) ◦ Free domain (cvv prod2 ,assign)

(57) ◦ Free domain (cvv prod2 ,op assign3)

(58) ◦ Free domain (cvv prod1 ,op assign1)

(59) ◦ Recv (ξ:proc(2),ξ:proc(0,1,2,3), cop assign1 ,sv prod1)

(60) ◦ Create domain (proc (0,1,2,3), csv prod1)

(61) ◦ sv prod1 ([in]ξ, p:(4,75),[out]tmp4:(4,75), csv prod1)

(62) ◦ Free domain (csv prod1)

(63) ◦ Free domain (cop assign1 ,sv prod1)

(64) ◦ vv assign1 ([in]w:(1,300), [out] w0:(1,300), proc(3))
(65) ◦ Create domain (proc (0,1,2,3), csv prod2)

(66) ◦ sv prod2 ([in]ξ, w:(4,75),[out]tmp5:(4,75), csv prod2)

(67) ◦ Free domain (csv prod2)

(68) ◦ Recv (µ:proc(1),[out]µ:proc(0,1,2,3), cop assign3 ,sv prod3)

(69) ◦ Create domain (proc (0,1,2,3), csv prod3)

(70) ◦ sv prod3 ([in]µ, p:(4,75),[out]tmp6:(4,75), csv prod3)

(71) ◦ Free domain (csv prod3)

(72) ◦ Free domain (cop assign3 ,sv prod3)

(73) ◦ Recv (ν:proc(3),ν:proc(0,1,2,3), cop assign2 ,sv prod4)

(74) ◦ Create domain (proc (0,1,2,3), csv prod4)

(75) ◦ sv prod4 ([in]ν, p0:(4,75),[out]tmp7:(4,75), csv prod4)

(76) ◦ Free domain (csv prod4)

(77) ◦ Free domain (cop assign2 ,sv prod4)

(78) ◦ Create domain (proc (0,1,2,3), cvv sub1)

(79) ◦ vv sub1 ([in]r:(4,75), tmp5:(4,75),[out]r:(4,75), cvv sub1)

(80) ◦ Free domain (cvv sub1)

(81) ◦ Create domain (proc (0,1,2,3), cvv assign2)

(82) ◦ vv assign2 ([in]p:(4,75), [out]p0:(4,75), cvv assign2 )

(83) ◦ Free domain (cvv assign2)

(84) ◦ Create domain (proc (0,1,2,3), cvv add1)

(85) ◦ vv add1 ([in]x:(4,75), tmp4:(4,75),[out]x:(4,75), cvv add1)

(86) ◦ Free domain (cvv add1)

(87) ◦ Create domain (proc (0,1,2,3), cvv add2)

(88) ◦ vv add2 ([in]tmp6:(4,75), tmp7:(4,75),[out]tmp6:(4,75), cvv add2)

(89) ◦ Free domain (cvv add2)
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(90) ◦ Create domain (proc (0,1,2,3), cvv sub2)

(91) ◦ vv sub2 ([in]w:(4,75), tmp6:(4,75),[out]p:(4,75), cvv sub2)

(92) ◦ Send (p:(4,75):proc(0,1,2,3),[out]p:(1,300):proc(0), cvv sub2,for)

(93) ◦ Free domain (cvv sub2)

(94) ◦ Recv (p:(4,75):proc(0,1,2,3),p:(1,300):proc(0), cvv sub2 ,for)

(95) ◦ Free domain (cvv sub2,for)

(96) } // end for loop

(97) ◦ Free domain (cfor)

(98) ◦ Free domain (cCG,for)

(99) }

Figure 59 illustrates the runtime for 4 processors on a Cray T3E: a straight-
forward, pure data parallel version and an implementation of the version pre-
sented before, which mixes task and data parallelism. This implementation is
slightly better than the pure data parallel solution. Due to the low resolution
and the small differences (less than 2%) between, the two graphs are overlapping
in the figure. We used for our experiments as input the BCSSM matrices (num-
ber 06, 07, 09, 11, and 13) of the Harwell-Boeing Collection [44]. We denote
with problem size the size of matrices used.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

500 1000 1500 2000 2500 3000 3500

ru
nt

im
e

problem size

Runtime of the CG Method

 ga_best
 pure_dp

Figure 59: Runtime of the conjugate gradient iteration method for 4 processors
on Cray T3E.
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13 Implementation

A prototype of our tool for generating mixed task and data parallel implementa-
tions has been implemented. The implementation follows the systems’ structure
presented in this thesis and consists of:

• Front end; this part realizes the scanning and parsing of the user’s module
specification and its transformation into a module graph representation.

• Scheduling; this is the system’s kernel, it realizes the genetic algorithm
scheduling.

• Back end; this part realizes the interpretation of the scheduling result
and its transformation into a parallel frame program and, finally, into a
C+MPI program.

The front end is a small compiler for the module specification language. The
resulting module graph which represents the users’ specification contains among
graph information, information about context dependence (cf. Section 5.3.3).

The scheduling has as input the module graph information and several files
storing user provided information about available task implementation and
about communication functions. To each task there is information about the
implementation versions available: a specification about the number of proces-
sors necessary, information, given as distribution vector (cf. Section 6.2), about
data distribution, and information about the runtime behaviour of the specified
task version. The runtime information may be a measured time or it may be a
link to a runtime estimation function to estimate the runtime depending, e.g.,
on the actual number of processors available. These runtime estimation func-
tions are provided as program code which has to be linked to the scheduling
program. Information about communication functions concern their runtime
behaviour, the information provided is a code fragment implementing the spe-
cific runtime formula used. This code fragment is included into the scheduling
program, i.e., the scheduling program has to be recompiled for each individual
target machine. Beside these, each scheduling run is parametrized with the
genetic algorithm parameters described in Section 7.7.

A scheduling run is mainly a run of the genetic algorithm. It can be started
with or without initial population, i.e., the user has the possibility to include
good individuals from previous runs. The number of individuals overtaken from
previous runs is user determined. A scheduling run provides individuals (cur-
rently 3 individuals per run) representing the best solutions found.

The back end transforms individuals representing a scheduling solution into
parallel frame programs which fix the scheduling decisions, i.e., schedule of tasks,
processors’ assignment to tasks, and for each task an implementation with a
well defined data distribution for the parameters. Data distribution modules
and communication domain management functions are also included into the
parallel frame program. Herewith, a description of a parallel implementation
which may mix task and data parallelism is provided. Finally, this program is
transformed into a C program with MPI message passing interface.

The system was implemented in C/C++ on a Sun UltraSparc. The com-
piler for transforming module specification into module graphs uses Lex/Yacc
generators, the genetic algorithm scheduling is based on the framework for gen-
erating genetic algorithms implemented by A. Thüring [68]. In order to allow
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an easy replacement of individual parts of the system by other modules and
for test purposes, all interfaces are kept simple, so that they can be read and
edited with conventional editors. Parts of the system can be replaced by other
modules as long as the interfaces remain unchanged. This offer, for example,
the possibility of experimenting with other schedule techniques.

Front end and back end part are not time critical, they have mainly to
manage data for a single program. The scheduling is a time consuming program,
due to the large search area to be inspected. A problem similar to the problem
presented in Section 7.9, a genetic algorithm run with 100 individuals, 500
generations, a problem size of 3000, and a target machine with 4 processors,
needs about three and a half hours on a Sun UltraSparc. In this time the
genetic algorithm scheduling has found the best implementation of the conjugate
gradient method, as an analysis of the possible implementations showed. In this
implementation, the first 4 vv prod modules are performed concurrently, the
remainder of modules are performed sequentially in a data parallel manner by
using a block data distribution (cf. the parallel frame program example from
Section 12).

C+MPI parallel programs with mixed task and data parallelism were tested
on a SPP2000 and on a Cray T3E.
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14 Summary and Outlook

This thesis introduces a powerful multi-dimensional genetic algorithm based
scheduling which is embedded into a tool for generating parallel programs with
mixed task and data parallelism. The goal is to generate an efficient parallel
implementation for an application on a distributed memory target machine, the
results achieved demonstrate the efficiency of our approach.

For the efficiency of a parallel application it is essential to exploit the poten-
tial parallelism. Several applications offer at the same time a potential of task
parallelism and a potential of data parallelism. We combine in our approach
task and data parallelism: on the one hand we separate task and data paral-
lelism in order to allow a complete specification of the potential parallelism of
the application to be implemented, on the other hand we allow an interchange
of specific information between task and data parallel level. The separation of
task and data parallelism is given in the module specification where task par-
allelism is specified by means of the module specification language’s concepts
and data parallelism is hidden in basic modules implemented in a data parallel
manner. We define a compact module specification language which allows the
specification of task and data parallelism of an application. During the pro-
gram generation process, information about module interfaces, especially about
data distribution, and implementation costs information is exchanged between
the levels. Information about data distribution is an attribute of each one of
the several implementation versions available for modules. Data redistribution
modules are added by the system, if necessary. For the implementation costs
information, i.e., for estimating the consequence of design decisions, we use in
our system an efficient runtime prediction formula overtaken from [57].

For the efficiency of an implementation of a parallel application it is essential
to know the method to be implemented and the target machine’s characteristics.
One of the basic ideas of our system is to divide the work between programer
and compiler, the user provides for the method specification, we provide for
a compiler tool which manages the required information about the target ma-
chine’s characteristics. Herewith, we assist the user in scheduling their program
on a target machine and, at the same time, we eliminate for the user the need
of an exact knowledge of the system architecture.

Ultimately, for the efficiency of an implementation the design decisions have
the greatest influence, but the problems to be solved are complex (both, schedul-
ing and efficient data distribution, are NP-complete [26, 43]). We propose in
this thesis an efficient genetic algorithm based scheduling which takes important
design decisions in order to obtain efficient implementations which simultane-
ously exploit task and data parallelism. The advantage of this approach is not
only that it provides a scheduling algorithm, but also that it allows choosing
appropriate implementations from a set of functions and convenient data distri-
butions. The results of the scheduling step are fixed in a parallel frame program
which includes all decisions taken (for each module an implementation version
with a fixed number of processors for the execution and an appropriate data dis-
tribution for the parameters, the execution order of modules, and the mapping
of processors to tasks) and which includes additional operations necessary for
an implementation (data redistribution modules, and communication domain
management operations). The parallel frame program can be translated by a
syntax directed pass in any imperative language augmented by a message pass-
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ing library supporting groups. For our experiments we chose C as imperative
programing language and MPI as message passing interface. This syntax driven
translation step is not described in this thesis.

This thesis achieved promising results in the on the area of compiler tools
for the generation of parallel programs with mixed task and data parallelism.
Future research is mainly directed towards investigating new approaches for
parts of the system and increasing performance.

The system has a modular structure which allows parts of the system to be
replaced by other modules when preserving interface and functionality. Thus,
e.g., experiments with other scheduling approaches may be performed.

Our system allows in principle hierarchically structured module specifica-
tion. Future research includes the exploitation of this structure for subsequent
program development steps, especially scheduling for hierarchically structured
module specifications. System elements were already designed for a hierarchical
application.

The genetic algorithm operations’ locality, i.e., operations performed during
the scheduling are limited to a restricted number of individuals, indicates a
parallelization potential. Thus, performing concurrently several computations
and exchanging in intervals the best individuals seems to be an almost natural
parallelization possibility of the scheduling itself. This is an interesting future
development of our system in order to increase the computation potential and
to inspect larger search spaces.
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[18] C. Clémençon, K.M. Decker, A. Endo, J. Fritscher, G. Jost, N. Masuda,
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