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außerordentlich dankbar.

. . . , nicht zu vergessen: die vielen guten Freunde. Danke.

ii



Abstract We describe and evaluate a method of lines (MOL) technique for the simulation of taxis–diffusion–
reaction (TDR) systems. These time-dependent PDE systems arise when modelling the spatio-temporal evolution of
a population of organisms which migrate in direct response to e.g. concentration differences of a diffusible chemical
in their surrounding (chemotaxis). Examples include pattern formation and different processes in cancer development.
The effect of taxis is modelled by a nonlinear advection term in the TDR system (the taxis term).
The MOL-ODE is obtained by replacing the spatial derivatives in the TDR system by finite volume approximations.
These respect the conservation of mass property of the TDR system, and are constructed such that the MOL-ODE
has a nonnegative analytic solution (positivity). The latter property is natural (because densities/concentrations are
modelled) and highly desirable (because negative solution values might turn stable reaction terms into unstable ones).
Diffusion and reaction terms can be replaced by standard approximations to ensure positivity, and we employ upwind-
ing in combination with limiter functions in the discretization of the taxis term to ensure positivity of the MOL-ODE.
The discretization near the boundary of the spatial domain is discussed. The appropriateness of the spatial discretiza-
tion is demonstrated for a simple taxis problem (we provide the exact PDE solution).
The MOL-ODE is stiff and of large dimension. We develop integration schemes which treat the discretization of
taxis and diffusion/reaction differently (splitting). We employ operator (Strang-) splitting and/or the approximate
matrix factorization technique. The splitting schemes are based on explicit Runge-Kutta (ERK) and linearly-implicit
W-methods. Positivity and stability of the integration schemes are investigated. We identify an ERK method with
favourable positivity properties. A corresponding W-method is constructed. Numerical experiments with a variety
of splitting schemes applied to some semi-discretized TDR systems confirm the broad applicability of the splitting
schemes and lead to a selection of efficient methods for the class of TDR systems. These methods are more efficient
than (suitable) standard ODE solvers in the lower and moderate accuracy range.
Altogether, the numerical technique developed is appropriate and efficient for the simulation of TDR systems.

Zusammenfassung Wir entwickeln und evaluieren eine Linienmethode (MOL) für die Simulation von Taxis–Dif-
fusions–Reaktions (TDR)-Systemen. Diese zeitabhängigen PDE-Systeme treten bei der Modellierung der räumlich-
zeitlichen Entwicklung von Populationen von Organismen auf, die sich in direkter Antwort auf z.B. Konzentrations-
unterschiede in diffundierenden Chemikalien in ihrer Umgebung bewegen (Chemotaxis). Beispiele sind Musterbil-
dungsvorg̈ange und verschiedene Prozesse in der Tumorentwicklung. Der Taxiseffekt wird durch einen nichtlinearen
Advektionsterm im TDR-System modelliert (Taxisterm).
Die MOL-ODE erhalten wir durch Ersetzen der Ortsableitungen im TDR-System mit Finite-Volumen-Approximatio-
nen. Diese beachten die Massenerhaltungseigenschaft des TDR-Systems und sind so konstruiert, daß die MOL-ODE
eine nichtnegative analytische Lösung besitzt (Positivität). Letztere Eigenschaft ist natürlich (da Dichten/Konzen-
trationen modelliert werden) und sehr wünschenswert (da negative Lösungswerte stabile Reaktionsterme in instabile
verwandeln k̈onnen). Diffusions- und Reaktionsterme können durch Standardapproximationen ersetzt werden, um die
Positiviẗat zu sichern. Wir verwendenUpwinding in Kombination mitLimiterfunktionenin der Diskretisierung des
Taxisterms, um die Positivität der MOL-ODE zu erzielen. Die Diskretisierung in der Nähe des Randes des räumli-
chen Gebiets wird diskutiert. Die Angemessenheit der räumlichen Diskretisierung wird anhand eines einfachen Taxis-
problems demonstriert (wir geben die exakte PDE-Lösung an).
Die MOL-ODE ist steif und hochdimensional. Wir entwickeln Integrationsverfahren, welche die Diskretisierung
des Taxisterms und der Diffusions-/Reaktionsterme unterschiedlich behandeln (Splitting). Wir verwenden Operator-
(Strang-) Splitting und/oder die Technik der approximierenden Matrixfaktorisierung. Die Splittingmethoden basie-
ren auf expliziten Runge-Kutta (ERK) und linear-impliziten W-Methoden. Positivität und Stabiliẗat der Integrations-
verfahren werden untersucht. Wir identifizieren eine ERK-Methode mit vorteilhaften Positivitätseigenschaften. Eine
zugeḧorige W-Methode wird konstruiert. Numerische Experimente mit einer Vielzahl von Splittingmethoden ange-
wendet auf einige semidiskretisierte TDR-Systeme bestätigen die breite Anwendbarkeit der Splittingmethoden und
führen zu einer Auswahl effizienter Methoden für die betrachtete Klasse von TDR-Systemen. Diese Methoden sind
effizienter als (geeignete) Standard-ODE-Integratoren im unteren und mittleren Genauigkeitsbereich.
Insgesamt wurde eine geeignete und effiziente numerische Technik zur Simulation von TDR-Systemen entwickelt.
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Chapter 1

Introduction

Mathematical models are an important tool in most areas of science and research. They form the
basis for the control of many technical systems (chemical engineering, space crafts, airbags, ...),
they can improve the efficiency of such systems and hence, for example, reduce environmental
stress. They are also used for short and long term prediction of weather and climate changes.
The application of mathematical models in the life sciences is another, rapidly growing research
activity. Models are used here to understand biological systems (e.g. pattern formation and growth
processes) and to gain insight into otherwise nonobservable mechanisms. Further, mathematical
models describing phenomena from the life sciences can be used for educational purposes. There
are three main tasks of mathematical models:

• reproduction of real life processes,

• prediction of results under the variation of internal and external parameters,

• discovery of new results about the model which then must be validated in reality.

Models cover the reality partially only in order to be manageable and not to draw away attention
from major processes to minor processes. The art of modelling is to carefully select variables and
processes which are significant for the modelling goal and to neglect unnecessary details. Models
of small, understandable systems are then combined to produce more and more complex models.
In this thesis we are concerned with the development and evaluation of numerical techniques for
the simulation of taxis–diffusion–reaction (TDR) systems from mathematical biology. Hence, we
already assume that the model exists; new models are not derived in this work.
TDR systems are time-dependent partial differential equation (PDE) systems composed of a taxis
equation describing the evolution of the density function of a population of organisms and a
reaction–diffusion (RD) subsystem describing the evolution of concentrations of substances in the
surrounding of the organisms. The existence of a density function for the population of organisms
implies that this population is sufficiently large within the considered spatial domain. An impor-
tant characteristic is that the organisms can sense spatial differences in the concentration of the
surrounding substances and migrate in direct response to this signal – a process known as taxis. If
the migration depends on the concentration field of a soluble (diffusible) chemical then the process
is termedchemotaxis; if this chemical is bound to some underlying substratum (e.g. extracellular
matrix) then we talk abouthaptotaxis(other forms of taxis are also possible e.g. galvanotaxis,
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phototaxis, gravitaxis [44]). A substance may have either an attracting or a repelling influence
on the migration of the organisms depending on the interactions between them. In both cases, the
migration due to taxis is proportional to the gradient (in space) of the substance. Beside this migra-
tion due to taxis, the organisms might also relocate by random motility (modelled the same way as
molecular diffusion). In this work we assume that the effect of random motility is small compared
to the effect of taxis. In Chap.2 we derive a TDR conservation equation and make precise the class
of TDR systems which are to be considered in this thesis. Following this we present some TDR
systems from the literature describing biological processes. Later, Chap.5, we present simulation
results of these models. There we consider the models with random motility and, additionally, also
with the random motility term in the taxis equation switched off. There exist also processes which
rely on taxis but cannot be described by the TDR systems considered here. The green turtle, for
instance, is supposed to travel over 1000 kilometres to reach its breeding place through detection
of an unknown chemical source originating there [34]. Obviously, we cannot define a sensible
density function for the organisms, i.e. the turtles, in this case because their number is too low to
justify this. Here we would have to take into account the effect of taxis on each single turtle and
trace their movements individually. This case is not considered here but the coupling of discrete
and continuous (RD subsystem) structures is an interesting area for future research.

In Chap.3 and Chap.4 we develop and describe the numerical technique for the simulation of
TDR systems. We follow the Method of Lines (MOL) which decouples the discretization of spa-
tial and temporal derivatives in the equations. The first step of the MOL is the spatial discretization
(semi-discretization) leading to an initial value problem (IVP) for an ordinary differential equation
(ODE) system, the so-called MOL-ODE. This part is described in Chap.3. The space- and time-
dependent density and concentrations in the TDR system are naturally nonnegative (we, in fact,
require this property from the model). Therefore, we also require that the semi-discretization leads
to a MOL-ODE with a nonnegative analytic solution (positive ODE system). We cite from the
literature conditions on the ODE system which guarantee that this requirement is satisfied. There-
after, we detail the discretization of the taxis, diffusion, and reaction terms of the TDR system.
We follow the finite volume methodology to derive the semi-discretization. Whereas diffusion
and reaction terms are replaced by standard approximations, the taxis term deserves special atten-
tion. The taxis term is present in the taxis equation only and the solution of this equation (density
function of the organism population) generally contains steep moving fronts. A simple central or
even upwinding (taking the flow direction into account) discretization would introduce oscillations
and subsequently negative solution values into the solution of the MOL-ODE. Firstly, this would
contradict our requirement that we want a nonnegative solution of the MOL-ODE, and secondly,
negative solution values might turn a stable reaction term into an unstable one, and this in turn
gives rise to numerical problems when solving the MOL-ODE. Therefore we use limiter func-
tions in an upwinding discretization of the taxis term such that a nonnegative solution is enforced.
This approach is widely used in the numerical solution of nonlinear conservation laws and is here
applied to the taxis term in an adapted form. This way we combine second-order accuracy with
nonnegativity of the solution. Nonnegativity can also be achieved by first-order upwinding without
limiter function but this would require an excessive amount of spatial grid points in order to attain
a reasonable accuracy and is therefore considered to be no option. Some numerical evidence for
this statement is provided in Sec.3.4, where the taxis discretization is evaluated for a simple model
problem (Model 1). We also detail the semi-discretization of the TDR system near the boundary.
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Altogether we arrive at an IVP for the MOL-ODE which is guaranteed to have a nonnegative solu-
tion. The MOL-ODE is (in general) a second-order consistent approximation of the TDR system
(in a finite difference sense). This system is of very large dimension (at least if the spatial dimen-
sion is greater than one and this is the case for all biomathematical models considered here) and it
is stiff due to the diffusion (and possibly also due to the reaction) terms.

Chap.4 is devoted to the development of appropriate integration schemes for the solution of the
MOL-ODE. Stiffness requires the application of implicit (or linearly-implicit) schemes because
otherwise we would face a severe time step size restriction and hence unacceptable computational
costs. On the other hand, an ODE system with the taxis discretization as right-hand side function
is efficiently solved by explicit methods. This also avoids problems with the possible nonexis-
tence of derivatives (Jacobian matrix) of the taxis discretization (due to the non-differentiability
of the limiter function) which are required in implicit integration methods. We try to combine
both demands by employing splitting methods for the solution of the MOL-ODE. The first ap-
proach (AMF – approximate matrix factorization) is based on linearly-implicit Rosenbrock-type
W-methods (henceforth in short W-methods). These schemes are applied to the full MOL-ODE
and they use an inexact Jacobian matrix of the right-hand side function. This matrix is obtained
by, firstly, neglecting the taxis discretization in the Jacobian computation, and, secondly, approxi-
mately factorizing the matrix in the stage equations such that linear systems with this matrix can be
solved efficiently (banded matrices). The second approach is operator (or Strang-) splitting (OPS).
OPS splits the right-hand sideF of the MOL-ODE into a sum of two parts: the discretization of the
taxis termF0 and the discretization of the diffusion–reaction termsF1 (each with corresponding
boundary treatment). Then ODEs with either part as right-hand side are solved in turn. If the right-
hand side isF0 then an explicit Runge-Kutta (ERK) method is used. If the right-hand side isF1

then a W-method with AMF is employed. The splitting techniques AMF and OPS are introduced
in Sec.4.2 (following a general introduction to Runge-Kutta (RK) and Rosenbrock-type methods
in Sec.4.1) and detailed with specific methods in Sec.4.5 and Sec.4.6. All methods derived are
accurate of order two. This is a suitable compromise for the class of problems under consideration:
first-order methods are too inefficient because they require too many time steps to reach a certain
level of accuracy and higher order methods might fail to be efficient because of a lack of smooth-
ness in the solution of the MOL-ODE. Sec.4.3and Sec.4.4discuss methods which are applied or
are fundamental in the AMF and OPS schemes from the point of positivity and stability, see the
next paragraph for a more detailed description. Finally, Sec.4.7describes alternative methods for
the solution of the MOL-ODE and different splitting approaches.

The spatial discretization of the TDR system results in a MOL-ODE which is guaranteed to have a
nonnegative analytic solution (positive ODE system). Our aim is to have this property also for the
numerical solution of the MOL-ODE. The most troublesome part of the MOL-ODE with respect to
this is the taxis discretization. In Sec.4.3we discuss the positivity of numerical schemes if applied
to positive ODE systems. We start with the positivity of RK and Rosenbrock-type methods applied
to problem classes of linear, positive ODEs. The foundations of this theory are already given by
Bolley and Crouzeix [6] in 1978. We give a characterization of the class ofM̄ -matrices which
are important in their theory. After presenting the main results of their theory, we give relaxed
conditions on the problem class such that the results of Bolley and Crouzeix are still valid if we
consider ERK schemes only. This theory is then applied to lower order ERK methods (especially
three-stage, second-order methods) and lower order Rosenbrock-type methods. Next we consider
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the positivity of RK methods applied to subclasses of positive, dissipative problems. The respective
positivity theory is developed by Horvath [27]. We identify a unique three-stage, second-order
ERK method (we refer to this method as RK32) with optimal positivity properties on this problem
class (i.e. RK32 is the unique method from this method class which can take the largest time steps
without violating the nonnegativity of the numerical solution for all problems from the problem
class). Finally, we consider the positivity of ERK methods applied to general nonlinear, positive
ODEs based on work by Shu and Osher [52] and Hundsdorfer et al. [31]. We again identify RK32
as an optimal method. This approach is directly applicable to the spatial discretization of the taxis
term, see Sec.4.4. In Sec.4.4 we investigate the specific positivity and stability properties of
RK32 applied to the ODE system arising from the discretization of the taxis term. We compare
our findings with results obtained for standard second- and third-order ERK methods.
In Chap.5 we apply the splitting methods devised to the biomathematical models described in
Chap.2, and discuss the results obtained. We also compare with two general purpose integration
schemes for large, stiff ODE systems (VODPK and ROWMAP). We also describe the dynamics of
the solution for each of the biomathematical models. The most important quantity in all models is
the density function of the organisms and this function is depicted for different output times.
The main findings and conclusions are finally summarized in Chap.6. There we also give possible
future research directions in the field of numerical simulation of TDR systems.

4



Chapter 2

Taxis–Diffusion–Reaction Systems

In this chapter we define the class of taxis–diffusion–reaction (TDR) systems which are the subject
of this thesis. To this end, we start in Sec.2.1with the derivation of a conservation equation which
contains all the important terms to model taxis, diffusion, and reaction. Whereas diffusion and
reaction are often discussed in the literature, taxis terms came into the focus of numerical interest
just recently. However, they form important ingredients of many models from mathematical biol-
ogy. The problem class of this work is made precise in Sec.2.2. Finally, in Sec.2.3, we give a
collection of TDR models from mathematical biology. The purpose of this collection is to illustrate
the importance of TDR models in mathematical biology on one hand, and to have a few examples
for testing and evaluation of the numerical schemes which are developed in the following chapters
on the other hand. The collection contains also a simple taxis test problem (Model 1), where we
can provide an analytic solution.

2.1 Derivation of a TDR conservation equation

Let I ⊂ R+,0 be a time interval andΩ ⊂ Rd, d ∈ N, be a bounded, nonempty (spatial) domain
with piecewise smooth boundary such that the Gauß integral theorem can be applied. For any
subdomain ofΩ we assume the same properties.
We describe the derivation of a conservation equation for a scalar quantityQ, see e.g. [41, p. 14],
[1, p. 54]. The resulting equation contains terms which model the effects of taxis, diffusion and
reaction. We denote withu(t,x) the density ofQ at x ∈ Ω in space and att ∈ I in time such
that

∫
Ω̃
u(t,x)dx is its total mass in any subdomaiñΩ ⊂ Ω at time t ∈ I. The total mass of

Q in Ω̃ can only change in time by production or destruction ofQ within Ω̃ or by a flow ofQ
through the boundary∂Ω̃ of Ω̃. Let s(t,x) ∈ R denote the source density ofQ at (t,x) (positive
for production and negative for destruction) andv(t,x) ∈ Rd be the velocity field associated with
Q at (t,x). (The functionss andv may also depend onu(t,x) or its spatial derivatives.) The rate
of mass flow or mass flux ofQ at (t,x) is given byu(t,x)v(t,x) and the function

f(t,x) := u(t,x)v(t,x)

is the flux function. The change of total mass ofQ in any subdomaiñΩ ⊂ Ω is hence given by

d

d t

∫
Ω̃

u(t,x)dx = −
∮
∂Ω̃

f(t,x) · n(x)d∂Ω̃ +

∫
Ω̃

s(t,x)dx . (2.1)

5



Here,n(x) is the outer unit normal at the pointx ∈ ∂Ω̃. The minus sign in front of the surface
integral in the equation ensures that an inflow intoΩ̃ leads to an increase of the mass ofu in Ω̃. We
remark that the surface integral in Eq. (2.1) reduces in one spatial dimension (Ω̃ = (xl,xr) ⊂ R)
to a point evaluation of the flux function:

∮
∂Ω̃

f(t,x)n(x)d∂Ω̃ = f(t,xr)− f(t,xl). Eq. (2.1) is an

integral form of the conservation equation forQ. If, for instance, the sources ≡ 0 in Ω̃ and the
flux f ≡ 0 on ∂Ω̃ then the total mass ofQ in Ω̃ is conserved. This conservation property should
carry over to numerical approximations ofu.
If u,v ∈ C1(I × Ω) then, under the smoothness assumption on the boundary ofΩ̃, we can apply
the integral theorem of Gauß to the surface integral in Eq. (2.1) and obtain

d

d t

∫
Ω̃

u(t,x)dx = −
∫

Ω̃

∇ · f(t,x)dx +

∫
Ω̃

s(t,x)dx . (2.2)

We can differentiate under the integral, and if we further assume thats ∈ C0(I×Ω) then it follows
thatu satisfies the transport equation

∂tu(t,x) +∇ · f(t,x) = s(t,x) , for all (t,x) ∈ I × Ω , (2.3)

the differential form of the conservation equation forQ.
For sufficiently smooth functionsu, s andv, both the integral and the differential form of a conser-
vation law are equivalent. However, we will make use of the convenient notation of the differential
form even if the assumptions onu, s andv are not satisfied. We will understand Eq. (2.3) in the
sense of Eq. (2.1) for arbitrary subdomains̃Ω ⊂ Ω in this case.
Eq. (2.3) becomes a scalar conservation equation foru if v ands area priori known functions or
if they are functions ofu itself. In this case, Eq. (2.3), together with suitable initial and boundary
conditions, can be solved on its own. More frequently we encounter the situation that the velocity
v or the sourcess depend on other conserved quantities—the conservation equations for all these
quantities constitute a system of conservation equations. The models from mathematical biology
considered in this work are such systems.
We consider models with two different flux types. First, there is diffusive flux which we assume,
according to Fick’s law, to be proportional to the gradient ofu itself (D > 0 is the diffusion
coefficient ofu)

fD(t,x) = −D∇u(t,x) .

This definition is based on the assumption that the quantityQ is transported (diffuses) from regions
of high density to regions of low density.
A second type of flux appears if the velocity field depends on the gradient of the density or con-
centrationc1(t,x) of some other quantity. This so-called tactic flux is given by

fT1(t,x) = u(t,x)p1(c(t,x))∇c1(t,x) .

We include the functionp1 which may depend on various quantities (with concentrations collected
in the vectorc = (c1, c2, . . . , cl)

T) to model the strength of the tactic response ofQ to the quantity
described byc1 and also to model whether higher densitiesc1 attract (p1 > 0) or repel (p1 < 0)
the quantityQ. Tactic fluxes feature in a broad range of models from mathematical biology, e.g.
pattern formation and growth processes. A class of such models is considered in this work. Othmer
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and Stevens [46] derive different forms of tactic flux functions based on continuous time, discrete
space random walk models. The PDE models are obtained in the so-called diffusion limit. Of
course, diffusion and taxis may happen at the same time andQ may be under the tactic influence
of several substances. Such an extension of the work in [46] with multiple tactic cues is treated in
[47]. We assume that the total flux is the sum of the individual contributions and arrive altogether
at the flux function

f(t,x) = fD(t,x) +
l∑

j=1

fTj(t,x) = −D∇u(t,x) + u(t,x)
l∑

j=1

pj(c(t,x))∇cj(t,x) .

The source terms(t,x) often represents chemical reactions of the quantities described byu andc
of a system beside explicitly modelling sinks and sources. Therefores(t,x) depends most often
nonlinearly on the density of the quantities of the system, i.e.s(t,x) = p0(t,x, u(t,x), c(t,x)) .
Finally, we arrive at the following integral form of the taxis–diffusion–reaction equation foru
which follows from Eq. (2.1) by inserting the derived flux expressionf(t,x) and the source func-
tion (we neglect the dependence ofu, c and the normal vectorn on t andx in the notation):

d

d t

∫
Ω̃

udx = −
∮
∂Ω̃

[
−D∇u+ u

l∑
j=1

pj(c) ∇cj

]
· n d∂Ω̃ +

∫
Ω̃

p0(t,x, u, c)dx . (2.4)

2.2 Problem class

In this section we specify and describe the class of problems which we want to solve numerically.
Let IT := (0, T ), T ∈ R+, be a time interval andΩ ⊂ Rd, d ∈ N, a bounded, nonempty spatial
domain with piecewise smooth boundary∂Ω =: Γ.
Consider real-valued, time- and space-dependent functionsn(t,x) andc(t,x)

n : ĪT × Ω̄→ R andc : ĪT × Ω̄→ R
l ,

which denote the density of a population of organisms and a vector ofl concentrations of certain
substances (e.g. chemicals), respectively. We study the taxis–diffusion–reaction system forn(t,x)
andc(t,x)

∂tn = ε∆n−∇ ·

(
n

l∑
j=1

pj(c)∇cj

)
+ p0(t,x, n, c) ,

(t,x) ∈ IT × Ω ,
(2.5a)

∂tc = D∆c + g0(t,x, n, c) , (2.5b)

with initial conditions

n(0,x) = n0(x) , c(0,x) = c0(x) , x ∈ Ω̄ , (2.5c)

and boundary conditions (forn and forcj , j = 1(1)l, withDj > 0)

n(t,x) = α
(0)
D (t,x) ≥ 0 , (t,x) ∈ IT × Γ

(0)
D ,

cj(t,x) = α
(j)
D (t,x) ≥ 0 , (t,x) ∈ IT × Γ

(j)
D ,(

−ε∇n+ n
(∑l

j=1 pj(c)∇cj
))
· n(x) = α

(0)
F (t,x) ≤ 0 , (t,x) ∈ IT × Γ

(0)
F ,

−Dj∇cj(t,x) · n(x) = α
(j)
F (t,x) ≤ 0 , (t,x) ∈ IT × Γ

(j)
F .

(2.5d)
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Hereε ∈ R+,0 is a constant,D = diag(D1, D2, . . . , Dl) ∈ Rl,l is a constant, diagonal matrix
with nonnegative entries, andpj : Rl → R for j = 1(1)l, p0 : IT × Ω × Rl+1 → R and
g0 : IT ×Ω×Rl+1 → R

l are given functions. The prescribed functionsn0 andc0 define the initial
data of the system and the functionsα(j)

D andα(j)
F , j = 0(1)l, its boundary data. No boundary data

is prescribed forcj if Dj = 0. We consider two different kinds of boundary conditions (BCs) for
all othercj and forn: Dirichlet BCs onΓ

(j)
D ⊂ Γ with prescribed (nonnegative) state and flux BCs

on Γ
(j)
F ⊂ Γ with prescribed (inflow) flux (whereΓ(j)

D ∩ Γ
(j)
F = ∅). Further,Γ(j)

D ∪ Γ
(j)
F = Γ for

j > 0 andΓ
(0)
D ∪ Γ

(0)
F ⊂ Γ (if ε > 0 then equality is required also forj = 0).

Some general remarks on the meaning of the parameters and functions in Eqs. (2.5) are in order.

• The population densityn diffuses with diffusion constantε > 0 , or exhibits no diffusion if
ε = 0. This models the random motility of the organisms described by the densityn.

• The chemical concentrations inc can also change by diffusion, or they can be non-diffusible
(then the corresponding diagonal entry inD is zero).

• A characteristic property is that the evolution ofn depends on gradients∇cj of the chemical
concentrations—a process known as taxis which adds (nonlinear) advection terms to the
population equation. The strength and the sign of the tactic influence of each chemical
concentrationcj on the population densityn is described by the functionpj(c). If pj(c) >
0 then cj acts as an attractant (the population migrates up gradients, i.e. towards higher
concentrationscj); cj is a repellant forpj(c) < 0.

• We focus on systems where the speed of migration of the organisms in the population in-
duced by diffusion is much smaller than the speed of migration induced by the taxis term, or
where there is no random motility (diffusion) in the population at all.

• The reaction termp0(t,x, n, c) accounts for creation or loss of entities in the population due
to interaction with themselves or with the chemicals. The reactions between the chemicals
and the population are modelled through the functiong0(t,x, n, c).

Eqs. (2.5) are valid on general domainsΩ in space. However, in this work we will restrict our
attention tod-dimensional unit cubesΩ in space and finite time intervalsIT ,

Ω := (0, 1)d , d ∈ N , andIT := (0, T ) , T ∈ R+ . (A1)

The numerical schemes are described ford ∈ N but in the numerical experiments we restrict
attention tod = 2.
Only nonnegative solutions of the system (2.5) make sense from a modelling point of view because
the functionsn andc describe densities or concentrations and as such they are naturally nonnega-
tive. Therefore, any model about the temporal and spatial development ofn andc should respect
this property and allow only nonnegative solutions. We assume henceforth:

The problem (2.5), together with the functions, parameters, and initial and boundary data
prescribed has a unique, nonnegative solution(n(t,x), c(t,x)) for all (t,x) ∈ ĪT × Ω̄ .

(A2)
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2.3 Collection of TDR models

We describe four mathematical models which are of the general form of a TDR system given
in (2.5). Model 1 (taken from [58]) is actually not really a TDR system but a scalar taxis equation.
We derive an analytic solution for this problem. The availability of this solution makes this model
ideal for evaluating the taxis discretization algorithm which is developed in the following chapters.
The other three models arise from the study of certain aspects of tumour growth. They describe
the processes of tumour induced angiogenesis (Models 2 and 3) and tumour invasion (Model 4).
There exist other mathematical models describing biological processes which fit into the frame-
work of TDR systems. Pattern formation of bacterial populations often relies on chemotactic cues,
see e.g. [59], and the study of the aggregation phase of the social amoebaDictyostelium dis-
coideum, e.g. [26, 25], is an example from developmental biology. Further, the onset of capillary
sprout formation is also modelled as a TDR system in [45] and recently in [42].

2.3.1 A simple taxis test model (Model 1)

This model is taken from [58] and will be used to evaluate our taxis discretization algorithm. In
the model, a scalar quantity (densityn) is simply advected up the gradient of an attractant with
fixed concentration profile. The problem is posed on the unit square,Ω = (0, 1)2, and for the time
intervalIT with T = 0.021. The attractant concentration is radially symmetric with centre

(
1
2
, 1

2

)
c1(t,x) := c̃(r(x)) = 1− cos(4πr(x)) for all (t,x) ∈ ĪT × Ω̄ ,

where

r(x) :=
((
x1 − 1

2

)2
+
(
x2 − 1

2

)2
) 1

2
,

is the distance ofx from the centre ofΩ. This corresponds to a ring of chemoattractant with
maximum atr = 1

4
, see Fig.2.1(left).

The model equation is given by

∂tn = −∇ · (n∇c1) , for (t,x) ∈ IT × Ω. (2.6)

We use parametrized initial data with parameter0 ≤ κ < 0.1

n(0,x) = nκ(r(x)) =


1 : r ≤ 0.4− κ
1
2

(
1 + cos

(
r−0.4+κ

2κ
π
))

: 0.4− κ < r ≤ 0.4 + κ
0 : r > 0.4 + κ

. (2.7)

This initial data has continuous first derivatives in space ifκ > 0. The parameterκ controls the
steepness of the front in the initial data. We use two different values in our experiments:κ = 0.09
for a fairly smooth initial condition, see Fig.2.1(right), andκ = 0 which is a jump initial condition
with jump atr = 0.4. The initial condition and its gradient are zero for allr ≥ 1

2
if κ < 0.1. We

assume no-flux boundary conditions forn. This is consistent with the initial data, and, together
with the given attractant concentration, implies that the boundary has no influence on the solution
in Ω. As time proceeds, the populationn moves up the gradient ofc1 and tends to cluster into a
ridge atr = 1

4
wherec1 has its maximum value.
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Figure 2.1:Concentrationc1 of attractant chemical (left) and initial population densitynκ for κ = 0.09
(right) of Model 1.

The solutionn of this problem is radially symmetric and we defineñ(t, r) such that̃n(t, r(x)) =
n(t,x) for all x ∈ Ω̄. Further denotev(r) := c̃ ′(r) = 4π sin(4πr). Then we obtain

∇ · (n∇c1) = ∇ · (ñv∇r)
= (v∂rñ+ ñv′)∇r · ∇r + ñv∆r

= v∂rñ+ ñv′ + ñvr−1 ,

and hence Eq. (2.6) is equivalent to∂tñ + v∂rñ = − (v′ + vr−1) ñ for r > 0. This equation can
be solved by the Method of Characteristics (see Chap.A.1 in the appendix; we can restrict our
attention tor ∈

[
0, 1

2

]
) and we obtain for smooth initial datãn0(r) := ñ(0, r) andr 6= 0, 1

4
, 1

2

ñ(t, r) = ñ0(s(t, r))
s(t, r)

r

sin(4πs(t, r))

sin(4πr)
, (2.8)

with

s(t, r) =
1

2π
arctan

(
tan(2πr)

exp(16π2t)

)
+

int(4r) + (int(4r) mod 2)

4
,

whereint(z) is the integer part ofz ∈ R+,0. Forr = 0, 1
4
, 1

2
we obtain by continuity

ñ(t, 0) = ñ0(0) exp(−16π2t), ñ
(
t, 1

4

)
= ñ0

(
1
4

)
exp(16π2t), ñ

(
t, 1

2

)
= ñ0

(
1
2

)
exp(−16π2t) .

Hence we have a smooth (classical) solution for allt > 0 whenever the initial data is differentiable.
If the initial data is non-differentiable at some points then Eq. (2.8) can still be evaluated and is a
generalized solution, see e.g. [41, p. 21].

2.3.2 Mathematical models related to tumour growth processes

The development of a primary solid tumour begins with a single normal cell becoming transformed
as a result of mutations in certain key genes. This transformed cell differs from a normal one in
several ways, one of the most notable being its escape from the body’s homeostatic mechanisms,
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leading to inappropriate proliferation. An individual tumour cell has the potential, over successive
divisions, to develop into a cluster (or nodule) of tumour cells. Further growth and proliferation
leads to the development of an avascular tumour consisting of approximately106 cells. This cannot
grow any further, owing to its dependence on diffusion as the only means of receiving nutrients
and removing waste products. For any further development to occur the tumour must initiate
angiogenesis – the recruitment of blood vessels. The tumour cells first secrete angiogenic factors
which in turn induce endothelial cells in a neighbouring blood vessel to degrade their basal lamina
and begin to migrate towards the tumour. As it migrates, the endothelium begins to form sprouts
which can then form loops and branches through which blood circulates. From these branches
more sprouts form and the whole process repeats forming a capillary network which eventually
connects with the tumour, completing angiogenesis and supplying the tumour with the nutrients it
needs to grow further. During the process of vessel formation, the endothelial cells may secrete
enzymes which degrade the local tissue (extracellular matrix) thus facilitating the whole process.
Indeed this process of matrix degradation through enzyme secretion is also carried out by the
tumour cells themselves. This enables active migration by the tumour cells into the tissue to take
place. The combination of tumour vascularization (i.e. the blood vessels connect with the tumour)
and active tissue invasion means that there is now the possibility of tumour cells finding their way
into the circulation and/or lymph system, and subsequently being deposited in distant sites in the
body, resulting in metastasis.
The complete process of metastasis involves several sequential steps, each of which must be suc-
cessfully completed by cells of the primary tumour before a secondary tumour (a metastasis) is
formed. The mathematical models which we will present in the following two subsections fo-
cus specifically on the processes of tumour-induced angiogenesis (endothelial cell migration in
response to external stimuli) and tumour invasion of tissue (cancer cell migration).

2.3.2.1 Mathematical models of tumour-induced angiogenesis (Models 2 and 3)

Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a crucial compo-
nent of many mammalian growth processes, including embryogenesis and wound healing. It is
also a key component in the metastatic cascade enabling a solid tumour to progress from the rel-
atively harmless avascular growth phase to the potentially lethal vascular growth phase. In recent
times a variety of models have appeared focusing on different aspects of the process. A compre-
hensive account of the complete angiogenic process may be found in [2] and references therein.
We summarise the main events of angiogenesis as:

• the secretion of chemicals known as tumour angiogenic factors (TAF) by cancer cells,

• the response of endothelial cells (EC) in any neighbouring blood vessels to these chemicals
through migration and proliferation,

• interaction between the ECs and the extracellular matrix (ECM),

• the formation of new individual capillary sprouts, which in turn connect up to form a new
vasculature.

We describe below two models of tumour-induced angiogenesis developed by Chaplain and Stu-
art [8] and Anderson and Chaplain [2].
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Model 2:
The model of Chaplain and Stuart [8] focused on two key variables, namely EC densityn and
TAF concentrationc1. The model assumed that TAF was secreted by tumour cells (located on one
edge of the domain boundary), diffused into the surrounding tissue, was taken up by the ECs via
cell-surface receptors and underwent some natural decay. The motion of the ECs was assumed
to be influenced by two factors only: random motility (analogous to molecular diffusion) and
chemotaxis in response to TAF gradients.
The random motility of the ECs is described by a diffusion term with constantε > 0, the cell
random motility coefficient. The chemotactic flux function was taken to be of the simple form
p1 ≡ χ0, whereχ0 is the (constant) chemotactic coefficient. The ECs were also assumed to undergo
death at rateβ and proliferation in a logistic manner, with proliferation constantµ. The latter was
assumed to be governed by a threshold TAF concentrationc∗1, i.e. there was no proliferation for
c1 < c∗1 and logistic proliferation forc1 > c∗1. The non-dimensionalized model equations are then
given by:

∂tn =

random
motility︷︸︸︷
ε∆n −

chemotaxis︷ ︸︸ ︷
∇ · (χ0 n ∇c1) +

proliferation︷ ︸︸ ︷
max{0, c1 − c∗1}µn(1− n)−

cell
death︷︸︸︷
βn ,

∂tc1 =

diffusion︷︸︸︷
∆c1 −

uptake by cells︷ ︸︸ ︷
αnc1

γ + c1

−
decay︷︸︸︷
λc1 .

(2.9)

Chaplain and Stuart estimated the model parameter from experimental data and they are as follows:

ε = 0.001 , α = 10 , γ = 1 , λ = 1 , χ0 = 0.75 , µ = 100 , β = 4 , c∗1 = 0.2 .

The above parameter estimation shows that the cell random motility is much smaller than the
chemotaxis. Hence, we also consider the system without cell random motility, i.e.ε = 0.
We consider this model on the unit squareΩ = (0, 1)2 in space. The initial TAF concentration is
given by

c1(0,x) = 1
2

cos
(
π
2
x1

) (
4− 2x1 + cos

(
2π
(

1
2
− x2

)))
exp

(
−
(
1− cos

(
π
2
x1

)))
.

This assumes a single tumour (TAF source) located on the left edge of the spatial domain (x1 = 0).
The boundary condition ofc1 is of no-flux type on the upper and lower boundary and of Dirichlet-
type (time-independent and consistent with the initial data) on the left and right boundary. The
initial EC density is zero inΩ except in five blocks near the right boundaryx1 = 1, where the
initial values are one. These blocks have a width of0.05 in thex1-direction and a width0.07 in
thex2-direction. Their centres are the points(0.975, 0.2), (0.975, 0.36), (0.975, 0.5), (0.975, 0.64),
and(0.975, 0.8). This initial EC density assumes a parent blood vessel along the right boundary
with five initial capillary sprouts developed already. The boundary condition ofn on the right
boundary is of Dirichlet-type (time-independent and consistent with the initial data). We assume a
boundary condition of no-flux type forn on the remaining part of the boundary ifε > 0. If ε = 0
then no boundary condition is prescribed on the remaining boundary (outflow boundary). Fig.2.2
gives plots of the initial data for EC density and TAF concentration.
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Figure 2.2:Initial conditions for Model 2. The smooth function is the initial TAF concentrationc1 and the
function which is zero except for the blocks on the right boundary is the initial EC densityn.

The final simulation time for the described setups areT = 1.2 for ε = 0 andT = 1 for ε = 0.001.
Thereafter the assumptions underlying the model do not hold anymore because the blood vessels
have reached the tumour and other processes take over.

Model 3:

The model of Anderson and Chaplain [2] extended and developed the model of Chaplain and
Stuart [8] by including the interactions between the ECs and the ECM through the matrix macro-
molecule fibronectin. The model therefore consists of three equations governing the evolution of
the three variables, EC densityn, TAF concentrationc1, and fibronectin concentrationc2. Once
again the model assumed that the motion of the ECs (at or near a capillary sprout-tip) is influ-
enced by random motility and chemotaxis (in response to TAF gradients), but also by haptotaxis
in response to fibronectin gradients.

Once again, the random motility of the ECs at or near the sprout-tips is described by a diffusion
term with constantε > 0, the cell random motility coefficient. However the chemotactic flux
functionp1 was taken to depend on the TAF concentration,p1(c1) = χ0

1+αc1
, (in contrast to being

constant in Model 2), reflecting the saturation of TAF receptors on the cell surface. Finally, the
influence of fibronectin on the ECs was modelled by the simple form of a constant haptotactic flux
functionp2 ≡ ρ0, whereρ0 > 0 is the (constant) haptotactic coefficient. The model omitted any
proliferation terms for the cells since in this case attention was focused on the ECs at the sprout-tips
(where there is no proliferation).

The equation for fibronectin contained a degradation term (the ECs degrade the fibronectin via
enzymes) and a production term since the ECs themselves produce and secrete fibronectin which
then becomes bound to the ECM and does not diffuse. Therefore the equation for fibronectin
contains no diffusion term (D2 = 0).

Following the results of Chaplain and Stuart [8] where it was noted that the TAF diffusion occurred
on such a fast timescale so as to set up a quasi-steady state concentration profile, the TAF equation
contains only one term—that of uptake or binding of the TAF to the EC surface receptors. The
initial quasi-steady state concentration profile is provided through the initial conditions for the
TAF.
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Hence the complete, non-dimensionalized system of equations describing the interactions of the
ECs, TAF and fibronectin as modelled by Anderson and Chaplain [2] is

∂tn =

random motility︷︸︸︷
ε∆n −

chemotaxis︷ ︸︸ ︷
∇ ·
(

χ0n

1 + αc1

∇c1

)
−

haptotaxis︷ ︸︸ ︷
∇ · (ρ0n ∇c2) ,

∂tc1 = −
uptake︷ ︸︸ ︷
η nc1 ,

∂tc2 =

production︷︸︸︷
βn −

degradation︷ ︸︸ ︷
γ nc2 .

(2.10)

Anderson and Chaplain [2] estimated as many parameter values as possible from experimental data
and used the following set in their simulations

ε = 0.00035 , χ0 = 0.38 , ρ0 = 0.34 , α = 0.6 , β = 0.05 , γ = 0.1 , η = 0.1 .

Although Anderson and Chaplain [2] considered random migration of the ECs, here we also con-
sider the system without this random motion, i.e.ε = 0. This can be justified biologically: prior
to stimulation by the TAF, the ECs are migrationally inert and are simply attached to one another
while lining their parent vessel. Also we can see from the estimated parameter values (ε = 0.00035,
χ0 = 0.38, ρ0 = 0.34) that the (scaled) random migration coefficient of the ECs is several orders
of magnitude smaller than the taxis coefficients.
We consider the model on the unit squareΩ = (0, 1)2 in space with the parent vessel located
along the left edge,x1 = 0, and the (circular) tumour located on the opposite edge,x1 = 1. We
assume that three (initially separated) capillary sprouts have formed already nearx1 = 0. Let
r2 = (x1 − 1)2 +

(
x2 − 1

2

)2
. The initial conditions are depicted in Fig.2.3and are given by

n(0,x) = exp

(
− x2

1

0.001

)
max

{
0, sin

(
π

(
6x2 −

1

2

))}2

,

c1(0,x) =

{
1 , 0 ≤ r ≤ 0.1 ,(
ν − r
ν − 0.1

)2

, 0.1 ≤ r ≤ 1,
, whereν :=

√
5− 0.1√
5− 1

,

c2(0,x) =
3

4
exp

(
− x2

1

0.45

)
.

It is assumed that the cells, and consequently the capillary sprouts, remain within the domainΩ and
therefore no-flux boundary conditions forn are imposed on the boundaries of theΩ. We consider
a final timeT = 10 for this model.

2.3.2.2 A mathematical model of tumour invasion (Model 4)

A crucial part of the metastatic process is the ability of the cancer cells to degrade the surrounding
tissue or extracellular matrix (ECM). The matrix is highly dynamic, at any one time being actively
secreted and degraded. A number of specific matrix degradative enzymes (MDEs) have been
described and have been repeatedly implicated in all of the key steps of tumour invasion and
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Figure 2.3:Initial conditions for Model 3. The initial EC densityn is depicted in the left plot and both, the
initial TAF concentrationc1 and the the initial fibronectin concentrationc2, are in the right plot.

metastasis. A comprehensive description of the invasive process and its place in the metastatic
cascade is given in Anderson et al. [3] and references therein. We describe below the recent model
of Anderson et al. [3] who developed a mathematical model of tumour invasion based on generic
solid tumour growth, which for simplicity was assumed to be in an avascular state.
In the model three variables were considered: tumour cell densityn, ECM densityc1, and MDE
concentrationc2. The main assumptions of the model were that the tumour cells produce MDEs
which degrade the ECM locally and that ECM degradation results in the production of molecules
which are actively attractive to tumour cells (e.g. fibronectin) and which then aid in directed tumour
cell motility (haptotaxis).
The model considered tumour cell motion to be driven only by random motility and haptotaxis in
response to adhesive and/or attractive gradients created by degradation of the matrix. To describe
the random motility of the tumour cells a diffusion term with random motility coefficientε > 0
is assumed. (Anderson et al. [3] additionally considered nonlinear diffusion but here we only
consider the linear case.) The haptotactic flux functionsp1 was taken to be of the simple form
p1 ≡ ρ0, whereρ0 > 0 is the (constant) haptotactic coefficient. The model did not consider any
proliferation of the tumour cells.
Active MDEs were assumed to be produced by the tumour cells, diffuse throughout the tissue and
undergo some form of decay (either passive or active). The ECM was assumed to have no motility
and was degraded by the MDEs upon contact.
Hence the complete system of equations from the model of Anderson et al. [3] describing the
interactions of the tumour cells, ECM and MDEs is

∂tn =

random motility︷︸︸︷
ε∆n −

haptotaxis︷ ︸︸ ︷
∇ · (nρ0∇c1) ,

∂tc1 = −
degradation︷ ︸︸ ︷
η c2c1 ,

∂tc2 =

diffusion︷ ︸︸ ︷
d2∆c2 +

production︷︸︸︷
αn −

decay︷︸︸︷
βc2 .

(2.11)

Anderson et al. [3] undertook a range of simulation experiments based around the following set of
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Figure 2.4:Initial heterogeneous ECM densityc1 used in Model 4.

parameter values:

ε = 0.001 , d2 = 0.001 , ρ0 = 0.005 , η = 10 , α = 0.1 , β = 0.5 .

Prior to invasion, the tumour is a compact mass of cells with little or no local migration. Once
invasion is triggered, the migration of the cells is very focused and direct. Hence we also consider
the above system without random motion of the tumour cells i.e.ε = 0.
We study the tumour invasion model in two spatial dimensions on the unit squareΩ = (0, 1)2

and assume that a tumour is situated in the centre of the domain. In contrast to the case of only
one spatial dimension, this enables us to consider the effect of spatial heterogeneity explicitly.
In particular we can consider a heterogeneous ECM density which is more representative of real
tissue. To this end a hypothetical heterogeneous initial ECM densityc1 is used as depicted in
Fig. 2.4, [3]. The initial condition for tumour cell densityn and MDE concentrationc2 are chosen
as

n(0,x) =

{
exp

(
− r(x)2

0.0025

)
, r ∈ [0, 0.1]

0 , r > 0.1
,

c2(0,x) =
1

2
n(0,x) ,

wherer(x)2 = (x1 − 0.5)2 + (x2 − 0.5)2.
We assume that tumour cells and MDEs remain withinΩ and therefore impose no-flux boundary
conditions forn and c2 on the boundary. We consider a final simulation timeT = 15 in the
numerical simulations.
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Chapter 3

The Method of Lines and Space
Discretization

We obtain numerical approximations of the solution of problem (2.5) by following theMethod
of Lines(MOL). This approach is widely used in the numerical solution of PDEs and means that
we consider the discretization of the spatial operators and the time integration separately. The
space domainΩ is covered by a grid which defines computational cells (grid cells). We emphasize
that these grid cells should not be confused with biological cells. The spatial derivatives in the
system (2.5) are then discretized on the grid by using approximate average values ofn andc in
the grid cells (following the finite volume methodology). We describe the grid in Sec.3.1and the
discretization of the various terms in the right-hand side of Eq. (2.5) in Sec.3.3. The result of this
procedure is an initial value problem (IVP) for a huge system of stiff, nonlinear ODEs (one ODE
for each grid cell and component of Eqs. (2.5a,2.5b)), the so-called MOL-ODE. It is the aim of
this chapter to obtain a MOL-ODE which is a suitable approximation of the PDE model (2.5). The
time integration of this ODE will be discussed in the next chapter.
For our application it is important that the solution methods preserve the positivity of an exact
solution in its numerical approximation. This means that a numerical solution remains nonnegative
for all t ∈ IT whenever the initial data is nonnegative and the exact solution is nonnegative inIT
(this is ensured by our assumption (A2)). Violating positivity is highly undesirable because it may
turn stable reactions (p0,g0) into unstable ones which in turn may lead to numerical instabilities.
This especially shows up with the logistic source term in Model 2, and we discuss this problem in
the presentation of our numerical results in Chap.5. For this reason, we will require that the spatial
discretization results in a MOL-ODE with a nonnegative analytical solution whenever the initial
values are nonnegative. In Sec.3.2 we give conditions on the right-hand side of an ODE system
which guarantee positivity of the exact solution (positive ODE systems).
In Sec.3.3we describe an appropriateFinite Volume Method(FVM) to discretize the system (2.5)
in space. Finite volume schemes appear to be very suitable for the problem class under considera-
tion because they are based on the conservation form Eq. (2.4) and the numerical schemes obtained
with this approach are naturally conservative, i.e. no mass is produced or used up “by the scheme”.
We also pay special attention to the discretization near the domain boundary and show that the
resulting discretization in space results in a positive ODE system. Finally, in Sec.3.4, we evaluate
the spatial discretization of the taxis term in Eq. (2.5) by considering the solution of Model 1.
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3.1 Spatial grid

Let Ω = (0, 1)d be the spatial domain of our problem class as defined in Sec.2.2. We use an
equidistant grid having grid widthh := 1

M
, M ∈ N, in each spatial direction and define grid

pointsxi, wherei := (i1, . . . , id) ∈ I := {1, 2, . . . ,M}d is ad-dimensional multi-index, by

xi :=

((
i1 −

1

2

)
h, . . . ,

(
id −

1

2

)
h

)T

.

Each grid pointxi is the centre of an associated control volumeΩi defined by

Ωi := ((i1 − 1)h, i1h)× ((i2 − 1)h, i2h)× · · · × ((id − 1)h, idh) .

The set of all control volumes,{Ωi}i∈I , forms a partition of the domainΩ, [4]. For notational
convenience it is useful to assume that we have also control volumes outside ofΩ which we define
and denote in an analogous fashion as the elements of the partition itself.

3.2 Positivity of the spatial discretization

We stated in the introduction that the result of the spatial discretization of (2.5) is an IVP for a
huge system of stiff, nonlinear ODEs inRm. We denote this IVP in the same form as later used in
Chap.4:

y′(t) = F (t, y(t)), t ≥ t0 ∈ R, y(t0) = y0 ∈ Rm . (3.1)

This IVP represents the semi-discretization of problem (2.5) as a result of the first step of the MOL.
The vectory(t) contains the (time-continuous) approximations to the averages of the solution
of system (2.5) in all grid cells. We have already emphasized that we are seeking approximate
solutions which are nonnegative. We make this requirement precise. LetF have the property
(see [27])

F is continuous and (3.1) has a unique uncontinuable solution for allt0 ∈ R and ally0 ∈ Rm.
(3.2)

We can now define the terms positive ODE system and positive semi-discretization.

Definition 1 The ODE system in (3.1) as well as the IVP (3.1) are calledpositive if F has the
property (3.2) andy(t) ≥ 0 holds for allt ≥ t0 whenevert0 ∈ R andy0 ≥ 0.
If a semi-discretization of a given PDE results in a positive MOL-ODE then this semi-discretization
is called positive.

The following theorem from [27] characterizes positive ODE systems (see also [31]).

Theorem 1 LetF satisfy condition (3.2). The IVP (3.1) corresponding toF is positive if and only
if for all t ∈ R and any vectorv ∈ Rm+,0 and all i = 1(1)m holds

vi = 0 ⇒ Fi(t, v) ≥ 0 .
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We denote withP the class of functionsF for which the corresponding IVP (3.1) is positive.
The right-hand side of the MOL-ODE of our model system (2.5) will be a sum of functions.
Therefore the following corollary is useful.

Corollary 1 If F,G ∈ P then for allα, β ∈ R+,0 holdsαF + βG ∈ P.

If the right-hand sideF of an ODE is linear then we can easily check positivity of this ODE.

Corollary 2 Let F (t, y) = Py + g(t) with a continuous functiong satisfyingg(t) ≥ 0 for all
t ∈ R and a matrixP ∈ Rm,m. Then holdsF ∈ P if and only if the off-diagonal elements ofP
are nonnegative.

3.3 A semi-discrete finite volume method

After the preparations in the previous two sections we are now going to describe the finite volume
discretization in space of problem (2.5). However, to avoid too difficult notation, the description
will not be given for the problem (2.5) itself but for a scalar equation. Consider for a scalar function
u : ĪT × Ω̄→ R the PDE

∂tu = D∆u−∇ ·

(
u

l∑
j=1

pj(c)∇cj

)
+ p0(t,x, u, c) , for (t,x) ∈ IT × Ω , (3.3)

wherec : ĪT×Ω̄→ R
l, pj : Rl → R for j = 1(1)l, andp0 : IT×Ω×Rl+1 → R are given functions

andD ≥ 0 is a constant. We describe the discretization of the right-hand side of this problem on the
spatial grid defined in Sec.3.1. The scalar equation (3.3) can be regarded as a prototype equation
for the model system (2.5) because it contains all the relevant terms of (2.5) – taxis, diffusion, and
reaction. The application of the method to problem (2.5) is then straightforward.
Let Ωi be an element of an partition{Ωi}i∈I of Ω (not necessarily the partition described in
Sec.3.1), and denote the (time-continuous) cell average ofu overΩi by ūi(t),

ūi(t) :=
1

|Ωi|

∫
Ωi

u(t,x)dx , i ∈ I .

The integral form of the conservation law (3.3) is the starting point for the finite volume scheme.
We know from Eq. (2.4) that the evolution of the averagesūi(t) is exactly governed by

d ūi
d t

=
1

|Ωi|

∮
∂Ωi

D∇u · nd∂Ωi︸ ︷︷ ︸
=: HD(u(t, ·); i)

− 1

|Ωi|

∮
∂Ωi

u

(
l∑

j=1

pj(c)∇cj

)
· nd∂Ωi︸ ︷︷ ︸

=: HT (u(t, ·); i)

+
1

|Ωi|

∫
Ωi

p0(t,x, u, c)dx︸ ︷︷ ︸
=: HR(u(t, ·); i)

.

(3.4)
We denote withH(u(t, ·); i) the right-hand side of the exact cell average equation (3.4). It may
depend onu at time t in the whole domainΩ (we denote this byu(t, ·)), and also onc(t, ·), t,
andx ∈ Ωi. Further,HD, HT , andHR are the parts ofH corresponding to diffusion, taxis, and
reaction, respectively. In short we write for the above equation

d

d t
ūi(t) = H(u(t, ·); i) ≡ HD(u(t, ·); i) +HT (u(t, ·); i) +HR(u(t, ·); i) , i ∈ I . (3.5)
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Henceforth we use the following notations. WithUi(t) we denote an approximation to the cell
averageūi(t) and collect the approximations for all cells of the partition in the vectorU(t).
Similarly, ū(t) denotes the vector of the exact cell averagesūi(t). Also, for each concentration
cj(t,x), j = 1(1)l, we denote with̄cj,i(t), Cj,i(t), c̄j(t), andCj(t) the exact and approximate cell
average in grid celli, and the vectors of these quantities for all elements of the partition. Finally,
denote withC·,i := [C1,i, C2,i, . . . , Cl,i]

T andc̄·,i := [c̄1,i, c̄2,i, . . . , c̄l,i]
T the vector of all approxi-

mate and exact concentration averages in grid celli.
The idea of the finite volume approach is to approximate the right-hand side of Eq. (3.5) by using
cell averages ofu in neighbouring cells ofΩi. LetH(U(t); i) be an approximation toH(u(t, ·); i)
which depends on afinite number of elements ofU(t) (and possibly on the timet, space points
x ∈ Ωi, and on a finite number of components ofCj(t), j = 1(1)l). Then we obtain an ODE
system for the evolution of the approximate cell averages

d

d t
Ui(t) = H(U(t); i) , i ∈ I , (3.6)

the so-called MOL-ODE. The initial values for this ODE are provided as approximationsU0 to
the cell averages of a given initial condition foru in Ω.
In the next subsections we describe the construction of appropriate approximationsHD, HT , and
HR to HD, HT , andHR, respectively. Finally, Sec.3.3.4deals with the special requirements for
the approximations in cellsΩi close to the boundary ofΩ. However, before going into details,
we shortly review some important concepts for the analysis and evaluation of the discretization in
space.
In Sec.3.2 we have already given a condition which the ODE system (3.6) must satisfy to be a
positive ODE system. We will ensure that this condition holds for the approximationsHD, HT ,
andHR and hence also for the sumH.
We now look at the spatial accuracy of (3.6) with respect to (3.5). Therefore we define for each
grid cell Ωi, i ∈ I, of the partition the global errorei(t) in the exact solution of the ODE system
(3.6) with respect to the average overΩi of the exact solution of (3.5), i.e.

ei(t) := Ui(t)− ūi(t) ,

and further the local truncation error in celli, lte(t; i), as the difference between the discrete
operatorH and the exact operatorH applied to a smooth solutionu(t,x) of (3.5), i.e.

lte(t; i) := H(ū(t); i)−H(u(t, ·); i) .

Subtracting (3.5) from (3.6) and adding0 = H(ū(t); i)−H(ū(t); i) yields the error equation

d

d t
ei(t) = lte(t; i) + (H(U(t); i)−H(ū(t); i)) . (3.7)

We have the following estimate for the norm of the global error vectore(t), see also [41, p. 196].
We consider the discreteL1-norm of vectorsv = (vi)i∈I (on a partition{Ωi}i∈I of Ω) defined by
‖v‖1 :=

∑
i∈I |Ωi||vi|. Here|Ωi| is the Lebesgue measure ofΩi (and|Ω| the measure ofΩ).
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Theorem 2 Leth be the maximum diameter of the grid cellsΩi of a partition{Ωi}i∈I of Ω. If the
approximationH(U(t); i) is Lipschitz continuous, i.e. for eachi ∈ I we have for allU1,U2 that

|H(U1; i)−H(U2; i)| ≤ L‖U1 −U2‖1,

with constantL ∈ R+ independent ofi ∈ I and t ∈ ĪT , and if the local truncation error is of
order p in h, i.e. there exists a constantK ∈ R+ (independent ofi ∈ I andt ∈ ĪT ) such that for
all i ∈ I

|lte(t; i)| ≤ Khp,

then the global error satisfies fort ∈ ĪT

‖e(t)‖1 ≤ ‖e(0)‖1 exp(t|Ω|L) +
K

L
(exp(t|Ω|L)− 1) · hp.

This implies, if the initial error satisfies‖e(0)‖1 = O (hp), that the semi-discrete approxima-
tion (3.6) is pth order accurate, i.e.‖e(t)‖1 = O (hp) on ĪT .

For the proof of this theorem we use a Gronwall lemma.

Lemma 1 [1, p. 99] Let I := [t0, T ] ⊂ R be an interval, andy(t), h(t) andM(t) be scalar,
continuous and nonnegative functions onI. If y(t) satisfies

y(t) ≤ h(t) +

∫ t

t0

M(τ)y(τ)dτ for all t ∈ I

then

y(t) ≤ h(t) +

∫ t

t0

exp

(∫ t

τ

M(σ)dσ

)
M(τ)h(τ)dτ for all t ∈ I.

Proof (of Theorem2) All relations in this proof hold for allt ∈ ĪT . We obtain from the error
equation (3.7) the equality

ei(t) = ei(0) +

∫ t

0

[lte(τ ; i) + (H(U(τ); i)−H(ū(τ); i))] dτ,

and using the assumptions of the theorem

|ei(t)| ≤ |ei(0)|+Khpt+

∫ t

0

L‖e(τ)‖1 dτ.

Multiplying this equation with|Ωi| and summing over alli ∈ I yields

‖e(t)‖1 ≤ ‖e(0)‖1 + |Ω|Khpt+

∫ t

0

|Ω|L‖e(τ)‖1 dτ.

Now we can apply the Gronwall Lemma1 with y(t) := ‖e(t)‖1, h(t) := ‖e(0)‖1 + |Ω|Khpt and
M(t) := |Ω|L. The statement of the theorem follows by evaluating the integral in the inequality
obtained from this lemma. �
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Whereas the discussion in this section up to here is valid for any partition{Ωi}i∈I of a bounded,
nonempty spatial domainΩ, we consider henceforth the domain and partition defined in Sec.3.1.
HenceΩ is ad-dimensional unit cube and we refer to the elements of the partition{Ωi}i∈I with
d-dimensional multi-indicesi.
If p0 ≡ 0 in Eq. (3.3) then we obtain that the total mass of the quantity with densityu in Ω changes
only through boundary fluxes and if these fluxes are zero then this total mass is conserved. We
would like to have that for the total mass of the solution of (3.6) a discrete conservation property is
true. Therefore we consider forH = HD orH = HT discretizations inconservation form, that is

H(U(t); i) := −1

h

d∑
j=1

(Fj(U(t); i)−Fj(U(t); i− ej)) , (3.8)

whereFj(U(t); i) approximates the average of the (diffusive or tactic) flux fromΩi to Ωi+ej

through the common cell face ofΩi and Ωi+ej . From the definition ofH we see that thed-
dimensional problem is essentially broken down tod one-dimensional problems due to the special
structure of our partition ofΩ. We note that we make use of the auxiliary grid cells outside ofΩ
in the notation of Eq. (3.8). Now, summing Eq. (3.8) over all i ∈ I, we see that on the right-hand
side all terms cancel except for thoseFj(U(t); i) which approximate fluxes through the boundary
of Ω. If these boundary fluxes are zero then we obtain with Eq. (3.6)

d

d t

∑
i∈I

Ui(t) = 0,

and this means that the total mass of the initial data is conserved.
In the following we require that the flux approximationsFj(U(t); i) are Lipschitz continuous.
Further, we omit the time-dependence of approximations and simply write e.g.Ui instead ofUi(t).
We now discuss the approximation of taxis, diffusion, and reaction part of Eq. (3.5) in turn.

3.3.1 Taxis

We give an approximationHT (U; i) in conservation form to the taxis partHT (u(t, ·); i) in Eq. (3.5)
in this section and mainly follow the ideas of Hundsdorfer et al. [31], see also the paper by Sweby
[57] and the book by LeVeque [41]. We start with the conservative formula

HT (U; i) := −1

h

d∑
j=1

(Tj(U; i)− Tj(U; i− ej)) , (3.9)

where the functionTj(U; i) approximates the average of the tactic fluxu
(∑l

k=1 pk(c)∂xjck

)
from

grid cell Ωi to Ωi+ej through their common cell face. We follow the state interpolation approach
to define the approximationsTj(U; i). A possible flux interpolation approach (for a specific TDR
system) is described in [14].
We make the approximationTj(U; i) on a given cell face dependent on the sign of the local velocity
perpendicular to this face, that is dependent on the flow direction (upwinding). Upwinding is
a standard technique in the discretization of advection terms and the taxis term in our problem
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class can be regarded as advection. In our case, the velocity in spatial directionj is given by∑l
k=1 pk(c)∂xjck. Let vi,j denote an approximate average of this velocity on the common cell face

of Ωi andΩi+ej . We set

vi,j :=
l∑

k=1

pk

(
C·,i + C·,i+ej

2

)
Ck,i+ej − Ck,i

h
, (3.10)

and define the sign-dependent, approximate tactic flux by

Tj(U; i) := max{0, vi,j}S+
j (U; i) + min{0, vi,j}S−j (U; i). (3.11)

Here,S+
j (U; i) andS−j (U; i) are the state interpolants. They approximate the average value (state)

of u on the common cell face ofΩi andΩi+ej . If we choose the state interpolants to be linear
combinations of components ofU then we can achieve approximation order greater than one but
the resulting discretizations would not be positive and oscillations are introduced into the solution,
see [31, 13]. We want to combine a higher approximation order with positivity and therefore use
so-called limiter functionsΦ(r) in the definition of the state interpolants:

S+
j (U; i) :=

{
Ui + 1

2
Φ(ri,j)(Ui − Ui−ej) for Ui − Ui−ej 6= 0

Ui otherwise,
(3.12a)

S−j (U; i) :=

{
Ui+ej + 1

2
Φ(r−1

i+ej ,j
)(Ui+ej − Ui+2ej) for Ui+ej − Ui+2ej 6= 0

Ui+ej otherwise.
(3.12b)

The limiter functionΦ depends on asmoothness monitor functionr. We define this smoothness
monitor for our grid functionU by

ri,j :=
Ui+ej − Ui

Ui − Ui−ej

. (3.13)

We see thatri,j ≈ 1 in smooth, monotone regions ofU along thejth coordinate direction and
ri,j < 0 if Ui is a local extrema ofU in thejth coordinate direction. The stencils of the approximate
taxis fluxTj(U; i) depending on the local velocity are depicted in Fig.3.1.

i− ej i

Ωi Ωi+ej

i + ej i

Ωi Ωi+ej

i + ej i + 2ej

Figure 3.1: Stencils ofTj(U; i) for positive (left) and negative (right) local velocityvi,j.

We require that the limiter functionΦ is Lipschitz continuous (such that the resulting taxis dis-
cretization will also be Lipschitz continuous) and has the following properties (withδ > 0, a free
parameter):

Φ(1) = 1 , (3.14a)

Φ(r) = 0 for r ≤ 0 , 0 ≤ Φ(r) ≤ δ , and Φ(r) ≤ 2r for r > 0 . (3.14b)
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The property (3.14a) is important for the order of the discretization and the properties in (3.14b)
are sufficient for positivity, see Lemmas2 and3. Increasing the value ofδ improves the accuracy
of the discretization near peaks in the solution, see [31]. A good choice isδ = 2.
In order to make the definition of the discretization complete, we need a limiter functionΦ and
also a strategy for the treatment of cells close to the domain boundary. The first topic will be
discussed in the end of this subsection after the presentation of the following two lemmas on
accuracy and positivity of the state interpolation approach. The second topic is discussed for the
problem class (2.5) in Sec.3.3.4.

Lemma 2 Letu(t,x) andcj(t,x), j = 1(1)l, be smooth functions and regardU andCj as point
approximations tou and cj in the centresxi of the grid cellsΩi, i.e. Ui = u(t,xi) andCj,i =
cj(t,xi). Consider grid cellsΩi, i ∈ {3, 4, . . . ,M − 2}d, (sufficiently far away from the boundary
∂Ω so that we can apply the state interpolation approach).
If the limiter functionΦ is Lipschitz continuous and ifΦ(1) = 1 then the local truncation error (in
a pointwise sense) of the the state interpolation approach is second-order in the grid widthh, i.e.

HT (U; i) +∇ ·

(
u(t,xi)

l∑
k=1

pk(c(t,xi))∇ck(t,xi)

)
= O

(
h2
)
,

in all grid cellsΩi, where for eachj ∈ {1, 2, . . . , d}

1. the local velocitiesvi,j andvi−ej ,j have the same sign (uniform flow regions), and

2. Ui, Ui+ej are no local extrema in thejth coordinate direction ifvi,j, vi−ej ,j ≤ 0 andUi, Ui−ej

are no local extrema in thejth coordinate direction ifvi,j, vi−ej ,j ≥ 0.

In cellsΩi where these two conditions are not satisfied we have a local truncation errorO (h).

Proof Taylor expansion. �

Lemma 3 Let the limiter functionΦ satisfy the condition (3.14b). Then the ODE system

d

d t
Ui(t) = HT (U(t); i) , i ∈ I ,

obtained with the state interpolation approach is a positive ODE system.

Proof We restrict our attention to a single value ofj ∈ {1, 2, . . . , d} in (3.9). If we prove
positivity for this case then we also have positivity of the full system by Corollary1.
We assume in the following thatU ≥ 0. The application of the formulas (3.12) in cells close
to the boundary requires valuesUi, where the multi-indexi 6∈ I because they correspond to grid
cells outside the partition ofΩ (and hence these values are not contained inU). We assume in the
following that these values are computed fromU and given boundary data and that the resulting
values are nonnegative. Then, without loss of generality, we need to consider cellsi sufficiently
far away from the domain boundary only.
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Formula (3.11) generates four cases depending on the signs ofvi,j andvi−ej ,j. We prove the result
only for Case (I)vi,j, vi−ej ,j ≥ 0; the other three cases follow similarly.
Let vi,j, vi−ej ,j ≥ 0 (Case (I)). This leads to

hHT (U; i) = −
(
vi,jS+

j (U; i)− vi−ej ,jS+
j (U; i− ej)

)
. (3.15)

This results in four different cases again which we consider in turn now.
Case (Ia) Ui − Ui−ej 6= 0 andUi−ej − Ui−2ej 6= 0
This leads to

hHT (U; i) = −
[
vi,jUi − vi−ej ,jUi−ej

Ui − Ui−ej

+
vi,j

2
Φ(ri,j) −

vi−ej ,j

2

Φ(ri−ej ,j)

ri−ej ,j

]
(Ui − Ui−ej),

and forUi = 0 to

hHT (U; i) = −
[
vi−ej ,j +

vi,j

2
Φ(ri,j)−

vi−ej ,j

2

Φ(ri−ej ,j)

ri−ej ,j

]
(−Ui−ej).

Hence the condition of Theorem1 is fulfilled if the expression in the square brackets is nonnegative
and this is ensured by the limiter properties (3.14b).
Case (Ib) Ui − Ui−ej = 0 andUi−ej − Ui−2ej 6= 0
This givesri−ej ,j = 0 and hence, forUi = 0, hHT (U; i) = vi−ej ,jUi−ej , and the condition of
Theorem1 is satisfied.
Case (Ic) Ui − Ui−ej 6= 0 andUi−ej − Ui−2ej = 0
This, together withUi = 0, results in

hHT (U; i) = −
[
vi−ej ,j +

vi,j

2
Φ(ri,j)

]
(−Ui−ej),

and the expression in the square brackets is again nonnegative because of (3.14b).
Case (Id) Ui − Ui−ej = 0 andUi−ej − Ui−2ej = 0
Here we obtain, forUi = 0, hHT (U; i) = vi−ej ,jUi−ej , and the condition of Theorem1 is satisfied.
Altogether we have thatHT ∈ P and the corresponding ODE system is positive. �
We now give a few limiter functions which we will use in our numerical tests. There are more
functions available in the literature, see e.g. [57, 31, 35].

• Van Leer limiterΦV L(r):

ΦV L(r) :=
r + |r|
1 + |r|

.

This limiter function satisfies the conditions (3.14a), and (3.14b) with δ = 2. ΦV L(r) is a
smooth function except in the originr = 0.

• Koren limiterΦK(r):

ΦK(r) := max
{

0,min
{

2r, δ,K1/3(r)
}}

, δ = 2,

where

Kκ(r) :=
1− κ

2
+

1 + κ

2
r .
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This limiter function also satisfies the conditions (3.14a) and (3.14b) but is less smooth than
the van Leer limiter. For the choiceΦ(r) := K(r) we obtain the so-calledκ-methods which
include the second-order upwind discretization (κ = −1), second-order central discretiza-
tion (κ = 1), and the third-order upwind biased discretization (κ = 1

3
). However, these

schemes do not satisfy the conditions (3.14b) and are prone to introduce wiggles and nega-
tive solution values in the numerical approximations. Therefore we only consider the limited
versionΦK with κ = 1

3
.

• First-order upwindΦ1(r):
Φ1(r) := 0

This leads to the standard first-order upwind discretization and a positive scheme ((3.14b) is
satisfied). However, the approximation order is only one ((3.14a) is not satisfied).

3.3.2 Diffusion

In this section we present an approximationHD(U; i) in conservation form to the diffusion part
HD(u(t, ·); i) in Eq. (3.5). We start with the conservative formula

HD(U; i) :=
1

h

d∑
j=1

(Dj(U; i)−Dj(U; i− ej)) , (3.16)

where the functionDj(U; i) approximates the average of the negative diffusive flux from grid cell
Ωi to Ωi+ej through their common cell faceΓ, i.e.

Dj(U; i) ≈ 1

hd−1

∫
Γ

D∇u · ndΓ =
1

hd−1

∫
Γ

D∂xjudΓ, Γ := Ω̄i ∩ Ω̄i+ej .

We define

Dj(U; i) :=
D

h

(
Ui+ej − Ui

)
. (3.17)

Substituting this into Eq. (3.16) leads, in a pointwise interpretation, to the standard second-order
central difference approximation of the diffusion operator. Further, we also obtain a second-order
approximation of the evolving cell averages.

Lemma 4 Letu(t,x) be a smooth function. Then the local truncation error of the approximation
(3.16, 3.17) to the exact diffusion termHD(u(t, ·); i) is second-order,

lte(t, i) := HD(ū(t); i)−HD(u(t, ·); i) = O
(
h2
)

for all i ∈ {2, 3, . . . ,M − 1}d.

Proof We only show that the local truncation error in one particular coordinate directionj is
second-order. The statement of the lemma follows then immediately.
We denoteXk := [−h/2, h/2]k for k ∈ N, and, forx ∈ Xk−1, denoteŝx ∈ Xk the vectorx
with an additional zero inserted in thejth position. Further, for eachx ∈ Xk, there exist unique
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x∗(x) ∈ Xk−1 andr(x) ∈ X such thatx = x̂∗(x) + r(x)ej. Then we obtain:

1
h

(Dj(ū(t); i)−Dj(ū(t); i− ej))−
1
hd

∮
∂Ωi

D(∂xju)ej nd∂Ωi

=
D

hd+2

∫
Xd

u(t,xi + x + hej)− 2u(t,xi + x) + u(t,xi + x− hej)dx

− D

hd

∫
Xd−1

(
∂xju

(
t,xi +

h

2
ej + x̂

)
− ∂xju

(
t,xi −

h

2
ej + x̂

))
dx

=
D

hd

∫
Xd

∂2
xju(t,xi + x)dx− D

hd
h

∫
Xd−1

∂2
xju(t,xi + x̂)dx +O

(
h2
)

=
D

hd

(∫
Xd

∂2
xju(t,xi + x̂∗) + ∂3

xju(t,xi + x̂∗)rdx− h
∫
Xd−1

∂2
xju(t,xi + x̂)dx

)
+O

(
h2
)

=
D

hd

(
h

∫
Xd−1

∂2
xju(t,xi + x̂)dx + 0− h

∫
Xd−1

∂2
xju(t,xi + x̂)dx

)
+O

(
h2
)

= O
(
h2
)
.

The integral overr∂3
xj
u vanishes because of symmetry reasons. This proves second-order accuracy

of the discretization. �

Lemma 5 The ODE system

d

d t
Ui(t) = HD(U(t); i) , i ∈ I ,

is a positive ODE system.

Proof The ODE system is linear and the system matrix has nonnegative off-diagonal entries.
Hence positivity follows with Corollary2. �

3.3.3 Reaction

We approximate the reaction partHR of Eq. (3.5) withHR(U; i) defined by

HR(U; i) := p0(t,xi, Ui,C·,i) . (3.18)

The local truncation error of this approximation computes as

lte(t, i) =HR(ū(t); i)−HR(u(t, ·); i)

=p0(t,xi, ūi(t), c̄·,i(t))−
1

|Ωi|

∫
Ωi

p0(t,x, u(t,x), c(t,x))dx

=
1

|Ωi|

∫
Ωi

[p0(t,xi, ūi(t), c̄·,i(t))− p0(t,x, u(t,x), c(t,x))]dx

=O (h) ,
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for continuously differentiableu(t, ·), c(t, ·) andp0(t, ·, ·, ·) because forx ∈ Ωi we have

p0(t,x, u(t,x), c(t,x)) = p0(t,xi, u(t,xi), c(t,xi)) +O (h) = p0(t,xi, ūi(t), c̄i(t)) +O (h) .

We see that this only leads to a first-order approximation in a finite volume interpretation. We are
satisfied with this approximation for two reasons.

• If we regard the average quantitiesUi(t) andC·,i as point approximations ofu(t,xi) and
c(t,xi) then (3.18) corresponds just to the correct evaluation of the source term at(t,xi) and
is exact.

• The order of the approximation (3.18) could be improved by making it dependent on average
values in neighbouring cells. If we assume that a wave with steep front travels across the
domain then using other values thanUi andC·,i in (3.18) could trigger a reaction in cellΩi

although the wave has not reached the cellΩi yet and hence lead to wrong solutions or wave
speeds.

The positivity of the ODE systemd
d t
Ui(t) = HR(U(t); i) depends strongly on the properties of

the functionp0 and can be characterized by the following lemma.

Lemma 6 The ODE system

d

d t
Ui(t) = HR(U(t); i) , i ∈ I ,

is a positive ODE system if and only ifp0(t,x, 0, c) ≥ 0 for all (t,x) ∈ IT × Ω and all possible
values ofc.

Proof The statement follows immediately with Theorem1. �

3.3.4 Spatial discretization of problem class (2.5) in boundary cells

We consider here computational cellsΩi adjacent to the boundary ofΩ. Specifically, we fix a
spatial directionj ∈ {1, 2, . . . , d} and consider a celli ∈ I with ij = 1 (left boundary cell) or
ij = M (right boundary cell). The boundary face ofΩi in the jth coordinate direction which is
part of∂Ω is denoted byΓ. We defineν = ±1 such thatνej is the outer normal vector onΓ with
respect toΩi, andiB such thatΩiB is the grid cell to theleft of Γ, i.e. ν = −1, iB = i − ej for
ij = 1 andν = 1, iB = i for ij = M . Finally, x∗i := xi + ν h

2
ej is the centre ofΓ. We discuss

the spatial discretization of problem class (2.5) in such cellsΩi. We do not consider the prototype
equation (3.3) here because we take some advantage of the special structure of (2.5).
We start with the equation for the chemicalck, k ∈ {1, 2, . . . , l}. If the diffusion coefficient
Dk = 0 then we have no boundary conditions (BCs) forck and the spatial discretization of the
corresponding equation is well defined. LetDk > 0 in the following. We assume that we have
either Dirichlet or flux BCs prescribed onΓ. In order to evaluate the diffusion discretization (3.16)
in the cellΩi we must provideDj(Ck; i

B) ≈ 1
hd−1

∫
Γ
Dk∂xjck(t,x)dΓ.
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(i) Dirichlet BC for ck: ck(t,x) = α
(k)
D (t,x) ≥ 0 for x ∈ Γ.

Here we have the state ofck on Γ prescribed. Let̄α(k)
D := 1

hd−1

∫
Γ
α

(k)
D (t,x) dΓ. We only want

to useᾱ(k)
D and the valuesCk,i andCk,i−νej to approximate the average of the negative diffusive

flux on Γ because then the stencil of the diffusion discretization in celli is the same as for any
interior cell of the partition (this will become important in the time integration process, see the
next chapter). The best what we can achieve under this restriction is to set

Dj(Ck; i
B) := −νDk

3h

(
−8ᾱ

(k)
D + 9Ck,i − Ck,i−νej

)
.

This results in a first-order accurate discretization of the diffusion part inΩi. For the spatially
independent BCs of the models from Sec.2.3we simply havēα(k)

D = α
(k)
D (t,x∗i ). We see that this

definition results in a positive semi-discretization of the diffusion part becauseα
(k)
D ≥ 0.

(ii) Flux BC for ck: −Dk∇ck(t,x) · n(x) = α
(k)
F (t,x) ≤ 0 for x ∈ Γ.

In this case we have the diffusive flux ofck throughΓ prescribed (inflow becauseα(k)
F ≤ 0). Hence

the average of the negative diffusive flux overΓ is

Dj(Ck; i
B) := − ν

hd−1

∫
Γ

α
(k)
F (t,x) dΓ =: −νᾱ(k)

F .

Again we can approximate by the point value in the centre and setDj(Ck; i
B) := −να(k)

F (t,x∗i ) .

Both definitions are equivalent ifα(k)
F is independent ofx and this is the case for all models de-

scribed in Sec.2.3. The result is a positive semi-discretization becauseα
(k)
F ≤ 0.

Let us turn the attention to the population density equation forn now. If there is diffusion,ε > 0,
then we need an approximationDj(N; iB) ≈ 1

hd−1

∫
Γ
ε∂xjn(t,x)dΓ so that we can apply the dif-

fusion discretization (3.16) in Ωi. Further in order to apply the taxis discretization (3.9) in grid
cell i, we require an approximate of the average of the taxis flux throughΓ, i.e. Tj(N; iB) ≈

1
hd−1

∫
Γ
n
(∑l

k=1 pk(c)∂xjck

)
dΓ, and also possibly (depending on the upwind direction) an ap-

proximate valueNi+νej of the average of the state ofn in the (outside of the domainΩ) grid cell
Ωi+νej for the computation of the state interpolationS±j (N; iB − νej), see Eq. (3.12). We again
assume that we have exactly one type of BC prescribed onΓ.
(iii) Dirichlet BC for n: n(t,x) = α

(0)
D (t,x) ≥ 0 for x ∈ Γ.

Let againᾱ(0)
D := 1

hd−1

∫
Γ
α

(0)
D (t,x) dΓ. We defineDj(N; iB) by the same approach as in (i). Hence

we set (leading to a positive semi-discretization of the diffusion part inΩi)

Dj(N; iB) := −ν ε
3h

(
−8ᾱ

(0)
D + 9Ni −Ni−νej

)
.

For the definition ofTj(N; iB) we approximate

1

hd−1

∫
Γ

n

(
l∑

k=1

pk(c)∂xjck

)
dΓ ≈ vav

1

hd−1

∫
Γ

ndΓ = vavᾱ
(0)
D =: Tj(N; iB),

wherevav is a suitable approximation of the velocity
∑l

k=1 pk(c)∂xjck on Γ. The definition ofvav
depends on the BCs of theck on Γ again and we proceed as follows.
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• If ck satisfies a Dirichlet BC onΓ, i.e. ck(t,x) = α
(k)
D (t,x), then we definẽck := ᾱ

(k)
D and

approximate∂xjck (as in (i) but withDk = 1) by c̃k,xj := −ν 1
3h

(
−8c̃k + 9Ck,i − Ck,i−νej

)
.

• If ck satisfies a flux BC onΓ, i.e. −Dk∇ck(t,x) · n(x) = α
(k)
F (t,x), then we define the

approximation of∂xjck asc̃k,xj := −ν 1
Dk
ᾱ

(k)
F and set̃ck := max{0, Ck,i + ν h

2
c̃k,xj}.

• If no BCs forck on Γ are prescribed (and if we cannot deduce values ofck or its derivative
on the boundary otherwise) then we simply use linear (positive) extrapolation and setc̃k :=
max{0, Ck,i − 1

2
(Ck,i−νej − Ck,i)} andc̃k,xj := −ν 2

h
(Ck,i − c̃k).

Let c̃ := [c̃1, c̃2, . . . , c̃l]
T. Then we define the average velocityvav by

vav :=
l∑

k=1

pk(c̃)c̃k,xj ,

which completes the definition ofTj(N; iB). Finally, we assume that the state ofn in Ωi+νej is the
same as on the Dirichlet boundary partΓ and therefore approximateNi+νej by

Ni+νej := ᾱ
(0)
D .

It can be shown (by a tedious calculation using the definition of the state interpolants and properties
of the limiter) that ifνvavᾱ

(0)
D ≤ 0 then, with the given definitions, the semi-discretization of the

taxis part inΩi is positive. The condition roughly states thatΓ is a no outflow boundary forn.

(iv) Flux BC for n:
(
−ε∇n+ n

(∑l
k=1 pk(c)∇ck

))
· n(x) = α

(0)
F (t,x) ≤ 0 for x ∈ Γ.

This implies onΓ the relation−ε∂xjn+ n
(∑l

k=1 pk(c)∂xjck

)
= να

(0)
F (t,x).

For ε = 0 we can simply set

Tj(N; iB) := ν
1

hd−1

∫
Γ

α
(0)
F (t,x)dΓ = νᾱ

(0)
F and Ni+νej := Ni.

For ε > 0 we compute an average velocityvav as in (iii) and an average valuēα(0)
D of n on Γ

by first-order extrapolation (so as not to enlarge the stencil of the diffusion discretization) with
enforced positivity,

ᾱ
(0)
D := max

{
0, Ni −

1

2

(
Ni−νej −Ni

)}
.

Then we approximate the tactic and the negative diffusive flux by

Tj(N; iB) := vavᾱ
(0)
D and Dj(N; iB) := Tj(N; iB)− νᾱ(0)

F .

Finally, we setNi+νej := max{0, Ni + νh
ε
Dj(N; iB)}.

Altogether we obtain a positive semi-discretization of the diffusion and the taxis part of the popu-
lation density equation also in this case becauseα

(0)
F ≤ 0 on Γ.

(v) No BC for n:
This can only be the case ifε = 0 and we need approximationsTj(N; iB) andNi+νej . We define

ᾱ
(0)
D = Ni and then apply the formulas from case(iii) .
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3.4 Evaluation of the spatial discretization of the taxis part

In this section we present numerical confirmation that the spatial discretization described is appro-
priate for the taxis part of TDR systems. We investigate whether the expected order of convergence
is attained numerically, and we also discuss the different results obtained with different limiter
functionsΦ. Model 1 is a suitable test model for this purpose because we have an analytic solution
of this problem. Further, the solution of this problem is radial symmetric and we want that the
numerical approximation shares (approximately) the same qualitative property. Other qualitative
tests are the conservation of mass and the nonnegativity property of the solution of Model 1.
We discretize the taxis term in Model 1 with the state interpolation approach and use three limiter
functions: van LeerΦV L, KorenΦK , and first-orderΦ1. The result of this spatial discretization on
the partition{Ωi}i∈I is the MOL-ODE. (Note that the computations of the model are executed on
the unit square – no advantage is taken by assuming that the solution is radial symmetric.)
We are concerned with comparing the exact solutionu(t,x) of Model 1 with the exact solution
U(t) of the MOL-ODE in some norm. We do not know the exact solution of the MOL-ODE and
therefore it has to be obtained numerically. For this purpose we employ the standard ODE solver
DOPRI5 [22] with sufficiently high accuracy so that the errors of the time integration become
negligible compared to the spatial errors introduced by the discretization in space. We regard the
result as exact solution of the MOL-ODE and denote it withU(t). On the other hand, we know the
exact (PDE) solution of Model 1 and define a reference solutionUref (t) by Uref,i := n(t,xi) for
all i ∈ I. We measure the differenceE := U(t) −Uref (t) between both vectors in two different
norms: the maximum norm‖ · ‖∞ and the discreteL1-norm‖ · ‖1,

‖E‖∞ := max
i∈I
|Ei| and ‖E‖1 :=

∑
i∈I

|Ωi||Ei|. (3.19)

We start with assessing the numerical order of convergence of our discretization in space and
therefore choose the smooth initial function (2.6) with κ = 0.09. Then the solution of Model 1 is
also smooth. We note, however, that the gradients in the solution become steeper with increasing
time. For this reason, we consider three final times,T1 = 0.007, T2 = 0.014, andT3 = 0.021.
Tyson et al. [58] consider the same final times for this model (but with parameterκ = 0 in the
initial condition as we will also do later in this section). We compute the solution on the sequence
of partitions ofΩ with grid widthsh = hk := 1

50k
, k = 2, 3, . . . , 12. In Fig. 3.2 we plot the

logarithm of the measured‖ · ‖1-error (top row plots) and the logarithm of the measured‖ · ‖∞-
error (bottom row plots) obtained with the van LeerΦV L, Koren ΦK , and first-orderΦ1 limiter
functions (see end of Sec.3.3.1) vs. the cell widthh for three final timesT (left to right). The
corresponding (numerical) orders of convergencep and the error constantsC are computed by a
least squares procedure such thaterrk ≈ Chpk, where the errorerrk is attained on the grid with
cell widthhk. They are listed in Tab.3.1.
We see that the discretizations converge to the analytic solution but immediately recognize that
the first-order scheme cannot compete with the limited second-order discretizations. The error
attained with the first-order scheme on the finest grid is of the size of the error of the second-order
discretizations on the coarsest grid. Hence, the application of the first-order discretization for the
taxis term in our more complex biomathematical models would require extremely fine meshes to
achieve sufficient spatial resolution but this is not feasible in view of the implied computational
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Figure 3.2:Plots of the logarithm of the measured‖ · ‖1-error (top row plots) and of the logarithm of the
measured‖ · ‖∞-error (bottom row plots) against the cell widthh for different limiter functions and final
timesT (left to right) for Model 1 and smooth initial data (κ = 0.09).

T = 0.007 T = 0.014 T = 0.021
‖ · ‖1-error ‖ · ‖∞-error ‖ · ‖1-error ‖ · ‖∞-error ‖ · ‖1-error ‖ · ‖∞-error
C p C p C p C p C p C p

ΦV L 14.07 1.91 19.94 1.45 144.52 1.93 634.12 1.52 781.16 1.85 15168 1.57
ΦK 26.55 2.07 62.13 1.64 276.04 2.09 541.79 1.51 799.18 1.89 14496 1.57
Φ1 2.63 0.96 13.07 0.84 6.43 0.88 54.52 0.69 7.90 0.74 246.1 0.62

Table 3.1:Orders of convergencep and error constantsC corresponding to the plots of Fig.3.2.

effort. Therefore we will not consider the first-order spatial discretization of the flux terms for these
models. Comparing the errors of the higher order discretizations we see that the discretizations
using the Koren limiter are slightly more accurate than that using the van Leer limiter. The numbers
in Tab.3.1show that these two discretizations almost attain the theoretical order two in the‖ · ‖1-
norm and an approximate order of about1.5 in the‖·‖∞-norm. The latter is not surprising because
the solution quickly develops a sharp (although smooth) peak and this peak is hard to approximate
in the maximum norm. We note that the error constantsC grow considerably large for increasing
final timeT . One reason is that the constantC depends on this final time, see Theorem2, and
another is the increased lack of spatial smoothness in the solution for increasing simulation time
(see the scaling in the following solution plots to get an impression of the sharpness of the peak).
All three discretizations of Model 1 have nonnegative solutions at final time (at least for the high
temporal accuracy requested when computing these solutions with DOPRI5—achieving the same
for lower temporal accuracy requirements will be one of the topics of the next chapter). Further,
the mass of the solution is conserved up to machine precision (≈ 10−16) in all experiments.
Finally, we look at the symmetry of the solution of the MOL-ODE. We therefore plot, for a fixed
value oft, all solution points(xi, Ui(t)), i ∈ I, as points(r(xi), Ui(t)) in a diagram. We plot the
analytic PDE solution (2.8) of Model 1 at timet in the same manner in this diagram, and since
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Figure 3.3:Values of the analytical solution of Model 1 with smooth initial data (κ = 0.09) and of the
corresponding MOL-ODE (with van Leer limiter (top) and first-order limiter (bottom)) at three different
final timesT (left to right) plotted against the distancer between grid point and centre of the unit square.
The spatial resolution ish = 1/100. (The results with Koren limiter (not given here) are almost indiscernible
from the results with van Leer limiter.)

the PDE solution is radial symmetric, this corresponds to a single solution line in the diagram. In
Fig. 3.3 we present some of these diagrams (for details see the caption there). We see that the
solution points of the MOL-ODE are close to or even on the solution line of the PDE. Further, for
a fixed value ofr, there is no scattering of solution points of the MOL-ODE around the solution
value of the PDE forr. This indicates that also the solution of the MOL-ODE is radial symmetric.
It can also be seen that the first-order approximation results in a smeared peak whereas the higher
order discretizations return a better resolved peak.
We now turn our attention to the discontinuous initial condition (κ = 0) in Model 1. When looking
at discontinuous solutions then it makes no sense to measure the errors in the‖ · ‖∞-norm (this
error might be very large although the numerical approximation is very close to the true solution)
and we only give plots of the spatial error in the‖ · ‖1-norm against the cell width, see Fig.3.4,
and the corresponding orders and error constants in Tab.3.2.
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Figure 3.4:The same as in Fig.3.2but with nonsmooth initial data,κ = 0, and for the‖ · ‖1-norm only.

The same comments as given for smooth initial data apply regarding the first-order scheme. For
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T = 0.007 T = 0.014 T = 0.021
C p C p C p

ΦV L 0.87 0.74 2.05 0.78 13.52 0.96
ΦK 0.88 0.78 1.94 0.80 13.86 0.99
Φ1 0.88 0.56 2.79 0.63 5.20 0.61

Table 3.2:Ordersp and constantsC (‖ · ‖1-norm) corresponding to the plots of Fig.3.4.

the higher order methods we observe that the differences are almost negligible. The order of
convergence of the discretizations is clearly less than the theoretical order but this is expected and
due to missing spatial smoothness of the solution, see [41, p. 121]. Also for nonsmooth initial data
we have nonnegativity of the solution and conservation of initial mass up to machine precision.
The plots in Fig.3.5show that the MOL-ODE solution is symmetric and they compare well with
the results obtained for the same model and initial condition in the paper by Tyson et al. [58].
We note that the computation times for the approximate nonsmooth solutions with limiterΦK are
considerably longer than with limiterΦV L.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5

n(
r)�

distance r from centre

T=0.007, van Leer

MOL-ODE
PDE

0
1
2
3
4
5
6
7
8
9

10

0 0.1 0.2 0.3 0.4 0.5

n(
r)�

distance r from centre

T=0.014, van Leer

MOL-ODE
PDE

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5
n(

r)�

distance r from centre

T=0.021, van Leer

MOL-ODE
PDE

Figure 3.5:The same as in Fig.3.3but with nonsmooth initial data,κ = 0, and van Leer limiter only.

To summarize, we discourage the application of first-order approximations of taxis terms because
an excessive amount of grid points is necessary to obtain a spatial accuracy which is comparable
to the accuracy obtained by using higher order discretizations on very coarse meshes already.
Further, the Koren limiter gives generally more accurate approximations than the van Leer limiter.
However, the differences are not very big and both limiters can be recommended for application.
In the numerical experiments in Chap.5 we use the van Leer limiter function only.
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Chapter 4

Time Stepping Methods

The result of the spatial discretization (described in Chap.3) of the TDR system (2.5) is an IVP
for a huge system of stiff, nonlinear ODEs which remains to be numerically integrated in time. We
denote this system (repeating Eq. (3.1)) by

y′(t) = F (t, y(t)) , t ≥ t0 ∈ R , y(t0) = y0 ∈ Rm , (4.1)

and henceforth assume that the right-hand side functionF has the property (repeating (3.2))

F is continuous and (4.1) has a unique uncontinuable solution for allt0 ∈ R and ally0 ∈ Rm.
(4.2)

The aim of this chapter is to develop and discuss suitable numerical schemes to compute approxi-
mate solutions of (4.1) for timest up to a (moderately sized) final timeT .
The components of the solution vectory(t) of (4.1) are the semi-discrete approximations to the
averages of population densityn and chemical concentrationsci in the elements of the chosen
partition of the spatial domain (see Sec.3.1). These semi-discrete approximations can be arranged
in different orders in the vectory(t) and this choice has a significant influence on the efficiency
of the numerical schemes discussed in this chapter. For the problem class (2.5) and the partition
described in Sec.3.1, we obtain thaty(t) has a dimensionm = (l + 1) ·Md. This number can
be very large ford > 1 and standard integration methods for the solution of (4.1) are not always
suitable. Therefore we develop and describe robust, efficient and sufficiently accurate methods
for the numerical solution of systems (4.1) in this chapter. We restrict our attention to one-step
methods. These generate approximationsyk+1 to y(tk+1) for k = 0, 1, . . . in a step by step fashion,
starting withy0 = y(t0), by using the approximate evolution operatorΨ acting on the last computed
approximationyk,

yk+1 := Ψ(tk, τk)yk , k = 0, 1, . . . .

The operatorΨ depends, beside on the method coefficients and the right-hand side functionF ,
on the timetk and a selected time step sizeτk > 0. The temporal grid points are defined by
tk+1 := tk + τk. We discuss strategies to choose the time step sizeτk adaptively such that we can
control the (local) error in the computation. Otherwise, we will neglect the dependence of the time
step size on the step numberk for ease of notation and write onlyτ in the following.
We are especially interested in the numerical integration of the large ODE systems (4.1) by means
of splitting techniques. These are based on low-order explicit Runge-Kutta methods and linearly-
implicit Rosenbrock-type methods. Both method classes and the necessary theory (local errors,
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stability, time step size control) are introduced in Sec.4.1. Following this introduction we present
two splitting techniques, approximate matrix factorization (AMF) and operator splitting (OPS),
Sec.4.2.
The usefulness of splitting techniques becomes evident when we write the vector functionF as

F (t, y) = F0(t, y) + F1(t, y) , (4.3)

where we have collected all terms from the taxis discretization inF0 (including corresponding
boundary terms) and all diffusion and reaction terms inF1. We separate these terms because the
systemy′(t) = F1(t, y(t)) generally requires an implicit (or at least linearly-implicit) treatment
because of stiffness, whereas the semi-discrete taxis systemy′(t) = F0(t, y(t)), which can be
regarded as a discretized nonlinear advection equation, is better solved explicitely because this is
often more efficient. The splitting techniques AMF and OPS make use of this separation and treat
F0 andF1 differently. We can further splitF1 by separating terms of diffusion discretization in
different spatial directions and reaction terms,

F1(t, y) =
d∑
j=1

FDj(t, y) + FR(t, y) . (4.4)

This secondary splitting will be used to considerably reduce linear algebra costs within the schemes
to be described and this is also where the order of the components iny becomes significant for
efficiency.
In Sec.3.2 we have introduced the notion of positive ODE systems and defined the classP of
functionsF such that (4.1) is a positive ODE system. Further, we have given conditions such that
a right-hand side functionF of (4.1) is an element ofP. In this chapter we always assume that

F, F0, FDj , FR ∈ P .

In the previous chapter we have seen that this is possible for TDR systems with a suitable dis-
cretization in space and careful treatment of boundary conditions. In Sec.4.3 we present three
different theories from the literature which are concerned with the numerical solution of positive
ODE systems. The aim is to obtain methods for the solution of such systems which guarantee non-
negative numerical approximations for reasonably large time steps. We mainly concentrate on the
case of low-order ERK methods but also discuss the case of implicit schemes where appropriate.
The reason for this special interest in explicit methods is that we want to apply such schemes for the
numerical solution of the systemy′(t) = F0(t, y(t)) which often generates problems if nonnegative
numerical approximations are requested. This is becauseF0 corresponds to the taxis part in our
models which is present in the cell density equation. The models represent pattern formation pro-
cesses and hence this density will vary strongly in space and has steep moving fronts which cause
positivity problems (lack of spatial smoothness). We derive an ERK method especially suited for
the numerical solution of positive ODE systems in this section.
The theory presented and developed in Sec.4.3 is then applied to the taxis ODEy′ = F0(y) in
Sec.4.4. There we also discuss associated stability properties beside looking at positivity.
In Sec.4.5 and Sec.4.6 we detail, based on the theoretical investigations and on stability consid-
erations, specific AMF and OPS schemes which we will use for the simulation of TDR systems.
Finally, in Sec.4.7we discuss a few different approaches for the solution of system (4.1).
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4.1 Runge-Kutta and Rosenbrock-type methods

There are excellent text books covering the theory and application of Runge-Kutta and Rosen-
brock-type methods, e.g. [22, 23, 51, 55, 56, 10]. In this section we collect only definitions and
results which are required for the understanding of this chapter. For further details (and proofs) we
refer to the cited books.
An s-stage Runge-Kutta (RK) method for the solution of (4.1) can be characterized by a coefficient
matrix A = (aij) ∈ Rs,s (with aij = 0 for all j ≥ i in case of explicit Runge-Kutta (ERK)
methods), a weight vectorb = (bi) ∈ Rs and the knot vectorc = (ci) := A1l ∈ Rs. In short, such
a scheme is in general represented by the pair(A, b) or by its Butcher array

c A

bT
.

A given approximationyk is advanced by a time stepτ to yieldyk+1 via

y
(i)
k+1 = yk + τ

s∑
j=1

aijF (tk + cjτ, y
(j)
k+1) , i = 1(1)s , (4.5a)

yk+1 = yk + τ
s∑
i=1

biF (tk + ciτ, y
(i)
k+1) . (4.5b)

This defines the approximate evolution operatorΨ associated with the RK method(A, b).
We further considers-stage W-methods (a class of Rosenbrock-type methods introduced by Stei-
haug and Wolfbrandt [53]) for the solution of (4.1) which are defined by coefficient matrices
A = (aij) andΓ = (γij) ∈ Rs,s (with aij = 0 for j ≥ i, γij = 0 for j > i, andγii = γ ∈ R+

for all i), a weight vectorb = (bi) ∈ Rs, and the knot vectorc = (ci) := A1l ∈ Rs. A given
approximationyk is advanced by a time stepτ to yieldyk+1 via

(I − τγT )ki = τF

(
tk + ciτ, yk +

i−1∑
j=1

aijkj

)
+ τT

i−1∑
j=1

γijkj , i = 1(1)s , (4.6a)

yk+1 = yk +
s∑
i=1

biki . (4.6b)

The matrixT ∈ Rm,m in the method is an arbitrary matrix. These methods require the solution of
one linear system per stage for the unknown vectorki. The system matrixI − τγT is the same in
all stages so that only one LU-decomposition is required per time step. The methods are said to be
linearly-implicit. ForT = 0 the method reduces to the underlying ERK method(A, b). However,
it is advantageous to chooseT as an approximation to the Jacobian matrix∂F (t,y)

∂y
at (tk, yk) for

accuracy and stability reasons. We will use the freedom in the choice ofT to incorporate splitting
in the scheme and to drastically decrease the linear algebra work per time step.
The stage equations (4.6a) have the matrixT on both sides. To avoid unnecessary matrix-vector
multiplications (and to facilitate the approximate matrix factorization (AMF) to be discussed later)
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we can replace (4.6) by the equivalent formula (̃A := AΓ−1, b̃T := bTΓ−1, andΓ̃ := I − γΓ−1)

(I − τγT ) k̃i = τγF

(
tk + ciτ, yk +

i−1∑
j=1

ãij k̃j

)
+

i−1∑
j=1

γ̃ij k̃j , i = 1(1)s , (4.7a)

yk+1 = yk +
s∑
i=1

b̃ik̃i . (4.7b)

This defines the approximate evolution operatorΨ associated with the W-method(A,Γ, b).

Order and order conditions:
A one-step methodΨ is of orderp ∈ N if the local errorle(t, τ), i.e. the error introduced by one
time step of the method, satisfies (for sufficiently smooth problems (4.1))

‖le(t, τ)‖ := ‖y(t+ τ)−Ψ(t, τ)y(t)‖ ≤ Kτ p+1 , K ∈ R .

The global errore(tk) := y(tk)− yk is the error of the computed solution after several steps (with
initial values(t0, y(t0)). Suppose that the methodΨ is of orderp and we can write the method in
the standard form for one-step methods, i.e.Ψ(t, τ)y = y + τΦ(t, τ, y), with so-called increment
functionΦ. The latter is the case for the ERK and W-methods considered here. Further suppose
that in a neighbourhood of the exact solution of (4.1) the increment functionΦ(t, τ, y) is Lipschitz
continuous in its last argument (with constantΛ). Then the global error is also of orderp and
satisfies

‖e(tk)‖ ≤ τ̃ p
K

Λ

(
eΛ(tk−t0) − 1

)
, τ̃ := max{τ0, τ1, . . . , τk−1} . (4.8)

RK or W-methods are of orderp if their coefficients satisfy certain order conditions. In this work
here we are mainly interested in low-order methods (p = 2, 3). The order conditions up top = 3
(see [55, p. 39]) for an RK method(A, b) are

s∑
i=1

bi = 1 ,
s∑
i=1

bici =
1

2
,

s∑
i=1

bic
2
i =

1

3
,

s∑
i,j=1

biaijcj =
1

6
. (4.9)

If the first condition is satisfied then we have a method of order one, if also the second condition is
satisfied then the order is two, and all four conditions must be satisfied for order three. The order
conditions for a W-method(A,Γ, b) are listed for instance in [55, p. 136]). The method should
have the same order independent of the choice ofT (W-method property). Therefore, because of
T = 0, for the W-method to be of orderp, also its underlying ERK method(A, b) must be of
orderp and the respective order conditions in (4.9) must be satisfied. No additional condition is
necessary for order one of the W-method. For order two there is the additional condition

s∑
i=1

biβi =
1

2
− γ , where βij := aij + γij , andβi :=

i−1∑
j=1

βij . (4.10)

There are three additional conditions for order three (not listed here).
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Linear stability properties
We consider (Dahlquist’s) test equationy′ = λy, whereλ ∈ C and apply RK and W-methods
(T := λ here) to this equation. Performing one time step with sizeτ of these methods applied to
the test equation results in the recursionyk+1 = R(z)yk, z := λτ , andR(z) is called the stability
function of the method at hand. The stability function is a rational function inz, which reduces to
a polynomial for ERK methods. We have

R(z) = 1 + zbT(I − zA)−11l and R(z) = 1 + zbT(I − zB)−11l, B := A+ Γ ,

for RK-methods(A,B) and W-methods(A,Γ, b), respectively. We denote withS := {z ∈ C :
|R(z)| ≤ 1} the stability domain of a given method.
The solution of the test equation is stable for allλ ∈ C−,0 and we call a methodA-stable if its
stability domainS ⊃ C−,0. This means thatA-stable methods preserve this stability property, i.e.
there is no stability restriction on the time step sizeτ > 0 in the numerical solution of the test
equation withλ ∈ C−,0. If the stability function of anA-stable method also satisfies

lim
<z→−∞

R(z) = 0

then this method is calledL-stable. A consequence of this property is that the numerical solution
of the test equation with<λ � −1 is damped to zero very quickly. This mimics the behaviour of
the exact solution of the test equation with<λ� −1.
If S ⊃ Wα for a valueα ∈ [0, π/2], whereWα := {z ∈ C : | arg(−z)| ≤ α} is a closed wedge
in the left complex half plane, then the corresponding method is calledA(α)-stable (L(α)-stable
methods are defined analogously). Obviously,A- andA(π/2)-stability as well asL- andL(π/2)-
stability coincide. The stability functions of A(α)- or L(α)-stable methods are often calledA(α)-
orL(α)-acceptable. A discussion about the relevance and applicability of Dahlquist’s test equation
for the numerical solution of linear and general ODEs is given in [24].

Time step size control
For a very detailed discussion of step size control mechanisms we refer to [51, p. 334]. There are
two major approaches to select the time step sizeτk in a one-step methodΨ adaptively: embedding
and Richardson extrapolation. Suppose a time step sizeτk for the current time step is given.
Then both approaches estimate the local errorlek in the current time step, that is the difference
betweenŷk+1 := Ψ(tk, τk)yk and the exact solution attk + τk of the ODE system with initial
values(tk, yk). (Note that the local error here differs slightly from the local error in (4.8) because
thereyk = y(tk) is assumed. However, this distinction does not affect the convergence of the
method.) Both mechanisms accept the step if a norm of the estimateestk of lek is below a user-
supplied tolerance; otherwise the step is rejected. In any case, a new step sizeτnew is predicted,
based onestk, for the next time step of the method. The procedure should ensure that the time
steps are sufficiently small in order to meet the tolerance requirement, and also large enough so
that the problem is solved efficiently.
We first discuss embedding. Suppose we have a pair of methodsΨ andΨ̃ of ordersp andp + 1,
respectively. These methods generate approximationsŷk+1 = Ψ(tk, τk)yk andỹk+1 = Ψ̃(tk, τk)yk
to y(tk+1). It is common that the methodsΨ andΨ̃ differ only in the weight vectorb for RK and
Rosenbrock-type methods; the coefficient matrices remain unchanged. This implies thatŷk+1 and
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ỹk+1 can be computed by approximately the same amount of work which is necessary to compute
just a single approximation.
Thenlek = ŷk+1−ỹk+1+O

(
τ p+2
k

)
andestk := ŷk+1−ỹk+1 = O

(
τ p+1
k

)
provides an asymptotically

correct, computable estimate of the local error in the lower order solutionŷk+1. The user supplies
relative (RTOLi ≥ 0) and absolute (ATOLi > 0) tolerances for each component of the solution
vector (i = 1(1)m). Then we compute the mixed (relative and absolute) error indicator

err :=

(
1

m

m∑
i=1

(
estk,i

RTOLi|yk,i|+ ATOLi

)2
) 1

2

. (4.11)

Following theerror per stepcriterion, the time step is accepted iferr ≤ 1 and rejected otherwise.
If the step is accepted then we proceed with (in the methods to be presented here)yk+1 := ỹk+1,
i.e. we use the higher order approximationỹk+1 although the error is only estimated for the lower
order approximation̂yk+1. This is known aslocal extrapolation.
It remains to derive the new time step sizeτnew such that, in case of a rejected step, the recomputed
step withτk := τnew, or, in case of an accepted step, the next step withτk+1 := τnew is likely to
pass the error test. A widely accepted definition is

τnew := τk min{fmax,max{fmin, fsaf err−1/(p+1)}} . (4.12)

In this formula0 < fmin ≤ fmax are the minimum and maximum step size change ratios, and
0 ≤ fsaf < 1 is a safety factor. (The choicefsaf = 0, fmin = fmax = 1 (together with very
relaxed tolerance requirements) leads to a constant step size scheme.) A closer examination of the
error per step control with local extrapolation (as described) reveals that under suitable assump-
tions the global error in the solution is proportional to the tolerance requirements. Without local
extrapolation the global error is only proportional toTOLp/(p+1), see [51, p. 350].
We now discuss the second step size control mechanism, Richardson extrapolation. In fact, the
only difference to the algorithm described above is how we obtain the estimateestk of the local
errorlek. Suppose we have a methodΨ of orderp. Then we compute two approximations

ŷk+1 := Ψ(tk, τk)yk and ỹk+1 := Ψ
(
tk +

τ

2
,
τ

2

)
Ψ
(
tk,

τ

2

)
yk .

The local error with respect to the solutionỹk+1 can then be estimated by

estk :=
1

2p − 1
(ỹk+1 − ŷk+1) .

In the case of an accepted step, we setyk+1 := ỹk+1 (doubling [51, p. 364]). Note that this is not
local extrapolation because the order is not increased; we use only the supposedly more accurate
solution to advance the integration. Local extrapolation leads to settingyk+1 := ỹk+1 + estk.
However, in this case properties like stability of the resulting scheme must be considered anew.
We do not apply local extrapolation together with Richardson extrapolation in this work.
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4.2 Introduction to approximate matrix factorization and op-
erator splitting

Verwer et al. [62] successfully applied the2-stage, second-order W-method ROS2 to advection–
diffusion–reaction problems from atmospheric air pollution modelling. The AMF methodology
applied in that paper also appears to be of interest for the time integration of the MOL-ODEs
obtained as semi-discretizations of TDR systems (2.5).
Low-order W-methods are efficient for a wide range of stiff ODE problems, see e.g. [23, 55].
However, applying ans-stage W-method (in the form (4.6) or (4.7)) involvess linear solves with
the matrixI − τγT . Consequently, choosingT equal to the full Jacobian

∂F (tk, yk)

∂yk
=
∂F0(tk, yk)

∂yk
+

d∑
j=1

∂FDj(tk, yk)

∂yk
+
∂FR(tk, yk)

∂yk

seems not practical because this matrix, although sparse, has a large bandwidth which grows with
decreasing spatial grid width (ford > 1). This makes the direct solution of these systems pro-
hibitively expensive. Moreover, due to the limiter functions used in the taxis discretization,F is
only Lipschitz continuous so that the Jacobian might not even exist. The same situation occurs in
the air pollution application [62] where ROS2 is applied with a matrixT approximating the true
Jacobian. For the TDR models we use a similar approximation which yields the following choice
for the matrixI − τγT ,

I − τγT :=

(
I − τγ ∂FR(tk, yk)

∂yk

) d∏
j=1

(
I − τγ

∂FDj(tk, yk)

∂yk

)
. (4.13)

By rearranging the right-hand side of (4.13), we see that this definition implies that we use a matrix
T which depends on the time step sizeτ . The order of W-methods is independent of the matrix
T . However, to take advantage of the factorization (4.13), it is now important that we use the
W-methods in the transformed form (4.7). Using form (4.6) of the W-method would require to
explicitly compute the matrixT from the factorization (4.13).
The approximation (4.13) is obtained in two steps. Firstly, we have neglected the taxis Jacobian
F0 which overcomes the possible difficulty of non-existence. This choice further underlies the
assumption that explicit methods are in general more efficient than implicit ones when applied to
the taxis ODEy′(t) = F0(t, y(t)). Secondly, we have approximated the remainder matrix

I − τγ ∂F1(tk, yk)

∂yk
(4.14)

by the factorized expression (4.13). With this factorization we avoid to solve linear systems which
is still expensive (ifd > 1) because the Jacobian ofF1 has a bandwidthO

(
h−(d−1)

)
, h denoting the

spatial grid size. For efficiency it is important that the matrices involved are banded with a small
bandwidth independent ofh. This property is especially profitable for the fine spatial resolutions
required in our models to resolve steep fronts for the cell density and it holds with (4.13). This can
be seen easily. If the components iny are arranged such that all approximations (cell densityn
and chemical concentrationsc) corresponding to one grid cell form a block iny then the Jacobian
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of FR is a block diagonal matrix with block size(l + 1) × (l + 1) and we can solve for each
block independently. If the components iny are arranged such that the approximations to the
cell densityn in all grid cells form a block and also all approximations to each of thel chemical
concentrations inc then the Jacobians ofFDj , j = 1(1)d, are block diagonal matrices. Further,
for eachj = 1(1)d, the components of each of thel + 1 blocks iny can be arranged such that the
corresponding submatrix in the Jacobian ofFDj is tridiagonal, i.e. with this special arrangement
of y we can solve the linear systems involving the JacobianFDj efficiently. Altogether, solving
linear systems with the factorized matrix (4.13) efficiently amounts to a sequential process where
we have to rearrange the right-hand side vector of the system appropriately after each sub-step.
The factorization (4.13) is known as ‘Approximate Matrix Factorization’ (AMF) which has been
used for a long time already for solving multi-space dimensional time-dependent PDE problems,
see e.g. [5, 11, 28, 32, 48].
The application of AMF in W-methods does not affect the order of the method but it does of course
affect the stability of the original W-method used withT = F ′(yk). In [62] it is argued that with
(4.13) the stability of the resulting ROS2 method with AMF is mainly governed by the stability of
the modified Euler method (which is the underlying ERK method of ROS2) applied to theF0 part
only. We investigate this issue in Section4.5for the specific W-methods presented there.
If the split matrices in (4.13) do not commute then the order of the factors can be important for
the performance of the method and the best choice can be problem specific. Our choice in (4.13)
with the Jacobian ofFR as the first factor is guided by the assumption that the subsequent factors
(corresponding to diffusion) will smooth the stage solutions and hence also result in a smoother
step solution.

Remark 1 The secondary splitting defined by (4.13) can be avoided and we can simply use (4.14)
as matrixI − τγT in the W-methods. Direct methods are not suitable for the solution of the
resulting systems because of the large bandwidth but we could employ iterative solvers. This
immediately raises the issues of convergence and preconditioners. We do not consider iterative
methods in this work because with the secondary splitting and AMF we obtain linear systems
which can be solved very efficiently. However, the application of iterative linear system solvers
can be a topic of further research.

Whereas the W-methods applied with AMF perform a splitting at the level of linear algebra, it
is also possible to directly split Eq. (4.1) at the problem level, that is, to apply operator splitting
(OPS). Like AMF, operator splitting is a popular approach for solving multi-space dimensional
time-dependent PDE problems. Operator splitting has been considered in [14] for the tumour-
induced angiogenesis Model 2 (different initial TAF concentration). The method proceeds as fol-
lows. Given an approximationyk at timetk and a step sizeτ , we compute

yk+1 = Ψ0

(
tk +

τ

2
,
τ

2

)
Ψ1 (tk, τ) Ψ0

(
tk,

τ

2

)
yk . (4.15)

The operatorsΨ0 andΨ1 are approximate evolution operators for the split functionsF0 andF1 (see
Eq. (4.3)), respectively. Specifically,Ψi(t̃, τ)u approximates the solution of the IVP

y′(t) = Fi(t, y(t)) , t ≥ t̃ , y(t̃) = u ,
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at t = t̃ + τ . The formula (4.15) is known as Strang-splitting [54]. If the right-hand side function
is linear and autonomous,Fi(t, y) = Aiy , Ai ∈ Rm,m, and the matricesAi commute then the
solution of a splitting step (4.15) coincides with the exact solution provided that the subproblems
are solved exactly; otherwise a so-called splitting error is introduced [39]. If the operatorsΨi are
at least second-order accurate approximations of the exact evolution operators, i.e. we use second
order methods for the solution of the subproblems, then the order of the approximation (4.15)
equals two. The stability of (4.15) is determined by the stability properties ofΨ0 andΨ1.
It is effective to select an explicit methodΨ0 and an implicit methodΨ1. We will employ ERK
methods as explicit schemesΨ0. W-methods applied with AMF appear to be of interest for the
application as implicit schemesΨ1.
Operator splitting is applied in the order given in (4.15) because then we use only half the step size
of the splitting step for the explicit method. This doubles the stability (and positivity domain, see
next section) of the explicit method and hence is expected to lead overall to less time steps and
subsequently less computational effort. Other splitting orders are possible, e.g.

yk+1 = Ψ1

(
tk +

τ

2
,
τ

2

)
Ψ0 (tk, τ) Ψ1

(
tk,

τ

2

)
yk ,

or yk+1 = Ψ1

(
tk +

τ

2
,
τ

2

)
Ψ0

(
tk +

τ

2
,
τ

2

)
Ψ0

(
tk,

τ

2

)
Ψ1

(
tk,

τ

2

)
yk ,

but a numerical assessment revealed that they are not advantageous for our problem class (more
time steps, greater amount of work per time step).

4.3 Positive methods for positive ODE systems

Positive ODE systems (4.1) arise in a great variety of applications, e.g. when modelling chemical
reactions, in the semi-discretization of air pollution [31] and, as we have seen, biomathematical
models. The quantityy(t) usually describes the concentration or density of some species. In such
a situation we are naturally interested in obtaining nonnegative numerical approximationsyk of
the solutiony(tk) at discrete time pointstk by an appropriate numerical method. This requirement
is not met in general. We consider one-step methods for the solution of (4.1) here; for multi-step
methods see for instance [29, 6].
In order to characterize positivity properties of numerical schemes we give the definition ofpositive
one-step methodsfrom [27].

Definition 2 Let there be given a one-step method for the solution of (4.1), a subclassF ⊂ P and
a threshold0 < τ+ ≤ ∞. The method is calledpositiveonF with thresholdτ+ if the numerical
approximations obtained by the method are uniquely defined and are nonnegative whenever the
method is applied to the IVP (4.1) with anyF ∈ F , t0 ∈ R, y0 ≥ 0 and with step sizeτ satisfying
0 < τ ≤ τ+. If this holds withτ+ = ∞ then the method is calledunconditionally positive,
otherwiseconditionally positive, onF .

Obviously, the approximations are always uniquely defined for explicit methods.
We say that a method taken from a class of methods hasoptimal positivityon a certain problem
classF if it is a positive method onF with a step size restrictionτ+ and all other methods from
the given class have, for positivity onF , a step size restrictioñτ+ ≤ τ+.
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It is useful to define subclasses of the classP of positive problems for the following investigations.
Let g(t) ≥ 0 be a given continuous, vector-valued function,α ∈ R+,0 and define classes of linear
functions

L+
g (α) := {F |F (t, y) = Py + g(t) whereP ∈ Rm,m, P + αI ≥ 0}. (4.16)

IVPs with right-hand side functions taken from these classes are positive (apply Theorem1).
Further, following [27], we consider classes of nonlinear, dissipative functions and define sub-
classes by using the so-called circle condition [37]. The right-hand sideF of an IVP (4.1) fulfils
the circle condition with constantρ ∈ R+ in some vector norm‖ · ‖ (e.g. thep-norms) if

‖ρ(ỹ − y) + (F (t, ỹ)− F (t, y)) ‖ ≤ ρ‖ỹ − y‖ for all t ∈ R, y, ỹ ∈ Rm. (4.17)

Now, for anyρ ∈ R+, define

D+(ρ) := {F |F ∈ P andF satisfies (4.17) with constantρ in somep-norm , p ∈ [1,∞]} .
(4.18)

The following lemma characterizes the hierarchy in the parametrized classesL+
g (α) andD+(ρ).

Lemma 7 Letα1 ≥ α2 ≥ 0 andρ1 ≥ ρ2 > 0. Then we have

L+
g (α2) ⊂ L+

g (α1) ⊂ P and D+(ρ2) ⊂ D+(ρ1) ⊂ P.

Proof The statements follow directly from the definitions ofL+
g (α) andD+(ρ). �

In the following subsections we consider the positivity of RK methods applied to problems from
L+
g (α) andD+(ρ) (Sec.4.3.1and Sec.4.3.2, respectively), and the positivity of ERK schemes

applied to general problems (4.1) with F ∈ P in Sec.4.3.3. One of the main goals is to identify
a low-order ERK method with appropriate positivity properties for a broad range of positive ODE
problems. We summarize the results on ERK methods in Sec.4.3.4.

4.3.1 Positivity of RK and W-methods onL+
g (α)

The results of this section are based on work by Bolley and Crouzeix [6], and Kraaijevanger and
van de Griend [36, 19].
RK methods or W-methods (usingT := P ) applied with fixed step sizeτ to a problem taken from
the classL+

g (α) yield the recursion

yk+1 = R(τP )yk + τ

s∑
i=1

Ri(τP )g(tk + ciτ) . (4.19)

HereR(z) andRi(z) are rational functions with real coefficients;R(z) is the stability function of
the method. These functions are polynomials in the case of ERK methods. For a definition and
some properties of matrix functions (e.g.R(τP ), Ri(τP ) above) see Sec.A.2.
We need the concept of absolute monotonicity of rational functions and the so-called threshold
factor, see e.g. [19, 36, 37], for the study of positivity of the recursion (4.19).
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Definition 3 A rational functionR is calledabsolutely monotonicat a pointz ∈ R if R(z) is
defined andR as well as all its derivatives are nonnegative inz. The functionR is called absolutely
monotonic on the intervalI ⊂ R if R is absolutely monotonic at everyz ∈ I.

Definition 4 Thethreshold factor of a rational functionR, denoted byT (R), is defined as

T (R) := sup{r | r ∈ R+,0 andR is absolutely monotonic on[−r, 0]} .

This definition differs slightly from the definition given in [19]. Here we haveT (R) = 0 if R(z)
is absolutely monotonic inz = 0 but not in a left neighbourhood ofz = 0. T (R) is not defined if
R(z) is not even absolutely monotonic inz = 0. In contrast, the definition in [19] would result in
T (R) = 0 in both cases.

Lemma 8 If R is a polynomial then the threshold factorT (R) is given by

T (R) = sup{r | r ∈ R+,0 andR is absolutely monotonic inz = −r)} .

Proof The statement follows with Lemma 3.1 from [37]. �
Except for the caseT (R) = 0 (see the comments after Definition4), the statement of Lemma8
coincides with the definition of the threshold factor of polynomials in [36].
We haveT (R) = ∞ for the stability function of the implicit Euler method,R(z) = (1 − z)−1.
However, Bolley and Crouzeix [6] show thatR(z) = exp(z) + O (zp+1) with p ≥ 2 for z → 0
impliesT (R) <∞.
M - andM̄ -matrices are important in the theory of Bolley and Crouzeix [6] and are introduced
now.

Definition 5 ([37, p. 497], [6, p. 241]) A matrixB ∈ Rm,m is said to be anM -matrix if bij ≤ 0
for all i 6= j,B is nonsingular, andB−1 ≥ 0.
A matrixA ∈ Rm,m is said to be anM̄ -matrix if for all α ∈ R+ the matrixαI+A is anM -matrix.

The next two lemmas give useful characterizations ofM -matrices.

Lemma 9 ([21, p. 151]) LetB ∈ Rm,m such thatbij ≤ 0 for all i 6= j and defineD := diag(B).
Then the statements

B is nonsingular andB−1 ≥ 0 ,

and

(1) bii > 0 for all i = 1(1)m, (2) M := I −D−1B ≥ 0 , and(3) ρ(M) < 1 ,

whereρ(M) denotes the spectral radius of the matrixM , are equivalent.

Lemma 10 ([49, p. 30]) LetB,C ∈ Rm,m be two matrices which satisfyB ≤ C andcij ≤ 0 for
all i 6= j. Then ifB is anM -matrix, so is the matrixC.

LetC := αI +B. Then the following corollary follows from Lemma10.
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Corollary 3 If B ∈ Rm,m is anM -matrix thenB is anM̄ -matrix.

We want to characterizēM -matrices and therefore need the Perron–Frobenius theorem for non-
negative matrices, see e.g. [21, p. 150] or [43].

Theorem 3 (Perron–Frobenius) LetA ∈ Rm,m be a nonnegative matrix,A ≥ 0. Then the spec-
tral radiusρ(A) ≥ 0 is an eigenvalue ofA and for this eigenvalue exists a nonnegative eigenvector.

Theorem 4 LetA ∈ Rm,m be a real square matrix. ThenA is anM̄ -matrix if and only if

1. aij ≤ 0 for all i 6= j ,

2. aii ≥ 0 for all i = 1(1)m , and

3. A has no eigenvalueλ ∈ (−∞, 0) .

Proof
Necessity: SupposeA is anM̄ -matrix. This impliesB := αI + A is anM -matrix for allα > 0
and hence,bij ≤ 0 for all i 6= j, B is nonsingular, and, by Lemma9, bii > 0 for all i. Therefore
conditions 1. and 2. are satisfied forA. The regularity ofB implies thatBx = 0 has the trivial
solution only and therefore, for arbitraryα > 0, Ax = −αx is satisfied forx = 0 only, i.e.A has
no eigenvalueλ ∈ (−∞, 0) and condition 3. is satisfied.
Sufficiency: We prove that conditions 1., 2. and 3. imply thatA is anM̄ -matrix, i.e. thatB :=
αI + A is anM -matrix for all α > 0. First note thatbij ≤ 0 for all i 6= j and allα > 0 by
condition 1., and furtherbii > 0 for all i and allα > 0 by condition 2.
We use Lemma9 to show thatB is nonsingular andB−1 ≥ 0 for all α > 0. LetD := diag(B) and
defineM := I −D−1B. Then we obtainM = −(diag(αI + A))−1Ã, whereÃ := A− diag(A).
Therefore,M ≥ 0 by conditions 1. and 2. Denote the spectral radius ofM for a given value of
α > 0 by ρ(M,α). By Theorem3 we have thatρ(M,α) ≥ 0 is an eigenvalue ofM . We will show
thatρ(M,α) < 1 for all α > 0. ρ(M,α) depends continuously onα andρ(M,∞) = 0. Hence,
if there existsα > 0 such thatρ(M,α) > 1 then there exists̃α > 0 such thatρ(M, α̃) = 1. We
demonstrate thatρ(M, α̃) = 1 leads to a contradiction.ρ(M, α̃) is an eigenvalue ofM and hence
there exists a non-trivial vectorx such thatMx = x. This leads toÃx = −diag(α̃I + A)x and
subsequently toAx = −α̃x. HenceA has a negative eigenvalue and this contradicts condition 3.
Therefore,ρ(M,α) 6= 1 for all α > 0 and, by continuity,ρ(M,α) < 1 for all α > 0. Now, with
Lemma9, follows thatB is nonsingular andB−1 ≥ 0 for all α > 0. Hence,B is anM -matrix for
all α > 0 and this completes the proof. �
We note that condition 3. of Theorem4 ensures that the stage equations in a W-method applied
with T = −A have unique solutions independent of the time step sizeτ > 0.
We can now formulate results of Bolley and Crouzeix [6].

Lemma 11 ([6, Lemma 3]) Let R(z) be a rational function with threshold factorT (R) ≥ 0.
R(A) ≥ 0 for any matrixA satisfying−A is an M̄ -matrix andmaxi{−aii} ≤ µ if and only if
T (R) ≥ µ.
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Theorem 5 ([6, Theorem 2]) If the rational functionsR(z) and Ri(z) of scheme (4.19) have
threshold factorsT (R), T (Ri) ≥ µ and if τ+ ∈ R+ satisfies the conditionτ+α ≤ µ for a
value α ∈ R+,0 then the scheme (4.19) is positive on the class{F ∈ L+

g (α) | F (t, y) =
Py + g(t), −P is anM̄ -matrix} ⊂ L+

g (α) with thresholdτ+.

We observe that the time step restriction for positivity of a scheme (4.19) is proportional to a
method dependent constant (the threshold factor here) and at the same time proportional to the
inverse of a problem dependent constant (the class parameterα here). This will also be the case
for the other positivity concepts which we are going to discuss.
If we only consider polynomialsR(z) in Lemma11 then the restriction to matricesA such that
−A is anM̄ -matrix can avoided.

Lemma 12 LetR(z) be a polynomial with threshold factorT (R) ≥ 0. R(A) ≥ 0 for any matrix
A satisfyingaij ≥ 0 for all i 6= j andmax{0,maxi{−aii}} ≤ µ if and only ifT (R) ≥ µ.

Proof
Necessity:The matricesA allowed in Lemma11 are also allowed in this lemma. Further, the
polynomialR here can be regarded as a rational functionR in Lemma11. Hence, necessity
follows from Lemma11.
Sufficiency:Becausemax{0,maxi{−aii}} ≤ µ we obtainB := µI + A ≥ 0. The series

g(z) := R(−µ) + . . .+
R(k)(−µ)

k!
zk + . . .

converges for everyz ∈ C because fork large enough thekth derivative ofR vanishes. The
coefficientsR

(k)(−µ)
k!

are nonnegative (absolute monotonicity ofR in −µ). Hence we have, see
Lemma21 in Sec.A.2,

R(A) = r(−µ)I + . . .+
R(k)(−µ)

k!
(µI + A)k + . . .

and because ofµI + A ≥ 0 we haveR(A) ≥ 0. �
With the help of this lemma we can now also reformulate Theorem5 for the case of explicit
methods (4.19).

Theorem 6 If the functionR(z) andRi(z) of scheme (4.19) are polynomials having threshold
factorsT (R), T (Ri) ≥ µ and if τ+ ∈ R+ satisfies the conditionτ+α ≤ µ for a valueα ∈ R+,0

then the scheme (4.19) is positive on the classL+
g (α) with thresholdτ+.

In the next two subsections we will study the threshold factors of low-order polynomials (i.e. the
stability functions of low-order ERK methods) and of restricted Padé approximations (i.e. stability
functions of some W-methods).
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4.3.1.1 Threshold factors of polynomials

The absolute monotonicity of the stability polynomial of an ERK method is crucial with respect
to the allowable time step size in order to guarantee positivity of the method when applied to the
problem classL+

0 (α). This can be seen from Theorem6. The absolute monotonicity of polyno-
mials is studied in [36] and it is stated thats-stage ERK methods of orderp = s have a threshold
factorT (R) = 1, whereass-stage ERK methods of orderp = s − 1 can have a threshold factor
T (R) = 2. This means that, at the cost of just one matrix-vector product, the allowable time step
size with respect to positivity of the method is doubled. Further, [36] gives the optimal stability
polynomialsR+

s,p in these two cases:

R+
s,s(z) = Ts(z) for s ≥ 1 and R+

s,s−1(z) = Ts−1(z) +
1

2

zs

s!
for s ≥ 2 ,

whereTs(z) :=
∑s

i=0
zi

i!
is the Taylor polynomial of degrees of exp(z).

We are interested in second- or third-order methods here. Numerical experiments in [36] demon-
strate that (on a linear test problem) the3-stage method of order two performs more efficient with
respect to positivity compared to thes-stage methods of orderp = s for s = 2, 3 (optimal stabil-
ity polynomialR+

s,p for positivity onL+
0 (α) in each case). Therefore we consider3-stage explicit

Runge-Kutta methods of order two with optimal stability polynomialR+
3,2 for positivity onL+

0 (α)
in this section. We will use the free parameters in this class of methods to satisfy positivity condi-
tions for nonlinear problem sets and further order conditions.
Consider a3-stage ERK method(A, b). The conditions for order two are the first two conditions
in (4.9). The stability polynomial of a3-stage ERK method of order two isR3,2(z) = 1 + z +
1
2
z2 + b3a32a21z

3. On the other hand, the optimal stability polynomial for3-stage ERK methods of
order two with respect to positivity on the problem classL+

0 (α) isR+
3,2(z) = 1 + z + 1

2
z2 + 1

12
z3,

see above. Hence, beside the two order conditions, the parameters of the method have to satisfy
b3a32a21 = 1

12
. Solving for these three conditions results in the class of3-stage, second-order ERK

methods with optimal positivity on the problem classL+
0 (α). We refer to this class of methods as

(Class A) and their Butcher array is given below; denoteγ := b3a32.

0
1

12γ
0

1

b3

(
1

2
− b2

12γ
− γ
)

γ

b3
0

1− b2 − b3 b2 b3

b2, b3, γ ∈ R ,
b3, γ 6= 0 .

(Class A)

This class of methods forms the basis for all our further investigations regarding positivity of
ERK schemes. In Sec.4.3.2and Sec.4.3.3we discuss two approaches for positivity on nonlinear
problem sets and we identify a unique method from (Class A) which has optimal positivity for
both approaches simultaneously. This method can also be shown to have optimal positivity on the
problem classL+

g (α), see Sec.4.3.4.
We can also use the free parametersb2, b3 andγ in (Class A) to satisfy one order three condition
(with the aim of improving the accuracy of the scheme). The third-order condition

∑
i,j biaijcj =

b3a32a21 = 1
6

cannot be satisfied because of the condition on the stability polynomial. However,
the other third-order condition

∑
i bic

2
i = 1

3
can be satisfied (resulting in a third-order scheme for
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quadrature problems). We haveb3c3 = 1
2
− b2c2. Substituting this in the third-order condition

yields 1
3

= b2c
2
2 + 1

b3

(
1
2
− b2c2

)2
. Employingc2 = 1

12γ
, we arrive after some calculations at the

methods of (Class B) whose Butcher array is given below. In Sec.4.3.4, we state some results
concerning positivity properties of this class of methods applied to nonlinear problems.

0
1

12γ
0

1

b3

(
1

2
− b2

12γ
− γ
)

γ

b3
0

1− b2 − b3 b2
(6γ−b2)2

48γ2−b2

b2, γ ∈ R ,
γ 6= 0 ,
b2 6= 6γ ,
b2 6= 48γ2 .

(Class B)

4.3.1.2 Threshold factors of restricted Pad́e approximations

Absolute monotonicity of rational functionsR and their threshold factorsT (R) are studied in [19].
In this work we considers-stage W-methods and if these methods have an orderp ≥ s then their
stability functionsR(z) are so-called restricted Padé approximations toexp(z) for z → 0.

Definition 6 ([55, p. 142]) A rational functionR(z) = (1 − γz)−sP (z), wheres ∈ N, γ ∈ R+,
andP (z) is a polynomial of degreer, satisfying

|R(z)− exp(z)| = O
(
zr+1

)
for z → 0 ,

i.e. the approximation order is at leastr, is called arestricted Pad́e approximation toexp(z).

Lemma 13 ([55, pp. 142]) The stability functionR(z) of an s-stage W-method of orderp ≥ s is
uniquely defined by the method parameterγ ∈ R+. R(z) is a restricted Pad́e approximation to
exp(z) with approximation orderr ≥ s and is given by

R(z) = (1− γz)−s
s∑
j=0

zj
j∑
i=0

(
s

i

)
(−γ)i

(j − i)!
.

In the remainder of this section we discuss the absolute monotonicity of the stability function of
s-stage W-methods with orderp ≥ s for s = 1 ands = 2.

Theorem 7 The stability function

R(z) =
1 + (1− γ)z

1− γz
, γ > 0 ,

of a 1-stage W-method of orderp ≥ 1 has a threshold factorT (R) =∞ for γ ≥ 1 and a threshold
factorT (R) = (1− γ)−1 for γ ∈ (0, 1).

Proof We have1 − γz > 0 if γ > 0 andz ≤ 0. If γ ≥ 1 then1 + (1 − γ)z ≥ 0 and hence
alsoR(z) ≥ 0 for all z ≤ 0. If γ ∈ (0, 1) then1 + (1 − γ)z ≥ 0 and hence alsoR(z) ≥ 0 for all
z ∈ [−(1− γ)−1, 0].
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It remains to show that derivatives ofR(z) do not require further restrictions onz in order to have
nonnegative values. We obtainR′(z) = (1− γz)−2. This is the square of the stability function of
the implicit Euler method which is absolutely monotonic for allz ≤ 0. ThusR′(z) is absolutely
monotonic for allz ≤ 0. This completes the proof of the theorem.
Note: Thekth derivative (k ≥ 1) ofR(z) is given byR(k)(z) = k!γk−1(1−γz)−(k+1). This shows absolute
monotonicity ofR′(z) for all z ≤ 0 , γ > 0 without using results about the implicit Euler scheme. �
We now turn our attention to 2-stage W-methods of orderp ≥ 2. We obtain their stability function
from Lemma13,

R(z) =
1 + (1− 2γ)z +

(
1
2
− 2γ + γ2

)
z2

(1− γz)2
, γ > 0 . (4.20)

This function isA-acceptable forγ ≥ 1
4
, L-acceptable forγ1 = 1− 1

2

√
2 andγ2 = 1 + 1

2

√
2, and

of approximation order three toexp(z) for γ = 1
6
(3+
√

3), see [55, p. 144]. We give an expression
for the derivatives of the stability function.

Lemma 14 Thekth derivativeR(k)(z) of (4.20) for k ≥ 1 is given by

R(k)(z) =
γk−2

[
k!
2

((1− 2γ)k + 4γ − 1) + (1− 3γ)k!γz
]

(1− γz)k+2
. (4.21)

Proof Substitutingk = 1 in (4.21) or computing the derivative of (4.20) gives in both cases
R(1)(z) = (1 + (1− 3γ)z)(1− γz)−3. Fork > 1 let us consider the expression

R(k)(z) =
γk−2 [ak + bkγz]

(1− γz)k+2
, a2 = 1 , b2 = 2− 6γ . (4.22)

This proves the lemma fork = 2 by simple calculation. The derivative ofR(k)(z) is

R(k+1)(z) =
γk−1 [(k + 2)ak + bk + (k + 1)bkγz]

(1− γz)k+3
,

and henceak, bk satisfy the system of difference equations:

ak+1 = (k + 2)ak + bk , bk+1 = (k + 1)b with initial data a2 = 1 , b2 = 2− 6γ .

This system is decoupled and has the solutionbk = (1− 3γ)k! and

ak =
1

6
(k + 1)! +

k−1∑
i=2

bi(k + 1)!

(i+ 2)!
=
k!

2
((1− 2γ)k + 4γ − 1) .

Substituting this in the expression (4.22) completes the proof. �
If γ > 1

2
then the stability function (4.20) is not absolutely monotonic inz = 0 (and hence the

threshold factorT (R) is not defined forγ > 1
2
). This can be seen as follows. It is necessary that

R(k)(0) ≥ 0 for all k ≥ 1 for absolute monotonicity ofR in z = 0. Considering (4.21), this is
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satisfied if and only if(1− 2γ)k + 4γ − 1 ≥ 0 for all k ≥ 1. Fork = 1, 2 this holds for allγ > 0
and fork > 2 we obtain that

γ ≤ 1− k
2(2− k)

must hold. The term on the right-hand side is always greater than1
2

for k > 2 and tends to1
2

for k → ∞. Therefore, absolute monotonicity ofR in z = 0 is only given if γ ≤ 1
2

(R(0) is
nonnegative for allγ > 0). As a consequence of this result we considerγ ∈

(
0, 1

2

]
in the following

only.
Now we will derive for eachγ ∈

(
0, 1

2

]
the maximum valueµγ such that the derivatives (4.21),

for all k ≥ 1, of the stability function (4.20) are nonnegative for allz ∈ [−µγ, 0]. Following this,
in Lemma15, we give the maximum valueµγ,0 for eachγ ∈ (0, 1

2
] such that the stability function

(4.20) itself is nonnegative for allz ∈ [−µγ,0, 0].
Consider the derivatives (4.21) for k ≥ 1. For γ ∈

[
1
3
, 1

2

]
we have that(1 − 3γ)γz ≥ 0 for all

z ≤ 0. Furthermore, we have shown above that forγ ≤ 1
2

we have(1 − 2γ)k + 4γ − 1 ≥ 0
for all k ≥ 1. Henceµγ = ∞ for γ ∈

[
1
3
, 1

2

]
. Now considerγ ∈

(
0, 1

3

)
. Then we require

(1− 2γ)k + 4γ − 1 + 2(1− 3γ)γz ≥ 0 for all k ≥ 1. This is satisfied if and only if for allk ≥ 1

z ≥ −(1− 2γ)k + 4γ − 1

2(1− 3γ)γ
=: αk .

We observe thatαk ≥ αk+1. Hence, the most restrictive condition isz ≥ α1 and this yields
µγ = (1− 3γ)−1 for γ ∈

(
0, 1

3

)
.

Lemma 15 The maximum valueµγ,0 such that the stability functionR(z) given in Eq. (4.20) is
nonnegative for allz ∈ [−µγ,0, 0] is given by

µγ,0 =∞ if γ ∈
(

0,
1

4

]
, and µγ,0 = − 2

2γ − 1−
√

4γ − 1
if γ ∈

(
1

4
,
1

2

]
.

Proof The denominator ofR(z) is always positive forz ≤ 0 andγ > 0. Hence we have to
investigate nonnegativity of the numerator ofR(z) which is given by

P (z) = 1 + (1− 2γ)z +

(
1

2
− 2γ + γ2

)
z2 .

The discriminant ofP (z) isD = (4γ − 1)
(

1
2
− 2γ + γ2

)−2
.

The discriminantD reveals thatP (z) has complex zeros forγ ∈
(
0, 1

4

)
and a double zero for

γ = 1
4
. Now follows thatR(z) ≥ 0 for all z ≤ 0 becauseP (0) > 0, i.e.µγ,0 =∞ for γ ∈

(
0, 1

4

]
.

If γ ∈
(

1
4
, 1− 1

2

√
2
)

thenP (z) has two real zeros. We haveP (0) > 0 andP ′(0) > 0 for the
γ-values considered and therefore the zeros ofP are to the left ofz = 0 and the greater of both,
namely

z0 = −1

2

1− 2γ
1
2
− 2γ + γ2

+
1

2

√
4γ − 1∣∣1

2
− 2γ + γ2

∣∣ =
2

2γ − 1−
√

4γ − 1
,

defines the value of−µγ,0 .
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Figure 4.1:The threshold factorT (R) of the stability functionR(z), see Eq. (4.20), of two-stage W-method
of orderp ≥ 2 vs. the free parameterγ ∈ (0, 1

2 ] of R(z). The threshold factor is not defined forγ > 1
2 .

If γ = 1− 1
2

√
2 thenP (z) reduces toP (z) = 1 + (

√
2− 1)z and we obtainµγ,0 = (

√
2− 1)−1.

If γ ∈
(
1− 1

2

√
2, 1

2

]
thenP (z) has two real zeros – one to the left and the other to the right of

z = 0 becauseP (0) > 0 and 1
2
− 2γ + γ2 < 0. The smaller of both, namely

z0 = −1

2

1− 2γ
1
2
− 2γ + γ2

− 1

2

√
4γ − 1∣∣1

2
− 2γ + γ2

∣∣ =
2

2γ − 1−
√

4γ − 1
,

defines the value of−µγ,0 . �
Obviously we have that the threshold factorT (R) of R(z) for each value ofγ ∈ (0, 1

2
] is given by

T (R) = min{µγ,0, µγ}. The following theorem makes this precise, see also Fig.4.1.

Theorem 8 The stability functionR(z), see Eq. (4.20), of a 2-stage W-method of orderp ≥ 2 has
a threshold factorT (R) = (1− 3γ)−1 for γ ∈ (0, 1

4
] and a threshold factorT (R) = − 2

2γ−1−
√

4γ−1

for γ ∈ (1
4
, 1

2
]. The threshold factor ofR is not defined forγ > 1

2
.

We see that the largest valueT (R) = 4 is attained forγ = 1
4
. According to [19], T (R) = 4 is

the optimal threshold factor in the class of rational approximations of orderp ≥ 2 of exp(z) for
z → 0 with polynomial denominator and numerator of degree two. Unfortunately,γ = 1

4
is just the

borderline forA-acceptability ofR(z) and therefore slightly larger values ofγ should be preferred.
A good choice, leading to anL-acceptable stability functionR(z) is γ = 1− 1

2

√
2 ≈ 0.29289.

Verwer et al. [62] recommend, based on numerical experiments and some theoretical support, the
choiceγ = 1 + 1

2

√
2 > 1

2
in their air pollution application. Then the stability function is also

L-acceptable (however with a larger error constant) and is nonnegative for allz ≤ 0. The latter is
not true forγ = 1− 1

2

√
2. We return to the issue of selecting an appropriate value forγ in Sec.4.5.

4.3.2 Positivity of RK methods onD+(ρ)

Absolute monotonicity of the rational functionsR(z) andRi(z) of an RK method is not sufficient
to guarantee positivity of the method when applied to nonlinear problem classes likeD+(ρ). This
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case is studied by Horvath [27] and we apply his theory in this section to the methods of (Class A).
An important property of RK methods with respect to the problem classD+(ρ) is the radius of
absolute monotonicity of an RK method[37], which we denote byT (A, b), where(A, b) is the RK
method at hand. The radiusT (A, b) is used by Kraaijevanger [37] in the study of contractivity of
RK methods and also used in the nonlinear positivity theory for RK methods by Horvath [27].
We first define the termabsolute monotonicity of an RK method(A, b) and then its radius of abso-
lute monotonicityT (A, b), see [37].

Definition 7 An RK method(A, b) is said to be absolutely monotonic at a given pointz ∈ R if

I − zA is nonsingular,

R(z) = 1 + zbT (I − zA)−11l ≥ 0 ,

A(z) = A(I − zA)−1 ≥ 0 ,

b(z) = bT (I − zA)−1 ≥ 0 ,

e(z) = (I − zA)−11l ≥ 0 .

Further,(A, b) is said to be absolutely monotonic on an intervalI ⊂ R if it is absolutely monotonic
for anyz ∈ I.

Definition 8 Let an RK method(A, b) be given. We define the radius of absolute monotonicity of
(A, b), denoted byT (A, b), by

T (A, b) := sup
{
z|z ∈ R+,0 and(A, b) is absolutely monotonic on[−z, 0]

}
.

The first condition in Definition7 is obviously satisfied for ERK schemes. Further, we have that
the threshold factor of the stability function of an RK method(A, b) is greater than or equal to the
radius of absolute monotonicity of this method because the functionR(z) in Definition 7 is just
the (rational) stability function of the RK method(A, b). Hence we have

T (R) ≥ T (A, b).

One of the main results of Horvath [27, Theorem 6] is the following theorem.

Theorem 9 Let(A, b) be an irreducible RK method andρ > 0. Then we have that(A, b) is positive
onD+(ρ) with thresholdτ+ = T (A, b)/(2ρ) wheneverT (A, b) > 0.

Remark 2 By irreducibility of RK methods we mean both, irreducibility in the DJ and in the HS
sense. For concepts of reducibility we refer to [9, 10, 23]. Note that the ERK schemes of (Class A)
and (Class B) are always irreducible.

We needT (A, b) > 0 in Theorem9 for positivity of the RK method(A, b) on the problem class
D+(ρ). This is also necessary for contractivity of the RK method applied to such problems [37].
Further, larger values ofT (A, b) lead to more relaxed time step restrictions for positivity (and
contractivity) on these classes. We see thatT (A, b) is the method dependent constant andρ is the
problem dependent constant in the time step restriction for positivity of RK methods on the class
D+(ρ).
The following lemma with statements from [37] characterizes all irreducible RK schemes with
T (A, b) > 0 (part 1.) and simplifies the computation (of lower bounds) ofT (A, b) (part 2.).
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Lemma 16 ([37]) For irreducible RK methods(A, b) holds:

1. T (A, b) > 0 ⇔ A ≥ 0 , b > 0 , and for all i, j ( (A2)ij 6= 0⇒ Aij 6= 0 ) .

2. Let r > 0 . ThenT (A, b) ≥ r ⇔ (A, b) is absolutely monotonic in−r andA ≥ 0 .

We turn our attention to methods from (Class A). We already know that these methods have a
threshold factorT (R) = 2 and therefore we haveT (A, b) ≤ 2. We will show that exactly one
method(A, b) of (Class A) satisfiesT (A, b) = 2, see Theorem10.

Lemma 17 Let (A, b) be a scheme from (Class A). We haveT (A, b) > 0 if and only if

b3 ∈ (0, 1) , b2 ∈
(

0,
3

4

)
, b2 + b3 < 1 , andγ ∈

(
1

4
−
√

1

16
− b2

12
,
1

4
+

√
1

16
− b2

12

)
.

Proof If the conditions given in the lemma are equivalent to{A ≥ 0, b > 0 and for all i, j
holds( (A2)ij 6= 0⇒ Aij 6= 0 ) } then the statement of the lemma follows with Lemma16, part 1.
Sufficiency: b > 0⇒ b1 = 1− b2 − b3, b2, b3 > 0⇒ b2, b3 < 1 andb2 + b3 < 1.
γ 6= 0 anda21 ≥ 0⇒ γ > 0⇒ a21 > 0 and withb3 > 0 alsoa32 > 0. Further(A2)ij 6= 0 only for
i = 3, j = 1, that is(A2)31 = a21a32 6= 0, and this implies that alsoa31 > 0 holds.

a31 > 0⇒ γ2 − 1
2
γ + b2

12
< 0⇒ b2 <

3
4

andγ ∈
(

1
4
−
√

1
16
− b2

12
, 1

4
+
√

1
16
− b2

12

)
.

Necessity: The conditions on thebi imply b > 0. b2 <
3
4
⇒ γ > 0 ⇒ a32 > 0 anda21 > 0.

Further,a31 > 0 follows with the conditions onγ. �
For 3-stage ERK methods(A, b) we obtain

(I − zA)−1 =

 1 0 0
−za21 1 0
−za31 −za32 1

−1

=

 1 0 0
za21 1 0

za31 + z2a32a21 za32 1

 .

Let (A, b) be an ERK method from (Class A) with T (A, b) > 0. Then(A, b) is absolutely mono-
tonic in z (z ∈ [−2, 0]) if and only if the conditionsA(z), b(z), ande(z) ≥ 0 are satisfied (see
Definition7). This is true if and only if

C1(z) := a31 + za32a21 ≥ 0 ,
C2(z) := b1 + z(b2a21 + b3a31) + z2b3a32a21 ≥ 0 ,
C3(z) := b2 + zb3a32 ≥ 0 ,
C4(z) := 1 + za21 ≥ 0 ,
C5(z) := 1 + z(a31 + a32) + z2a32a21 ≥ 0 .

(4.23)

Lemma 18 Let (A, b) be a scheme from (Class A) satisfying the conditions of Lemma17. Then
(A, b) is absolutely monotonic inz (z ∈ [−2, 0]) if and only ifCi(z) ≥ 0, i = 1(1)5, and this is the
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case if and only if

z ≥ 12γ − 6 +
b2

γ
,

0 ≤ 1− b2 − b3 +

(
1

2
− γ
)
z +

1

12
z2 ,

z ≥ −b2

γ
,

z ≥ −12γ ,

0 ≤ z2 +

(
6− b2

γ

)
z + 12b3 .

Proof The statement follows by simplifying and rearranging the conditionsCi(z) ≥ 0, i =
1(1)5, by using the method coefficients of (Class A). �

Theorem 10 Let (A, b) be a scheme from (Class A). ThenT (A, b) = 2 if and only ifb2 = b3 = 1
3

andγ = 1
6

.

Proof Let T (A, b) = 2. Then the conditions of Lemma17 are satisfied. Further,(A, b) is
absolutely monotonic inz = −2 and therefore the conditions of Lemma18 are satisfied forz =
−2. The third condition impliesγ ≤ b2

2
and the fourth conditionγ ≥ 1

6
. These two bounds onγ

makeb2 ≥ 1
3

necessary. The first condition of Lemma18 for z = −2 implies

0 ≥ γ2 − 1

3
γ +

b2

12
=: p(γ) .

We havep(0) > 0 and the discriminant is given byD = 1
36
− b2

12
. In order to have the condition

satisfied for someγ we needD ≥ 0 and this is the case only forb2 ≤ 1
3
. Henceb2 = 1

3
is necessary

and this immediately impliesγ = 1
6
. The fifth condition of Lemma18 for z = −2 now implies

b3 ≥ 1
3

whereas the second condition requiresb3 ≤ 1
3
. Hence we needb3 = 1

3
.

On the other hand, if(A, b) is the scheme from (Class A) with b2 = b3 = 1
3

andγ = 1
6

then it
satisfies the conditions of Lemma17. We already know thatT (A, b) ≤ 2. With Lemma16 holds
T (A, b) ≥ 2 if (A, b) is absolutely monotonic inz = −2 and this is the case if the conditions of
Lemma18are satisfied forz = −2. By inspection we see that this is the case. �

4.3.3 Positivity of ERK methods for general nonlinear problems

The positivity of ERK methods applied to general positive ODEs (4.1) is considered in [31]. The
approach is based on the reformulation of ERK methods as convex combination of forward Euler
steps—an idea used by Shu and Osher [52] in the derivation of RK total variation diminishing time
discretizations. Letαij ≥ 0 be given fori = 2(1)s+ 1 andj = 1(1)i− 1 such that

∑i−1
j=1 αij = 1.

Consider ans-stage ERK method(A, b) and denoteas+1,j := bj for j = 1(1)s and define

βij := aij −
i−1∑
l=j+1

αilalj .
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Then a time stepτ from yk to yk+1 with the ERK method is equivalent to

y(1) := yk ,

y(i) :=
i−1∑
j=1

(
αijy

(j) + τβijf
(
tk + cjτ, y

(j)
))
, i = 2(1)s+ 1 ,

yk+1 := y(s+1) .

(4.24)

The freedom in the choice of theαij is used to yield nonnegative coefficientsβij (which is not
always possible) and to obtain, for a given ERK scheme, the optimal result from the following
lemma.

Lemma 19 (see [52, 31]) Let(A, b) be a given ERK scheme and assume that the coefficientsβij
in (4.24) are nonnegative. Consider an ODEy′(t) = F (t, y(t)) with F ∈ P. If u + τF (t, u) ≥ 0
for all u ≥ 0, all t and all step sizes0 < τ ≤ τ 0 then the ERK method(A, b) is positive for the
given ODE under the step size restriction

τ+ := min
1≤j<i≤s+1

αij
βij

τ 0, where
αij
βij

:= +∞ for βij = 0 . (4.25)

Proof We show that̃u := αiju+τβijf(tk+cjτ, u) ≥ 0 for all step sizes0 < τ ≤ τ+. If βij = 0
then this is obviously true, so assume henceforthβij > 0. If αij = 0 thenτ+ = 0 and there exists
no 0 < τ ≤ τ+. If αij > 0 then

ũ = αij

(
u+ τ

βij
αij

f(tn + cjτ, u)

)
≥ 0

if τ βij
αij
≤ τ 0, i.e. τ ≤ αij

βij
τ 0. �

We refer to min
1≤j<i≤s+1

αij
βij

as thepositivity factorof a given ERK method(A, b) in this work. The

positivity factor constitutes the method dependent constant in the step size bound for positivity in
this approach. The problem dependent constant is the inverse ofτ 0.
In Sec.4.4.1we demonstrate that the taxis ODE defined in Sec.3.3.1allowsτ 0 > 0 and hence fits
into this framework.

Remark 3 The positivity theory for RK methods presented in Sec.4.3.2is applicable to certain
classes of positive (nonlinear) ODEs. On the other hand, Lemma19 gives a statement about the
positivity of ERK methods applied to general positive ODEs. It requires knowledge of the positivity
of the forward Euler method applied to the given ODE.

Now we investigate the positivity factor of ERK methods(A, b) from (Class A). We restrict atten-
tion to such methods which satisfyT (A, b) > 0 (see Lemma17). Our aim is to construct methods
with factor2. The following theorem shows that exactly one method with this property exists and
that this method is the same method as derived in Theorem10.

Theorem 11 Let (A, b) be a scheme from (Class A) with T (A, b) > 0 which can be rewritten in
the form (4.24) with coefficientsβij ≥ 0. This method has a positivity factor≥ 2 if and only if
b2 = b3 = 1

3
, andγ = 1

6
. The largest possible positivity factor of this method is2 and is attained

for the choiceα21 = 1, α31 = 0, α32 = 1, α41 = 1
3
, α42 = 0, andα43 = 2

3
.
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Proof A method(A, b) considered in the theorem has a positivity factor≥ 2 if and only if we
can selectαij such thatαij

βij
≥ 2 for all 1 ≤ j < i ≤ 4. We show (following this paragraph) that this

impliesb2 = b3 = 1
3

, andγ = 1
6

, and further that this results in the unique choice of the values of
αij as given in the theorem. On the other hand, simple calculation shows that this specific method
has a positivity factor two for the choice ofαij given in the theorem.
We haveα21 = 1 andβ21 = 1

12γ
> 0. Henceα21

β21
≥ 2 ⇔ γ ≥ 1

6
. Further,β32 = a32 = γ

b3
> 0

and henceα32

β32
≥ 2⇔ α32 ≥ 2γ

b3
. Usingα32 ≤ 1 this impliesb3 ≥ 2γ ≥ 1

3
. β43 = b3 > 0 implies

α43

β43
≥ 2⇔ α43 ≥ 2b3. With α43 ≤ 1 follows b3 ≤ 1

2
and henceγ ≤ 1

4
.

We haveβ42 = b2 − α43
γ
b3
≥ 0⇔ α43 ≤ b2b3

γ
. This implies2γ ≤ b2 and henceb2 ≥ 1

3
andb1 ≤ 1

3
.

Next, β31 = a31 − a21α32 ≥ 0 ⇔ α32 ≤ a31

a21
= 1

b3
(6γ − 12γ2 − b2). Using b2 ≥ 2γ implies

α32 ≤ 2γ
b3

(2 − 6γ) andγ ≥ 1
6

leads toα32 ≤ 2γ
b3

. Hence we needα32 = 2γ
b3

. This simplifies the

expression ofβ31 yieldingβ31 = 1
b3

(
1
3
− b2

12γ
− γ
)

. Now consider two cases.

Case 1 (β31 = 0): This is only possible forγ = 1
6

andb2 = 1
3

because we already knowb2 ≥ 1
3
.

Now we haveα43 ≤ b2b3
γ

= 2b3 and thereforeα43 = 2b3. This also givesβ42 = 0. Finally,
β41 = b1−a21α42−a31α43 = 1

3
− b3− α42

2
≥ 0⇔ b3 ≤ 1

3
− α42

2
. Usingb3 ≥ 1

3
leads tob3 = 1

3
and

α42 = 0. Hence we obtain the method given in the theorem. Also, all parametersαij have fixed
values now (as given in the theorem).
Case 2 (β31 > 0): This is only possible ifb2 <

1
3

and this is in contradiction withb2 ≥ 1
3
.

This completes the proof. �

4.3.4 Further results on positivity of ERK methods and the method RK32

The investigations in Sec.4.3.2and Sec.4.3.3have singled out a unique method from (Class A)
(the method withb2 = b3 = 1

3
, andγ = 1

6
) with favourable nonlinear positivity properties. We

refer to this method as RK32 (because it has three stages and order two) in the following. The
Butcher array of this method is given in Fig.4.2. RK32 is optimal with respect to positivity on
the classL+

0 (α) by construction. We have not yet looked at the positivity of RK32 onL+
g (α) for

g 6= 0. This is our next task.
We apply a method(A, b) from (Class A) to a problem from classL+

g (α). The polynomialsRi(z),
i = 1, 2, 3 in Eq. (4.19) of a3-stage ERK method are given by

R1(z) = b1 + (b2a21 + b3a31)z + b3a32a21z
2 , R2(z) = b2 + b3a32z , R3(z) = b3 ,

and simplify for methods from (Class A) to

R1(z) = 1− b2 − b3 +

(
1

2
− γ
)
z +

1

12
z2 , R2(z) = b2 + γz , R3(z) = b3 .

For optimal positivity of the methods applied to problems fromL+
g (α) we need, according to

Theorem6, that the threshold factorsT (Ri) of the polynomialsRi and the threshold factorT (R)
of the stability polynomial are as large as possible. It isT (R) = 2 by construction of (Class A)
and therefore we are interested in methods withT (Ri) ≥ 2. The method RK32 is easily shown to
satisfy this requirement and is hence optimal with respect to positivity on the classL+

g (α).
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Beside the methods of (Class A), we have also defined the methods of (Class B) which satisfy
additionally one of the third-order conditions. We identified the admissible range of the parameters
(b2, γ) such thatT (A, b) > 0 holds for methods(A, b) of (Class B). Within this parameter range
we determined numerically the method which yields the largest radius of absolute monotonicity
T (A, b) and hence is optimal with respect to positivity on the problem classD+(ρ), see Theorem9.
This is the method withb2 = 0.3572, γ = 0.3039 leading toT (A, b) = 1.1754.
Rewriting the ERK method of (Class B) with b2 = 0.3572 andγ = 0.3039 as a convex combination
of forward Euler steps (see formula (4.24)) with α3,1 = 0.3213, α4,1 = 0.38 andα4,2 = 0.0000764
results in a positivity factor of≈ 1.1754 (see Lemma19), and this factor is optimal (numerical
search).
These numerically obtained values (optimalT (A, b), positivity factor) for the methods of (Class B)
are slightly better than those which hold for somes-stage methods of orders (all values equal one)
but they are worse than the values for the optimal method RK32 of (Class A) where all values equal
two. Further, the methods of (Class B) are still of second-order only and the advantage of having
one of the third-order conditions satisfied is expected to be marginal compared with methods of
(Class A). Therefore we will omit the results of this method in our numerical tests.
In the literature we find other ERK schemes which are recommended for the solution of positive
ODEs. In [17] we compare RK32 with the following schemes: modified Euler (ME, two stages,
second-order) and Runge-Kutta-Fehlberg method 2(3) (RKF2(3), three stages, third-order, see [22,
52, 31]). Both methods haveT (R) = T (A, b) = 1, positivity factor1, and they are recommended
in [52]. Fig. 4.2gives the Butcher arrays of these methods together with embedded methods which
have one order less than the primary methods. These embedded methods can be used to estimate
the local error in the computation and to adaptively change the time step size. The time step
selection strategy by embedding is based on accuracy only (positivity is not taken into account)
and we advance a time step always with the higher order solution (local extrapolation). Therefore
the positivity properties of the embedded methods are not essential.

0 0
1 1 0

1
2

1
2

1 0

0 0
1 1 0
1
2

1
4

1
4

0

1
6

1
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1
2

1
2

0

0 0
1
2

1
2

0

1 1
2

1
2

0
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3

1
3

1
2

1
2

0

Figure 4.2:Butcher arrays for ME, RKF2(3), and RK32 (from left to right). The last row of each array
defines an embedded method.

In [17] we present numerical experiments with these three ERK methods. Test examples are semi-
discretizations (with flux limiter) of a linear advection equation and of a TDR system (here the
ERK methods are used in an OPS scheme). The experiments demonstrated that RK32 allows for
the largest time steps in order to obtain nonnegative solutions of comparable accuracy. From the
point of efficiency, ME and RK32 are comparable (ME requires only two function evaluations
per time step), and RKF2(3) is more expensive. The larger time steps allowed by RK32 pay off
in splitting schemes especially for lower accuracy requirements. This advantage should be more
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pronounced if the implicit part in the splitting scheme becomes more expensive. The higher order
of RKF2(3) pays off for higher accuracy demands. We will employ ME, RK32, and RKF2(3) in
our numerical methods to be described in Sec.4.5and Sec.4.6.

4.4 Positivity and stability of ERK methods for the taxis ODE

In this section we consider the positive taxis ODE derived in Sec.3.3.1,

d

d t
Ui(t) = HT (U(t); i) , i ∈ I . (4.26)

At first we demonstrate in Sec.4.4.1that Eq. (4.26) fits into the framework of Sec.4.3.3by deriving
an expression for the threshold step sizeτ 0 required in Lemma19. Then, in Sec.4.4.2, we discuss
linear stability properties of some ERK schemes (including RK32) when applied to a linearized
version of Eq. (4.26).

4.4.1 Positivity of the forward Euler method for the taxis ODE

We denote withFj the taxis discretization in spatial directionj,

Fj(U(t), t) := −1

h
(Tj(U; i)− Tj(U; i− ej)) ,

which can be written in the formFj(U(t), t) = β1Ui−ej−β0Ui+β2Ui+ej ,with valuesβ0, β1, β2 de-
pending on the signs of the local velocities (and also on components ofU through the smoothness
monitorr), see below.
If vi,j, vi−ej ,j ≥ 0 then we obtain, in the non-exceptional case of the state interpolants (3.12a), the
values

β0 =
1

h

(
vi,j +

vi,j

2
Φ(ri,j)−

Φ(ri−ej ,j)

2ri−ej ,j

vi−ej ,j

)
≤ vi,j

h

(
1 +

δ

2

)
,

β1 =
1

h

(
vi−ej ,j +

vi,j

2
Φ(ri,j)−

Φ(ri−ej ,j)

2ri−ej ,j

vi−ej ,j

)
≥ 0 , and β2 = 0 .

The bounds onβ0 andβ1 follow from the assumptions (3.14b) on the limiter functionΦ (also the
value ofδ). The same bounds onβ0 andβ1 (and alsoβ2 = 0) are obtained if exceptional cases
occur in the definition of the state interpolants. We assumeU ≥ 0. One step with the forward
Euler method yields the approximatioñU at the new time level

Ũi = Ui + τ(β1Ui−ej − β0Ui + β2Ui+ej) = (1− τβ0)Ui + τβ1Ui−ej + τβ2Ui+ej .

HenceŨi ≥ 0 providedτβ0 ≤ 1 andτβ1, τβ2 ≥ 0 , and this is the case ifτ ≤ h(vi,j(1 + δ/2))−1.
Now consider the case thatvi,j, vi−ej ,j ≤ 0 . This leads, in the non-exceptional case of the state
interpolants (3.12b), to values

β0 =
1

h

(
−vi−ej ,j +

−vi−ej ,j

2
Φ(r−1

i,j )−
Φ(r−1

i−ej ,j
)

2r−1
i−ej ,j

(−vi,j)

)
≤
−vi−ej ,j

h

(
1 +

δ

2

)
,
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β1 = 0 , and β2 =
1

h

(
−vi,j +

−vi−ej ,j

2
Φ(r−1

i,j )−
Φ(r−1

i−ej ,j
)

2r−1
i−ej ,j

(−vi,j)

)
≥ 0 .

The bounds onβ0, β2 follow from the assumptions (3.14b) on the limiter function. (The same
bounds hold in the exceptional cases of (3.12b).) Hence, similar as in the previous case, an Euler
step yieldsŨi ≥ 0 if τ ≤ h(−vi−ej ,j(1 + δ/2))−1.
Along the same lines we can treat the cases where(vi,j ≤ 0, vi−ej ,j ≥ 0) or (vi,j ≥ 0, vi−ej ,j ≤ 0).
Then we obtain the bounds(β0 ≤ 0, β1 ≥ 0, β2 ≥ 0) and(β0 ≤ 1/h ·(vi,j−vi−ej ,j)(1+δ/2), β1 ≥
0, β2 ≥ 0), respectively. Altogether we obtain that the Euler step yields a nonnegative resultŨi for
all i ∈ I if

τ ≤ h

v(j)(1 + δ/2)
, where v(j) := 2 max

i∈I
|vi,j| .

Note that the factor2 in the expression forv(j) can be replaced by1 if the local velocitiesvi,j in
spatial directionj have a uniform sign.
Summation ofFj over all spatial directionsj now yields a step size boundτ 0 such that the forward
Euler method applied to the taxis ODE (4.26) is positive for all0 < τ ≤ τ 0. We obtain

τ 0 =
h

v(1 + δ/2)
, where v :=

d∑
j=1

v(j) .

This generalizes the result given by Hundsdorfer et al. [31] to the case of non-constant velocities.

4.4.2 Discussion of linear stability

We start with considering the stability of some ERK methods applied to Dahlquist’s (linear) test
equationy′ = λy, λ ∈ C, i.e. we study the stability polynomial of these ERK methods. Meth-
ods taken from (Class A) and (Class B) have the same stability polynomial, namelyR+

3,2(z) (see
Sec.4.3.1.1). The stability domain ofR+

3,2(z) is given in the plots of Fig.4.3. For comparison,
we also print the linear stability domains of thes-stage ERK methods of orders for s = 2, 3
in these plots. The domain of the 3-stage methods of (Class A) and (Class B) is stretched by a
factor of about two in the real direction compared with the domains of thes-stage methods of
orders. With respect to the imaginary direction, there is only little stretching compared with the
2-stage, second-order methods and a slight disadvantage near the imaginary axis compared with
the 3-stage, third-order methods. Altogether, the3-stage, second-order methods appear to have
favourable linear stability properties.
Later we will apply the derived ERK method RK32 or other ERK methods to the (nonlinear) taxis
ODE (4.26). In order to get some information about the behaviour of the ERK methods applied
to (4.26), we will now consider a simple test problem, the scalar advection equation in one space
dimension,

∂tu+ v∂xu = 0 , v ∈ R , t ≥ 0 , u(0, x) = u0(x) . (4.27)

This is a linear, constant coefficient problem and we assume periodic boundary conditions. Hence
we can apply Fourier analysis as in [61, p. 17], see also e.g. [20].
We use the state interpolation approach, see Sec.3.3.1, to discretize the spatial derivatives on a
grid with grid widthh. The limiter function makes the resulting MOL-ODE nonlinear and this
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Figure 4.3: The lines in each of the plots are the boundaries of the stability domains of methods with
stability polynomialsR+

3,2, R3,3, andR2,2 (from largest to smallest; the stability domain is the respective
interior area). The dark gray shaded area in each plot is the stability domain of methods with stability
polynomial as given in the plot title if the eigenvalues are confined toλ1/3(ξ), i.e. the limiter functionΦL

K

(the light gray shaded area corresponds to eigenvaluesλ0(ξ), i.e. the limiter functionΦL
V L).

prevents the application of Fourier analysis. However, if we assume spatially smooth profilesu
then the smoothness monitorr, Eq. (3.13), is approximately equal to one. Therefore we linearize
the limiter functionΦ aroundr = 1 and this in turn leads to a linear MOL-ODE. The linearized
version of the Koren and van Leer limiter are

ΦL
K(r) = K1/3(r) , and ΦL

V L(r) = K0(r) , where Kκ(r) =
1− κ

2
+

1 + κ

2
r .

Remark 4 The semi-discretization of problem (4.27) with the state interpolation approach using
the linearized Koren limiter functionΦL

K(r) is equivalent to the semi-discretization with the third-
order upwind biased discretization (κ = 1

3
-method [31]) of the spatial derivative in (4.27).

We obtain eigenvaluesλκ(ξ) of the linearized discretization operators (along the lines described
in [61, p. 17]),

λκ(ξ) = −|v|
h

1− κ
2

(
(cos ξ − 1)2 + i sign(v) sin ξ

(
3− κ
1− κ

− cos ξ

))
, ξ ∈ [0, 2π] .

We see that the real part ofλκ(ξ) for κ = 0 is slightly more negative than the real part ofλκ(ξ)
for κ = 1

3
. This implies that the discretization with (linearized) van Leer limiter has slightly more

damping than the discretization with the (linearized) Koren limiter.
When applying an ERK method with stability polynomialR(z) and step sizeτ to the linear MOL-
ODEs obtained with the linearized limitersΦL

K or ΦL
V L then for stability we require that

|R(τλκ(ξ))| ≤ 1 for all ξ ∈ [0, 2π] .

We defineν := τ |v|
h

and want to maximizeν under the restriction that the scheme is stable. Then we
obtain (numerically) the values in Tab.4.1 (first two lines) and the stability domains as illustrated
in the plots of Fig.4.3. We see that methods with stability polynomialR3,3 allow for the largest
values ofν and hence largest time stepsτ with respect to stability for the MOL-ODE obtained with
limiter ΦL

K , followed by methods withR+
3,2 and then methods withR2,2. If the limiter isΦL

V L then
we obtain the orderR+

3,2,R3,3, andR2,2.
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maximum values ofν for RK32 (R+
3,2) ME (R2,2) RKF2(3) (R3,3)

stability with limiter ΦL
K 1.25 0.87 1.62

stability with limiter ΦL
V L 1.41 1 1.17

positivity (nonlinear MOL-ODE) 1 0.5 0.5

Table 4.1:Maximum values ofν for stability and positivity.

With the help of Sec.4.4.1and Lemma19we can derive a value ofν such that the schemes RK32,
ME, and RKF2(3) are positive when applied to the nonlinear MOL-ODE obtained by the state
interpolation approach with limiter functionΦK or ΦV L. These values are given in the third line
of Tab.4.1. They are the same for ME and RKF2(3) because both have a positivity factor equal to
one, whereas RK32 has a twice as large value caused by the positivity factor equal to two for this
method.
The values ofν in Tab.4.1are best balanced for the RK32 method.

4.5 Rosenbrock-type methods with AMF

4.5.1 Two-stage methods ROS2(γ)-AMF and ROS3-AMF

A family of 2-stage, second-order W-methods (4.6) is given by the coefficients [10],

A =

 0 0
1

2b2

0

 , b =

(
1− b2

b2

)
, and Γ =

(
γ 0

− γ
b2

γ

)
, (4.28)

whereb2 6= 0 andγ > 0 are still free parameters. The order of the method is independent of the
matrixT (W-method property).
Verwer et al. [62] successfully applied the method with parameters (4.28) where b2 = 1

2
to

advection–diffusion–reaction problems from atmospheric air pollution modelling. The parame-
ter γ > 0 is still free in this scheme which we refer to as ROS2(γ). The underlying ERK method
of ROS2(γ) is the modified Euler (ME) method and a first-order embedded method is provided by
the choicẽb =

(
1 0

)T
.

The stability functionR(z) for all schemes (4.6) with parameters (4.28) is given by Eq. (4.20).
This function isA-acceptable forγ ≥ 1

4
andL-acceptable forγ± = 1 ± 1

2

√
2. Theorem8 gives

the radius of absolute monotonicity of the stability functionR(z). This radiusT (R) is important
for positivity of the scheme when applied to linear problems with right-hand side functions from
the classL+

0 (α). The theorem states that the radiusT (R) is not defined forγ > 1
2

(i.e. the method
is not positive onL+

0 (α)), and the radius is largest forγ = 1
4
, i.e. exactly for the limit value ofγ

which yieldsA-stability.
We now turn our attention to the ROS2(γ) method applied, in the form (4.7), with AMF as defined
by the factorization (4.13). We refer to these methods as ROS2(γ)-AMF. The order of the method
is not affected by AMF but we now consider a more realistic scalar stability test equation than

62



y′ = λy. This test equation has the form

d y(t)

d t
=

(
λT + λ0 +

d∑
j=1

λj

)
y(t) , (4.29)

where we assume thatλT corresponds to an eigenvalue of the taxis discretization (see Sec.4.4.2),
λ0 to a reaction eigenvalue, andλj, j = 1(1)d to the eigenvalues of the diffusion discretization in
thed spatial directions. The matrixI−τγT in the method is now defined by the factorization (4.13)

(I − τγT ) = (1− τγλ0)
d∏
j=1

(1− τγλj) =: p . (4.30)

The factorized stability function of a method (4.7, 4.28) with respect to Eq. (4.29) is

R(zT , z0, z1, . . . , zd) = 1 + 2zp−1 +

(
1

2
z2 − z

)
p−2 , (4.31)

wherezj := τλj for j = 0(1)d, zT := τλT , andz := zT +
∑d

j=0 zj . The strong impact of
AMF on the stability of a Rosenbrock-type method (4.7) is nicely illustrated by considering the
damping of the scheme at infinity. Without AMF there exist methods (4.7) with a stability function
R(z) which satisfies|R(∞)| = 0. On the other hand, the stability functionR(zT , z0, z1, . . . , zd)
of a Rosenbrock-type method applied with AMF yields|R(zT ,∞, . . . ,∞)| = 1 for d ≥ 1 (even
if zT = 0), i.e. there is no damping at all at infinity. Further,R(zT , 0, 0 . . . , 0) is the stability
polynomial of the underlying ERK scheme and therefore it is sensible to assume thatzT is within
the stability domain of this ERK method.
Let us assume thatzT is within the stability domain of the ME method (the underlying ERK
scheme of ROS2(γ)), and thatzj ≤ 0, j = 1(1)d, because theλj, j = 1(1)d, correspond to the
diffusion discretization. Then, for a givenγ-value, we are looking for the maximum valueθ such
that ROS2(γ)-AMF is stable, i.e.|R(zT , z0, . . . , zd)| ≤ 1, for all z0 in the closed wedgeWθ, see
p. 39. This case is considered by Hundsdorfer [32] for the valuesd = 1 andd = 2 and he states
that the largest values ofθ are obtained for values ofγ ∈ [0.5, 0.8]—the best choice beingγ ≈ 0.59
leading toθ ≈ 77◦. Further, forγ ∈ [1

4
, 1

2
] no angleθ > 0◦ is obtained, and the choiceγ = γ+,

results inθ ≈ 11◦.
With these results in mind we will consider the following ROS2(γ)-AMF methods in our numerical
experiments:

• ROS2(γ−)-AMF: ROS2(γ−) isL-stable and is positive onL0(α) under a step size restriction.
ROS2(γ−)-AMF has a valueθ = 0◦.

• ROS2(γ+)-AMF: ROS2(γ+) is L-stable and is not positive onL0(α). ROS2(γ+)-AMF has
a valueθ = 11◦. Thisγ-value is also used in [62].

• ROS2(0.59)-AMF: ROS2(0.59) isA-stable and is not positive onL0(α). ROS2(0.59)-AMF
has a valueθ ≈ 77◦.
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Another Rosenbrock-type method (4.6) with parameters (4.28) whereb2 = 3
4

andγ = γ3 :=
1
2
+ 1

6

√
3 is discussed in [38]. This scheme is also second-order if applied as a W-method. However,

the method is third-order if applied to autonomous ODEs (F (t, y) ≡ F (y)) and with a matrix
T = ∂F (y)

∂y
+ O (τ), i.e. a first-order approximation of the exact Jacobian ofF . We refer to this

scheme as ROS3. The AMF (4.13) does not lead to such a matrixT if F0 6= 0 and therefore ROS3
applied with AMF, i.e. ROS3-AMF, to the full MOL-ODE is second-order. Withb̃ =

(
1 0

)T
we

obtain a first-order embedded method. We will also use this method in our numerical experiments
and apply it to the full MOL-ODE (in the sense of a second-order W-method)

• ROS3-AMF: ROS3 isA-stable, not positive onL0(α), and of second-order (third-order if
applied to autonomous ODEs and with a matrixT which is aO (τ)-approximation of the
true Jacobian). ROS3-AMF method has a valueθ ≈ 56◦.

We are looking for appropriate schemesΨ1 to solve ODEs with right-hand sideF1 within the
OPS framework, see Sec.4.2. In this case, the factorization (4.13) leads to aO (τ)-approximation
T of the Jacobian ofF1. Further, all models which we look at here (see Sec.2.3) give rise to
autonomous MOL-ODEs. Hence, ifΨ1 is chosen as the ROS3-AMF method then we obtain a
third-order accurate scheme. We will also consider the second-order methods ROS2(γ)-AMF with
γ = γ− andγ = 0.59 as methodsΨ1 in the OPS schemes (to be detailed in Sec.4.6).
With the OPS methods in mind, we are now looking at the stability of ROS2(γ)-AMF and ROS3-
AMF applied to the test equation (4.29) with λT = 0. Then the factorized stability functionR
of these schemes is given by Eq. (4.31) with zT = 0. Lanser et al. [38, Theorem 1] prove that
|R(0, z0, z1)| ≤ 1 holds for allz0, z1 ∈ C−,0 if and only if γ ≥ γ3 = 1

2
+ 1

6

√
3. This implies

that we have theA-stability property of the factorized schemes ifd = 1. If d = 2 then we must
restrictz0, z1, z2 ∈ W45◦, i.e.A(45◦)-stability [32]. This result can be improved if we assume that
z1, . . . , zd ≤ 0. Then the casesd = 1 andd = 2 coincide again and Hundsdorfer [32] obtains
valuesθ0 (the subscript indicating thatzT = 0) such that|R(0, z0, z1, . . . , zd)| ≤ 1 if z0 ∈ Wθ0.
The values are:θ0 = 90◦ for γ ≥ γ3 (hence for the methods ROS2(γ+)-AMF and ROS3-AMF),
θ0 ≈ 81◦ for ROS2(0.59)-AMF, and finallyθ0 = 0◦ for the ROS2(γ−)-AMF.

4.5.2 Three-stage methods ROS32(γ)-AMF

In Sec.4.3 we derive the3-stage, second-order ERK method RK32 with favourable positivity
properties. Our aim here is the construction of a3-stage, second-order W-method with underlying
ERK scheme RK32. We hope that this method will combine the good positivity properties of the
underlying ERK method with the good stability properties of linearly-implicit methods.
Construction of the method class ROS32(γ): The parametersA andb of the Rosenbrock-type
method (4.6) are determined by the underlying ERK scheme RK32 already, see Fig.4.2, and we
are left to find parametersΓ. The additional condition for order two of a W-method, Eq. (4.10),
now yieldsγ21 = −(3γ + γ31 + γ32), and we are left with the free parametersγ, γ31, γ32. We can
compute the stability functionR(z) of the methods (with respect to Dahlquist’s test equation),

R(z) =
1

(1− γz)3

[
1 + (1− 3γ)z +

(
1

2
− 3γ + 3γ2

)
z2 + r3z

3

]
, (4.32)
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where

r3 :=
1

12
− 1

6
γ31 −

1

3
(γ31γ32 + γ2

32)− (1 + γ32)γ + 2γ2 − γ3 . (4.33)

We obtain|R(∞)| = 0 if and only if r3 = 0 and this is equivalent to

γ31 =
−1

1 + 2γ32

(
6γ3 − 12γ2 + 6(1 + γ32)γ + 2γ2

32 −
1

2

)
, γ32 ∈ R \

{
−1

2

}
, γ > 0 , (4.34a)

or γ31 ∈ R , γ32 = −1

2
, γ = γ± := 1± 1

2

√
2 .

(4.34b)

With this necessary condition forL-stability satisfied, the stability function of our methods is now
given by Eq. (4.32) with r3 = 0. This function isA-acceptable if and only

γ ∈ [g−, g+] ≈ [0.180, 2.186] , where g± =
3

4
+

1

4

√
3± 1

12

√
72 + 42

√
3 . (4.35)

The interval includes the valuesγ± given in Eq. (4.34b). Hence, if the parametersΓ satisfyγ21 =
−(3γ + γ31 + γ32) and also the conditions (4.34) and (4.35) then we obtain the class ofL-stable,
3-stage, second-order W-methods with underlying ERK scheme RK32. We restrict our attention
to such methods in the following.

We will use the third-stage solution of the methods as embedded solution in the time step size
control. This solution has order one. With respect to Dahlquist’s test equation we obtain the
internal stability functionR3(z) of the third-stage solution,

R3(z) =
1

(1− γz)2

[
1 + (1− 2γ)z +

(
γ2 − γ +

1

4
− 1

2
(3γ + γ31 + γ32)

)
z2

]
. (4.36)

The relevance of internal stability, i.e. the stability of the stage solutions, for the solution of stiff
ODE problems is discussed in [60]. We here search for methods withL-acceptable internal stability
functionR3(z) and hence require that|R3(∞)| = 0. This is satisfied if and only if

γ31 = 2γ2 − 5γ +
1

2
− γ32 . (4.37)

Under this condition, it easily follows that the internal stability functionR3(z) is A-acceptable,
and henceL-acceptable, for all values ofγ ∈ [γ−, γ+] = [1− 1

2

√
2, 1 + 1

2

√
2]. Further, the internal

stability function of the second-stage solution isA-acceptable if and only ifγ ≥ 1
4
, and even

L-acceptable if and only ifγ = 1
2
.

Let us see whether we can combine the requirement (4.37) for internalL-stability of the third-
stage solution with the conditions (4.34a) or (4.34b). Obviously, the case (4.34b) results in two
L-stable,3-stage, second-order W-methods with underlying ERK scheme RK32 andL-acceptable
third-stage stability functionR3(z). These methods are given by the parametersΓ:

γ = γ± := 1± 1

2

√
2 , γ21 = −2γ2 + 2γ − 1

2
, γ31 = 2γ2 − 5γ + 1 , γ32 = −1

2
. (4.38a)
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Let us turn to discuss the case (4.34a). Notice that we now have two conditions on the parameter
γ31, namely (4.37) and the one in (4.34a). They are both satisfied simultaneously if and only if

γ32 =
6 γ2 − 10 γ + 1

4(1− γ)
for γ 6= 1 .

We excludeγ = γ± because these values lead toγ32 = −1
2

and this case is not considered here.
Both conditions onγ31 cannot be satisfied simultaneously ifγ = 1 and hence we also exclude this
value ofγ. The interval[γ−, γ+] for γ (leading to anL-acceptable third-stage stability function
R3(z)) is a subinterval of the given admissible range[g−, g+] of γ-values for anL-acceptable stabil-
ity functionR(z), see (4.35). Therefore, we obtain that the class ofL-stable,3-stage, second-order
W-methods with underlying ERK scheme RK32 andL-acceptable third-stage stability function
R3(z) is given by the parametersΓ satisfying either the conditions

γ ∈ (γ−, γ+) , γ 6= 1 ,

γ21 = −2γ2 + 2γ − 1

2
, γ31 =

8γ3 − 22γ2 + 12γ − 1

4(γ − 1)
, γ32 =

6γ2 − 10γ + 1

4(1− γ)
,

(4.38b)

or the conditions stated in (4.38a). This class of W-methods with class parameterγ forms the basis
of the following investigations and we refer to it as ROS32(γ).
A third-order method for linear, autonomous problems:We can choose the free parameterγ in
the class ROS32(γ) such that the stability functionR(z) of the method is a third-order approxima-
tion to the exponential function. This implies that the resulting W-method, if applied with exact
Jacobian, is third-order accurate for linear, autonomous ODE systems. This method, ROS32(γ3),
is given by the choice

γ = γ3 := −1

2

√
2 cos

(
1

3
arctan

(
1

4

√
2

))
+ 1 +

1

2

√
3
√

2 sin

(
1

3
arctan

(
1

4

√
2

))
≈ 0.436 .

AMF and stability for ROS32(γ)-AMF : We can apply the methods ROS32(γ) in the form (4.7)
with AMF and obtain schemes referred to as ROS32(γ)-AMF. We apply these schemes to the
test equation (4.29) and obtain the factorized stability functionR(zT , z0, z1, . . . , zd). The method
parametersΓ satisfy the relationr3 = 0, see (4.33). This simplifies the factorized stability function
and yields (p is defined as in (4.30)):

R(zT , z0, z1, . . . , zd) = 1 +
(−1 + 12γ3 + 12γ + 2γ31) z

12γ2p
+

(6γ2 + γγ31) z2

6γ2p2

+
(−12γ3 − 12γ + 18γ2 + 1− 2γ31) z

6γ2p2
+

z3

12p3
+

(−6γ2 − 2γγ31) z2

12γ2p3

+
(−1 + 12γ3 + 12γ − 24γ2 + 2γ31) z

12γ2p3
.

(4.39)

For a given value ofγ ∈ [γ−, γ+], γ 6= 1, the corresponding value ofγ31 is defined by the condi-
tions (4.38a) or (4.38b). As in the previous section, let us now assume thatzT is within the stability
domain of the method RK32 (the underlying ERK scheme of ROS32(γ)) and thatzj ≤ 0, j=1(1)d .
Then, for a givenγ-value, we are looking (numerically) for the maximum valueθ such that the
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method ROS32(γ)-AMF is stable, i.e. |R(zT , z0, . . . , zd)| ≤ 1, for all z0 ∈ Wθ. The valuesθ
(for the casesd = 1 andd = 2) are obtained by a similar algorithm as described in [32] and are
shown in Fig.4.4. The results are independent of the value ofd (d = 1 or d = 2). Forγ = γ3 we
obtainθ ≈ 50◦. The optimal value forγ with respect to the above stability property appears to be
γ ≈ 0.335 resulting inθ ≈ 64◦.
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10

30
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Figure 4.4:Maximum values ofθ = θ(γ) such that the factorized stability functionR of ROS32(γ)-AMF
satisfies|R(zT , z0, . . . , zd)| ≤ 1 for all zT within the stability domain of RK32, allz0 ∈ Wθ, and all
z1, . . . , zd ≤ 0. We have consideredγ ∈ [γ−, γ+], γ 6= 1, and obtained numerically the same maximum
values ofθ in the casesd = 1 andd = 2. For values ofγ > 0.58 we could not find a valueθ > 0 such that
the stability condition is satisfied.

Based on these theoretical investigations, we will apply two schemes from the class ROS32(γ)-
AMF in our numerical experiments:

• ROS32(γ3)-AMF: ROS32(γ3) is anL-stable,3-stage, second-order W-method with under-
lying ERK scheme RK32 andL-acceptable third-stage stability functionR3(z). The method
is third-order accurate for linear, autonomous problems (exact Jacobian). ROS32(γ3)-AMF
has a valueθ ≈ 50◦.

• ROS32(0.335)-AMF: ROS32(0.335) is anL-stable,3-stage, second-order W-method with
underlying ERK scheme RK32 andL-acceptable third-stage stability functionR3(z).
ROS32(0.335)-AMF has the optimal valueθ ≈ 64◦.

4.6 Selection of schemesΨ0 and Ψ1 for the OPS methods

In this section we detail the integration schemes which we use as approximate evolution operators
Ψ0 and Ψ1 in the OPS approach (Strang splitting), Eq. (4.15). Sec.4.3 and Sec.4.5 provide
a variety of different explicit and linearly-implicit time stepping schemes, backed by theoretical
investigations, which we can now choose from. A couple of other implicit schemes from the
literature which could be a good choice forΨ1 are discussed in Sec.4.7.
As discussed before, the taxis partF0 of the problem should be integrated explicitly in time. Fol-
lowing the discussion in Sec.4.3 and Sec.4.4, we consider the ERK schemes ME, RK32, and
RKF2(3) as candidates for the explicit methodΨ0 in the OPS schemes.
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Also, as discussed before, the diffusion–reaction partF1 should be integrated by an implicit scheme
for stability reasons. Therefore we select forΨ1 some of the Rosenbrock-type methods considered
in the previous section. We apply them with AMF to reduce the amount of linear algebra work.
However, in the situation of OPS, the factorization (4.13) leads to a matrixT in the Rosenbrock-
type scheme which is aO (τ)-approximation of the true Jacobian of the right-hand side function
F1. (Remember that in Sec.4.5, the right-hand side function is alwaysF = F0 + F1, and we have
neglected the Jacobian ofF0 when defining the matrixT .) This approximation property ofT en-
sures that the ROS3-AMF method applied as approximate evolution operatorΨ1 will be third-order
accurate (ifF1 is autonomous). We also consider the methods ROS2(γ−)-AMF and ROS2(0.59)-
AMF as implicit methodsΨ1 in OPS schemes. We do not consider the scheme ROS2(γ+)-AMF as
methodΨ1 in the OPS approach because numerical tests (not presented here) with the biomathe-
matical models described in Sec.2.3.2, have shown the inefficiency of the resulting OPS methods.
Further, notice the poor numerical performance of ROS2(γ+)-AMF in comparison with ROS2(γ−)-
AMF when applied to the (unsplit) MOL-ODE system, see Chap.5. We also do not consider the
3-stage, second-order W-methods ROS32(γ)-AMF as methodsΨ1 because they are constructed
with the unsplit MOL-ODE system in mind, as considered in the previous section. They would
lead to computational overhead (three stages but only order two) in an OPS setting.
We refer to a specific OPS method by the name OPS–Ψ1–Ψ0 and, to summarize, we will test the
explicit methodsΨ0 ∈ { ME, RK32, RKF2(3)} , and the implicit methodsΨ1 ∈ { ROS2(γ−),
ROS2(0.59), ROS3} applied with AMF.

4.7 Alternative methods for the MOL-ODE and different split-
ting approaches

The numerical solution of ODEs has been and is a highly active field of numerical analysis and
scientific computing. A variety of special problem as well as all-purpose ODE solvers have been
developed. In this section we present two schemes, VODPK and ROWMAP, which aim at solving
large stiff ODE systems. We will use both schemes as reference methods in our numerical tests.
Further, we mention some methods which can be employed as implicit approximate evolution
operatorsΨ1 in OPS methods. We also discuss a different splitting approach for the MOL-ODE,
source splitting [33], and a splitting approach on the PDE level of the TDR system [58]. The
latter splitting method has been tested successfully for a TDR system describing a bacterial pattern
formation process.

General purpose ODE solver for stiff ODEs.
Implicit or linearly-implicit methods have to be used for the solution of the MOL-ODE due to sta-
bility requirements (stiffness). These methods require some information about the Jacobian matrix
of the problem. The Jacobian matrix of the MOL-ODE resulting from the semi-discretization of a
TDR system is of large dimension and, although sparse, has a very large bandwidth. This rules out
the use of band solvers for the solution of linear systems involving the Jacobian. To circumvent
this problem we restrict attention to ODE solvers which do not require the Jacobian explicitly but
only products of the Jacobian and vectors where the vector is arbitrary. A finite difference approx-
imation of these products can be computed from the right-hand side function of the ODE system
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with just two function evaluations. Guided by these requirements we select the codes VODPK and
ROWMAP.
VODPK [7] is a variable-coefficient ODE solver with the preconditioned Krylov method GMRES
for the solution of linear systems. It is based on the VODE and LSODPK packages. We use
VODPK with default parameters and set the flag MF=21 (method based on BDF formulas up to
order5 with restarted GMRES). Experiments with preconditioned VODPK (using AMF) resulted
in increased computational costs and no performance gain. Therefore we do not consider this case
here.
ROWMAP [64] is based on the 4-stage ROW-methods of order 4 of the code ROS4 [23] and im-
plements a special multiple Arnoldi process (MAP [50, 63]) for the solution of the stage equations.
We use the code with default parameters. The order 4 of ROWMAP is obtained provided that the
products of the Jacobian and vectors are exact. We already mentioned earlier that the discretiza-
tion of the taxis part of the TDR systems is only Lipschitz continuous due to the application of
limiter functions. Further, as in the case of Model 2, nonlinear reactions can lead to more non-
differentiable terms in the right-hand side of the MOL-ODE. Hence, we cannot guarantee that the
products of the Jacobian and vectors used in ROWMAP (computed by a finite difference approx-
imation) are exact and therefore we must expect a less than fourth order behaviour of ROWMAP.
This, in turn, has an influence on the reliability of the time step size control.
Inaccurate products of the Jacobian and vectors are not a problem for the order of the code VODPK
because there these products are only used in the Newton process for the solution of the nonlinear
stage equations. Inexact products may merely slow down the convergence of the Newton process.

Alternative methods for Ψ1 in OPS schemes.
In [14] we have successfully used a linearly-implicit variant of the trapezoidal splitting method [30,
12] as methodΨ1 in the OPS approach. This method has a consistency order two and, applied to
the test equationy′(t) = A1y(t)+A2y(t) with real matricesA1 andA2, we obtain an amplification
matrix (the equivalence of the stability function in the scalar case) which isA-acceptable (i.e.
its norm is bounded by one), if the matricesA1 andA2 commute and if they have a nonpositive
logarithmic matrix norm, see [12]. Other linearly-implicit splitting methods are derived in [12]
which areA- and alsoL-stable for the test equation above even if the matrices do not commute.
TheL-stable methods are especially interesting for very stiff problems. Numerical experiments
with these methods have shown that their application in OPS schemes does not lead to an improved
performance compared to the application of Rosenbrock-type AMF methods in OPS for the models
discussed in this paper. Therefore we do not consider them in the numerical experiments section
here. However, for different models or other applications they might be the methods of choice.

Alternative splitting approaches.
Another splitting approach for the solution of the MOL-ODE (4.1), source splitting, is considered
in [33] and applied to a variation of Model 2 in [15]. The formulas

yk+1 = z(tk + τ) +
τ

2
(F0(z(tk + τ))− F0(yk)) , (4.40a)

z′(t) = F0(yk) + F1(z(t)) , t ∈ [tk, tk + τ ], z(tk) = yk , (4.40b)

define a time step of a source splitting method for problem (4.1) with a right-hand side function
F (t, y) = F0(t, y) + F1(t, y). This method reduces to the modified Euler (ME) ERK method if
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applied withF1 ≡ 0 and is of second-order (assuming exact integration of (4.40b)). Note that
F0 is treated as an additional, constant source in the ODE (4.40b). We have solved the ODE
(4.40b) in each time step of the source splitting method with one step of ROS2(γ−)-AMF in [15].
Numerical experiments in this paper also demonstrate that the performance of the source splitting
method approximately equals the performance of the ROS2(γ−)-AMF method applied to the (not
splitted) MOL-ODE. No numerical experiments with the source splitting method are presented in
this thesis.
Recently, Tyson et al. [58] have described a splitting algorithm and applied it to a specific TDR
model. They perform a splitting of the TDR model at the PDE level already and their approach is
closely related to our proposed OPS schemes. They use the software package CLAWPACK [40]
to deal with the taxis part of the problem and also anL-stable implicit method for the diffusion–
reaction part. The AMF methods presented in this thesis differ from the approach of Tyson et
al. and also from the OPS approach as the AMF methods do not split the equations and hence
avoid the associated splitting error. We did not compare our proposed algorithms with the methods
proposed by Tyson et al. [58] yet.
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Chapter 5

Numerical Experiments and Discussion

In this chapter we present numerical results which demonstrate the performance of the time step-
ping algorithms of Chap.4 applied to the MOL-ODEs obtained by the discretization in space
(Chap.3) of the biomathematical models described in Sec.2.3.2.
The discretization in space is done on grids with grid widthh = 1

100
or h = 1

200
, see Sec.3.1.

These resolutions are sufficiently fine to resolve the phenomena exhibited by the different models.
Following standard practice, we have implemented the AMF methods (Sec.4.5) and the OPS
methods (Sec.4.6) with variable time step sizes (Sec.4.1) in FORTRAN77. The embedded first-
order solution is used to obtain an estimate of the local error of the current time step in the AMF
schemes. The time step is selected on the basis of an error per step (EPS) control which aims to
keep this estimate below a mixed (relative and absolute) threshold depending on the user supplied
toleranceTOL (= ATOL = RTOL). The higher order solution is used to advance an accepted
step (local extrapolation). The OPS methods use Richardson extrapolation to obtain a local error
estimate of the current step and then the same EPS control to select the step size. They step
forward with the solution obtained from two half-steps (doubling). The Jacobians of the diffusion
and the reaction parts of the right-hand side of the MOL-ODE are evaluated at the beginning of
a time step (AMF) or at the beginning of a Richardson step (OPS). We compute finite difference
approximations to the true Jacobians of the split functions.
We compare the computed (with our or other methods) solutions,ycomp, of a MOL-ODE at final
time (corresponding to the examples considered here) against a reference solutionsyref . We obtain
these reference solutions of the ODE systems with the standard integrator VODPK [7] requiring
the very stringent toleranceTOL = 10−12. The error estimateerr := ‖ycomp − yref‖ between
computed solutions and reference solutions is measured in the scaledl2-norm,

‖v‖ =

(
1

m
vTv

) 1
2

, v ∈ Rm .

This norm is used throughout this chapter, and in tables and figures we print the logarithm to the
base10 of the error norm. This procedure implies that we consider the temporal error (including
splitting errors) of the solutionycomp in the numerical experiments. We do not consider the spatial
accuracy of the solution here (this has been done for Model 1 in Sec3.4).
For each model (Model 2, Model 3, Model 4) we consider two different scenarios:ε > 0 (as
defined in the corresponding model description) andε = 0, and for each of these a coarse (h = 1

100
)

71



and a fine (h = 1
200

) spatial mesh. The integration schemes are run for seven tolerance values
TOL = 10−3, 10−3.5, . . . , 10−6, except indicated otherwise, in all four test cases for each model.
We do not provide details of all numerical experiments but instead give a short summary of the
observations. The numerical experiments with Model 2 are discussed in more detail. All test runs
are performed on one processor of a HP Convex X-Class server under HP-UX.

5.1 Tumour–induced angiogenesis — Model 2

Description of solution: The solutionn of the equation for the EC density of this problem has
initially peaks near the right boundary of the domain. The cells there are migrating to the left—
forming a stream which moves up the present TAF (c1) gradient as time proceeds. No cell pro-
liferation takes place in the beginning of the simulation because thec1 concentration at the cells
is below the thresholdc?1. Later proliferation leads to a strong, local increase of the cell density.
The cells also take up TAF. This results in changes in the TAF gradients and causes lateral cell
movement and hence a widening of the cell streams. The cell streams turn towards the centre of
the TAF source (the tumour) once they are close enough to the left boundary. Fig.5.1 gives cell
density plots at three different output times for the model with (ε = 0.001) and without (ε = 0) cell
random motility (notice the different final times). We see that the process proceeds faster if cell
random motility is present and that in this case also the lateral cell movement is more pronounced
(leading to a closed wave front towards final time).
Numerical order of convergence: We start with assessing the numerical order of convergence
of the OPS and AMF methods by using the ODE solver with fixed time step size. We select the
method OPS-ROS2(γ−)-RK32 for this test because it will turn out that this method will be one of
the most efficient for this example. We consider only this method because the variable step size
experiments later in this section suggest that the other methods behave similarly (almost parallel
lines in the accuracy vs. CPU time plots). We discretize Model 2 on a spatial grid withh = 1

100
.

In the first test we use a random motility coefficientε = 0.001 of the ECs and the corresponding
final timeT = 1.0. Then we obtain the following table:

steps 30 35 40 50 75 100 150 200 300 400 600 800
err −1.51 −1.65 −1.75 −1.92 −2.24 −2.48 −2.81 −3.06 −3.41 −3.65 −4.01 −4.26
order — 2.09 1.72 1.75 1.82 1.92 1.87 2.00 1.99 1.92 2.04 2.00

The first row of the table gives the number of times steps taken to reachT , the attained norm of
the error is given in the second row, and the numerical order of convergence in the third row. The
numerical solution blows up if the number of time steps is reduced to 25. We can clearly observe
the expected second order convergence behaviour. We also note that the numerical solution is
positive for steps≥ 40 and that there is some slight undershoot (negative solution values) for steps
= 30 and steps= 35.
We now turn to the situation without cell random motility,ε = 0, and henceT = 1.2 (everything
else unchanged). Now we obtain the table:

steps 35 40 50 75 100 150 200 300 400 600 800
err −0.96 −1.43 −1.67 −2.05 −2.28 −2.63 −2.88 −3.26 −3.54 −3.92 −4.19
order — 8.11 2.48 2.16 1.84 1.99 2.00 2.16 2.24 2.16 2.16
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Figure 5.1:EC densityn solutions of Model 2 for different simulations times and with or without random
motility of the ECs. The random motility coefficient of the ECs isε = 0.001 in the top row plots, and there
is no EC random motility in the bottom row plots (ε = 0); all other parameters are as in Sec.2.3.2.1.

The order of the method is again two. The numerical solution blows up if we only use 25 or 30
time steps. The smallest component in the numerical solution is exactly zero for steps≥ 75; there
are negative solution components (small in magnitude) if the number of time steps is smaller and
for too few time steps this causes the solution to blow up.
Comparison of AMF methods: We now turn to investigate the performance of the variable
step size implementations and first concentrate on the AMF schemes. Fig.5.2 gives the error
vs. CPU time plots for the cases with and without EC random motility on a spatial grid with
h = 1

100
. Clearly, all methods converge to the reference solution with approximately the same

order of convergence.
In the case ofε = 0.001, Fig. 5.2 (left), only ROS2(γ−)-AMF and ROS32(0.335)-AMF return a
solution for all requested tolerancesTOL; the solutions of the other schemes blow up for toler-
ance requirements which are too weak. In the case ofε = 0 no such problems are observed and the
methods return solutions even forTOL = 10−3. Below we claim that the blow-up of the (numer-
ical) solutions in Model 2 is caused by negative solution values in combination with the reaction
term in the taxis equation. Negative solution values are introduced if the selected time step sizes
are too large. The number of time steps (scaled by the final timeT ) which a given method takes to
reach the final timeT for a given value ofTOL is considerably larger ifε = 0 than if ε = 0.001.

73



(The error in the numerical solution is smaller ifε = 0 compared to the error ifε = 0.001 for fixed
TOL; the (scaled) number of time steps taken by a method to reach a certain errorerr is similar
for both values ofε.) Hence, in the case ofε = 0 the step size control selects smaller time steps
(caused by the steep fronts (non-smoothness) in the EC density solution in this case). On the other
hand, ifε > 0 then the steep fronts are smoothed and the step size control selects larger time steps
which in turn causes the negative solution components.
The successfully computed solutions of all methods are nonnegative except for some (small in
magnitude) negative values if weaker (successful) tolerances are requested. In the caseε = 0, the
smallest solution component is exactly zero for all requested tolerances for the methods ROS2(γ−)-
AMF, ROS2(0.59)-AMF, and ROS32(0.335)-AMF.
The method ROS3-AMF is slightly more accurate than the other AMF methods for this model
and higher accuracy demands but not very robust for less strict accuracy requirements. The
method ROS2(γ+)-AMF shows the worst performance. ROS2(γ−)-AMF appears to be very robust;
ROS2(0.59)-AMF is slightly more efficient. There are hardly any differences between ROS32(γ3)-
AMF and ROS32(0.335)-AMF. The latter method is slightly more stable (as supported by the
theory). Similar conclusions can be drawn from numerical experiments if the spatial resolution is
refined to a grid withh = 1

200
.

Comparison of OPS methods: Let us next consider the performance of the variable step size
implementations of OPS schemes applied to Model 2. Fig.5.2gives the error vs. CPU time plots
for the cases with and without EC random motility on a spatial grid withh = 1

100
.

Again, all methods converge to the reference solution with approximately the same order of conver-
gence. The OPS methods almost avoid a blow-up of the numerical solutions. Blow-up is only ob-
served forTOL = 10−3 and the methods OPS-ROS2(0.59)-RK32 and OPS-ROS2(0.59)-RKF2(3)
if ε = 0.001, and OPS-ROS3-RK32 ifε = 0.001 or ε = 0.
It is noteworthy that the OPS schemes with implicit method ROS2(γ−)-AMF demonstrate the most
stable behaviour of all schemes tested here. This can probably be attributed to theL-stability of the
underlying Rosenbrock method but is in contrast to the stability property derived for the factorized
scheme applied to the test equation (4.29). An explanation here could be that ROS2(γ−)-AMF is
stable with respect to (4.29) on a very large domain for the valuesλ0, . . . , λd but this domain does
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Figure 5.2:Error vs. CPU time plots of various AMF methods applied to Model 2 withε = 0.001, T = 1
(left) andε = 0, T = 1.2 (right). We useh = 1

100 ; all other parameters are as given in Sec.2.3.2.1.
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not extend to infinity. However, this issue has not been investigated. The schemes with implicit
method ROS2(0.59)-AMF or ROS3-AMF have problems with stability if the required tolerance is
not sufficiently stringent.
If we take a look at the behaviour of the OPS schemes with respect to the choice of the explicit
method then we see that RKF2(3) gives the most accurate results, followed by RK32 and eventually
ME. Especially in Fig.5.3 (bottom) we see that OPS-ROS2(γ−)-RKF2(3) suffers from stability
problems in the lower accuracy range whereas the other two OPS methods with implicit scheme
ROS2(γ−)-AMF are still unaffected in this range of accuracy.
Altogether we recommend the application of OPS-ROS2(γ−)-RK32 and OPS-ROS2(γ−)-RKF2(3)
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Figure 5.3:Error vs. CPU time plots of various OPS methods applied to Model 2 withε = 0.001, T = 1
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100 ; all other parameters are as given in Sec.2.3.2.1.
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for the solution of Model 2. Similar conclusions can be drawn from numerical experiments on the
fine spatial grid withh = 1

200
.

Comparison with reference methods: Fig. 5.4gives the error vs. CPU time plots of a selection
of AMF and OPS methods, and of the reference methods (general purpose, stiff ODE solver)
VODPK and ROWMAP for the solution of Model 2 on the coarse and the fine spatial grid.
We see that the OPS schemes demonstrate the best performance, followed by the AMF schemes.
The reference methods are not suitable for the solution of Model 2 if only low to moderate ac-
curacies are required. They have many rejected steps and the numerical solutions obtained by
ROWMAP blow up except for the two most strict tolerance requirements in the caseε = 0. Both
reference methods return numerical solutions with negative components in the accuracy range
considered. For higher accuracy demands they perform well and will, due to their higher order,
eventually outperform the splitting methods.
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Figure 5.4:Error vs. CPU time plots of various methods applied to Model 2 withε = 0.001, T = 1 (left
column) andε = 0, T = 1.2 (right column), and spatial grid widthh = 1

100 (top row) andh = 1
200 (bottom

row). All other parameters are as given in Sec.2.3.2.1.

Positivity and blow-up: Especially with the AMF schemes and the reference methods we have
seen that the numerical solutions may blow up if the requested tolerance is too weak. Looking
at the course of integration, we can see that in such a case negative solution values appear in
elements of the numerical solution which approximate the solution of the taxis equation. These
negative values grow larger in magnitude – at first slowly and then more and more rapidly until
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Figure 5.5: Error vs. CPU time plots of various methods applied to Model 2 withε = 0.001, T = 1
(left) andε = 0, T = 1.2 (right). We useh = 1

100 andβ = µ = 0; all other parameters are as given in
Sec.2.3.2.1.

they blow up.
The behaviour described is caused by the reaction term of the taxis equation. To this end, consider
the simplified reaction termfR(n) := c̃1µn(1 − n) − βn with nonnegative parameters, where
c̃1 represents the termmax{0, c1 − c∗1} of the original reaction function. The scalar Jacobian
∂fR(n)
∂n

= c̃1µ − β − 2c̃1µn is positive forn = 0 if c̃1 >
β
µ
. Hence the fixed pointn = 0 of fR(n)

is unstable in this case. The choice of parameters of Model 2 leads toβ
µ

= 0.04 and hence the
conditions for instability are easily satisfied.
We have studied numerically the effect of switching off the reaction term in the taxis equation
and indeed, all methods can successfully compute the solution up to the final timeT even for
TOL = 10−3. The results on a spatial grid withh = 1

100
are given in Fig.5.5. There we can also

see that the performance of the methods ROWMAP and VODPK also improves considerably but
the splitting methods still have a clear advantage.
Another technique to enforce a nonnegative solution is to applyclipping, see e.g. [62]. This means
that after each time step of a method all negative components of the solution are set to zero.
Clipping interferes with mass conservation and should therefore only applied with care and if
really necessary. In our case, clipping prevents the blow-up of numerical solutions but does not
improve the performance of the methods. Therefore we rather recommend to apply the methods
with a more stringent tolerance requirementTOL.

5.2 Tumour–induced angiogenesis — Model 3

Description of solution: The most interesting part of this model is again the evolution of the
EC densityn depicted in Fig.5.6 for the cases with (ε = 0.00035) and without (ε = 0) cell
random motility. In contrast to Model 2, the model considered here does not take account of EC
proliferation but concentrates on the development of the ECs near the tips of the new blood vessels.
The total mass of ECs is conserved in the model.
The solutionn of the equation for the EC density of this problem has initially peaks near the left
boundary of the domain. The cells there are migrating to the right and move up the present TAF (c1)
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gradient as time proceeds. The gradient in the fibronectin concentrationc2 acts counterproductive
by slowing down the migration of the ECs towards the right domain boundary. On the other hand,
it enhances the lateral movement of ECs. This lateral movement is clearly visible in the plots: the
outer EC clusters move laterally as the time increases and subsequently, around timet = 5, join to
form one central cluster. Later at timet = 10 we see that the cells have spread out even more in
the domain; there is also some movement backward to the left boundary. From now on, the ECs
advance only slowly towards the tumour (right-hand boundary) due to the chemotactic function
chosen in Model 3.
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Figure 5.6:EC densityn solutions of Model 3 for different simulations times and with or without random
motility of the ECs. The random motility coefficient of the ECs isε = 0.00035 in the top row plots, and
there is no EC random motility in the bottom row plots (ε = 0); all other parameters are as in Sec.2.3.2.1.

Comparison of selected AMF and OPS schemes with reference methods:
The most promising AMF methods for this model are ROS32(0.335)-AMF (ROS32(γ3)-AMF be-
haves similarly) and ROS2(γ−)-AMF (ROS2(0.59)-AMF behaves similarly). The enhanced ac-
curacy of ROS3-AMF, as observed in the experiments with Model 2, does not show up for this
model. Again, ROS2(γ+)-AMF cannot compete with the other AMF schemes. There are almost
no rejected time steps for all methods. The total mass of the solution components corresponding
to the cell densityn in the model at final simulation time (T = 5) is almost the same as the mass at
initial time. The difference is of the order of machine precision (≈ 10−16) except for the weakest
tolerances used where the difference can be as large as10−6. Therefore it is justified to say that the
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integration schemes are mass conservative. Small negative components in the numerical solution
are no difficulty in the numerical solution of Model 3. This is apparently in contrast to what is
observed in the numerical solution of Model 2. However, there we have argued that the difficulties
arise because of the reaction term in the cell density equation of Model 2. Here we have no such
reaction term and hence this supports the arguments given in the previous section. We find (small
in magnitude) negative components in the numerical solution for low tolerance requirements only,
especially in the case with random cell motility (ε = 0.00035). This can be explained, as in
Model 2, by observing that for the same value ofTOL the methods take considerably more time
steps to reach the final time ifε = 0 as if ε = 0.00035. In the following we consider the schemes
ROS32(0.335)-AMF and ROS2(γ−)-AMF only and their error vs. CPU time plots are given, in
comparison with other methods, in Fig.5.7.

We turn to discuss the numerical results obtained with the OPS methods applied to Model 3. They
all behave almost identical in the moderate and higher accuracy range. The schemes with implicit
method ROS3-AMF demonstrate small stability problems for low accuracy demands; the schemes
with implicit method ROS2(γ−)-AMF appear to be the most robust with this respect—especially
for the caseε = 0.00035 on the finer spatial grid. Therefore we consider the schemes OPS-
ROS2(γ−)-RK32 and OPS-ROS2(γ−)-RKF2(3) in the comparison in Fig.5.7. The OPS schemes
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Figure 5.7: Error vs. CPU time plots of various methods applied to Model 3 withε = 0.00035 (left
column) andε = 0 (right column), and spatial grid widthh = 1

100 (top row) andh = 1
200 (bottom row). The

final time isT = 5; all other parameters are as given in Sec.2.3.2.1.
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are also mass conservative and return nonnegative solutions under the same restrictions as stated
for the AMF schemes in the previous paragraph.
From the error vs. CPU time plots in Fig.5.7, we see that the AMF methods and the OPS schemes
perform equally well for this example. Also, the reference methods VODPK and ROWMAP per-
form similarly in the lower and moderate accuracy range (except forε = 0.00035 on the fine
grid where VODPK outperforms ROWMAP). There is an advantage for the reference methods if
ε = 0.00035 (not for ROWMAP on the fine grid), and a slight advantage for the splitting methods
(AMF, OPS) if ε = 0. For higher accuracy demands the reference methods are superior (due to
their higher order of accuracy). The reference methods have not as good mass conservation and
positivity properties as the splitting schemes. The mass difference between the solutions at initial
and final simulation time is in general in the order of10−6 even for higher accuracy demands, and
there are small in magnitude (but bigger than for the splitting methods) negative components in the
solutions at final time for almost all tolerance requirements. These negative solution values are not
harmful for the solution process of the MOL-ODE of this model.
We note that Model 3 is numerically much simpler to treat than Model 2: firstly, there is no
reaction term in the taxis equation of Model 3 and such a term caused much of the trouble in the
numerical simulation of Model 2 (blow-up due to negative solution components), and secondly, the
boundary conditions in Model 3 are of zero-flux type whereas there is a combination of zero-flux
and non-homogeneous Dirichlet boundary conditions in Model 2. Especially the inclusion of a
reaction term in the taxis equation of Model 3 (e.g. in order to take EC proliferation into account)
is expected to lead to a notably improved performance of the splitting schemes compared to the
reference methods.

5.3 Tumour invasion — Model 4

Description of solution: The solutionn of the equation describing the evolution of the tumour
cell density of this model has an initial peak in the centre of the domain (representing the initially
compact tumour mass). This peak spreads outward moving up gradients of the ECM densityc1

which is heterogeneous initially. This leads to a heterogeneous pattern in the cell density solution.
These patterns are sharper if there is no cell diffusion (a break up of the initially compact cell
mass can be observed) and more smeared with cell diffusion (the break up of cell mass is not so
pronounced in this case). The total cell mass in the domain is a conserved quantity of the model.
The tumour cells release MDE (c2) which diffuses within the spatial domain. MDE in turn degrades
ECM and hence leads to new gradients in the ECM density which give rise to further migration of
the cells. The most interesting solution of this model is the cell density and Fig.5.8gives solution
plots at three different output times for the cases with and without cell diffusion.
Comparison of selected AMF and OPS schemes with reference methods:We again start
with looking at the performance of the AMF methods applied to the MOL-ODE obtained by the
semi-discretization of the equations of Model 4. Again we note that ROS2(γ+)-AMF requires
significantly more CPU time than the other AMF methods to return a solution of the same accuracy.
Also, the improved accuracy of ROS3-AMF, as observed in some of the numerical experiments
with Model 2, does not show up. The remaining four methods of this type behave fairly similar
and we single out ROS2(γ−)-AMF and ROS32(0.335)-AMF for the numerical comparison with
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Figure 5.8:EC densityn solutions of Model 4 for different simulations times and with or without random
motility of the ECs. The random motility coefficient of the ECs isε = 0.001 in the top row plots, and there
is no EC random motility in the bottom row plots (ε = 0); all other parameters are as in Sec.2.3.2.2.

the OPS schemes and the reference methods, see Fig.5.9. There are virtually no rejected steps in
the test runs with the AMF schemes. Also, the initial total mass of the tumour cells is conserved (up
to machine precision) during the process of simulation until the final timeT is reached. Finally,
there are almost no negative solution components and if there are some (for very low accuracy
requirements) then their order of magnitude is considerably smaller than machine precision.

We now turn to discuss the numerical experiments with the OPS schemes applied to this example.
There are only small differences between all the methods and these are mainly due to the choice
of the implicit scheme in the OPS method. If this implicit scheme is ROS3-AMF then the perfor-
mance is worse than for all other methods in all four test cases. Concerning the other two implicit
schemes tested, the performance depends on the choice ofε. If ε = 0 then the methods with im-
plicit scheme ROS2(γ−)-AMF have an advantage and ifε = 0.001 then the methods with implicit
scheme ROS2(0.59)-AMF are slightly better (although the difference in this case is less than in
the case withε = 0). We observe slight stability problems in the caseε = 0.001 for very low
tolerance requirements for all methods (rejected time steps in this case). These are the least pro-
nounced for the method OPS-ROS2(γ−)-RK32. The statements given above for the AMF methods
concerning negative components in the solution and conservation of (tumour) cell mass also apply
for the OPS schemes. Based on the observations we select the methods OPS-ROS2(γ−)-RK32 and
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Figure 5.9:Error vs. CPU time plots of various methods applied to Model 4 withε = 0.001 (left column)
andε = 0 (right column), and spatial grid widthh = 1

100 (top row) andh = 1
200 (bottom row). The final

time isT = 5; all other parameters are as given in Sec.2.3.2.2.

OPS-ROS2(γ−)-RKF2(3) for the numerical comparison in Fig.5.9.
We see from the plots in Fig.5.9 that VODPK turns out to be very efficient for this model. Due
to increasing stiffness, this advantage of VODPK decreases for the finer grid resolution and more
significantly, as reported in [16], if the (small) diffusion coefficientd2 = 0.001 is enlarged by
a factor of10 or 100. We note that the AMF schemes can be applied with even less stringent
tolerance requirements ( e.g. up toTOL = 10−2) in the case with cell diffusion (ε = 0.001) and
then these schemes outperform VODPK (for consistency we do not plot these data points here).
In general, VODPK and ROWMAP preserve the cell mass well although, especially in the case
ε = 0, not as good as the splitting schemes (mass conservation improves for increasing accu-
racy demands and eventually reaches the level of machine accuracy). VODPK and ROWMAP
return nonnegative solutions ifε = 0.001 except for the weakest tolerance requirementsTOL =
10−3, 10−3.5. In the caseε = 0, the solutions contain negative components for all tested tolerances
TOL. The most negative values being around−10−5 for TOL = 10−3 and reaching the level of
machine accuracy for stricter tolerancesTOL.
Returning to the plots in Fig.5.9, we clearly see that the AMF schemes are more suitable than the
OPS methods for the test case with cell diffusion (ε = 0.001); without cell diffusion (ε = 0), the
situation is the opposite and the OPS schemes generally demonstrate a better performance.
It can also be observed that for cruder tolerances the methods based on the explicit method RK32
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have a slightly improved behaviour compared to the corresponding methods based on the explicit
methods ME or RKF2(3). We credit this advantage to the improved stability and positivity prop-
erties of RK32.
Finally, we mention that Model 4 (as Model 3 and in contrast to Model 2) is a TDR system without
reaction term in the taxis equation. This serves to explain that slightly negative components in the
numerical solution have no negative effect on the solution process. Also, the boundary conditions
of Model 4 are of no-flux type and there are no inhomogeneous boundary conditions as in Model 2.
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Chapter 6

Conclusions

In this thesis we have considered the numerical solution of taxis–diffusion–reaction (TDR) systems
which arise in a variety of mathematical models of biological processes. The driving force for
this work has been the aim to develop, implement, and test suitable numerical schemes for the
simulation of the tumour-induced angiogenesis Model 2. The numerical technique derived (spatial
discretization and solution of the MOL-ODE) has proved to be very appropriate for this model. We
have also demonstrated that the splitting methods derived for the solution of the MOL-ODE (of
various models) are at least competitive with standard integration schemes, especially for lower
and moderate accuracy demands. For some models, especially Model 2, they are substantially
more efficient. Lower or up to moderate accuracy demands (error in the range of10−2 to 10−4) are
usually sufficient in biomathematical simulations of TDR systems.

We have followed the Method of Lines (MOL) approach to numerically find the solution of a
TDR system. The finite volume approach used for the spatial discretization naturally respects
the conservation of mass property of the TDR system. Special attention has been paid to select
a spatial discretization which results in a MOL-ODE with nonnegative (analytic) solution. The
careful discretization of the taxis term is especially important with respect to this. For this reason
we have employed an upwinding technique in combination with limiter functions. The order of
the approximation is two in general and results in an acceptable spatial error on fairly coarse grids
already.

The second main part of this work is concerned with the solution of the initial value problem for
the MOL-ODE. For this purpose we have employed two splitting techniques: approximate matrix
factorization (AMF) and operator (Strang-) splitting (OPS). These splitting techniques are based
on linearly-implicit W-methods and explicit Runge-Kutta methods. We have studied positivity
properties of these methods and identified the optimal method RK32. A corresponding class of
W-methods has been constructed. The resulting splitting schemes are of order two and from the
variety of methods tested we especially recommend the schemes ROS2(γ−)-AMF, ROS32(0.335)-
AMF, OPS-ROS2(γ−)-RK32, and OPS-ROS2(γ−)-RKF2(3).

Maintenance of positivity of the solution during the solution process has been a major point in this
work. Its significance has been clearly exemplified by the numerical experiments with Model 2.
This example shows that a positive semi-discretization is not always sufficient for a successful
simulation. Also for the time integration a suitable scheme with good positivity properties, e.g. the
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recommended AMF and OPS schemes, should be used. This is especially important if zero is an
unstable fixed point of the reaction term of the model (see the logistic growth term in Model 2).
Then already slightly negative values in the numerical solution can lead to blow-up.

Altogether, the discretization of the spatial derivatives and the recommended splitting methods
have shown to be very suitable for the simulation of TDR systems. The computer codes developed
(see Sec.A.3) work reliably and robustly and are recommended for these simulations.

Looking ahead, interesting directions for further research in the field of numerical methods for the
simulation of TDR systems are:

• The solution of linear systems with the AMF technique could be replaced by an iterative
solution process: the coding of the spatial discretization would be simpler because a special
order of the components in the MOL-ODE would no longer be necessary for efficiency
reasons and more difficult geometries and non-regular meshes could be handled much easier.

• We have demonstrated the applicability of our approach for the simulation of TDR systems
in two spatial dimensions. Going to three spatial dimensions will raise the question of paral-
lelization of the scheme and also how the results can be suitably visualized. In [15] we have
presented the first promising experiments with a parallel ODE solver.

• In all our models the organisms are assumed to be spread out continuously in space (i.e.
represented by a continuous density function). However, in real life these organisms are
discrete objects and for some modelling purposes (e.g. proliferation, loop formation during
angiogenesis) it is more suitable to regard them as such. It would be a goal of future research
to extend the methodology presented here so that it can be applied to models which include
also discrete objects.
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Appendix A

A.1 Solution of a first-order hyperbolic PDE related to Model 1

Let 4R > 0 be an integer. Here we derive the analytical solutionu(t, r) of the following problem:

∂tu(t, r) + v(r)∂ru(t, r) = −
(
v(r)
r

+ w(r)
)
u , for t > 0, r ∈ (0, R) , (A.1a)

u(0, r) = u0(r) for r ∈ [0, R] , u0 ∈ C1, and v(r) := 4π sin(4πr) , w(r) := v′(r) . (A.1b)

This problem arises in the derivation of the analytical solution of Model 1 in Section2.3. The first order
hyperbolic equation (A.1) can be solved by the Method of Characteristics. The initial curve is given by
Γ = {(0, s, u0(s)) | s ∈ [0, R]} , and the characteristic ODE system (with parameters) by

Ψ′1(t) = 1 , Ψ1(0) = 0 ,
Ψ′2(t) = v(Ψ2(t)) , Ψ2(0) = s ,

Ψ′3(t) = −
(
v(Ψ2(t))

Ψ2(t)
+ w(Ψ2(t))

)
Ψ3(t) , Ψ3(0) = u0(s) .

We obtainΨ1(t; s) = t, and, by usingv(Ψ2)/Ψ2 = Ψ′2/Ψ2 andw(Ψ2) = Ψ′′2/Ψ
′
2,

Ψ3(t; s) = u0(s) exp
(
−
∫ t

0

d
d τ

ln(Ψ2(τ)) +
d
d τ

ln(Ψ′2(τ)) dτ
)

= u0(s)
s

Ψ2(t; s)
· v(s)
v(Ψ2(t; s))

.

We will give an expression forΨ2(t; s) later.
Now, by the Method of Characteristics, we haveu(Ψ1(t; s),Ψ2(t; s)) = Ψ3(t; s). Let r = Ψ2(t, s) and
assume that we can solve this equation fors, i.e. s = s(t, r), see Eq. (A.6). Then we can write down the
solution of (A.1):

u(t, r) = u(t,Ψ2(t, s)) = Ψ3(t, s(t, r)) = u0(s(t, r))
s(t, r)
r

· sin(4πs(t, r))
sin(4πr)

. (A.3)

We now derive the solutionΨ2 of the second characteristic equation and the expressions = s(t, r). Separa-
tion of variables formally leads to (letC ∈ C be an arbitrary constant)∫

1
4π sin(4πΨ2)

dΨ2 =
∫
dt, or

1
16π2

ln(tan(2πΨ2)) = t+ C . (A.4)
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Let k = 0, 1, 2, . . .. We distinguish two cases: (Case 1) considersΨ2 ∈
(
k
2 ,

k
2 + 1

4

)
, i.e. 2πΨ2 ∈(

kπ, kπ + π
2

)
, and (Case 2) considersΨ2 ∈

(
1
4 + k

2 ,
k+1

2

)
, i.e. 2πΨ2 ∈

(
π
2 + kπ, (k + 1)π

)
.

(Case 1) ConsiderΨ2 ∈
(
k
2 ,

k
2 + 1

4

)
: It is sufficient to considerC ∈ R. Equivalent transformations

of (A.4) lead to

Ψ2(t) =
1

2π
arctan

(
exp

(
16π2t+ C

))
+
k

2
∈
(
k

2
,
k

2
+

1
4

)
.

RequiringΨ2(0) = s for s ∈
(
k
2 ,

k
2 + 1

4

)
determinesC = ln

(
tan

(
2π
(
s− k

2

)))
and hence we have

computedΨ2(t; s) for values ofs ∈
(
k
2 ,

k
2 + 1

4

)
. Now let r = Ψ2(t; s) ∈

(
k
2 ,

k
2 + 1

4

)
. Then we can solve

for s and obtain

s = s(t, r) =
1

2π
arctan

(
tan

(
2π
(
r − k

2

))
exp(16π2t)

)
+
k

2
, for r ∈

(
k

2
,
k

2
+

1
4

)
. (A.5a)

(Case 2) ConsiderΨ2 ∈
(

1
4 + k

2 ,
k+1

2

)
: It is sufficient to considerC = iπ+C̃ , C̃ ∈ R. Then equivalent

transformations of (A.4) lead to

Ψ2(t) =
1

2π
arctan

(
− exp

(
16π2t+ C̃

))
+
k + 1

2
∈
(
k + 1

2
− 1

4
,
k + 1

2

)
.

RequiringΨ2(0) = s for s ∈
(

1
4 + k

2 ,
k+1

2

)
determinesC̃ = ln (− tan (π(2s− (k + 1)))) and hence we

have computedΨ2(t; s) for values ofs ∈
(

1
4 + k

2 ,
k+1

2

)
. Now let r = Ψ2(t; s) ∈

(
1
4 + k

2 ,
k+1

2

)
. Then we

can solve for s and obtain

s = s(t, r) =
1

2π
arctan

(
tan

(
2π
(
r − k+1

2

))
exp(16π2t)

)
+
k + 1

2
, for r ∈

(
1
4

+
k

2
,
k + 1

2

)
. (A.5b)

The equations (A.5a) and (A.5b) can be simplified and written as one equation,

s = s(t, r) =
1

2π
arctan

(
tan(2πr)

exp(16π2t)

)
+

int(4r) + (int(4r) mod 2)
4

, for r > 0, r 6= 1
4
k , (A.6)

whereintz is the integer part ofz ∈ R+,0. This completes the derivation of the solution of (A.1) for r 6= 1
4k.

For r = 1
4k we obtain the solution by a limiting procedurer → 1

4k. Fork = 0, 1, 2 we obtain

u(t, 0) = u0(0) exp
(
−16π2t

)
, u

(
t,

1
4

)
= u0

(
1
4

)
exp

(
16π2t

)
, u

(
t,

1
2

)
= u0

(
1
2

)
exp

(
−16π2t

)
.

A.2 Matrix functions — definition and properties

Definition 9 [18, p. 381] Supposef(z), z ∈ C, is analytic inside and on a closed contourΓ which
encircles the spectrum of a matrixA ∈ Rm,m. We definef(A) to be the matrixf(A) = 1

2πi

∫
Γ f(z)(zI −

A)−1dz on an element-by-element basis.

Lemma 20 [18, p. 390] If f(z), z ∈ C, has a power series representationf(z) =
∑∞

k=0 ckz
k on an

open disk containing the eigenvalues of the matrixA ∈ Rm,m thenf(A) =
∑∞

k=0 ckA
k.
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Lemma 21 Let the functionf(z), z ∈ C, be analytic in−µ for givenµ ∈ R+,0 and denote withR the
radius of convergence of the Taylor series expansion off around−µ. For a given matrixA ∈ Rm,m define
B := µI +A and assume that the spectral radiusρ(B) ofB satisfiesρ(B) < R. Then we have

f(A) =
∞∑
k=0

f (k)(−µ)
k!

Bk.

Proof f is analytic in−µ and this implies that the radius of convergence of the Taylor series expansion

of f around−µ is greater than zero,R > 0, and thatf(z − µ) =
∑∞

k=0
f (k)(−µ)

k! zk for all |z| < R.
We defineg(z) := f(z−µ). Henceg has a power series expansion in the open disk|z| < R which contains,
by assumption, the spectrum ofB. Therefore, by Lemma20, holds

g(B) =
∞∑
k=0

f (k)(−µ)
k!

Bk.

It remains to show thatf(A) = g(B). Let ΓA be the closed contour defined byΓA = S2(−µ, (R +
ρ(B))/2). Thenf is analytic inside of and onΓA and the spectrum ofA is inside ofΓA. Let ΓB :=
S2(0, (R + ρ(B))/2). Then the same statements hold with respect to the functiong and the matrixB. By
definition of matrix functions and substitution in the integral (z → z̃−µ⇒ dz → dz̃,ΓA → ΓB) we obtain

f(A) =
1

2πi

∫
ΓA

f(z)(zI −A)−1dz

=
1

2πi

∫
ΓB

f(z̃ − µ)(z̃I − (µI +A))−1dz̃

=
1

2πi

∫
ΓB

g(z̃)(z̃I −B)−1dz̃ = g(B) .

�

A.3 Computer programs

The programs written in preparation of this thesis are available from the author. The source files are doc-
umented such that users with some experience in FORTRAN77 can test the programs and modify them to
their needs. Here we only give a short description on what is available.
We have implemented the semi-discretization of TDR systems in a collection of FORTRAN77 subroutines.
These subroutines are subdivided in a set of model independent and a set of model dependent routines. The
model dependent subroutines provide details about the initial data, the parameters, the taxis and reaction
functions, and the boundary conditions of a specific TDR model. These subroutines can easily be modified
by a user with some FORTRAN77 knowledge so that new models can be implemented.
The splitting schemes (AMF and OPS) for the solution of the MOL-ODE are also implemented in FOR-
TRAN77. Their calling sequence follows the quasi-standard which is generally adopted in coding ODE
integration methods. Hence they can also be used for the solution of ODE systems which do not specifically
arise from semi-discretizations of TDR systems.
A command-line based simulation environment written in FORTRAN77 exists. This couples the semi-
discretization with the time stepping schemes. The system allows to run simulations and comparisons easily
by issuing a few commands or running a script file. Intermediate and final solutions can be saved in a format
readable by Matlab. Some.m files are provided which can be used to read the output files of the simulation
environment into Matlab and prepare the visualization of the data (for one and two spatial dimensions).
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