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Abstract  We describe and evaluate a method of lines (MOL) technique for the simulation of taxis—diffusion—
reaction (TDR) systems. These time-dependent PDE systems arise when modelling the spatio-temporal evolution of
a population of organisms which migrate in direct response to e.g. concentration differences of a diffusible chemical
in their surroundingghemaaxis). Examples include pattern formation and different processes in cancer development.
The effect of taxis is modelled by a nonlinear advection term in the TDR system (the taxis term).

The MOL-ODE is obtained by replacing the spatial derivatives in the TDR system by finite volume approximations.
These respect the conservation of mass property of the TDR system, and are constructed such that the MOL-ODE
has a nonnegative analytic solution (positivity). The latter property is natural (because densities/concentrations are
modelled) and highly desirable (because negative solution values might turn stable reaction terms into unstable ones).
Diffusion and reaction terms can be replaced by standard approximations to ensure positivity, and we employ upwind-
ing in combination with limiter functions in the discretization of the taxis term to ensure positivity of the MOL-ODE.
The discretization near the boundary of the spatial domain is discussed. The appropriateness of the spatial discretiza-
tion is demonstrated for a simple taxis problem (we provide the exact PDE solution).

The MOL-ODE is stiff and of large dimension. We develop integration schemes which treat the discretization of
taxis and diffusion/reaction differently (splitting). We employ operator (Strang-) splitting and/or the approximate
matrix factorization technique. The splitting schemes are based on explicit Runge-Kutta (ERK) and linearly-implicit
W-methods. Positivity and stability of the integration schemes are investigated. We identify an ERK method with
favourable positivity properties. A corresponding W-method is constructed. Numerical experiments with a variety
of splitting schemes applied to some semi-discretized TDR systems confirm the broad applicability of the splitting
schemes and lead to a selection of efficient methods for the class of TDR systems. These methods are more efficient
than (suitable) standard ODE solvers in the lower and moderate accuracy range.

Altogether, the numerical technique developed is appropriate and efficient for the simulation of TDR systems.

Zusammenfassung Wir entwickeln und evaluieren eine Linienmethode (MOL) flie Simulation von Taxis—Dif-
fusions—Reaktions (TDR)-Systemen. Diese zeitaigiigen PDE-Systeme treten bei der Modellierung damiich-
zeitlichen Entwicklung von Populationen von Organismen auf, die sich in direkter Antwort auf z.B. Konzentrations-
unterschiede in diffundierenden Chemikalien in ihrer Umgebung bewegieenidaxis). Beispiele sind Musterbil-
dungsvor@nge und verschiedene Prozesse in der Tumorentwicklung. Der Taxiseffekt wird durch einen nichtlinearen
Advektionsterm im TDR-System modelliert (Taxisterm).

Die MOL-ODE erhalten wir durch Ersetzen der Ortsableitungen im TDR-System mit Finite-Volumen-Approximatio-
nen. Diese beachten die Massenerhaltungseigenschaft des TDR-Systems und sind so konstruiert, daf3 die MOL-ODE
eine nichtnegative analytischedtung besitzt (Positidt). Letztere Eigenschaft ist matich (da Dichten/Konzen-
trationen modelliert werden) und sehiimschenswert (da negativésungswerte stabile Reaktionsterme in instabile
verwandeln Bnnen). Diffusions- und Reaktionsterm@ninen durch Standardapproximationen ersetzt werden, um die
Positivitat zu sichern. Wir verwendeldpwindingin Kombination mitLimiterfunktionenin der Diskretisierung des
Taxisterms, um die Positidt der MOL-ODE zu erzielen. Die Diskretisierung in deatidd des Randes desumli-

chen Gebiets wird diskutiert. Die Angemessenheit damlichen Diskretisierung wird anhand eines einfachen Taxis-
problems demonstriert (wir geben die exakte POisiing an).

Die MOL-ODE ist steif und hochdimensional. Wir entwickeln Integrationsverfahren, welche die Diskretisierung
des Taxisterms und der Diffusions-/Reaktionsterme unterschiedlich behandeln (Splitting). Wir verwenden Operator-
(Strang-) Splitting und/oder die Technik der approximierenden Matrixfaktorisierung. Die Splittingmethoden basie-
ren auf expliziten Runge-Kutta (ERK) und linear-impliziten W-Methoden. Positivind Stabiliét der Integrations-
verfahren werden untersucht. Wir identifizieren eine ERK-Methode mit vorteilhaften Péggaigenschaften. Eine
zugeldrige W-Methode wird konstruiert. Numerische Experimente mit einer Vielzahl von Splittingmethoden ange-
wendet auf einige semidiskretisierte TDR-Systemediiggtn die breite Anwendbarkeit der Splittingmethoden und
fuhren zu einer Auswahl effizienter Methodéimr tlie betrachtete Klasse von TDR-Systemen. Diese Methoden sind
effizienter als (geeignete) Standard-ODE-Integratoren im unteren und mittleren Genauigkeitsbereich.

Insgesamt wurde eine geeignete und effiziente numerische Technik zur Simulation von TDR-Systemen entwickelt.
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Chapter 1

Introduction

Mathematical models are an important tool in most areas of science and research. They form the
basis for the control of many technical systems (chemical engineering, space crafts, airbags, ...),
they can improve the efficiency of such systems and hence, for example, reduce environmental
stress. They are also used for short and long term prediction of weather and climate changes.
The application of mathematical models in the life sciences is another, rapidly growing research
activity. Models are used here to understand biological systems (e.g. pattern formation and growth
processes) and to gain insight into otherwise nonobservable mechanisms. Further, mathematical
models describing phenomena from the life sciences can be used for educational purposes. There
are three main tasks of mathematical models:

e reproduction of real life processes,
¢ prediction of results under the variation of internal and external parameters,
e discovery of new results about the model which then must be validated in reality.

Models cover the reality partially only in order to be manageable and not to draw away attention
from major processes to minor processes. The art of modelling is to carefully select variables and
processes which are significant for the modelling goal and to neglect unnecessary details. Models
of small, understandable systems are then combined to produce more and more complex models.
In this thesis we are concerned with the development and evaluation of numerical techniques for
the simulation of taxis—diffusion—reaction (TDR) systems from mathematical biology. Hence, we
already assume that the model exists; new models are not derived in this work.

TDR systems are time-dependent partial differential equation (PDE) systems composed of a taxis
equation describing the evolution of the density function of a population of organisms and a
reaction—diffusion (RD) subsystem describing the evolution of concentrations of substances in the
surrounding of the organisms. The existence of a density function for the population of organisms
implies that this population is sufficiently large within the considered spatial domain. An impor-
tant characteristic is that the organisms can sense spatial differences in the concentration of the
surrounding substances and migrate in direct response to this signal — a process known as taxis. If
the migration depends on the concentration field of a soluble (diffusible) chemical then the process
is termedchemotaxisif this chemical is bound to some underlying substratum (e.g. extracellular
matrix) then we talk aboubaptotaxis(other forms of taxis are also possible e.g. galvanotaxis,
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phototaxis, gravitaxis44]). A substance may have either an attracting or a repelling influence
on the migration of the organisms depending on the interactions between them. In both cases, the
migration due to taxis is proportional to the gradient (in space) of the substance. Beside this migra-
tion due to taxis, the organisms might also relocate by random motility (modelled the same way as
molecular diffusion). In this work we assume that the effect of random motility is small compared
to the effect of taxis. In Chaj2we derive a TDR conservation equation and make precise the class
of TDR systems which are to be considered in this thesis. Following this we present some TDR
systems from the literature describing biological processes. Later, Ghap.present simulation
results of these models. There we consider the models with random motility and, additionally, also
with the random motility term in the taxis equation switched off. There exist also processes which
rely on taxis but cannot be described by the TDR systems considered here. The green turtle, for
instance, is supposed to travel over 1000 kilometres to reach its breeding place through detection
of an unknown chemical source originating the8d][ Obviously, we cannot define a sensible
density function for the organisms, i.e. the turtles, in this case because their number is too low to
justify this. Here we would have to take into account the effect of taxis on each single turtle and
trace their movements individually. This case is not considered here but the coupling of discrete
and continuous (RD subsystem) structures is an interesting area for future research.

In Chap.3 and Chap4 we develop and describe the numerical technique for the simulation of
TDR systems. We follow the Method of Lines (MOL) which decouples the discretization of spa-
tial and temporal derivatives in the equations. The first step of the MOL is the spatial discretization
(semi-discretization) leading to an initial value problem (IVP) for an ordinary differential equation
(ODE) system, the so-called MOL-ODE. This part is described in CBaphe space- and time-
dependent density and concentrations in the TDR system are naturally nonnegative (we, in fact,
require this property from the model). Therefore, we also require that the semi-discretization leads
to a MOL-ODE with a nonnegative analytic solution (positive ODE system). We cite from the
literature conditions on the ODE system which guarantee that this requirement is satisfied. There-
after, we detail the discretization of the taxis, diffusion, and reaction terms of the TDR system.
We follow the finite volume methodology to derive the semi-discretization. Whereas diffusion
and reaction terms are replaced by standard approximations, the taxis term deserves special atten-
tion. The taxis term is present in the taxis equation only and the solution of this equation (density
function of the organism population) generally contains steep moving fronts. A simple central or
even upwinding (taking the flow direction into account) discretization would introduce oscillations
and subsequently negative solution values into the solution of the MOL-ODE. Firstly, this would
contradict our requirement that we want a nonnegative solution of the MOL-ODE, and secondly,
negative solution values might turn a stable reaction term into an unstable one, and this in turn
gives rise to numerical problems when solving the MOL-ODE. Therefore we use limiter func-
tions in an upwinding discretization of the taxis term such that a nonnegative solution is enforced.
This approach is widely used in the numerical solution of nonlinear conservation laws and is here
applied to the taxis term in an adapted form. This way we combine second-order accuracy with
nonnegativity of the solution. Nonnegativity can also be achieved by first-order upwinding without
limiter function but this would require an excessive amount of spatial grid points in order to attain
a reasonable accuracy and is therefore considered to be no option. Some numerical evidence for
this statement is provided in S&:4, where the taxis discretization is evaluated for a simple model
problem (Model 1). We also detail the semi-discretization of the TDR system near the boundary.
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Altogether we arrive at an IVP for the MOL-ODE which is guaranteed to have a nonnegative solu-
tion. The MOL-ODE is (in general) a second-order consistent approximation of the TDR system
(in a finite difference sense). This system is of very large dimension (at least if the spatial dimen-
sion is greater than one and this is the case for all biomathematical models considered here) and it
is stiff due to the diffusion (and possibly also due to the reaction) terms.

Chap.4 is devoted to the development of appropriate integration schemes for the solution of the
MOL-ODE. Stiffness requires the application of implicit (or linearly-implicit) schemes because
otherwise we would face a severe time step size restriction and hence unacceptable computational
costs. On the other hand, an ODE system with the taxis discretization as right-hand side function
is efficiently solved by explicit methods. This also avoids problems with the possible nonexis-
tence of derivatives (Jacobian matrix) of the taxis discretization (due to the non-differentiability
of the limiter function) which are required in implicit integration methods. We try to combine
both demands by employing splitting methods for the solution of the MOL-ODE. The first ap-
proach (AMF — approximate matrix factorization) is based on linearly-implicit Rosenbrock-type
W-methods (henceforth in short W-methods). These schemes are applied to the full MOL-ODE
and they use an inexact Jacobian matrix of the right-hand side function. This matrix is obtained
by, firstly, neglecting the taxis discretization in the Jacobian computation, and, secondly, approxi-
mately factorizing the matrix in the stage equations such that linear systems with this matrix can be
solved efficiently (banded matrices). The second approach is operator (or Strang-) splitting (OPS).
OPS splits the right-hand sideof the MOL-ODE into a sum of two parts: the discretization of the
taxis termF;, and the discretization of the diffusion—reaction terms(each with corresponding
boundary treatment). Then ODESs with either part as right-hand side are solved in turn. If the right-
hand side isFy then an explicit Runge-Kutta (ERK) method is used. If the right-hand sid¢ is

then a W-method with AMF is employed. The splitting techniques AMF and OPS are introduced
in Sec.4.2 (following a general introduction to Runge-Kutta (RK) and Rosenbrock-type methods
in Sec.4.1) and detailed with specific methods in Sé& and Sec4.6. All methods derived are
accurate of order two. This is a suitable compromise for the class of problems under consideration:
first-order methods are too inefficient because they require too many time steps to reach a certain
level of accuracy and higher order methods might fail to be efficient because of a lack of smooth-
ness in the solution of the MOL-ODE. Set3and Sec4.4discuss methods which are applied or

are fundamental in the AMF and OPS schemes from the point of positivity and stability, see the
next paragraph for a more detailed description. Finally, 8&adescribes alternative methods for

the solution of the MOL-ODE and different splitting approaches.

The spatial discretization of the TDR system results in a MOL-ODE which is guaranteed to have a
nonnegative analytic solution (positive ODE system). Our aim is to have this property also for the
numerical solution of the MOL-ODE. The most troublesome part of the MOL-ODE with respect to
this is the taxis discretization. In Sek3we discuss the positivity of numerical schemes if applied

to positive ODE systems. We start with the positivity of RK and Rosenbrock-type methods applied
to problem classes of linear, positive ODEs. The foundations of this theory are already given by
Bolley and Crouzeix ] in 1978. We give a characterization of the classiéfmatrices which

are important in their theory. After presenting the main results of their theory, we give relaxed
conditions on the problem class such that the results of Bolley and Crouzeix are still valid if we
consider ERK schemes only. This theory is then applied to lower order ERK methods (especially
three-stage, second-order methods) and lower order Rosenbrock-type methods. Next we consider
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the positivity of RK methods applied to subclasses of positive, dissipative problems. The respective
positivity theory is developed by Horvat27]. We identify a unique three-stage, second-order
ERK method (we refer to this method as RK32) with optimal positivity properties on this problem
class (i.e. RK32 is the unique method from this method class which can take the largest time steps
without violating the nonnegativity of the numerical solution for all problems from the problem
class). Finally, we consider the positivity of ERK methods applied to general nonlinear, positive
ODEs based on work by Shu and OsHe?][and Hundsdorfer et al3[L]. We again identify RK32

as an optimal method. This approach is directly applicable to the spatial discretization of the taxis
term, see Sect.4. In Sec.4.4 we investigate the specific positivity and stability properties of
RK32 applied to the ODE system arising from the discretization of the taxis term. We compare
our findings with results obtained for standard second- and third-order ERK methods.

In Chap.5 we apply the splitting methods devised to the biomathematical models described in
Chap.2, and discuss the results obtained. We also compare with two general purpose integration
schemes for large, stiff ODE systems (VODPK and ROWMAP). We also describe the dynamics of
the solution for each of the biomathematical models. The most important quantity in all models is
the density function of the organisms and this function is depicted for different output times.

The main findings and conclusions are finally summarized in Ghaphere we also give possible
future research directions in the field of numerical simulation of TDR systems.



Chapter 2

Taxis—Diffusion—Reaction Systems

In this chapter we define the class of taxis—diffusion—reaction (TDR) systems which are the subject
of this thesis. To this end, we start in S2cl with the derivation of a conservation equation which
contains all the important terms to model taxis, diffusion, and reaction. Whereas diffusion and
reaction are often discussed in the literature, taxis terms came into the focus of numerical interest
just recently. However, they form important ingredients of many models from mathematical biol-
ogy. The problem class of this work is made precise in S€. Finally, in Sec.2.3, we give a
collection of TDR models from mathematical biology. The purpose of this collection is to illustrate
the importance of TDR models in mathematical biology on one hand, and to have a few examples
for testing and evaluation of the numerical schemes which are developed in the following chapters
on the other hand. The collection contains also a simple taxis test problem (Model 1), where we
can provide an analytic solution.

2.1 Derivation of a TDR conservation equation

Let ] C R, , be atime interval anfl C R’ d € N, be a bounded, nonempty (spatial) domain
with piecewise smooth boundary such that the Gaul3 integral theorem can be applied. For any
subdomain of) we assume the same properties.

We describe the derivation of a conservation equation for a scalar quansige e.g.41, p. 14],

[1, p. 54]. The resulting equation contains terms which model the effects of taxis, diffusion and
reaction. We denote with(¢,x) the density of@@ atx €  in space and at € [ in time such

that |5 u(t,x)dx is its total mass in any subdomaih c Q at timet € I. The total mass of

Q in Q can only change in time by production or destructiortofvithin Q or by a flow of
through the boundarg2 of €. Lets(¢,x) € R denote the source density @fat (¢, x) (positive
for production and negative for destruction) and, x) € R< be the velocity field associated with
Q at(t,x). (The functionss andv may also depend om(¢, x) or its spatial derivatives.) The rate
of mass flow or mass flux @ at (¢, x) is given byu(¢, x)v(t,x) and the function

f(t,x) := u(t,x)v(t,x)

is the flux function. The change of total masgpfn any subdomaif c ) is hence given by

u(t,x)dx = — }é@ £(t,x) - n(x)doS +/ s(t,x)dx . (2.1)
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Here,n(x) is the outer unit normal at the poist € 9. The minus sign in front of the surface
integral in the equation ensures that an inflow ifitteads to an increase of the masséf (2. We
remark that the surface integral in EQ.1) reduces in one spatial dimensidn € (x;,x,) CR)
to a point evaluation of the flux functiorfi; f(t, x)n(x )doQ = £(t, x,) — £(t,x;). EQ. (2 Dis an

integral form of the conservation equation fgr If, for instance, the source = 0 in Q and the
flux £ = 0 on 90 then the total mass a@ in 2 is conserved. This conservation property should
carry over to numerical approximationsaf B

If u,v € C'(I x Q) then, under the smoothness assumption on the boundérywé can apply
the integral theorem of GauR} to the surface integral in Ed) @nd obtain

4 u(t,x)dx = — / V- f(t,x)dx + / s(t, x)dx. (2.2)
dt Ja o o

We can differentiate under the integral, and if we further assume that®(1 x Q2) then it follows
thatu satisfies the transport equation

Owu(t,x) + V- £(t,x) = s(t,x), forall (t,x) € I xQ, (2.3)

the differential form of the conservation equation ¢@r
For sufficiently smooth functions, s andv, both the integral and the differential form of a conser-
vation law are equivalent. However, we will make use of the convenient notation of the differential
form even if the assumptions an s andv are not satisfied. We will understand Eg.3) in the
sense of Eq.4.1) for arbitrary subdomaing C € in this case.
Eq. 2.3 becomes a scalar conservation equationfdrv ands area priori known functions or
if they are functions of; itself. In this case, Eq2(3), together with suitable initial and boundary
conditions, can be solved on its own. More frequently we encounter the situation that the velocity
v or the sources depend on other conserved quantities—the conservation equations for all these
guantities constitute a system of conservation equations. The models from mathematical biology
considered in this work are such systems.
We consider models with two different flux types. First, there is diffusive flux which we assume,
according to Fick’s law, to be proportional to the gradientuotself (D > 0 is the diffusion
coefficient ofu)

fp(t,x) = —DVu(t,x).

This definition is based on the assumption that the quaftig/transported (diffuses) from regions

of high density to regions of low density.

A second type of flux appears if the velocity field depends on the gradient of the density or con-
centrationc; (¢, x) of some other quantity. This so-called tactic flux is given by

fr, (t,x) = u(t,x)p1(c(t,x))Ver (t, x) .

We include the functiomp; which may depend on various quantities (with concentrations collected

in the vectorc = (¢;, co, ..., ¢;)T) to model the strength of the tactic respons€db the quantity
described by:; and also to model whether higher densitigsttract {; > 0) or repel p; < 0)

the quantity@. Tactic fluxes feature in a broad range of models from mathematical biology, e.g.
pattern formation and growth processes. A class of such models is considered in this work. Othmer
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and Stevens6] derive different forms of tactic flux functions based on continuous time, discrete
space random walk models. The PDE models are obtained in the so-called diffusion limit. Of
course, diffusion and taxis may happen at the same time&Jamay be under the tactic influence
of several substances. Such an extension of the wodkgnyjith multiple tactic cues is treated in
[47]. We assume that the total flux is the sum of the individual contributions and arrive altogether
at the flux function
l l
f(t,x) =fp(t,x) + Z fr,(t,x) = =DVu(t,x) + u(t, x) ij(c(t, x))Ve;(t, x) .
j=1 j=1
The source term(¢, x) often represents chemical reactions of the quantities describedbgic
of a system beside explicitly modelling sinks and sources. Therefore) depends most often
nonlinearly on the density of the quantities of the systemsi&ex) = po(t, x, u(t, x), c(t,x)) .
Finally, we arrive at the following integral form of the taxis—diffusion-reaction equation:for
which follows from Eq. 2.1) by inserting the derived flux expressif(t, x) and the source func-
tion (we neglect the dependencewgt and the normal vectar ont andx in the notation):

d
— udx——j{
dt Jg 2%

2.2 Problem class

1 doQ + /~p0(t,x,u,c)dx. (2.4)
)

I
—DVu+u ij(c) Ve;
j=1

In this section we specify and describe the class of problems which we want to solve numerically.
Let Iz := (0,7),T € R,, be atime interval an@ C R d € N, a bounded, nonempty spatial
domain with piecewise smooth bounddi§ =: I'.

Consider real-valued, time- and space-dependent functiong) andc(t, x)

n:IprxQ—R andc: Iy x Q — R,
which denote the density of a population of organisms and a vectocaicentrations of certain

substances (e.g. chemicals), respectively. We study the taxis—diffusion—reaction systéimfpr
andc(t, x)

l
on =eAn —V - (n ij(c)ch) + po(t,x,n,c), (2.5a)
j=1 (t,x) € I x Q,
o,c = DAc + go(t,x,n,c), (2.5b)
with initial conditions
TL(O,X) = TL()(X) ) C(()?X) = CO(X> ) X e Qa (2.5¢)
and boundary conditions (fer and forc; , j = 1(1){, with D; > 0)
n(t,x) = oW(t,x)>0, (t,x)elpxTY,
¢t,x) = aP(t,x)>0, (t,x)elpxTY,
I O 0) (2.5d)
—eVn+n (>, pi(€)Ve ) ) - n(x) = ap'(t,x) <0, (t,x)€Ip xTy’,
—D;Vei(t,x)-n(x) = a@(t,x) <0, (t,x)elpxTY



Heree € R, , is a constantD = diag(Dy, D,,...,D;) € R is a constant, diagonal matrix
with nonnegative entries, and : R' — R for j = 1(1)], po : Ir x Q@ x R"*! — R and

go : It x Q x R — Rl are given functions. The prescribed functionsandc, define the initial
data of the system and the functicmg) andag),j = 0(1)l, its boundary data. No boundary data
is prescribed for; if D; = 0. We consider two different kinds of boundary conditions (BCs) for
all otherc; and forn: Dirichlet BCs onl“g) C I’ with prescribed (nonnegative) state and flux BCs
on r;@ C I' with prescribed (inflow) flux (Wherﬁ(g) N F}j) = 0). Further,Fg) U r;@ = T for
7>0 andfg) U F}O) C I' (if € > 0 then equality is required also fgr= 0).

Some general remarks on the meaning of the parameters and functions i8.Bjogg in order.

e The population density diffuses with diffusion constant > 0, or exhibits no diffusion if
¢ = 0. This models the random motility of the organisms described by the density

e The chemical concentrationsd¢rcan also change by diffusion, or they can be non-diffusible
(then the corresponding diagonal entryinis zero).

¢ A characteristic property is that the evolutionroflepends on gradientc; of the chemical
concentrations—a process known as taxis which adds (nonlinear) advection terms to the
population equation. The strength and the sign of the tactic influence of each chemical
concentratiorr; on the population density is described by the functiop; (c). If p;(c) >
0 thenc; acts as an attractant (the population migrates up gradients, i.e. towards higher
concentrations;); ¢; is a repellant fop,(c) < 0.

e We focus on systems where the speed of migration of the organisms in the population in-
duced by diffusion is much smaller than the speed of migration induced by the taxis term, or
where there is no random motility (diffusion) in the population at all.

e The reaction term (¢, x, n, c) accounts for creation or loss of entities in the population due
to interaction with themselves or with the chemicals. The reactions between the chemicals
and the population are modelled through the funcgigft, x, n, c).

Eqgs. .5 are valid on general domairis in space. However, in this work we will restrict our
attention tad-dimensional unit cubeQ in space and finite time intervalg,

Q:=(0,1)",deN, andlr = (0,T), T€R, . (A1)

The numerical schemes are describeddoe N but in the numerical experiments we restrict
attention tod = 2.

Only nonnegative solutions of the systed) make sense from a modelling point of view because
the functions: andc describe densities or concentrations and as such they are naturally nonnega-
tive. Therefore, any model about the temporal and spatial developmerdaradc should respect

this property and allow only nonnegative solutions. We assume henceforth:

The problem 2.5), together with the functions, parameters, and initial and boundary ?RB
prescribed has a unique, nonnegative solutiai, x), c(¢,x)) for all (¢, x) € I x €.
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2.3 Collection of TDR models

We describe four mathematical models which are of the general form of a TDR system given
in (2.5). Model 1 (taken from%8]) is actually not really a TDR system but a scalar taxis equation.
We derive an analytic solution for this problem. The availability of this solution makes this model
ideal for evaluating the taxis discretization algorithm which is developed in the following chapters.
The other three models arise from the study of certain aspects of tumour growth. They describe
the processes of tumour induced angiogenesis (Models 2 and 3) and tumour invasion (Model 4).
There exist other mathematical models describing biological processes which fit into the frame-
work of TDR systems. Pattern formation of bacterial populations often relies on chemotactic cues,
see e.g. 39, and the study of the aggregation phase of the social amDatigostelium dis-
coideum e.g. 6, 25], is an example from developmental biology. Further, the onset of capillary
sprout formation is also modelled as a TDR systemih) fnd recently in 42].

2.3.1 A simple taxis test model (Model 1)

This model is taken from38] and will be used to evaluate our taxis discretization algorithm. In
the model, a scalar quantity (density is simply advected up the gradient of an attractant with
fixed concentration profile. The problem is posed on the unit sqtase(0, 1)2, and for the time
interval I with 7" = 0.021. The attractant concentration is radially symmetric with ce(%r,e})

ci(t,x) == ¢(r(x)) = 1 — cos(4nr(x)) forall (t,x) € Ir x Q,

where )
1\2 1\2) 2
) = (o1 = 1)+ (2 - 3)%) "
is the distance ok from the centre of). This corresponds to a ring of chemoattractant with

maximum at- = 1, see Fig2.1 (left).
The model equation is given by

on=-V- (nVcl), for (t,X) e I x €. (26)

We use parametrized initial data with parameétet ~ < 0.1

1 r<04—k
n(0,x) =n,(r(x)) =< 2 (1+cos(=2HE7)) : 04—k <r<04+k . (2.7)
0 r>04+k

This initial data has continuous first derivatives in space i¥ 0. The parametex controls the
steepness of the front in the initial data. We use two different values in our experimmeats:09

for a fairly smooth initial condition, see Fig.1(right), andx = 0 which is a jump initial condition

with jump atr = 0.4. The initial condition and its gradient are zero foralb % if k <0.1. We
assume no-flux boundary conditions for This is consistent with the initial data, and, together
with the given attractant concentration, implies that the boundary has no influence on the solution
in 2. As time proceeds, the populatienmoves up the gradient @f and tends to cluster into a
ridge atr = 1 wherec; has its maximum value.

9



7
9%

950"

: )
& Bsss dalnardy
TR

Z N

\ Pe=s: \\\ﬁ
SN
RTINS

N eansaniney DS
S

Figure 2.1:Concentratiorc; of attractant chemical (left) and initial population density for x = 0.09
(right) of Model 1.

The solutiomn of this problem is radially symmetric and we defing, r) such thati(z, r(x))
n(t,x) for all x € 2. Further denote(r) :=¢'(r) = 4w sin(47r). Then we obtain

V- (nVe) =V - (noVr)

= (vO,n + V") Vr - Vr + nvAr

= v0,n + v 4+ nor !,
and hence Eq2(6) is equivalent td),n + v0,n = — (v +vr~') 7 for r > 0. This equation can
be solved by the Method of Characteristics (see Chap.in the appendix; we can restrict our
attention tor € [0, 3]) and we obtain for smooth initial dafa(r) := (0, r) andr # 0, 1,1
- e s(t,r) sin(4ms(t, 7))
alt,r) = no(s(t,r)) = () (2.8)
with

1 tan(2
s(t,r) = o arctan ( an(2mr) >
T

N int(4r) + (int(4r)
exp(1672t) 4
whereint(z) is the integer part of € R, . Forr =0

)
11

mod 2)

1402

we obtain by continuity
n(t,0) = no(0) exp(—167°t), 1 (¢, 1) = o (1) exp(167°t), 7 (¢, 1)

generalized solution, see e.¢1] p. 21].

Mo (3) exp(—167°t) .
Hence we have a smooth (classical) solution fot all0 whenever the initial data is differentiable.
If the initial data is non-differentiable at some points then Bgg)(can still be evaluated and is a

2.3.2 Mathematical models related to tumour growth processes

The development of a primary solid tumour begins with a single normal cell becoming transformed
as a result of mutations in certain key genes. This transformed cell differs from a normal one in

several ways, one of the most notable being its escape from the body’s homeostatic mechanisms,
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leading to inappropriate proliferation. An individual tumour cell has the potential, over successive
divisions, to develop into a cluster (or nodule) of tumour cells. Further growth and proliferation
leads to the development of an avascular tumour consisting of approximételglls. This cannot

grow any further, owing to its dependence on diffusion as the only means of receiving nutrients
and removing waste products. For any further development to occur the tumour must initiate
angiogenesis — the recruitment of blood vessels. The tumour cells first secrete angiogenic factors
which in turn induce endothelial cells in a neighbouring blood vessel to degrade their basal lamina
and begin to migrate towards the tumour. As it migrates, the endothelium begins to form sprouts
which can then form loops and branches through which blood circulates. From these branches
more sprouts form and the whole process repeats forming a capillary network which eventually
connects with the tumour, completing angiogenesis and supplying the tumour with the nutrients it
needs to grow further. During the process of vessel formation, the endothelial cells may secrete
enzymes which degrade the local tissue (extracellular matrix) thus facilitating the whole process.
Indeed this process of matrix degradation through enzyme secretion is also carried out by the
tumour cells themselves. This enables active migration by the tumour cells into the tissue to take
place. The combination of tumour vascularization (i.e. the blood vessels connect with the tumour)
and active tissue invasion means that there is now the possibility of tumour cells finding their way
into the circulation and/or lymph system, and subsequently being deposited in distant sites in the
body, resulting in metastasis.

The complete process of metastasis involves several sequential steps, each of which must be suc-
cessfully completed by cells of the primary tumour before a secondary tumour (a metastasis) is
formed. The mathematical models which we will present in the following two subsections fo-
cus specifically on the processes of tumour-induced angiogenesis (endothelial cell migration in
response to external stimuli) and tumour invasion of tissue (cancer cell migration).

2.3.2.1 Mathematical models of tumour-induced angiogenesis (Models 2 and 3)

Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a crucial compo-

nent of many mammalian growth processes, including embryogenesis and wound healing. It is

also a key component in the metastatic cascade enabling a solid tumour to progress from the rel-
atively harmless avascular growth phase to the potentially lethal vascular growth phase. In recent
times a variety of models have appeared focusing on different aspects of the process. A compre-
hensive account of the complete angiogenic process may be fouifland references therein.

We summarise the main events of angiogenesis as:

e the secretion of chemicals known as tumour angiogenic factors (TAF) by cancer cells,

¢ the response of endothelial cells (EC) in any neighbouring blood vessels to these chemicals
through migration and proliferation,

e interaction between the ECs and the extracellular matrix (ECM),

¢ the formation of new individual capillary sprouts, which in turn connect up to form a new
vasculature.

We describe below two models of tumour-induced angiogenesis developed by Chaplain and Stu-
art [8] and Anderson and Chaplai@][

11



Model 2:

The model of Chaplain and Stuaf][focused on two key variables, namely EC densitand

TAF concentratiorr;. The model assumed that TAF was secreted by tumour cells (located on one
edge of the domain boundary), diffused into the surrounding tissue, was taken up by the ECs via
cell-surface receptors and underwent some natural decay. The motion of the ECs was assumed
to be influenced by two factors only: random motility (analogous to molecular diffusion) and
chemotaxis in response to TAF gradients.

The random motility of the ECs is described by a diffusion term with consgtant 0, the cell
random motility coefficient. The chemotactic flux function was taken to be of the simple form
P1 = Xo, Wherey is the (constant) chemotactic coefficient. The ECs were also assumed to undergo
death at ratgf and proliferation in a logistic manner, with proliferation constanthe latter was
assumed to be governed by a threshold TAF concentratiore. there was no proliferation for

c1 < ¢; and logistic proliferation for; > ¢;. The non-dimensionalized model equations are then
given by:

random cell
motility chemotaxis proliferation death
" '\

PN ~~
om = eAn — V-(xon Vea) + max{0,¢; — cjtun(l —n)— pn

(2.9)

tak I
diffusion uptake by cells

=~ ancy =~
atcl = ACl —

Chaplain and Stuart estimated the model parameter from experimental data and they are as follows:
e=0001, a=10,y=1,A=1, xo=0.75, p =100, =4, ¢; =0.2.

The above parameter estimation shows that the cell random motility is much smaller than the
chemotaxis. Hence, we also consider the system without cell random motility+.®.

We consider this model on the unit squére= (0,1)? in space. The initial TAF concentration is
given by

c1(0,x) = %cos (%xl) (4 — 2x1 + cos (27r (% - xg))) exp (— (1 — cos (%xl))) )

This assumes a single tumour (TAF source) located on the left edge of the spatial demai)(

The boundary condition af; is of no-flux type on the upper and lower boundary and of Dirichlet-
type (time-independent and consistent with the initial data) on the left and right boundary. The
initial EC density is zero iff2 except in five blocks near the right boundary = 1, where the

initial values are one. These blocks have a widtl).66 in the z;-direction and a width).07 in

the z,-direction. Their centres are the poin@s975, 0.2), (0.975,0.36), (0.975,0.5), (0.975,0.64),
and(0.975,0.8). This initial EC density assumes a parent blood vessel along the right boundary
with five initial capillary sprouts developed already. The boundary condition of the right
boundary is of Dirichlet-type (time-independent and consistent with the initial data). We assume a
boundary condition of no-flux type for on the remaining part of the boundaryit> 0. If e = 0

then no boundary condition is prescribed on the remaining boundary (outflow boundary.2ig.
gives plots of the initial data for EC density and TAF concentration.
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Figure 2.2:Initial conditions for Model 2. The smooth function is the initial TAF concentratipand the
function which is zero except for the blocks on the right boundary is the initial EC density

The final simulation time for the described setups@re 1.2 for e = 0 andT = 1 for ¢ = 0.001.
Thereafter the assumptions underlying the model do not hold anymore because the blood vessels
have reached the tumour and other processes take over.

Model 3:

The model of Anderson and Chaplaig] [extended and developed the model of Chaplain and
Stuart B] by including the interactions between the ECs and the ECM through the matrix macro-
molecule fibronectin. The model therefore consists of three equations governing the evolution of
the three variables, EC density TAF concentration:;, and fibronectin concentratian. Once

again the model assumed that the motion of the ECs (at or near a capillary sprout-tip) is influ-
enced by random motility and chemotaxis (in response to TAF gradients), but also by haptotaxis
in response to fibronectin gradients.

Once again, the random motility of the ECs at or near the sprout-tips is described by a diffusion
term with constant > 0, the cell random motility coefficient. However the chemotactic flux
functionp; was taken to depend on the TAF concentratjari¢;) = 7, (in contrast to being
constant in Model 2), reflecting the saturation of TAF receptors on the cell surface. Finally, the
influence of fibronectin on the ECs was modelled by the simple form of a constant haptotactic flux
functionp, = po, Wherep, > 0 is the (constant) haptotactic coefficient. The model omitted any
proliferation terms for the cells since in this case attention was focused on the ECs at the sprout-tips

(where there is no proliferation).

The equation for fibronectin contained a degradation term (the ECs degrade the fibronectin via
enzymes) and a production term since the ECs themselves produce and secrete fibronectin which
then becomes bound to the ECM and does not diffuse. Therefore the equation for fibronectin
contains no diffusion term/§, = 0).

Following the results of Chaplain and Stuai\here it was noted that the TAF diffusion occurred

on such a fast timescale so as to set up a quasi-steady state concentration profile, the TAF equation
contains only one term—that of uptake or binding of the TAF to the EC surface receptors. The
initial quasi-steady state concentration profile is provided through the initial conditions for the
TAF.
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Hence the complete, non-dimensionalized system of equations describing the interactions of the
ECs, TAF and fibronectin as modelled by Anderson and Chapithis |

chemotaxis
random motility - - haptotaxis
~ =~ oh ——
on = eAn — V. X Ve | = Ve (pon Vea),
1+ ac
uptake 210
- < (2.10)
t€1 = — T nc,
production  gegradation
=~ —~—
Oico = [Pn — Hne

Anderson and Chaplaiz] estimated as many parameter values as possible from experimental data
and used the following set in their simulations

e =0.00035, vo=0.38, pp =034, a =0.6, 3=0.05, y=0.1, n=0.1.

Although Anderson and Chaplai][considered random migration of the ECs, here we also con-
sider the system without this random motion, ke= 0. This can be justified biologically: prior

to stimulation by the TAF, the ECs are migrationally inert and are simply attached to one another
while lining their parent vessel. Also we can see from the estimated parameter vai6<(035,

Xo = 0.38, po = 0.34) that the (scaled) random migration coefficient of the ECs is several orders
of magnitude smaller than the taxis coefficients.

We consider the model on the unit squate= (0,1)? in space with the parent vessel located
along the left edgey; = 0, and the (circular) tumour located on the opposite edge;r 1. We
assume that three (initially separated) capillary sprouts have formed already;neaf). Let

2= (v1—1)% + (20 — %)2 The initial conditions are depicted in Fig.3and are given by

a2 1 2
n(0,x) = exp (_O 061) max {O,sin (77 (6x2 — 5))} ,

1, 0<r<0.1, o1
c1(0,x) = v \2 , Wherev := M,
(m) , 01<r<1, V5 —1

3 x?
c2(0,x) = 1 &XP (—ﬁ) :

Itis assumed that the cells, and consequently the capillary sprouts, remain within the foenain
therefore no-flux boundary conditions ferare imposed on the boundaries of theWe consider
a final timeT" = 10 for this model.

2.3.2.2 A mathematical model of tumour invasion (Model 4)

A crucial part of the metastatic process is the ability of the cancer cells to degrade the surrounding
tissue or extracellular matrix (ECM). The matrix is highly dynamic, at any one time being actively

secreted and degraded. A number of specific matrix degradative enzymes (MDES) have been
described and have been repeatedly implicated in all of the key steps of tumour invasion and
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Figure 2.3:Initial conditions for Model 3. The initial EC densityis depicted in the left plot and both, the
initial TAF concentratiorc; and the the initial fibronectin concentratios are in the right plot.

metastasis. A comprehensive description of the invasive process and its place in the metastatic
cascade is given in Anderson et &l] &nd references therein. We describe below the recent model
of Anderson et al.3] who developed a mathematical model of tumour invasion based on generic
solid tumour growth, which for simplicity was assumed to be in an avascular state.

In the model three variables were considered: tumour cell densiBCM densityc;, and MDE
concentratiornz;. The main assumptions of the model were that the tumour cells produce MDEs
which degrade the ECM locally and that ECM degradation results in the production of molecules
which are actively attractive to tumour cells (e.g. fibronectin) and which then aid in directed tumour
cell motility (haptotaxis).

The model considered tumour cell motion to be driven only by random motility and haptotaxis in
response to adhesive and/or attractive gradients created by degradation of the matrix. To describe
the random motility of the tumour cells a diffusion term with random motility coefficient 0

is assumed. (Anderson et aB] [additionally considered nonlinear diffusion but here we only
consider the linear case.) The haptotactic flux functipngvas taken to be of the simple form

p1 = po, Wherepy > 0 is the (constant) haptotactic coefficient. The model did not consider any
proliferation of the tumour cells.

Active MDEs were assumed to be produced by the tumour cells, diffuse throughout the tissue and
undergo some form of decay (either passive or active). The ECM was assumed to have no maotility
and was degraded by the MDESs upon contact.

Hence the complete system of equations from the model of Anderson & degcribing the
interactions of the tumour cells, ECM and MDEs is

random motility haptotaxis
~ =~ ——N—
on = eAn  — V- (npVer),
degradation
—~ (2.11)
8tcl = — 1 cC1
diffusion roduction  decay
—~ p/\
Oica = dolAcy + “an — [ey .

Anderson et al.3] undertook a range of simulation experiments based around the following set of
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Figure 2.4:Initial heterogeneous ECM density used in Model 4.

parameter values:
e =0.001, dy =0.001, po=0.005, =10, « =0.1, 3=0.5.

Prior to invasion, the tumour is a compact mass of cells with little or no local migration. Once
invasion is triggered, the migration of the cells is very focused and direct. Hence we also consider
the above system without random motion of the tumour cellgi=.0.

We study the tumour invasion model in two spatial dimensions on the unit s€uare(0, 1)?

and assume that a tumour is situated in the centre of the domain. In contrast to the case of only
one spatial dimension, this enables us to consider the effect of spatial heterogeneity explicitly.
In particular we can consider a heterogeneous ECM density which is more representative of real
tissue. To this end a hypothetical heterogeneous initial ECM density used as depicted in

Fig. 2.4, [3]. The initial condition for tumour cell density and MDE concentration, are chosen

as

r(x)?
n(0,x) = exp <_0‘0025> ) r € [0,0.1]
0, r>0.1

1
c2(0,x) = §n(0,x),
wherer(x)? = (z; — 0.5)% + (22 — 0.5).
We assume that tumour cells and MDEs remain withiand therefore impose no-flux boundary

conditions forn andc, on the boundary. We consider a final simulation tifie= 15 in the
numerical simulations.
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Chapter 3

The Method of Lines and Space
Discretization

We obtain numerical approximations of the solution of problen®)(by following the Method

of Lines(MOL). This approach is widely used in the numerical solution of PDEs and means that
we consider the discretization of the spatial operators and the time integration separately. The
space domaif is covered by a grid which defines computational cells (grid cells). We emphasize
that these grid cells should not be confused with biological cells. The spatial derivatives in the
system 2.5 are then discretized on the grid by using approximate average valuearadc in

the grid cells (following the finite volume methodology). We describe the grid in $&and the
discretization of the various terms in the right-hand side of Bdp) {n Sec.3.3. The result of this
procedure is an initial value problem (IVP) for a huge system of stiff, nonlinear ODEs (one ODE
for each grid cell and component of Eg&.432.5h), the so-called MOL-ODE. It is the aim of

this chapter to obtain a MOL-ODE which is a suitable approximation of the PDE mad&gl The

time integration of this ODE will be discussed in the next chapter.

For our application it is important that the solution methods preserve the positivity of an exact
solution in its numerical approximation. This means that a numerical solution remains nonnegative
for all t € I whenever the initial data is nonnegative and the exact solution is nonnegatfive in
(this is ensured by our assumptiok?)). Violating positivity is highly undesirable because it may
turn stable reactiong(, go) into unstable ones which in turn may lead to numerical instabilities.
This especially shows up with the logistic source term in Model 2, and we discuss this problem in
the presentation of our numerical results in CHag-or this reason, we will require that the spatial
discretization results in a MOL-ODE with a nonnegative analytical solution whenever the initial
values are nonnegative. In S&2 we give conditions on the right-hand side of an ODE system
which guarantee positivity of the exact solutigpoéitive ODE systens

In Sec.3.3we describe an appropriatenite Volume MethodFVM) to discretize the systen2(5)

in space. Finite volume schemes appear to be very suitable for the problem class under considera-
tion because they are based on the conservation forn2E) ad the numerical schemes obtained

with this approach are naturally conservative, i.e. no mass is produced or used up “by the scheme”.

We also pay special attention to the discretization near the domain boundary and show that the

resulting discretization in space results in a positive ODE system. Finally, irB3ewe evaluate

the spatial discretization of the taxis term in Eg.5) by considering the solution of Model 1.
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3.1 Spatial grid

Let Q = (0,1)¢ be the spatial domain of our problem class as defined in Z&c.We use an
equidistant grid having grid width := %, M € N, in each spatial direction and define grid
pointsx;, wherei := (iy,...,iq) € Z := {1,2,..., M} is ad-dimensional multi-index, by

(oo

Each grid poink; is the centre of an associated control volumalefined by
Qi = ((7,1 — 1) h,Z1h> X ((Zg — 1) h,lzh) X X ((Zd — 1) h,Zdh) .

The set of all control volumeg(; }ic7, forms a partition of the domaif, [4]. For notational
convenience it is useful to assume that we have also control volumes outsidetnéh we define
and denote in an analogous fashion as the elements of the partition itself.

3.2 Positivity of the spatial discretization

We stated in the introduction that the result of the spatial discretizatio8.9fi6 an IVP for a
huge system of stiff, nonlinear ODEsRi". We denote this IVP in the same form as later used in
Chap.4:

y'(t) = F(t,y(t), t>toeR, y(t)) =y € R™. (3.1)
This IVP represents the semi-discretization of probl@rB)(as a result of the first step of the MOL.
The vectory(t) contains the (time-continuous) approximations to the averages of the solution

of system 2.5) in all grid cells. We have already emphasized that we are seeking approximate
solutions which are nonnegative. We make this requirement preciseF’ Ibeive the property

(see 7))

F'is continuous and3(1) has a unique uncontinuable solution forfglke R and ally, € R™.
(3.2)
We can now define the terms positive ODE system and positive semi-discretization.

Definition 1 The ODE system in3(1) as well as the IVP3.1) are calledpositiveif F' has the
property 3.2 andy(¢) > 0 holds for allt > ¢, whenevet, € R andy, > 0.

If a semi-discretization of a given PDE results in a positive MOL-ODE then this semi-discretization
is called positive.

The following theorem from37] characterizes positive ODE systems (see ad$) |

Theorem 1 Let F' satisfy conditiong.2). The IVP 8.1) corresponding td¥ is positive if and only
if for all t € R and any vectow € R, and alli = 1(1)m holds

UZ'ZO = E(t,v)ZO.
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We denote withP the class of functiong’ for which the corresponding IVE3(1) is positive.
The right-hand side of the MOL-ODE of our model syste?n5( will be a sum of functions.
Therefore the following corollary is useful.

Corollary 1 If F,G € P thenforalla, 3 € R, ; holdsalF' + G € P.
If the right-hand sidé" of an ODE is linear then we can easily check positivity of this ODE.

Corollary 2 Let F'(t,y) = Py + ¢g(t) with a continuous functiog satisfyingg(¢) > 0 for all
t € R and a matrixP € R"™™. Then holds" € P if and only if the off-diagonal elements 6f
are nonnegative.

3.3 A semi-discrete finite volume method

After the preparations in the previous two sections we are now going to describe the finite volume
discretization in space of problerd.f). However, to avoid too difficult notation, the description

will not be given for the problen(5) itself but for a scalar equation. Consider for a scalar function

u: Ir x Q — R the PDE

I
Ou = DAu —V - (uij(c)ch) +po(t,x,u,c), for(t,x) € Ir xQ, (3.3)
=1

wherec : IrxQ — R p; - R — Rfor j = 1(1)[, andp, : I+ x QxR+ — R are given functions
andD > 0is a constant. We describe the discretization of the right-hand side of this problem on the
spatial grid defined in SeB.1 The scalar equatiorB(3) can be regarded as a prototype equation
for the model systen?(5) because it contains all the relevant terms25)— taxis, diffusion, and
reaction. The application of the method to probléhd)is then straightforward.

Let ©; be an element of an partitiof2; },cz of {2 (not necessarily the partition described in
Sec.3.1), and denote the (time-continuous) cell average ofer(; by u;(t),

1
(1) ::m/ﬂu(t,x)dx, ieT.

The integral form of the conservation la®.8) is the starting point for the finite volume scheme.
We know from Eg. 2.4) that the evolution of the averagegt) is exactly governed by

da; 1 1 l 1
T ol L DVu - ndaﬁi—m - u (ij(c)ch) -ndoS); + ol /Q polt,x, u,c)dx.
=: Hp(u(t,);1) —- HT@;(t; SH)! =: Hp(u(t,");1)

(3.4)
We denote withH (u(t, -);4) the right-hand side of the exact cell average equatiod).( It may
depend onu at timet in the whole domairf) (we denote this by:(¢,-)), and also orc(t, -),t,
andx € Q,. Further,Hp, Hr, and Hy are the parts off corresponding to diffusion, taxis, and
reaction, respectively. In short we write for the above equation

Sn(t) = H(u(t, ):3) = Ho(u(t, ):0) + Hr(u(t, ):0) + Ha(u(t, i), i€ 7. (35)

i=1
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Henceforth we use the following notations. With(¢) we denote an approximation to the cell
averageu;(t) and collect the approximations for all cells of the partition in the vedfdt).
Similarly, 6(¢) denotes the vector of the exact cell averaggs). Also, for each concentration
¢i(t,x),j = 1(1)I, we denote witle; ;(t), C;(t), ¢;(t), andC,(t) the exact and approximate cell
average in grid cell, and the vectors of these quantities for all elements of the partition. Finally,
denote withC.; := [Cy;,Ca,...,Ci)" ande.; := [¢14,Coy, - .., 14)" the vector of all approxi-
mate and exact concentration averages in gridicell

The idea of the finite volume approach is to approximate the right-hand side d3.BEgby using
cell averages ofi in neighbouring cells of2;. Let H(U(¢); i) be an approximation téf (u(t, -); )
which depends on finite number of elements df(¢) (and possibly on the timg space points
x € ,;, and on a finite number of components©f(¢),; = 1(1)l). Then we obtain an ODE
system for the evolution of the approximate cell averages

S Ut = HU@:), ieT, (3.6)
the so-called MOL-ODE. The initial values for this ODE are provided as approximatigrns

the cell averages of a given initial condition foin 2.

In the next subsections we describe the construction of appropriate approxinfdiioms,-, and

‘Hr to Hp, Hr, and Hg, respectively. Finally, Se@.3.4deals with the special requirements for

the approximations in cell®; close to the boundary d. However, before going into details,

we shortly review some important concepts for the analysis and evaluation of the discretization in
space.

In Sec.3.2 we have already given a condition which the ODE syst81f) (must satisfy to be a
positive ODE system. We will ensure that this condition holds for the approximationsHr,
andH r and hence also for the sum.

We now look at the spatial accuracy &.§) with respect to §.5). Therefore we define for each

grid cell ©2;,7 € Z, of the partition the global errar;(¢) in the exact solution of the ODE system
(3.6) with respect to the average ovey of the exact solution of3.5), i.e.

and further the local truncation error in célllte(t;i), as the difference between the discrete
operatorH and the exact operatdf applied to a smooth solutian(t, x) of (3.5), i.e.

lte(t;i) := H(u(t);1) — H(u(t,-);1).

Subtracting 8.5) from (3.6) and addindg) = H(u(t);:) — H(u(¢); ) yields the error equation

Cealt) = ltelt:) + (H(U(1): 1) — H(u(t);1)) (3.7)

We have the following estimate for the norm of the global error veetoy, see also41, p. 196].
We consider the discrete!-norm of vectorsy = (v;);e7 (on a partition{(2; };c7 of Q) defined by
[v][1 == D icr [€2][vi]. Here|Q;| is the Lebesgue measure@f (and|2| the measure df).
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Theorem 2 Leth be the maximum diameter of the grid celisof a partition{€2;},c7 of Q. If the
approximationH(U(t); ¢) is Lipschitz continuous, i.e. for eac¢ke Z we have for allU,, U, that

[H(Uy;4) = H(Uy; d)| < LUy = Usls,

with constantZ € R, independent of ¢ 7 andt ¢ I, and if the local truncation error is of
orderp in h, i.e. there exists a constaht € R, (independent of € Z andt¢ € Ir) such that for
alie”

\lte(t;i)] < KhP,

then the global error satisfies farc I
K p
le(®)lls < lle(O)llx exp(¢[QL) + — (exp(t|Q|L) — 1) - 1.

This implies, if the initial error satisfie§e(0)[, = O (h?), that the semi-discrete approxima-
tion (3.6) is pth order accurate, i.e|e(t)||; = O (k) on Ir.

For the proof of this theorem we use a Gronwall lemma.

Lemmal [1, p. 99] Let! := [ty,7] C R be an interval, andy(t), h(t) and M(t) be scalar,
continuous and nonnegative functionsorif y(t) satisfies

y(t) < h(t) + /t M(T)y(r)dr forallte
then

y(t) < h(t) + /t Cexp ( / tM(a)da) M(r)h(r)dr forallte I.

Proof (of Theorem?2) All relations in this proof hold for alt € I-. We obtain from the error
equation 8.7) the equality

t) = e0) + [ ltelr:) + ((U()s0) — H(a(r))
and using the assumptions of the theorem
0] < es )] + Kt + [ Lie)l dr.
Multiplying this equation with(2;| and summing over afl € 7 yields
le@)llx < lle(0)llx + |2KRE+ /Ot QI L{le(r)]|, dr.

Now we can apply the Gronwall Lemmiawith y(¢) := ||e(t)||1, h(¢) := ||e(0)||; + |Q|KhPt and
M(t) := |Q|L. The statement of the theorem follows by evaluating the integral in the inequality
obtained from this lemma. O
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Whereas the discussion in this section up to here is valid for any par{ifiph -7 of a bounded,
nonempty spatial domai?, we consider henceforth the domain and partition defined in B&c.
Hence() is ad-dimensional unit cube and we refer to the elements of the partjtinh;cr with
d-dimensional multi-indices

If po = 0in Eq. 3.3 then we obtain that the total mass of the quantity with densityS2 changes

only through boundary fluxes and if these fluxes are zero then this total mass is conserved. We
would like to have that for the total mass of the solution?®) a discrete conservation property is

true. Therefore we consider fét = Hp or H = H discretizations irconservation formthat is

H(U(t);1) == —

S

d
> (F(U@):H) = F(U0);i - ey)). (38)

where 7;(U(t);i) approximates the average of the (diffusive or tactic) flux fromto ;.
through the common cell face 6t; and (;,.,. From the definition ofH{ we see that thel-
dimensional problem is essentially broken dowmr tmne-dimensional problems due to the special
structure of our partition of2. We note that we make use of the auxiliary grid cells outsid@ of
in the notation of Eq.3.8). Now, summing Eq.3.8) over alli € Z, we see that on the right-hand
side all terms cancel except for thage(U(¢); i) which approximate fluxes through the boundary
of Q. If these boundary fluxes are zero then we obtain with BEd) (

d
72 Uit) =0,

ieZ

and this means that the total mass of the initial data is conserved.

In the following we require that the flux approximatiosfs(U(¢);i) are Lipschitz continuous.
Further, we omit the time-dependence of approximations and simply writé/gimstead ofU; (¢).
We now discuss the approximation of taxis, diffusion, and reaction part of3Eg).ig turn.

3.3.1 Taxis

We give an approximatiok(U; i) in conservation form to the taxis pdtt(u (¢, -); 1) in EQ. 3.5)
in this section and mainly follow the ideas of Hundsdorfer et&l],[see also the paper by Sweby
[57] and the book by LeVequet]l]. We start with the conservative formula

d
Ho(Us) =~ 3 (T(U) ~ T (Ui — ). 39)

where the functior?;(U; i) approximates the average of the tactic flu 22:1 pr(c)0y,cr ) from

grid cell ; to ;,., through their common cell face. We follow the state interpolation approach
to define the approximatiori5(U;i). A possible flux interpolation approach (for a specific TDR
system) is described i f].

We make the approximatidfy (U; i) on a given cell face dependent on the sign of the local velocity
perpendicular to this face, that is dependent on the flow direction (upwinding). Upwinding is
a standard technique in the discretization of advection terms and the taxis term in our problem
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class can be regarded as advection. In our case, the velocity in spatial diredsi@iven by
22:1 pr(c)dy,ci. Letu;; denote an approximate average of this velocity on the common cell face
of ; and(2;,. We set

l
C C.; ite; C i+e; -C i
Z ( + + ) k,i+ Jh k, 7 (310)
k=1

and define the sign-dependent, approximate tactic flux by
7;(U; i) := max{0, v; ;}S; (U;i) + min{0, v; ;}S; (U;1). (3.11)

Here,S;(U; i) andS; (U i) are the state interpolants. They approximate the average value (state)
of » on the common cell face d; and(;,,. If we choose the state interpolants to be linear
combinations of components &f then we can achieve approximation order greater than one but
the resulting discretizations would not be positive and oscillations are introduced into the solution,
see B1, 13]. We want to combine a higher approximation order with positivity and therefore use
so-called limiter function®(r) in the definition of the state interpolants:

. Ui + L0(ri ) (U — UiLe,) forU; — Ui_e, # 0

+ . . 1 2 1,7 1 1 ej 1 1 ej

85 (UsH) '_{ U otherwise (3.123)
—(17-3) — Ui+ej 1(1)( 1+e ])(Ui+ej - Ui+28j) for Ui+ej - Ui+2e]- 7é 0

S (U;i) .—{ Ve otherwise (3.12b)

The limiter function® depends on amoothness monitor function We define this smoothness
monitor for our grid functiorlJ by

Uite, — Ui

—_—t 3.13
Ui — Ui, ( )

Tij o=

We see that;; ~ 1 in smooth, monotone regions &f along thejth coordinate direction and
ri,; < 0if U is alocal extrema oU in the jth coordinate direction. The stencils of the approximate
taxis flux7;(U; i) depending on the local velocity are depicted in Bid.

Qi QiJrej Qi

—
- ] - - ]
1

i+ej i i—i—ej i+2€j

Qi+ej

— | —
1 I

— |
)

i— ej
Figure 3.1: Stencils of;(U; i) for positive (left) and negative (right) local velocity ;.

We require that the limiter functiof® is Lipschitz continuous (such that the resulting taxis dis-
cretization will also be Lipschitz continuous) and has the following properties ¢with), a free
parameter):

d(1) =1, (3.14a)
O(ry=0forr <0, 0<P(r)<do, and o(r) <2r forr>0. (3.14b)
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The property 8.149 is important for the order of the discretization and the propertie8.i¥H

are sufficient for positivity, see Lemma&sand3. Increasing the value @fimproves the accuracy

of the discretization near peaks in the solution, $4¢ [A good choice is) = 2.

In order to make the definition of the discretization complete, we need a limiter funttammd

also a strategy for the treatment of cells close to the domain boundary. The first topic will be
discussed in the end of this subsection after the presentation of the following two lemmas on
accuracy and positivity of the state interpolation approach. The second topic is discussed for the
problem class4.5) in Sec.3.3.4

Lemma 2 Letu(t,x) andc;(t,x), j = 1(1){, be smooth functions and regatd and C; as point
approximations ta: and ¢; in the centresk; of the grid cells®;, i.e. U; = u(t,x;) andC;; =
c;(t,x;). Consider grid cell€;, i € {3,4,..., M — 2}¢, (sufficiently far away from the boundary
0% so that we can apply the state interpolation approach).

If the limiter function® is Lipschitz continuous and (1) = 1 then the local truncation error (in
a pointwise sense) of the the state interpolation approach is second-order in the gridvigth

l

Hr(U;i) + V- (u(t,xi) Zpk(c(t,xi))Vck(t,xi)> =0 (h?),

k=1
in all grid cells €2;, where for eacly € {1,2,...,d}
1. the local velocities; ; andv;_, ; have the same sign (uniform flow regions), and

2. U, Uiye,; are no local extrema in thgth coordinate direction if; j, v; ¢, ; < 0 andU;, U;
are no local extrema in thgth coordinate direction ib; ;, vi_, ; > 0.

In cells(2; where these two conditions are not satisfied we have a local truncation @rtay.

Proof  Taylor expansion. O

Lemma 3 Let the limiter functiond satisfy the condition3.140. Then the ODE system

4
dt

obtained with the state interpolation approach is a positive ODE system.

Ui(t) = He(U(1):1), i€,

Proof ~ We restrict our attention to a single value pfe {1,2,...,d} in (3.9). If we prove
positivity for this case then we also have positivity of the full system by Corollary

We assume in the following thdd > 0. The application of the formulas8(12 in cells close

to the boundary requires valués, where the multi-index ¢ Z because they correspond to grid
cells outside the partition @ (and hence these values are not containdd)inWe assume in the
following that these values are computed frémand given boundary data and that the resulting
values are nonnegative. Then, without loss of generality, we need to consider sidfisiently

far away from the domain boundary only.
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Formula @.11) generates four cases depending on the signg;andv; ., ;. We prove the result
only for Case (l)vi;, vi_e,,; > 0; the other three cases follow similarly.
Letwv;;, vi_e,; > 0 (Case (I). This leads to

hWHr(U;i) = — (01,8 (Usi) — vie, ;S (Usi— ;) . (3.15)

This results in four different cases again which we consider in turn now.
Case (1a) Ui — Uie; # 0andU;_o, — Ui_ge;, # 0
This leads to

Ui — Vie; jUi—e; v

—2 P §
Ui _ Ui_ej + 2 (T 7.7)

o Ui—ej 7j (b<7ni—e]' ,j)

2 ri_e] 2J

hHr(Usi) = — [Ui’j } (Ui = Ui—e;)

and forU; = 0 to

Vice; j P(Tie; )

2 Tie,

W (U ) — — [ T Yagr,) -

5 } (—Ui—e,)-

Hence the condition of Theorefris fulfilled if the expression in the square brackets is nonnegative
and this is ensured by the limiter properti8si@h).

Case (lb) U; — Uifej =0 andUi,ej — Ui,er 7£ 0

This givesr;_.,; = 0 and hence, fot/; = 0, hH7(U;i) = vi_e, ;Uie,;, and the condition of
Theoreml is satisfied.

Case (Ic) Ui —Ui_e; #0andU o, — Ui 2¢; = 0

This, together withi; = 0, results in

WHr(U3d) = = [vie,y + 20(riy)| (~Uie,),
and the expression in the square brackets is again nonnegative becatig€pf (
Case (|d) U; — Ui—e]- =0 andUi_ej — Ui_Qe]- =0
Here we obtain, fot/; = 0, hHr(U;1i) = vi—e;,jUi—e,;, @and the condition of Theorefhis satisfied.
Altogether we have that(; € P and the corresponding ODE system is positive. O
We now give a few limiter functions which we will use in our numerical tests. There are more
functions available in the literature, see ey, [31, 35).

e Van Leer limiter®y , (r):

<

_rtlr]

1+ |r|
This limiter function satisfies the condition3.{49, and @.14H with § = 2. &, (r) is a
smooth function except in the origin= 0.

(I)VL(’/’) .

o Koren limiter ® 4 (r):
O (r) := max {O, min {2r, 0, Kl/g(r)}} , 0 =2,

where . 4
— K K
K.(r):= )
(r) st
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This limiter function also satisfies the conditior3s¥49 and @.14b but is less smooth than
the van Leer limiter. For the choick(r) := K (r) we obtain the so-called-methods which
include the second-order upwind discretizatian£ —1), second-order central discretiza-
tion (v~ = 1), and the third-order upwind biased discretizatian=£ %). However, these
schemes do not satisfy the conditioBsl4h and are prone to introduce wiggles and nega-
tive solution values in the numerical approximations. Therefore we only consider the limited
version®x with x = 3.
e First-order upwindb (r):

®y(r):=0

This leads to the standard first-order upwind discretization and a positive sctgefre)((s
satisfied). However, the approximation order is only o8e143 is not satisfied).

3.3.2 Diffusion

In this section we present an approximatiip (U i) in conservation form to the diffusion part
Hp(u(t,-);i) in Eq. 3.5. We start with the conservative formula

Hp(Usi) =

SRS

d
Y (D;(Usi) = D;(Usi—¢y)), (3.16)
j=1

where the functiorD;(U; i) approximates the average of the negative diffusive flux from grid cell
Q; 10 4, through their common cell fadg, i.e.

/D@xjudF, I':= Qi N Qi—i—ej .
r

] 1
D](U; 1) = W/FDVU . ndF = hd*l
We define H
D;(Ui) =+ (Uire, = Uh) - (3.17)
Substituting this into Eq.3.16) leads, in a pointwise interpretation, to the standard second-order

central difference approximation of the diffusion operator. Further, we also obtain a second-order
approximation of the evolving cell averages.

Lemma 4 Letu(t,x) be a smooth function. Then the local truncation error of the approximation
(3.16 3.17) to the exact diffusion term p (u(t, -); i) is second-order,

lte(t,i) := Hp(a(t);i) — Hp(u(t,-);i) = O (h*) forallie {2,3,...,M — 1}
Proof  We only show that the local truncation error in one particular coordinate direg¢tion
second-order. The statement of the lemma follows then immediately.

We denoteX” := [—-h/2,h/2)* for k € N, and, forx € X*7!, denotesx € X* the vectorx
with an additional zero inserted in théh position. Further, for eack ¢ X*, there exist unique
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x*(x) € X¥~1andr(x) € X such thatk = x*(x) + r(x)e;. Then we obtain:

1

— W . D(azj u)ej l‘ldaﬁi

D
= h—/ u(t,x; + x + hej) — 2u(t,x; + x) + u(t, x; + x — he;)dx

D h h .
7d » (8x]u <t X; + e]+X) — Oz;u <t,x126j+x)>dx
/ u(t, x; + x)dx — ﬁh/ B 07, ult, x; + X)dx + O (h?)
h

u(t,x; +X%) + 3xju(t,xi + X" )rdx — h/

9% u(t,x; + ﬁ)dx) + 0O (h?)
Xd—1 J

u(t,x; +X)dx + 0 — h/
Xd—1

azju(t, x; + ﬁ)dx) +0 (hQ)

The integral overagju vanishes because of symmetry reasons. This proves second-order accuracy
of the discretization. O

Lemma5 The ODE system

Ui =Hp(U(1):i), i€T,

is a positive ODE system.

Proof The ODE system is linear and the system matrix has nonnegative off-diagonal entries.
Hence positivity follows with Corollary. O

3.3.3 Reaction
We approximate the reaction pdft; of Eq. (3.5 with Hz(U; 1) defined by

Hr(U;i) := po(t, xi,Us, C.5) . (3.18)
The local truncation error of this approximation computes as
lte(t,i) =Hp(u(t);i) — Hr(u(t,-);i)
—polt, xs, @5 (2), €.4(1)) — ﬁ /Q ol () e, )

:ﬁ /Q .[po(t,xi,ﬂi(t),é.,i@)) — polt, x, u(t,x), c(t, x))]dx
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for continuously differentiable(t, -), c(¢, -) andpy(t, -, -, -) because fok € €2; we have
po(t, x, u(t,x),c(t,x)) = polt,x;, u(t,x;),c(t,x;)) + O (h) = po(t, x;, u;(t), Ci(t)) + O (h) .

We see that this only leads to a first-order approximation in a finite volume interpretation. We are
satisfied with this approximation for two reasons.

¢ If we regard the average quantitié$(¢) and C.; as point approximations af(¢,x;) and
c(t,x;) then 3.18 corresponds just to the correct evaluation of the source teffmsgh and
IS exact.

e The order of the approximatioB (L8 could be improved by making it dependent on average
values in neighbouring cells. If we assume that a wave with steep front travels across the
domain then using other values théipnandC. ; in (3.18 could trigger a reaction in cefp;
although the wave has not reached the Qelet and hence lead to wrong solutions or wave
speeds.

The positivity of the ODE systend; U;(t) = Hx(U(t);i) depends strongly on the properties of
the functionp, and can be characterized by the following lemma.

Lemma 6 The ODE system

d

;Ui = Ha(U():1), i€Z,

is a positive ODE system if and onlyyif(¢,x,0,c) > 0 for all (¢,x) € I x 2 and all possible
values ofc.

Proof  The statement follows immediately with Theordm O

3.3.4 Spatial discretization of problem class (2.5) in boundary cells

We consider here computational cells adjacent to the boundary 6i. Specifically, we fix a
spatial directionj € {1,2,...,d} and consider a cell € 7 with i; = 1 (left boundary cell) or
i; = M (right boundary cell). The boundary face @f in the jth coordinate direction which is
part of 92 is denoted by". We definev = +1 such thatve; is the outer normal vector adn with
respect td;, andi? such that;s is the grid cell to thdeftof I', i.e. v = —1, i =i — e, for

i; = landv = 1,i? = ifori; = M. Finally,x; := x; + vZe; is the centre of’. We discuss
the spatial discretization of problem clagsg in such cell€?;. We do not consider the prototype
equation 8.3) here because we take some advantage of the special struct@rb)of (

We start with the equation for the chemical £ € {1,2,...,l}. If the diffusion coefficient
D, = 0 then we have no boundary conditions (BCs) éprand the spatial discretization of the
corresponding equation is well defined. L@t > 0 in the following. We assume that we have
either Dirichlet or flux BCs prescribed dn In order to evaluate the diffusion discretizati@1(6)

in the cellQ; we must provideD;(Cy; i) ~ = [ D0y, c(t, x)dT .
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(i) Dirichlet BC for ¢ ¢ (t,x) = a}'f) (t,x) >0forx eI

Here we have the state of on I" prescribed. Let@}’f) = hd r Jrap’ (t,x)dl'. We only want

to usea%) and the value€,; andCy;_,, to approximate the average of the negative diffusive
flux on I because then the stencil of the diffusion discretization inicillthe same as for any
interior cell of the partition (this will become important in the time integration process, see the
next chapter). The best what we can achieve under this restriction is to set

Dy
D,(Cy: iP) :_V?)_h( 8a' 4 90, — Cri )

This results in a first-order accurate discretization of the diffusion patt;inFor the spatially
independent BCs of the models from SB@we simply havei%“) = ag“) (t,x}). We see that this
definition results in a positive semi-discretization of the diffusion part beoajjé% 0.

(i) Flux BC for c¢,: —DVeg(t,x) - n(x) = a})(t x) <0Oforx eT.

In this case we have the diffusive flux @f throughl" prescribed (inflow becausepk) < 0). Hence

the average of the negative diffusive flux oveis

D;(Cy; i) = ——hd”_l /Fa;i“> (t,x)dl’ =: —vayy .

Again we can approximate by the point value in the centre an®get;; i) := ya},) (t,x7).
Both definitions are equivalent J;fff) is independent ok and this is the case for all models de-
scribed in Sec2.3. The result is a positive semi-discretization becaugeg 0.

Let us turn the attention to the population density equatiomfoow. If there is diffusiong > 0,
then we need an approximati@ (N;i”) ~ 7 [.d,,n(t,x)dl so that we can apply the dif-
fusion discretization3.16) in ;. Further in order to apply the taxis discretizatidh9j in grid
cell i, we require an approximate of the average of the taxis flux thrdygte. 7;(N;i?) ~

hd rfon <Zk 1 pi(c )%ck) dI’, and also possibly (depending on the upwind direction) an ap-

proximate valueVi ., of the average of the state ofin the (outS|de of the domaif) grid cell
Qiyve, for the computation of the state mterpolatlsfi (N;i% — ve;), see Eq.§.12. We again
assume that we have exactly one type of BC prescrlbdd on

(iii) Dirichlet BC for n: n(t,x) =o' (t,x) > 0forx e I.

LetagalnaD = hd r Jpap a9 (t,x) dI". We defineD;(N; i?) by the same approach as in (i). Hence
we set (leading to a posmve semi-discretization of the diffusion pam)n

D;(N;iP) = —Vgih (—8@([?) +9N; — Ni*llej) :

For the definition of7;(N; i”) we approximate

1 1
a1 (Z Pr(c)0y ck> dl' = Vgy—— = /Fndf = vavag) =: T;(N;i?),

whereu,, Is a suitable approximation of the veloc@;:l pr(c)0z,cr ONT. The definition ofv,,
depends on the BCs of tlg onI" again and we proceed as follows.

29



e If ¢, satisfies a Dirichlet BC off, i.e. ¢ (t,x) = ag“)(t,x), then we defing;, := dg) and
approximate, ¢y, (as in (i) but withD;, = 1) by ¢, := —v5= (=8¢ + 9Cki — Chiive, ) -

o If ¢, satisfies a flux BC of’, i.e. —D, Vi (t,x) - n(x) = osz)(t,x), then we define the

approximation ob), ¢, ascy ., = —yDikaEf) and set;, := max{0,Cy; + I/%Ek’m]}.

e If no BCs forc, onT" are prescribed (and if we cannot deduce values. @i its derivative
on the boundary otherwise) then we simply use linear (positive) extrapolation afd:set
maX{O, Ck,i — %(Ckﬁ_yej — Ck,i)} andEmj = —V%(ij — gk)

Letc := [¢1, Co, ..., ¢]". Then we define the average velocity, by

l

Vav ‘= Z Pk (E)Ek,x] s

k=1

which completes the definition f (IN; i%). Finally, we assume that the stateroin Qiyve, iIsthe
same as on the Dirichlet boundary pArand therefore approximafe;, .., by

—(0
Ni+l/e]' = OCE))

It can be shown (by a tedious calculation using the definition of the state interpolants and properties
of the limiter) that ifuvavdg) < 0 then, with the given definitions, the semi-discretization of the
taxis part in€); is positive. The condition roughly states thais a no outflow boundary fat.

(iv) Flux BC for n: (—EVn +n (Zﬁc:lpk(c)Vck» ‘n(x) = ag) (t,x) <0Oforx eT.

This implies onl the relation—<d,,n + n (Z;Zl Pr(c)0z, ck> = yaff)(t, X).
Fore = 0 we can simply set

_ /a(Fg)<taX)dF = Vd(Fq) and Ni-i-l/ej = N;.
r

Fores > 0 we compute an average velocity, as in (iii) and an average valu*eg) ofnonl
by first-order extrapolation (so as not to enlarge the stencil of the diffusion discretization) with
enforced positivity,

1

~(0)

= Ni - = Ni_ye. — Ni .

ap, max {0, 5 ( y ) }

Then we approximate the tactic and the negative diffusive flux by
T;(N;iP) .= vm,@g) and D;(N;i?) = 7;(N;i”) — yd;?).

Finally, we SetVi o, := max{0, N; + “2D;(N;i?)}.

Altogether we obtain a positive semi-discretization of the diffusion and the taxis part of the popu-
lation density equation also in this case becmﬁég OonT.

(v) No BC for n:

This can only be the casedf= 0 and we need approximatio$(IN; i”) andNiy,e;. We define

6453) = Nj; and then apply the formulas from ca@e .
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3.4 Evaluation of the spatial discretization of the taxis part

In this section we present numerical confirmation that the spatial discretization described is appro-
priate for the taxis part of TDR systems. We investigate whether the expected order of convergence
is attained numerically, and we also discuss the different results obtained with different limiter
functions®. Model 1 is a suitable test model for this purpose because we have an analytic solution
of this problem. Further, the solution of this problem is radial symmetric and we want that the
numerical approximation shares (approximately) the same qualitative property. Other qualitative
tests are the conservation of mass and the nonnegativity property of the solution of Model 1.

We discretize the taxis term in Model 1 with the state interpolation approach and use three limiter
functions: van Leefd ;,, Koren®, and first-orderP;. The result of this spatial discretization on

the partition{(; };c7 is the MOL-ODE. (Note that the computations of the model are executed on
the unit square — no advantage is taken by assuming that the solution is radial symmetric.)

We are concerned with comparing the exact solutiphx) of Model 1 with the exact solution

U(t) of the MOL-ODE in some norm. We do not know the exact solution of the MOL-ODE and
therefore it has to be obtained numerically. For this purpose we employ the standard ODE solver
DOPRI5 R2] with sufficiently high accuracy so that the errors of the time integration become
negligible compared to the spatial errors introduced by the discretization in space. We regard the
result as exact solution of the MOL-ODE and denote it Vlitft). On the other hand, we know the
exact (PDE) solution of Model 1 and define a reference soldtipn (t) by U,.r; := n(t,x;) for

all i € Z. We measure the differend®:= U(¢) — U,.;(¢) between both vectors in two different
norms: the maximum norm- ||, and the discreté&!-norm|| - |1,

|E|| s := r?eazx\Ei] and ||E|; = Z 1C%]| Ei.- (3.19)

ieZ

We start with assessing the numerical order of convergence of our discretization in space and
therefore choose the smooth initial functich@) with « = 0.09. Then the solution of Model 1 is

also smooth. We note, however, that the gradients in the solution become steeper with increasing
time. For this reason, we consider three final tinlBs= 0.007,7, = 0.014, and73 = 0.021.

Tyson et al. $8] consider the same final times for this model (but with parameter 0 in the

initial condition as we will also do later in this section). We compute the solution on the sequence
of partitions ofQ) with grid widthsh = h; = ﬁ, k= 2,3,...,12. In Fig. 3.2 we plot the
logarithm of the measurelfl- ||,-error (top row plots) and the logarithm of the measufed| .-

error (bottom row plots) obtained with the van Leky;, Koren ®,, and first-orderd; limiter
functions (see end of Se8.3.]) vs. the cell widthh for three final timesl” (left to right). The
corresponding (numerical) orders of convergen@nd the error constants are computed by a

least squares procedure such that, ~ Ch%, where the erroerr, is attained on the grid with

cell width hy. They are listed in Tal8.1

We see that the discretizations converge to the analytic solution but immediately recognize that
the first-order scheme cannot compete with the limited second-order discretizations. The error
attained with the first-order scheme on the finest grid is of the size of the error of the second-order
discretizations on the coarsest grid. Hence, the application of the first-order discretization for the
taxis term in our more complex biomathematical models would require extremely fine meshes to
achieve sufficient spatial resolution but this is not feasible in view of the implied computational
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Figure 3.2:Plots of the logarithm of the measuréd ||;-error (top row plots) and of the logarithm of the
measured| - ||-error (bottom row plots) against the cell widthfor different limiter functions and final
timesT (left to right) for Model 1 and smooth initial data & 0.09).

T =0.007 T =0.014 T =0.021
| - ||1-error | || - ||co-€rror | || - ||1-error || - [|co-€rror || - ||1-error Il - || o-€rror
C p C p C p C p C p C p
dy | 14.07 1.91) 19.94 1.45| 14452 1.93 634.12 152 781.16 1.85 15168 1.57
®r | 2655 2.07| 62.13 1.64| 276.04 2.09 541.79 1.51 799.18 1.89 14496 1.57
D 2.63 0.96| 13.07 0.84) 6.43 0.88/ 5452 0.69] 7.90 0.74| 246.1 0.62

Table 3.1:0Orders of convergengeand error constants corresponding to the plots of Fig.2

effort. Therefore we will not consider the first-order spatial discretization of the flux terms for these
models. Comparing the errors of the higher order discretizations we see that the discretizations
using the Koren limiter are slightly more accurate than that using the van Leer limiter. The numbers
in Tab.3.1show that these two discretizations almost attain the theoretical order twoljn the

norm and an approximate order of aboutin the|| - ||.-norm. The latter is not surprising because

the solution quickly develops a sharp (although smooth) peak and this peak is hard to approximate
in the maximum norm. We note that the error consté@htgrow considerably large for increasing

final time 7. One reason is that the constantdepends on this final time, see Theorgnmand
another is the increased lack of spatial smoothness in the solution for increasing simulation time
(see the scaling in the following solution plots to get an impression of the sharpness of the peak).
All three discretizations of Model 1 have nonnegative solutions at final time (at least for the high
temporal accuracy requested when computing these solutions with DOPRI5—achieving the same
for lower temporal accuracy requirements will be one of the topics of the next chapter). Further,
the mass of the solution is conserved up to machine precisiar) (%) in all experiments.

Finally, we look at the symmetry of the solution of the MOL-ODE. We therefore plot, for a fixed
value oft, all solution pointgx;, U;(t)),i € Z, as pointSr(x;), U;(t)) in a diagram. We plot the
analytic PDE solution4.8) of Model 1 at timet in the same manner in this diagram, and since
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Figure 3.3:Values of the analytical solution of Model 1 with smooth initial data=€ 0.09) and of the
corresponding MOL-ODE (with van Leer limiter (top) and first-order limiter (bottom)) at three different
final timesT (left to right) plotted against the distanedoetween grid point and centre of the unit square.
The spatial resolution is = 1/100. (The results with Koren limiter (not given here) are almost indiscernible
from the results with van Leer limiter.)

the PDE solution is radial symmetric, this corresponds to a single solution line in the diagram. In
Fig. 3.3 we present some of these diagrams (for details see the caption there). We see that the
solution points of the MOL-ODE are close to or even on the solution line of the PDE. Further, for

a fixed value ofr, there is no scattering of solution points of the MOL-ODE around the solution
value of the PDE for. This indicates that also the solution of the MOL-ODE is radial symmetric.

It can also be seen that the first-order approximation results in a smeared peak whereas the higher
order discretizations return a better resolved peak.
We now turn our attention to the discontinuous initial conditiern=(0) in Model 1. When looking

at discontinuous solutions then it makes no sense to measure the errorg|in|thenorm (this

error might be very large although the numerical approximation is very close to the true solution)
and we only give plots of the spatial error in tfe ||;-norm against the cell width, see Fig|4,

and the corresponding orders and error constants in3Tab.

T=0.007, k=0 T=0.014, k=0 T=0.021, k=0

log (discrete L;-error in space)
AN
n
T

log (discrete Lq-error in space)
log (discrete L,-error in space)
N

cell width h cell width h cell width h

Figure 3.4:The same as in Fi®.2 but with nonsmooth initial data; = 0, and for the]| - ||;-norm only.

The same comments as given for smooth initial data apply regarding the first-order scheme. For
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T=0.007 | T=0.014 T =0.021
C P C P C P
dy | 0.87 0.74| 2.05 0.78] 13.52 0.96
dx | 0.88 0.78/ 1.94 0.80| 13.86 0.99
D 0.88 0.56| 2.79 0.63| 5.20 0.61

Table 3.2:Ordersp and constant§’ (|| - ||1-norm) corresponding to the plots of Figj4.

the higher order methods we observe that the differences are almost negligible. The order of
convergence of the discretizations is clearly less than the theoretical order but this is expected and
due to missing spatial smoothness of the solution, 4&ef 121]. Also for nonsmooth initial data

we have nonnegativity of the solution and conservation of initial mass up to machine precision.
The plots in Fig.3.5show that the MOL-ODE solution is symmetric and they compare well with

the results obtained for the same model and initial condition in the paper by Tyson &8lal. [

We note that the computation times for the approximate nonsmooth solutions with kimitare
considerably longer than with limitar, .
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Figure 3.5:The same as in Fi®.3but with nonsmooth initial data; = 0, and van Leer limiter only.

To summarize, we discourage the application of first-order approximations of taxis terms because
an excessive amount of grid points is necessary to obtain a spatial accuracy which is comparable
to the accuracy obtained by using higher order discretizations on very coarse meshes already.
Further, the Koren limiter gives generally more accurate approximations than the van Leer limiter.
However, the differences are not very big and both limiters can be recommended for application.

In the numerical experiments in Chdpwe use the van Leer limiter function only.
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Chapter 4

Time Stepping Methods

The result of the spatial discretization (described in Cl3yof the TDR system4.5) is an IVP
for a huge system of stiff, nonlinear ODEs which remains to be numerically integrated in time. We
denote this system (repeating E§.1)) by

y'(t) = F(t,y(t), t>toeR, y(to) =yo € R™, (4.1)
and henceforth assume that the right-hand side funéfibias the property (repeating.p))

Fis continuous and4(1) has a unique uncontinuable solution forfgle R and ally, € R™.
(4.2)
The aim of this chapter is to develop and discuss suitable numerical schemes to compute approxi-
mate solutions of4.1) for timest up to a (moderately sized) final tinfe
The components of the solution vectgt) of (4.1) are the semi-discrete approximations to the
averages of population densityand chemical concentrations in the elements of the chosen
partition of the spatial domain (see S8cl). These semi-discrete approximations can be arranged
in different orders in the vectay(¢) and this choice has a significant influence on the efficiency
of the numerical schemes discussed in this chapter. For the problemZBssnd the partition
described in Se@.1, we obtain thaty(¢) has a dimensiom = (I + 1) - M<. This number can
be very large for > 1 and standard integration methods for the solutiordof)(are not always
suitable. Therefore we develop and describe robust, efficient and sufficiently accurate methods
for the numerical solution of system4.0) in this chapter. We restrict our attention to one-step
methods. These generate approximatigns to y(¢x.1) for k = 0, 1, ... in a step by step fashion,
starting withy, = y(t,), by using the approximate evolution operatoacting on the last computed
approximationyy,
Yk+1 = \D(tk,Tk)yk, /C:O,l,
The operator depends, beside on the method coefficients and the right-hand side fuRAgtion
on the timet;, and a selected time step size > 0. The temporal grid points are defined by
tre1 = ti + 7. We discuss strategies to choose the time steprgiadaptively such that we can
control the (local) error in the computation. Otherwise, we will neglect the dependence of the time
step size on the step numbefor ease of notation and write ontyin the following.
We are especially interested in the numerical integration of the large ODE sygtdinsy(means
of splitting techniques. These are based on low-order explicit Runge-Kutta methods and linearly-
implicit Rosenbrock-type methods. Both method classes and the necessary theory (local errors,
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stability, time step size control) are introduced in Seé. Following this introduction we present
two splitting techniques, approximate matrix factorization (AMF) and operator splitting (OPS),
Sec4.2

The usefulness of splitting techniques becomes evident when we write the vector funetson

F(tvy) = FO(tvy) + Fl(tv y) ) (43)

where we have collected all terms from the taxis discretizatiohpirfincluding corresponding
boundary terms) and all diffusion and reaction termg’in We separate these terms because the
systemy/(t) = Fi(t,y(t)) generally requires an implicit (or at least linearly-implicit) treatment
because of stiffness, whereas the semi-discrete taxis sygtem= Fy(¢,y(t)), which can be
regarded as a discretized nonlinear advection equation, is better solved explicitely because this is
often more efficient. The splitting techniques AMF and OPS make use of this separation and treat
Fy and F differently. We can further splif’ by separating terms of diffusion discretization in
different spatial directions and reaction terms,

d
Fi(t,y) =Y Fp,(t,y) + Fa(t,y). (4.4)

J=1

This secondary splitting will be used to considerably reduce linear algebra costs within the schemes
to be described and this is also where the order of the componentbeénomes significant for
efficiency.

In Sec.3.2 we have introduced the notion of positive ODE systems and defined the7elags
functionsF such that4.1) is a positive ODE system. Further, we have given conditions such that

a right-hand side functiof’ of (4.1) is an element oP. In this chapter we always assume that

F,Fy, Fp,, Fr € P.

In the previous chapter we have seen that this is possible for TDR systems with a suitable dis-
cretization in space and careful treatment of boundary conditions. In4S2we present three
different theories from the literature which are concerned with the numerical solution of positive
ODE systems. The aim is to obtain methods for the solution of such systems which guarantee non-
negative numerical approximations for reasonably large time steps. We mainly concentrate on the
case of low-order ERK methods but also discuss the case of implicit schemes where appropriate.
The reason for this special interest in explicit methods is that we want to apply such schemes for the
numerical solution of the systeg(t) = Fy(¢, y(t)) which often generates problems if nonnegative
numerical approximations are requested. This is becays®rresponds to the taxis part in our
models which is present in the cell density equation. The models represent pattern formation pro-
cesses and hence this density will vary strongly in space and has steep moving fronts which cause
positivity problems (lack of spatial smoothness). We derive an ERK method especially suited for
the numerical solution of positive ODE systems in this section.

The theory presented and developed in Se8is then applied to the taxis ODE = Fy(y) in

Sec.4.4. There we also discuss associated stability properties beside looking at positivity.

In Sec.4.5and Sec4.6 we detail, based on the theoretical investigations and on stability consid-
erations, specific AMF and OPS schemes which we will use for the simulation of TDR systems.
Finally, in Sec4.7we discuss a few different approaches for the solution of systet (
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4.1 Runge-Kutta and Rosenbrock-type methods

There are excellent text books covering the theory and application of Runge-Kutta and Rosen-
brock-type methods, e.g22, 23, 51, 55, 56, 10]. In this section we collect only definitions and
results which are required for the understanding of this chapter. For further details (and proofs) we
refer to the cited books.

An s-stage Runge-Kutta (RK) method for the solution4flf can be characterized by a coefficient
matrix A = (a;;) € R®® (with a;; = 0 for all j > i in case of explicit Runge-Kutta (ERK)
methods), a weight vector= (b;) € R® and the knot vector = (¢;) := Al € R®. In short, such

a scheme is in general represented by the (p&ib) or by its Butcher array

cl A
bt

A given approximationy, is advanced by a time stepto yield i, via

y,(fl = y+ TZ a;; F(ty + ¢, y,(gi)l) ,1=1(1)s, (4.5a)

J=1

Yerl = Y+ T Z biF(ty + ¢, y,(;l ). (4.5b)

i=1

This defines the approximate evolution operataassociated with the RK methad, b).

We further consides-stage W-methods (a class of Rosenbrock-type methods introduced by Stei-
haug and Wolfbrandt53]) for the solution of ¢.1) which are defined by coefficient matrices

A = (a;;) andl’ = (v45) € R*>* (with a;; = 0 for j > 4, v;; = 0for j > ¢, andy; = v € R,

for all 7), a weight vectob = (b;) € R®, and the knot vector = (¢;) := Al € R®. A given
approximationy, is advanced by a time stepto yield ;. ; via

i1 i1
(I —7myT)k; = 7F (tk + T, Yk + Z%‘j@) + TTZ%jk:j ,i=1(1)s, (4.6a)

j=1 j=1

Yet1 = Yk t+ Z bik; . (4.6b)
i=1

The matrixT" € R™™ in the method is an arbitrary matrix. These methods require the solution of
one linear system per stage for the unknown vektom he system matriXx — 77" is the same in

all stages so that only one LU-decomposition is required per time step. The methods are said to be
linearly-implicit. For7T = 0 the method reduces to the underlying ERK methddb). However,

it is advantageous to choogeas an approximation to the Jacobian maﬁ%;—y) at (tg, yx) for
accuracy and stability reasons. We will use the freedom in the choifemfncorporate splitting

in the scheme and to drastically decrease the linear algebra work per time step.

The stage equationd.639 have the matriXx” on both sides. To avoid unnecessary matrix-vector
multiplications (and to facilitate the approximate matrix factorization (AMF) to be discussed later)
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we can replace4(6) by the equivalent formulad := AT~1, 5T := bTT'~L, andl := [ — A1)

i—1

i—1
([ — T")/T) k’l = T’}/F (tk + CiT, Yk + Zﬁ#@) + Z’A)//wk’] R 7 = 1(1)8, (47a)
j=1

Jj=1

Y1 = Yr + Zgz%z . (4.7b)
i=1

This defines the approximate evolution operataassociated with the W-methdd, T, b).

Order and order conditions:
A one-step method is of orderp € N if the local errorie(¢, 7), i.e. the error introduced by one
time step of the method, satisfies (for sufficiently smooth problehi3)(

lte(t, Tl == lly(t +7) = U(t, T)y(t)]| < K771, K €R.

The global erroe(tx) := y(tx) — yx is the error of the computed solution after several steps (with
initial values(ty, y(ty)). Suppose that the methddis of orderp and we can write the method in

the standard form for one-step methods, Wét, 7)y = y + 7®(¢, 7, y), with so-called increment
function®. The latter is the case for the ERK and W-methods considered here. Further suppose
that in a neighbourhood of the exact solution4flf the increment functio® (¢, 7, y) is Lipschitz
continuous in its last argument (with constayt Then the global error is also of ordgrand
satisfies

K
le(tr)] < ?px (eA(t’“_tO) — 1) . Ti=max{To, T1,- -, Thk_1} - (4.8)

RK or W-methods are of orderif their coefficients satisfy certain order conditions. In this work
here we are mainly interested in low-order methqds-=(2, 3). The order conditions up to = 3
(see b5, p. 39]) for an RK methodA, b) are

i:bz =1 s ibzcz = % s ES: bZCZ2 = % s Zs: biaijcj = é . (49)
i=1 1=1 1=1

1,j=1

If the first condition is satisfied then we have a method of order one, if also the second condition is
satisfied then the order is two, and all four conditions must be satisfied for order three. The order
conditions for a W-methodA, T, b) are listed for instance irbp, p. 136]). The method should
have the same order independent of the choicé @V-method properdy Therefore, because of

T = 0, for the W-method to be of order, also its underlying ERK metho@A, b)) must be of
orderp and the respective order conditions th9) must be satisfied. No additional condition is
necessary for order one of the W-method. For order two there is the additional condition

s i—1
1
E bzﬁz = 5 -, where ﬁij = Q5 + Yij andﬁi = E ﬁij . (410)
i=1 Jj=1

There are three additional conditions for order three (not listed here).
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Linear stability properties

We consider (Dahlquist’s) test equatigh= )y, whereA € C and apply RK and W-methods
(T := X here) to this equation. Performing one time step with sioé these methods applied to
the test equation results in the recursign, = R(2)yx, 2 := A1, andR(z) is called the stability
function of the method at hand. The stability function is a rational function which reduces to
a polynomial for ERK methods. We have

R(z)=1+20"(I —2A)'1 and R(z)=1+2b"(I —2B)™'1, B:= A+T,

for RK-methods(A, B) and W-methods$ A, T, b), respectively. We denote with := {z € C

|R(z)| < 1} the stability domain of a given method.

The solution of the test equation is stable forale C_, and we call a method!-stable if its
stability domainS > C_ ,. This means thatl-stable methods preserve this stability property, i.e.
there is no stability restriction on the time step size- 0 in the numerical solution of the test
equation with\ € C_,,. If the stability function of and-stable method also satisfies

%Zlirgoo R(z)=0
then this method is callefl-stable. A consequence of this property is that the numerical solution
of the test equation witlk\ < —1 is damped to zero very quickly. This mimics the behaviour of
the exact solution of the test equation with <« —1.
If S O W, foravaluea € [0,7/2], whereW,, := {z € C : |arg(—z)| < «} is a closed wedge
in the left complex half plane, then the corresponding method is called-stable {(«)-stable
methods are defined analogously). Obvioudlyand A(r/2)-stability as well ag.- and L(7/2)-
stability coincide. The stability functions of(&)- or L(«)-stable methods are often calléd«)-
or L(a)-acceptable. A discussion about the relevance and applicability of Dahlquist’s test equation
for the numerical solution of linear and general ODEs is giver2#. [

Time step size control

For a very detailed discussion of step size control mechanisms we retel, 0. [334]. There are

two major approaches to select the time step siZze a one-step methoél adaptively: embedding

and Richardson extrapolation. Suppose a time steprgiZer the current time step is given.
Then both approaches estimate the local el#piin the current time step, that is the difference
betweeny,., := V(i 7)yr and the exact solution &}, + 7, of the ODE system with initial
values(tx, yx). (Note that the local error here differs slightly from the local errordir8( because
therey, = y(tx) is assumed. However, this distinction does not affect the convergence of the
method.) Both mechanisms accept the step if a norm of the estiuwatef /e, is below a user-
supplied tolerance; otherwise the step is rejected. In any case, a new step. sigepredicted,
based orest;, for the next time step of the method. The procedure should ensure that the time
steps are sufficiently small in order to meet the tolerance requirement, and also large enough so
that the problem is solved efficiently. N

We first discuss embedding. Suppose we have a pair of methedsl U of ordersp andp + 1,
respectively. These methods generate approximagipns= V(tx, 7 )yx andyx1 = VY (tx, %)Yk

to y(tx41). Itis common that the methods andV differ only in the weight vectob for RK and
Rosenbrock-type methods; the coefficient matrices remain unchanged. This impligs thetd
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Ur+1 Can be computed by approximately the same amount of work which is necessary to compute
just a single approximation.

Thenley = Gir1— G +O (777%) andesty, := Jr1—Te1 = O (777) provides an asymptotically
correct, computable estimate of the local error in the lower order solygtion The user supplies
relative RTOL; > 0) and absolute{T'OL; > 0) tolerances for each component of the solution
vector ¢ = 1(1)m). Then we compute the mixed (relative and absolute) error indicator

1
err = k= i ©5th Bl (4.11)
T \m RTOL;|yp| + ATOL; ' '

i=1

Following theerror per stepcriterion, the time step is accepteckifr < 1 and rejected otherwise.

If the step is accepted then we proceed with (in the methods to be presentegd,here) .1,

i.e. we use the higher order approximatign, although the error is only estimated for the lower
order approximatio, ;. This is known agocal extrapolation

It remains to derive the new time step sizg, such that, in case of a rejected step, the recomputed
step withr, := 7,.,, Or, In case of an accepted step, the next step with := 7, is likely to
pass the error test. A widely accepted definition is

Tew 1= T M0 frngg, MAX{ frnin, fsar err™ /DY (4.12)

In this formula0 < f.in < fimee @re the minimum and maximum step size change ratios, and

0 < fsay < 1is a safety factor. (The choick.; = 0, fiuin = fmae = 1 (together with very
relaxed tolerance requirements) leads to a constant step size scheme.) A closer examination of the
error per step control with local extrapolation (as described) reveals that under suitable assump-
tions the global error in the solution is proportional to the tolerance requirements. Without local
extrapolation the global error is only proportional® L*/*+1) see p1, p. 350].

We now discuss the second step size control mechanism, Richardson extrapolation. In fact, the
only difference to the algorithm described above is how we obtain the estimatef the local
errorle,. Suppose we have a methd@dof orderp. Then we compute two approximations

~ ~ T T T
U1 = V(ty, )y, @and gpyq =V <tk + 5 5) v (tlm 5) Yk -

The local error with respect to the solutigp,; can then be estimated by

1
2r —1

esty = (Yrs1 — Ukr1) -

In the case of an accepted step, weiget := .1 (doubling Bb1, p. 364]). Note that this is not

local extrapolation because the order is not increased; we use only the supposedly more accurate
solution to advance the integration. Local extrapolation leads to seffing:= y.1 + estg.
However, in this case properties like stability of the resulting scheme must be considered anew.
We do not apply local extrapolation together with Richardson extrapolation in this work.
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4.2 Introduction to approximate matrix factorization and op-
erator splitting

Verwer et al. p2] successfully applied the-stage, second-order W-method ROS2 to advection—
diffusion—reaction problems from atmospheric air pollution modelling. The AMF methodology
applied in that paper also appears to be of interest for the time integration of the MOL-ODEs
obtained as semi-discretizations of TDR systet§)(
Low-order W-methods are efficient for a wide range of stiff ODE problems, see 23).5%].
However, applying an-stage W-method (in the fornd(6) or (4.7)) involvess linear solves with
the matrix/ — 7vT'. Consequently, choosirg equal to the full Jacobian
OF (ty,yx)  OFo(tk, yr) n i OFp, (tk, yk) n OFRr(tr, yr)
Yy, OYr, OYr, OYr,

j=1

seems not practical because this matrix, although sparse, has a large bandwidth which grows with
decreasing spatial grid width (fet > 1). This makes the direct solution of these systems pro-
hibitively expensive. Moreover, due to the limiter functions used in the taxis discretizétien,

only Lipschitz continuous so that the Jacobian might not even exist. The same situation occurs in
the air pollution applicationg2] where ROS2 is applied with a matrik approximating the true
Jacobian. For the TDR models we use a similar approximation which yields the following choice
for the matrix — 7T,

d
Fp (t
[—79T := (1 — miaFRgt’“ yk)) I1 ([ G Dé( b yk)) . (4.13)
Yk Yk

j=1
By rearranging the right-hand side d@f {3, we see that this definition implies that we use a matrix

T which depends on the time step sizeThe order of W-methods is independent of the matrix

T. However, to take advantage of the factorizatidnl @, it is now important that we use the
W-methods in the transformed form.7). Using form @.6) of the W-method would require to
explicitly compute the matrif” from the factorization4.13.

The approximation4.13 is obtained in two steps. Firstly, we have neglected the taxis Jacobian
Fy which overcomes the possible difficulty of non-existence. This choice further underlies the
assumption that explicit methods are in general more efficient than implicit ones when applied to
the taxis ODEy/(t) = Fy(t, y(t)). Secondly, we have approximated the remainder matrix

OF; (tw, yi)
Ty

I —
Oy

(4.14)

by the factorized expressiod.(L3. With this factorization we avoid to solve linear systems which

is still expensive (ifl > 1) because the Jacobian®f has a bandwidttd (h~(~V)), 1 denoting the
spatial grid size. For efficiency it is important that the matrices involved are banded with a small
bandwidth independent éf. This property is especially profitable for the fine spatial resolutions
required in our models to resolve steep fronts for the cell density and it holds4atB).(This can

be seen easily. If the componentsyirare arranged such that all approximations (cell density
and chemical concentratior¥ corresponding to one grid cell form a blockyrthen the Jacobian
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of Fr is a block diagonal matrix with block siz€ + 1) x (I + 1) and we can solve for each
block independently. If the components gnare arranged such that the approximations to the
cell densityn in all grid cells form a block and also all approximations to each of tbleemical
concentrations i then the Jacobians dfp,, j = 1(1)d, are block diagonal matrices. Further,

for eachj = 1(1)d, the components of each of the- 1 blocks iny can be arranged such that the
corresponding submatrix in the Jacobianigf, is tridiagonal, i.e. with this special arrangement

of y we can solve the linear systems involving the Jacolfignefficiently. Altogether, solving
linear systems with the factorized matrik 13 efficiently amounts to a sequential process where
we have to rearrange the right-hand side vector of the system appropriately after each sub-step.
The factorization4.13 is known as ‘Approximate Matrix Factorization’ (AMF) which has been
used for a long time already for solving multi-space dimensional time-dependent PDE problems,
see e.g.9, 11, 28, 32, 48].

The application of AMF in W-methods does not affect the order of the method but it does of course
affect the stability of the original W-method used with= F”(y,). In [62] it is argued that with

(4.13 the stability of the resulting ROS2 method with AMF is mainly governed by the stability of
the modified Euler method (which is the underlying ERK method of ROS2) applied t&,thart

only. We investigate this issue in Sectiérb for the specific W-methods presented there.

If the split matrices in4.13 do not commute then the order of the factors can be important for
the performance of the method and the best choice can be problem specific. Our chéit&in (
with the Jacobian of’; as the first factor is guided by the assumption that the subsequent factors
(corresponding to diffusion) will smooth the stage solutions and hence also result in a smoother
step solution.

Remark 1 The secondary splitting defined BY.13 can be avoided and we can simply udel{)

as matrix/ — 7y7 in the W-methods. Direct methods are not suitable for the solution of the
resulting systems because of the large bandwidth but we could employ iterative solvers. This
immediately raises the issues of convergence and preconditioners. We do not consider iterative
methods in this work because with the secondary splitting and AMF we obtain linear systems
which can be solved very efficiently. However, the application of iterative linear system solvers
can be a topic of further research.

Whereas the W-methods applied with AMF perform a splitting at the level of linear algebra, it
is also possible to directly split Eg4.() at the problem level, that is, to apply operator splitting
(OPS). Like AMF, operator splitting is a popular approach for solving multi-space dimensional
time-dependent PDE problems. Operator splitting has been considergd| ifof the tumour-
induced angiogenesis Model 2 (different initial TAF concentration). The method proceeds as fol-
lows. Given an approximatiog. at timet, and a step size, we compute

T T

5’ 2) Wy (tr, 7) Yo (tk,z> Yk - (4.15)

Y1 = Yo <tk + 5

The operator@, and¥; are approximate evolution operators for the split functibpand#; (see
Eq. @.3), respectively. Specificallyy; (¢, 7)u approximates the solution of the IVP

y(t) = Fty®), t=t,  ylt)=u,
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att = ¢ + 7. The formula 4.15 is known as Strang-splitting]. If the right-hand side function

is linear and autonomousy;(t,y) = Ay, A; € R™™, and the matrices!; commute then the
solution of a splitting step4(15 coincides with the exact solution provided that the subproblems
are solved exactly; otherwise a so-called splitting error is introdu8gld [f the operatorsl; are

at least second-order accurate approximations of the exact evolution operators, i.e. we use second
order methods for the solution of the subproblems, then the order of the approximation (
equals two. The stability o#(15 is determined by the stability propertieswf and ;.

It is effective to select an explicit methobl, and an implicit methodl;. We will employ ERK
methods as explicit schemds. W-methods applied with AMF appear to be of interest for the
application as implicit schemaes;.

Operator splitting is applied in the order given X5 because then we use only half the step size

of the splitting step for the explicit method. This doubles the stability (and positivity domain, see
next section) of the explicit method and hence is expected to lead overall to less time steps and
subsequently less computational effort. Other splitting orders are possible, e.g.

-
) Uy (tg, 7) ¥y (tlm 5) Yk »

T T
— (t TT
Ykt1 1 k+272

T T T T T T
or _ v (t —,—)\I/ (t —,—)qf (t,—)\p <t,—> ,
Yr+1 1k+22 0k+22 otk 35 1k231k
but a numerical assessment revealed that they are not advantageous for our problem class (more
time steps, greater amount of work per time step).

4.3 Positive methods for positive ODE systems

Positive ODE systemgl(1) arise in a great variety of applications, e.g. when modelling chemical
reactions, in the semi-discretization of air polluti®i] and, as we have seen, biomathematical
models. The quantity(¢) usually describes the concentration or density of some species. In such
a situation we are naturally interested in obtaining nonnegative numerical approximatiohs

the solutiony(t,) at discrete time points, by an appropriate numerical method. This requirement
is not met in general. We consider one-step methods for the solutighlptere; for multi-step
methods see for instanced, 6].

In order to characterize positivity properties of numerical schemes we give the definigiositive
one-step methodsom [27].

Definition 2 Let there be given a one-step method for the solutiod.dj,(a subclassF C P and

a thresholdd < 7+ < co. The method is calledositiveon F with thresholdr* if the numerical
approximations obtained by the method are uniquely defined and are nonnegative whenever the
method is applied to the IVR (1) with any F' € F, t;, € R, yo > 0 and with step size satisfying

0 < 7 < 7*. If this holds witht* = oo then the method is callednconditionally positive
otherwiseconditionally positiveon F.

Obviously, the approximations are always uniquely defined for explicit methods.

We say that a method taken from a class of methodoptmal positivityon a certain problem
classF if it is a positive method o with a step size restriction™ and all other methods from
the given class have, for positivity f, a step size restrictiofi™ < 7+.
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It is useful to define subclasses of the cl&ssf positive problems for the following investigations.
Letg(t) > 0 be a given continuous, vector-valued functiang R, , and define classes of linear
functions
+ e _ m,m

L) (a) :=={F|F(t,y) = Py + g(t) whereP € R™™ P+ al > 0}. (4.16)
IVPs with right-hand side functions taken from these classes are positive (apply ThBorem
Further, following R7], we consider classes of nonlinear, dissipative functions and define sub-
classes by using the so-called circle conditiB@]|[ The right-hand side” of an IVP @.1) fulfils
the circle condition with constaptc R in some vector nornj - || (e.g. thep-norms) if

lp(@ =) + (F(t,9) = F(t,y) | <plly -yl forallt eR,y,yeR™.  (4.17)
Now, for anyp € R, define

D*(p) := {F|F € P andF satisfies 4.17) with constanf in somep-norm,p € [1, 0]} .
(4.18)
The following lemma characterizes the hierarchy in the parametrized cldsse$ andD* (p).

Lemma7 Leta; > ay > 0andp; > p; > 0. Then we have

E;'_(Oég) C E;“(ozl) cP and D+(p2) C D+(,01) CcP.

Proof  The statements follow directly from the definitions@f («) andD* (p). O

In the following subsections we consider the positivity of RK methods applied to problems from
L (a) andD*(p) (Sec.4.3.1and Sec4.3.2 respectively), and the positivity of ERK schemes
applied to general problemd.() with ' € P in Sec.4.3.3 One of the main goals is to identify

a low-order ERK method with appropriate positivity properties for a broad range of positive ODE
problems. We summarize the results on ERK methods in&act

4.3.1 Positivity of RK and W-methods onZ (a)

The results of this section are based on work by Bolley and Crouggiafd Kraaijevanger and
van de Griend36, 19].

RK methods or W-methods (usifg:= P) applied with fixed step size to a problem taken from
the classC () yield the recursion

Ypy1 = R(TP)yp + 7 Z Ri(TP)g(ty + ¢i7). (4.19)

=1

Here R(z) and R;(z) are rational functions with real coefficient8{z) is the stability function of

the method. These functions are polynomials in the case of ERK methods. For a definition and
some properties of matrix functions (e 8(7P), R;(TP) above) see Sea.2.

We need the concept of absolute monotonicity of rational functions and the so-called threshold
factor, see e.g1[9, 36, 37], for the study of positivity of the recursiod (19.
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Definition 3 A rational functionR is called absolutely monotoniat a pointz € R if R(z) is
defined and? as well as all its derivatives are nonnegative:inThe function? is called absolutely
monotonic on the interval C R if R is absolutely monotonic at evetyc I.

Definition 4 Thethreshold factor of a rational functiaR, denoted by'(R), is defined as
T(R) :=sup{r | r € R, ; and R is absolutely monotonic op-r, 0]} .

This definition differs slightly from the definition given ii]. Here we havel'(R) = 0 if R(z)
is absolutely monotonic in = 0 but not in a left neighbourhood af= 0. T'(R) is not defined if
R(z) is not even absolutely monotonic in= 0. In contrast, the definition inlP] would result in
T(R) = 0in both cases.

Lemma 8 If R is a polynomial then the threshold factd R) is given by

T(R) =sup{r | r € R, ; and R is absolutely monotonic in = —r)}.

Proof  The statement follows with Lemma 3.1 fro37]. O
Except for the cas&'(R) = 0 (see the comments after Definitidi, the statement of Lemm
coincides with the definition of the threshold factor of polynomials3ié].[

We haveT'(R) = oo for the stability function of the implicit Euler methodk(z) = (1 — z)~'.
However, Bolley and Crouzeix6] show thatR(z) = exp(z) + O (2P') with p > 2 for z — 0
impliesT'(R) < oc.

M- and M-matrices are important in the theory of Bolley and Crouzéixand are introduced
now.

Definition 5 ([37, p. 497], [6, p. 241]) A matrix B € R™™ is said to be am\/-matrix if b;; < 0
for all i # j, B is nonsingular, andi—1 > 0.
A matrixA € R™™ is said to be anV/-matrix if for all & € R, the matrixa/ + A is an M-matrix.

The next two lemmas give useful characterizationg/efmatrices.

Lemma 9 ([21, p. 151]) Let B € R™™ such thath;; < 0 for all i # j and defineD := diag(B).
Then the statements

B is nonsingular and3~! > 0,

and
(1) by >0foralli=1(1)m, (2) M:=I-D'B>0, and(3) p(M)<1,
wherep(M ) denotes the spectral radius of the mathik, are equivalent.

Lemma 10 (49, p. 30]) Let B,C € R™™ be two matrices which satisfy < C' andc;; < 0 for
all i # j. ThenifB is an M-matrix, so is the matrixX’.

LetC := ol + B. Then the following corollary follows from LemmED.
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Corollary 3 If B € R™™ is an M-matrix thenB is an A/-matrix.

We want to characterizé/-matrices and therefore need the Perron—Frobenius theorem for non-
negative matrices, see e.@1[ p. 150] or §3].

Theorem 3 (Perron—Frobenius) Let A € R™™ be a nonnegative matrix > 0. Then the spec-
tral radius p(A) > 0is an eigenvalue ofl and for this eigenvalue exists a nonnegative eigenvector.

Theorem 4 Let A ¢ R™™ be a real square matrix. Thes is an A/ -matrix if and only if
1. a;; <Oforall ¢ #j,
2. a; > 0foralli=1(1)m, and

3. A has no eigenvalug € (—o0,0).

Proof

Necessity: Supposed is anM-matrix. This impliesB := ol + A is anM-matrix for alloe > 0
and hencel;; < 0 for all ¢ # j, B is nonsingular, and, by Lemnta b;; > 0 for all . Therefore
conditions 1. and 2. are satisfied fdr The regularity ofB implies thatBx = 0 has the trivial
solution only and therefore, for arbitraty > 0, Ax = —ax is satisfied forr = 0 only, i.e. A has
no eigenvalue\ € (—oo, 0) and condition 3. is satisfied.

Sufficiency: We prove that conditions 1., 2. and 3. imply thhis an M -matrix, i.e. thatB :=
al + A is an M-matrix for alla > 0. First note that,; < 0 for all i # j and alla > 0 by
condition 1., and furthel;; > 0 for all  and alla. > 0 by condition 2.

We use Lemma to show thatB is nonsingular an®~! > 0 for all « > 0. Let D := diag(B) and
define)M := I — D~'B. Then we obtain/ = —(diag(al + A))"'A, whereA := A — diag(A).
Therefore,M > 0 by conditions 1. and 2. Denote the spectral radiugd/ofor a given value of
a > 0by p(M, «). By TheorenB we have thap(M, a) > 0 is an eigenvalue af/. We will show
thatp(M,a) < 1forall a > 0. p(M, «) depends continuously amandp(M, o) = 0. Hence,
if there existsae > 0 such thatp(M, o) > 1 then there exist& > 0 such thatp(M,a) = 1. We
demonstrate that(M, a) = 1 leads to a contradictior(M, «) is an eigenvalue of/ and hence
there exists a non-trivial vectar such thatMz = z. This leads todz = —diag(al + A)z and
subsequently tolx = —ax. HenceA has a negative eigenvalue and this contradicts condition 3.
Therefore,p(M, o) # 1 for all « > 0 and, by continuityp(M, «) < 1 for all &« > 0. Now, with
Lemma9, follows thatB is nonsingular and—! > 0 for all « > 0. Hence,B is an M/-matrix for
all « > 0 and this completes the proof. O
We note that condition 3. of Theoremensures that the stage equations in a W-method applied
with 7" = — A have unigue solutions independent of the time stepsize).

We can now formulate results of Bolley and Crouzeik [

Lemma 11 ([6, Lemma 3]) Let R(z) be a rational function with threshold factdf(R) > 0.

R(A) > 0 for any matrixA satisfying— A is an M-matrix andmax;{—a;} < p if and only if
T(R) > p.
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Theorem 5 ([6, Theorem 2]) If the rational functionsR(z) and R;(z) of scheme4.19 have
threshold factorsI'(R),T(R;) > p and if 7+ € R, satisfies the conditionta < p for a
valuea € R, , then the schemed(19 is positive on the clas$F" € L] (a) | F(t,y) =
Py +g(t), —PisanM-matrix} C £ (a) with thresholdr™.

We observe that the time step restriction for positivity of a sche#9( is proportional to a
method dependent constant (the threshold factor here) and at the same time proportional to the
inverse of a problem dependent constant (the class paramétene). This will also be the case

for the other positivity concepts which we are going to discuss.

If we only consider polynomial$(z) in Lemmall then the restriction to matrice$ such that

—Ais anM-matrix can avoided.

Lemma 12 Let R(z) be a polynomial with threshold fact@f(R) > 0. R(A) > 0 for any matrix
A satisfyinga,;; > 0 for all ¢ # j andmax{0, max;{—a;}} < pifand only ifT'(R) > p.

Proof

Necessity: The matricesA allowed in Lemmall are also allowed in this lemma. Further, the
polynomial R here can be regarded as a rational functidrin Lemmall. Hence, necessity
follows from Lemmall.

SufficiencyBecausenax{0, max;{—a;}} < pwe obtainB := ul + A > 0. The series

RF) (—
g(2) ::R(—u)—l—...+%zk+...
converges for every € C because fok large enough thé&th derivative of R vanishes. The
coefficientsw are nonnegative (absolute monotonicity ®fin —u). Hence we have, see

Lemma2lin Sec.A.2,

RE)(—
R(A) —r(—u)1+...+%w+mk+...
and because gf/ + A > 0 we haveR(A) > 0. O
With the help of this lemma we can now also reformulate TheoBefor the case of explicit
methods 4.19.

Theorem 6 If the functionR(z) and R;(z) of scheme4.19 are polynomials having threshold
factorsT(R), T(R;) > pand if7™ € R, satisfies the condition*a < p for a valuea € R,
then the schemé (19 is positive on the class; («) with thresholdr+.

In the next two subsections we will study the threshold factors of low-order polynomials (i.e. the
stability functions of low-order ERK methods) and of restrictedéaplproximations (i.e. stability
functions of some W-methods).
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4.3.1.1 Threshold factors of polynomials

The absolute monotonicity of the stability polynomial of an ERK method is crucial with respect
to the allowable time step size in order to guarantee positivity of the method when applied to the
problem classC{ (o). This can be seen from Theorein The absolute monotonicity of polyno-
mials is studied in36] and it is stated that-stage ERK methods of order= s have a threshold
factorT'(R) = 1, whereass-stage ERK methods of ordgr= s — 1 can have a threshold factor
T(R) = 2. This means that, at the cost of just one matrix-vector product, the allowable time step
size with respect to positivity of the method is doubled. Furth#g] §ives the optimal stability
polynomials?;, in these two cases:

s

1
Ri,(z)=T,(2)fors>1 and R} (z):TS_l(z)—i—éz—forsZQ,

s,5—1 S!

whereT(z) := Y7, % is the Taylor polynomial of degreeof exp(z).
We are interested in second- or third-order methods here. Numerical experimestisderon-

strate that (on a linear test problem) thetage method of order two performs more efficient with
respect to positivity compared to thestage methods of order= s for s = 2, 3 (optimal stabil-

ity polynomial 17, for positivity on L («) in each case). Therefore we considestage explicit
Runge-Kutta methods of order two with optimal stability polynonﬂgg for positivity on L ()

in this section. We will use the free parameters in this class of methods to satisfy positivity condi-
tions for nonlinear problem sets and further order conditions.

Consider &3-stage ERK methodA, b). The conditions for order two are the first two conditions

in (4.9. The stability polynomial of &-stage ERK method of order two B;5(z) = 1 + z +

%zQ + bsassas; 3. ON the other hand, the optimal stability polynomial $estage ERK methods of

order two with respect to positivity on the problem cl@gs«) is Ry, (z) = 1+ z + 52° + 1527,

see above. Hence, beside the two order conditions, the parameters of the method have to satisfy
bsasaae; = % Solving for these three conditions results in the classsthge, second-order ERK
methods with optimal positivity on the problem cla&$(«). We refer to this class of methods as
(Class A and their Butcher array is given below; dengte= b3ass.

0
E 0 bg bg’)/ € R
L(l_b_Z_ ) 1 . 7& 0. (Class A)
by \2 127 V) b 37 '
1— by — bg by b3

This class of methods forms the basis for all our further investigations regarding positivity of
ERK schemes. In Sed.3.2and Sec4.3.3we discuss two approaches for positivity on nonlinear
problem sets and we identify a unique method fradtaés A which has optimal positivity for

both approaches simultaneously. This method can also be shown to have optimal positivity on the
problem clas<; (o), see Sed4.3.4

We can also use the free parametgrd; and~ in (Class A to satisfy one order three condition

(with the aim of improving the accuracy of the scheme). The third-order con@gﬁiaijcj =

bsasaas = é cannot be satisfied because of the condition on the stability polynomial. However,
the other third-order conditioly, b;c? = 3 can be satisfied (resulting in a third-order scheme for
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guadrature problems). We havg:; = % — becy. Substituting this in the third-order condition

yields 3 = by + % (- chg)z. Employingc, = % we arrive after some calculations at the

methods of Class B whose Butcher array is given below. In Sdc3.4 we state some results
concerning positivity properties of this class of methods applied to nonlinear problems.

0
1 O b277 S R’
o v # 0
1 (1 _ b2 o ’ Class B
b3 (2 12y 7) bs 0 by # 6%2 ( )
2 b 48~ .
L=by—by by S 7 4

4.3.1.2 Threshold factors of restricted Pad approximations

Absolute monotonicity of rational functior’® and their threshold factofS( R) are studied in19].
In this work we consides-stage W-methods and if these methods have an grder then their
stability functionsR(z) are so-called restricted Fadpproximations texp(z) for z — 0.

Definition 6 ([55, p. 142]) A rational functionR(z) = (1 — vz)"*P(z), wheres € N,y € R_,
and P(z) is a polynomial of degree, satisfying

|R(z) —exp(z)| = O (2"") for z—0,
i.e. the approximation order is at leastis called arestricted Pagl approximation texp(z).

Lemma 13 ([B5, pp. 142]) The stability functionk(z) of an s-stage W-method of order> s is
uniquely defined by the method paramefee R, . R(z) is a restricted Paé approximation to
exp(z) with approximation order > s and is given by

i

R(z) = (1 =72)"" S iji: (f)<§fff>!-

j=0 =0

In the remainder of this section we discuss the absolute monotonicity of the stability function of
s-stage W-methods with order> s for s = 1 ands = 2.

Theorem 7 The stability function

1+(1—79)z

R(z) = 1 -~z

, v>0,

of a 1-stage W-method of ordgr> 1 has a threshold factof'(R) = oo for v > 1 and a threshold
factorT(R) = (1 —~)~* fory € (0, 1).

Proof We havel —~vz > 0if vy > 0andz < 0. If v > 1thenl + (1 — v)z > 0 and hence
alsoR(z) > 0forall z < 0. If y € (0,1) thenl + (1 — v)z > 0 and hence als&(z) > 0 for all
z€[=(1—7)7 0L
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It remains to show that derivatives &fz) do not require further restrictions anin order to have
nonnegative values. We obtafti(z) = (1 — vz) 2. This is the square of the stability function of
the implicit Euler method which is absolutely monotonic foralkl 0. ThusR'(z) is absolutely
monotonic for allz < 0. This completes the proof of the theorem.

Note: Thekth derivative g > 1) of R(z) is given byR(¥)(z) = klv*~1(1 —~z)~( 1), This shows absolute
monotonicity of R'(z) for all z < 0, v > 0 without using results about the implicit Euler scheme. [J
We now turn our attention to 2-stage W-methods of oypder 2. We obtain their stability function
from Lemmal3,

1+ (1—=29)z+ (2 -2 2) 22
R(z) = 7)(1+_(722)2 7+7%) 4>0. (4.20)

This function isA-acceptable fory > > , L-acceptable fory; = 1 — l\/_ 2andy, =1+ < \f and

of approximation order three tep(z) for v =3(3+ V/3), see b5, p. 144]. We give an expression
for the derivatives of the stability function.

Lemma 14 Thekth derivativeR*®(z) of (4.20 for k > 1 is given by

RM(z) = 7[5 - 27)51414;;%13 + (1= 37)klyz] (4.21)

Proof  Substitutingk = 1 in (4.21) or computing the derivative o#4(20 gives in both cases
RM(2) = (1+ (1 —37)2)(1 —~2)73. Fork > 1 let us consider the expression
k=2 [ak + bk'yz]

k i
R (z) = (1 — yz)Fe2 7

a2:1,62:2—67. (422)

This proves the lemma fdr = 2 by simple calculation. The derivative &*)(z) is

“H(k+2)ag + by + (k + 1)bpy2]
(1 _ ,yz>k+3 )

k
R(k:-i-l)(z) _7

and hencey, b, satisfy the system of difference equations:
Apy1 = (/{5 + Z)ak + bk, bk:-i—l = (k’ + 1)[) with initial data as =1, by =2 — 67y .

This system is decoupled and has the solubjos (1 — 3~)k! and

(k+1)! K
k 1)! = 1—=2v)k+4y—1
++gl+2 5 (L=29)k+ 47 -1).
Substituting this in the expressiofh.22 completes the proof. O

If v > % then the stability function4.20 is not absolutely monotonic in = 0 (and hence the
threshold factof’( R) is not defined fory > 1). This can be seen as follows. It is necessary that
R®(0) > 0 for all k > 1 for absolute monotonicity of2 in = = 0. Considering 4.21), this is
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satisfied if and only i1 — 2v)k + 4y — 1 > O forall £ > 1. Fork = 1, 2 this holds for ally > 0

and fork > 2 we obtain that -
< _ - "
T=3%0 k)
must hold. The term on the right-hand side is always greater }hfan & > 2 and tends ta;
for k — oo. Therefore, absolute monotonicity &f in = = 0 is only given ify < £ (R(0) is
nonnegative for aly > 0). As a consequence of this result we consigder (O, %} in the following
only.
Now we will derive for eachy € (0, 1] the maximum valug., such that the derivativest 1),
for all £ > 1, of the stability function4.20 are nonnegative for all € [, 0]. Following this,
in Lemmals, we give the maximum valug, o for eachy € (0, %] such that the stability function
(4.20 itself is nonnegative for alt € [—. o, 0].
Consider the derivativegt(21) for k > 1. For~y € [%, %] we have that1l — 3v)vyz > 0 for all
z < 0. Furthermore, we have shown above that{oK % we have(l — 27)k+4y—-1 >0
forall k > 1. Henceu, = oo fory € [3,1]. Now considery € (0,3). Then we require
(1 —=2y)k+4y—142(1 —3v)yz > 0forall £ > 1. This is satisfied if and only if for alt > 1

(- 29)k+4y—1
- 2(1 = 37)y

We observe thaty, > «a4,1. Hence, the most restrictive condition s> «; and this yields
fy = (1 —3y)~*fory € (0,3).

z D Q.

Lemma 15 The maximum valug, o such that the stability functiof(z) given in Eq. .20 is
nonnegative for alt € [—., o, 0] is given by

it ~e (02 and 2 it ye (22
= 00 — = - 19|
H~,0 Y 74 ) H~,0 27_1_ /47_1 v 4’2

Proof  The denominator of?(z) is always positive for < 0 andy > 0. Hence we have to
investigate nonnegativity of the numerator/®fz) which is given by

Plz)=1+(1—-2y)z+ (% —2’y+’yz) 22,
The discriminant of(z) is D = (4y — 1) (3 — 2y ++2) ",
The discriminantD reveals thatP(z) has complex zeros foy € (0,1) and a double zero for
v = 1. Now follows thatR(z) > 0 for all = < 0 because”(0) > 0, i.e. j1,,9 = oo for y € (0,1].
If v € (4,1—1v/2) thenP(z) has two real zeros. We have(0) > 0 and P'(0) > 0 for the
~-values considered and therefore the zero® @ire to the left ofz = 0 and the greater of both,

namely
I o1-2y 1 VI =1 2
0 = —— — et s
el oy 2 T2l m oy 42 2y -1- Ay -1

defines the value of 11, .
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0 0.125 0.375 0.5

Figure 4.1:The threshold factdf' (R) of the stability function?(z), see Eq.4.20), of two-stage W-method
of orderp > 2 vs. the free parametere (0, 1] of R(z). The threshold factor is not defined for> 3.

If v =1— 1v/2thenP(z) reduces ta’(z) = 1 + (v/2 — 1)z and we obtain, o = (v2 —1)~".
If v € (1—1v2,1] thenP(z) has two real zeros — one to the left and the other to the right of
z = 0 because”(0) > 0 andi — 2y + 72 < 0. The smaller of both, namely

1 1—2y 1 iy —1 2
20 = —— - — — :
T2l oy 2[l -2y 492 2y-1- Ay -1
defines the value of 1, . O

Obviously we have that the threshold faciofR) of R(z) for each value ofy € (0, 5] is given by
T(R) = min{ ., it }. The following theorem makes this precise, see also4iQ.

Theorem 8 The stability functionR(z), see Eq.4.20), of a 2-stage W-method of order> 2 has

a threshold factof'(R) = (1 —3)~" for v € (0, ;] and a threshold factol'(R) = — 35—

for v € (1, 1]. The threshold factor aR is not defined fory > 1.

We see that the largest valU&R) = 4 is attained fory = ;. According to L9, T'(R) = 4 is
the optimal threshold factor in the class of rational approximations of grder2 of exp(z) for

z — 0 with polynomial denominator and numerator of degree two. Unfortuna)teiy,i is just the
borderline forA-acceptability ofR(z) and therefore slightly larger valuespthould be preferred.
A good choice, leading to ah-acceptable stability functioR(z) isy =1 — é\/ﬁ ~ (0.29289.
Verwer et al. 2] recommend, based on numerical experiments and some theoretical support, the
choicey = 1 + é\/i > % in their air pollution application. Then the stability function is also
L-acceptable (however with a larger error constant) and is nonnegative foall. The latter is

not true fory = 1 — 1/2. We return to the issue of selecting an appropriate valug foiSec.4.5.

4.3.2 Positivity of RK methods onD*(p)

Absolute monotonicity of the rational functioz) and R;(z) of an RK method is not sufficient
to guarantee positivity of the method when applied to nonlinear problem class&'ilg. This
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case is studied by HorvatBT] and we apply his theory in this section to the methodstvégs A.
An important property of RK methods with respect to the problem cls§p) is theradius of
absolute monotonicity of an RK meth@&¥], which we denote by'( A, b), where(A, b) is the RK
method at hand. The radit¥ A, b) is used by KraaijevangeBY] in the study of contractivity of
RK methods and also used in the nonlinear positivity theory for RK methods by Ho/4th [
We first define the termabsolute monotonicity of an RK methgd, ) and then its radius of abso-
lute monotonicityl’(A, b), see B7].

Definition 7 An RK method A4, b) is said to be absolutely monotonic at a given paird R if

I — zAis nonsingular,

R(z) = 1+20"(1—zA)"'1>0,
A(z) = Al —-zA)1>0,

b(z) = b'(I—2A)">0,

e(z) = (I—-zA)"'1>0.

Further, (A, b) is said to be absolutely monotonic on an interyat R if it is absolutely monotonic
foranyz € I.

Definition 8 Let an RK methodA, b) be given. We define the radius of absolute monotonicity of
(A,b), denoted byi'(A, b), by

T(A,b) :=sup {z]z € R, and(A,b) is absolutely monotonic op-z, 0]} .

The first condition in Definitiorv is obviously satisfied for ERK schemes. Further, we have that
the threshold factor of the stability function of an RK methad ) is greater than or equal to the
radius of absolute monotonicity of this method because the funétian in Definition 7 is just

the (rational) stability function of the RK methdd, b). Hence we have

T(R) > T(A,Db).
One of the main results of HorvatB{, Theorem 6] is the following theorem.

Theorem 9 Let (A, b) be anirreducible RK method and> 0. Then we have thdt4, b) is positive
on D (p) with thresholdr™ = T'(A, b)/(2p) whenevefl'(A, b) > 0.

Remark 2 By irreducibility of RK methods we mean both, irreducibility in the DJ and in the HS
sense. For concepts of reducibility we refer 8 10, 23]. Note that the ERK schemes @flass A
and (Class B are always irreducible.

We needI’(A,b) > 0in Theorem9 for positivity of the RK method A, b) on the problem class
D*(p). This is also necessary for contractivity of the RK method applied to such prob&fns [
Further, larger values df'(A, b) lead to more relaxed time step restrictions for positivity (and
contractivity) on these classes. We see fhi@d, b) is the method dependent constant arid the
problem dependent constant in the time step restriction for positivity of RK methods on the class
D*(p).

The following lemma with statements fror37] characterizes all irreducible RK schemes with
T(A,b) > 0 (part 1.) and simplifies the computation (of lower bounds)y'efi, b) (part 2.).
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Lemma 16 ([37]) Forirreducible RK method§A, b) holds:
1. T(A,b) >0 < A>0,b>0, andforall 4,5 ((A?); #0= A;; #0).
2. Letr > 0. ThenT'(A,b) >r <« (A, b) is absolutely monotonic irrandA > 0.

We turn our attention to methods frortlass A. We already know that these methods have a
threshold factofl'(R) = 2 and therefore we havé(A,b) < 2. We will show that exactly one
method(A, b) of (Class A satisfiesI'(A,b) = 2, see TheorenO.

Lemma 17 Let (A, b) be a scheme fron(ass A. We havel’(A, b) > 0 if and only if

3 1 1 b1 1 b
1 - 1, an Iy === = — =,
b3€ (07 )7 b2€ (()74), b2+b3< , a d")/E (4 16 1274+ T 12)

Proof If the conditions given in the lemma are equivalent{td > 0, b > 0 and for allz, j
holds( (A42%);; # 0 = A;; # 0) } then the statement of the lemma follows with Lemb@apart 1.
SUfﬁCiCI]C_Y.' b>0=b=1-—0by — b37b2, bg >0= bg,b3 <1 andbg + b3 < 1.
v # 0 andag; > 0= v > 0 = ay > 0 and withb; > 0 alsoaz, > 0. Further(A?);; # 0 only for
i=3,7=1,thatis(A?)3 = asass # 0, and this implies that alse;; > 0 holds.

az > 0= 2—§7+§’—§<0:>b2<%and76(i—,/%—%,fr 1—%—3’—;)
Necessity: The conditions on thé; imply b > 0. by < % = v > 0= a3 > 0anday; > 0.
Further,a3; > 0 follows with the conditions on. O

For 3-stage ERK method&4, b) we obtain

1 0 0 1 0 O
(I—-zA)'=| —zan 1 0 = 2a9, 1 0
—za31 —Zass 1 zZas, + 22a32a21 zZas39 1

Let (A, b) be an ERK method fromQlass A with T'(A,b) > 0. Then(A, b) is absolutely mono-
tonic in z (= € [—2,0]) if and only if the conditionsA(z), b(z), ande(z) > 0 are satisfied (see
Definition 7). This is true if and only if

01(2) = asj + ZQa32091 Z O7

CQ(Z) = bl + z(b2a21 + b3a31) + 2263(132@21 Z 0,

Cg(z) = bQ + zb3a32 Z O, (423)
04(2) = 1+ 2091 Z 0,

05(2) = 1 -+ z(a31 + agg) + Z2CL326L21 Z 0.

Lemma 18 Let (A, b) be a scheme fron)lass A satisfying the conditions of Lemni&. Then
(A, b) is absolutely monotonic in (= € [—2,0]) if and only ifC;(z) > 0,7 = 1(1)5, and this is the

54



case if and only if

1 1

0 < 1—b2—b3+(§—7)z+E22,
z 2 _b_Za

f}/
z =2 —12v,

2 by
0 < 224+ (6——)z+12b3.

v

Proof  The statement follows by simplifying and rearranging the conditiof{s) > 0, @
1(1)5, by using the method coefficients @lass A.

Ol

Theorem 10 Let (A, b) be a scheme fronQlass A. ThenT'(A,b) = 2 if and only ifb, = b3 = 5
andy = ¢.

Proof LetT(A,b) = 2. Then the conditions of Lemma&7 are satisfied. FurthetA,b) is
absolutely monotonic in = —2 and therefore the conditions of Lemrh8 are satisfied for =
—2. The third condition impliesy < %2 and the fourth conditiory > % These two bounds omn
makeby, > % necessary. The first condition of Lemrh&for z = —2 implies

1 by
> A2 - = — = .
027" =27+ 35 =10
We havep(0) > 0 and the discriminant is given b = % — % In order to have the condition
satisfied for some we needD > 0 and this is the case only fog < % Henceh, = % is necessary
and this immediately implies = % The fifth condition of Lemma.s8for = = —2 now implies

bs > 1+ whereas the second condition requibes< . Hence we neeth; = 3.

On the other hand, ifA, b) is the scheme fromQlass A with b, = b3 = 3 andy = ¢ then it
satisfies the conditions of Lemni&. We already know th&f'(A, b) < 2. With Lemmal6 holds
T(A,b) > 21if (A,b) is absolutely monotonic in = —2 and this is the case if the conditions of
Lemmal8are satisfied for = —2. By inspection we see that this is the case. O

4.3.3 Positivity of ERK methods for general nonlinear problems

The positivity of ERK methods applied to general positive ODE$)(is considered in31]. The
approach is based on the reformulation of ERK methods as convex combination of forward Euler
steps—an idea used by Shu and OsB&fip the derivation of RK total variation diminishing time
discretizations. Lety;; > 0 be given fori = 2(1)s + 1 andj = 1(1)i — 1 such thatZ;;ll a;; = 1.
Consider ars-stage ERK methodA, b) and denote., ; := b; for j = 1(1)s and define

i—1
Bij = aij — E Qi Qg -
l

=j+1

55



Then a time step from y, to ¥, with the ERK method is equivalent to
n .

Yy Yk
i—1
y(l) = Z (Oéijy(j) + Tﬁijf (tk + C;T, y(J))) y 1= 2(1)8 +1 5 (424)
j=1
e =y

The freedom in the choice of the;; is used to yield nonnegative coefficierts (which is not
always possible) and to obtain, for a given ERK scheme, the optimal result from the following
lemma.

Lemma 19 (see$2, 31]) Let(A,b) be a given ERK scheme and assume that the coeffigignts
in (4.24) are nonnegative. Consider an ODKt) = F(t,y(t)) with I € P. If u + 7F(t,u) > 0
for all uw > 0, all ¢t and all step size8 < 7 < 7° then the ERK metho(l4, b) is positive for the
given ODE under the step size restriction

(07 (67
7.—I— J 0 J

T 1<jtigert 5_ij ’ whereﬁ—zj = Fooforfy =0, (29

Proof =~ We show thati := «a;;u+70;; f (tx+c¢;7,u) > 0 for all step size® <7 < 7F. If 5;; =0
then this is obviously true, so assume hencefgfth> 0. If «;; = 0 thent* = 0 and there exists
no0 <7 < 7%, If a;; > 0then

~_ ﬂz‘j

u=q; (u+7—f(t, +c;T,u) ) >0

Qv
if Tﬁi <70 e .7 < Zis0 O
Qg /Bz'

We refer to min % as thepositivity factorof a given ERK method A, b) in this work. The

1<j<i<s+1 ﬁij
positivity factor constitutes the method dependent constant in the step size bound for positivity in
this approach. The problem dependent constant is the inverse of
In Sec.4.4.1we demonstrate that the taxis ODE defined in Se&.1allows7" > 0 and hence fits
into this framework.

Remark 3 The positivity theory for RK methods presented in 8e®.2is applicable to certain
classes of positive (nonlinear) ODEs. On the other hand, Led®wgives a statement about the
positivity of ERK methods applied to general positive ODESs. It requires knowledge of the positivity
of the forward Euler method applied to the given ODE.

Now we investigate the positivity factor of ERK methads, b) from (Class A. We restrict atten-

tion to such methods which satisfy( A, b) > 0 (see Lemmad.7). Our aim is to construct methods
with factor2. The following theorem shows that exactly one method with this property exists and
that this method is the same method as derived in The@fem

Theorem 11 Let (A, b) be a scheme fronClass A with T'(A, b) > 0 which can be rewritten in
the form @.24) with coefficients?;; > 0. This method has a positivity factor 2 if and only if
by = b3 = % and~ = é . The largest possible positivity factor of this method and is attained
for the choicevy, = 1, a3 = 0, a3, = 1, i1 = 5, 02 = 0, andayys = 3.
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Proof A method(A,b) considered in the theorem has a positivity factop if and only if we
can selecty;; such that% > 2forall1 < j < < 4. We show (following this paragraph) that this

impliesby, = b3 = % , andy = % , and further that this results in the unique choice of the values of

a;; as given in the theorem. On the other hand, simple calculation shows that this specific method

has a positivity factor two for the choice of; given in the theorem.

We havea,, = 1 and3y = ﬁ > 0. Henceg® > 2 & v > &. Further,33, = ag = >0

and hencef2 > 2 & ag > i—z Usingas, < 1 this impliesb; > 2y > L. 845 = b3 > 0 implies

G2 > 2 ¢ agy > 2b3. With ayz < 1 follows by < ; and hencey < 1.

We havess, = by — ausit > 06 ayg < % This implies2y < b, and hencé, > { andb; < ;.

Next, 331 = az1 — anaz > 0 & ag < B = é(m — 1292 — by). Usingb, > 2v implies

(39 < %(2 — 67) andy > 1 leads toa;, < i—z Hence we needs, = i—g This simplifies the
b

expression offs; yielding 31 = - (% — i - ) Now consider two cases.

Case 1(;; = 0): Thisis only possible fory = ¢ andb, = ; because we already knadw > 3.
Now we havea,; < % = 2b3 and thereforevy3 = 2b3. This also givesi,, = 0. Finally,

641 = by — Q91 Qg — A310u3 = %— bs — % >0 b3 < %— %. US|ngb3 > % leads tah; = % and
ase = 0. Hence we obtain the method given in the theorem. Also, all parametehave fixed
values now (as given in the theorem).

Case 2 (31 > 0): Thisis only possible ity < % and this is in contradiction with, > %

This completes the proof. O

4.3.4 Further results on positivity of ERK methods and the method RK32

The investigations in Sed.3.2and Sec4.3.3have singled out a unique method fro@lgss A

(the method withh, = b3 = % andy = %) with favourable nonlinear positivity properties. We
refer to this method as RK32 (because it has three stages and order two) in the following. The
Butcher array of this method is given in Fig.2 RK32 is optimal with respect to positivity on

the classC{ (a) by construction. We have not yet looked at the positivity of RK324gria) for

g # 0. This is our next task.

We apply a methodA, b) from (Class A to a problem from clasg} (a). The polynomials?;(z),

i1 =1,2,3in Eq. @.19 of a3-stage ERK method are given by

R1 (Z) = b1 + (b2a21 + b3a31>2 + b3a32a2122 5 RQ(Z) = b2 + bgaggz, R3(Z) = b3 y

and simplify for methods fromGlass A to

1 1
Ri(z) =1 —by— by + (5—7)»“522, Ra(z) = b+ 7z, Ry2) =bs.

For optimal positivity of the methods applied to problems frdh(a) we need, according to
Theorem, that the threshold factof8(R;) of the polynomialsik; and the threshold factdf(R)

of the stability polynomial are as large as possible. [['{g?) = 2 by construction of Class A
and therefore we are interested in methods Wittk;) > 2. The method RK32 is easily shown to
satisfy this requirement and is hence optimal with respect to positivity on the£]dss.
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Beside the methods ofZ{ass A, we have also defined the methods Gtgss B which satisfy
additionally one of the third-order conditions. We identified the admissible range of the parameters
(ba, ) such thatl'(A, b) > 0 holds for method$A, b) of (Class B. Within this parameter range

we determined numerically the method which yields the largest radius of absolute monotonicity
T(A,b) and hence is optimal with respect to positivity on the problem dias®), see Theorerf.

This is the method witl, = 0.3572, v = 0.3039 leading toT' (A, b) = 1.1754.

Rewriting the ERK method oflass B with b, = 0.3572 andy = 0.3039 as a convex combination

of forward Euler steps (see formul&24)) with a3 ; = 0.3213, gy = 0.38 anday, » = 0.0000764

results in a positivity factor ok 1.1754 (see Lemmal9), and this factor is optimal (numerical
search).

These numerically obtained values (optiriglA, b), positivity factor) for the methods ofYlass B

are slightly better than those which hold for sosagtage methods of order(all values equal one)

but they are worse than the values for the optimal method RK32laté A where all values equal

two. Further, the methods o€(ass B are still of second-order only and the advantage of having
one of the third-order conditions satisfied is expected to be marginal compared with methods of
(Class A. Therefore we will omit the results of this method in our numerical tests.

In the literature we find other ERK schemes which are recommended for the solution of positive
ODEs. In [L7] we compare RK32 with the following schemes: modified Euler (ME, two stages,
second-order) and Runge-Kutta-Fehlberg method 2(3) (RKF2(3), three stages, third-ord;, see [
52, 31]). Both methods havé'(R) = T'(A, b) = 1, positivity factorl, and they are recommended

in [52). Fig. 4.2gives the Butcher arrays of these methods together with embedded methods which
have one order less than the primary methods. These embedded methods can be used to estimate
the local error in the computation and to adaptively change the time step size. The time step
selection strategy by embedding is based on accuracy only (positivity is not taken into account)
and we advance a time step always with the higher order solution (local extrapolation). Therefore
the positivity properties of the embedded methods are not essential.

0]0 00
0]0 1|1 0 5|3 0
L iRy iy
2 2 1 1 2 1 1 1
11 0 _61’)?3 |3 3 3
2 2 0 2 5 0

Figure 4.2:Butcher arrays for ME, RKF2(3), and RK32 (from left to right). The last row of each array
defines an embedded method.

In [17] we present numerical experiments with these three ERK methods. Test examples are semi-
discretizations (with flux limiter) of a linear advection equation and of a TDR system (here the
ERK methods are used in an OPS scheme). The experiments demonstrated that RK32 allows for
the largest time steps in order to obtain nonnegative solutions of comparable accuracy. From the
point of efficiency, ME and RK32 are comparable (ME requires only two function evaluations
per time step), and RKF2(3) is more expensive. The larger time steps allowed by RK32 pay off
in splitting schemes especially for lower accuracy requirements. This advantage should be more
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pronounced if the implicit part in the splitting scheme becomes more expensive. The higher order
of RKF2(3) pays off for higher accuracy demands. We will employ ME, RK32, and RKF2(3) in
our numerical methods to be described in Se6and Sec4.6.

4.4 Positivity and stability of ERK methods for the taxis ODE

In this section we consider the positive taxis ODE derived in S&c],

4

dt
At first we demonstrate in Se¢.4.1that Eq. .26 fits into the framework of Sed..3.3by deriving
an expression for the threshold step sizeequired in Lemmad.9. Then, in Sec4.4.2 we discuss

linear stability properties of some ERK schemes (including RK32) when applied to a linearized
version of Eq. 4.26).

Ui(t) = Hp(U(t);i), ieT. (4.26)

4.4.1 Positivity of the forward Euler method for the taxis ODE

We denote withF; the taxis discretization in spatial directign

F5(U(1),1) == =7 (Z;(Us1) = T;(Usi —e))

SRS

which can be written in the formi; (U (), t) = 51Ui—e; — BoUi+B2Uite, , With valuessy, 1, 3. de-
pending on the signs of the local velocities (and also on componehkigmough the smoothness
monitorr), see below.

If vij,vie;; > 0 then we obtain, in the non-exceptional case of the state interpoattxy, the

values B ) 5
1 vy j Ti—e;,j Vi, j
=g, (s o) = ) <52 (143)

o (Ti*ej 7])
2rifej J

1 Vi.i
pr = n (Uiej,j + ?jq)(ri,j) -
The bounds o, andj; follow from the assumptions3(14h on the limiter function® (also the
value of§). The same bounds oy and 3, (and alsod; = 0) are obtained if exceptional cases
occur in the definition of the state interpolants. We asslimg 0. One step with the forward
Euler method yields the approximati@hat the new time level

'Uiej,j) >0, and By =0.

Ui = Us + T(61Uie; — BoUi + BoUise;) = (1 — 760)Us + 7S1Ui—e; + TB2Uire, -
Hencel; > 0 providedr(3, < 1 andrf3,, 76, > 0, and this is the case i < h(v; ;(1 + §/2))"".

Now consider the case tha{;, v;_.,; < 0. This leads, in the non-exceptional case of the state
interpolants 8.121), to values

-1
1 —Vi—e;,j 1 (I)(Ti—ej,j) —Vi—e;,j 4
60 = E (_Ui—ej,j + T(D(Ti,j ) - F(_Ui,j) < T 1+ 5 )



)
2rifej7j

-1

=0, and B = % <—ui,j v %@(q;) - Mevw)) > 0.
The bounds org,, 5, follow from the assumptions3(14hH on the limiter function. (The same
bounds hold in the exceptional cases &flgh).) Hence, similar as in the previous case, an Euler
step yields; > 0if 7 < h(—vi_e, ;(1 +6/2)) "
Along the same lines we can treat the cases where< 0,v;_e, ; > 0) or (vi; > 0,vi_e, ; < 0).
Then we obtain the bound, < 0, 8, > 0,3, > 0) and(fy < 1/h- (vij — 5, ;)(1+5/2), b1 >
0, 52 > 0), respectively. Altogether we obtain that the Euler step yields a nonnegativel?emnt

allie Zif
h

< -

T=001+6/2)

Note that the facto? in the expression for'”) can be replaced by if the local velocitiesy; ; in
spatial directiory have a uniform sign.

Summation of; over all spatial directiong now yields a step size bound such that the forward
Euler method applied to the taxis ODE 26) is positive for all0 < 7 < 7°. We obtain

, where oY) :=2max|v; | .
iez 7

d

h )

0 __ ._ @)

T = w1102 where v := E oV
7j=1

This generalizes the result given by Hundsdorfer etH] fo the case of non-constant velocities.

4.4.2 Discussion of linear stability

We start with considering the stability of some ERK methods applied to Dahlquist’s (linear) test
equationy’ = Ay, A € C, i.e. we study the stability polynomial of these ERK methods. Meth-
ods taken fromClass A and Class B have the same stability polynomial, namé?%(z) (see
Sec.4.3.1.). The stability domain oﬂ%;Q(z) is given in the plots of Fig4.3. For comparison,
we also print the linear stability domains of thestage ERK methods of orderfor s = 2,3
in these plots. The domain of the 3-stage methodsCtdqs A and Class B is stretched by a
factor of about two in the real direction compared with the domains oftk@ge methods of
orders. With respect to the imaginary direction, there is only little stretching compared with the
2-stage, second-order methods and a slight disadvantage near the imaginary axis compared with
the 3-stage, third-order methods. Altogether, thetage, second-order methods appear to have
favourable linear stability properties.
Later we will apply the derived ERK method RK32 or other ERK methods to the (nonlinear) taxis
ODE (4.26. In order to get some information about the behaviour of the ERK methods applied
to (4.26), we will now consider a simple test problem, the scalar advection equation in one space
dimension,

Ou+vo,u=0, veR,t>0, u(0,z) =uy(z). (4.27)

This is a linear, constant coefficient problem and we assume periodic boundary conditions. Hence
we can apply Fourier analysis as &1 p. 17], see also e.g2().

We use the state interpolation approach, see $8c], to discretize the spatial derivatives on a

grid with grid width ~. The limiter function makes the resulting MOL-ODE nonlinear and this
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Figure 4.3: The lines in each of the plots are the boundaries of the stability domains of methods with
stability ponnomiaIsR?jZ, R3 3, and Ry > (from largest to smallest; the stability domain is the respective
interior area). The dark gray shaded area in each plot is the stability domain of methods with stability
polynomial as given in the plot title if the eigenvalues are confinetl tg(¢), i.e. the limiter function@%(

(the light gray shaded area corresponds to eigenvaly@s, i.e. the limiter functiorII)‘L/L).

prevents the application of Fourier analysis. However, if we assume spatially smooth profiles
then the smoothness monitarEq. 3.13, is approximately equal to one. Therefore we linearize
the limiter function® aroundr = 1 and this in turn leads to a linear MOL-ODE. The linearized
version of the Koren and van Leer limiter are
1— 1

Dh(r) = Kislr), and @f,(r) = Kolr), where K (r) ="+ ="
Remark 4 The semi-discretization of probler.27) with the state interpolation approach using
the linearized Koren limiter functio®% (r) is equivalent to the semi-discretization with the third-
order upwind biased discretization & :-method B1]) of the spatial derivative in4.27).

We obtain eigenvalues, (¢) of the linearized discretization operators (along the lines described
in[61, p. 17)),

bl1-x

<(cos§ —1)% + i sign(v) sin & (?:—: - COS{)) , £€]0,2n].

We see that the real part af,(¢) for x = 0 is slightly more negative than the real part)of(¢)
fork = % This implies that the discretization with (linearized) van Leer limiter has slightly more
damping than the discretization with the (linearized) Koren limiter.
When applying an ERK method with stability polynomia(z) and step size to the linear MOL-
ODEs obtained with the linearized limitedg: or L, then for stability we require that

|IR(TA:(£))| <1 forall £e€]0,2n].
We definey := % and want to maximize under the restriction that the scheme is stable. Then we
obtain (numerically) the values in Tad.1 (first two lines) and the stability domains as illustrated
in the plots of Fig4.3. We see that methods with stability polynomfa] ; allow for the largest
values ofv and hence largest time stepwith respect to stability for the MOL-ODE obtained with
limiter &%, followed by methods witt;, and then methods witR, ,. If the limiter is ®{;, then
we obtain the ordeRy,, Rs 3, andR, .
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maximum values o# for RK32 (R7,) ME (Ry2) RKF2(3) (R33)
stability with limiter ®% 1.25 0.87 1.62

stability with limiter &%, 1.41 1 1.17
positivity (nonlinear MOL-ODE)| 1 0.5 0.5

Table 4.1:Maximum values of’ for stability and positivity.

With the help of Sec4.4.1and Lemmal9we can derive a value ofsuch that the schemes RK32,

ME, and RKF2(3) are positive when applied to the nonlinear MOL-ODE obtained by the state
interpolation approach with limiter functioby or ®y;. These values are given in the third line

of Tab.4.1 They are the same for ME and RKF2(3) because both have a positivity factor equal to
one, whereas RK32 has a twice as large value caused by the positivity factor equal to two for this
method.

The values of’ in Tab.4.1 are best balanced for the RK32 method.

4.5 Rosenbrock-type methods with AMF

45.1 Two-stage methods ROS2}-AMF and ROS3-AMF

A family of 2-stage, second-order W-methodsg] is given by the coefficientsl[],

00 1— by 7 0
A= 1 E b= b , and I'={ 7 E (4.28)
2b2 2 b2

whereb, # 0 and~ > 0 are still free parameters. The order of the method is independent of the
matrix 7" (W-method property).

Verwer et al. 2] successfully applied the method with parametet2® whereb, = % to
advection—diffusion—reaction problems from atmospheric air pollution modelling. The parame-
ter~ > 0 is still free in this scheme which we refer to as ROH2(The underlying ERK method

of ROS2§) is the modified Euler (ME) method and a first-order embedded method is provided by
the choiceh = (1 O)T.

The stability functionR(z) for all schemes4.6) with parameters4.28) is given by Eq. 4.20.

This function isA-acceptable fory > i and L-acceptable for, = 1 i% 2. Theorem8 gives

the radius of absolute monotonicity of the stability functi@(z). This radiusl'(R) is important

for positivity of the scheme when applied to linear problems with right-hand side functions from
the classC{ (). The theorem states that the raditis?) is not defined fory > £ (i.e. the method

is not positive onZ{ («)), and the radius is largest for= i l.e. exactly for the limit value ofy

which yields A-stability.

We now turn our attention to the ROS2(method applied, in the forn#(7), with AMF as defined

by the factorization4.13. We refer to these methods as RO92AMF. The order of the method

is not affected by AMF but we now consider a more realistic scalar stability test equation than
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y' = Ay. This test equation has the form

d
dg—g) = (/\T + Ao + Z )\j> y(t), (4.29)

J=1

where we assume that- corresponds to an eigenvalue of the taxis discretization (seet3ed,
Ao to a reaction eigenvalue, and, j = 1(1)d to the eigenvalues of the diffusion discretization in
thed spatial directions. The matrik—7+7 in the method is now defined by the factorizatidrild

d
(I —79T) = (1 — 7y)o) H (1 —79\)) (4.30)
7j=1
The factorized stability function of a method.{, 4.28 with respect to Eq.4.29 is
—1 1 2 -2
R(zr, z0, 21,y 24) = 1+ 22p7 + (52 — z) P, (4.31)

wherez; = 7); for j = 0(1)d, zr == 7Ap, andz = zp + ijo z; . The strong impact of
AMF on the stability of a Rosenbrock-type methed7) is nicely illustrated by considering the
damping of the scheme at infinity. Without AMF there exist methddg (vith a stability function
R(z) which satisfiegR(c0)| = 0. On the other hand, the stability functid®(zr, 2o, z1, - . ., 2za)
of a Rosenbrock-type method applied with AMF yie|d&zr, oo, ...,00)| = 1 ford > 1 (even

if zr = 0), i.e. there is no damping at all at infinity. Furthét(z;,0,0...,0) is the stability
polynomial of the underlying ERK scheme and therefore it is sensible to assumsg- ikatithin
the stability domain of this ERK method.

Let us assume thatr is within the stability domain of the ME method (the underlying ERK
scheme of ROS32(), and thatz; < 0, j = 1(1)d, because the;, j = 1(1)d, correspond to the
diffusion discretization. Then, for a givepvalue, we are looking for the maximum valéesuch
that ROS2{)-AMF is stable, i.e.|R(zr, 2o, - .., 24)| < 1, for all zy in the closed wedg#/,, see
p. 39. This case is considered by Hundsdorfé®][for the valuesi = 1 andd = 2 and he states
that the largest values éfare obtained for values of € [0.5, 0.8]—the best choice being~ 0.59
leading tof ~ 77°. Further, fory € | no angled > 0° is obtained, and the choiee= ~,,
results ind ~ 11°.

With these results in mind we will consider the following RO$2AMF methods in our numerical
experiments:

4’2]

e ROS2(_)-AMF: ROS2(y_) is L-stable and is positive ofi;(«) under a step size restriction.
ROS2(_)-AMF has a valu¢ = 0°.

e ROS2(/,)-AMF: ROS2(,) is L-stable and is not positive ofy(«). ROS2{,)-AMF has
a valuef = 11°. This~-value is also used ir6p).

e ROS2().59)-AMF: ROS2().59) is A-stable and is not positive ofy(«). ROS2().59)-AMF
has a valud ~ 77°.
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Another Rosenbrock-type method.§) with parameters4.28 whereb, = % andy = ~3 =
%+%\/§ is discussed in38]. This scheme is also second-order if applied as a W-method. However,
the method is third-order if applied to autonomous ODES$t(y) = F(y)) and with a matrix

T = % + O (1), i.e. afirst-order approximation of the exact Jacobia’ofWe refer to this
scheme as ROS3. The AME.(3 does not lead to such a matfixif F, # 0 and therefore ROS3
applied with AMF, i.e. ROS3-AMF, to the full MOL-ODE is second-order. Witk (1 O)T we

obtain a first-order embedded method. We will also use this method in our numerical experiments
and apply it to the full MOL-ODE (in the sense of a second-order W-method)

e ROS3-AMFE ROS3 isA-stable, not positive oify(«), and of second-order (third-order if
applied to autonomous ODEs and with a maffixvhich is aO (7)-approximation of the
true Jacobian). ROS3-AMF method has a value 56°.

We are looking for appropriate schemés to solve ODEs with right-hand sidg; within the
OPS framework, see Set.2 In this case, the factorizatiod (L3 leads to a0 (7)-approximation

T of the Jacobian of. Further, all models which we look at here (see SE8) give rise to
autonomous MOL-ODEs. Hence, ¥f; is chosen as the ROS3-AMF method then we obtain a
third-order accurate scheme. We will also consider the second-order methods)RABE with

v = ~v_ andy = 0.59 as method¥, in the OPS schemes (to be detailed in Se6).

With the OPS methods in mind, we are now looking at the stability of RQSRMF and ROS3-
AMF applied to the test equatiod .9 with A\ = 0. Then the factorized stability functioR

of these schemes is given by E4.31) with zr = 0. Lanser et al. 38, Theorem 1] prove that
|R(0,2,21)| < 1holds for allzy,z; € C_ ifand only if y > v3 = 1 + 1/3. This implies
that we have thel-stability property of the factorized schemeslit= 1. If d = 2 then we must
restrictzg, z1, 2o € Wise, i.€. A(45°)-stability [32]. This result can be improved if we assume that
21,...,2¢ < 0. Then the cased = 1 andd = 2 coincide again and Hundsdorfe37 obtains
valuest, (the subscript indicating that, = 0) such that R(0, zo, 21, ..., 2q4)| < 1if zg € W,.
The values aref, = 90° for v > 43 (hence for the methods ROS2(-AMF and ROS3-AMF),

0y ~ 81° for ROS2().59)-AMF, and finally6, = 0° for the ROS2{_)-AMF.

4.5.2 Three-stage methods ROS32(-AMF

In Sec.4.3 we derive the3-stage, second-order ERK method RK32 with favourable positivity
properties. Our aim here is the construction gtstage, second-order W-method with underlying
ERK scheme RK32. We hope that this method will combine the good positivity properties of the
underlying ERK method with the good stability properties of linearly-implicit methods.
Construction of the method class ROS32( The parametersl andb of the Rosenbrock-type
method §.6) are determined by the underlying ERK scheme RK32 already, sed Bjgand we

are left to find parameters. The additional condition for order two of a W-method, E4.10,

now yieldsy,; = —(3v + 731 + 732), and we are left with the free parameters;;, v3.. We can
compute the stability functioR(z) of the methods (with respect to Dahlquist’s test equation),

R(z) = 3 [1 +(1-=3v)z+ (% —3v+ 372> 2+ 7"323} : (4.32)

(1 —72)
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where 1 1 1
R 12 6731 o 5(731732 + 7§2) — (14 y32)y + 29% —7°. (4.33)

We obtain|R(c0)| = 0 if and only if r5 = 0 and this is equivalent to

-1
14 273

1
Va1 (673 — 129" 4+ 6(1 + 732)y + 2735 — 5) ;12 €R\{—3},7>0, (4.34a)

1 1
or ’731€R,732=—§,7:’yi::1i§\/§_
(4.34b)

With this necessary condition fdr-stability satisfied, the stability function of our methods is now
given by Eq. 4.32 with 3 = 0. This function isA-acceptable if and only

3 1 1
7 € [9-.9+] = [0.180,2.186], where g, = + - V3 + 3 \/72 +42V3. (4.35)

The interval includes the values. given in Eq. &.340. Hence, if the parameteissatisfy~y; =

—(3v + 731 + 732) and also the conditiongl(34) and @.35 then we obtain the class éfstable,
3-stage, second-order W-methods with underlying ERK scheme RK32. We restrict our attention
to such methods in the following.

We will use the third-stage solution of the methods as embedded solution in the time step size
control. This solution has order one. With respect to Dahlquist’s test equation we obtain the
internal stability functionR;(z) of the third-stage solution,

: {1 £ (- 29+ (72 S 732>> } . (436)

(1 —7~z) 4 2

The relevance of internal stability, i.e. the stability of the stage solutions, for the solution of stiff
ODE problems is discussed ifi]]. We here search for methods withacceptable internal stability
function R;3(z) and hence require thék;(oo)| = 0. This is satisfied if and only if

Rg(Z) =

1
Y31 =27 — 5y + 5~ Vs (4.37)
Under this condition, it easily follows that the internal stability functiBg(z) is A-acceptable,
and hence.-acceptable, for all values of € [y_,v.] = [1 — 1v/2,1+ 1V/2]. Further, the internal
stability function of the second-stage solution4sacceptable if and only iff > 1, and even
L-acceptable if and only if = 1.

Let us see whether we can combine the requirem&B) for internal L-stability of the third-
stage solution with the conditiong.843 or (4.340. Obviously, the case4(34h results in two
L-stable 3-stage, second-order W-methods with underlying ERK scheme RK32-audeptable
third-stage stability functiot;(z). These methods are given by the paramdters

1 1 1
V=Y 3:1i§\/§, 7212—272+27—§7 Yo =292 =5y +1, Y2 =g (4.38a)
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Let us turn to discuss the case349. Notice that we now have two conditions on the parameter
~v31, namely @.37) and the one in4.349. They are both satisfied simultaneously if and only if

62 — 10~ + 1
Y32 = for y 7é 1.
4(1 =)
We excludey = ~4 because these values leadhte = —% and this case is not considered here.

Both conditions onys; cannot be satisfied simultaneouslyyi= 1 and hence we also exclude this
value ofy. The interval[y_,~,] for v (leading to anL-acceptable third-stage stability function
Rs5(z)) is a subinterval of the given admissible range, ¢, | of y-values for an_-acceptable stabil-
ity function R(z), see .35. Therefore, we obtain that the class/eEtable 3-stage, second-order
W-methods with underlying ERK scheme RK32 ahéhcceptable third-stage stability function
R3(z) is given by the parametefssatisfying either the conditions

vE(-74) v # L,
87 — 2292 + 12y — 1 672 — 10y + 1 (4.38b)
y V32 = T
4(1—7)

or the conditions stated id(389. This class of W-methods with class parametérms the basis

of the following investigations and we refer to it as ROS32(

A third-order method for linear, autonomous problemsWe can choose the free parametéan

the class ROS32] such that the stability functioR(z) of the method is a third-order approxima-
tion to the exponential function. This implies that the resulting W-method, if applied with exact
Jacobian, is third-order accurate for linear, autonomous ODE systems. This method, RRS32(
is given by the choice

1
= 2 Loy — = ey =

1 1 1 1 1 1
Y=z = —3 2 cos (5 arctan <Z \/5)) + 1+ 3 V3v/2sin (§ arctan (Z \/5)) ~ 0.436 .

AMF and stability for ROS32{)-AMF :  We can apply the methods ROS32(n the form @.7)
with AMF and obtain schemes referred to as ROS3AMF. We apply these schemes to the
test equation4.29 and obtain the factorized stability functid®(zr, zo, 21, . . . , z¢). The method
parameter$’ satisfy the relatiom; = 0, see 4.33. This simplifies the factorized stability function
and yields p is defined as in4.30):

(141293 + 12y 4+ 2v31) 2 N (692 + v731) 2°

R(zr,z0,21,-+-,24) = 1+

3 2 1272]) 3 62’}/2]72 2
672])2 12])3 12,)/2]93 '
+(—1 + 1292 + 12y — 2492 + 2v31) 2

1272]93

For a given value ofy € [y_,~v.],v # 1, the corresponding value of; is defined by the condi-
tions @.389 or (4.381). As in the previous section, let us now assume thas within the stability
domain of the method RK32 (the underlying ERK scheme of ROg32fd that:; < 0, j=1(1)d.

Then, for a giveny-value, we are looking (numerically) for the maximum vatusuch that the
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method ROS32()-AMF is stable, i.e.|R(zr, 20,...,24)| < 1, for all zg € W,. The values

(for the cased = 1 andd = 2) are obtained by a similar algorithm as described3® pnd are
shown in Fig.4.4. The results are independent of the value ¢ = 1 or d = 2). Fory = 3 we
obtaind ~ 50°. The optimal value fory with respect to the above stability property appears to be
~v =~ 0.335 resulting inf ~ 64°.

70

50r

30r

101

I I I
0.3 0.4 Y 0.5 0.6 0.7

Figure 4.4:Maximum values of) = 6() such that the factorized stability functighof ROS32¢)-AMF
satisfies|R(zr, zo, ..., 24)] < 1 for all zp within the stability domain of RK32, alty, € W), and all
21,--.,24 < 0. We have consideregl € [y_,~v.],7 # 1, and obtained numerically the same maximum
values off in the cased = 1 andd = 2. For values ofy > 0.58 we could not find a valué > 0 such that
the stability condition is satisfied.

Based on these theoretical investigations, we will apply two schemes from the class RPS32(
AMF in our numerical experiments:

e ROS32(;3)-AMF: ROS32fs;) is an L-stable,3-stage, second-order W-method with under-
lying ERK scheme RK32 and-acceptable third-stage stability functidiy(z). The method
is third-order accurate for linear, autonomous problems (exact Jacobian). RQOSBRIF
has a valué ~ 50°.

e ROS32().335)-AMF: ROS32(.335) is an L-stable,3-stage, second-order W-method with
underlying ERK scheme RK32 aridacceptable third-stage stability functiéty(z).
ROS32().335)-AMF has the optimal valué ~ 64°.

4.6 Selection of schemeg, and ¥, for the OPS methods

In this section we detail the integration schemes which we use as approximate evolution operators
U, and ¥, in the OPS approach (Strang splitting), E4.1H. Sec.4.3 and Sec4.5 provide

a variety of different explicit and linearly-implicit time stepping schemes, backed by theoretical
investigations, which we can now choose from. A couple of other implicit schemes from the
literature which could be a good choice &y are discussed in Se4.7.

As discussed before, the taxis paftof the problem should be integrated explicitly in time. Fol-
lowing the discussion in Sed.3 and Sec4.4, we consider the ERK schemes ME, RK32, and
RKF2(3) as candidates for the explicit methéglin the OPS schemes.
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Also, as discussed before, the diffusion—reaction pashould be integrated by an implicit scheme
for stability reasons. Therefore we selectiorsome of the Rosenbrock-type methods considered
in the previous section. We apply them with AMF to reduce the amount of linear algebra work.
However, in the situation of OPS, the factorizatidnld leads to a matrix" in the Rosenbrock-
type scheme which is @ (7)-approximation of the true Jacobian of the right-hand side function
F;. (Remember that in Sed.5, the right-hand side function is always= F, + F;, and we have
neglected the Jacobian 6§ when defining the matrif’.) This approximation property df en-
sures that the ROS3-AMF method applied as approximate evolution op@ratoll be third-order
accurate (ifF; is autonomous). We also consider the methods RQS2AMF and ROS2(0.59)-
AMF as implicit methodsl; in OPS schemes. We do not consider the scheme RQF2MF as
methodW¥, in the OPS approach because numerical tests (not presented here) with the biomathe-
matical models described in Séc3.2 have shown the inefficiency of the resulting OPS methods.
Further, notice the poor numerical performance of RQSRAMF in comparison with ROS2( )-

AMF when applied to the (unsplit) MOL-ODE system, see CHapi\/e also do not consider the
3-stage, second-order W-methods ROS3AMF as methodsl; because they are constructed
with the unsplit MOL-ODE system in mind, as considered in the previous section. They would
lead to computational overhead (three stages but only order two) in an OPS setting.

We refer to a specific OPS method by the name QRSY¥, and, to summarize, we will test the
explicit methods¥, € { ME, RK32, RKF2(3)}, and the implicit method¥; € { ROS2¢_),
ROS2(0.59), ROS3 applied with AMF.

4.7 Alternative methods for the MOL-ODE and different split-
ting approaches

The numerical solution of ODEs has been and is a highly active field of numerical analysis and
scientific computing. A variety of special problem as well as all-purpose ODE solvers have been
developed. In this section we present two schemes, VODPK and ROWMAP, which aim at solving
large stiff ODE systems. We will use both schemes as reference methods in our numerical tests.
Further, we mention some methods which can be employed as implicit approximate evolution
operatorsV; in OPS methods. We also discuss a different splitting approach for the MOL-ODE,
source splitting 33], and a splitting approach on the PDE level of the TDR systBf). [ The

latter splitting method has been tested successfully for a TDR system describing a bacterial pattern
formation process.

General purpose ODE solver for stiff ODEs.

Implicit or linearly-implicit methods have to be used for the solution of the MOL-ODE due to sta-
bility requirements (stiffness). These methods require some information about the Jacobian matrix
of the problem. The Jacobian matrix of the MOL-ODE resulting from the semi-discretization of a
TDR system is of large dimension and, although sparse, has a very large bandwidth. This rules out
the use of band solvers for the solution of linear systems involving the Jacobian. To circumvent
this problem we restrict attention to ODE solvers which do not require the Jacobian explicitly but
only products of the Jacobian and vectors where the vector is arbitrary. A finite difference approx-
imation of these products can be computed from the right-hand side function of the ODE system
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with just two function evaluations. Guided by these requirements we select the codes VODPK and
ROWMAP.

VODPK [7] is a variable-coefficient ODE solver with the preconditioned Krylov method GMRES

for the solution of linear systems. It is based on the VODE and LSODPK packages. We use
VODPK with default parameters and set the flag MF=21 (method based on BDF formulas up to
order5 with restarted GMRES). Experiments with preconditioned VODPK (using AMF) resulted

in increased computational costs and no performance gain. Therefore we do not consider this case
here.

ROWMAP [64] is based on the 4-stage ROW-methods of order 4 of the code RZ3p4rd im-
plements a special multiple Arnoldi process (MAR®[63)]) for the solution of the stage equations.

We use the code with default parameters. The order 4 of ROWMAP is obtained provided that the
products of the Jacobian and vectors are exact. We already mentioned earlier that the discretiza-
tion of the taxis part of the TDR systems is only Lipschitz continuous due to the application of
limiter functions. Further, as in the case of Model 2, nonlinear reactions can lead to more non-
differentiable terms in the right-hand side of the MOL-ODE. Hence, we cannot guarantee that the
products of the Jacobian and vectors used in ROWMAP (computed by a finite difference approx-
imation) are exact and therefore we must expect a less than fourth order behaviour of ROWMAP.
This, in turn, has an influence on the reliability of the time step size control.

Inaccurate products of the Jacobian and vectors are not a problem for the order of the code VODPK
because there these products are only used in the Newton process for the solution of the nonlinear
stage equations. Inexact products may merely slow down the convergence of the Newton process.

Alternative methods for ¥, in OPS schemes.

In [14] we have successfully used a linearly-implicit variant of the trapezoidal splitting mesdpd [

12] as method?V, in the OPS approach. This method has a consistency order two and, applied to
the test equatiop’(t) = A1y(t) + A2y (t) with real matricesd; and A,, we obtain an amplification
matrix (the equivalence of the stability function in the scalar case) whicraeceptable (i.e.

its norm is bounded by one), if the matricds and A, commute and if they have a nonpositive
logarithmic matrix norm, se€lp]. Other linearly-implicit splitting methods are derived ih2]

which areA- and alsolL-stable for the test equation above even if the matrices do not commute.
The L-stable methods are especially interesting for very stiff problems. Numerical experiments
with these methods have shown that their application in OPS schemes does not lead to an improved
performance compared to the application of Rosenbrock-type AMF methods in OPS for the models
discussed in this paper. Therefore we do not consider them in the numerical experiments section
here. However, for different models or other applications they might be the methods of choice.

Alternative splitting approaches.
Another splitting approach for the solution of the MOL-ODEX), source splitting, is considered
in [33] and applied to a variation of Model 2 i1}]. The formulas

Ypr1 = 2(tp +7) + %(Fo(z(tk + 7)) — Folyr)) s (4.40a)

2'(t) = Folyg) + F1(2(t)), t € [te, tr + 7], 2(t6) = Yk, (4.40Db)
define a time step of a source splitting method for problér) (with a right-hand side function
F(t,y) = Fy(t,y) + Fi(t,y). This method reduces to the modified Euler (ME) ERK method if
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applied withF; = 0 and is of second-order (assuming exact integratioaf(l)). Note that

Fy is treated as an additional, constant source in the ODEOf). We have solved the ODE
(4.401 in each time step of the source splitting method with one step of RO$ZAMF in [15)].
Numerical experiments in this paper also demonstrate that the performance of the source splitting
method approximately equals the performance of the RQ328MF method applied to the (not
splitted) MOL-ODE. No numerical experiments with the source splitting method are presented in
this thesis.

Recently, Tyson et al58] have described a splitting algorithm and applied it to a specific TDR
model. They perform a splitting of the TDR model at the PDE level already and their approach is
closely related to our proposed OPS schemes. They use the software package CLAWRRACK [

to deal with the taxis part of the problem and also/astable implicit method for the diffusion—
reaction part. The AMF methods presented in this thesis differ from the approach of Tyson et
al. and also from the OPS approach as the AMF methods do not split the equations and hence
avoid the associated splitting error. We did not compare our proposed algorithms with the methods
proposed by Tyson et ab§] yet.
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Chapter 5

Numerical Experiments and Discussion

In this chapter we present numerical results which demonstrate the performance of the time step-
ping algorithms of Chap4 applied to the MOL-ODEs obtained by the discretization in space
(Chap.3) of the biomathematical models described in S&8.2

The discretization in space is done on grids with grid wibth- Wlo orh = ﬁlo see Sec3.1

These resolutions are sufficiently fine to resolve the phenomena exhibited by the different models.
Following standard practice, we have implemented the AMF methods #Sgcand the OPS
methods (Sect.6) with variable time step sizes (Setl) in FORTRAN77. The embedded first-

order solution is used to obtain an estimate of the local error of the current time step in the AMF
schemes. The time step is selected on the basis of an error per step (EPS) control which aims to
keep this estimate below a mixed (relative and absolute) threshold depending on the user supplied
tolerancel’'OL (= ATOL = RTOL). The higher order solution is used to advance an accepted
step (local extrapolation). The OPS methods use Richardson extrapolation to obtain a local error
estimate of the current step and then the same EPS control to select the step size. They step
forward with the solution obtained from two half-steps (doubling). The Jacobians of the diffusion
and the reaction parts of the right-hand side of the MOL-ODE are evaluated at the beginning of
a time step (AMF) or at the beginning of a Richardson step (OPS). We compute finite difference
approximations to the true Jacobians of the split functions.

We compare the computed (with our or other methods) solutigps,, of a MOL-ODE at final

time (corresponding to the examples considered here) against a reference sgjutioing obtain

these reference solutions of the ODE systems with the standard integrator VODRIqYiring

the very stringent tolerancEOL = 10~'2. The error estimaterr := ||yeomp — Yres|| DetWeen
computed solutions and reference solutions is measured in the $calen,

1 2
|v]| = (—UTU) : veR™.
m

This norm is used throughout this chapter, and in tables and figures we print the logarithm to the
basel( of the error norm. This procedure implies that we consider the temporal error (including
splitting errors) of the solutiop.,, in the numerical experiments. We do not consider the spatial
accuracy of the solution here (this has been done for Model 1 ir83gc

For each model (Model 2, Model 3, Model 4) we consider two different scenatias: 0 (as
defined in the corresponding model description) aad0, and for each of these a coarge Wlo)
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and a fine f = Wlo) spatial mesh. The integration schemes are run for seven tolerance values
TOL = 1073,107%5, ...,107%, except indicated otherwise, in all four test cases for each model.
We do not provide details of all numerical experiments but instead give a short summary of the
observations. The numerical experiments with Model 2 are discussed in more detail. All test runs
are performed on one processor of a HP Convex X-Class server under HP-UX.

5.1 Tumour—induced angiogenesis — Model 2

Description of solution: The solutionn of the equation for the EC density of this problem has
initially peaks near the right boundary of the domain. The cells there are migrating to the left—
forming a stream which moves up the present TAF @radient as time proceeds. No cell pro-
liferation takes place in the beginning of the simulation because,tiencentration at the cells

is below the threshold;. Later proliferation leads to a strong, local increase of the cell density.
The cells also take up TAF. This results in changes in the TAF gradients and causes lateral cell
movement and hence a widening of the cell streams. The cell streams turn towards the centre of
the TAF source (the tumour) once they are close enough to the left boundana. Fgves cell
density plots at three different output times for the model witk-(0.001) and without € = 0) cell

random motility (notice the different final times). We see that the process proceeds faster if cell
random motility is present and that in this case also the lateral cell movement is more pronounced
(leading to a closed wave front towards final time).

Numerical order of convergence: We start with assessing the numerical order of convergence
of the OPS and AMF methods by using the ODE solver with fixed time step size. We select the
method OPS-ROS2( )-RK32 for this test because it will turn out that this method will be one of

the most efficient for this example. We consider only this method because the variable step size
experiments later in this section suggest that the other methods behave similarly (almost parallel
lines in the accuracy vs. CPU time plots). We discretize Model 2 on a spatial gridlwi:t%.

In the first test we use a random motility coefficient 0.001 of the ECs and the corresponding

final timeT" = 1.0. Then we obtain the following table:

steps 30 35 40 50 75 100 150 200 300 400 600 800
err —1.51 —-1.65 —1.75 —1.92 —2.24 —2.48 —2.81 —3.06 —3.41 —3.65 —4.01 —4.26
order — 209 172 175 182 192 187 200 199 192 204 2.00

The first row of the table gives the number of times steps taken to fEattte attained norm of

the error is given in the second row, and the numerical order of convergence in the third row. The
numerical solution blows up if the number of time steps is reduced to 25. We can clearly observe
the expected second order convergence behaviour. We also note that the numerical solution is
positive for steps> 40 and that there is some slight undershoot (negative solution values) for steps
= 30 and steps-= 35.

We now turn to the situation without cell random motility= 0, and hencd” = 1.2 (everything

else unchanged). Now we obtain the table:

steps 35 40 50 75 100 150 200 300 400 600 800
err —0.96 —1.43 —1.67 —2.05 —2.28 —2.63 —2.88 —3.26 —3.54 —3.92 —4.19
order — 811 248 216 184 199 200 216 224 216 216
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Figure 5.1:EC densityn solutions of Model 2 for different simulations times and with or without random
motility of the ECs. The random motility coefficient of the ECgis- 0.001 in the top row plots, and there
is no EC random maoaitility in the bottom row plots € 0); all other parameters are as in S2&.2.1

The order of the method is again two. The numerical solution blows up if we only use 25 or 30
time steps. The smallest component in the numerical solution is exactly zero foes#ggthere

are negative solution components (small in magnitude) if the number of time steps is smaller and
for too few time steps this causes the solution to blow up.

Comparison of AMF methods: We now turn to investigate the performance of the variable
step size implementations and first concentrate on the AMF schemesb5.Eigives the error

vs. CPU time plots for the cases with and without EC random motility on a spatial grid with
h = Wlo Clearly, all methods converge to the reference solution with approximately the same
order of convergence.

In the case of = 0.001, Fig. 5.2 (left), only ROS2{_)-AMF and ROS32(0.335)-AMF return a
solution for all requested toleranc@®) L; the solutions of the other schemes blow up for toler-
ance requirements which are too weak. In the case-of) no such problems are observed and the
methods return solutions even f6O L = 10~3. Below we claim that the blow-up of the (numer-

ical) solutions in Model 2 is caused by negative solution values in combination with the reaction
term in the taxis equation. Negative solution values are introduced if the selected time step sizes
are too large. The number of time steps (scaled by the finalZipvehich a given method takes to
reach the final tim&" for a given value off’'OL is considerably larger & = 0 than ife = 0.001.
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(The error in the numerical solution is smallet if= 0 compared to the error i = 0.001 for fixed

TOL; the (scaled) number of time steps taken by a method to reach a certaimrerisisimilar

for both values ot.) Hence, in the case af= 0 the step size control selects smaller time steps
(caused by the steep fronts (non-smoothness) in the EC density solution in this case). On the other
hand, ife > 0 then the steep fronts are smoothed and the step size control selects larger time steps
which in turn causes the negative solution components.

The successfully computed solutions of all methods are nonnegative except for some (small in
magnitude) negative values if weaker (successful) tolerances are requested. In the-¢gshe
smallest solution component is exactly zero for all requested tolerances for the methods ROS2(
AMF, ROS2(0.59)-AMF, and ROS32(0.335)-AMF.

The method ROS3-AMF is slightly more accurate than the other AMF methods for this model
and higher accuracy demands but not very robust for less strict accuracy requirements. The
method ROS2(, )-AMF shows the worst performance. ROS2J-AMF appears to be very robust;
ROS2(0.59)-AMF is slightly more efficient. There are hardly any differences between RQB32(
AMF and ROS32(0.335)-AMF. The latter method is slightly more stable (as supported by the
theory). Similar conclusions can be drawn from numerical experiments if the spatial resolution is

refined to a grid withh = .

Comparison of OPS methods: Let us next consider the performance of the variable step size
implementations of OPS schemes applied to Model 2. %-®gives the error vs. CPU time plots

for the cases with and without EC random motility on a spatial grid with Wlo

Again, all methods converge to the reference solution with approximately the same order of conver-
gence. The OPS methods almost avoid a blow-up of the numerical solutions. Blow-up is only ob-
served for’OL = 10~3 and the methods OPS-R0S2(0.59)-RK32 and OPS-R0OS2(0.59)-RKF2(3)
if £ =0.001, and OPS-ROS3-RK32 if = 0.001 ore = 0.

It is noteworthy that the OPS schemes with implicit method ROSRAMF demonstrate the most
stable behaviour of all schemes tested here. This can probably be attributed tsttimlity of the
underlying Rosenbrock method but is in contrast to the stability property derived for the factorized
scheme applied to the test equatidi2®. An explanation here could be that RO$2(-AMF is

stable with respect ta4(29 on a very large domain for the valugg, . . ., \; but this domain does

ROS2(g-)-AMF —+— ROS2(g-)-AMF ——

o ROS2(g+)-AMF ---x--- ROS2(g+)-AMF -—--x---
N ROS2(0.59)-AMF ------ 15 ROS2(0.59)-AMF ------
-15 = ROS3-AMF 8- L ROS3-AMF -8
S, ROS32(g3)-AMF —-m-- AN ROS32(g3)-AMF —-m--

L 3
ROS32(0.335)-AMF -~~~ 2r AN=E %% R0OS32(0.335)-AMF ---e--- |

log_10(err)
N
[8)]
log_10(err)
w

1 _ 1 1
100 1000 100 1000
CPU time (seconds) CPU time (seconds)

Figure 5.2:Error vs. CPU time plots of various AMF methods applied to Model 2 with 0.001, 7 = 1
(left) ande = 0, T' = 1.2 (right). We useh = T%o; all other parameters are as given in S&8.2.1

74



not extend to infinity. However, this issue has not been investigated. The schemes with implicit
method ROS2(0.59)-AMF or ROS3-AMF have problems with stability if the required tolerance is

not sufficiently stringent.

If we take a look at the behaviour of the OPS schemes with respect to the choice of the explicit
method then we see that RKF2(3) gives the most accurate results, followed by RK32 and eventually
ME. Especially in Fig.5.3 (bottom) we see that OPS-ROS2[-RKF2(3) suffers from stability

problems in the lower accuracy range whereas the other two OPS methods with implicit scheme
ROS2(_)-AMF are still unaffected in this range of accuracy.
Altogether we recommend the application of OPS-ROSRRK32 and OPS-ROS2( )-RKF2(3)
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Figure 5.3:Error vs. CPU time plots of various OPS methods applied to Model 2 avith0.001, T' = 1
(top) ande = 0, T = 1.2 (bottom). We usé = ﬁ; all other parameters are as given in S28.2.1

75



for the solution of Model 2. Similar conclusions can be drawn from numerical experiments on the
fine spatial grid withh = .
Comparison with reference methods: Fig.5.4gives the error vs. CPU time plots of a selection

of AMF and OPS methods, and of the reference methods (general purpose, stiff ODE solver)
VODPK and ROWMAP for the solution of Model 2 on the coarse and the fine spatial grid.

We see that the OPS schemes demonstrate the best performance, followed by the AMF schemes.
The reference methods are not suitable for the solution of Model 2 if only low to moderate ac-
curacies are required. They have many rejected steps and the numerical solutions obtained by
ROWMAP blow up except for the two most strict tolerance requirements in thezcas@ Both
reference methods return numerical solutions with negative components in the accuracy range
considered. For higher accuracy demands they perform well and will, due to their higher order,
eventually outperform the splitting methods.
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Figure 5.4:Error vs. CPU time plots of various methods applied to Model 2 with 0.001, T = 1 (left
column) ande = 0, T' = 1.2 (right column), and spatial grid width = ﬁ (top row) andh = ﬁ (bottom
row). All other parameters are as given in S28.2.1

Positivity and blow-up: Especially with the AMF schemes and the reference methods we have
seen that the numerical solutions may blow up if the requested tolerance is too weak. Looking
at the course of integration, we can see that in such a case negative solution values appear in
elements of the numerical solution which approximate the solution of the taxis equation. These
negative values grow larger in magnitude — at first slowly and then more and more rapidly until
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Figure 5.5: Error vs. CPU time plots of various methods applied to Model 2 with 0.001, T = 1
(left) ande = 0, T = 1.2 (right). We useh = Wlo andg = p = 0; all other parameters are as given in
Sec.2.3.2.1

they blow up.

The behaviour described is caused by the reaction term of the taxis equation. To this end, consider
the simplified reaction ternfz(n) := c;un(l — n) — Sn with nonnegative parameters, where

¢1 represents the termax{0,c; — ¢j} of the original reaction function. The scalar Jacobian
8{5‘;};‘) = 10 — B — 2¢1un is positive forn = 0 if ¢; > f—j. Hence the fixed point = 0 of fr(n)

is unstable in this case. The choice of parameters of Model 2 Ieagls:to().04 and hence the
conditions for instability are easily satisfied.

We have studied numerically the effect of switching off the reaction term in the taxis equation
and indeed, all methods can successfully compute the solution up to the final tewen for

TOL = 1073, The results on a spatial grid with= ﬁ are given in Fig5.5. There we can also

see that the performance of the methods ROWMAP and VODPK also improves considerably but
the splitting methods still have a clear advantage.

Another technique to enforce a nonnegative solution is to agigping, see e.g.§2]. This means

that after each time step of a method all negative components of the solution are set to zero.
Clipping interferes with mass conservation and should therefore only applied with care and if
really necessary. In our case, clipping prevents the blow-up of numerical solutions but does not
improve the performance of the methods. Therefore we rather recommend to apply the methods
with a more stringent tolerance requireméidt L.

5.2 Tumour—induced angiogenesis — Model 3

Description of solution: The most interesting part of this model is again the evolution of the
EC densityn depicted in Fig.5.6 for the cases withe( = 0.00035) and without ¢ = 0) cell

random motility. In contrast to Model 2, the model considered here does not take account of EC
proliferation but concentrates on the development of the ECs near the tips of the new blood vessels.
The total mass of ECs is conserved in the model.

The solutionn of the equation for the EC density of this problem has initially peaks near the left
boundary of the domain. The cells there are migrating to the right and move up the preseat)TAF (
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gradient as time proceeds. The gradient in the fibronectin concentratamts counterproductive

by slowing down the migration of the ECs towards the right domain boundary. On the other hand,
it enhances the lateral movement of ECs. This lateral movement is clearly visible in the plots: the
outer EC clusters move laterally as the time increases and subsequently, arouné timein to

form one central cluster. Later at time= 10 we see that the cells have spread out even more in
the domain; there is also some movement backward to the left boundary. From now on, the ECs
advance only slowly towards the tumour (right-hand boundary) due to the chemotactic function
chosen in Model 3.

t=2 S t=5 S t=10

t=2 S t=5 S t=10

Figure 5.6:EC densityn solutions of Model 3 for different simulations times and with or without random
motility of the ECs. The random motility coefficient of the ECsis= 0.00035 in the top row plots, and
there is no EC random motility in the bottom row plots={ 0); all other parameters are as in SB@.2.1

Comparison of selected AMF and OPS schemes with reference methods:

The most promising AMF methods for this model are ROS32(0.335)-AMF (ROSBAMF be-

haves similarly) and ROS2()-AMF (ROS2(0.59)-AMF behaves similarly). The enhanced ac-
curacy of ROS3-AMF, as observed in the experiments with Model 2, does not show up for this
model. Again, ROS2(,)-AMF cannot compete with the other AMF schemes. There are almost
no rejected time steps for all methods. The total mass of the solution components corresponding
to the cell density: in the model at final simulation tim@ (= 5) is almost the same as the mass at
initial time. The difference is of the order of machine precisienl~'¢) except for the weakest
tolerances used where the difference can be as laryg4sTherefore it is justified to say that the
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integration schemes are mass conservative. Small negative components in the numerical solution
are no difficulty in the numerical solution of Model 3. This is apparently in contrast to what is
observed in the numerical solution of Model 2. However, there we have argued that the difficulties
arise because of the reaction term in the cell density equation of Model 2. Here we have no such
reaction term and hence this supports the arguments given in the previous section. We find (small
in magnitude) negative components in the numerical solution for low tolerance requirements only,
especially in the case with random cell motility & 0.00035). This can be explained, as in
Model 2, by observing that for the same valuelad . the methods take considerably more time
steps to reach the final timedf= 0 as ife = 0.00035. In the following we consider the schemes
R0OS32(0.335)-AMF and ROS2()-AMF only and their error vs. CPU time plots are given, in
comparison with other methods, in Fig.7.

We turn to discuss the numerical results obtained with the OPS methods applied to Model 3. They
all behave almost identical in the moderate and higher accuracy range. The schemes with implicit
method ROS3-AMF demonstrate small stability problems for low accuracy demands; the schemes
with implicit method ROS2{_)-AMF appear to be the most robust with this respect—especially
for the case= = 0.00035 on the finer spatial grid. Therefore we consider the schemes OPS-
ROS26_)-RK32 and OPS-ROS2()-RKF2(3) in the comparison in Fig.7. The OPS schemes
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Figure 5.7: Error vs. CPU time plots of various methods applied to Model 3 with- 0.00035 (left
column) anct = 0 (right column), and spatial grid width = Wlo (top row) andh = ﬁ (bottom row). The
final time isT = 5; all other parameters are as given in S28.2.1
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are also mass conservative and return nonnegative solutions under the same restrictions as stated
for the AMF schemes in the previous paragraph.

From the error vs. CPU time plots in Fig.7, we see that the AMF methods and the OPS schemes
perform equally well for this example. Also, the reference methods VODPK and ROWMAP per-
form similarly in the lower and moderate accuracy range (except fer 0.00035 on the fine

grid where VODPK outperforms ROWMAP). There is an advantage for the reference methods if
e = 0.00035 (not for ROWMAP on the fine grid), and a slight advantage for the splitting methods
(AMF, OPS) ife = 0. For higher accuracy demands the reference methods are superior (due to
their higher order of accuracy). The reference methods have not as good mass conservation and
positivity properties as the splitting schemes. The mass difference between the solutions at initial
and final simulation time is in general in the orderl6f ¢ even for higher accuracy demands, and
there are small in magnitude (but bigger than for the splitting methods) negative components in the
solutions at final time for almost all tolerance requirements. These negative solution values are not
harmful for the solution process of the MOL-ODE of this model.

We note that Model 3 is numerically much simpler to treat than Model 2: firstly, there is no
reaction term in the taxis equation of Model 3 and such a term caused much of the trouble in the
numerical simulation of Model 2 (blow-up due to negative solution components), and secondly, the
boundary conditions in Model 3 are of zero-flux type whereas there is a combination of zero-flux
and non-homogeneous Dirichlet boundary conditions in Model 2. Especially the inclusion of a
reaction term in the taxis equation of Model 3 (e.g. in order to take EC proliferation into account)
is expected to lead to a notably improved performance of the splitting schemes compared to the
reference methods.

5.3 Tumour invasion — Model 4

Description of solution: The solutionn of the equation describing the evolution of the tumour

cell density of this model has an initial peak in the centre of the domain (representing the initially
compact tumour mass). This peak spreads outward moving up gradients of the ECM dgensity
which is heterogeneous initially. This leads to a heterogeneous pattern in the cell density solution.
These patterns are sharper if there is no cell diffusion (a break up of the initially compact cell
mass can be observed) and more smeared with cell diffusion (the break up of cell mass is not so
pronounced in this case). The total cell mass in the domain is a conserved quantity of the model.
The tumour cells release MDE,{ which diffuses within the spatial domain. MDE in turn degrades
ECM and hence leads to new gradients in the ECM density which give rise to further migration of
the cells. The most interesting solution of this model is the cell density an® Bigives solution

plots at three different output times for the cases with and without cell diffusion.

Comparison of selected AMF and OPS schemes with reference methodsWe again start

with looking at the performance of the AMF methods applied to the MOL-ODE obtained by the
semi-discretization of the equations of Model 4. Again we note that RQ$FAMF requires
significantly more CPU time than the other AMF methods to return a solution of the same accuracy.
Also, the improved accuracy of ROS3-AMF, as observed in some of the numerical experiments
with Model 2, does not show up. The remaining four methods of this type behave fairly similar
and we single out ROS2()-AMF and ROS32(0.335)-AMF for the numerical comparison with
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Figure 5.8:EC densityn solutions of Model 4 for different simulations times and with or without random
motility of the ECs. The random motility coefficient of the ECgis- 0.001 in the top row plots, and there
is no EC random maoaitility in the bottom row plots € 0); all other parameters are as in SB@&.2.2

the OPS schemes and the reference methods, seg.€iJ.here are virtually no rejected steps in

the test runs with the AMF schemes. Also, the initial total mass of the tumour cells is conserved (up
to machine precision) during the process of simulation until the final finie reached. Finally,

there are almost no negative solution components and if there are some (for very low accuracy
requirements) then their order of magnitude is considerably smaller than machine precision.

We now turn to discuss the numerical experiments with the OPS schemes applied to this example.
There are only small differences between all the methods and these are mainly due to the choice
of the implicit scheme in the OPS method. If this implicit scheme is ROS3-AMF then the perfor-
mance is worse than for all other methods in all four test cases. Concerning the other two implicit
schemes tested, the performance depends on the chaicdfof = 0 then the methods with im-

plicit scheme ROS2(_)-AMF have an advantage and:if= 0.001 then the methods with implicit
scheme ROS2(0.59)-AMF are slightly better (although the difference in this case is less than in
the case withe = 0). We observe slight stability problems in the case- 0.001 for very low
tolerance requirements for all methods (rejected time steps in this case). These are the least pro-
nounced for the method OPS-RO$2)-RK32. The statements given above for the AMF methods
concerning negative components in the solution and conservation of (tumour) cell mass also apply
for the OPS schemes. Based on the observations we select the methods OPS$-IREB83@ and
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Figure 5.9:Error vs. CPU time plots of various methods applied to Model 4 with 0.001 (left column)
ande = 0 (right column), and spatial grid width = ﬁ (top row) andh = ﬁ (bottom row). The final
time isT = 5; all other parameters are as given in S28.2.2

OPS-ROS2{(_)-RKF2(3) for the numerical comparison in Fig9.

We see from the plots in Fidh.9 that VODPK turns out to be very efficient for this model. Due

to increasing stiffness, this advantage of VODPK decreases for the finer grid resolution and more
significantly, as reported inlp), if the (small) diffusion coefficientl, = 0.001 is enlarged by

a factor of10 or 100. We note that the AMF schemes can be applied with even less stringent
tolerance requirements ( e.g. upX®L = 10~2) in the case with cell diffusions(= 0.001) and

then these schemes outperform VODPK (for consistency we do not plot these data points here).
In general, VODPK and ROWMAP preserve the cell mass well although, especially in the case
¢ = 0, not as good as the splitting schemes (mass conservation improves for increasing accu-
racy demands and eventually reaches the level of machine accuracy). VODPK and ROWMAP
return nonnegative solutionsdaf= 0.001 except for the weakest tolerance requirem@risl. =
1073,10735. In the case = 0, the solutions contain negative components for all tested tolerances
TOL. The most negative values being arounth—> for TOL = 102 and reaching the level of
machine accuracy for stricter toleran&es L.

Returning to the plots in Figh.9, we clearly see that the AMF schemes are more suitable than the
OPS methods for the test case with cell diffusien=0.001); without cell diffusion ¢ = 0), the
situation is the opposite and the OPS schemes generally demonstrate a better performance.

It can also be observed that for cruder tolerances the methods based on the explicit method RK32
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have a slightly improved behaviour compared to the corresponding methods based on the explicit
methods ME or RKF2(3). We credit this advantage to the improved stability and positivity prop-
erties of RK32.

Finally, we mention that Model 4 (as Model 3 and in contrast to Model 2) is a TDR system without
reaction term in the taxis equation. This serves to explain that slightly negative components in the
numerical solution have no negative effect on the solution process. Also, the boundary conditions
of Model 4 are of no-flux type and there are no inhomogeneous boundary conditions as in Model 2.
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Chapter 6

Conclusions

In this thesis we have considered the numerical solution of taxis—diffusion—reaction (TDR) systems
which arise in a variety of mathematical models of biological processes. The driving force for
this work has been the aim to develop, implement, and test suitable numerical schemes for the
simulation of the tumour-induced angiogenesis Model 2. The numerical technique derived (spatial
discretization and solution of the MOL-ODE) has proved to be very appropriate for this model. We
have also demonstrated that the splitting methods derived for the solution of the MOL-ODE (of
various models) are at least competitive with standard integration schemes, especially for lower
and moderate accuracy demands. For some models, especially Model 2, they are substantially
more efficient. Lower or up to moderate accuracy demands (error in the rahge’db 10-*) are

usually sufficient in biomathematical simulations of TDR systems.

We have followed the Method of Lines (MOL) approach to numerically find the solution of a
TDR system. The finite volume approach used for the spatial discretization naturally respects
the conservation of mass property of the TDR system. Special attention has been paid to select
a spatial discretization which results in a MOL-ODE with nonnegative (analytic) solution. The
careful discretization of the taxis term is especially important with respect to this. For this reason
we have employed an upwinding technique in combination with limiter functions. The order of
the approximation is two in general and results in an acceptable spatial error on fairly coarse grids
already.

The second main part of this work is concerned with the solution of the initial value problem for
the MOL-ODE. For this purpose we have employed two splitting techniques: approximate matrix
factorization (AMF) and operator (Strang-) splitting (OPS). These splitting techniques are based
on linearly-implicit W-methods and explicit Runge-Kutta methods. We have studied positivity
properties of these methods and identified the optimal method RK32. A corresponding class of
W-methods has been constructed. The resulting splitting schemes are of order two and from the
variety of methods tested we especially recommend the schemes RQBMF, ROS32(0.335)-

AMF, OPS-ROS2{_)-RK32, and OPS-ROS2()-RKF2(3).

Maintenance of positivity of the solution during the solution process has been a major point in this
work. Its significance has been clearly exemplified by the numerical experiments with Model 2.
This example shows that a positive semi-discretization is not always sufficient for a successful
simulation. Also for the time integration a suitable scheme with good positivity properties, e.g. the
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recommended AMF and OPS schemes, should be used. This is especially important if zero is an
unstable fixed point of the reaction term of the model (see the logistic growth term in Model 2).
Then already slightly negative values in the numerical solution can lead to blow-up.

Altogether, the discretization of the spatial derivatives and the recommended splitting methods
have shown to be very suitable for the simulation of TDR systems. The computer codes developed
(see SecA.3) work reliably and robustly and are recommended for these simulations.

Looking ahead, interesting directions for further research in the field of numerical methods for the
simulation of TDR systems are:

e The solution of linear systems with the AMF technique could be replaced by an iterative
solution process: the coding of the spatial discretization would be simpler because a special
order of the components in the MOL-ODE would no longer be necessary for efficiency
reasons and more difficult geometries and non-regular meshes could be handled much easier.

e We have demonstrated the applicability of our approach for the simulation of TDR systems
in two spatial dimensions. Going to three spatial dimensions will raise the question of paral-
lelization of the scheme and also how the results can be suitably visualizeid)] ind have
presented the first promising experiments with a parallel ODE solver.

¢ In all our models the organisms are assumed to be spread out continuously in space (i.e.
represented by a continuous density function). However, in real life these organisms are
discrete objects and for some modelling purposes (e.g. proliferation, loop formation during
angiogenesis) it is more suitable to regard them as such. It would be a goal of future research
to extend the methodology presented here so that it can be applied to models which include
also discrete objects.
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Appendix A

A.1 Solution of a first-order hyperbolic PDE related to Model 1

Let4R > 0 be an integer. Here we derive the analytical solutién ) of the following problem:

Owu(t,r) +v(r)oru(t,r) = — <@ + w(r)) u, fort >0, re(0,R), (A.la)

r

u(0,7) = up(r) forr € [0,R], up € C', and wv(r):= 4rsin(4rr) ,w(r) =o' (r) . (A.1b)

This problem arises in the derivation of the analytical solution of Model 1 in Segti@dnThe first order
hyperbolic equationA( 1) can be solved by the Method of Characteristics. The initial curve is given by
= {(0,s,up(s)) | s € [0, R]}, and the characteristic ODE system (with parame}dzy

V() =1, U1 (0) =0,
Wh(t) = v(Pa(t)) , U3(0) = s,
wi(0) = (MG wwa() ) wate) 5(0) = uo(s).

We obtain¥ (¢; s) = t, and, by using/(Vs) /¥y = W, /Uy andw(W¥y) = W5 /W),

Us(t; s) = up(s) exp <—/0 ;—T In(Ws(7)) + % In(Wh(7)) d7'>

s v(s)
Uy(t;s)  v(Wa(t;s))

We will give an expression fo¥,(t; s) later.

Now, by the Method of Characteristics, we havel' (¢; s), Wa(t;s)) = Ps(t;s). Letr = Wq(t, s) and
assume that we can solve this equationsore. s = s(¢,r), see Eq.A.6). Then we can write down the
solution of A.1):

= uo(s)

s(t,r)  sin(4ms(t,7))
r sin(4nr)

u(t,r) = u(t, Va(t,s)) = Ws(t, s(t,r)) = uo(s(t,r))

(A.3)

We now derive the solutioi¥, of the second characteristic equation and the expression(t, ). Separa-
tion of variables formally leads to (& € C be an arbitrary constant)

1 1
oo Ve = [ dt tan(27Ws)) = ¢ ) A4
/47rsin(47r\112) 2 / O 1602 (tan(27m¥2)) +C (A.4)
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Let & = 0,1,2,.... We distinguish two cases:Cése } considers¥, € (4 &4 1), ie. 270, €

(km,km + 3), and Case 2 considerst;, € (5 + &, 51) i.e.27¥; € (5 + km, (k + 1)7).
(Case ) Consider¥, € (5,24 1) Itis suff|C|ent to consideC’ € R. Equivalent transformations
of (A.4) lead to

1 k kEk 1
Us(t) = oy arctan (exp (167T2t +0)) + 5 € (2, 3 + 4> :

Requiring¥»(0) = s for s € (£ %+ 1) determinesC’ = In (tan (27 (s — %))) and hence we have
computedVs(t; s) for values ofs € (&, 4 4 1). Now letr = Ws(t;s) € (£, % + 1). Then we can solve
for s and obtain

1 tan (27 (r — & 1
s:s(t,r):%arctan<an(ﬂ(r 2)>> gforr€<kk+4>. (A.5a)

exp(1672t) 272

(Case3 Considery, € (1 + & E£1): jtis sufficient to conside€’ = ir+C ,C € R. Then equivalent
transformations ofA.4) lead to

1 -
Us(t) = o arctan (— exp (16772t + C’)) +

™

k+1 c k+1 B 1 k41
2 2 4" 2 '
Requiring»(0) = s for s € (1 + %, ££l) determines” = In (—tan (7(2s — (k +1)))) and hence we
have computed’s(t; s) for values ofs € (3 + &, K1) Now letr = Uy(t;s) € (% + &, 52). Then we
can solve for s and obtain

1 tan(QW(T—%)) kE+1 1 k E+1
_ _ 1 f R I A.
s =s(t,r) o arctan ( exp(16721) +—g—forre (4 t5 ) (A.5b)

The equationsA.5d) and (A.5b) can be simplified and written as one equation,

1 1
s=s(t,r) = py. arctan < ,forr >0, r # Zk , (A.6)

tan(27r) > int(4r) + (int(4r) mod 2)

exp(1672t) 4

whereintz is the integer part of € R, ,. This completes the derivation of the solution AfX) for r %k
Forr = ik we obtain the solution by a limiting procedure— ik Fork = 0,1, 2 we obtain

u(t,0) = ug(0) exp (—167r2t) , U <t, i) = ug <%> exp (167r2t) U (t, %) = g (%) exp (—167r2t) .
A.2 Matrix functions — definition and properties
Definition 9 [18, p. 381] Supposg(z), z € C, is analytic inside and on a closed contolirwhich

encircles the spectrum of a matrik € R""™. We definef(A) to be the matrixf(A) = 27r7, Jr f(2)(2I —
A)~1dz on an element-by-element basis.

Lemma 20 [18, p. 390] If f(z), z € C, has a power series representatigiiz) = > 7, cxz" on an
open disk containing the eigenvalues of the matrixk R™"™ thenf(A) = > 77, e AF.
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Lemma 21 Let the functionf(z), = € C, be analytic in— for givenu € R, ; and denote with the
radius of convergence of the Taylor series expansighafund—p. For a given matrixA € R™™ define
B := ul + A and assume that the spectral radip@3) of B satisfiesp(B) < R. Then we have

F(A) = i f(k)(*M)Bk'

k!
k=0

Proof  fis analytic in—u and this implies that the radius of convergence of the Taylor series expansion

of f around—_ is greater than zerd? > 0, and thatf (z — ) = > 7, Wzk forall |z| < R.
We definegy(z) := f(z—u). Henceg has a power series expansion in the open isk: R which contains,

by assumption, the spectrum Bf Therefore, by Lemmao, holds
— S ") (—p
o= 52 L0
k=0

It remains to show thaf(A) = ¢(B). LetT'4 be the closed contour defined by; = So(—u, (R +
p(B))/2). Then f is analytic inside of and o4 and the spectrum ofl is inside of"4. LetI'p :=
S2(0, (R + p(B))/2). Then the same statements hold with respect to the fungtaomd the matrixB. By
definition of matrix functions and substitution in the integrak 2 — . = dz — dz, "'y — I'p) we obtain

) = 5o | G- a7
_ QL FG = @)(E — (ul + A))~'dz
™ '
_ QL 9(%)EI — B)"'dz = ¢(B).
YINA I'p

A.3 Computer programs

The programs written in preparation of this thesis are available from the author. The source files are doc-
umented such that users with some experience in FORTRAN77 can test the programs and modify them to
their needs. Here we only give a short description on what is available.

We have implemented the semi-discretization of TDR systems in a collection of FORTRAN77 subroutines.
These subroutines are subdivided in a set of model independent and a set of model dependent routines. The
model dependent subroutines provide details about the initial data, the parameters, the taxis and reaction
functions, and the boundary conditions of a specific TDR model. These subroutines can easily be modified
by a user with some FORTRAN77 knowledge so that new models can be implemented.

The splitting schemes (AMF and OPS) for the solution of the MOL-ODE are also implemented in FOR-
TRAN77. Their calling sequence follows the quasi-standard which is generally adopted in coding ODE
integration methods. Hence they can also be used for the solution of ODE systems which do not specifically
arise from semi-discretizations of TDR systems.

A command-line based simulation environment written in FORTRAN77 exists. This couples the semi-
discretization with the time stepping schemes. The system allows to run simulations and comparisons easily
by issuing a few commands or running a script file. Intermediate and final solutions can be saved in a format
readable by Matlab. Somm files are provided which can be used to read the output files of the simulation
environment into Matlab and prepare the visualization of the data (for one and two spatial dimensions).
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