
Fortschritt-
Berichte VDI

Prediction based activation 
of vehicle safety systems –  
A contribution to improve 
occupant safety by  
validation of pre-crash  
information and crash  
severity plus restraint 
strategy prediction

Gerald Joy Alphonso Sequeira, M. Eng. 
Kalyan, Indien

BAND 
1|1

VOLUME 
1|1

NR. 817

REIHE 12
VERKEHRSTECHNIK/
FAHRZEUGTECHNIK

ISBN 978-3-18-381712-2
E-ISBN: 978-3-18-681712-9

BAND 
1|1

VOLUME 
1|1

NR. 817

REIHE 12
VERKEHRSTECHNIK/
FAHRZEUGTECHNIK

Se
qu

ei
ra

Pr
ed

ic
ti

ve
 V

eh
ic

le
 S

af
et

y 
Sy

st
em

RE
IH

E 
12

 |
 

N
R.

 8
17

Cyan Magenta Black
Preflight Lx3 am September 30, 2022 | 11:24:15 | 350 mm x 250 mm

L_
22

09
68

_R
ei

he
_1

2_
81

7_
C

ov
er

.p
df

 · 
S

ei
te

 1

L_220968_Reihe_12_817_Cover.pdf · Seite 1
1

1



D a s  T e c h n i k K a r r i e r e N e w s - P o r t a l  f ü r  I n g e n i e u r * i n n e n .

Mit dem Gehaltstest für Ingenieurinnen und Ingenieure überprüfen Sie schnell,

ob Ihr Einkommen den marktüblichen Kondi tionen entspricht. Er zeigt Trends auf

und gibt Ihnen Orientierung, z. B. für Ihr nächstes Gehaltsgespräch.

Und Ihre individuelle Auswertung können Sie jederzeit bequem aktualisieren.

J e T z T  K o s T e N f r e I  T e s T e N   u N T e r :
w w w . I N g e N I e u r . D e / g e h a l T

Testen Sie Ihr Gehalt.

Cyan Magenta Yellow Black
Preflight Lx3 am September 30, 2022 | 11:24:15 | 350 mm x 250 mm

L_
22

09
68

_R
ei

he
_1

2_
81

7_
C

ov
er

.p
df

 · 
S

ei
te

 2

L_220968_Reihe_12_817_Cover.pdf · Seite 2
2

2



Prediction based activation of vehicle safety
systems - A contribution to improve occupant

safety by validation of pre-crash information and
crash severity plus restraint strategy prediction

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur
(Dr.-Ing.)

von M.Eng. Gerald Joy Alphonso Sequeira
geb. am 11.12.1985 in Kalyan, Indien

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik
der Otto-von-Guericke-Universität Magdeburg

Gutachter:

1. Prof. Dr.-Ing. Ulrich Jumar

2. Prof. Dr. Valentin Soloiu

3. Prof. Dr.-Ing. Thomas Brandmeier

Promotionskolloquium am 02. August 2022





Prediction based activation 
of vehicle safety systems –  
A contribution to improve 
occupant safety by  
validation of pre-crash  
information and crash  
severity plus restraint 
strategy prediction

Gerald Joy Alphonso Sequeira, M. Eng., 
Kalyan, Indien

NR. 817

Fortschritt-
Berichte VDI

BAND 
1|1

VOLUME 
1|1

REIHE 12
VERKEHRSTECHNIK/
FAHRZEUGTECHNIK

Black
Preflight Lx3 am September 30, 2022 | 12:35:48 | 148 mm x 210 mm

L_
22

09
68

_R
ei

he
_1

2_
81

7_
In

ne
nt

ite
l.p

df
 · 

S
ei

te
 1

L_220968_Reihe_12_817_Innentitel.pdf · Seite 1
1

1



© VDI Verlag GmbH  |  Düsseldorf 2022
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe 
(Fotokopie, Mikrokopie), der Speicherung in Datenverarbeitungsanlagen, im Internet und das der Übersetzung,
vorbehalten. Als Manuskript gedruckt. Printed in Germany.
ISBN 978-3-18-381712-2, E-ISBN 978-3-18-681712-9, ISSN 0178-9449

Sequeira, Gerald, M. Eng.
Prediction based activation of vehicle safety systems – A contribution to improve
occupant safety by validation of pre-crash information and crash severity plus
restraint strategy prediction
Fortschritt-Berichte VDI, Reihe 12, Nr. 817. Düsseldorf: VDI Verlag 2022.
170 Seiten, 46 Bilder, 26 Tabellen.
ISBN 978-3-18-381712-2, E-ISBN 978-3-18-681712-9, ISSN 0178-9449
62,00 EUR/VDI-Mitgliederpreis: 55,80 EUR

Für die Dokumentation: Vorausschauendes Fahrzeugsicherheitssystem – Crash-Validierung – Prädiktion von 
Rückhaltstrategie – Bestimmung der Fahrzeugkontour – Crashschwereschätzung

Keywords: Predictive Safety System – Crash Validation – Restraint Strategy prediction – Contour estimation – 
Crash Severity prediction

The world of transportation is rapidly changing with the introduction of partial autonomy in vehicles and the 
race between the manufacturers to produce a fully automated passenger vehicle. In addition, to enhance driving 
 comfort and reduce the driving workload, these automated vehicles are also visualized as an approach to reduce 
the majority of accidents that are caused by human errors. However, accidents do happen and there are also 
some likelihoods that these automated vehicles might fail. Especially in the initial introductory years, which 
highlights the need for passive safety systems in safeguarding the occupants. These vehicles typically employ 
forward-looking sensors for the perception of the surrounding environment, which presents an opportunity to 
use the information from these sensors to predict an upcoming inevitable crash and further estimate the passive 
safety action required for the predicted crash in the pre-crash phase. This work presents an approach to activate 
the vehicle safety systems based on the precrash prediction.

Bibliographische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Daten sind im Internet unter www.dnb.de abrufbar.

Bibliographic information published by the Deutsche Bibliothek (German National Library)
The Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie 
(German National Bibliography); detailed bibliographic data is available via Internet at www.dnb.de.

Black
Preflight Lx3 am September 30, 2022 | 12:35:48 | 148 mm x 210 mm

L_
22

09
68

_R
ei

he
_1

2_
81

7_
In

ne
nt

ite
l.p

df
 · 

S
ei

te
 2

L_220968_Reihe_12_817_Innentitel.pdf · Seite 2
2

2



Acknowledgement

III

This page is only available in the print version due to the regulations of the 
Otto-von-Guericke University



IV



Contents

1 Introduction 1
1.1 History of vehicle safety . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State of the Art 8
2.1 Passive safety sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Forward-looking sensors and their challenges . . . . . . . . . . . . . 10

2.2.1 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Trajectory planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Opponent geometry estimation . . . . . . . . . . . . . . . . . . . . 20
2.5 Crash severity estimation . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Validation of Pre-Crash Information 26
3.1 Desired functions of the validation process . . . . . . . . . . . . . . 26
3.2 Underlying physical principles . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Electric resistance . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Magnetism and Induction . . . . . . . . . . . . . . . . . . . 30
3.2.4 Piezoelectric effect . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.5 Triboelectric effect . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Proposed Validation Sensor . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Principal design . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Working principle . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Dynamics of contact point position and its importance . . . 42

3.4 Experimental investigation . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Test details . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Sensor configuration . . . . . . . . . . . . . . . . . . . . . . 44
3.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . 45
3.4.4 Comparison of the investigated sensors . . . . . . . . . . . . 47

3.5 Potential for improvement . . . . . . . . . . . . . . . . . . . . . . . 49

V



Contents

3.5.1 Investigation of required time for airbag activation . . . . . 49
3.5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Opponent-object Geometry: Simplification and Estimation 54
4.1 Geometry of objects in vehicle’s surrounding . . . . . . . . . . . . . 55
4.2 Proposed methodology for vehicle geometry estimation . . . . . . . 56

4.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Experimental investigation and results . . . . . . . . . . . . 65

4.3 Geometry-based prediction of the dynamic behavior of contact points 68
4.3.1 Case 1: Collision of an ego-vehicle with a circle-based object 69
4.3.2 Case 2: Collision of an ego-vehicle with a line-based object . 74
4.3.3 Case 3: Collision of an ego-vehicle with another vehicle . . . 77

4.4 Investigations of the dynamic behavior of contact points in a vehicle
crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.1 Case 1: Collision against a circle-based object . . . . . . . . 83
4.4.2 Case 2: Collision against a line-based object . . . . . . . . . 84
4.4.3 Case 3: Collision against another vehicle . . . . . . . . . . . 84

4.5 Comparison of geometry-based prediction
with the measurements from the crash test . . . . . . . . . . . . . . 86

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Crash Severity and Restraint Strategy Prediction 88
5.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Vehicle structure . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.2 Restraint systems . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.3 Occupant kinematics and injuries . . . . . . . . . . . . . . . 93

5.3 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Vehicle level simulations . . . . . . . . . . . . . . . . . . . . 97
5.3.3 Occupant level simulations . . . . . . . . . . . . . . . . . . . 99

5.4 Crash severity and restraint strategy prediction system architecture 102
5.5 Investigation of different machine learning algorithms . . . . . . . . 105

5.5.1 Vehicle level prediction model . . . . . . . . . . . . . . . . . 105
5.5.2 Occupant level prediction model . . . . . . . . . . . . . . . . 112

5.6 Algorithm for crash severity and restraint strategy prediction system120

6 Conclusion 123
6.1 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . 124
6.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

References 126

VI



Contents

Appendices 143
A Characteristics of forward-looking sensors . . . . . . . . . . . . . . . 144
B Geometric factors for capacitors . . . . . . . . . . . . . . . . . . . . 146
C Results from three-arc based geometry estimation experiments . . . 147
D Description of finite element model for occupant simulations . . . . 150

D.1 Vehicle sled model . . . . . . . . . . . . . . . . . . . . . . . 150
D.2 Dummy model . . . . . . . . . . . . . . . . . . . . . . . . . 151
D.3 Restraint systems . . . . . . . . . . . . . . . . . . . . . . . . 151

E Methodology for calculation of the projected overlap . . . . . . . . . 155

Curriculum Vitae 157

Declaration of Honor 159

VII



Abstract

The world of transportation is rapidly changing with the introduction of partial
autonomy in vehicles and the race between the manufacturers to produce a fully
automated passenger vehicle. In addition, to enhance driving comfort and reduce
the driving workload, these automated vehicles are also visualized as an approach
to reduce the majority of accidents that are caused by human errors. However,
accidents do happen and there are also some likelihoods that these automated
vehicles might fail. Especially in the initial introductory years, which highlights
the need for passive safety systems in safeguarding the occupants. These vehicles
typically employ forward-looking sensors for the perception of the surrounding
environment, which presents an opportunity to use the information from these
sensors to predict an upcoming inevitable crash and further estimate the passive
safety action required for the predicted crash in the pre-crash phase. This work
presents an approach to activate the vehicle safety systems based on the pre-
crash prediction. It focuses on the three major topics namely, crash validation,
the geometry-estimation, and the crash severity and restraint strategy prediction.
The topic of crash validation is administered by a proposal of a novel contact-based
validation sensor along with the experimental investigations for comparison with
other sensors. The results from the crash test highlight the time-benefit gained
by using the proposed sensor. Additionally, the suggested sensor allows the feasi-
bility to measure the initial position of impact and the dynamic positions of the
contact points during the crash. For validation of a crash scenario, these dynamic
positions measured using the proposed sensor can be compared to the predicted
positions of the contact points based on the geometrical equations. For facilitating
the prediction of the positions of these contact points, a unique methodology for
estimating the geometry of the opponent-vehicle is developed. Moreover, based on
the peculiar crash severity and restraint strategy prediction system discussed in
this thesis, the required safety action to safeguard the occupant can be predicted
in the pre-crash phase, which is ready to be activated on the validation. The ar-
chitecture of the crash severity and restraint strategy uses two parallel approaches
(vehicle level and occupant level) for robustness. The investigations carried out
in this work show the potential of these models in the case of head-on collisions
between two similar vehicles. Altogether, the work carried out in the thesis lays a
good conceptual, theoretical, and experimental groundwork for introducing these
systems in a series application phase.
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Kurzfassung

Mit der Einführung teilautonomer Fahrzeuge und dem Wettbewerb zwischen den
Herstellern zur Entwicklung eines vollautomatisierten Personenkraftwagens verän-
dert sich die Welt des Verkehrs rasant. Um den Fahrkomfort zu erhöhen und
die Arbeitsbelastung des Fahrers zu verringern, werden diese automatisierten
Fahrzeuge auch als Ansatz zur Verringerung der meisten Unfälle gesehen, die durch
menschliche Fehler verursacht werden. Nichtsdestotrotz können Unfälle geschehen,
beispielsweise durch einen Ausfall dieser autonomen Systeme, was vor allem in den
ersten Jahren der Einführung durchaus wahrscheinlich sein kann. Dies unterstre-
icht die Notwendigkeit passiver Sicherheitssysteme zum Schutz der Insassen auch
bei teil- bzw. vollautonomen Verkehr. Diese Fahrzeuge verwenden in der Regel vo-
rausschauende Sensoren für die Wahrnehmung der Umgebung, was die Möglichkeit
bietet, die Informationen dieser Sensoren zu nutzen, um einen bevorstehenden un-
vermeidlichen Unfall vorherzusagen und die für den vorhergesagten Unfall erforder-
lichen passiven Sicherheitsmaßnahmen in der Phase vor dem Unfall abzuschätzen.
In dieser Arbeit soll ein Ansatz zur Aktivierung der Fahrzeugsicherheitssysteme
auf der Grundlage der Vorhersage vor einem Unfall vorgestellt werden. Die Ar-
beit konzentriert sich auf die drei Hauptthemen Crash-Validierung, Geometrie-
Schätzung und Vorhersage der Crash-Schwere und Rückhaltestrategie. Das Thema
der Crash-Validierung wird durch einen Entwurf eines neuartigen kontaktbasierten
Validierungssensors zusammen mit den experimentellen Untersuchungen zum Ver-
gleich mit anderen Sensoren behandelt. Die Ergebnisse aus dem Crashtest verdeut-
lichen den zeitlichen Vorteil, der durch den Einsatz des vorgeschlagenen Sensors
erzielt wird. Darüber hinaus ermöglicht der vorgeschlagene Sensor die Messung
der anfänglichen Position des Aufpralls und der dynamischen Positionen der Kon-
taktpunkte während des Aufpralls. Zur Validierung eines Aufprallszenarios können
diese mit dem vorgestellten Sensor gemessenen dynamischen Positionen mit den
auf der Grundlage der geometrischen Gleichungen vorhergesagten Positionen der
Kontaktpunkte verglichen werden. Um die Vorhersage der Positionen dieser Kon-
taktpunkte zu erleichtern, wird eine neuartige Methodik zur Schätzung der Geome-
trie des gegnerischen Fahrzeugs entwickelt. Darüber hinaus kann auf der Grund-
lage des in dieser Arbeit erörterten Systems zur Vorhersage der Aufprallschwere
und der Rückhaltestrategie die erforderliche Sicherheitsmaßnahme zum Schutz der
Insassen in der Phase vor dem Aufprall vorhergesagt werden, die dann bei der
Validierung aktiviert werden kann. Die Architektur der Unfallschwere- und Rück-
haltestrategie verwendet zwei parallele Ansätze (Fahrzeug- und Insassenebene),
um eine höhere Robustheit zu gewährleisten. Die in dieser Arbeit durchgeführten
Untersuchungen zeigen das Potenzial dieser Modelle für den Fall von Frontalkol-
lisionen zwischen zwei ähnlichen Fahrzeugen. Insgesamt bilden die in der Arbeit
durchgeführten Arbeiten eine gute konzeptionelle, theoretische und experimentelle
Grundlage für die Einführung dieser Systeme in einer Serienanwendungsphase.
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Chapter 1

Introduction

Road transport is one of the major and effective modes of transport in the world.
Ensuring the safety of the road users is of prime importance and the responsi-
bility of the government, non-governmental organizations, and industry. Sadly,
road accidents continue to be one of the prominent reasons for the loss of human
life. It ranks 8th as the leading cause of death according to Association for Safe
International Road Travel (ASRIT). Global statistics suggest about 1.35 million
(according to the website of World Health Organisation-WHO) people die world-
wide every year, with a life lost every 24 seconds. Additionally, about 20-50 million
people suffer from long-term disabilities resulting from severe injuries from a road
accident. Europen Union’s target (28,500 fatalities) of halving the road fatalities
between the years 2000 and 2010 was achieved in the year 2012 [21]. Moreover,
though the numbers are reduced in recent years, the reduction is still at an un-
acceptable higher level than its expected target for the decade. A similar trend
is also seen in the data from German road-accidents. In Germany, 3,046 people
lost their lives and 65,244 people were severely injured in the year 2019 [22]. The
numbers from Europe and specifically from Germany indicate difficulty to meet
the target for the year 2020.

Apart from the loss of human life, road traffic accidents also result in physi-
cal injuries, psychological and financial losses. This has immediate and long-term
consequences on the victims and their families. Owing to these reasons, the govern-
mental bodies from most of the countries including Germany are working towards
achieving Vision-Zero, i.e. zero deaths due to road fatalities [26]. Most of the
accidents (over 90%) are caused by human errors due to overspeeding, overtaking,
drunken driving, or driver distraction [27]. According to the Statistisches Bunde-
samt, inappropriate speed accounts for about 32% and is the prime factor in road
accidents with fatalities in Germany. The natural limits to the human ability of
perception, information processing, and responsiveness are seen as a major chal-
lenge for achieving the above vision [26]. In addition to this, external factors such
as environmental conditions (low friction caused by ice, low visibility due to fog
and rain, etc.) and insufficient reaction time for the driver will remain a part of
road transport. This highlights the need for technological development and the

1



1. Introduction

Figure 1.1: Road accident statistics: a) Europe wide statistics for road-fatalities
[21], [23], b) German statistics for road-fatalities (the graph is created by using
data on page number 55 from [24]), and c) Fatalities by cause of the accident –
1. Inappropriate speed 2. Incorrect road use 3. Overtaking errors 4. Influence
of alcohol 5. Improper behavior towards pedestrians 6. Errors when passing 7.
Ignoring priority 8. Leaving or entering a road, moving backward 9. Insufficient
distance 10. Traveling side by side [25].

introduction of intelligent vehicles with integrated safety systems and automated
driving functions. The motivation for the research work presented in the thesis
stems from the above-discussed need and it focuses on the three sub-systems of
the Pre-Crash Safety System (PCSS) described in Section 1.2.

1.1 History of vehicle safety
In the early 20th century, vehicle safety was mostly associated with the rigidity of
the vehicle. In 1937, the Austrian-Hungarian engineer Béla Barényi invented the
concept of the crumple zone. He observed that some materials are soft and easy to
deform than others and divided the vehicle into three regions, a rigid safety cell or
passenger compartment in the middle while the deformable crumple zones at the
front and rear to absorb the impact from the crash. Around the 1950s, several re-
searchers and physicians substantiated the benefit of using lap belts through their
tests and insisted vehicle manufacturers provide seatbelts. In the year 1958, the
three-point seatbelt, which secures both the upper and the lower body of the occu-
pant was invented by Swedish engineer Nils Bohlin. Once the safety benefits of the
seatbelts were noticed by the governmental agencies, it became a compulsory regu-
lation for including seatbelts in passenger vehicles. Frontal airbags were offered as
optional equipment with additional cost in the 1970s. A decade later, as the cost
reduced, frontal airbags were offered as standard equipment in some of the passen-
ger vehicles. Initially, vehicles mainly employed a single central crash sensor in the
passenger compartment to detect a crash. The decision to activate the restraint
system was made by an algorithm in the airbag control unit, which processes the
deceleration signal measured by the sensor. This sensor architecture was termed
as single-point sensing since no supplementary peripheral sensors besides the cen-
tral sensor in the control unit were used for activating the vehicle safety systems.

2



1.1. History of vehicle safety

With the increasing legal requirements like United Nations Economic Commission
for Europe (UNECE) or Federal Motor Vehicle Safety Standards (FMVSS) reg-
ulations and market-need from voluntary safety rating tests from organizations
like New Car Assessment Program (NCAP) and Insurance Institute for Highway
Safety (IIHS), automotive manufacturers felt the need for new safety features in
addition to the traditional seatbelts and frontal airbags. New safety technologies
such as side airbags (curtain and torso airbags) to protect the occupants from
side impacts and smart airbags (airbags with several activation stages [28]) which
improve occupant safety in frontal collisions were introduced. They brought new
requirements and challenges in crash sensing, which were met by using additional
sensors, giving it the name multi-point sensing architecture. These additional sen-
sors are usually installed around the central sensor, in the regions which are most
likely to undergo deformation during the crash.

Crumple
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Driver 
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Figure 1.2: Chronology of innovation in the field of vehicle safety.

Simultaneously, the automotive industry found that controlling vehicle dynam-
ics is a supplementary means for increasing vehicle safety. The primary goal of
these systems was to assist the drivers and improve their driving comfort, hence
called the Driver Assistance Systems (DAS). Anti-lock Braking System (ABS)
was one of the first assistance systems introduced in series production by Bosch
from the year 1978. ABS continuously monitors the rotating speeds of the wheels.
When one of the wheels has a higher rotational speed as compared to others, the

3



1. Introduction

system actuates the valve to increase the braking pressure on that wheel to slow
it down. On the other hand, when one of the wheels rotates at a slower speed
it reduces the braking pressure so that it catches up with the other wheels. This
process of applying and releasing the braking pressure is done intermittently at a
rate of about 15 cycles per second. In some years, the introduction of Electronic
Stability Control (ESC) increased the safety potential of the DAS by reducing
accidents due to the loss of steering control. ESC system continuously compares
the driver’s steering input with the lateral acceleration of the vehicle, yaw rate,
and rotational speeds of wheels. When the actual direction of the vehicle (derived
by the comparison parameters mentioned above) does not match with its steer-
ing input, ESC detects a probable loss of control, estimates the direction of the
slipping or skid, and intervenes by applying brakes to individual wheels in a man-
ner to generate torque in the opposite direction of the skid and thus bringing the
vehicle in the driver’s intended direction. DAS uses a gyroscope, yaw rate, accel-
eration, and wheel speed sensors to measure the status of the vehicle which limits
its capability to control the instability events related to the vehicle. Figure 1.1
presents the above-discussed history in the form of the chronology of innovations
with pictures.

With a substantial reduction in the cost and progress in the forward-looking
sensor1 technology, it was possible to acquire the information about the surround-
ing road-participants, and led to the development of Advanced Driver Assistance
Systems (ADAS). Today’s vehicles are already equipped with different systems
such as Automatic Emergency Braking (AEB), blind-spot detection, lane assist
and lane departure warning, etc. which are categorized into ADAS. These sys-
tems work on the information from either one or a combination of forward-looking
sensors that scan the surrounding of the vehicle and assist the driver by either
supporting in the driving task (steering, braking, and acceleration) or providing
information or warnings about a critical driving scenario. The next goal of ADAS
is to extend its capabilities to perform tasks related to active safety systems (sys-
tems that help to mitigate or prevent vehicle crashes). A step towards this goal has
already been accomplished by the introduction of the AEB system, which applies
emergency brakes in the case of a sudden appearance of an obstacle in the path
of the vehicle and a probable collision is detected. The other option of avoiding
an upcoming collision by evasive steering action in combination with braking and
acceleration is still in research and development.

With the introduction of the forward-looking sensors, the idea to have infor-
mation about the crash before the crash happens is now possible. The severity of
an upcoming inevitable crash can be predicted based on the pre-crash information

1The word ‘forward-looking sensor’ in this thesis is used for a sensor that gives information
to predict the forward-in-time or future states of the vehicle’s surroundings. Sometimes in
literature, these sensors are also termed as ‘surrounding’ or ‘environmental’ sensors. Radar, lidar,
and camera are the most commonly forward-looking sensors presently used in the automotive
industry.
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such as velocity, position, orientation, dimension, etc. of the ego-vehicle2 and the
opponent. Based on the predicted severity, the decision about the required pas-
sive safety actions can be decided before the crash, and once the crash is validated
the required safety action can be deployed. ADAS systems are termed as active
systems that continuously monitor the driver’s mistakes to avoid a collision, while
passive systems such as airbags protect the occupant from injuries of an inevitable
crash. Thus enhancing the traditional passive safety system (safety actions such
as the deployment of airbags based on sensors measuring after the crash) to a
new prediction based safety system is necessary. The ultimate vision of vehicle
safety systems is an integration of both active (avoiding an accident) and passive
(accident mitigation) safety actions to offer the most beneficial safety.

1.2 Problem formulation
To achieve the overall objective of Vision-Zero, technological development through
automated driving with earlier information on safety-critical situations is indis-
pensable. The pre-crash vehicle safety problem is a decision-making problem to
answer the following questions,

• Is safety action required?

• If yes, which safety actions and at what time?

based on the pre-crash information available from the forward-looking sensors and
additional sensors for validation. The researchers and industries have approached
this problem by defining the architecture and different algorithms of the PCSS.
The generic system architecture of a PCSS is suggested in [29]. This architecture,
as sketched in Figure 1.3 shows the complete flow from signal acquisition through
sensors to the safety actuators through different subsystems such as data fusion
and object parameter estimation, inevitability model, crash severity and restraint
strategy prediction, etc. included in a Pre-Crash Algorithm (PCA). In contrast to
an ADAS system, a PCSS system combines the early recognition of critical driving
situations with the safeguarding role of the restraint devices. It receives the raw
data from different sensors, processes these data through several algorithms, and
then compares the output from these algorithms to decide on the safety actions
required.

The brain of such a system is the PCA, which consists of three sub-algorithm
modules in series. The role of the data fusion and object parameter estimation
module is to estimate the object parameters such as geometry, velocity, angle
of approach and position, the criticality of the object, etc. through the fused
data. The parameters of the critical objects are then passed on to the inevitabil-
ity model and crash parameter estimation, which anticipates the motion of the

2In this thesis, the word ‘ego-vehicle’ is the vehicle, which receives and processes the infor-
mation about the surrounding objects such as vehicles, trees, pedestrians, etc. This information
is provided by the forward-looking sensors installed on the ego-vehicle.
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Figure 1.3: Generic system architecture of a pre-crash vehicle safety systems,
adapted from [12], [29], [30].

critical objects and decides on the certainty of the crash and the corresponding
crash parameters. Based on these parameters, the crash severity and the required
restraint system are predicted and forwarded to the decision-making module to
activate the actuators for safety action.

1.3 Thesis outline
In addition to the introduction, this thesis consists of a state of the art, three main
chapters, and a conclusion. Each of the three main chapters is associated with the
three sub-topics from the PCSS, which are marked by grey color in Figure 1.3. The
second chapter gives a brief literature review on different sections of vehicle safety
systems. It starts with a discussion on the basic passive safety sensors leading to
forward-looking sensors and the challenges faced by them. In the next sections, the
topics of trajectory planning, opponent-geometry estimation, and crash severity
estimation are reviewed. This chapter is closed with the reasoning of the necessity
for the research topics described in the main chapters in the summary section.

The third chapter deals with the topic of contact-based validation and the
principal design and development of the sensor required for this validation. The
principal design and experimental investigation are the highlights of this chap-
ter. A comparison of the proposed sensor with the other sensors shows the time-
advantage gained using the proposed sensor. The potential for improvement in
vehicle safety using the proposed sensor is described in the final section.

The fourth chapter presents a novel methodology to represent the geometry of
the opponent-vehicle. The estimation of the opponent-geometry is broken down
into the divisions of arcs and lines along with finding the equations of each arc
and line for its representation. Based on the different basic opponent-geometries,
a technique to predict the dynamic behavior of contact point positions during the
crash is given in the next section. The results from the prediction technique are
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compared with the measurements from the crash-test explained in Chapter 3 in
the fifth section while some conclusions are derived in the last section.

The fifth chapter deals with the topic of crash severity and restraint strategy
prediction. At first, the topic of crash severity is introduced. This is followed by an
adopted two-step methodology to collect the data for the investigation of different
machine learning approaches. The highlight of this chapter is the novel system
architecture description of the concerned prediction system. Next, the database
learning methodologies used for training the crash severity and restraint strategy
prediction models and their detailed investigations in different phases of prediction
are presented. In the end, a probable prediction algorithm is described in the last
section.

Finally, in the last chapter, the conclusion of the overall work is presented with
the proposal for some insights on possible future work in this direction.
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Chapter 2

State of the Art

Abstract
This chapter gives a brief overview of the different methods, principles, and concepts
used in diverse fields of vehicle safety systems. In the first section, multi-point sensing
architecture is used to describe the different presently used passive safety sensors. This is
followed by a detailed review of the forward-looking sensors. The working principle, con-
cepts, and challenges faced by these sensors are discussed in this section. Both sections
are summarized by a comparison table highlighting the present capabilities of the sensors.
Next, a literature review on the present methodologies used by various researchers in the
field of trajectory planning, opponent geometry estimation, and crash severity estimation
along with their strengths and limitations are discussed. The chapter is closed by giving
a summary of all the topics, which highlights the necessity for validation of pre-crash
information and a new methodology for predicting crash severity combined with the in-
formation on required safety action, such as the activation of irreversible safety systems
like airbags.

Sensors are one of the most important parts of the vehicle safety systems,
which provide crucial information based on which the decisions regarding safety
actions are taken. A brief history of the vehicle safety systems was given in Section
1.1, which discusses the passive safety systems such as seatbelts and airbags along
with their sensor architectures. Elaborating on the different passive safety sensors
found in these systems, a comprehensive comparison based on their functioning is
outlined at the beginning of this chapter.

2.1 Passive safety sensors
Figure 2.1 shows an example of multi-point sensing architecture for passive safety
sensors with the customary positions of different sensor types that are currently
used in today’s vehicles. In this architecture, along with the central sensor, two
additional sensors (one on the driver-side and the other on the passenger-side) are
mounted near the crash-box to give early information about the crash for the front-
crash detection. These sensors are usually termed Early Crash Sensors (ECS). In
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2.1. Passive safety sensors

addition to the advantage of the early information, this system can also approxi-
mate the position of the impact as driver-side, center, or passenger-side by com-
paring the signals from the two sensors. These sensors can either be acceleration-
based [31] or structure-borne-sound (SBS) based [32], [33]. Acceleration-based
sensors measure the sudden and severe deceleration of a car caused by an acci-
dent. SBS-based sensor is a more recent development, which can either be used
in combination with the acceleration-based sensors or can replace them. These
sensors measure the sound (acoustic emissions) generated by the deformation of
the structures during the crash. This technology can distinguish between hard
and soft crashes and is faster as compared to acceleration-based sensors. In some
vehicles, a pressure-hose sensor [34] is installed in the foam material between the
bumper-beam and bumper. This sensor is specially tuned to detect low-speed
vehicle crashes such as impacts against pedestrians.

3

4

Central sensor

(acceleration or SBS based)
Side crash sensors

(acceleration or pressure based)

Early crash sensors

(acceleration or SBS based)

Pressure-hose

sensor

P

P

Figure 2.1: An example of the sensor architecture used for detecting vehicle
crashes.

Additionally, to detect the impact from the side, two or more sensors are
installed in the door structure on either side, which can be acceleration-based
[31], pressure-based [31], [35], or a combination of both. For side-crash detection,
pressure-based sensors are preferred over their predecessors (acceleration-based
side crash sensors) because of their faster response time. These sensors measure
the air pressure change in the door cavity caused by the change in volume due to
the deformation of door structures.

Based on the signal from these sensors, the crash is classified into basic crash
types (front, side, rear, etc.), its severity is assessed, and the decision on the
required safety action is taken. Table 2.1 shows the comparison of the various crash
sensors presently used in cars. The detection time of present crash sensors is about
7-50 ms depending on the crash-type and the sensor architectures employed. Next,
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2. State of the Art

Table 2.1: Comparison of various sensors used for detecting vehicle crashes.a

Sensor type
(crash type)

Response
time Advantages Challenges

Acceleration sensor
(front, side, and rear)

15 - 50 ms • Robust.
• Low cost.

• Slow compared
to other sensors.

SBS-based sensor
(front and rear)

10 - 30 ms • Fast in some
crash scenarios.

• Hard and soft
crash distinction.

• Variation in
SBS of different
vehicles.

Pressure sensor
(side)

7 - 15 ms • Fast response
time.

• Distinction of
different crashes
with similar
pressure signals.

Pressure-hose sensor
(pedestrian)

10 - 15 ms • Low cost. • Deterioration
from holes or
blockage of hose.

a
Some of the response time values are derived from curves in [32]–[34], [36].

a literature review comprising of the concepts, principles, and challenges faced by
the different forward-looking sensors is described in the upcoming section.

2.2 Forward-looking sensors and their challenges
Perception or scanning of the surrounding environment is the first and one of the
most essential tasks for future vehicle safety systems. Presently used forward-
looking sensors in vehicles are suitable and tailor-made for driver assistance sys-
tems. More accurate and reliable information is required for vehicle safety func-
tions indicating the need for more advanced forward-looking sensors. Many studies
focus on extending the use of these sensors for different tasks of vehicle safety such
as object detection and tracking [37], [38], collision detection and trajectory plan-
ning [39]–[41], and crash parameter prediction [42]. In the present automotive
technologies and research work, scanning of the surrounding environment is dom-
inated by radar, lidar, and camera sensors. The individual strengths, weaknesses,
and limitations of these sensors concerning their ability to scan, detect, and de-
rive important information of the neighboring environment are discussed in this
section below.
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2.2.1 Radar
A simple radar sensor can be thought of as a device that transmits electromagnetic
waves and receives the electromagnetic waves reflected from the surface of the ob-
ject to determine the velocity, range, and angle of the objects in the surrounding.
Based on the requirements of a particular application there are different types of
radar sensors. Present-day vehicles employ FMCW-type (Frequency Modulated
Continuous Wave) radar sensors with chirp sequence modulation methodology.
These sensors send out a sequence of identical chirp signals (a pulse whose fre-
quency changes during transmission) through the transmitting antenna at short
intervals. The sample rate of the repetition of a single chirp in the sequence should
be high enough (approximately 80 kHz) to neglect the influence of the Doppler
frequency for a single chirp. A two-step signal processing technique is employed
to separate the range and doppler frequencies. In the first step, a Fast Fourier
Transform (FFT) is performed on the data samples of each chirp giving a range
vector. In the second step, FFT is performed on range data of the different chirps
of a particular sequence to give information about Doppler frequency and thus
the velocity. To solve the ambiguity arising from the multiple target reflections, a
methodology with a combination of chirps signals with different slopes is explained
in [43]. Automotive radar sensors consist of about 4 to 16 antennas to derive the
angular information of the object from which the signals are reflected. With the
state-of-the-art methodology used in the automotive radar explained above, more
detailed information and basic principles about the radar technology can be found
in Radar Handbook [44].

Radar sensors are presently used to a wide extent for Adaptive Cruise Control
(ACC) function in vehicles [45], [46]. This technology can directly predict the
relative velocity through the Doppler effect, which is their significant advantage.
Their ability to function even in the most adverse weather conditions gives them
another added advantage over the other sensors. Moreover, radar sensors are
robust against mechanical failures for the reason that they don’t have any moving
parts. The present commercial radar technology used in the automotive industry
faces the following challenges.

• The lateral position estimation accuracy of radar is generally low. This
accuracy is dependent on the angular accuracies of the radar and the distance
of the object from the radar. An angular accuracy of ±0.5◦ would result in
a lateral uncertainty of 17.45 cm at a 10-meter radial distance [47].

• In some scenarios, multipath reflections might lead to the detection of ghost
or false-positive objects [48].

• It is difficult with present commercial radar sensors to estimate additional
information of the objects such as size, shape or contour, and classification
(passenger cars, trucks, motorbikes, etc.). Radar perceives the size of the
objects in terms of Radar Cross-Section (RCS), which is a measure of ease to
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detect a particular object using radar. Two vehicles of the same size can have
different RCS which leads to uncertainty in the prediction of the physical
size of the object.

• With an increase in the usage of radar sensors in vehicles, there is a concern
over the interference by the number of sensors functioning in proximity to
each other [49], [50].

Some of the presently used automotive radar sensors with their characteristics
are listed in Table A.1 of Appendix A. These sensors are divided into long-range,
mid-range, and short-range based on the maximum distance (range) up to which
they can measure.

2.2.2 Lidar
Lidar uses a principle based on the time-of-flight of the reflected laser beams to
measure the distance of the points on the surface of the objects from where the
beams are reflected. Usually, in automotive applications, there are several objects
in the surrounding (detection area) which is resolved by using multiple beams and
a scanning mechanism that distributes these beams equally in the required field of
view of scanning over a short measurement cycle. The most famous approach of
scanning mechanism (used by Velodyne Inc. [51]) is to use a spinning mechanism
that rotates the sensor at a high speed to cover the complete 360 degrees field of
view. In a race to reduce the cost and size, some promising scanning approaches
have emerged. In one approach [52], the sensor uses a micro-electromechanical
(MEM) based mirror spinning system which directs the laser beam in different
directions. Another approach is to use an optical phased array (a series of antennas
with phase shifters). In this technology, the phase of one antenna is adjusted
relative to the others for steering the laser beam [53]. With this technology, the
laser beam can be steered in a specific manner in a two-dimensional space to
concentrate on specific regions in the field of view of the sensor. Lidar sensor with
this technology is recently developed by a California-based company Quanergy
Systems.

Lidar sensors are presently used in premium cars for obstacle detection, col-
lision mitigation, parking assist, etc. The main advantage of lidar is the 3-
dimensional representation of the object in the form of a point-cloud, from which
the shape, contour, and size of the object can be estimated. The angular resolu-
tion of lidar sensors is around 0.1 degree [46], which yields better lateral accuracy
compared to that of radar technology. Some experts perceive lidar technology as
one of the key requisites for future autonomous vehicles. It also has an advan-
tage in classifying objects into different groups or classes. Like radar, lidar cannot
directly measure the relative velocity but this parameter can be calculated by
differentiating the position measured from different two consecutive time stamps.
The major concerns of the present lidar sensors for the automotive industry are
listed below.
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• The main limitation of lidar sensors is degradation in their detection perfor-
mance during adverse environmental conditions such as snow, rain, fog, dust,
and dirt [54], [55]. Dense fog particles, large rain droplets, and snowflakes
reflect the laser beam and block these beams from reaching the surrounding
object’s surface. The opponent-object can hide behind the detection-layer of
these environmental factors which blinds the view of the lidar sensor. This
can result in a dangerous driving situation. Additionally, direct sunlight on
the sensor can cause disturbances in detection.

• The range of lidar sensors is limited by the power of the emitted laser beam,
which is mainly restricted by the regulations for eye-safety [46]. There are
usually two main light sources, one with 1550-nm wavelength sources that
can function at longer ranges (by using higher power) without comprising
eye-safety but is costly. The range for the other 905-nm wavelength sources
is limited by the eye-safety regulations.

• The perception of lidar technology greatly depends on the reflectivity of the
object’s surface, which conveys the amount of light reflected in relation to
the light incident. The dark-colored surface reflects less light as compared
to the light-colored surface. Most of the commercial lidars can see up to 200
meters. But, can they detect a dark color object in the far-field?

• Present-day lidar technology is too expensive for its application in mass-
produced commercial passenger vehicles and hence their use is limited to
some premium vehicles and research.

Table A.2 compares the performance of some available lidar sensors in terms
of range with its accuracy, field of view with its resolution, and cycle time. Solid-
state sensors are a recent development over the traditional mechanical rotating
sensors, which improves the robustness of lidar sensors to mechanical vibrations
and shocks but have a limited field of view.

2.2.3 Camera
Camera systems are the only forward-looking sensors that can perceive the sur-
rounding environment similar to the human eye. A simple camera consists of three
units, namely, lens, image sensor, and processing unit. The light from a scene falls
through the lens on the image sensor which converts the light photons on every
pixel into an electronic signal which is transformed by the processing unit into pix-
elated image data. Presently in the automotive field, different camera technologies
developed for other applications are being explored. A complete 360-degree field
of view is possible by stitching together images from 4 or more cameras installed
at different angles. A 360-degree surround-view monitor is presently provided in
vehicles as an aid to the driver during parking but in the future, this technology

13



2. State of the Art

can be employed for object detection and its parameter extraction. A stereo cam-
era is another technology that gives information on the depth (distance or range)
based on the parallax image generated by using two cameras.

Camera systems have the potential to detect surrounding objects and estimate
their position with the help of advanced image processing, machine learning, and
artificial intelligence techniques. This technology has a distinctive sensing capabil-
ity to recognize and differentiate the colors of an object, similar to human vision.
Reading road signs, speed-limit, and detecting lane markings for lane-assist are
some of the important tasks currently carried out by camera systems in today’s
vehicles. Even though camera systems have a big advantage due to their low hard-
ware cost, there are some limitations and challenges to these systems. These are
mentioned below.

• Camera systems require adequate lighting to capture clear images for their
processing. These sensors face difficulty from low lighting conditions during
the night. Furthermore, excessive light from the sun or the headlight of the
opposite vehicle can obscure the camera images.

• Similar to the lidar sensor, adverse weather conditions can also degrade the
viewing capabilities of the camera system. Even the small snowflakes directly
in front of the camera can hide comparatively larger objects situated in the
far-field. Heavy rain and dense fog can significantly reduce the range of the
camera (analogous to problems faced by the driver in these conditions).

• The techniques such as image processing, machine learning, and artificial
intelligence applied to extract useful information from the camera images
require large computational resources.

• The longitudinal position (a position of an object in front of the vehicle) is
estimated using the laws of linear perspective. The accuracy of this estima-
tion is very less compared to radar and lidar sensors.

• The relative velocity has to be estimated by a two-step process, the first
step is to estimate the relative position from the image perspective, followed
by the differentiation of the positions from the two successive frames. This
two-step increases the error in estimation through the accumulation of errors
introduced by each step.

An overview of the camera systems currently used in vehicles is presented in
Table A.3. There are different camera technologies under research such as night
vision, infrared, stereo, and surround-view for their different strengths.

Table 2.2 summarizes the capabilities of the present forward-looking sensors.
Presently, the best accuracy in range (± 2 cm) is provided by the lidar sensors. The
spinning mechanism type lidar sensor has the feasibility of providing a complete
360-degree horizontal field of view, which can be applied for object detection
and tracking but the rotation increases the cycle time. The maximum range
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Table 2.2: Comparison of various forward-looking sensors presently used in auto-
motive applications.b

Comparison Parameter Radar Lidar Camera

Range /
distance [m]

Accuracy 0.1 to 1.8 0.02 to 0.1 0.1 to 5
Minimum 0.2 to 1 0.4 to 1 2.5 to 120
Maximum 5 to 320 13.5 to 250 10 to 150

Cycle time [ms] 30 to 72 10 to 66.6 22.2 to 50

Field of view
[degree]

Horizontal 12 to 150 27 to 360 40 to 100
Vertical 5 to 84 6.4 to 40 28 to 48

Relative velocity Direct measure Indirect measure Indirect measure

Color recognition
and differentiation

Not
possible

Not
possible Possible

Target dimensional
representation 2D/3D/4D 2D/3D 2D/3D

Weather influence
(Fog, rain, day/night, etc.) least high high

Cost Medium Costliest Least
b

The values for the comparison parameters are chosen from the tables for each sensor in Appendix A which are summarized from
different datasheets and documents [51], [56]–[71]. Note that the term accuracy in the above table is the amount of uncertainty in
the range measured.

capability (how far a sensor can see) is higher for radar sensors, while the short-
range radar sensors offer the best possible minimum range of 0.2 meters (how
close to an ego-vehicle a sensor can see). Moreover, adverse weather conditions
have the least effect on radar sensors as compared to the other two sensors. With
the recent improvement in the elevation values, the upcoming radar sensor can
provide 4-dimensional (3-spatial coordinate values along with the radial velocity)
data [56]. Camera sensors are the cheapest and the only sensor which can be used
to distinguish between different colors. Using the stereo technique, it is possible to
get the range information (spatial distance of the object from the ego-vehicle), but
the accuracy reduces as the object is far away from the ego-vehicle [67], [68]. It
should be noted that there is a trade-off between values of the different parameters
listed in Table 2.2. For example, the lidar sensor with a 360-degree horizontal field
of view has a limitation of 50 ms on cycle time based on the maximum rotation
rate of 20 Hz. For this reason, a particular sensor cannot deliver the best possible
values for all the parameters listed above.

A lot of research is going on to overcome the above-mentioned weaknesses or to
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improve the functioning of these sensors. This first group of the research work is
focused on investigating the sensor parameter, for e.g. parameters of radio waves
chirp emitted in radar [72], [73] and varying the laser-beam principles used in
lidar sensor [74]. Some researchers are striving to find new features, approaches,
and data processing methods to extract useful information, for e.g. detection
of vehicle-tire and pedestrian signatures using the micro-doppler effect [75], [76].
Others are trying to understand the behavior of degradation in sensor data due
to different environmental conditions to filter out these effects and improve the
detections [77], [78]. In addition to concentrating on improving individual sensors,
it is important to discover ways to make the overall system robust. Many believe
that a higher level of autonomy in the automotive field can be achieved using the
best available information from each sensor and ignoring the degraded one, the so-
called ‘Sensor Fusion’. The above-discussed approaches would help in the detection
and better recognition of an obstacle in the surrounding (i.e. whether an obstacle
exists or not?) at some distance away from the ego-vehicle. But the ego-vehicle
and in some cases the opponent (if it is another vehicle, cyclist, etc.) can move
and change its position, orientation and velocities. Hence, estimating the state
of the objects in the future based on their states detected by the forward-looking
sensors and possible trajectories or paths is required for predicting an upcoming
crash and estimating its parameters.

2.3 Trajectory planning
The trajectory planning problem has its roots in the field of robotics, where the
choice of the path of the autonomous driving robot is made. An overview of the
different basic methods used in the robotics field can be found in the textbooks
[79]–[81]. In these approaches, the path between the starting-point and the end-
point (goal) is calculated using different methods. One of the earliest methods
developed, inspired by the electric charges concept, is a potential field method
[82], where an objective function is defined that represents the space in potentials.
A large potential is given to the space occupied by the obstacles compared to the
vacant space and thus a path of low potential is preferred. Virtual force fields
[83] and field vector histograms [84] are further enhancements of this method.
Another group of methods is roadmap based, where the problem of planning is
reduced by overlaying a roadmap in the space. The Visibility Graph is one of
the approaches used by researchers to find the shortest path avoiding the vertices
of the polygonal shapes which represent the different obstacles [85]. The Voronoi
Diagram is another approach, where a plane (2-D space) containing the number of
objects is divided into several convex polygons containing only one object. With
this approach, a roadmap is built where the polygons specifying the maximum
possible distance between two obstacles (consider the vertices of the polygons as
points of maximum distance between obstacles) help to find the shortest collision-
free path [86], [87]. Alternatively, other approaches use different basic geometries
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such as polynomials [88], Bézier curves [89], spline curves [90], a combination
of lines and circles [91], etc. for calculating different trajectories. The desired
collision-free path is chosen based on the cost functions which identify the best
possible trajectory.

In all these methods, the collision avoidance decisions are based on either
the present positions of the obstacles (measured through different forward-looking
sensors) or by predictions based on tracking the present and previous positions
of the obstacles. Moreover, the trajectories generated do not include the physi-
cal limitation and vehicle dynamics behavior of the passenger vehicles [92], [93].
Hence, these methods are limited to path planning applications with lower safety
requirements. For a pre-crash system possessing the choice of different vehicle
safety actions in a short duration of time, consideration of vehicle dynamics is
of utmost importance. Complex multi-body vehicle models are limited by the
restricted vehicle dynamic calculations of the ego-vehicle in real-time [94]. One
of the reasons for this is the lack of parameters required by the complex model
of the opponent-vehicle due to limited information from the forward-looking sen-
sors. The complexity of the vehicle dynamics models can be reduced by using a
single-track or bicycle model [95]. Even though the single-track model is simple to
implement in real-time applications, it is not suited for pre-crash applications due
to limitations in representing the vehicle’s lateral dynamics. Thus, a modified ve-
hicle dynamics model for predicting the vehicle motions is required. Such a model
is described in [12], which calculates the longitudinal and lateral movement of the
vehicle based on its lateral and longitudinal accelerations, velocity, and vehicle-
specific parameters such as mass, wheelbase, etc. In this model, the longitudinal
and lateral accelerations are physically limited by Kamm’s Circle principle. The
model was used in this study to investigate the minimum time required of avoiding
the collision for vehicle-to-vehicle side crash scenarios. This model is presently in
future developmental stages at “CARISSMA Institute of Safety in Future Mobil-
ity, Technische Hochschule Ingolstadt” for investigating its use in predicting crash
parameters in the cases of inevitable crash scenarios.

Consider a driving scenario as shown in Figure 2.2a, where an ego-vehicle
(shown in purple color) and the opponent-vehicle (shown in grey color) are ap-
proaching each other. The light blue area represents the front scanning area of a
particular forward-looking sensor. The dotted curves show the predicted trajecto-
ries (trajectories are anticipated using vehicle dynamics models that employ the
combination of vehicle action braking, acceleration, and steering) of both the ego
and opponent vehicles respectively. The dotted ellipse represents the boundary
of the possible region where the vehicle can be situated in the future after some
time δt. At this state of time, it is still ambiguous whether a collision would take
place in the future. This ambiguity is resolved at a later state represented by
Figure 2.2b, where all the trajectories of both vehicles confirm that the crash is
inevitable. However, even at this state of time, the different possible trajectories
will give different positions P of the initial contact point and the relative approach
angle αra. In addition to the velocities, the crash severity of an ego-vehicle against
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Table 2.3: Summary of the literature related to trajectory planning. Box with
triangle represents a vehicle, shapes filled with grey color represent obstacles, solid
black lines represent the chosen path, and grey dotted lines represent the possible
trajectories (except in the last row).

Method Description Pictorial
representation Literature

Potential field Path with low
potential chosen [82]–[84]

Visibility Graph
Shortest path
joining the
obstacle vertices

[85]

Voronoi Diagram

Shortest path
thorough the points
with maximum
distance between
obstacles

[86], [87]

Geometry based
trajectories

Selection of
the path based
on the cost-functions
for different
trajectories

[88]–[91]

Trajectories
based on
vehicle dynamics

Vehicle dynamics
based equations
predict different
possible trajectories

[12]
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Figure 2.2: A driving scenario with two approaching vehicles: a) opponent-vehicle
in far-field - collision avoidance possible, b) opponent-vehicle in near-field - collision
inevitable, and c) vehicles contact with each other, (purple color represents ego-
vehicle, grey color represents opponent-vehicle, and light blue color shows the front
scanning area of the ego-vehicle).

a particular opponent also depends on P and αra [10], [11]. Consequently, the de-
cision of the safety strategy to be deployed depends on P and αra. Figure 2.2
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describes a state where both vehicles establish contact with each other. At this
time, the exact values for P and αra can be measured to validate the predicted
values and take a decision on the required safety action.

The integrated safety system is designed to estimate the crash parameters in
the near-field (about 2 to 10 meters), just before the crash. The estimation in
the near field helps to narrow down the possible variation in the crash parameters
and thus the required safety systems to be deployed for the upcoming crash. But
still, there can be ambiguity between two or more required safety actions (deploy
driver airbag, deploy both driver and passenger airbags, deploy driver and left-side
curtain airbags, etc.).

2.4 Opponent geometry estimation
Opponent geometry representation is another vital information that is required for
making crash inevitability decisions during trajectory planning and crash param-
eter estimation. The basic requirement for geometry estimation is the availability
of point cloud data of the object whose geometry is to be estimated. Camera sys-
tems cannot provide precise depth information, which makes them ineffective to
estimate the detailed geometry of the opponent objects such as the front-contour
of the vehicle. Radar and lidar sensors can provide the data required for esti-
mating the detailed geometry of the opponent-object. Since the vehicle as an
opponent object composes of one of the most complex geometry, a significant
amount of studies in this field focus on estimating the opponent-vehicle geometry.
An approach to fit an oriented bounding box and estimate the width, length, and
position of the opponent-vehicle using a radar sensor is presented in [96]. In [97]
the potential of the radar sensor to estimate vehicle contour through a heat-map is
investigated. Even though radar sensors are competent to estimate the geometry
of the vehicle, the point cloud data produced by the lidar sensor gives a more pre-
cise sense of the shape transition. Hence most of the studies on the investigation
of vehicle geometry estimation use lidar point cloud data. A general overview of
different approaches used for geometry estimation is demonstrated in Figure 2.3
and explained in the following paragraphs.

The point cloud data generated by the sensors require a specific methodol-
ogy for estimating vehicle geometry. This methodology forms the basis of the
vehicle-geometry estimation. The approach of fitting a rectangular box enclosing
the cluster of point clouds from a particular object, the so-called ‘Bounding box’,
can be considered as a stepping stone towards estimating the geometry of the
opponent-vehicle. The simple bounding box approach does not consider the ori-
entation of the opponent-vehicle and leads to erroneous geometrical parameters.
Hence, an oriented bounding box approach that takes into account the orientation
of the opponent-vehicle is usually considered for estimating the opponent-vehicle
parameters such as length, width, etc. In [98] and [99], an L-fit (L-shape formed
by two perpendicular lines representing the front and a side of the vehicle) based
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Figure 2.3: Different vehicle geometry estimation approach: a)an example of the
point cloud from vehicle front, b) Bounding box (dotted line) and oriented bound-
ing box (solid line) approaches c) Occupancy-grid based approach, d) Convex hull
based approach, and e) False-positive contact-detection through oriented bound-
ing box approach.

approach for fitting an oriented bounding box is explained, while [96] discusses a
combination of K-Nearest-Neighbors (KNN) and Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) algorithm to cluster the radar data.
The clustered data is used to construct an oriented bounding box with minimal
area and including all the points of the cluster. In challenging scenarios (visibility
of only one side of the vehicle to radar), the oriented bounding box formed using
the above methods cannot estimate both width and length accurately. In [100],
a template-based approach is suggested for estimating the vehicle geometrical pa-
rameters in these challenging scenarios.

Although this oriented bounding box approach is presently used in Advanced
Driver Assistance Systems (ADAS) for a rough estimation of geometrical param-
eters of the vehicle, it is not suitable for pre-crash systems that require finer
geometrical details. Consider a driving scenario illustrated in Figure 2.3 where
an oriented bounding box approach would indicate collision based on the inter-
section of the boxes shown by the intersecting grey area. But in the real world,
both vehicles would cross each other without any collision due to the curved shape
of the vehicles. The requirement of these finer geometrical details motivated re-
searchers to investigate different approaches to estimate them. A two-dimensional
occupancy-grid based approach is explained in [101]. In this work, the point
cloud representing the shape of the vehicle is mapped on a two-dimensional grid
to form an occupancy-based black belt with tolerances representing the shape of
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the vehicle. Another technique for estimation of vehicle geometry using convex
hull approximations enclosing the lidar point cloud is proposed in [102] and [103].
This method considers the points from the outermost region of the corresponding
cluster of point clouds and confines itself by joining adjacent points with straight
lines. Considering the individual points in analysis for estimating geometry in-
troduces errors due to fluctuation of the reflection points generated by the sensor
noise. A combined behavior of the reflection points should be considered to neu-
tralize the effect of noise. Moreover, the front contour of the vehicle is generally
a higher degree curve and a straight line approximation between the points re-
quires a high number of reflection points for better representation. A convex hull
methodology gives a large number of line elements, which define the vehicle geom-
etry. Each of these line elements has to be considered for the pre-crash algorithms
such as inevitability prediction and crash parameter estimation, which increases
the complexity. Hence, a novel methodology that can represent the finer details
of the vehicle geometry with less number of geometrical elements is desired by the
pre-crash algorithms.

2.5 Crash severity estimation
The prediction of an upcoming inevitable crash and its parameters are not enough,
it is also of utmost importance to know its severity and the corresponding pas-
sive safety action to safeguard and reduce the occupant injuries before the crash.
Present studies in the field of crash severity estimation can be broadly classified
into two categories, physical model-based approaches and data-based approaches.
Studies on the first approach [104]–[107] use some form of Lumped Parmater Mod-
els (LPM – models built using mass, spring, and damper elements) to simulate the
physical in-crash response of the vehicle from a particular type of crash. The book
on vehicle crash mechanics [104] explains the basics of using the LPM approach
for vehicle crash modeling and also describes different models. In [105], regres-
sive models are investigated to estimate the parameters of the LPM-model for
vehicle-to-pole crash tests. The output of the LPM model is usually a simplified
deceleration signal of the vehicle from the crash based on which the crash severity
parameters are calculated. The LPM approach is fast and simple enough to be
embedded in the control unit of the vehicle for real-time prediction. But these
models usually ignore the rotational movements of the vehicle during the crash.

Many countries record the data from the police reports after the crash in
databases such as General Estimates System (GES), Fatality Analysis Reporting
System (FARS), and Crash Analysis and Reporting System (CARS) from the
United States and German In-Depth Accident Study (GIDAS) from Germany.
Most of the studies [108]–[111] implementing the data-based approaches use the
information from these databases to train different machine learning methods such
as random forest algorithms or neural networks. The focus of these studies is either
to identify the factors of severe crashes or to predict the crash or injury severity
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in some classes such as (minor, moderate, severe, and fatal). In [112], a logistic
regression method is used to predict the probability of fatal occupant injuries,
while [113] uses this method to identify the cause of fatal injuries in Iran. The
performance of the prediction of the crash severity using data-based approaches
is dependent on the accuracy of the data and comprehensiveness of the database
to cover all the possible crashes.

2.6 Summary
Early and robust information about an upcoming crash is desired by the vehicle
safety systems for a decision on the required safety action. Passive safety sensors
discussed in Section 2.1 have limitations in providing information about the crash
after some milliseconds. This information is then analyzed and a signal for suitable
safety action is triggered. Due to this, a safety action such as airbag deployment
can only be activated after this analysis. If the information about the crash and
its relation to the required safety action is available before the crash (pre-crash
phase), then the safety action can be taken much earlier. This gain in time can
be used to increase safety by deploying larger airbags to cover a broader area or
controlling the gas inflow inside the airbag (smart airbag).

The forward-looking sensors discussed in Section 2.2 together with the trajec-
tory planning (Section 2.3) have the capability of providing information about the
crash (crash parameters such as velocities, the position of initial contact, angu-
lar orientation, etc.) in the pre-crash phase. Activation of the irreversible safety
systems based on the information measured by the forward-looking sensors is the-
oretically feasible. However, there is an uncertainty on the exact values of the
crash parameters. The first source of this uncertainty arises from the uncertain-
ties and the reliability of the forward-looking sensors. The present forward-looking
sensors face many challenges from complex real-world vehicle surroundings. Some
of the major challenges and uncertainties for these sensors are tolerances and an-
gular errors, weather influences, ghost objects, multi-reflections, etc. For example,
the challenges arising from the harsh weather conditions are illustrated in Figure
2.4. In these conditions, the frames from the camera are hazy or not clear, the
lidar sensor is completely blinded by the dense fog and gives less number of cloud
points in light fog and rainy conditions, and the disturbances from the rain cause
the detection in the near field region difficult for the radar sensor [114]. A brief
literature survey on this topic is given in Section 2.2. The other source of this
uncertainty comes from the trajectory planning and crash parameter estimation
models explained in detail in Section 2.3. Moreover, there are concerns about inci-
dents such as the famous accident caused by Uber’s automated driving system in
Arizona State of the United States. In addition to this, the forward-looking sen-
sors fail to provide material-related information about objects such as mass and
stiffness. A soft-object like a cardboard box or a foam with the same reflection
properties will be perceived by the forward-looking sensor also as a critical-object.
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Figure 2.4: Challenges faced by forward-looking sensors in harsh weather condi-
tions: a) Camera frame in normal weather, b) Camera frame in rainy conditions,
c) Camera frame in light fog conditions (50 meters visibility), d) Camera frame
in dense fog conditions (10 meters visibility), e) effect of rain on the lidar point
cloud, f) effect of fog on the lidar point cloud (blue color represents the cloud
points from the vehicle, while the green color represents the cloud points from the
fog particles), and g) effect of rain on radar signal. This figure is prepared from the
results of the tests performed by colleagues working in CARISSMA, Technische
Hochschule Ingolstadt [114].

In these incidents of misidentification, a false positive may result in the activation
of irreversible safety systems, such as airbags, which can cause an injury to an oc-
cupant, while a false negative would result in no action when an action might be
required. This highlights the need for robust validation before activating critical
vehicle safety systems. This lays down the need and importance of crash-scenario
validation. Also, as per the ISO 26262 guidelines, the activation of safety actu-
ators requires the Automotive Safety Integration Level D (ASIL-D) [115]. This
level can be achieved by validating the crash parameters predicted by forward-
looking sensors with parameters measured using a sensor working on a different
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principle. Furthermore, the validation will also provide the required robustness
against the false-activation of safety systems. The use of passive safety sensors for
validation would neglect the benefit of the pre-crash information and thus a sensor
that can provide early information is needed. To fulfill this need, a contact-based
validation system that can validate a crash based on mechanical contact (near t0)
is described in Chapter 3.

In addition to the crash inevitability and crash parameter prediction algo-
rithms, a representation of the opponent geometry is also necessary for the val-
idation process. The present methodologies for estimating the geometry of the
opponent-vehicle (refer to Section 2.4) lack either the geometric details or have
a complicated representation for the task of validation. Hence a new method-
ology to estimate the geometry of the opponent-vehicle through a combination
of simplified geometrical-elements (arc and line elements) has been established.
A brief description of this methodology is given in Chapter 4. This methodology
also includes the estimation of the angular orientation of the opponent-object with
respect to the ego-vehicle.

Prediction of the severity of an upcoming crash is desired by the pre-crash
systems to mitigate and reduce the occupant-injuries in case of inevitable crashes.
Both the groups of studies associated with the topic of crash severity estima-
tion, discussed in Section 2.5 have some inadequacies. In a particular crash, the
severity with which an occupant can be injured is a combination of the physical
behavior (deformation, deceleration of the vehicle, etc.) of the crash structure,
restraint effect of the safety systems such as airbags and seatbelts, and the oc-
cupant kinematics. The group of studies based on the physical-model approach
is limited to the vehicle level parameters and misses out on the representation of
the behavior of the occupant kinematics and restraint systems required for the
decision on activation of airbags. Whereas the available crash database used in
the database approaches are from the police reports and the parameters such as
the initial position of impact, relative approach angle, the velocity of vehicles, etc.
are established based on the police investigation and crash reconstruction. These
databases lack the resolution and accuracy of the crash parameters to train the
prediction models. Considering this limitation of the present crash database, a
two-step Finite-Element simulation-based methodology for generating data along
with the structure of the database, its features, and analysis of the data collected
for head-on collisions is discussed in Chapter 5. In addition to these, the concepts
of the crash-severity prediction models, learning methodologies, and the results
from these models are also discussed.
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Chapter 3

Validation of Pre-Crash
Information

Abstract
This chapter focuses on the validation of pre-crash information and the corresponding
sensor developed for this validation. At first, the desired functions for the validation are
laid down, followed by basic physical principles, which are of interest for the validation of
this information. The concept of the validation sensor consisting of electrical resistance
elements, its working principle, different variations, and methodology for validation are
the main contributions of this chapter. The robustness and functioning of the sensor
are demonstrated by investigating the sensor in different dynamic experiments, the ex-
perimental investigation through crash test was a major milestone. In conclusion, the
potential of the proposed sensor for improving vehicle safety is presented by comparing
it with presently used crash sensors.

Activation of the irreversible safety systems based on the information measured
by the forward-looking sensors is theoretically feasible. However, the uncertainty
on the values of crash parameters and their sources (discussed in Section 2.6) lays
down the need and importance for the validation of these parameters. Validation
at the first contact would verify the crash parameter estimation and further reduce
the variation and uncertainties in the crash parameters to the accuracy of the
sensor used for validation. In addition to the function of detecting a crash, there
are other supplementary functions desired by the validation process to assist in the
decision of the activation of the irreversible safety systems. Due to the significance
of these functions to this chapter, they are listed in the first section.

3.1 Desired functions of the validation process
The main function of the validation process is to confirm that the predicted crash
scenario is within acceptable limits and take a decision on the required safety
strategy based on this validation. The following parameters must be checked for
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the validation of a crash scenario1.

• Has a crash event occurred?

• Is the predicted position of impact within the acceptable limits?

• Does the predicted relative approach angle fall within the acceptable limits?

• Is the predicted relative velocity within the acceptable limits?

The challenge for the validation is to measure and/or estimate all the above
parameters using just one additional sensor for validation. The requirement of
limiting the number of validation sensors to one stems from the cost competitive-
ness in the automotive industry. The most important purpose of the validation is
to avoid false activation of irreversible safety actuators, which is fulfilled by ensur-
ing the occurrence of a crash event. In an event of a crash, contact between the
vehicle and the opponent is inevitable. Hence, a physical principle that can sense
contact during a vehicle crash is an optimal choice for a validation sensor. Addi-
tionally, the position of the initial contact point is essential, because the severity
of the vehicle crash highly depends on this position [10]. The other two param-
eters (relative approach angle and relative velocity) can be predicted with great
accuracy by applying the data-fusion technique to signals acquired from different
forward-looking sensors. Hence, the information on these parameters is considered
desirable for the validation sensor.

After having a brief review of the desired functions for the validation process,
an overview of the important physical principles which can be used in sensors is a
good foundation before the introduction of the proposed validation sensor.

3.2 Underlying physical principles
A sensor in the context of the vehicle system is a component that converts the
effects like motion, deformation, contact, etc. into physical quantities that can be
measured, usually into electrical signals such as voltage or electric current. There
are different physical effects with which the sensing function can be achieved.
Some of the physical effects and their principles form the fundamentals of sens-
ing technology. Detailed information about these effects and their relation to the
respective sensors can be is given in [116]–[118]. Understanding the important
physical principles which are of interest to vehicle-crash validation is an introduc-
tory requisite and a brief revision of these principles is described in the below
section.

1A particular crash scenario is defined by the pre-crash information such as initial contact
point, relative approach angle, velocities of the vehicle, etc. Therefore, the term ‘validation of a
crash scenario’ can be considered as collective validation of the different pre-crash information
required to define the crash scenario
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Figure 3.1: Important physical effects for sensing: a) electric current flowing
through a material by voltage application, b) charge development on a parallel-
plate capacitor, c) demonstration of the electromagnetic effect, d) piezoelectric
effect, and e) triboelectric effect.

3.2.1 Electric resistance
Consider a conductor with a uniform cross-section as shown in Figure 3.1a, across
which a battery is connected and the two ends of the body are at two different
voltage potentials (Ua and Ub). This will set up an electric field E within the
material along with corresponding electric force, which causes the free electrons
(negative charges) to move from the negative terminal of the battery to the positive
terminal. This motion of electrons is termed an electric current (charge flowing
through a region per unit time), with the flow or direction of electric current
opposite to that of electrons. The material of the bar tends to resist this motion
or flow of charges (e.g. in the case of metals the flow of electrons is interrupted
by its collisions with ions), which is termed as electric resistance.

The electric resistance of a body or component depends on its material and
geometry. The material property which relates to the electric resistance is specific
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resistivity ρ and relates electric field E to the electric current density J by Ohm’s
law in vector form.

E = ρJ , (3.1)
where ρ is a second-order tensor. E and J are vectors. Resistivity ρ at a particular
point in a material can be defined as the ratio of the magnitude of E to the
magnitude of J and is given by

ρ =
|E|
|J |

. (3.2)

The electrical resistance R of a particular body with uniform cross-sectional
area A and length L is described by the resistivity equation as follows

R = ρ ·
L

A
. (3.3)

The above equation is the fundamental basis for most electrical resistance
based sensors. This principle is widely used in displacement sensors, where L
corresponds to the linear or angular position. In [119] different sensor designs
requiring physical contact are discussed, while [120] describes the contact-free
resistance-based sensor concept. Resistance based force and pressure sensors use

strain gauges, devices that change their resistance based on the change in
L

A
.

Studies [121], [122] discuss more complex sensor concepts, which use a network of
resistance elements to define the damage and deformation behavior of advanced
non-homogeneous materials such as composites. These complex sensing concepts
are suitable for health monitoring applications but have difficulty in detecting
the contact position with the required accuracy and robustness for vehicle crash
applications.

3.2.2 Capacitance
Capacitance is an effect, which charges two conducting materials by an equal
magnitude of opposite charges if they are separated by a dielectric medium and
connected to the opposite terminals of the battery (see Figure 3.1b). A device
with such a combination of materials is called a capacitor. The capacitor is usually
specified in capacitance C, a ratio of the magnitude of the charge q on either of
the conductor and the potential difference U between them. It is given by

C =
q

U
. (3.4)

Based on the design of the capacitor, the capacitance can be calculated using
the general equation

C = ε0εrG, (3.5)
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where G is a geometric factor, which depends on the shape of the two con-
ducting materials and the distance separating them, ε0 is the electric constant or
permittivity of free space and εr is the relative permittivity or dielectric constant.
Table B.1 in Appendix B gives an overview of some of the basic configurations of a
capacitance-based sensor and their equations for the geometric factor. For most of
the applications, the change in geometric factor G causes the change in the capac-
itance of the sensor. Capacitance based sensors are one of the widely used sensors
to measure different physical quantities such as force, pressure, distance, acceler-
ation, touch, etc. In [123], a design of a tactile sensor based on the capacitance
effect to detect the contact pressure is investigated, while a concept for position
detection based on variation in the area is described in [124]. A large number of
capacitive sensing grids would be required to cover the region of the vehicle for a
particular crash type, thereby increasing the challenge for cost feasibility.

3.2.3 Magnetism and Induction
A magnet is an object that has a special property to attract certain materials such
as iron, steel, nickel, etc. Similar to the electric field, a magnet has a magnetic field
around it, which is strong near the magnet and weak far away from the magnet.
Consider a demonstration shown in Figure 3.1c, if a magnetic compass is brought
near a current-carrying conductor, the needle of the compass changes its pointing
direction. Now, if the direction of the electric current is changed by interchanging
the ends of the conductor connected to the battery, the needle of the compass
points in the opposite direction. This demonstration shows that a magnetic field
(similar to that around a magnet) is also produced when a current passes through
a conductor and its direction is dependent on the direction of the current flowing
through the conductor. On the contrary, when an electric charge q moves across
a magnetic field B with a velocity vq, it experiences a force Fmag and is given by

Fmag = q · vq × B. (3.6)
The direction of this magnetic force is perpendicular to the plane formed by

vq and B. In most applications, the magnetic field acts as a source to induce an
electric current when a force is applied or a body moves.

Induction is the phenomenon by which an electric current is induced in a loop
of wire when the magnetic field surrounding it varies with time. According to
Faraday’s law of induction, the rate of change of magnetic flux ϕB is equal to the
induced electromotive force (e.m.f) and given by the following equation

e.m.f = −
dϕB

dt
. (3.7)

The minus sign indicates that the direction of the e.m.f is opposite to the
direction of the change in magnetic flux. Usually, such an e.m.f is induced in a
coil of wire with nloop number of loops in a coil and the total e.m.f is the addition
of e.m.f induced in every loop of wire or in other words given by

30



3.2. Underlying physical principles

e.m.f = −nloop

dϕB

dt
. (3.8)

The magnetic flux is given by

ϕB =
∫ ∫

A
B · dA = B · A = B · A · cos θ. (3.9)

Substituting equation 3.9 in equation 3.8

e.m.f = −nloop

dB · A · cos θ

dt
. (3.10)

As described above an electric current flowing through a coil will create a magnetic
field around it. If the electric current flowing through the coil varies with time, the
magnetic field generated will also vary with time and thus induce an e.m.f in the
coil. This phenomenon is called self-induction. The induced e.m.f is proportional
to the rate with which the current changes and is given by

e.m.f = −L
dI

dt
, (3.11)

where the proportionality constant L is called inductance. Equations 3.10 and
3.11form the basis for a sensor working on the above principle. These sensors
usually measure the change in induced e.m.f caused by moving the source of the
magnetic field, changing the orientation of the magnetic field, varying the current
flowing through the coil, changing the area by application of external force, or
changing the number of turns. [125] and [126] describes a magnetism and induc-
tion based position measurement sensor concept respectively. These principles
can detect only metallic targets and additionally, the measurement signals are
dependent on the type of metal being detected.

3.2.4 Piezoelectric effect
When an external force is applied to some crystalline materials such as quartz,
ceramics, polymers, etc., an electric charge is generated across this material. This
behavior of these materials is termed as the piezoelectric effect. The external force
F applied to the piezoelectric material deforms the crystalline structure of the
material, which rearranges the positive and negative charges inside the material
and develops an electric charge on the material’s surface (see Figure 3.1d). The
charge is developed because of the electric polarization within the material and is
given by

Pxx

Pyy

Pzz

 =

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36




σxx

σyy

σzz

τyz

τzx

τxy


(3.12)
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where P represents the polarization vector, d matrix represents the piezoelec-
tric coefficient matrix of the piezoelectric material, σ represents the axial stresses
and τ represents the shear stresses (note that the subscripts indicate the direc-
tions). The electric charge generated qx in the material is proportional to the
applied force Fx and is given by

qx = d11 · Fx. (3.13)
The material with two electrodes also acts as a capacitor with capacitance C,

with a voltage U developed between the electrodes is

U =
qx

C
=

d11

C
· Fx. (3.14)

This phenomenon is widely used in accelerometers in which a piezoelectric ma-
terial is sandwiched between a mass-spring system and a casing. The motion of the
mass compresses or expands the piezoelectric producing the voltage corresponding
to the motion. A general concept of tactile sensors based on the piezoelectric prin-
ciple is explained in [127], while [128] describes a similar concept applied to vehicle
crash detection. This concept can detect a vehicle crash and roughly estimate the
impact position as left or right by analyzing the signals from two sensors but it
cannot give the exact impact position.

3.2.5 Triboelectric effect
Rubbing a balloon on hair for some time results in the hair sticking up when
the balloon is drawn away (see Figure 3.1e). This is caused by the triboelectric
effect, a phenomenon of electric charge redistribution between two materials when
they come in contact with each other. When a balloon is rubbed on the hair, the
electrons from the hair are transferred to the balloon making it negatively charged.
The loss of electrons causes the hair to be positively charged and thus the hair is
attracted to the negatively charged balloon.

In [129], [130], a combination of the triboelectric effect and electrostatic in-
duction is used to develop Triboelectric generators (TEG) or triboelectric nano-
generators (TENG). These devices have the potential for harvesting mechanical
energy from daily human activities, which can be used for self-powered devices. A
sensor for monitoring the motion of humans in their sleep is investigated in [131],
while a similar sensor to measure human hand motions for smart gloves is studied
in [132]. The research work [133] describes a pressure sensor concept using TEG
made from a layer of polydimethylsiloxane and another layer of a combination of
carbon nanotube and polydimethylsiloxane material. The above studies show that
this effect can be applied to sense motions, force, pressure, etc. for applications
with smaller sensing regions. The region of interest for vehicle-crash detection ap-
plications is comparatively large (the vehicle front region is approximately about
1.5 to 2 meters) and would require a matrix of such sensors resulting in the cost
increase.

32



3.2. Underlying physical principles

Table 3.1: Decision matrix for selection of physical principle.

Principle
Factor

Ability to
realize
desired

functions

Ease of
measurement

Ability to
sense
before
contact

Total
points

Electric resistance 4 2 0 6

Capacitance 1 1 1 3

Magnetism
and induction 1 1 1 3

Piezoelectric 1 3 0 4

Triboelectric 1 3 0 4

A decision-matrix method is used to choose a physical principle for the vali-
dation sensor. Table 3.1 shows the decision-matrix, with three factors considered
for the judgment. The first factor is the ability to realize the functions mentioned
in Section 3.1, with a point for every function that can be realized by the sensing
principle. The electric resistance principle scores a maximum of four points for its
feasibility to provide information on all the functions. The other principles can
only detect a crash by a change in the measured signal either by contact or by
proximity and hence score only a point. These principles would require multiple
measuring grids for detecting the position of impact, increasing the cost, and mak-
ing this detection not feasible for the cost-competitive automotive industry. The
second factor considered was the ease of measurement with a scale of three points.
The piezoelectric and triboelectric principles score three points due to their abil-
ity to directly measure the voltage as the measured signal. The electric resistance
principle requires additional electric circuit elements such as shunt resistance to
measure the current and hence scores two points. The other two principles need a
specially tuned measurement circuit, which increases the complexity for measure-
ment and thereby each scoring a point. The ability to provide information before
the first-contact was considered as the last factor. The contact-based sensing prin-
ciples (electric resistance, piezoelectric, and triboelectric) cannot give information
before the contact and score no points, while the other proximity-based sensing
principles score a point for this factor. The electric resistance principle scores the
maximum points compared to other sensing principles and is considered for the
validation sensor.
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3.3 Proposed Validation Sensor
Such a sensor can be directly integrated into the outer-skin2 of the vehicle or can
be installed as an additional component of the vehicle as shown in Figure 3.2.
A concept to embed such a sensor as an integral part of the vehicle’s outer-skin,
when it is made from composite material is demonstrated in [2], [3], while [1],
[4], [5] describe an approach where this sensor can be produced separately and
installed in the vehicle. The choice to select a particular concept is a production
optimization problem for vehicle manufacturers to reduce the overall production
cost. Both concepts work on a similar principle and a generalized description of
the proposed validation sensor is given in the following sections.
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Figure 3.2: Concepts for incorporating validation sensor in a vehicle.

3.3.1 Principal design
The proposed sensor consists of one or more resistance elements electrically iso-
lated from each other as shown in Figure 3.3. At the ends of these resistance
elements, electrical contacts are created to connect the sensing part with a mea-
surement circuit. In addition to the choice of integration of the validation sensor,
vehicle manufacturers can also modify the size and shape of the sensor suited
to their vehicle design and manufacturing facilities. Figure 3.3 demonstrates the
sensor conceptualized with a circular geometry as a basic shape. The resistance
elements are arranged in segments of this basic shape and based on the number

2The word ’outer-skin’ is used for the exterior surfaces of the vehicle usually made from
fiber-reinforced plastics and/or sheet metals
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of segments the sensor can be classified into two different types as described below.
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Figure 3.3: Types of validation sensor: a) construction and cross-section of single-
resistance element sensor, b) cross-section of multiple-resistance elements sensor,
and c) vulnerability of two-resistance elements sensor.

Single-resistance element sensor: As the name suggests, this type of sen-
sor consists of only one resistance element and it works similarly to a voltage
divider or potentiometer. This type of sensor requires another element made from
a conductive material (shown by the light orange color in Figure 3.3a) to tap the
voltage potential at the contact point from the crash. The function of this element
is equivalent to the wiper used in a potentiometer and hence this element is named
as a wiper. This type of sensor concept is more suitable when the sensor is to be
integrated into the vehicle parts and has a base material, which can function as a
wiper. When this sensor is manufactured separately, this concept has challenges
in the production process to bring together three different materials as one single
part. Hence, automotive manufacturers will prefer the concept with the multiple
resistance elements when the validation sensor is manufactured separately.

Multiple-resistance elements sensor: The construction of this type of sen-
sor is similar to the single-resistance element sensor concept, except the conductive
material of the wiper is replaced by a resistive material to form another resistance
element. This type of sensor can also contain more than two resistance elements.
The use of the same resistive material for all the resistance elements makes the
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3. Validation of Pre-Crash Information

manufacturing process simpler as compared to the single-resistance element sensor
concept.

The simplest form of a multiple-resistance elements sensor is a two-resistance
elements sensor. The two-resistance elements sensor and single-resistance element
sensor are vulnerable to no-contact detection if the contact force is in the separa-
tion region of the elements and perpendicular to it (see Figure 3.3c). Hence, the
separation region should be kept as small as possible. Additionally, during the
installation of the sensor, the sensor should be so aligned that the direction of the
force is perpendicular to the resistance element to overcome this vulnerability.

Another approach to increase the robustness of the sensor against the above-
discussed vulnerability is to increase the number of resistance elements. The
increase in the number of resistance elements increases the sensing capability of
the sensor to the forces from all directions. This robustness comes with a price
of increased complexity in manufacturing and measurement principle and thus
increased cost.

3.3.2 Working principle
Figure 3.4 shows the electrical schematic diagram for sensors with single resis-
tance and two resistance elements. The ends of the elements are connected to
pins of the measurement apparatus (e.g. a micro-controller). As defined by the
measurement principle, required voltage potentials are applied at these pins by
programming the measurement apparatus. Several shunt resistances are included
in the measurement circuit and the voltage across these resistances is measured
with the required sampling rate (>10 kHz for vehicle crash applications). In the
normal driving state, there is no electrical contact between the elements of the
sensor and hence, there is no change in the measured voltages. In an event of a
vehicle crash, the resistance elements establish contact with other elements, this
causes a change in electrical resistance across the ends of the resistance elements
and the measured voltages. This change in resistance is measured to detect the
crash event and to calculate the parameters which are of interest for validation of
the crash. These parameters are described below.

• PL is the position of the left-most contact point from the center of the vehicle
or sensor.

• PR is the position of the right-most contact point from the center of the
vehicle or sensor.

• PC represents the central position of the contact.

• O is the overlap or the width of the contact at a given point in time.

The central position PC is the midpoint of the left-most and right-most contact
position, while the overlap O is the addition of the absolute value of the two po-
sitions. The measurement procedures used for the validation sensor are explained
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Figure 3.4: Electrical schematic diagrams for validation sensor: a) single-resistance
element sensor, and b) two-resistance elements sensor. (Note: Red color represents
resistance element, while orange color represents wiper. The voltage potential at
pins are shown in case 1 and they are the same for case 2 and case 3, but not
displayed in respective figures to avoid repetition).

below which is an extension of the research work described in [2].

Single-resistance element sensor: The electrical schematic of the measure-
ment circuit for the single-resistance element sensor is shown in Figure 3.4a. Input
potential UIN is applied to pin 1 of the sensor, while pin 2 is grounded (kept at
0 volts) to make the current flow through the resistance element. This current
is measured by connecting a shunt resistance RS1 between pin 1 and the end of
the resistance element. RS1 should be kept considerably low (a few ohms) so that
the voltage drop across it is small enough as compared to the resistance element.
Another shunt resistance RS3 is connected between the one end of the wiper and
pin 3. This resistance should be as large as possible (some mega-ohms) and is
introduced in the measurement circuit to reduce the noise at the floating wiper.
The required position information is derived from the voltages measured across
the shunt resistances.

37



3. Validation of Pre-Crash Information

During the usual driving condition, there is no electrical contact between the
resistance element and the wiper (see case 1 of Figure 3.4a). Hence, the voltage
across RS3 is zero. When a crash occurs, the contact between the resistance ele-
ment and the wiper is established and the voltage across RS3 increases depending
on the position of the contact point. Initially, a single-point contact is estab-
lished, and gradually as time progresses, the contact area increases changing to
multi-point contact.

Based on the contact type the overall resistance RO of the sensor can be divided
into two or three parts, RL part of the resistance element on the left side of
the contact point, RR part of the resistance element on the right side of the
contact point and RC part of the resistance element between the two extreme
contact points. Since the wiper consists of conductive material and its resistance
is comparatively negligible, RC can be ignored, and using the equation of specific
electrical resistance, RO can be written as

RO = RL + RC + RR = RL + RR =
ρ

A
· (L − O), (3.15)

where L is the length of the sensor, ρ is the specific resistivity of the resistance
element and A is the cross-sectional area of the resistance element. According to
Ohm’s law, RO is given by

RO = (UIN − US1) ·
1

US1/RS1
=
(

UIN

US1
− 1

)
· RS1. (3.16)

From equations 3.15 and 3.16, the overlap is given by

O = L − RO ·
A

ρ
= L −

(
UIN

US1
− 1

)
· RS1 ·

A

ρ
. (3.17)

The left contact point position PL is calculated by

(3.18)

PL =
L

2 − RL ·
A

ρ

=
L

2 −
UIN − US1 − US3

US1/RS1
·

A

ρ

=
L

2 −
UIN − US1 − US3

US1
· RS1 ·

A

ρ

=
L

2 −
(

UIN − US3

US1
− 1

)
· RS1 ·

A

ρ
,

while the right contact point position is given by

PR = O − PL. (3.19)

38



3.3. Proposed Validation Sensor

Substituting equations 3.17 and 3.18 in equation 3.19

PR = L −
(

UIN

US1
− 1

)
· RS1 ·

A

ρ
−

L

2 +
(

UIN − US3

US1
− 1

)
· RS1 ·

A

ρ

=
L

2 +
(

UIN − US3 − UIN

US1
− 1 + 1

)
· RS1 ·

A

ρ

=
L

2 −
US3

US1
· RS1 ·

A

ρ
.

(3.20)

According to the vehicle axis system defined by International Standard ISO
8855 [134], the positive is considered on the left side. The same axis system is
considered in this work. Hence, the central position of the contact is given by

(3.21)PC =
PL − PR

2 .

In the above equation, a negative central position would indicate that the con-
tact position is to the right of the vehicle center and vice versa. In the case of
single-point contact, there is no overlap, i.e. O is zero and PR has the same value
as PL but with the opposite sign.

Multiple-resistance element sensor: Figure 3.4b shows the electric repre-
sentation for the two-resistance elements sensor. Input potential UIN is applied to
pins at the opposite end of the two resistance elements (pin1 and pin 4), while the
other two pins (pin2 and pin3) are grounded. This criss-cross configuration makes
the current flow through both elements. The current flowing at the four ends
is measured by inserting shunt resistances RS1, RS2, RS3, and RS4 between the
ends of the resistance elements and their respective pins. All the shunt resistances
for this type of sensor should be kept considerably low (a few ohms) so that the
voltage drop across them is small compared to the resistance elements.

The current measured at one end of a particular resistance element is equal
to the current measured at the other end of the resistance element in a normal
driving condition. When a crash occurs, both the resistance elements come in
contact with each other and there are changes in the current flowing through the
resistance elements. The electric current would flow from pin 1 to pin 3 and from
pin 4 to pin 2 as shown in case 2 and case 3 of Figure 3.4b.

Similar to the single-resistance element sensor, the overall resistances RUO and
RLO of the upper and lower resistance elements of this sensor type can be divided
into left (RUL and RLL), right (RUR and RLR), and central (RUC and RLC) parts
respectively.

Applying Kirchoff’s voltage law to the left side voltage loop of the contact

(3.22)UIN − US1 − RUL ·
US1

RS1
− RLL ·

US3

RS3
− US3 = 0.

39



3. Validation of Pre-Crash Information

Rearranging equation 3.18

(3.23)UIN − US1 − US3 = RUL ·
US1

RS1
+ RLL ·

US3

RS3
.

Defining a new term α as a ratio of the resistance per unit length of the upper
and lower resistance element

(3.24)α =
ρU

AU

·
AL

ρL

,

where ρU and ρL is the specific resistivity of the upper and lower resistance
element respectively. While AU and AL are the cross-sectional areas of the two
elements. This term depends on the material of the two resistance elements and is
considered as constant for a particular sensor. Using the resistivity equation the
ratio of RUL to RLL can be written as

(3.25)
RUL

RLL

=
ρU

AU

· LUL ·
AL

ρL

·
1

LLL

.

The length of the part from the two resistance elements corresponding to the
resistance RUL and RLL can be assumed to be equal to each other and hence the
equation 3.25 becomes,

RUL

RLL

= ρU

AU

· AL

ρL

= α. (3.26)

Substituting equation 3.26 in equation 3.23

(3.27)
UIN − US1 − US3 = α · RLL ·

US1

RS1
+ RLL ·

US3

RS3

= RLL

(
α ·

US1

RS1
+

US3

RS3

)
.

Rearranging equation 3.27, RLL is given by

(3.28)RLL =
UIN − US1 − US3(

α ·
US1

RS1
+

US3

RS3

).

Based on the resistivity equation, PL is given by

(3.29)PL =
L

2 − RLL ·
AL

ρL

.

Substituting equation 3.28 in 3.29

(3.30)PL =
L

2 −
UIN − US1 − US3(

α ·
US1

RS1
+

US3

RS3

) ·
AL

ρL

.
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Table 3.2: Different contact configurations for a three-resistance elements sensor
(E1, E2, and E3 represent resistance element-1, element-2, and element-3 respec-
tively, while the black line represents the contact).

Left
contact

Right
contact E1 & E2 E2 & E3 E1 & E3 E1, E2,

& E3

E1 & E2

E2 & E3

E1 & E3

E1, E2,
& E3

Similarly, the equation for PR can be derived considering the voltage loop on
the right side of the contact and is given by

(3.31)PR =
L

2 −
UIN − US2 − US4(

α ·
US2

RS2
+

US4

RS4

) ·
AL

ρL

.

In the above equations UIN , RS1, RS2, RS3, and RS4 are fixed by the design
of the measurement apparatus and thus known. The voltages US1, US2, US3,
and US4, are measured, while the remaining parameters can be calculated from
the measurement before the crash during normal driving conditions. PC can be
calculated with equation 3.21 given in the above section, while the addition of PL

and PR would give us the overlap O.
As discussed in Section 3.3.1, the robustness of the sensor can be increased by

using additional resistance elements. Consider a three-resistance elements sensor
as shown in Figure 3.3b. At any given instant of time, there are four types of
contacts possible at a particular contact point. Three of them are given by the
combination of elements for a two-element contact and the fourth type is where all
the three elements are in contact with each other. For a vehicle crash application,
the position of the two extreme contact points is of importance, which represents
the contact width during the crash. Considering, the two extreme contact points
(left-most and right-most contact point), sixteen different contact configurations
are possible as shown in Table 3.2. The table emphasizes the complexity of mea-
surement due to an additional resistance element.
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3. Validation of Pre-Crash Information

This complexity can be reduced by using a switching technique as shown in
Figure 3.5. At any instant of time, only two resistance elements are active while
the third element is inactive (isolated). This reduces the possible contact configu-
rations from sixteen to nine (configurations remaining in Table 3.2 after deleting
the last column and last row). With the use of the switching technique, the
above-explained measurement principle for the two-resistance elements sensor can
be used. The position of the contact points from all the configurations can be
measured over a short cycle time. One measuring cycle is divided into three sub-
cycles. In each sub-cycle, as mentioned only a pair of resistance elements are
active. The pin-voltages at the ends of the element are chosen to retain the criss-
cross measuring configuration explained for the two-resistance elements sensor in
this section. The voltage configuration for different sub-cycles is shown in Figure
3.5b.

3.3.3 Dynamics of contact point position and its impor-
tance

As discussed in the previous section, the proposed sensor can sense the crash
condition by contact detection and measure the position of impact based on the
change in the electrical resistance from the contact. After the contact, the width
of the contact gradually increases with the crash duration causing a change in
the position of the contact points (PL and PR). This change in position depends
on the parameters such as velocity, orientation, and shape of the ego-vehicle and
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Figure 3.5: Measurement methodology for three-resistance elements type sensor:
a) Electrical schematic with switching by using de-multiplexer and b) Voltage con-
figurations for different sub-cycle. (Note: Pin-voltages at the end of the elements
are represented by red color for element-1, green color for element-2, and blue
color for element-3).
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opponent-object, which can be used for validation. The contact points movement
is a combined effect of the three parameters mentioned and can be calculated
for the initial few milliseconds of crash duration using the parameters predicted
by the forward-looking sensors. Hence, a combined validation of these predicted
parameters is possible by comparing the measured and the calculated movements
of the contact points. A detailed explanation of the methodology for this validation
is given in Chapter 4.

3.4 Experimental investigation
The validation sensor was examined through a series of experiments to investigate
its performance. The sensor was first examined in a simple finger-contact test to
check the behavior of the change in resistance with the contact position. Next,
the sensor was studied in a pendulum test to investigate its behavior under low-
speed impact conditions. After confirming the performance of the sensor from the
above-discussed tests, it was investigated in a crash test with other crash sensors
for comparison. Since the crash test comprises of an investigation from several
other sensors along with the validation sensor, this test is discussed in this section
to give a comprehensive summary. The details and results from the finger contact
and pendulum tests are given in [2], [3], [5].

3.4.1 Test details
The aim of the crash test was to verify the functioning of the proposed sensor in the
test condition similar to a real vehicle crash and to compare it with other presently
used sensors. A compact passenger car (Volkswagen Golf-IV) was chosen as a test
vehicle. In the crash test, this vehicle was impacted at 64 km/h against a rigid
barrier as shown in Figure 3.6a. The test vehicle was aligned to have an impact
of a 40% overlap on the driver’s side. The data from the sensors during the crash
test was recorded using two data acquisition systems. The first system (M-bus
Pro, Messring GmbH) was sampled at 100 kHz, which was used to measure the
signals from the acceleration sensors. The other data acquisition system (LTT-24,
Labortechnik Tasler GmbH) was used to measure the signals from other sensors
at a sampling rate of 1000 kHz. These systems along with the power supply were
mounted away from the crash-zone in the vehicle trunk. Three high-speed cameras
were installed in the test area to monitor the crash from the top, left, and right
perspectives. All the cameras recorded the crash at a frame rate of 1000 frames per
second. Both the data acquisition systems and the camera system were triggered
by a standard tape switch trigger used in the crash test. This trigger ensures the
time synchronization of different systems with all systems having the same zero
time (t0), which corresponds to the first contact of the test vehicle with the rigid
barrier.
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Figure 3.6: Crash test details and sensor configuration: a) Frame at first contact,
b) frame at maximum deformation, c) vehicle boundary schematic showing max-
imum deformation, and d) sensor configuration. (Note: Both the pressure-tube
(transparent color) and the validation sensor (yellow color) are installed in the
foam material behind the bumper beam).

3.4.2 Sensor configuration
The sensor configuration chosen for the crash test is shown in Figure 3.6d. It
consists of three additional sensors along with the validation sensor for comparison.
The acceleration pulse at the center of gravity is the most basic and common
measurement in vehicle safety. The parameters derived from this pulse are used
in present vehicles as a measure for the deployment of passive safety systems.
Therefore, it was decided to mount a standard crash test acceleration sensor (Type
– M0053A, Kistler Instrumente GmbH) to record this acceleration pulse from the
crash test. The acceleration sensors used for the crash test have higher resolution
compared to the cost-optimized passive safety sensors used in the vehicle. As
discussed in Section 2.1, some vehicles employ a pair of ECS sensors (one on the
driver’s side and one on the passenger’s side) in addition to the sensor at the
center of gravity. Since these two types of sensors represent the signals from the
sensors used in the present vehicles, they form the baseline for comparison. The
third sensor chosen was a pressure-tube sensor, which is in use for low-impact-
energy applications such as a vehicle crash against pedestrians. This sensor is in
research for its extending its use for high impact-energy such as vehicle-to-vehicle
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crashes and hence it is selected for comparison against the proposed sensor. The
pressure-tube sensor was installed in the foam material between the bumper beam
and the bumper (see Figure 3.6d). The validation sensor used in the crash test
was a two-resistance elements type with a length of 140 cm. It was also installed
in the foam material next to the pressure-tube sensor so that both the sensors
have a similar deformation during the crash test.
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Figure 3.7: Crash test results: a) acceleration signal from the sensor at the center
of gravity, b) derived velocity signal from the sensor at the center of gravity, c)
acceleration signal from ECS, d) derived velocity signal from ECS, e) pressure-
tube sensor, and f) proposed validation sensor.

3.4.3 Results and discussion
The damage caused to the vehicle by impacting against the rigid barrier can be
visualized in Figures 3.6b and c. A major part of the energy was absorbed by
the deformation of the front crash structures, with some damage extended to the
A-pillar on the driver-side. The maximum deformation during the crash in the
longitudinal direction was about 95 cm. The results from the different sensors
under investigation are discussed in the below paragraphs.

Acceleration sensor at the center of gravity: Figure 3.7a shows the fil-
tered acceleration signal recorded by the sensor at the center of gravity. Applying
a low-pass filter is a common pre-processing procedure in crash data analysis. A
technical bulletin from Euro-NCAP [135] gives the guidelines on using the low-
pass filter for different sensors. A low-pass Butterworth filter with zero-phasing
was applied in forward and reverse directions with a cut-off frequency of 100 kHz
to the acceleration signals as a pre-processing step. The acceleration signals show
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a crash duration of 118 ms, which is given by the time at the zero acceleration
after the initial fluctuations. It can be observed that for a considerable amount
of time (about 60 ms) the vehicle experiences high decelerations (above 20 g) and
has a maximum deceleration of 36.2 g. These values indicate a severe crash with
the necessity for the deployment of restraint systems. Most of the complex passive
safety algorithms consider velocity signals for activating restraint systems such as
airbags [136]. The velocity signals have comparatively fewer fluctuations, espe-
cially in the initial deformation phase of the crash during which the decision on
deployment of restraint systems is taken. The fewer fluctuations help in a better
and faster judgment of the crash severity. Hence, the filtered acceleration signals
were integrated to derive the velocity signals and were used for comparison with
other sensors.

Early crash sensors: ECS sensors used in the test were the same as the
sensors used in vehicles for passive safety applications. These sensors had a lower
resolution compared to the instrumentation grade sensor used at the center of
gravity and hence have higher fluctuations (see Figure 3.7c). It is not possible
to derive any useful information directly from the acceleration signals even after
low-pass filtering. Nevertheless, the velocity signals derived from these noisy ac-
celeration signals shown in Figure 3.7d, provide a much better perspective. The
signals from the driver-side sensor have a steeper negative slope compared to the
passenger-side, which indicates a driver-side impact. The driver-side sensor was
broken during the crash test by the deformation from the crash (indicated by the
constant value in the acceleration signal). For this reason, only a part of the signal
from this sensor up to 80 ms can be considered, while the passenger-side sensor
survived the crash and its complete signal can be considered.

Pressure-tube sensor: The impact from the crash induces a pressure wave
in the tube, which travels on either side of the impact at close to the speed of
sound in the air and is measured by the pressure sensors at both ends. Since
the impact is on the driver’s side, higher pressure amplitudes are detected on this
side compared to the passenger’s side (see Figure 3.7e). Also, the pressure wave
has a comparatively shorter distance to travel at the driver-side. This causes the
passenger-side pressure signal to lag behind the driver-side signal. It is possible
to calculate the position of impact using this time lag and is derived below. The
position of impact PL,pr from the driver-side (left) sensor is given by

PL,pr = tL,pr · c, (3.32)

where tL,pr is the time at which the pressure shown by the driver-side sensor
exceeds the threshold, and c is the speed of sound in air. Similarly, impact position
PR,pr from the passenger-side (right sensor) sensor is given by

PR,pr = tR,pr · c, (3.33)
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where tR,pr is the threshold crossing time for the passenger-side sensor. The impact
position with respect to the center of the tube can be calculated using the length
of the pressure tube L, which is given by the addition of equations 3.32 and 3.33

Pc,pr =
L

2 − PL,pr =
PL,pr + PR,pr

2 − PL,pr =
tR,pr − tR,pr

2 · c. (3.34)

The value of the position calculated using the above equation for the pressure-
tube sensor is used for comparison against the validation sensor in Section 3.4.4.
Additionally, at 22.9 ms a negative pressure signal can be observed for the sensor
at the driver-side, which indicates that this sensor is damaged.

Proposed validation sensor: The validation sensor measures the voltages
across the shunt resistances at the end of the resistance element. The position
values were calculated over the complete crash duration from these voltages using
the equations 3.30, 3.31, and 3.21 as shown in Figure 3.7e. At about 1 ms, a steep
increase in the position values is observed. This indicates that contact between the
two resistance elements has been established. After this time, the position of the
left contact point increases steeply as compared to the right contact point and the
yellow region between these two signals represents the dynamics of the contact
width or overlap during the crash. After 1.4 ms (point 1 in Figure 3.7e), the
difference in the left and right contact point position increases which indicates a
transfer from single-point contact to multi-point contact. At about 7.8 ms (point 2
in Figure 3.7e), the maximum position for the left contact point is reached, which is
also observed in the position values of the left contact point which fluctuates about
a maximum value. The voltage across the shunt resistance was zero after 24.2 ms
indicating a break in the current flow. This break is caused by sensor damage from
the severe deformation process during the crash and will not affect the validation
process because this process is performed by the information acquired before the
break in the current flow.

3.4.4 Comparison of the investigated sensors
The results of the different sensors investigated in the crash test were compared
based on three criteria. A vehicle crash is recognized by the crash sensors based
on the change in its signal from the normal driving condition. The response
time at which a particular sensor shows a considerable change in its signal was
chosen as the first criterion. The threshold for this change was decided based on
the maximum recorded value (10% of the maximum value) for each sensor. The
importance of information on the position of impact is described in Section 3.1 and
hence it was selected as the second criterion. The third criterion considered for
comparison was whether the sensor could provide information on the development
of the contact points.

As discussed in the above section, the derived velocity signals were considered
for both acceleration-based sensors. The threshold for the acceleration sensor at
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3. Validation of Pre-Crash Information

Table 3.3: Comparison of results from different sensors under investigation

Sensor type
Crash event

detection
Position of

impact Ability to
measure
overlapThreshold Time

[ms]
Position

value [cm]
Time
[ms]

Central
acceleration
sensor

2.0 m/s 24.2 - - -

Early crash
sensor 1.6 m/s 14.6 left 14.6 -

Pressure-tube
sensor 2.5 kPa 3.4 18.8 4.5 -

Proposed
validation
sensor

6.2 cm 1.1 16.1 1.4 Overlap value
with time

the center of gravity was set to a deviation of about 2.0 m/s (10% of 20.6 m/s).
At 24.2 ms after t0, this deviation was reached and the sensor can identify the
crash event. This sensor cannot alone provide information on the other criterion.
For ECS sensors, the threshold limit was selected based on the maximum value
of the velocity signal from the passenger-side sensor. The initial fluctuations of
the ECS sensors from the impact were ignored. The driver-side sensor was first
to record this change in signal (at 14.6 ms), which highlights the time-benefit
(about 11.5 ms) gained by using ECS sensors in addition to the central sensor
in the present vehicles. At 14.6 ms, the change in the signal of the passenger-
side sensor is below the threshold and hence a driver-side (left position) impact
can be identified. Therefore, these sensors can classify the position of impact as
left, right, or center in addition to the crash event detection. The pressure-tube
sensor recorded a maximum pressure of 144 kPa on the driver’s side and 23.5
kPa on the passenger’s side. The lower value of the two maximum values was
considered for threshold calculation (10% of 23.5 = 2.35 kPa). The driver-side
sensor crosses this threshold before (at 3.4 ms) than the passenger-side sensor
(at 4.5 ms). In contrast to the impact-position classification of ECS sensors, this
sensor can provide a value for the position of impact (18.8 cm for the crash test)
using equation 3.34 mentioned in the above section. It can be observed that
the validation sensor crosses the threshold value (10% of 62.44 = 6.2) at 1.1 ms,
shows the impact position of 16.1 cm at 1.4 ms, and further provides information
on overlap by measuring the position of the two extreme contact points compared
to the other sensors. Table 3.3 summarizes the comparison of the results from the
different investigated sensors.
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3.5 Potential for improvement

3.5.1 Investigation of required time for airbag activation
Let us consider a simplified mass-spring model to investigate the occupant-vehicle
dynamics and their relations to the detection timing required by the sensors. Fig-
ure 3.8 shows such a simplified mass-spring model which describes the motion
of the occupant under the influence of a respective acceleration response of the
vehicle from a crash. The variables in the model are described as follows

• s, c, and ω are the slack, specific stiffness, and natural frequency of the
restraint system,

• mo and mv are the masses of the occupant and the vehicle respectively,

• xo, vo, and ao is the displacement, velocity, and natural acceleration of the
occupant relative to the ground,

• xo/v, vo/v, and ao/v are the displacement, velocity, and natural acceleration
of the occupant relative to the vehicle, and

• xv, vv, and av is the displacement, velocity, and natural acceleration of the
vehicle relative to the ground.

In crash analysis, usually, an idealized crash pulse such as Equivalent Square
Wave (ESW ) is used to represent the acceleration response of the vehicle from
the crash. This is given by the following equation

av = ESW =
Favg

mv · g
. (3.35)

The average force ‘Favg’ is given by the ratio of the kinetic energy before the
crash to the maximum displacement ‘xv(max)’ of the vehicle from the crash, which
modifies the above equation to

av = ESW =
1
2

(
mv · v2

0

xv(max)

)
1

mv · g
=

1
2 · g

(
v2

0

xv(max)

)
. (3.36)

Considering the values of v0 = 64km/h = 17.78m/s and xv(max) = 0.95m from the
crash test explained in Section 3.4.3, the value for ESW come approximately to
-17 g. The negative sign is added to indicate the deceleration of the vehicle.

Until the displacement of the occupant reaches the value equal to the slack
‘s’ of the restraint system, the occupant velocity ‘vo’ is constant and equal to the
initial impact velocity ‘v0’ i.e. the velocity of the vehicle vv at t0, and this period
is called free-flight. During the free-flight phase from t = t0 = 0 till t = ts,

s = v0 · (ts − 0) = v0 · ts. (3.37)
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Figure 3.8: Simplified mass-spring model for determining the maximum time for
sensing a crash. The dotted blue curve is the crash-pulse or acceleration signal
at the center of gravity from the vehicle given in 3.4.3, while the red curve is the
ESW corresponding to the crash test performed.

After this period, the restraint coupling phase starts where the seatbelt exerts a
force on the occupant’s chest to decelerate the occupant. The occupant accelera-
tion relative to the vehicle for a mass-spring model can be assumed as a sine-wave
response and can be represented by the following equation.

ao/v = a0 + av = A · sin (ωt′ + ϕ) , (3.38)

where t′ is the time which starts from the restraint coupling phase, i.e. t′ = t − ts.
By integrating the above equation, the occupant velocity relative to the vehicle is
given by

vo/v =
∫

(a0 + av) = −
A

ω
· cos (ωt′ + ϕ) . (3.39)

The constant of integration is neglected since the initial condition is matched using
the phase shift. This helps to match the initial value of the velocity according to
the initial conditions (see next paragraph). Integrating the above equation, the
occupant displacement relative to the vehicle is given by

xo/v =
∫

(v0 + vv) = −
A

ω2 · sin (ωt′ + ϕ) + C. (3.40)

The constant of integration in the above equation is considered to match the initial
occupant displacement.

Considering initial conditions, at t′ = 0, the occupant acceleration ao = 0 then
the equation 3.38 gives,

ao/v = 0 + av = ESW · g = A · sin (ϕ) . (3.41)

Also, at t′ = 0, the relative occupant velocity vo/v = ESW · g · ts = ESW · g ·
s

v0
,
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which modifies the equation 3.39 to

vo/v = ESW · g ·
s

v0
= −

A

ω
· cos (ϕ) . (3.42)

Summing the squares of the equations 3.41 and 3.42, we get

A = ±

√√√√(ESW · g)2 +
(

ESW · g · ω
s

v0

)2

. (3.43)

The sign of the amplitude ’A’ is chosen to match the direction of occupant re-
sponses. Dividing equation 3.41 by equation 3.42,

tan ϕ = −
v0

s · ω
. (3.44)

Moreover, at t′ = 0, the relative occupant displacement vo/v = s and substituting
it in equation 3.40 gives

C = s +
A

ω2 · sin (ϕ) . (3.45)

A simple approach to estimate the maximum time available for the sensor to
decide on airbag activation can be computed based on the general thumb rule of
‘5 inch – 30 milliseconds’ [104]. This rule says that the airbag should be activated
the latest 30 milliseconds before the time corresponding to the 5 inches of travel
(displacement) of the occupant. The time of 30 milliseconds is selected based on
the approximate time required by a driver airbag to fully inflate, while the distance
of 5 inches is the general distance between the fully inflated airbag surface and
the driver. Based on the above-derived equation for occupant motion, we can
calculate the maximum time available for the sensors for the crash test performed
in Section 3.4.3 using the following equation

t = ts + t′ = ts +
sin−1

((
C − xo/v

)
·

ω2

A

)
− ϕ

ω
(3.46)

with x(o/v) = 0.127 m corresponding to the 5 inches. Taking the various crash
cases covered in [104] into consideration, the natural frequency of the restraint
system can vary from 4 to 8 Hz, while the slack varies from about 0.5 to 8 inches
including unbelted occupant cases. Thus, considering a restraint system with a
natural frequency of 6 Hz and slack of 0.025 m (belted occupant) and inserting
these values in equation 3.46 gives 38.2 milliseconds for an occupant to reach the
airbag surface or travel 5 inches distance. Hence, the maximum available time
for the sensor is about 8.2 milliseconds in the case of crashes with a severity sim-
ilar to the crash test performed. This requirement can be fulfilled only by the
pressure-tube sensor or the proposed validation sensor (see Table 3.3). The phys-
ical limit of the acceleration-based sensors is the reason for their late response.
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The front of the vehicle (about 20 cm) is usually made from soft materials such
as plastic, foam, and easily deforming aluminium material (see Section 5.2.1 for
detailed explanation on vehicle structure) which provide very little resistance to
vehicle motion. Hence, there is negligible change in the acceleration and velocity
signals (see Figure 3.7) till the time corresponding to this displacement is reached,

i.e. for the above case t(x=0.2) =
distance
velocity · 1000 =

0.2
17.78 · 1000 = 11.25 ms.

Moreover, today’s airbags are limited in the protection capability (volume ca-
pacity) from the time taken by the sensors for detecting the crash. Larger airbags
providing a more cushioning effect with extended protection area would reduce
the distance between the occupant and the fully inflated airbag surface due to
an increase in size and also require more time to fully inflate the airbag. Hence,
an improvement in detection timing creates an opportunity to use larger volume
airbags to further enhance occupant safety. The above investigation highlights the
need and importance of sensors such as the proposed validation sensor which can
detect the crash earlier. To summarize this chapter, the improvement provided by
the proposed validation sensor over the other sensors is outlined in the subsection
below.

3.5.2 Summary
The acceleration-based sensors give a direct measure of the crash-severity based on
different parameters such as jerk, velocity, displacement, energy, etc. derived from
the acceleration signal [104]. For a better crash classification, several acceleration-
based sensors distributed at different special locations such as ECS can be used.
Even with the distributed system, the acceleration-based sensors have limitations
in response time to detect a crash and further analyze its severity. This restricts
the present vehicle safety systems from using advanced restraints systems such as
smarter and bigger airbags which require more time.

Contact-based sensors can be mounted on the structural members which are
very close to the outer-skin of the vehicle. Hence, these sensors have a location
advantage which is reflected in their signals as time-benefit for crash detection
(seen in signals of pressure-tube sensor and proposed validation sensor). Out of
these two sensors, the pressure-tube sensor is slower. This delay comes from the
time required for the pressure wave to travel to the ends of the tube. Moreover, in
the cases where the position of impact is away from the center, it has to wait for
the sensor on the non-impact side to cross the threshold, after which the position
value can be calculated. The proposed validation sensor measures the change in
electrical resistance depending on the contact, which can be directly measured
after the contact without any delay. Every millisecond gained in crash detection
can be used in improving vehicle safety by the use of advanced restraint systems.
The results from the crash test conducted show the time-benefit which can be
gained using the validation sensor and thus the improvement in vehicle safety.
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It also tracks the movement of the two extreme contact points during the crash
and hence the overlap progress with time can also be measured. This information
can be further used for a combined validation of pre-crash information such as
velocity, approach angle, and shape. A detailed discussion of the procedure for
this combined validation is given in Chapter 4. For the pressure-tube sensor,
based on the time lag only the initial position of impact can be calculated with
no information on how the contact develops later.

One of the major concerns for the pressure-tube sensor is the deterioration of
the material causing holes in the tube during its life. These holes cause a variation
in the pressure signal and also the time lag which deteriorates the sensing function
of this sensor. Since a small amount of current flows through the validation sen-
sor continuously, there is a possibility for a self-health monitoring feature in the
proposed validation sensor. The deterioration of the material would reflect in the
current signal during its life and a message to visit the nearest workshop could be
displayed on the dashboard if the tube material deteriorates enough to affect the
functioning of the sensor.

The above-discussed points and the experimental investigation highlight the
potential for improvement in vehicle safety by using the proposed validation sen-
sor. Moreover, the unique feature of self-health monitoring would increase the
robustness of crash detection. The idea of the validation sensor which is the out-
come of this work is in the phase of investigation for series production with a goal
of cost-optimization.

53



Chapter 4

Opponent-object Geometry:
Simplification and Estimation

Abstract
A novel methodology for estimating the geometry of the opponent vehicle based on the
cloud point data and geometry-based prediction of dynamic change in the position of
contact points during a crash are the highlights of this chapter. The chapter is introduced
with a description of the basic geometries of the opponent objects, followed by a detailed
explanation of the proposed methodology for geometry estimation along with the different
concepts and equations used in this methodology. The performance of this methodology
is demonstrated in the experimental investigations and results section of this chapter.
The next section of this chapter is dedicated to the above-mentioned geometry-based
predictions. A detailed theory and derivation of the equations for the position of the
contact points during the crash for collision against different types of opponents form
the basis of this prediction. These equations are then used to investigate the different
crash scenarios. In the end, the prediction values are compared with the positions of
contact points measured using the contact-based sensor for the crash test described in
Chapter 3.

A contact-based sensor for validation of pre-crash information introduced in
Chapter 3 can be used for a combined validation of parameters such as velocity, ap-
proach angle, and geometries of both ego-vehicle and opponent-object. These pa-
rameters for ego-vehicle are easily available from the on-board sensors and devices
installed in it. The main challenge is to acquire the parameters of the opponent-
object. Vehicle-to-everything (V2X) communication and prediction algorithms
based on forward-looking sensors are two possible approaches in research for ac-
quiring this information. Besides security and technological challenges faced by the
V2X communication approach, it requires that every object (especially vehicles)
on roads can communicate. Moreover, for vehicle safety applications the informa-
tion is time-critical (e.g., in about 50 to 200 ms, a considerable change in velocity
and position of the vehicle is possible which may affect the required safety deci-
sions). Therefore in vehicle safety applications, the latter approach is preferred.
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4.1. Geometry of objects in vehicle’s surrounding

Out of the above-mentioned parameters, estimating the geometry and the angular
orientation of the opponent-object using the data from the forward-looking sensors
is a challenging task. The relative velocity is either directly measured through the
Doppler effect of radar sensors [46] or can be derived from the distance measured
between the two data frames of the lidar or camera sensor.

Since the geometry estimation of the vehicles involves all the complexities as
compared to other traffic participants, most of the studies for opponent-geometry
estimation concentrate on them. In addition to vehicles, there are other opponent-
objects against which an ego-vehicle can collide. The following section gives a
general overview of the geometry of different objects surrounding an ego-vehicle.

4.1 Geometry of objects in vehicle’s surrounding
In road transport, an ego-vehicle is surrounded by different stationary objects
(trees, walls, poles from traffic signals and signs, guard rails, etc.) as well as mov-
ing objects (other vehicles, animals, pedestrians, e-scooters, motorbikes, bicycles,
etc.). These objects have various shapes and sizes which are their fundamen-
tal characteristics. For example, the diameter of the pole for a traffic signal is
regulated and is within a specific dimension range. Hence, predicting the shape
and size of these objects can help in estimating their class or type. Moreover,
the shape of the object is also significant for making safety-critical decisions on
the inevitability of an upcoming crash. A three-dimensional shape increases the
complexity by increasing the parameters required for defining the shape and is
not necessary for the above task. Moreover, to perform this task in real-time, a
simplification is essential. The shapes of the objects can be simplified and approx-
imated by basic two-dimensional geometry such as lines and/or arcs of the circle.
Most of the objects surrounding the vehicle can be represented in three categories
shown in Table 4.1 and explained below.

• Circular geometry can be used to represent objects like a tree, pole, etc. For
these objects orientation of the ego-vehicle is not important because of the
symmetry of the circular shape, but the offset distance with the longitudinal
axis of the vehicle is important in defining the crash scenario.

• Objects such as a wall or a guard rail can be represented by a simple line.
The angle of this line depends on the orientation of the ego-vehicle with the
object.

• Two-dimensional geometry of some objects is complex and cannot be rep-
resented by a single geometrical shape (line or circular arc) and need a
combination of these geometrical shapes. For these objects both the offset
and the orientation with the ego-vehicle are important.

Vehicles are one of the major participants in road transport having a complex
shape, especially the front of the vehicle which requires a more accurate represen-
tation than a single geometrical shape (line or circular arc). The following section
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Table 4.1: Simplified two-dimensional geometrical representation of some objects
in vehicle surroundings.

Category Object Geometrical representation

Circle-based objects

Line-based objects

Hybrid objects

proposes a methodology in which the vehicle geometry is represented by a combi-
nation of simplified geometrical elements. The choice of the geometrical elements
is limited to arcs of circles and lines due to the simplicity of their equations and
thereby reducing the complexity of the pre-crash algorithms. For example, the
estimation of initial contact points based on the intersection of geometry is sim-
pler for circle-based geometries than other complex curve-based geometries such
as an ellipse, higher degree polynomials, etc. Also, for the task of geometry-based
predictions of contact point positions during the initial few milliseconds of the
crash, the solutions are confined to roots of quadratic equations (see Section 4.3)
without the requirement of complex iterative methods, which helps to simplify
the contact-based validation of a particular crash scenario. A similar combination
method can be used to represent the geometry of all the objects with complex
shapes.

4.2 Proposed methodology for vehicle geometry
estimation

The basic idea of the proposed methodology emerged from the need for a simplified
mathematical representation of the vehicle geometry for contact-based validation.
The vehicle geometry is a complex shape, especially the front of the vehicle requires
a more accurate representation than a single geometrical shape (line or circular
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4.2. Proposed methodology for vehicle geometry estimation

arc). The major problem in representing the vehicle front is the change in the
curvature near the headlights. Therefore, this region of the vehicle is represented
by fillet-arcs with larger curvature on both sides. Thus the front of the vehicle
is represented by three arcs, a central arc representing the major portion of the
geometry combined with two fillet arcs for the curvature in the headlight region
(see the output block in Figure 4.1). The side of the vehicle can be represented
by a line tangent to the arc representing the headlight region.

4.2.1 Methodology
The point cloud data recorded from the perception or forward-looking sensors
serves as an input for estimating the vehicle geometry. Although the lidar sensor
‘VLP16’ made by Velodyne lidar Inc. was used to generate the necessary point
cloud data for the investigation, the methodology itself can be applied to the point
cloud data from any other sensors. A general process flow of the proposed method-
ology for vehicle geometry estimation is illustrated in Figure 4.1. Each block of
the process flow is described in the following paragraphs with the help of a single
point cloud data frame.

Pre-processing: The point cloud data generated from the sensor requires
some pre-processing steps to filter the non-essential data points, before the task
of estimating the opponent-vehicle geometry. The first pre-processing step is to
eliminate the irrelevant data points by trimming the field of view (FOV) perceived
by the sensor to the region of interest. As discussed previously, this work focuses
on head-on collision and hence the reflection points from the opponents on the
path in front of the ego-vehicle are of interest. The parameters considered for
trimming the FOV in the investigations in this work are listed below.

• A maximum limit of 25 meters in front of the vehicle representing the length
of the region of interest was considered. This distance was decided based
on the reduction of the reflection points as the distance of the object in-
creases from the sensor. At about 25 m away from the sensor about 7 to 10
points from the front contour of the opponent were reflected and measured
depending on the sensor configuration parameters.

• Width of the region of interest is specified by the side limits from the center of
the vehicle. The EU Council Directive 96/53/EC [137] specifies a maximum
permissible width of 2.55 meters (rounded to 2.5 meters) for vehicles on
European roadways. Considering two vehicles on one side and rounding
the permissible width, a value of ±5 meters from the vehicle center was
considered for the side limits.

• The height of the region of interest was fixed to ±2 meters from the height of
the sensor so that it includes the height of the front curvature of all different
commercial vehicles.
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4.2. Proposed methodology for vehicle geometry estimation

In the trimming process, the data points falling only in the region of interest are
considered, while the data points outside the region of interest are neglected. The
first 3-D plot of the pre-processing block in Figure 4.1 shows the data frame after
the trimming process.

The data frame after trimming is submitted to a ground plane analysis. In
this step, a plane model represented by the point-normal equation form (equation
4.1) is fitted onto the three-dimensional point cloud data (see the red color plane
in the second 3-D plot of the pre-processing block).

(4.1)A · x + B · p + C · z + D = 0,

where the coefficients A, B, and C are direction ratios of the normal to the ground
plane and D is a real number. x, p, and z are the coordinate axes. The fitted
ground plane gives clear segregation between the data points reflected from the
ground and the ones reflected from the opponent-objects. The function ‘pcfitplane’
[138] (a built-in function of Matlab software) based on the M-estimator SAmple
Consensus (MSAC) algorithm was used to find the ground plane equation. Once
the ground plane is identified, the data points reflected from the ground (shown
by red color cross markings, see last 3-D plot of the pre-processing block in Figure
4.1) are ignored and only the data points reflected from different opponent-objects
(shown by blue color cross markings) are considered for further analysis.

These data points reflected from different opponent-objects are clustered into
different groups and each group represents a different opponent. A built-in func-
tion of Matlab software ‘pcsegdist’ [139], which segments a point cloud data frame
into different clusters based on Euclidean distance was used. The points having a
euclidean distance less than the threshold value of 1.5 meters are grouped into one
object. The third 3-D plot of the pre-processing block in Figure 4.1 shows three
segregated objects in the data frame with their respective bounding boxes. Some
driving scenarios, where the opponent-objects are very close to each other result
in the euclidean distances between the reflecting points from two objects being
less than the threshold limit. In these scenarios, the above clustering approach
might face difficulty in identifying the two objects and other advanced cluster-
ing approaches might be required. Since the focus of the investigations was only
to test the proposed three-arc methodology for vehicle geometry estimation, the
clustering approach based on the euclidean distance that gave satisfactory results
was used.

Initialization: After the pre-processing step, the segregated clusters of the
data points representing a particular object are sent to the initialization block,
where an initial guess on the vehicle geometry is made using polynomial fitting
and curvature analysis.

The first process of the initialization block is to estimate a polynomial equation
representing the front bumper region of the vehicle. At first, the point cloud data
of a particular vehicle is further filtered based on the ground height. The height
of the individual data points hi from the ground plane can be calculated using the
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below equation.
(4.2)hi = |A · xi + B · pi + C · zi + D|√

A2 + B2 + C2
,

where the subscript i corresponds to the index of the data point under consid-
eration and varies from 1 to n(no of the data points under consideration in the
point cloud). xi, pi, and zi represent the coordinates of the ith point. The points
within the range of the bumper height are considered for further analysis. For
the investigations, this range was set to 40 to 50 centimeters based on the dimen-
sions of the Audi E-tron. This filtering process reduces the data points from a
three-dimensional representation to a two-dimensional one. An initial estimate of
the geometry given by equation 4.3 is established by carrying out a polynomial
regression using the least square estimation approach between the limits pmin and
pmax. These limits are chosen based on the maximum and minimum values of the
data points corresponding to the p-axis.

(4.3)x = a0 · p5 + a1 · p4 + a2 · p3 + a3 · p2 + a4 · p + a5,

where a0, a1, a2, a3, a4, and a5 are the coefficients of the polynomial equation.
In the next step, the estimated polynomial equation is submitted to a curvature
analysis. The curvature values (κ) of the polynomial curve within the limits (pmin

and pmax) are calculated using equation 4.4.

(4.4)κ =

d2x

dp21 +
(

dx

dp

)2
 3

2
.

These values are plotted against the corresponding p-coordinates to give a curva-
ture plot from which the necessary anchor points are derived. An anchor point is
defined by the two conditions listed below.

• A point on the plot where the direction of the curvature changes i.e. the
curvature value changes from decreasing to increasing (point A2, see curva-
ture analysis plot in Figure 4.1) or vice versa. These points imply an abrupt
change in the curvature and hence transition from the fillet-arc region to the
central-arc region or vice versa.

• A vehicle side can be identified by a zero curvature value either before the
anchor point A1 or after anchor point A3. Two points (point A4 and point
A5 are chosen as the anchor points to identify the line representing the side
of the vehicle, see curvature analysis plot in Figure 4.1). The anchor point
A4 corresponds to the curvature value of +0.001 m-1, while the anchor point
A5 corresponds to the curvature value of -0.001 m-1.
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4.2. Proposed methodology for vehicle geometry estimation

With the help of the anchor points, the polynomial curve can be divided into
regions of the central arc, fillet arc, and side of the vehicle. Hence, the estimation
is made on the bending behavior of the polynomial curve instead of the curve
itself.

An unfamiliar curvature pattern in the curvature plot indicates an erroneous
frame and these frames are filtered out and not considered for the computation.
The unfamiliar pattern can be easily recognized by the number of anchor points
based on the curvature change and the number of anchor points representing the
side. A data frame having more than five anchor points does not match with
the three-arc template, hence such a frame should be skipped and the next frame
should be considered.

Classifier: Based on the anchor points derived from the curvature plot, the
data frame is categorized by the classifier into either a case where the orientation
angle α ̸= 0 or the one with α = 0. Figure 4.2 highlights the difference in the
curvature behavior of both cases. The classification is made based on the visibility
of the side of the vehicle. When the opponent-vehicle is inline i.e. α = 0, the sides
of the vehicle are not visible, and hence the corresponding anchor points are not
available. For the case where the opponent-vehicle is inclined i.e. α ̸= 0, one of
the sides is visible and the respective anchor points can be identified. The cases
with α ̸= 0 require additional computation steps before geometry estimation and
are explained in the following paragraphs.

Case A (α ̸= 0): For the cases where the opponent-vehicle is inclined, the first
task is to calculate the angle α. This angle is calculated based on the coordinates
of the anchor points A4 and A5 of the curvature plot (see Figure 4.2b). The x-
coordinates of these anchor points are calculated by inserting their p-coordinates
in equation 4.3. The coordinates of the anchor points A4 and A5 are used to
calculate the orientation angle using the following equation.

α = tan−1
(

pA5 − pA4

xA5 − xA4

)
, (4.5)

where xA4, xA5, pA4, and pA5 are the x and p- coordinates of the anchor points
A4 and A5 respectively. Once the angle is computed, the perpendicular distance
of all the data points from the line passing through the points on the polynomial
fit corresponding to the anchor points A4 and A5 are calculated. The data points
having a perpendicular distance less than the threshold value (5 centimeters) are
considered as associated with the side of the vehicle. The data points from the
side of the vehicle are ignored and a new matrix consisting of the coordinates of
the remaining data points which are reflected from the front region of the vehicle
is formed. The coordinates of the data points associated with the front region of
the vehicle are then rotated by angle α using equation 4.6.

[p′ x′] = [p x]
[

cos α sin α
− sin α cos α

]
. (4.6)
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Figure 4.2: Figures for a detailed explanation of the proposed methodology for
vehicle geometry estimation: a) polynomial fit on data points (top plot), figure
showing front-arc region (middle plot), and curvature plot (bottom plot) - for case
B (α = 0), b) polynomial fit on data points (top plot) and curvature plot (bottom
plot) - for case A (α ̸= 0), and c) Geometrical schematic for calculation of fillet-arc
radius.

This rotation process transforms the set of data points from the front of the vehicle
from an inclined case to a case where α = 0. This transformed set of data points
is submitted to polynomial regression and then curvature analysis processes as
explained in the above paragraphs. The further steps for the geometry estimation
are similar to the case with α = 0 and hence explained in the next paragraph.
As the magnitude of α increases (an increase from zero in either direction i.e.
positive and negative), the lesser region from the front of the vehicle is visible to
the sensor and could result in the disappearance of either of the anchor points A1
or A3 depending on the direction of the angle. A virtual anchor point at the end
of the curvature plot near the missing anchor point is assumed to continue with
the central-arc estimation.

Case B (α = 0): Based on the anchor points A1 and A3, the point cloud
data is divided into three parts as shown in Figure 4.2a. The central part of the
data points corresponds to the central-arc region. A circle is fitted on the set of
data points belonging to the central arc using the least square regression approach
to find the radius rco and the coordinates xcco and pcco of its center Cco (see the
middle graph in Figure 4.2a). It should be noted that if this step is performed
on the rotated data points corresponding to case A, the coordinates of the data

62



4.2. Proposed methodology for vehicle geometry estimation

points are in the transformed coordinate axes (x′-p′) and should be transformed
back to the (x-p) coordinate system.

Once the p-coordinate of the central-arc center is known, the width of the
opponent-vehicle wo can be calculated using equation 4.7.

wo = max [2 · (pfmax − pcco) , 2 · (pcco − pfmin)] , (4.7)

where pfmax and pfmin are the maximum and minimum values of the p-coordinate
from the set of the data points belonging to the front of the opponent-vehicle
under consideration.

After calculating the width, the p-coordinates of the anchor points A1 and A3
are used to calculate the left limit p̂llo of the central arc based on the following
equation.

p̂llo = max [|pA1 − pcco|, |pcco − pA3|] . (4.8)
Considering the front contour of the vehicle as symmetrical, the other limit p̂lro

has the same magnitude as that of the left limit but has a negative sign. Please
note ‘ ˆ ’ symbol is used to indicate that these limits are calculated from the center
of the central arc to match with the representation of the limits for the opponent-
vehicle used in Section 4.3.3. The last parameter radius rfo which is the radius of
the fillet-arc can be calculated based on the defined geometry as shown in Figure
4.2c. By applying a similar triangle rule to △CcoCfoA and △CcoPlloB, we get the
following equation for the p̂-coordinate of the fillet-arc center.

p̂cfo = rco − rfo

rco

· p̂llo. (4.9)

The width of the vehicle can be represented by the following equation.

wo = 2 (rfo + p̂cfo) . (4.10)

Inserting equation 4.9 in 4.10 the above equation becomes

wo = 2
(

rfo + rco − rfo

rco

· p̂llo

)
= 2

(
rfo

(
1 − p̂llo

rco

)
+ p̂llo

)

= rfo · 2
rco

(rco − p̂llo) + 2 · p̂llo.

(4.11)

Rearranging the above equation, the equation for rfo is given by

(4.12)rfo = wo − 2 · p̂llo

rco − p̂llo

· rco

2 .

Using the above methodology, all the parameters for defining the three-arc rep-
resentation of the opponent-vehicle can be calculated from a single frame of the
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point cloud data. The geometrical parameters predicted from the multiple frames
of the point cloud data contain variations originating from the noise in the lidar
data points. From the output parameters, rfo is a derived parameter and α is a
variable parameter (since the vehicle moves and can change its orientation from
one data frame to another). Moreover, α is estimated from the polynomial fit
on the data points, which itself reduces the noise variations. Hence the variation
in width and central-arc parameters, which should not change from one frame
to another are considered for prediction improvement. The following paragraph
gives a brief discussion on the sources of variation and an approach to improve
the predictions.

The first source of variation is introduced by the change in the horizontal
resolution of the lidar data points caused by the change in the distance between
the reflected surface and the sensor as the ego-vehicle approaches the opponent-
object. This effect can be explained by the two states shown in Figure 4.3a. When
the distance between the object and the sensor is x1, the outermost data points are
at the corner with a total of four data points reflected from the object’s surface. As
the sensor moves closer to the object, the outermost data points move towards the
central axis of the sensor. When the distance between the object and the sensor
reaches x2, two additional data points are reflected from the object’s surface. Since
the prediction of wo depends on the outermost data points, this effect has a direct
impact on its prediction. For the data frames between the distance x1 and x2, the
predicted width would gradually decrease till the new data points are introduced
at distance x2 and this saw-tooth behavior continues as shown in Figure 4.3b.

Figure 4.3: Variation in lidar data points introduced by a change in the distance:
a) schematic representing lidar data point reflected from an object at distances x1
and x2 and b) saw-tooth effect on the width prediction.

Noise in the reflected data points forms another source of variation. A direct
eradication of the noise is not possible since it depends on multiple external and
internal parameters. Nevertheless, statistical approaches can be used to reduce
the impact of noise and improve the prediction. The effect of this variation is
visualized in the central-arc parameters. One approach to improve the prediction
is to use a simple one-dimensional Kalman filter. This filter continuously receives
the predicted values and estimates the final values. An example of such a filter to
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estimate the central-arc radius is given by the following equation.

(4.13)rco,e(t) = rco,e(t−1) + KG · (rco,p(t) − rco,e(t−1)),

where rco,e(t) and rco,e(t−1) are the current and previous estimated value of the
central-arc radius respectively, rco,p(t) is the current predicted value of the central-
arc radius and KG is the Kalman filter gain, which is given by the following
equation.

(4.14)KG = Ee(t−1)

Ee(t−1) + Esensor

,

where Esensor is the possible variance in the central-arc radius from the variations
of the lidar points measured by the sensor and Ee(t − 1) is the estimation error,
which is updated for each data frame after estimation using the below equation.

(4.15)Ee(t) = (1 − KG) · Ee(t−1).

The value of Esensor is assumed as 0.1 meters, while the initial values of central-arc
radius and estimation error are defined as 1.5 and 0.3 meters respectively.

4.2.2 Experimental investigation and results
The investigation of the methodology for vehicle geometrical estimation was car-
ried out in three testing phases. The aim of the first phase was to compare the
geometrical predictions given by the above methodology with the ground truth
(physical dimensions of the opponent-object). The second testing phase was in-
tended to examine the working of the methodology under the multiple vehicles
scenario, while the third phase was selected to check the methodology under the
real driving scenario by mounting the lidar sensor on the vehicle and testing the
methodology in real-time. For all the tests, VLP-16 lidar sensor from Velodyne
Inc. was used as it can provide the required point cloud data at a reasonable cost.
The following paragraph explains the test setup used for different tests.

Test setup: The first and the second testing phase was conducted in the in-
door crash-test facility of CARISSMA research and test center affiliated to Tech-
nische Hochschule Ingolstadt, Germany. The test setup for the first and second
types of tests can be explained with the schematic and pictures in Figures 4.4a,
c, and d. The lidar sensor was installed on the crash test trolley representing the
ego-vehicle about 30 centimeters from the ground. The trolley was pulled to follow
a straight trajectory to approach the stationary objects whose geometries are to
be predicted using the crash test facility.

Using a vehicle as an opponent-object directly for the first testing phase would
result in variation of the ground truth due to the complexity of the shape of
the vehicle, making it not feasible for measuring the performance of the proposed
methodology. Therefore, a wooden target with simplified geometry (uniform along
with the height) was fabricated which can be used as a standard for comparison.
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Figure 4.4: Compositions of schematic and pictures describing different test setups:
a) a simplified schematic of the experimental setup for the first testing phase, b)
simplified wooden target fabrication process, c) an image of the first testing phase,
d) an image of the multi-object testing phase, e) an image of lidar sensor mounting
for real-time testing, and f) picture showing the real-time testing. In the figure, 1)
lidar sensor, 2) crash test trolley, 3) simplified wooden target, 4) angle markings
for object orientation, 5) trigger strip for braking, and 6) connection to wire rope
of propulsion system.

The outer edge from the top view of the publicly available engineering drawings
was used as a template for manufacturing the wooden target and the fabrication
procedure can be visualized in Figure 4.4b. A series of tests were conducted with
different orientation angles (0, 15, and 45 degrees) of the wooden target to inves-
tigate how it affects the geometry prediction. The trolley was pulled at 10 km/h
and the VLP-16 was set to collect data at 20 Hz. In the second testing phase, two
additional objects were placed in the testing area to analyze the working of the
methodology under the multiple objects scenario (see Figure 4.4d). For the third
testing phase as shown in Figure 4.4e, the lidar sensor was mounted on a vehicle
(Smart from Daimler AG) and was driven straight toward a stationary vehicle
(Audi E-Tron).
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Table 4.2: Results from the tests against the simplified wooden target. Note: In
the first three rows, the 2-D geometry from the predicted parameters at three dif-
ferent frames (Frame at 25, 15, and 5 meters from the lidar sensor) is reconstructed
with angular and translation transformations to match with ground-truth data for
pictorial representation.

Parameter 0 degree -15 degree -45 degree

Frame at
x-dist. 25 m

Frame at
x-dist. 15 m

Frame at
x-dist. 5 m

Prediction
accuracy:
Enclosed area

Results: To demonstrate the effectiveness of the proposed methodology for
geometry estimation, the results from the first testing phase, i.e. the tests against
the simplified wooden target at different orientation angles are considered for
discussion in this section. The results from these tests can be directly compared
with the ground-truth (simplified wooden target) is the reason for discussing this
testing phase. The parameter values predicted from the tests are tabulated in
Appendix C. A pictorial representation of the results for three different frames
is displayed in the first three rows in Table 4.2. These rows show the predicted
front contour (2-D geometry) using the proposed methodology in dashed blue lines
against the actual contour (ground-truth derived from the cad model) in solid red
lines at three different frames. It can be observed that as the lidar sensor moves
near the target, the predicted geometry approximates the ground-truth. This
is due to the consideration of multiple frames for prediction as explained above
in the methodology section. Even though the first three rows portray visually
the closeness of the prediction to the ground-truth but they do not quantify this
closeness. The enclosed area between the two curves is a good measure of the
closeness of the two curves which is plotted against the minimum distance of
the target from the lidar sensor to illustrate the effectiveness of the prediction.
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These plots are presented in the fourth row of Table 4.2. The improvement in
the prediction using multiple frames can be visualized by the reduction in the
enclosed area with the distance. The results from the investigations carried out
to test this methodology are published in [7], [9], [14], [15], [19]. A detailed
comparison of the proposed methodology with other methods based on different
metrics is represented in [8], [18].

With the proposed methodology, the geometry of the vehicle can be represented
by parameters that fully define the three-arc template. This template can be
used in trajectory planning applications instead of the present bounding-box or
convex-hull approach for better inevitability decisions. Another application where
this methodology can be utilized is contact-based validation. An approach to use
the three-arc vehicle geometry template for predicting the dynamic change in the
contact width is explained in Section 4.3.3.

4.3 Geometry-based prediction of the dynamic
behavior of contact points

In this section, a method for predicting the movement of the contact points during
the crash (analogous to the position of the contact points measured using the
contact sensor in Section 3.4) is explained. The equations for the intersection
points of the ego-vehicle and opponent-object geometry form the basis of this
prediction method. During the initial few milliseconds of the crash, only the
soft vehicle parts (such as the plastic bumper, foam, etc.), which offer very little
resistance to vehicle motion undergo deformation. Hence, the velocity of the ego-
vehicle and the opponent-object can be assumed to be constant for the calculation
of the contact point positions. Also, the motion of the ego-vehicle and opponent-
object (if any) can be assumed to be linear without any rotation.

For deriving the equations, the ego-vehicle is considered as the reference and
can be assumed as stationary by transferring the movement of the ego-vehicle to
the opponent-object. This means that the opponent-object moves by a magni-
tude equal to the movement of the ego-vehicle but in the opposite direction in
addition to its motion (if any). The coordinate system used is based on the ve-
hicle coordinate system specified in ISO-8555 with the longitudinal axis of the
ego-vehicle represented by x, while the lateral axis represented by p denoting the
position calculated using this methodology (predicted position). In this section,
the methodology is explained considering frontal collisions as an example but it is
not limited to and can be easily expanded to side crash scenarios. Furthermore,
an ego-vehicle can collide with different opponent-objects as categorized in Section
4.1 forming the three basic cases which are explained in the following subsections.
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4.3.1 Case 1: Collision of an ego-vehicle with a circle-
based object

The crash scenario where an ego-vehicle collides against a stationary circle-based
object such as a tree or pole is shown in Figure 4.5a. In this case, the opponent
is represented by a circle, usually with a diameter smaller than the width of the
ego-vehicle as is the case with most of the objects in this category. Moreover, the
collision can be considered as in-line with the longitudinal axis of the ego-vehicle
(horizontal axis of both the objects parallel to each other in Figure 4.5a). Here,

• rce is the radius of the central arc and rfe is the radius of the arcs representing
the headlight region of the ego-vehicle.

• de is the variable representing the displacement of the ego-vehicle, which can
be derived from the velocity of the vehicle.

• poff is the offset between the axes of the ego-vehicle and opponent-object.

• P0 is the point of contact at t0 or the initial contact point with p0 and x0 as
coordinates.

• Plle is the left or driver-side limiting point of the central arc for ego-vehicle
with plle and xlle as coordinates.

• Plre is the right or passenger-side limiting point of the central arc for ego-
vehicle with plre and xlre as coordinates.

• we is the width of the ego-vehicle.

• ro is the radius of the opponent-object.

As discussed in Section 4.1, the front of the ego-vehicle is divided into three
regions. Considering frontal collisions for the ego-vehicle, P0 can lie in any of these
three regions. When P0 lies in the central-arc region (see Figure 4.5c), poff can
be represented by

(4.16)poff = p0 + p0
ro

rce

,

which gives the equation for p0 as

(4.17)p0 = poff
rce

rce + ro

.

Let us consider an example where P0 lies in the central-arc region of the ego-
vehicle as shown in Figure 4.5c (i.e. plle ≥ p0 ≥ plre). The center of the central
arc of the ego-vehicle Cce is chosen as the origin and the equation for this arc is
given by

x2 + p2 = r2
ce. (4.18)
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Figure 4.5: Geometrical representation of an ego-vehicle colliding against a tree
or pole: a) geometrical schematic, b) illustration of P0 in the fillet-arc region on
the driver’s side, c) illustration of P0 in the central-arc region, and d) illustration
of contact transfer in the fillet-arc region.

The equation of the circle for the opponent geometry can be written as(
x −

(√
r2

ce − p2
0

(
1 + ro

rce

)
− de

))2
+
(

p −
(

p0

(
1 + ro

rce

)))2
= r2

o. (4.19)

Inserting √
r2

ce − p2
0

(
1 + ro

rce

)
− de = e (4.20)
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and p0

(
1 + ro

rce

)
= f (4.21)

in equation 4.19 we get

x2 − 2ex + e2 + p2 − 2fp + f 2 = r2
o. (4.22)

Rearranging equation 4.18
x2 = r2

ce − p2, (4.23)
which gives

x = ±
√

r2
ce − p2. (4.24)

Substituting equation 4.23 and equation 4.24 in equation 4.22 we get

±
√

r2
ce − p2 = e2 + f 2 + r2

ce − r2
o

2e
−
(

f

e

)
p. (4.25)

Inserting
e2 + f 2 + r2

ce − r2
o

2e
= g (4.26)

in equation 4.25

±
√

r2
ce − p2 = g −

(
f

e

)
p. (4.27)

Squaring both sides the above equation becomes

r2
ce − p2 = g2 − 2gf

e
p +

(
f

e

)2

p2. (4.28)

Rearranging the above equation in the general quadratic form ax2 + bx + c = 0,(f

e

)2

+ 1
 p2 − 2gf

e
p +

(
g2 − r2

ce

)
= 0. (4.29)

Where,

a =
(

f

e

)2

+ 1, (4.30)

b = −2gf

e
, (4.31)

and c = g2 − r2
ce. (4.32)

The contact develops from a single point of contact at t0 into two-point contact
as time increases and the positions of the left and right contact points are given
by the roots of the quadratic equation 4.28. The greater value of the two roots
represents the position of the left contact point pL, while the other root represents

71



4. Opponent-object Geometry: Simplification and Estimation

the position of the right contact point pR. If the roots exceed the limits (plle and
plre) of the central arc, the contact progresses in the fillet-arc region of the ego-
vehicle as shown in Figure 4.5d. To derive the equations for the position of the
contact point in the fillet-arc region, a new cartesian coordinate system x′-p′ is
defined with the center of the fillet arc as the origin. The equation for the fillet
arc is given by

(x′)2 + (p′)2 = r2
fe. (4.33)

Any point can be shifted from this new coordinate system to the x-p coordinate
using

x = x′ +
(√

r2
ce − p2

lle

(
1 − rfe

rce

))
(4.34)

and p = p′ +
(

plle

(
1 − rfe

rce

))
. (4.35)

The above equations represent shifting to the coordinate system with the center of
the driver-side fillet arc as the origin. When the contact develops in the passenger-
side fillet-arc region, the coordinate system with the origin as the center of the
passenger-side fillet arc should be considered. The equations for shifting from this
coordinate system to the x-p coordinate system can be formulated by replacing
plle with plre in equations 4.34 and 4.35.

Substituting equations 4.34 and 4.35 in equation 4.19 and rearranging,(
x′ −

(√
r2

ce − p2
0

(
1 + ro

rce

)
−
√

r2
ce − p2

lle

(
1 − rfe

rce

)
− de

))2
+(

p′ −
(

p0

(
1 + ro

rce

)
− plle

(
1 − rfe

rce

)))2
=r2

o,

(4.36)

gives the equation of the circle for the opponent geometry in the new coordinate
system. Inserting√

r2
ce − p2

0

(
1 + ro

rce

)
−
√

r2
ce − p2

lle

(
1 − rfe

rce

)
− de = h (4.37)

and p0

(
1 + ro

rce

)
− plle

(
1 − rfe

rce

)
= i (4.38)

in equation 4.36 we get

(x′)2 − 2hx′ + h2 + (p′)2 − 2ip′ + i2 = r2
o. (4.39)

Rearranging equation 4.33

(x′)2 = r2
fe − (p′)2, (4.40)

which gives
x′ = ±

√
r2

fe − (p′)2. (4.41)
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Substituting equation 4.40 and equation 4.41 in equation 4.39 we get

±
√

r2
fe − (p′)2 =

h2 + i2 + r2
fe − r2

o

2h
−
(

i

h

)
p′. (4.42)

Inserting
h2 + i2 + r2

fe − r2
o

2h
= j (4.43)

in equation 4.42
±
√

r2
fe − (p′)2 = j −

(
i

h

)
p′. (4.44)

Squaring both sides, the above equation becomes

r2
fe − (p′)2 = j2 − 2ji

h
p′ +

(
i

h

)2
(p′)2. (4.45)

Rearranging the above equation in the general quadratic form ax2 + bx + c = 0,((
i

h

)2
+ 1

)
(p′)2 − 2ji

h
p′ +

(
j2 − r2

fe

)
= 0. (4.46)

The roots of equation 4.46 will give the position of the intersection points in the
x′-p′ coordinate system. These positions are shifted to the x-p coordinate system
using equation 4.35. The intersection points which fall in the fillet-arc region (i.e.
plle < p < we/2 or −we/2 < p < plre) are chosen as the contact point. The above
equations are derived for the driver-side impact and the same method can be used
for passenger-side impact.

If P0 lies in the fillet-arc region on the driver’s side (see Figure 4.5c), poff is
given by

poff = p0 +
(

p0 − plle

(
1 − rfe

rce

))(
ro

rfe

)

= p0

(
1 + ro

rfe

)
− plle

(
1 − rfe

rce

)(
ro

rfe

)

= p0
rfe + ro

rfe

− plle

(
1 − rfe

rce

)(
ro

rfe

)
.

(4.47)

From equation 4.47, the position of the initial point of contact is given by

p0 = poff
rfe

rfe + ro

+ plle

(
1 − rfe

rce

)(
ro

rfe + ro

)
. (4.48)

In the above equation, if plle is replaced by plre, the resulting equation gives the
value of p0 for the case when the initial point of contact lies in the fillet-arc region
on the passenger’s side. For the crash scenarios, where P0 lies in the fillet-arc region
(i.e. p0 > plle or p0 < plre), the equation for the position of the contact points p

73



4. Opponent-object Geometry: Simplification and Estimation

can be derived using a similar method. In these scenarios, the fillet-arc region with
x′-p′ coordinate system is considered first followed by the central-arc region with
x-p coordinate system region when the position value exceeds the limits of the
fillet-arc region and falls into the central-arc region. An illustration of a similar
procedure is given as an example in the following subsection for reference.

4.3.2 Case 2: Collision of an ego-vehicle with a line-based
object

Figure 4.6a shows a geometrical schematic of an ego-vehicle colliding against line-
based objects such as a wall. This case is more complex than the above, with
the possibility for the wall to be at an angle to the approaching ego-vehicle. Ad-
ditionally, there is also the possibility of only a part of the vehicle’s width can
collide with the wall (analogous to the 40% rigid barrier test). In addition to the
parameters of the ego-vehicle defined in the above sub-section, the representation
of the line geometry of the wall requires the definition of the following parameters.

• β represents the angle between the lateral axis (axis representing p) of the
ego-vehicle and the surface of the wall. This angle is measured from the
line parallel to the p-axis (initial arm) up to the line representing the wall
(terminal arm) in the anticlockwise direction as shown in Figure 4.6a. The
line geometry of the wall limits this angle from 0◦to 180◦. If β is an obtuse
angle, the sign of this angle is changed to negative so that the trigonometric
functions of this angle which corresponds to a negative value on p-axis match
with the sign convention used in x-p coordinate system.

• Pllo is the left or driver-side limiting point for the opponent-object with pllo

as position coordinate.

• Plro is the right or passenger-side limiting point for the opponent-object with
plro as position coordinate.

Similar to the above case the first step is to identify the region of the ego-
vehicle geometry in which the initial point of contact lies by solving for the value
of p0. The equation for p0 depends on the value of β and has two possibilities.
When β is an acute angle, the equation for p0 is given by

(4.49)p0 =



rce · sin β,


if rce · sin β ≤ pllo ≤ plle;

if pllo > plle > rce · sin β;

pllo,


if pllo ≤ plle & pllo ≤ rce · sin β;

if pllo > plle < rce · sin β

& rfe · sin β > pllo;
plle

(
1 − rfe

rce

)
+ rfe · sin β, if pllo > plle < rce · sin β

& rfe · sin β ≤ pllo.
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When β is an obtuse angle, this value is given by

(4.50)p0 =



rce · sin (−β) ,


if rce · sin (−β) ≥ plro ≥ plre;

if plro < plre < rce · sin (−β) ;

plro,



if plro ≥ plre

& plro ≥ rce · sin (−β) ;

if plro < plre > rce · sin (−β)
& rfe · sin (−β) < plro;

plre

(
1 − rfe

rce

)
+ rfe · sin (−β) , if plro < plre > rce · sin (−β)

& rfe · sin (−β) ≥ plro.

For this case, let us consider that the initial point of contact lies in the fillet-
arc region on the driver side of the ego-vehicle (see Figure 4.6c). As discussed
in Section 4.3.1, for deriving the equation of the contact points in the fillet-arc
region, the x′-p′ coordinate system is considered. Since the ego-vehicle has the
same geometry, the fillet-arc region can be represented by equation 4.33 given
in the above subsection. The equation for the line representing the wall in the
slope-intercept form is given by

(4.51)

x′ = − tan β · p′ + rfe · cos β + rfe · sin β · tan β − de

= − tan β · p′ + rfe

(
cos β + sin2 β

cos β

)
− de

= − tan β · p′ + rfe

(
cos2 β + sin2 β

cos β

)
− de

= − tan β · p′ + rfe

cos β
− de

= ep′ + f.

Where,
(4.52)e = − tan β represents the slope

(4.53)and f = rfe

cos β
− de is the intercept.

Squaring equation 4.51 and substituting in equation 4.33 we get

(4.54)e2(p′)2 + 2efp′ + f 2 + (p′)2 = r2
fe.

Rearranging the above equation in the quadratic form, it becomes

(p′)2
(
e2 + 1

)
+ 2efp′ + f 2 − r2

fe = 0. (4.55)
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Figure 4.6: Geometrical representation of an ego-vehicle colliding against a line-
based object: a) geometrical schematic, b) illustration of P0 in the central-arc
region, c) illustration of P0 in the fillet-arc region on the driver’s side, and d)
illustration of contact transfer in the central-arc region.

The roots of equation 4.55 are shifted to the x-p coordinate system using
equation 4.35 and then compared with the positions of limiting points to find the
position of the contact points. The position of the left contact point is given by
the greater of the two roots if this root is less than pllo, else the position is equal to
the left limiting position pllo. Similarly, the position of the right contact point is
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4.3. Geometry-based prediction of the dynamic behavior of contact points

given by the smaller of the two roots if this root is greater than plro, else it is equal
to the right limiting position plro. When the roots of the quadratic equation in
the x-p coordinate system fall in the central-arc limits (plle and plre), this region is
considered for calculating the position of the corresponding contact points. Con-
sider the state, where the right contact point progresses in the central-arc region
as shown in Figure 4.6d. Substituting equations 4.34 and 4.35 in equation 4.51,
we get the equation of the line representing the wall in x-p coordinate as

x = e
(

p −
(

plle

(
1 − rfe

rce

)))
+ f +

(√
r2

ce − p2
lle

(
1 − rfe

rce

))
. (4.56)

Inserting

g = f +
(√

r2
ce − p2

lle

(
1 − rfe

rce

))
− e

(
plle

(
1 − rfe

rce

))
(4.57)

in equation 4.56 we get
(4.58)x = ep + g.

Squaring equation 4.58 and substituting in equation 4.18

(4.59)e2p2 + 2egp + g2 + p2 = r2
ce.

Rearranging the above equation in the quadratic form, it becomes

p2
(
e2 + 1

)
+ 2egp + g2 − r2

ce = 0. (4.60)

The roots of the above equation falling in the central-arc limit are then com-
pared to the opponent limiting positions (pllo and plro). The position of the re-
quired contact points is inferred using the same comparison logic as explained in
the above paragraph for contact in the fillet-arc region. In the case of a passenger-
side impact, precaution should be taken to incorporate the negative sign arising
from the obtuse angle β. In addition to the crash scenarios, where P0 lies in the
central-arc region (i.e. plre ≤ p0 ≤ plle), the equations are derived in the x-p co-
ordinate system followed by the derivation of the equation in the x′-p′ coordinate
system when the contact points shift to the fillet-arc region.

4.3.3 Case 3: Collision of an ego-vehicle with another ve-
hicle

When the opponent-object is another vehicle, its geometrical representation as
explained in Section 4.1 consists of more than one geometrical element. Moreover,
the opponent-object can also move apart from the ego-vehicle, and the oblique
crash scenarios would require consideration of the lateral and longitudinal move-
ment of the opponent-vehicle. Figure 4.7 shows the representation of a general
vehicle-to-vehicle head-on collision. Similar to the above cases, the ego-vehicle is
assumed to be stationary and its motion is transferred to the opponent-vehicle for
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Figure 4.7: Geometrical representation of ego-vehicle colliding against another
vehicle: a) geometrical schematic, b) illustration of P0 in the central-arc region
of both vehicles, c) illustration of P0 in the fillet-arc region of ego-vehicle and
central-arc region of the opponent, d) illustration of P0 in the central-arc region
of ego-vehicle and fillet-arc region of the opponent, and e) illustration of P0 in the
fillet-arc region of both vehicles.

the derivation. Hence, the opponent-vehicle is moving with the resultant velocity
of both vehicles.

The predicted geometrical parameters of the opponent-vehicle require a def-
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inition of a new axis system x̂-p̂ with the center of the central arc Cco of the
opponent-vehicle as the origin. As Cco is moving, this new axis system is also
moving. In this case, the solution for the position of contact points requires the
following parameters for representing the opponent-vehicle in addition to the pa-
rameters of the ego-vehicle defined in Section 4.3.1.

• rco is the radius of the central arc and rfo is the radius of the arcs representing
the headlight region of the opponent-vehicle.

• do is the variable representing the displacement of the opponent-vehicle,
which can be derived from its velocity.

• pcc is the distance between the center of the central arc of the ego-vehicle
and opponent at t0 measured parallel to p-axis.

• P0 is the point of contact at t0 or the initial contact point with p0 and x0 as
coordinates.

• Pllo is the left or driver-side limiting point of the central arc for the opponent-
vehicle with p̂llo and x̂llo as coordinates in the x̂-p̂ coordinate system. It
should be noted that p̂llo has a positive value since it is on the driver’s side
of the opponent-vehicle.

• Plro is the right or passenger-side limiting point of the central arc for the
opponent-vehicle with p̂lro and x̂lro as coordinates in the x̂-p̂ coordinate sys-
tem. It should be noted that p̂lro has a negative value since it is on the
passenger’s side of the opponent-vehicle.

• wo is the width of the opponent-vehicle.

• α represents the angle between the longitudinal axis of both vehicles. This
angle is measured from the longitudinal axis of the ego-vehicle (initial arm)
to the longitudinal axis of the opponent-vehicle and varies from +90◦to -90◦.
When the angle is measured in an anticlockwise direction it is considered as
positive while the clockwise direction is considered as negative (see Figure
4.7a).

For the case of front-to-front collisions of two vehicles, the three regions of both
vehicles create nine different possible configurations for the location of P0. The
approach described in Section 4.3.1 for calculating the value of p0 can be used for
this case if the equations for poff in each configuration are known. When P0 lies
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in the central-arc region of the ego-vehicle, p0 is given by

(4.61)p0 =



poff · rce

rce + rco

, if p̂llo ≥ −rco · sin ϕ ≥ p̂lro

i.e. P0 lies in the central-arc
region of the opponent;

poff · rce

rce + rfo

,



if − rco · sin ϕ > p̂llo

i.e. P0 lies in the driver-side
fillet-arc region of the opponent;

if − rco · sin ϕ < p̂lro

i.e. P0 lies in the passenger-side
fillet-arc region of the opponent.

Where ϕ is given by
ϕ = α − sin−1

(
pcc − p0

rco

)
(4.62)

and the equation for poff can be represented by

(4.63)poff =



pcc, if P0 lies in the central-arc
region of the opponent;

pcc − (rco − rfo) · sin θ,



if P0 lies in the driver-side
fillet-arc region of the opponent;

if P0 lies in the passenger-side
fillet-arc region of the opponent.

Where θ is given by

(4.64)θ =



α + sin−1
(

p̂llo

rco

)
, if P0 lies in the driver-side

fillet-arc region of the opponent;

α + sin−1
(

p̂lro

rco

)
, if P0 lies in the passenger-side

fillet-arc region of the opponent.

If the value of p0, given by equation 4.61 exceeds the limits plle and plre, P0 lies
in a fillet-arc region of the ego-vehicle. In these cases, pcc is shifted to the x′-p′

coordinate system as explained in Section 4.3.1 to give p′
cc, based on which the
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equation for p′
off can be expressed as

(4.65)p′
off =



p′
cc, if P0 lies in the central-arc

region of the opponent;

p′
cc − (rco − rfo) · sin θ,



if P0 lies in the driver-side
fillet-arc region of the opponent;

if P0 lies in the passenger-side
fillet-arc region of the opponent.

Eventually, the equation for p′
0 can be written as

(4.66)p′
0 =



p′
off · rfe

rfe + rco

, if P0 lies in the central-arc

region of the opponent;

p′
off · rfe

rfe + rfo

,



if P0 lies in the driver-side
fillet-arc region of the opponent;

if P0 lies in the passenger-side
fillet-arc region of the opponent.

Even if P0 lies in the fillet-arc region of the ego-vehicle, the same conditions (given
in equation 4.61) apply to the decision of the arc-region in which P0 lies on the
opponent. The initial position p′

0 can be shifted to the x-p coordinate system using
the method explained above.

Consider an example, where P0 lies in the central-arc region of the ego and the
fillet-arc region on the opponent-vehicle as shown in Figure 4.7d. The equation of
the central-arc for ego-vehicle is given by equation 4.18, while the fillet-arc of the
opponent-vehicle is given by

(4.67)
(

x −
(√

(rce + rfo)2 − p2
off − do · cos α − de

))2

+ (p − (poff − do · sin α))2 = r2
fo.

Substituting
(4.68)

√
(rce + rfo)2 − p2

off − do · cos α − de = e

(4.69)and poff − do · sin α = f

in equation 4.67, we get the equation

(4.70)x2 − 2ex + e2 + p2 − 2fp + f 2 = r2
fo.
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Substituting equations 4.23 and 4.24 in equation 4.70

±
√

r2
ce − p2 =

e2 + f 2 + r2
ce − r2

fo

2e
−
(

f

e

)
p. (4.71)

Inserting
e2 + f 2 + r2

ce − r2
fo

2e
= g (4.72)

in equation 4.71, we get equation 4.27 derived in Section 4.3.1. This equation
can be transformed into a general quadratic form by squaring on both sides and
rearranging (as in Section 4.3.1). The roots of the quadratic equation give the po-
sitions of the left and right contact points. For this case in addition to the limits
(plle and plre) of the ego-vehicle, the limits (pllo and plro) of the opponent-vehicle
should also be considered. But since these limits are acquired in the coordinate
system (x̂-p̂) of the opponent-vehicle, they have to be transformed to x-p coordi-
nate system using the following equations

pllo = pcc − rco · sin
(

α + sin−1
(

p̂llo

rco

))
− do · sin α (4.73)

and plro = pcc − rco · sin
(

α + sin−1
(

p̂lro

rco

))
− do · sin α. (4.74)

If the roots exceed the limits (pllo and plro) of the opponent-vehicle, the corre-
sponding contact point/points shift its arc-region on the opponent-vehicle. For
the case shown in Figure 4.7d, the right contact point would shift from fillet-arc
region to central-arc region of the opponent when one of the roots is less than plro.
After this shift, the equation of the central-arc region of the opponent should be
considered. This equation is given by(

x −
(√

(rce + rfo)2 − p2
off + (rco − rfo) · cos θ − do · cos α − de

))2

+ (p − (poff + (rco − rfo) · sin θ − do · sin α))2 =r2
fo.

(4.75)

The above-discussed method can be used to derive the quadratic equation to be
solved for the roots of the equation. One of the roots would correspond to the
position of the required contact point, in this case, the smallest root since the
right contact point shifts in the central-arc region.

When the position of the left contact point is greater than plle, this contact
point shifts from the central-arc region to the fillet-arc region of the ego-vehicle.
The position of the left contact point when it shifts in the fillet-arc region can be
predicted by considering the equations of the arcs in the x′-p′ coordinate system
(a method similar to the one explained in Section 4.3.1).

82



4.4. Investigations of the dynamic behavior of contact points in a vehicle crash

4.4 Investigations of the dynamic behavior of
contact points in a vehicle crash

In this section, the dynamic behavior of the change in position of the contact points
for the different cases (estimated based on the equations derived in the above
section) is analyzed under varying crash parameters. The geometrical dimensions
of the ego-vehicle considered for the investigation are derived from the Toyota
Yaris Finite-Element-Model (used in Chapter 5 for data generation) and listed
in Table 4.3. As mentioned in the caption of Figure 4.8, please note that the
dashed line represents the position of the left contact point while the dashed-
dotted line represents the position of the right contact point. The results from the
investigation for all the above-discussed cases are described below.

Table 4.3: Object parameter values selected for investigation.

Parameter description Parameter value
Central arc radius (rce and rco) 1438 mm
Width (we and wo) 1695 mm
Driver-side limiting point of central arc
(plle and p̂llo)

+ 496.5 mm

Passenger-side limiting point of central
arc (plre and p̂lro)

- 496.5 mm

Fillet arc radius (rfe and rfo) 536 mm

4.4.1 Case 1: Collision against a circle-based object
To investigate a crash scenario in which an ego-vehicle collides against circular
objects, three different opponent radii as given below are considered.

• 125 mm – corresponding to a pole with a diameter of 25 cm used for the
frontal pole impact test by IIHS [140]

• 375 mm – corresponding to a medium-size tree diameter found in Germany
as per the report published by the Federal Ministry of Food and Agriculture
[141]

• 625 mm – corresponding to a large-size tree diameter found in German [141]

During the crash, an initial contact point at t0 separates into the left or the
right contact point. These contact points may lie in either the central arc or fillet
arcs of the ego-vehicle and may move from the central arc of the ego vehicle to the
fillet arc and vice-versa. Figure 4.8a shows the influence of the change in diameter
of the opponent object for central impact (i.e. p0 = 0 mm) and the ego-vehicle
traveling at speed of 50 km/h. Since p0 is at the center of the bumper and the

83



4. Opponent-object Geometry: Simplification and Estimation

shape of the opponent object is symmetrical, the left and right contact points
move by the same magnitude but in opposite directions. For the opponent object
with a radius of 125 mm, the maximum possible position of the contact point
(corresponding to the radius of the object) is reached at 9.4 ms. After this time
the contact points are considered constant. For the objects with other radii, this
limit is not reached and hence the position value of the contact point continues to
change. Based on the figure, it can be concluded that depending on the movement
of the contact points, information on the diameter of the opponent object can be
established.

When p0 is away from the center of the bumper, the change in the position
of the left and the right contact point is asymmetrical and the information about
the diameter of the opponent object is more noticeable in the change in position
of one of the contact points. This effect can be visualized in Figure 4.8b with p0
in the headlight region on the driver’s side (i.e. +720 mm from the center of the
bumper). It can be observed that the information of the diameter can be more
easily classified in the position values of the right contact point as compared to
the left contact point.

The influence of the ego-vehicle velocity on the position values of the contact
point is illustrated in Figure 4.8c. It can be observed that higher velocities cause
the contact points to move faster. Hence, the same positions of the contact point
are reached earlier as compared to the crash with lower ego-velocity and with all
other parameters the same. The effect of the velocity is the same for the other
two cases and hence, it is not considered in the below sections.

4.4.2 Case 2: Collision against a line-based object
For line-based objects, its orientation with the ego-vehicle specified by the angle
β is an important parameter. For this case, p0 depends on β (see Section 4.3.2).
The effect of β on the position values of the contact points is examined in this
section. Three angles (0, 30, and 60 degrees) are considered for the investigation.
Figure 4.8d shows that p0 increases as β increases, indicating that the initial point
of contact moves away from the center of the bumper. Moreover, the change in the
positions of the right and the left contact point is not the same i.e. asymmetric
movement of the contact points. Owing to the increase in angle, the left contact
point shows a lower change in position as compared to the right contact point.
The negative value of β would also have a similar effect, with the only difference
being that p0 is negative and the right and left contact point interchange their
behavior of the change in position.

4.4.3 Case 3: Collision against another vehicle
To investigate this scenario, two cars of similar geometry are supposed to collide
front-to-front (head-on collisions) with each other. For vehicle-to-vehicle collisions,
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Figure 4.8: Results from the investigations of the dynamic behavior of the contact
points in vehicle crash: a) crash against circle-based objects at p0 = 0 mm, b)
crash against a circle-based object at p0 = 720 mm, c) crash against a circle-based
object with ro = 125 mm at different ego-velocities, d) crash against line-based
objects with different angles, e) vehicle-to-vehicle crash at p0 = 0 mm and different
angles and f) vehicle-to-vehicle crash at p0 = 720 mm and different angles. (Note
the velocity of the vehicles is 50 km/h for all cases except Figure c). Also, note
that the dashed line ‘ ’denotes the position of the left contact point while the
dash-dotted line ‘ ’denotes the position of the right contact point.)

in addition to velocity, the angle α and the initial position of contact are also
important.

The influence of the angle (0, 30, and 60 degrees) for p0 = 0 mm and when
both vehicles are traveling at a velocity of 50 km/h is shown in Figure 4.8e.
Since p0 is zero, the initial contact point is in the central arc of the ego-vehicle,
which may later shift to the fillet-arc region of the ego-vehicle based on the angle.
Additionally, the contact points may also transfer from one arc-region to another in
opponent geometry for vehicle-to-vehicle collisions and thus change the equations
for determining the positions of contact points (as described in Section 4.3.3). For
α = 0, both the contact points move symmetrically which is lost when α ̸= 0.
In such cases, one of the contact points shows less change in position value as
compared to the other (e.g. for positive angles the left contact point shows less
change in position, see Figure 4.8e). It can be observed that as the angle increases
there is not much difference in the movement of the contact points (see curves
for 30 and 60 degrees in Figure 4.8e). This is due to the transfer of the contact
points from the fillet-arc region to the side region of the vehicle. When p0 = 720
mm, i.e. at the extreme driver side and all the other parameters are the same as
in the above case, there is almost no difference in the position values of the left
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contact point for different angles (see, Figure 4.8f). But a considerable difference
in the position values of the right contact point for different angular scenarios can
be observed, which can be used for distinguishing these cases.

4.5 Comparison of geometry-based prediction
with the measurements from the crash test

The crash test (discussed in Section 3.4) conducted for verifying the functioning
of the proposed contact-based sensor can be represented by a vehicle crash against
line-based objects with β = 0 degree and plro = 17.35 cm (10% of the width of the
vehicle, see Figure 4.9a). Since p0 = plro, the predicted position value of the right
contact point pr is constant throughout the time and equal to p0. As the sensor is
installed in the foam material about 25 mm inside from the outer surface of the
bumper, the predicted position values are shifted in time by an amount equal to
the distance divided by the crash velocity. The predicted position value of the left
contact point pl is calculated based on the equation derived in Section 4.3.2 and
its higher value is limited to a value corresponding to the length of the bumper
beam on which the sensor is mounted. In Figure 4.9b, the dotted lines represent
the predicted position values while the solid lines represent the position values
from the crash test. It can be observed that even though there is a fluctuation in
the position values measured in the crash test, the trend of the predicted and the
measured curves complement each other.

Figure 4.9: Comparison of predicted and measured values of the contact point
positions: a) geometrical schematic of crash test and b)Comparison of position
values of contact points.

4.6 Summary
From the above discussion, it can be concluded that the dynamic change in the
position values of the contact points during the crash includes combined informa-
tion about the different crash parameters such as object size and shape, velocity,
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approach angle, etc. Hence, the truthfulness and the certainty about the predic-
tion from the forward-looking sensors can be achieved by comparing the estimated
dynamic change in the position values of the contact point based on these predic-
tions (using equations derived in Section 4.3) with the measured values from the
contact-based sensor described in Chapter 3. An example of such a comparison
is shown in the above section. The position values of the contact points from the
real-world crashes would include the fluctuations from the dynamics of the crash
but the overall behavior should match with the prediction. An example of an
algorithm to activate the airbags based on the comparison of the predicted and
measured values are presented in [2]. Thus a methodology for combined validation
of pre-crash information is proposed in this chapter and the exact thresholds for
the combined validation are part of a practical implementation as per the choice
of the vehicle manufacturers.
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Chapter 5

Crash Severity and Restraint
Strategy Prediction

Abstract
Crash severity and restraint strategy prediction using the pre-crash information is the
spotlight of this chapter. This chapter is introduced with a description of the general
idea with an example of a driving scenario, followed by the background knowledge to
familiarize the readers with the topic of crash severity. Data being the basis of any
machine-learning-based prediction model, a lot of effort and time was spent in collect-
ing the volume of data required for the models investigated in this chapter. The data
generation section explains the methodology and the adopted procedure for collecting the
data at the two different levels (vehicle and occupant simulation level) with pictorial rep-
resentations for ease of interpretation. Next, the architecture of the crash severity and
restraint strategy is explained with the different building blocks of this architecture. In
the next section, the investigation of the different machine learning models with the pro-
cedure for training and results is explained in detail. The results from the investigation
demonstrate the potential and feasibility to use machine learning models to predict the
crash severity parameters and also a particular safety strategy (parameters for activa-
tion of airbags) for the crash scenario identified by the forward-looking sensors. After
displaying the results from the investigation of the different models, a concept for the
algorithm of the concerned system is explained with the help of a flow chart. Finally,
the chapter is concluded with a summary and possible future work on this topic.

A brief history of the innovations in the field of vehicle safety and the prospects
are presented in Chapter 1. As mentioned previously in the Introduction Chapter,
different governmental bodies are striving toward achieving the aim of Vision-Zero,
which continuously inspires industries and researchers to search for new advanced
methods and techniques to reduce fatalities. One approach with great potential
to enhance vehicle safety is a combination of active and passive safety systems
into one integrated system such as PCSS, which comprises of different subsystems
(see 1.3) with a collection of these advanced methods and techniques. Crash
severity and restraint strategy prediction is a vital part of this system, especially
since the decision about the safety action for reducing the injuries is based on
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the information provided by this sub-system. This chapter presents a unique
methodology using data-based approaches and its investigation with a focus on
driver injuries in the case of head-on collisions in regard to the above-discussed
subsystem of PCSS.

5.1 Basic Idea
A general idea of the application of the crash severity and restraint strategy predic-
tion is portrayed in Figure 5.1 using a driving scenario. The figure shows a driving
scenario with the white car as an ego-vehicle and 5 opponent objects (two pas-
senger cars, two pedestrians, and one cyclist) in the surrounding. The trajectory
planning and inevitability module gives information about whether the collision
with the objects is inevitable. The objects with which the collision of ego-vehicle
is inevitable are termed as critical with a flag ‘C’ for criticality, as shown for the
blue car in Figure 5.1. Only the critical objects are chosen for crash severity and
restraint strategy prediction. The crash severity and restraint strategy prediction
module predicts the requirement of activation of restraint systems such as airbags
and their respective activation time windows for a predefined number of possi-
ble combinations of trajectories given by the trajectory planning and inevitability
module. This information can be conceptualized as a restraint strategy matrix of
ego-vehicle and concerned opponent trajectories. Each cell of the matrix contains
information about the action required for all the restraint systems equipped in
the ego-vehicle. For example, the figure considers 4 trajectories (T1, T2, T3, and
T4) of ego and opponent-vehicle, where some combinations of trajectories lead to
low severity crashes and hence do not need activation of any airbags (flag: ‘N’-
not required, for both airbags). However, some trajectories result in medium to
severe crashes. Therefore, either driver airbag (DAB) or curtain airbag (CAB) or
both are either recommended (flag: ‘R’) or must (flag: ‘M’), with their respective
activation times in milliseconds shown in brackets. Similarly, information about
the other restraint systems such as passenger airbags, knee airbags, etc. can be
included in the cells. Moreover, the driving scenario considers only one critical
object for the explanation, there can be more than one critical object simultane-
ously to be considered. Similar information in the form of a matrix needs to be
predicted for all the critical objects at a particular instant of cycle time. When
the opponent-object is stationary, the restraint strategy matrix transforms into a
vector since there are no trajectories from the opponent-vehicle.

After describing the basic idea with an example of a driving scenario, com-
prehensive background knowledge of vehicle safety is given in the next section to
clarify the underlying concepts of vehicle safety.
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Object: C1
Status: stationary
Criticality: NC

Object: P1
Status: stationary
Criticality: NC

Object: PC1
Status: moving
Criticality: NC

Object: PC2
Status: moving
Criticality: C

T1 T2 T3 T4

T1

T2

T3

T4

EGO
Opponent

DAB: N (N.A.)
CAB: N (N.A.)

DAB: N (N.A.)
CAB: N (N.A.)

DAB: N (N.A.)
CAB: M (25-55)
DAB: N (N.A.)

CAB: M (20-40)
DAB: N (N.A.)
CAB: N (N.A.)

DAB: N (N.A.)
CAB: N (N.A.)

DAB: N (N.A.)
CAB: M (25-40)

DAB: N (N.A.)
CAB: M (30-55)

DAB: M (15-20)
CAB: R (25-55)

DAB: M (20-25)
CAB: R (25-55)

DAB: M (15-25)
CAB: R (20-55)

DAB: M (20-25)
CAB: R (30-60)

DAB: R (25-30)
CAB: R (35-55)

DAB: R (25-30)
CAB: R (30-55)

DAB: R (25-30)
CAB: R (35-60)

DAB: R (25-30)
CAB: R (30-55)

T1
T2
T3
T4

T1T2
T3
T4

Figure 5.1: A critical driving scenario demonstrating the importance of crash
severity and restraint strategy prediction in the pre-crash phase. The white car is
the ego-vehicle and all other objects are opponents. The dark green color is used
for non-critical objects and trajectories leading to No-Fire scenarios, the orange
color is used for trajectories on the boundary of No-Fire and Fire scenarios, and the
red color is used for critical objects and trajectories leading to Must-Fire scenarios.

5.2 Background
A vehicle crash is usually classified based on the location of the impact or the
state of the vehicle such as frontal, rear, side, and rollover crashes. Statistics
show, based on [142], that the largest percentage of occupant deaths are caused
by frontal crashes (about 57%). Moreover, head-on collisions have higher severity
compared to other frontal collisions. Hence, this thesis is primarily focused on
head-on frontal crashes. The physics in a vehicle crash is based on Newton’s law
of inertia “An object will continue to be in a state of motion or a state of rest
unless acted on by an external force”.

In a vehicle crash, the motion of the bodies is disturbed by the three types of
collision events as shown in Figure 5.2.

• The first collision event takes place between the ego-vehicle and the opponent
(tree, vehicle, wall, etc.). This collision causes damage to the vehicle struc-
ture and also results in sudden deceleration or acceleration of the ego-vehicle
and thus, resulting in the occupant’s motion with respect to the vehicle.

• The second type of collision event is the collision between the occupant’s
body parts and the interior of the vehicle. The impact from the collision
produces a shock wave causing stress and strain in tissues and organs leading
to damage to the cells.

• Human body consists of a large number of internal organs. Some of these
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Figure 5.2: Three different types of collision in a vehicle crash: a) vehicle to
opponent collision, b) occupant collision against vehicle interiors, and c) collision
of internal organs (the grey area represents the skull, the yellow region is the spinal
fluid in which brain is suspended, and the red region represents the injury). The
rear injury to the brain is caused by the impact while the front brain injury is due
to the rebound.

organs such as the brain, lungs, etc are suspended in fluids. Similar to
the occupant’s motion due to the sudden acceleration or deceleration of the
vehicle from the impact of the collision, the suspended organs will also move
due to the sudden acceleration or deceleration of the occupant’s body parts.
An occupant can be injured not only by the collision of his/her body parts
with vehicle interiors but also by the collision of the internal organs with
their surrounding body parts (for example collision of the brain with the
skull, lungs with the rib cage, etc.). Figure 5.2c illustrates the collision of
the brain with the skull.

The complete field of passive safety is founded on how to make the impacts from
the above three types of collision softer to safeguard the occupants. The different
methods to safeguard the occupants are discussed in the below first two subsec-
tions, while the third subsection gives the details of the different occupant injury
metrics.

5.2.1 Vehicle structure
The first idea to make an occupant safe in a vehicle accident was from Béla Barényi,
one of the pioneers in passive safety development. He observed that some materials
are soft and easy to deform, while others are rigid. He used this property of
materials and designed the front and back of the vehicle with soft materials that
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can deform and absorb the energy from the crash and named these regions a
crumple zone, while the middle portion is termed as a passenger cell or safety cage
from the rigid materials to protect the passengers. Later, with the technological
development and the need for enhancing vehicle safety, softer materials such as
foam were incorporated between the bumper beam and bumper (see Figure 3.3),
especially to safeguard pedestrians in low-velocity crashes.

Figure 5.3: Generic structure of vehicle: a) energy transfer paths under frontal
loading conditions and b) front crash management structure.

Figure 5.3a and b display a generic vehicle structure with red arrows indicating
the energy transfer paths from a frontal crash loading condition. The so-called
crumple zone includes the bumper beam and crash boxes, which are designed to
absorb energy by deforming in a specially designed manner. In the case of a crash
with energy higher than the limit of the energy-absorbing structures, the remain-
ing energy is transferred through the longitudinal beams to the member of the
passenger cell such as the sill, door members, A-pillar, etc. The passenger cell is
made from stiff materials to avoid large deformation to safeguard the occupants.
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However, the first idea based on the structural design of the vehicle can safeguard
the occupants from low-velocity crashes, and thus supplementary systems are re-
quired to protect the occupants from medium-to-high velocity crashes which are
described in the next subsection.

5.2.2 Restraint systems
In the event of a crash, the other systems which play a key role in reducing in-
juries by safely slowing down the occupant are restraint systems. These systems
are associated with the second collision type, i.e. collision of the occupants with
the interior of the vehicle. The focus is to keep the resultant forces on the occu-
pant body, to a minimum possible level to mitigate the injuries. The two types of
restraint systems used in the vehicles are described in the paragraphs below.

Seatbelt: This is a device designed to secure the occupants and restrain their
motion in the event of a collision or sudden braking. According to the National
Highway Traffic Safety Administration (NHTSA), three-point seatbelts reduce the
risk of fatality by 45% for front-seat occupants and 44% for rear seat occupants
[143]. Additional systems, known as pre-tensioners and load limiters are also in-
stalled to improve the effectiveness of seatbelts. When the seatbelts are equipped
with these systems, there is an active intervention during crash scenarios. The
pre-tensioner retracts the seatbelt and then proceeds to remove the slack as soon
as the system senses a crash. The retractor or the load limiter keeps a check on
the resultant force acting on the occupant’s body due to the restraining action of
the pre-tensioners and slackens the belt if the force exceeds a threshold. In cars,
seatbelts equipped with pre-tensioners and load limiters have an estimated 12.8
percent reduction in fatality risk as compared to regular seatbelts [144].

Airbag: It is a supplementary restraint system that helps to slow down the
occupant in addition to the seatbelt. Airbags of different forms, shapes, and sizes
are installed at different places inside the vehicle. Frontal airbags installed in
the steering wheel and dashboard, side airbags which include curtain airbags in
side-pillars, and torso airbags placed inside seats are some of the common types
of airbags used. Traditional airbags are activated by the airbag control unit based
on different algorithms. Upon receiving an activation signal, the inflator ignites
the propellant to start a pyrotechnic process. This process generates a pulse of
gas that rapidly inflates an airbag (within 25-35 ms for driver airbag and 30-50
ms for passenger airbag).

5.2.3 Occupant kinematics and injuries
Occupant kinematics covers the analysis of how an occupant’s body moves in re-
lation to the movement of the vehicle. During a crash, the vehicle may decelerate
rapidly or make an unexpected lateral movement, depending on the type of colli-

93



5. Crash Severity and Restraint Strategy Prediction

sion. In such cases, if the body of the occupant tends to stay in relative motion, it
will collide with the vehicle’s interior components such as steering, dashboard, in-
side door panel, etc. unless the restraint system prevents them from doing so. At
high-velocity collisions, the time required for the occupant to travel to the surface
of a fully inflated airbag might be less than the time required to detect a crash,
fire, and fully inflate the airbag (about 45 to 50 ms after t0 - first contact time).
While in some low-velocity crashes, the occupant might require more time to reach
the airbag surface than the deflation time of the airbag (about 150 to 200 ms after
t0). Hence, the airbag activation time should depend on the occupant’s motion.
Further, the direction of occupant motion within the safety cage depends on the
position of impact (see Figure 5.3) and the relative approach angle. In some crash
scenarios, the occupant might travel diagonally toward A-pillar in the safety cage
which might lead to severe or fatal injuries unless the curtain airbag is fired in
combination with the frontal airbag. Hence, occupant kinematics is also important
in deciding the best occupant restraint strategy.

Researchers, governmental agencies, and automotive companies use crash test
dummies (such as THOR, Hybrid III, etc.) to predict the injury of an occupant
in a vehicle crash. A 50-percentile Hybrid-III dummy representing an adult male
occupant is the most widely used dummy in frontal crash tests. These dummies
include several sensors at specific locations on body parts to measure variables
such as deceleration, crushing force, bending moment, the velocity of impact, etc.
Based on these measured variables, injury criteria for different body parts are cal-
culated [145]. These criteria for different body parts are explained below.

Head: The risk of head injury is mainly evaluated using the head injury
criterion (HIC). This criterion is calculated from the resultant head acceleration
of the occupant using the following formula

HIC = max
[ 1
t2 − t1

∫ t2

t1
a(t)

]2.5
(t2 − t1) (5.1)

where a(t) is the resultant head acceleration, t1 and t2 are the chosen initial and
final times. The time duration (t2 − t1) is limited by the type of criteria selected
(for e.g, 36 ms for HIC-36 and 15 ms for HIC-15). Another measure of head injury
is the A-3ms criterion, which is the maximum resultant acceleration of an occu-
pant for a duration of 3 ms. This value distinguishes between hard and soft head
contact.

Neck: The injury risk for this body part is determined by shear force, tension
force, and extension moment. The neck shear and tension forces have time-based
cumulative limits.

Chest: The evaluation of the chest injury risk is done based on two criteria.
The chest compression or deformation in millimeters is the first criterion. It gives
an idea of overall injury to the chest. The assessment of injury is done by consid-
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ering the maximum value of chest compression. The second criterion is called as
Viscous Criterion (VC) which predicts the soft tissue injury induced by impact.
V C is given by the following equation

VC = sf · V (t) × Dchest(t)
Dconstant

(5.2)

where sf is the scaling factor (1.3 for 50-percentile Hybrid III dummy), V (t) is the
velocity of chest deformation, Dchest(t) is the chest deformation, and Dconstant is
the depth of half the rib cage (229 millimeters for 50-percentile Hybrid III dummy).
The maximum value of V C is considered for evaluation.

Pelvis and upper leg: The compressive force on the femur and the knee dis-
placement in millimeters are the criteria considered for these regions of the body.

Lower leg: The lower leg injury is examined using the Tibia Index (TI). TI
is calculated based on the following equation

TI =
∣∣∣∣∣Mr(t)
(Mr)C

∣∣∣∣∣+
∣∣∣∣∣ Fz(t)
(Fz)C

∣∣∣∣∣ (5.3)

where Mr(t) is the resultant bending moment of the tibia, (Mr)C is the critical
bending moment, Fz(t) is the compressive force on the tibia, and (Fz)C is the
critical compressive force. Additionally, the compressive force on the tibia is also
examined separately for their respective limits.

New Car Assessment Programme (NCAP) from different regions have men-
tioned the upper and lower limits for the injury criteria of different body parts in
their protocols [146] and [147].

5.3 Data generation
Data is the core of any data-based prediction system. As described in the last para-
graph of Section 2.6 of Chapter 1, the available crash databases based on police
reporting are inadequate and lack the information to train the required prediction
models. Hence, it was necessary to generate the data rather than using the avail-
able public database sources. Crash tests resemble real-world scenarios and thus
performing crash tests is an ideal method to generate data. However, based on the
volume of the data required for the concerned prediction problem, the resources
required for performing such a large number of crash tests are humongous and thus
the crash tests are economically infeasible for data generation. Simulations can
serve as an alternative to crash tests for the process of data generation. There are
various approaches with which the crash simulations can be implemented [104]–
[107], [148]. Although the mass-spring-damper and momentum-based simulation
approaches require less computing resources and time for data generation, they
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cannot portray the complex physical behavior such as deformation of the struc-
tural parts, rotational responses (pitch, roll, and yaw rates), etc. in a vehicle crash.
It is possible to set up simulations with input features (crash parameters) varied
in desired steps using Finite Element Method (FEM) based simulations to extract
the required output parameters for building the database. Moreover, the physical
behavior presented by this simulation method is analogous to a real-world crash.
Consequently, FEM based simulation method was chosen for generating the data.

Figure 5.4: Two-step FEM-simulation methodology adopted for data generation.

5.3.1 Methodology
Figure 5.4 shows a two-step simulation methodology utilized for generating the
data required for training and testing the prediction models. The advantage of
using a two-step approach is the reduction in time, computing resources, and
efforts by simulating the complexities of a vehicle crash just once for a particu-
lar crash scenario and transferring the results from the vehicle simulation to less
complex and fast occupant level simulations where the different combinations of
the airbag timings are investigated for its relation to occupant injuries. Another
advantage of this approach is that once new smarter restraint systems are devel-
oped in the future, they can be easily incorporated into the occupant level model
without simulating the complex and time-consuming vehicle level simulations to
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upgrade the database and thus the prediction models.
The data generated through this methodology is stored in a form of a database.

The bottom left of Figure 5.4 shows an illustration of the database with two layers
(considering three input parameters on each layer) as an example. Each of the blue
data points in layer 1 contains information about the crash severity which has to
be predicted. The three dimensions of the inner core layer (layer 1) are the major
influencing parameters. These influencing parameters define the severity regions
in the 3-dimensional space and thus the required safety actions and their timing.
The outer layer (layer 2) includes the parameters such as the type of opponent-
object (car, SUV, truck, bus, pole, tree, wall, etc.), occupant positions, road, and
environmental conditions. These parameters have an indirect relationship with
the crash severity. For example, a car-to-car crash might have completely different
physical behavior as compared to a car-to-pole crash. This illustrated concept can
be extended to a greater number of dependent parameters or reduced to a lesser
number of dependent parameters as per the required complexity. In the context
of this thesis, the data is generated considering the pre-crash information such as
the initial position of impact, approach velocity, and relative approach angle as
parameters of the inner layer with a similar vehicle as an opponent-object.

5.3.2 Vehicle level simulations
A crash simulation representing the vehicle responses and the deformation to the
required accuracy needs a validated vehicle model with complex details such as
vehicle structure comprising of different parts and their material models, contacts,
spots welds, etc. The 2010 Toyota Yaris model [149] provided by the Center for
Collision Safety and Analysis (CCSA) of George Mason University was used for
this purpose. The same vehicle model was used as ego and opponent vehicles. The
vehicles were arranged by using translation and rotation movements to build the
required crash scenarios in the simulation environment.

Different crash scenarios are simulated to acquire the data for the training and
testing set. Since the training data set should learn the behavior and the relation of
the output parameters corresponding to the input parameters, evenly distributed
input parameters were considered for the training data set. A front crash loading
can be conceptualized as a static mechanics problem of a beam supported by two
fixed points (crash boxes) with a point load at the position of impact. The ideal
case would be with the impact point at the center distributing equal force on
both the crash boxes and the worst case would be the impact point outside one of
the boxes (small overlap crash scenarios). Based on this conceptualization of the
front crash structure, 13 different positions of the initial contact point specified in
Table 5.1 were chosen. The relative approach angle (α) was varied from -75 to +75
degrees with a step of 15 degrees to give 11 angular variations. A head-on collision
is geometrically not possible at some extreme positions of the initial contact point
and relative approach angle configurations due to the front curvature of the vehicle.
Thus, 131 different crash scenarios for a particular velocity combination of ego
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Table 5.1: Specifications of the positions of the initial contact point chosen for the
simulations. Note that only the central and the positive positions are mentioned,
the value of the negative positions are the same as the positive positions but
has a negative sign indicating a passenger-side impact. The normalization of the
position is done with the half-width of the ego-vehicle. The crash structure with
blue lines represents the ego-vehicle while the structure with black lines represents
the opponent-vehicle.

No. Position Normalized
position Representation of contact point

P0 0 mm 0

P1 122 mm 0.14

P2 245 mm 0.29

P3 364 mm 0.43

P4 485 mm 0.57

P5 636 mm 0.75

P6 720 mm 0.85

and opponent vehicles were feasible. The magnitude of the velocity for ego and
opponent-vehicle were kept the same and was varied from 20 km/h to 80 km/h
in a step of 10 km/h. Altogether a total of 131 × 7 = 917 vehicle simulations
were simulated for the training data set. In addition to the training data sets,
231 vehicle simulations with randomly chosen input parameters were simulated
to form the testing data sets. The number of testing data set was chosen based
on the 80%-20% distribution for training and testing data set respectively. The
addition of the number of simulations for training and testing gives us 1148 as
the total number of simulations. With each vehicle simulation requiring about 4.5
hours for simulation, about 5161.5 hours or 215 days of simulation resources were
required just for simulations in the first step.

After performing the simulations, they were checked based on the below-
mentioned general guidelines for crash simulations provided by Livermore Software
Technology (LST), an Ansys company:
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• energy ratio should be close to 1,

• hourglass energy should be less than 10% of peak internal energy, and

• the sliding contact energy should be positive.

After the check process, the linear and the rotational velocities from the cen-
ter of gravity of the vehicle which represents the overall motion of the vehicle
were extracted. These velocities are filtered with the standard vehicle crash post-
processing procedure [135] of the low-pass filter (CFC-60 [150]) with a 100 Hz cut-
off frequency to remove the unwanted high-frequency components. In addition to
the velocities, the nodal deformation of all the parts used in the occupant simu-
lation is recorded with the INTERFACE_COMPONENT [151] command during
the simulations. The velocities and the recorded deformations were transferred to
the occupant simulations in the next step.

5.3.3 Occupant level simulations
For a particular crash scenario (test or training case explained above), the occupant
simulation receives the translational and rotational velocity responses and the
nodal deformations as inputs to the simulation. The occupant model was created
based on the concept of deceleration type of sled test [152], i.e. all the nodes of
the model were given an initial velocity equal to the initial velocity of the vehicle
simulation, and the velocity responses recorded from the vehicle level simulations
were applied at the center of gravity. The occupant model consists of a less complex
vehicle sled model (half vehicle model with nodes have predefined motion through
nodal deformation transferred from vehicle level simulation), occupant (Hybrid
III 50th Percentile Male Fast Dummy), and restraint systems (seatbelt with a
retractor, DAB, and driver-side CAB). The occupant model is described in greater
detail in Appendix D. As drivers are more close to the interior of the vehicle (due
to the steering wheel) than the other occupants, they are more prone to injuries.
Hence, the investigation in the occupant simulations is focused on the driver.
This limitation on the occupant was set due to the time and resource constraints
required for generating the data for other occupants. The same methodology can
be applied to other occupants to develop similar prediction models by learning the
behavior from the generated data. The occupant level simulations were performed
in three stages (as shown in Figure 5.5) to collect the data regarding the activation
of the restraint systems required for the particular and are explained below. Since
the activation of the seatbelt retractor is based on the tension force on the seatbelt,
it is not required to specifically decide on the activation of the seatbelt and its
retractor.

Stage I – Belted simulations: The first stage of simulations was carried out
to identify which crash scenarios from the 917 training data and 231 testing data
require airbags and specifically which airbags (DAB, CAB, or both). Therefore, in
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Figure 5.5: Illustration of different stages of occupant-level simulations.

this stage, the simulations were performed with just a seatbelt with the pyrotechnic
retractor as restraint systems (both airbags were not included in the model). Two
criteria as shown in Figure 5.5 were used to decide on the activation class of the
airbag. The first criterion was based on a simple logic based on the travel of the
head and whether it contacts the vehicle’s interior surface was used for labeling
the output parameters related to airbag activation class. The minimum separation
distance between the head nodes and the front interior surfaces nodes (minimum
of xdist - for DAB) and the similar distance between the head and the side interior
surfaces (minimum of ydist - for CAB) were used for labeling the three classes as
mentioned below.

• M (Must-Fire) – separation distance is near zero (≤ 5 mm),

• R (Recommended) – separation distance is greater than 5 mm and less than
or equal to the threshold value, and

• N (No-Fire) – separation distance is greater than the threshold value.

A recommended class is considered for the cases in which the occupant would travel
very near to the interior surfaces to safeguard the occupants against the cases near
the boundary of Must-Fire and No-Fire. The threshold value for these boundary
cases is the choice of the automotive manufacturer. In the investigations, a 1

4
th of

the initial distance of the head to the interior surface was selected as the threshold
value for both DAB and CAB. The values of the initial distance for front and side
are mentioned in the criteria block of Figure 5.5 with the lines signifying the fully
inflated surface and the recommended threshold surface.

In addition to this, the HIC-15 values were extracted from the belted simu-
lations to take into account the second criterion. This criterion examines head
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acceleration-based injuries for airbag activation. These values were classified into
two classes as explained below considering the Euro-NCAP evaluation criteria.

• Class 0 - HIC-15 value is less than or equal to 500 (Safe Zone) and

• Class 1 - HIC-15 value is greater than 500 (Injury Zone).

For all the cases with HIC-15 having Class 1, the minimum separation distance of
the head from front and side was compared. If the front separation distance was
less than the side separation distance, the DAB activation class was changed to
M else the CAB activation class was changed to M.

Stage II – Fully inflated airbag surface simulations: After identifying
the required airbags (both with M and R airbag activation classes) using the belted
simulations, the simulations were categorized as airbags not required, requiring
just DAB, requiring just CAB, and requiring both airbags. The simulations which
require at least one of the airbags were considered further for the next stage
simulations. In these simulations, the fully inflated airbag surface of DAB and/or
CAB based on the categorization explained above was included in the belted
model. The inflated surfaces of the airbag were modeled as rigid and constrained
with their base (steering wheel for DAB and A-pillar for CAB) in the model.
The goal of this simulation stage was to derive the initial value for the activation
time of the airbags (tDAB for DAB and tCAB for CAB). To calculate this value,
the contact time of the head with the airbag surfaces was extracted. This initial
activation time was calculated using the following equations.

tDAB = tft − 0.035 and (5.4)

tDAB = tst − 0.030. (5.5)

Where tft and tst are the earliest times when the head comes in contact with the
fully inflated DAB surface and CAB surface respectively. 0.035 and 0.030 are the
times in seconds taken by the airbags to fully inflate after the activation signal.
Additionally, the cases in which the occupant would deflect from contact with one
airbag surface towards another (from DAB to CAB or from CAB to DAB) and
thus demand a change in the category, were identified. The corresponding change
in the category was made and the simulation was repeated to calculate the initial
activation time for both the airbags.

Stage III – Airbag simulations: In the final stage of occupant simulations,
the required airbag models were included in the belted model and the simulations
with different airbag activation times were simulated. Since the CAB does not
have vent holes and the deflation of the airbags takes place due to the porosity of
the fabric material, it stays inflated for a longer duration as compared to DAB.
Thus, the activation time window for CAB is not necessary and the prediction
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of optimum activation time is sufficient. However, the DAB has a short duration
(about 20 to 30 ms) during which the airbag is inflated enough (sufficient airbag
pressure) for providing the restraint effect. Hence, for the DAB along with the
prediction of optimum activation time, the prediction of lower and upper limit
time1 to define the window for activating the driver airbag is essential. To cater to
this need, the simulations with DAB were repeated by varying the DAB activation
time in a way to find lower and upper time limits with a resolution of 1 ms.

Each of the stage I simulations required about 10 minutes, each stage II simula-
tion required about 8 minutes, and each stage III simulation required 25 minutes.
About 707 cases required activation of DAB out of 1148 crash scenarios considered
in the vehicle level simulation. Since approximately 20 simulations were performed
for the cases with DAB by varying the activation time, overall about 6419.8 hours
or 267.5 days of simulation resources were required for all the stages of occupant
level simulation. After each stage of the occupant level simulations, the simulations
were passed through the check process and the required data was extracted using
a Matlab post-processing code. The data extracted at each stage was stored in a
database sheet for further use in the investigation of the machine-learning-based
prediction models.

5.4 Crash severity and restraint strategy predic-
tion system architecture

Figure 5.6 shows a probable architecture of a crash severity and restraint strat-
egy prediction system. In addition to the parameters defining the crash scenario
(parameters such as p, α, vego, vopp, etc.), the crash severity and thus the decision
of activating the airbags also depend on the mass and stiffness of the opponent or
collision partner. The present forward-looking sensors face challenges in accurately
predicting both these parameters. One approach to consider these two parameters
is to group the available objects in the surrounding into different classes and to
relate the detected opponent-objects to a particular opponent class (such as a tree,
light truck, heavy truck, small car, medium car, large car, SUV, etc.) based on
their size and shape. This consideration assumes that all the objects in a particu-
lar opponent class have comparatively similar mass and stiffness. The architecture
shown in Figure 5.6 makes use of the same approach for consideration of mass and
the stiffness of the opponent-object.

The crash severity and restraint strategy system consists of different prediction
models trained for the collision of the ego-vehicle against the different opponent
classes possible in the surrounding. Based on the opponent class estimated by
the data fusion and object parameter estimation module (refer to Figure 1.3 in
Section 1.2), the system selects the corresponding prediction model and sends

1The lower time limit is the least DAB activation time with the HIC-15 value in the safe
zone (i.e. below 500), while the upper time limit is the maximum DAB activation time with the
HIC-15 value in the safe zone.
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the remaining input parameters to the selected prediction model. These input
parameters are fed simultaneously to two different levels of prediction for a more
robust decision. The first level predicts the vehicle-level responses for the complete
crash duration in the crash signal prediction block. These predicted responses are
then matched with the responses from the different standard crash tests shown by
the crash morphing block. At present, vehicle manufacturers tune the activation of
restraint systems (combination of airbags and their respective activation timings)
for different crash scenarios by conducting different crash tests. By matching
the predicted vehicle responses to these standard crash tests, a safety strategy
based on the tuned parameters for the best matching standard crash test can
be determined. The second level of the prediction consists of three sub-models
based on the occupant kinematics and response in a particular crash. The first
sub-model classifies the HIC-15 based on the fed input parameters into either safe
or injury regions. This information along with the input parameters is fed to the
second sub-model, which consists of different parallel models for each airbag. This
sub-model estimates the airbag activation decisions by classifying them into M,
R, or N classes (refer to Section 5.3.3) for the concerned crash scenario. In this
concept, as an example, only two airbags (DAB and CAB) are shown but this
concept can also be applied to more airbags by increasing the number of parallel
models in the airbag classification block. The last sub-model predicts the timings
for the airbags which need to be activated based on the prediction of the second
sub-model. Finally, the decisions of the airbag activation and their timings are
accumulated to compare with the prediction from the vehicle level and make a
necessary decision. This section describes the concept of the system with the help
of a block diagram representing the architecture of the system and more detail on
the decision is given in Section 5.5, which describes the algorithm of the concerned
system with a flow chart.

The robustness of this architecture comes from the prediction based on the
two different approaches used in the two different levels. The vehicle level gives
a prediction based on the experimental and manufacturer know-how from the
standard crash tests, while the occupant level gives a prediction based on the
simulated occupant kinematic response. The shaded region in Figure 5.6 shows
the blocks of the system which are investigated in this thesis. The crash morphing
block requires confidential data specific to the vehicle manufacturers and thus it
was not possible to investigate in this thesis. However, the methods such as the
average value of absolute error, the difference in the area enclosed by the two
curves, etc. can be employed to get a similarity score or percentage between
the predicted responses and the response from the standard tests. Some of these
methods are applied in [8] for investigating the accuracy of contour prediction
algorithms. In the next section, the results from the investigation of the prediction
models represented in the shaded area are briefly explained.

104



5.5. Investigation of different machine learning algorithms

5.5 Investigation of different machine learning
algorithms

The data collected through the different levels and stages of FEM simulations were
used to investigate the different machine learning algorithms for the task of crash
severity and restraint strategy predictions in the next step. During the database
generation, the data collected were post-processed and labeled, which necessitates
a supervised learning approach for the problem at hand. The goal of the inves-
tigations was to check the proficiency and capability of these machine learning
methods and to compare the different machine learning algorithms. A two-step
(vehicle-level and occupant-level) approach similar to the one used for data collec-
tion was adopted for the investigation process. The following subsections discuss
these investigations and their outcomes in detail.

5.5.1 Vehicle level prediction model
As described in Section 2.1, present vehicles decide about the activation of the
restraint systems during a crash based on the signals measured using different
sensors. The basic signals which give a complete picture of the crash are the
longitudinal and lateral velocity signals computed during the crash by integrating
the acceleration signals. The acceleration signals are measured by the sensor near
the center of gravity of the vehicle. Even though these signals give a complete
picture of the crash, the present systems have to rely on additional sensors. This
is because, in some crash scenarios, the velocity signals are slow to furnish the
required indicator necessary to decide about the restraint system activation (refer
to Section 3.5.1 in Chapter 3). Since the prediction is done before the crash in
the pre-crash phase, predicting these signals would give the behavior of the crash
before it occurs.

The decision on the severity of the crash and the required restraint action is
taken based on whether the values of derived parameters (∆V [153], Acceleration
Severity Index – ASI [154], etc.) cross their corresponding thresholds. The choice
of the derived parameters and their threshold is vehicle manufacturer-specific,
confidential, and varies from one manufacturer to the other. Even though the
information about the activation of the airbag from the manufacturers is confi-
dential, the studies [155] and [153] give an overview of the probability of the DAB
activation corresponding to ∆V. In [154], the ASI value calculated based on the
longitudinal acceleration is related to the probability of the Abbreviated Injury
Scale (AIS – an anatomical-based coding system) [156]. These studies suggest that
in about 50% of frontal collisions with a ∆V value of 3.6 m/s to 4.0 m/s, the DAB
was activated. On the other hand, the crashes with ASI values of 1.4 (calculated
only on the longitudinal crash pulse) have a 50.8% probability of minor injury
and 40.3% of moderate to serious injury. The summary of the results from these
studies is given in the table below.
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Table 5.2: Summary of the relation of the derived parameters to the activation of
DAB or occupant injury [153], [154].

Summary of ∆V study Summary of ASI study
∆V

[m/s]
Probability of

DAB deployment ASI Abbreviated Injury Scale (AIS)
Probability of occurrence

0.9 to 1.3 10% 1.0 0 1 2 3
1.8 to 2.2 25% 20.3% 59.0% 15.4% 5.3%
3.6 to 4.0 50%
5.8 to 6.2 75% 1.4 0 1 2 3
8.0 to 8.4 90% 9.0% 50.8% 27.7% 12.6%

For investigations, the above-mentioned velocity signals in longitudinal and
lateral directions for the crash duration of 200 ms were chosen as the parameters
to be predicted. The reason for choosing these signals as the prediction param-
eter is the flexibility to calculate the different required derived parameters from
this parameter after the prediction. This subsection focuses on the potential of
machine learning methods to predict the discussed signals in the case of head-on
collisions with similar vehicles. The details of the derived parameters and their
relation to the activation of the restraint system are out of the scope of this study.
Since the outcome of the prediction requires real numbers specifying the velocity
values corresponding to their crash duration (time after the first contact), this is
a regression problem. Figure 5.7 shows the approach adopted for the investigation
of the vehicle-level prediction models. As shown in the figure, another parameter
projected overlap (o) at the time of initial contact was considered for the input
feature in addition to the initial position of impact (normalized), approach angle,
and impact velocities of ego and opponent vehicles. This parameter is different
from the overlap (O) measured during the crash by the sensor described in Chap-
ter 3. The difference lies in that o is predicted and has one single value, while
O is dynamic and its value changes during the crash with time. The overlap was
calculated for each of the simulation cases (training and testing simulations) based
on the method adopted by NHTSA [157] and is explained in detail in Appendix
E. Another important aspect to be noted is that the input parameters vego,c and
vopp,c are the components of the initial velocity vector. These components are re-
solved in the lateral or longitudinal direction of the ego-vehicle. The longitudinal
components are considered for the longitudinal velocity signal prediction problem,
while the lateral components are considered for the lateral prediction. Since the
velocity signal to be predicted is for a duration of 200 ms of the crash, the last in-
put parameter for the model is the time instance t in the crash duration from 0 to
200 ms. Thus, just by varying t in the required steps the complete velocity signal
for the complete crash duration can be predicted for a particular crash scenario.
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Figure 5.7: Methodology adopted for investigation of the vehicle-level prediction
models. A similar investigation methodology is adopted for both longitudinal and
lateral prediction, the only change is that for the longitudinal direction the initial
velocities of the ego and opponent vehicles resolved in the longitudinal direction
of the ego-vehicle are chosen for input parameters, while the laterally resolved
velocities are chosen for lateral direction models

Multiple regressors from the most basic and simplest linear regressors to the
complex neural networks were trained, optimized, and compared for investigating
the concerned regression problem. Four types of regressors namely, linear, decision
tree, least-squares boosted (LS-boost) trees, and bagged trees (random forest)
were examined. During the training phase, a 5-fold cross-validation approach
was used to protect against the overfitting of the data for the regressors. The
Bayesian optimization technique was used to optimize the hyper-parameters of
each regressor. Additionally, a neural network with two hidden layers each with
six neurons which is equal to the number of the input parameters was considered
for comparison with the above regressors.

The assessment of the different regressors was carried out in three phases. The
metrics used in the evaluation process are well-known statistical terms and do
not require any special description or definition. In the first phase, the Mean
Absolute Error (MAE) given by the validation process during the training phase
was considered for an initial judgment. The data for the validation was chosen
from the training data set (917 realizations) to perform a 5-fold cross-validation
for regressors other than a neural network. For neural networks, 15% of the
917 realizations in the training data set were randomly chosen for the validation
process. It is not suitable to rely just on the judgment from the validation process

107



5. Crash Severity and Restraint Strategy Prediction

Table 5.3: Summary of the evaluation for longitudinal velocity signal prediction

Evaluation
phase

Evaluation
metrics

Models

Linear Decision
tree

LS-
Boost
trees

Bagged
trees

Neural
network

Training MAE [m/s] 2.080 0.170 0.774 0.210 0.440

Testing

MAE [m/s] 2.277 0.892 0.812 0.614 0.473
max. +ve error [m/s] 9.731 5.402 4.134 3.053 3.989
max. −ve error [m/s] -11.314 -10.716 -9.128 -8.451 -6.772

Derived
crash
severity
parameters

Error in
∆V [m/s]

MAE 1.082 1.010 1.439 0.917 0.579
max.
+ve 3.351 7.580 8.247 6.922 4.401

max.
−ve -7.361 -4.154 -1.489 -2.318 -2.354

Error in
ASI

MAE 0.099 0.022 0.021 0.014 0.011
max.
+ve

0.249 0.105 0.037 0.032 0.045

max.
−ve

-0.024 -0.119 -0.114 -0.102 -0.054

and a performance check on the unseen data set through the testing phase is
essential for a better assessment. Hence, the second evaluation phase includes
the assessment of the trained models on the unobserved testing data set with 231
realizations. In addition to the MAE, the maximum magnitude of the prediction
error2 for both the positive and negative error is assessed. In the final phase, the
trained models are tested for their performance to predict the two mentioned crash
severity parameters (i.e. ∆V and ASI) by calculating the mean, the maximum
positive error, and the maximum negative error using the testing data set.

The results from the assessment of the different prediction algorithms are sum-
marized in Table 5.3 and Table 5.4. It can be observed from the tables that the
basic linear algorithm is the worst performing in all three phases of the evaluation
for both the longitudinal and lateral prediction problems. The main reason for
this is the non-linearity and randomness in the data and the limitation of the lin-
ear models to learn this non-linear behavior from the data. Tree-based algorithms
(decision tree, boosted trees, and bagged trees) and neural networks achieve a
better performance in learning the above-discussed data behavior. The investi-
gation showed that the boosted trees algorithm ranks second-last in most of the
evaluation phases. The other methods namely, decision tree, bagged trees, and
the neural network give great competition to each other and have relatively close

2The prediction error in this chapter is calculated by true value minus the predicted value
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Table 5.4: Summary of the evaluation for lateral velocity signal prediction

Evaluation
phase

Evaluation
metrics

Models

Linear Decision
tree

LS-
Boost
trees

Bagged
trees

Neural
network

Training MAE [m/s] 0.994 0.156 0.655 0.288 0.427

Testing

MAE [m/s] 0.978 0.457 0.622 0.474 0.424
max. +ve error [m/s] 4.920 3.951 5.025 4.432 3.389
max. −ve error [m/s] -4.585 -5.097 -3.679 -2.942 -2.845

Derived
crash
severity
parameters

Error in
∆V [m/s]

MAE 1.041 0.734 1.482 1.114 0.684
max.
+ve 3.785 2.771 3.991 4.761 2.838

max.
−ve -5.193 -5.998 -4.408 -4.696 -5.225

Error in
ASI

MAE 0.039 0.014 0.020 0.015 0.013
max.
+ve

0.103 0.061 0.066 0.068 0.054

max.
−ve

-0.122 -0.063 -0.066 -0.062 -0.055

prediction performance while comparing the metrics. Even though the decision
tree performs the best during the training phase, the bagged trees and neural net-
work algorithms supersede the decision tree in the evaluation during the testing
phase. This is more predominantly noticed in the longitudinal velocity signal pre-
diction where the performance of the decision tree is reduced with a larger margin.
Similar behavior is also observed in the case of lateral signal prediction but with
a comparatively lower margin. Based on the MAE values in the last phase of the
evaluation (i.e, comparison of metrics ∆V and ASI), the neural network is better
suited for prediction in both directions, with the MAE value in the range of 10−1

for ∆V and of 10−2 for ASI. Moreover, it also has overall lower magnitudes of the
maximum error for both positive and negative errors for ∆V.

For a more detailed examination of the prediction performance, a further error
analysis was conducted on the testing data. The counts of the prediction error
falling into the different bins with a size of 0.5 m/s for longitudinal and 0.25 m/s
for lateral prediction were calculated to plot the histogram. To have a complete
overview of the prediction over the crash duration of 200 ms, the error was cal-
culated for each timestamp or sample (2001 samples) of all the 231 testing cases.
This gives a total count of 2001 × 231 (462231 samples) for the prediction error.
The histograms for both the longitudinal and lateral prediction of the different pre-
diction models are displayed in Figure 5.8. The neural network regressor shows the
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Figure 5.8: Comparison of the performance of the different vehicle level prediction
models using histogram plots: a) longitudinal prediction and b) lateral prediction.

Figure 5.9: Plots showing the velocity signal from FEM simulation (ground truth)
with the corresponding predictions from the three better performing models: a)
longitudinal prediction (p = 0.204, α = −43◦, and vego = vopp = 75 km/h) and b)
lateral prediction (p = 0.205, α = −66◦, and vego = vopp = 63 km/h). Note that
the position p mentioned in the caption is normalized.

best overall performance out of the models for both the longitudinal and lateral
prediction. About 96.4% of samples have an error magnitude less than 1.5 m/s
(including the magnitude of both positive and negative error) for longitudinal pre-
diction, while for lateral prediction about 97.3% of samples fall in the category of
error magnitude with less than 1.5 m/s. It can be observed from the histogram,
that the performance of the bagged trees and the decision tree is also close to the
neural network for the case of lateral prediction but the neural network performs
much better for longitudinal velocity signal prediction.

The evaluation would be incomplete without a visual representation of the
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Figure 5.10: Plots displaying the exceptional test cases with maximum error mag-
nitude: a) maximum positive error in longitudinal prediction (p = −0.192, α = 0◦,
and vego = vopp = 25 km/h), b) maximum negative error in longitudinal predic-
tion (p = 0.192, α = 8◦, and vego = vopp = 56 km/h), c) maximum positive
error in lateral prediction (p = −0.589, α = −33◦, and vego = vopp = 75 km/h),
and d) maximum negative error in lateral prediction (p = 0.491, α = 15◦, and
vego = vopp = 73 km/h).

predictions from different models and the ground truth (i.e., the signal from the
FEM simulation). Figure 5.9 displays the velocity signals of the ground truth to-
gether with the predictions from the top three models for longitudinal and lateral
directions. It can be observed that all the models accomplish the task of predic-
tion to reasonable effectiveness. The prediction from the decision tree showed a
step fluctuating response which is one of the reasons for its lower performance
compared to the other models. This problem is solved for the bagged trees since
it is an ensemble of different decision trees which reduces this step response by
combining the responses from the different decision trees. The response from the
neural network was a smooth curve and showed less fluctuation as compared to
the ground truth. Even though the predicted signal from the neural network is
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not the same as the ground truth, it matches close enough to the ground truth for
most of the testing cases. Out of the 231 testing cases, about 4% of exceptional
cases were examined with some noteworthy deviation between the ground truth
and the predicted signal. Figure 5.10 shows the test cases in which the maximum
error magnitude was identified for the neural networks, to illustrate the worst-case
prediction example. Even in these cases, the shape of the curve is maintained with
the noteworthy deviation in the velocity signal only over some time duration.

5.5.2 Occupant level prediction model
The occupant level prediction model consists of three sub-models as shown in
Figure 5.6. The first sub-model deals with the prediction of the HIC-15 class
considering only the seatbelt retractor is activated, the second model is further
a combination of different classifiers working in a parallel configuration, and the
third model is concerned with the prediction of the airbag activation timings. The
first two sub-models require approaches for solving the classification problem, while
the third sub-model is a regression problem. The metrics used for the evaluation
of classification problems are peculiar to the field of machine learning. Hence, a
general description of the metrics used is given to familiarize the reader with the
machine learning terminology.

Figure 5.11: Visualization of a confusion matrix for classification models: a) an
example of a confusion matrix for a three-class classification problem and b) illus-
tration of the problem of imbalance between classes using a binary classification
problem as an example.

The most basic metric which gives a visual representation of the performance
of a particular classification model is the confusion matrix. Figure 5.11a shows an
example of the confusion matrix structure for a multi-class problem (DAB classifi-
cation into Must-M, Recommended-R, or No-N). The numbers in the left diagonal
which are highlighted with blue color signify the number of true predictions for the
particular class, while the numbers in the other cells of the matrix specify the false
predictions. The confusion matrix is good for performance visualization but it is
difficult to have a direct comparison between different classifiers based on their
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confusion matrix. Hence, different quantifiable metrics which are calculated from
the numbers in the cells of the confusion metrics were considered in addition to
the confusion matrix. The accuracy score is the simplest and the most commonly
used metric for a quick comparison, which is given by the following equation.

Accuracy score =
∑n

i=1 TPi

N
· 100, (5.6)

where, TPi represents the number of true predictions for the ith class, n denotes the
total number of the classes, while N represents the total number of realizations.
The accuracy score considers all realizations the same and gives a percentage of
correct responses. Accuracy score as an evaluation measure can be misleading for
the data set with imbalance (the realizations is not equal across the classes). Based
on the scale of the class imbalance, the dependence of the accuracy score for the
evaluation changes. Consider the problem, of classifying the will of the customers
to buy fully autonomous driving into ‘Yes’ or ‘No’ as shown in Figure 5.11b. The
left example shows a balanced data set case, where the accuracy score for the
classifier is 75%. For the example on the right side with 90% of realizations from
the customers with the will ‘No’ and only 10% of data from the other class reduces
the accuracy score to 59% which might be misleading. Hence, in the case of an
imbalanced data set, a weighted F1-score is a more realistic metric to compare
between the different models. This score is a weighted average of the F1-score
calculated from each class with weights equal to the counts ci of realizations in a
particular class. The weighted F1-score is given by the following equation.

weighted F1-score =
∑n

i=1 F1-scorei · ci

N
. (5.7)

The F1-score for a particular class is based on the precision p and recall r of that
class and the equation to calculate this score is given below.

F1-score = 2 ·
p · r

p + r
. (5.8)

The precision specifies how well the model can predict a particular class from
the total realizations in that class, while the recall relates to the sensitivity of the
model and is a measure of the correct prediction of a particular class from the
total number of predictions of that class. The precision and recall of a particular
class are calculated using the equations given below.

p =
TP

TP + FP
and (5.9)

r =
TP

TP + FN
, (5.10)

where, TP , FP , and FN are the true positives, false positives, and false negatives
for the concerned class. After having a brief overview of the metrics, these metrics
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are used to compare the different classifiers in the upcoming paragraphs. A sim-
ilar methodology of the learning and testing phase as explained in Section 5.5.1
(Figure 5.7) was used for investigating the different occupant level sub-models,
the only difference is the change in the input and the predicted parameters. In all
the sub-models, 5-fold cross-validation and the Bayesian optimization technique
were used to protect against overfitting and to optimize the hyper-parameters of
the models.

Sub-model I – HIC-15 classifier: The HIC-15 related data from the Stage-I
simulations (i.e., belted simulation, refer to Section 5.3.3) was distributed in either
Safe-Zone (Class 0) or Injury Zone (Class 1) during data collection. Hence, the
model to be trained is a binary classification problem. Six features (p, α, o, the
longitudinal component of vego, and both the components of vopp) were consid-
ered as inputs for the model. Different classification approaches (regression-based,
probability-based, tree-based, pattern-recognition-based, and network-based) em-
ployed in the machine learning field were examined for the task of HIC-15 clas-
sification. For the network-based model, a single hidden layer with four neurons
was found sufficient for the HIC-15 classification problem. Hence a neural network
with these parameters was trained and considered for comparison with the other
models. The training data set consists of 429 realizations from Class 0 and 488
realizations from Class 1, while the testing data set contains 86 realizations from
Class 0 and 145 realizations from Class 1.

Table 5.5: Summary of the evaluation metrics from different classifiers for HIC-15
classification.

Evaluation
phase

Metrics
Models

Decision
tree

Naive
bayes SVM KNN Boosted

trees
Bagged

trees
Neural
network

Training Accuracy [%] 91.40 88.10 92.40 92.10 91.50 92.70 94.93

Testing

Confusion matrix
[
68 18
13 132

] [
71 15
8 137

] [
76 10
13 132

] [
77 9
14 131

] [
67 19
11 134

] [
68 18
11 134

] [
75 11
10 135

]

Accuracy [%] 86.58 90.04 90.04 90.04 87.01 87.45 90.91

Class 0
Precision [%] 79.07 82.56 88.37 89.53 77.91 79.07 87.21
Recall [%] 83.95 89.87 85.39 84.62 85.90 86.08 88.24
F1-score 81.44 86.06 86.86 87.01 81.71 82.42 87.72

Class 1
Precision [%] 91.03 94.48 91.03 90.34 92.41 92.41 93.10
Recall [%] 88.00 90.13 92.96 93.57 87.58 88.16 92.47
F1-score 89.49 92.26 91.99 91.93 89.93 90.24 92.78

Weighted F1-score [%] 86.49 89.95 90.08 90.10 86.87 87.33 90.90

The evaluation of the different classifiers is carried out in two phases. In the
first phase, the accuracy of different classifiers from the validation process during
the training is compared, while in the second phase a detailed evaluation is car-
ried out on the testing data set by comparing the different metrics. The metrics
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Figure 5.12: Bar graph displaying true and false predictions of the different models
for the HIC-15 classification problem.

from the different classifiers in the two phases of the evaluation are listed in Table
5.5. It can be observed that though the tree-based models perform well (with an
accuracy score above 90%) in the validation process of the training phase, their
score is reduced in the testing phase. Since the F1-Score from both the classes
are close to each other demonstrating similar performance to classify both the
classes, there is not much difference in the accuracy score and the weighted F1-
score from the testing phase. There is close competition between the Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), and neural network with
all the models having above 90% scores in both the training and testing phases.
The neural network wins the competition by a very slight margin and was found
to be the best model suited for the HIC-15 classification on the investigated data
set. Figure 5.12 displays a visualization of the true and false predictions from all
the models using a stacked bar graph.

Sub-model II – Airbag activation classifier: As discussed in Section
5.3.3, the data about the airbag activation for both DAB and CAB were grouped
into three classes (M / R / N). Hence, the models to be trained are a multi-class
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classification problem. In addition to the six input features considered for the sub-
model I, the HIC-15 class was also considered as input for the classification models
for airbag activation. The same classification approaches used for investigating the
HIC-15 problem were also employed for exploring the airbag classification problem.
For the network-based model, a single hidden layer with the number of neurons
equal to the number of input parameters was considered to address the complexity
of the increased number of classes. The division of the classes in the training data
set for CAB was 333, 179, and 405 realizations respective to the classes M, R, and
N, while the training data set consists of 69, 45, and 117 realizations from these
classes. Similarly, for DAB the number of realizations was 417, 123, and 377 for
the training data set and 129, 34, and 68 for the testing data set with respect to
the classes M, R, and N.

Table 5.6: Summary of the evaluation metrics from different classifiers for CAB
classification.

Evaluation
phase

Metrics
Models

Decision
tree

Naive
bayes SVM KNN Boosted

trees
Bagged

trees
Neural
network

Training Accuracy [%] 76.30 72.00 76.60 77.00 77.90 76.3 73.19

Testing

Confusion matrix

59 7 3
22 16 7
6 9 102


52 9 8
23 10 12
1 7 109


60 6 3
22 16 7
6 2 109


59 7 3
22 15 8
6 3 108


60 7 2
26 11 8
5 10 102


59 7 3
22 17 6
8 7 102


48 12 9
15 20 10
0 10 107


Accuracy [%] 76.20 74.03 80.09 78.79 74.89 77.06 75.76

M
Precision [%] 85.51 75.36 86.96 85.51 86.96 85.51 69.57
Recall [%] 67.82 68.42 68.18 67.82 65.93 66.29 76.19
F1-score 75.64 71.72 76.43 75.64 75.00 74.68 72.73

R
Precision [%] 35.56 22.22 35.56 33.33 24.44 37.78 44.44
Recall [%] 50.00 38.46 66.67 60.00 39.29 54.84 47.62
F1-score 41.56 28.17 46.38 42.86 30.14 44.74 45.98

N
Precision [%] 87.18 93.16 93.16 92.31 87.18 87.18 91.45
Recall [%] 91.07 84.50 91.60 90.76 91.07 91.89 84.92
F1-score 89.08 88.62 92.37 91.53 89.08 89.47 88.07

Weighted F1-score [%] 75.81 71.80 78.65 77.30 73.39 76.34 75.29

The same two-phase evaluation criteria used for assessing the HIC-15 models
were used for assessing the performance of the models for airbag classification. A
misclassification of ‘Class M’ is critical because a non-activation of safety action
might cause injury to the occupant.‘Class R’ is a grey region where the activation
of the safety action is desirable but a non-activation would not lead to injuries.
Though a misclassification of ‘Class N’ has a lesser probability of fatal to severe
injuries, it is not desirable from the repair costs and customer satisfaction point
of view. The results from the investigation for both CAB and DAB classification
are summarized in Table 5.6 and Table 5.7 respectively. It can be noticed that
some of the models have higher accuracy scores during the training phase but
their performance reduces in the testing phase. Observing the precision, recall,
and F1-scores for each class of the models, it can be inferred that all the models
faced difficulty in classifying the ‘Class R’ where the activation of the airbag is
recommended. As explained above since this class is a grey region where the de-
cision on activation of airbags is desirable but a non-activation would not cause
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Table 5.7: Summary of the evaluation metrics from different classifiers for DAB
classification.

Evaluation
phase

Metrics
Models

Decision
tree

Naive
bayes SVM KNN Boosted

trees
Bagged

trees
Neural
network

Training Accuracy [%] 84.10 81.20 84.40 84.00 84.60 84.30 89.86

Testing

Confusion matrix

117 11 1
9 18 7
5 7 56


111 5 13

13 15 16
4 10 54


118 8 3

10 15 9
1 4 63


112 13 4

7 18 9
1 4 63


110 14 5

7 18 9
1 7 60


118 6 5

15 8 11
3 3 62


108 15 6

13 11 10
2 1 65


Accuracy [%] 82.68 81.20 84.85 83.55 81.39 83.98 79.65

M
Precision [%] 90.70 86.05 91.47 86.82 85.27 91.47 83.72
Recall [%] 89.31 86.72 91.47 93.33 93.22 86.76 87.80
F1-score 90.00 86.38 91.47 89.96 89.07 89.06 85.71

R
Precision [%] 52.94 14.71 44.12 52.94 52.94 23.53 32.35
Recall [%] 50.00 25.00 55.56 51.43 46.15 47.06 40.74
F1-score 51.43 18.52 49.18 52.17 49.32 31.37 36.07

N
Precision [%] 82.35 79.41 92.65 92.65 88.24 91.18 95.59
Recall [%] 87.50 65.06 84.00 82.89 81.08 79.49 80.25
F1-score 84.85 71.52 88.11 87.50 84.51 84.93 87.25

Weighted F1-score [%] 82.81 72.02 84.26 83.67 81.87 79.35 78.86
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Figure 5.13: Bar graph displaying true and false predictions of the different models
for airbag activation classification problem: a) CAB and b) DAB.
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5. Crash Severity and Restraint Strategy Prediction

any impairment, the lower performance of the models to classify this class is not
of concern. Since the model performance in the testing phase does not depend
on the bias from the training phase, the best-suited model is selected with prefer-
ence to the scores from the testing phase. For both CAB and DAB classification,
SVM performs the best in the testing phase with a prediction accuracy of above
80% and a weighted F1-score above 78.5%. Also, in the training phase, the ac-
curacy of the SVM model is among the better performing models (second highest
for DAB and third highest for CAB) from the seven different methods investigated.

Sub-model III – Airbag activation timings: The objective of the last sub-
model was to find the activation time for the airbags which are classified as M or R
class by the previous sub-model. As discussed in the data generation section (refer
to paragraph related to Stage III simulations in Section sec5.3.3), for the CAB
only one activation time was considered, while for DAB, three different activation
times (optimum, lower, and upper limit time) were considered for prediction.
Although the input features considered were the same as the sub-model II, the
output parameter (the value of the activation time) of the sub-model III makes it
a regression problem. The amount of data available for both learning and testing
is not the same as in the previous phases. In contrast to the multiple values
corresponding to the time instance in vehicle level prediction, this sub-model has
only one prediction value (activation time of the airbag) for a particular crash
scenario. Moreover, only those scenarios in which the airbag activation is essential
(i.e. scenarios with airbag activation classes of ‘M’ and ‘R’) are considered for
the prediction of activation timing. The reduced amount of data for this sub-
model facilitates the possibility to investigate Gaussian Process Regression (GPR)
method in addition to the approaches examined in Section 5.5.1.

Table 5.8: Summary of the evaluation for prediction of CAB activation time

Evaluation
phase

Evaluation
metrics Linear Decision

tree GPR Boosted
Trees

Bagged
trees

Neural
network

Training MAE [ms] 14.26 14.70 12.53 13.47 13.66 16.90

Testing
MAE [ms] 15.51 15.75 15.22 15.45 15.71 15.63
max.+ve error [ms] 53.19 35.45 56.45 50.93 59.99 69.43
max. -ve error [ms] -85.70 -104.17 -108.77 -115.66 -87.73 -50.39

The summary of the performance investigation of the models for the prediction
of the airbag activation timings is given in Table 5.8 and Table 5.9. Although
there are some outlier cases with higher error magnitudes, the MAE value which
describes the overall performance of the models is below 11 ms for DAB and below
15.5 ms for CAB prediction. Based on the evaluation metrics listed in the tables,
the GPR model performs the best for predicting the activation time for both
DAB and CAB with its MAE value the least in the testing phase and most of the
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5.5. Investigation of different machine learning algorithms

Table 5.9: Summary of the evaluation for prediction of DAB activation time

Evaluation
phase

Evaluation
metrics Linear Decision

tree GPR Boosted
Trees

Bagged
trees

Neural
network

Upper limit time
Training MAE [ms] 12.11 14.05 10.74 11.96 12.60 10.43

Testing
MAE [ms] 10.87 11.45 8.63 10.42 10.42 9.44
max.+ve error [ms] 40.94 54.13 41.62 46.30 48.36 47.17
max. -ve error [ms] -56.54 -55.50 -34.71 -39.96 -35.40 -36.24

Optimum time
Training MAE [ms] 11.36 11.38 10.38 10.78 10.33 11.65

Testing
MAE [ms] 9.96 10.46 8.93 9.56 9.11 9.33
max.+ve error [ms] 55.66 65.35 55.28 54.08 56.92 54.59
max. -ve error [ms] -29.22 -27.98 -26.86 -24.35 -25.08 -27.24

Lower limit time
Training MAE [ms] 11.89 10.70 9.11 10.12 9.42 7.66

Testing
MAE [ms] 8.26 8.21 6.18 8.22 6.50 7.81
max.+ve error [ms] 66.53 76.67 61.95 72.64 74.61 78.82
max. -ve error [ms] -28.54 -32.33 -27.84 -23.88 -21.66 -25.48

training phase. One of the reasons for the better performance of the GPR model
as compared to others is its ability to work well with small data sets. Similar
to the vehicle level predictions a more detailed examination of the distribution
of the error is given by the histogram shown in Figure 5.14. It can be observed
from the histogram plots that even though some of the models show a higher
count in one of the bins near zero than the GPR model but the counts in other
bins compensate for it to enhance the overall performance of the GPR model
(which is also indicated by the lower MAE value in Table 5.8 and Table 5.9).
The performance of the prediction can be improved by increasing the volume
of the data. The increase in the volume of data might give the possibility for
the other models to perform better, but the present investigation demonstrates
that the GPR model is best suited for the data set under consideration. The
investigation also presents the possibility to predict the airbag activation time with
uncertainty in terms of prediction error. One method to deal with the uncertainty
is to increase the performance of the prediction model by increasing the data
volume. The other method is to compare the prediction values by prediction
through another approach. One such approach to determine the airbag activation
timing by matching the predicted velocity signal with the standard crash test, the
so-called crash morphing, is described in Section 5.4.
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5. Crash Severity and Restraint Strategy Prediction

Figure 5.14: Comparison of performance of the airbag activation timing prediction
models using histogram plots: a) CAB, b) DAB - upper time limit, c) DAB -
optimum time, and d) DAB – lower time limit.

5.6 Algorithm for crash severity and restraint
strategy prediction system

In this section, an algorithm for crash severity and restraint strategy prediction
system is explained with the help of the flow chart illustrated in Figure 5.15. As
explained in Section 6.1, different critical crash constellations or scenarios at a
particular time step t are formed by the different critical objects and the combi-
nation of the trajectories of the ego-vehicle with the trajectories of these critical
objects. A critical crash constellation Cijt is specified by parameters such as the
position of initial contact pijt, the velocity of ego-vehicle v(ego)ijt and opponent
v(opp)ijt at the initial contact, the relative approach angle αijt, the overlap between
the ego-vehicle and opponent oijt, and the opponent class ocijt. The subscripts i, j,
and t represent the critical opponent object, the combination of trajectories from
ego-vehicle and opponent, and the time step respectively. The above-mentioned
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5.6. Algorithm for crash severity and restraint strategy prediction system

Figure 5.15: Proposed algorithm for crash severity and restraint strategy predic-
tion system.

parameters are considered as inputs to the system, which are fed parallel to both
vehicle-based and occupant-based prediction approaches. The outputs (the airbag
activation class (M/R/N), the airbag activation time, etc.) from both the esti-
mation approaches are compared with each other for robustness. If these outputs
match or are within the acceptable limits, the corresponding safety actions are
updated, else they are kept the same. In the next step, the occurrence of the
crash is checked based on the contact check through the contact-based validation
sensor described in Chapter 3. If no contact is detected, the required active driv-
ing interventions (braking, steering, and acceleration) are employed to guide the
ego-vehicle towards the scenarios with reduced occupant injuries. Following the
active intervention, the complete process is repeated for the next time step. If
there is no considerable reduction in the occupant injuries, the active intervention
is neglected for the respective time step and the process is repeated. If contact
is detected, the passive safety action decision (activation of restraint systems) is
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5. Crash Severity and Restraint Strategy Prediction

taken based on the predictions corresponding to the validated crash scenario to
protect the occupants.

In the above paragraph, a possible concept with the system approach is ex-
plained. The detail for the comparison method of the outputs from the vehicle-
based and occupant-based predictions approaches is a choice of the vehicle manu-
facturers and is out of the scope of this thesis. Moreover, other approaches such as
physical-based models can be developed to offer another parallel prediction path
for comparison to give additional robustness to the crash severity and restraint
strategy predictions.
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Chapter 6

Conclusion

Upcoming vehicles with partial or full autonomy employ forward-looking sensors to
perform some or entire driving task, which is traditionally carried out by the driver.
Although the ground-breaking invention of Automated Emergency Braking and
other Advanced Driver Assistance Systems has already contributed to reducing
fatalities and reducing injuries to a great extent, accidents do happen and also
might lead to severe to fatal injuries. Thus, to safeguard the occupants against
these unforeseen critical scenarios (inevitable pre-crash situations), the coupling
of the information extracted from the forward-looking sensors to the crash severity
and the activation of the passive safety systems is a necessity.

This thesis proposes a methodology through the concept of a Pre-Crash Safety
System (PCCS) to use the pre-crash information from the forward-looking sensors
for taking passive safety decisions in the case of an inevitable crash scenario. The
idea is to predict the crash severity and restraint strategy based on the estimated
crash parameters (velocity of ego-vehicle and opponent, angular orientation, the
position of initial contact, class of opponent object, etc.) and activate the required
restraint strategy after the contact-based validation. To supplement this idea, the
potential of each of the sub-systems of the PCCS is demonstrated through the
results from the experimental and simulative investigations in Chapter 3, Chap-
ter 4, and Chapter 5. The results from the crash test in Chapter 3 demonstrate
the feasibility of measuring the signal from the proposed validation sensor near
t0 and thus achieving the goal of triggering the irreversible restraint systems at
near t0. Moreover, the equations derived for the geometry-based prediction of the
dynamic position of the contact points during the crash in Chapter 4 describe the
methodology for validating the estimated crash parameters by comparing the pre-
diction with the positions of the contact points measured by the validation sensor.
By feeding the estimated crash parameters as inputs to the models investigated in
Chapter 5 it is possible to predict the crash severity and required restraint strategy
for the predicted crash scenarios in the pre-crash phase and on the validation of a
particular crash scenario, the corresponding restraint strategy can be activated.

The studies carried out in this dissertation lays a good theoretical, experimen-
tal, and scientific foundation for future prediction-based vehicle safety systems.
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6. Conclusion

The modular-based architecture of the systems allows the feasibility for modifi-
cation by adding supplementary parallel approaches or modules to enhance the
robustness of the prediction.

6.1 Limitations and future work
Although the concept and the methodologies described in this thesis are general,
the findings of the study should be considered in light of some limitations. Firstly,
the experimental investigations of the validation sensor are carried out with con-
sideration to the frontal crash and the application of the sensor for side crash
scenarios might require some structural modifications of side structure to incorpo-
rate the sensor. Secondly, the experimental investigation of the methodology for
opponent-geometry estimation in Chapter 4 is limited to the three-arc template
which is one of the most challenging geometry for estimation in the pre-crash
phase. Finally in Chapter 5, due to the enormous resources required, the study
was limited to head-on collisions between two vehicles of similar class, while the
occupant level investigations were focused on the driver.

An extension of the current study in the future can be addressed to overcome
the above-discussed limitations. Additionally, considering the research work car-
ried out in the thesis as a basis the future work can also be targeted towards the
series application of the methodologies presented in this thesis. The following are
some of the areas which can be considered for future work.

• Cost-optimization and different regulatory tests that are required for the
series introduction of the validation sensor in the vehicles.

• Extension of the validation sensors to side crash scenario.

• Enhancement of the geometry estimation algorithm to accommodate shapes
from other opponents and real-time implementation of the geometry-estimation
algorithm.

• Extension of the crash severity and restraint strategy prediction methodology
in the first phase to crash scenarios with opponents with other classes and
ultimately in upcoming phases to incorporate other crash scenarios to cover
a complete 360◦prediction.

6.2 Contribution
The significant contributions of this thesis are listed below.

• The idea of the validation sensor which is the outcome of this work and
patented in [1].
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6.2. Contribution

• Different design configurations of the contact-based validation sensor and
experimental investigations which are published in [2]–[5].

• A novel three-arc methodology to predict the geometry of the opponent-
vehicle along with the experimental investigations and comparison with dif-
ferent other contour estimation methods which are described in [7]–[9]

• The geometry-based equations to calculate the dynamic positions of the
contact points of the ego-vehicle and opponent-object during the crash as
explained in Section 4.4.

• A two-step methodology for generating the data required for the different
crash severity and restraint strategy prediction models with a detailed dis-
cussion in Section 5.3 and the initial work published in [10], [11]

• A novel modular-based system architecture for predicting crash severity and
restraint strategy (please refer to Figure 5.6), along with the different ma-
chine learning models to predict vehicle crash responses, the occupant injury
criteria, and the restraint strategy (i.e. the class and timing for activation
of airbags) investigated in Section 5.5.
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A Characteristics of forward-looking sensors

Table A.1: Characteristics of automotive radar sensors [57]–[62].

Sensor
(Manufacturer)

Range w.r.t azimuth angle
antenna, angle [◦],

range [m]

Accuracy
longitudinal distance [m],

relative velocity [m/s], angle [◦]

Cycle
[ms]

LRR4
(Bosch)

main, ±6, 200
main, ±10, 100
main, ±15, 30
main, ±20, 5

elevation, ±4.5, 200

±0.12, 0.11, ±0.1 - ±0.3 60

MRR
(Bosch)

main, ±6, 160
main, ±9, 100
main, ±10, 60

elevation, ±25, 36
elevation, ±42, 12

0.12, 0.11, ±0.3 60

ASR408-21
(Continental)

main, ±9, 250
main, ±45, 100
main, ±60, 20

elevation, 14, 250
elevation, 20, 100

±0.1 - ±0.4, ±0.027, ±0.1 - ±5 72

SRR308-21
(Continental)

main, ±75, 95
elevation, 12 - 23, - ±0.2 - ±0.5, ±0.054, ±2 - ±5 40

ESR 2.5
(Delphi)

main, ±10, 174
main, ±45, 60 1.8, 0.12, - 50

MRR
(Delphi)

main, 90, 160
elevation, 5, - ±0.5 (with 3% bias), ±0.3, ±1 30
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A. Characteristics of forward-looking sensors

Table A.2: Characteristics of automotive lidar sensors [51], [63]–[66]

Sensor
(Manufacturer)

Range [m]
max. (accuracy)

Field of view [◦] Cycle
[ms]Azimuth

max. (res.)
Vertical

max. (res.)
HDL-64E S3
(Velodyne) 120 (0.02) 360 (0.35) 26.9 (0.4) 50.0

LUX 8L
(Ibeo automotive) 50 (0.1) 110 (0.25) 6.4 (0.8) 40.0

RS-LiDAR-M1
(Robosense) 150 (0.05) 120 (0.2) 25 (0.2) 66.6

RS-Ruby
(Robosense) 250 (0.03) 360 (0.4) 40 (0.1) 50.0

SRL 1C
(Continental) 13.5 (0.005) 27 (-) 11 (-) 10.0

Table A.3: Characteristics of automotive camera sensors [69]–[71]

Sensor Imager Range Field of view [◦] Frame
(Manufacturer) resolution [m] Horizontal Vertical rate [fps]
Stereo video
camera (Bosch) 1280 × 960 55 50 28 30

Multipurpose
camera (Bosch) 2408 × 1280 150 100 48 45

Multi function
camera (Continental) 840 × 630 10 40 29 20
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B Geometric factors for capacitors

Table B.1: Geometric factors for different types of the capacitor (A is the area of
the plates, d is the distance between the plates, n is the number of plates, L is the
length of the cylinders, and r1 and r2 are inner and outer radii of either cylinder
or sphere).

Type Equation for G Pictorial representation

Parallel-plate capacitor
A

d

d

A

Multi-plate capacitor (n − 1) ·
A

d

A

d

n

Cylindrical capacitor
2πL

ln

(
r2

r1

)
r1

r2

L

Spherical capacitor
4πL

(r2 − r1) r1

r2

146



C. Results from three-arc based geometry estimation experiments

C Results from three-arc based geometry esti-
mation experiments

Table C.1: Results from test with target aligned at 0 degree to the barrier trolley.

Distance [m]
pmin

Angle
[deg]

α

Coordinates
of central arc

center [m]
Central arc
radius [m]

rco

Fillet arc
radius [m]

rfo

width [m]
wo

pce xce

24.8 0.000 0.069 26.090 1.298 0.378 1.616
24.4 0.000 0.064 25.770 1.386 0.215 1.503
24.0 0.000 0.084 25.331 1.365 0.226 1.539
23.4 0.000 0.198 24.965 1.540 0.297 1.668
23.0 0.000 0.087 24.499 1.493 0.315 1.668
22.6 0.000 0.009 24.106 1.519 0.311 1.668
22.0 0.000 0.054 23.541 1.507 0.332 1.668
21.6 0.000 0.039 23.070 1.465 0.341 1.668
21.0 0.000 0.062 22.496 1.457 0.359 1.679
20.5 0.000 0.101 21.918 1.435 0.364 1.679
20.0 0.000 0.054 21.376 1.423 0.371 1.679
19.4 0.000 0.056 20.805 1.417 0.372 1.679
19.0 0.000 0.036 20.386 1.416 0.342 1.643
18.5 0.000 0.040 19.957 1.411 0.341 1.643
18.0 0.000 0.047 19.384 1.409 0.343 1.643
17.6 0.000 0.056 18.970 1.405 0.351 1.650
17.0 0.000 0.025 18.424 1.401 0.354 1.650
16.5 0.000 0.024 17.870 1.396 0.358 1.650
16.0 0.000 0.051 17.444 1.390 0.361 1.650
15.5 0.000 0.055 16.855 1.374 0.371 1.656
15.0 0.000 0.026 16.428 1.375 0.373 1.656
14.5 0.000 0.041 15.866 1.373 0.375 1.656
14.1 0.000 0.054 15.448 1.372 0.371 1.648
13.5 0.000 0.036 14.907 1.368 0.374 1.648
13.0 0.000 0.011 14.368 1.368 0.374 1.648
12.5 0.000 0.026 13.832 1.374 0.389 1.666
12.0 0.000 0.021 13.403 1.373 0.390 1.666
11.6 0.000 0.018 12.966 1.371 0.392 1.666
11.0 0.000 0.035 12.396 1.371 0.373 1.642
10.4 0.000 0.020 11.827 1.370 0.375 1.642
10.0 0.000 0.022 11.417 1.369 0.376 1.642
9.5 0.000 0.020 10.886 1.371 0.382 1.647
9.0 0.000 0.010 10.340 1.371 0.384 1.647
8.5 0.000 0.008 9.928 1.372 0.385 1.647
8.0 0.000 0.010 9.361 1.375 0.399 1.661
7.5 0.000 0.007 8.928 1.376 0.400 1.661
7.0 0.000 0.014 8.365 1.378 0.401 1.661
6.4 0.000 0.013 7.815 1.379 0.402 1.661
6.0 0.000 0.008 7.410 1.379 0.403 1.661
5.5 0.000 0.002 6.871 1.378 0.389 1.645
4.9 0.000 -0.001 6.307 1.379 0.390 1.645
4.5 0.000 0.000 5.873 1.380 0.390 1.645
4.0 0.000 -0.003 5.447 1.380 0.388 1.642
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Table C.2: Results from test with target aligned at -15 degree to the barrier trolley.

Distance [m]
pmin

Angle
[deg]

α

Coordinates
of central arc

center [m]
Central arc
radius [m]

rco

Fillet arc
radius [m]

rfo

width [m]
wo

pce xce

25.0 -15.526 5.883 25.791 1.477 0.372 1.655
24.5 -15.310 5.698 25.381 1.448 0.458 1.676
24.0 -14.980 5.430 24.822 1.402 0.543 1.760
23.5 -15.204 5.413 24.433 1.428 0.530 1.762
23.0 -15.301 5.318 23.882 1.422 0.538 1.762
22.5 -14.788 5.018 23.416 1.446 0.522 1.762
22.0 -15.392 5.125 22.927 1.430 0.529 1.765
21.5 -14.743 4.745 22.460 1.449 0.521 1.765
21.0 -14.817 4.656 22.043 1.449 0.515 1.765
20.5 -15.347 4.756 21.470 1.454 0.487 1.730
20.0 -14.854 4.454 20.950 1.427 0.493 1.730
19.5 -14.954 4.388 20.541 1.429 0.491 1.730
19.0 -15.033 4.259 19.974 1.414 0.474 1.704
18.5 -15.011 4.193 19.557 1.418 0.477 1.704
18.0 -14.901 4.025 19.012 1.414 0.475 1.702
17.5 -14.925 3.896 18.467 1.412 0.476 1.702
17.0 -14.966 3.817 18.070 1.409 0.474 1.702
16.5 -15.171 3.729 17.527 1.409 0.469 1.695
16.0 -15.121 3.639 16.984 1.404 0.469 1.695
15.5 -15.242 3.542 16.562 1.404 0.468 1.695
15.0 -15.035 3.372 16.010 1.396 0.487 1.715
14.5 -15.445 3.364 15.569 1.393 0.485 1.715
14.0 -15.303 3.212 15.025 1.384 0.486 1.715
13.5 -15.177 3.103 14.634 1.380 0.494 1.722
13.0 -15.243 2.984 14.102 1.373 0.496 1.722
12.5 -15.173 2.834 13.580 1.371 0.486 1.708
12.0 -15.222 2.746 13.157 1.368 0.486 1.708
11.5 -15.090 2.551 12.605 1.372 0.486 1.708
11.0 -15.504 2.572 12.168 1.368 0.481 1.701
10.5 -15.447 2.431 11.632 1.370 0.481 1.701
10.0 -15.561 2.322 11.098 1.369 0.480 1.701
9.5 -15.466 2.209 10.715 1.370 0.471 1.692
9.0 -15.223 2.035 10.183 1.369 0.470 1.692
8.5 -15.077 1.914 9.777 1.370 0.470 1.692
8.0 -14.978 1.767 9.220 1.370 0.459 1.680
7.5 -15.424 1.740 8.797 1.370 0.459 1.680
7.0 -14.869 1.537 8.282 1.372 0.458 1.680
6.5 -14.788 1.383 7.753 1.373 0.458 1.680
6.0 -15.336 1.370 7.342 1.374 0.457 1.680
5.5 -15.298 1.239 6.798 1.375 0.455 1.678
5.0 -15.260 1.108 6.245 1.376 0.455 1.678
4.5 -15.288 1.006 5.826 1.377 0.454 1.678
4.0 -14.992 0.882 5.425 1.378 0.461 1.687
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C. Results from three-arc based geometry estimation experiments

Table C.3: Results from test with target aligned at -45 degree to the barrier trolley.

Distance [m]
pmin

Angle
[deg]

α

Coordinates
of central arc

center [m]
Central arc
radius [m]

rco

Fillet arc
radius [m]

rfo

width [m]
wo

pce xce

25.0 -45.174 17.418 20.100 1.660 0.443 1.789
24.5 -45.027 17.041 19.734 1.562 0.453 1.727
24.0 -44.957 16.608 19.244 1.473 0.509 1.747
23.6 -45.296 16.399 18.778 1.404 0.534 1.747
23.0 -45.115 16.019 18.482 1.453 0.523 1.747
22.5 -45.081 15.584 18.083 1.430 0.526 1.747
22.0 -45.223 15.330 17.731 1.418 0.530 1.746
21.5 -45.349 14.998 17.274 1.401 0.537 1.746
21.0 -45.385 14.741 16.977 1.414 0.536 1.746
20.5 -45.092 14.337 16.644 1.425 0.511 1.721
20.0 -45.132 13.870 16.213 1.419 0.515 1.721
19.5 -45.349 13.720 15.883 1.439 0.507 1.721
19.0 -45.223 13.256 15.540 1.449 0.525 1.745
18.5 -45.086 12.888 15.264 1.440 0.528 1.745
18.0 -45.214 12.597 14.836 1.446 0.527 1.745
17.6 -45.262 12.261 14.510 1.444 0.522 1.738
17.0 -45.304 11.910 14.088 1.442 0.524 1.738
16.5 -45.429 11.593 13.654 1.447 0.504 1.712
16.0 -44.832 11.151 13.490 1.443 0.506 1.712
15.5 -45.224 10.864 13.010 1.443 0.508 1.712
15.0 -45.060 10.449 12.647 1.451 0.499 1.702
14.5 -45.005 10.114 12.347 1.450 0.500 1.702
14.0 -45.121 9.770 11.905 1.452 0.501 1.702
13.5 -45.639 9.579 11.513 1.451 0.485 1.682
13.0 -45.215 9.124 11.175 1.447 0.487 1.682
12.5 -45.180 8.744 10.794 1.446 0.486 1.682
12.0 -44.967 8.414 10.524 1.442 0.474 1.666
11.5 -44.967 8.027 10.123 1.439 0.475 1.666
11.0 -44.908 7.735 9.813 1.437 0.476 1.666
10.5 -44.873 7.337 9.393 1.434 0.469 1.657
10.0 -45.296 7.128 9.032 1.435 0.469 1.657
9.5 -45.260 6.738 8.633 1.435 0.466 1.654
9.0 -45.206 6.348 8.247 1.433 0.466 1.654
8.5 -45.306 6.080 7.943 1.432 0.465 1.654
8.0 -45.207 5.690 7.549 1.431 0.463 1.651
7.5 -45.445 5.340 7.108 1.429 0.462 1.651
7.0 -45.245 5.013 6.817 1.428 0.461 1.651
6.5 -45.219 4.623 6.408 1.426 0.462 1.652
6.0 -45.339 4.350 6.100 1.426 0.462 1.652
5.5 -45.079 3.955 5.724 1.424 0.462 1.652
5.0 -45.102 3.581 5.323 1.423 0.462 1.652
4.5 -45.254 3.301 5.003 1.423 0.461 1.652
4.0 -45.059 2.889 4.593 1.423 0.454 1.642
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D Description of finite element model for occu-
pant simulations

This section explains the finite element model used for occupant level simulations.
The steps in which the complete model is created are explained below in detail.
The occupant level simulation model consisted of the vehicle sled model, dummy
model, and restraint systems (seatbelt with a retractor, driver airbag, and side
curtain airbag). The mentioned models were created separately and merged to
create a complete occupant model.

D.1 Vehicle sled model
As described in Subsection 5.3.2 the 2010 Toyota Yaris coarse finite element model
was used as a vehicle sled model. Contrary to the vehicle model in vehicle simula-
tions, only the vehicle interior parts were considered in the occupant model. The
vehicle parts which will not make any contact with the dummy during a crash
scenario were eliminated to simplify the vehicle sled model. Figure D.1 displays
the vehicle sled model used to create the occupant model.

Figure D.1: Details of vehicle model: a) vehicle sled model and b) force-
penetration curve.

The material card of the driver seat parts seat used in the vehicle model was
changed to rigid material so that rigid body one-way contact could be used for the
dummy to seat contact. With this type of contact, the dummy parts can penetrate
the seat surfaces but are held together by the force-penetration curve (see Figure
D.1b). The reason to use such type of contact is to reduce the simulation time
by not requiring detailed modeling of the foam, springs, and other complicated
parts with complex material properties. The deformation behavior of the seat part
is defined by the force-penetration curve and hence this method summarizes the
overall behavior of dummy-seat interaction to the required detail.
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D. Description of finite element model for occupant simulations

Table D.1: Coordinates for occupant positioning

Description Coordinates by NHTSA Transformed coordinates
x y z x′ y′ z′

Head CG 2164.878 -412.787 -728.488 -2094.622 412.787 1286.53
Tip of nose 2261.45 -333.939 -680.328 -1998.05 333.939 1161.998
Tip of chin 2256.11 -333.158 -603.956 -2003.39 333.158 1161.998

H point 2311.02 -530.484 -32.7692 -1948.48 530.484 590.8112
Left knee 2694.393 -559.711 -185.598 -1565.107 559.711 743.64
Left ankle 2963.45 -548.03 134.6526 -1296.05 548.03 423.3894
Left heel 2973.302 -535.87 276.0135 -1286.198 535.87 282.0285

D.2 Dummy model
The Hybrid III 50th percentile male fast dummy model provided by Livermore
Software Technology (LST), an Ansys company was adapted and used for the
occupant simulations. The original dummy was positioned by applying the posi-
tioning coordinates provided by NHTSA [158]. The position provided by NHTSA
was implemented during the full-scale crash test of the 2011 Toyota Yaris model
at 56 km/h. The coordinate system considered in the crash test by the NHTSA
was different than the coordinate system applied in this work. In the coordinate
system used in the NHTSA report, the rearmost center of the top of the rear
bumper beam was considered as a reference point. The x, y, and z axes were
directed from the rear to front, left to right, and top to bottom of the vehicle
respectively. However, in this work, the point near the center of the front bumper
beam was considered a reference point. The x-axis direction was similar to that
applied by NHTSA while the y and z axes were directed from the right to left
and bottom to top of the vehicle respectively. Hence initially the coordinates pro-
vided by the NHTSA were transformed into the required coordinate system, and
then the dummy was positioned using modified coordinates. Table D.1 lists the
coordinates given in the NHTSA report and the transformed coordinates. Figure
D.2a shows the original position of the dummy model while Figure D.2b shows
the dummy model positioned by applying the modified coordinates.

D.3 Restraint systems
Seatbelt with retractor: The seatbelt model having a combination of a 1-D
beam type and a fabric belt (2-D shells) as shown in Figure D.3a was considered
for the occupant level simulations. The seatbelt was re-routed over the positioned
dummy using the guidelines provided by LST. The sensor fire time of the seatbelt
retractor is set at 1 ms in the model. This time is not the same at which the
retractor locks. After the sensor firing time (i.e. 1 ms) the slack in the belt de-
pending on the velocity of the occupant is removed and the retractor locks up and
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Figure D.2: Dummy model: a) original position and b) modified position.

spools out the belt based on the force-payout curve. The maximum force value is
maintained at 3.25 kN. Figure D.3b displays a retractor force-payout curve with
a load limited to 3.25 kN.

Figure D.3: Details of seatbelt model: a) seatbelt with retractor and b) retractor
force-payout curve.

Driver airbag: The driver airbag model developed for the Honda Accord
mid-size sedan by NHTSA was employed in the occupant simulations [158]. The
model was created with a 5 mm element size using scanned CAD to get accu-
rate deployment and smooth contact and folded using DynaFold simulations. The
airbag model was then mounted into the steering wheel. Figure D.4 shows the
finite element model of the driver airbag.
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D. Description of finite element model for occupant simulations

Figure D.4: Driver airbag model: a) airbag folded into the steering and b) fully
inflated airbag.

Curtain airbag: The side curtain airbag model with impactor provided by
ABAQUS Inc. [159] was adapted and converted into the LS-Dyna compatible
model. Figure D.5a shows the folded curtain airbag model, while Figure D.5b
shows the fully inflated curtain airbag.

Figure D.5: Curtain airbag model: a) airbag after folding and b) fully inflated
airbag.

Before including the model into the occupant model, the conversion of the
model from ABAQUS software to the LS-Dyna software was validated. To vali-
date the model, the available airbag model was first simulated in ABAQUS and
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corresponding velocity and acceleration profiles of the impactor were recorded (see
Figure D.6). The converted FEM model was simulated under similar loading con-
ditions in LS-Dyna and the velocity and acceleration profiles of the impactor were
compared with those extracted through simulations in ABAQUS.

Figure D.6: Results from the validation of curtain airbag conversion: a) impactor
acceleration comparison and b) impactor velocity comparison.
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E. Methodology for calculation of the projected overlap

E Methodology for calculation of the projected
overlap

Overlap is a common term used as a parameter for specifying the different stan-
dard crash tests such as moderate overlap and small overlap crash tests. Overlap
in terms of vehicle crashworthiness can be visualized as the projection of the
opponent-object on the ego-vehicle normalized to the width of the ego-vehicle.
Thus, the overlap o in percentage is given by the following equation.

o =
d

wego

· 100, (E.1)

where, d is the projected length on the ego vehicle at t0 (see Figure E.1) and wego is
the width of the ego-vehicle. For the estimation of d during the calculation of the o,
three reference lines are considered. Reference line 1 is the projection of one side of
the opponent-vehicle. For positive α, the side closer to the passenger is considered
for projection while for negative α, the side closer to the driver is considered.
Reference line 2 is parallel to the longitudinal direction of the ego-vehicle and
tangent to the front contour of the opponent-vehicle at the side which was not
considered for reference line 1. The third reference is a line projected from the
side of the ego-vehicle. In the case reference line concerning ego-vehicle, the side
closer to the driver is considered for positive α and vice-versa. For estimating d,
the point where the reference line 1 intersects on the ego-vehicle is considered, from
this point the smallest distance parallel to the width of the ego-vehicle up to the
reference line 2 and line 3 is considered as the value for d. For the investigations in
Chapter 5, this distance was calculated from the nodes FEM-model of the vehicle
for each of the simulation cases to be considered as an additional input feature.

155



Figure E.1: Different scenarios for calculating the projected overlap: a) a scenario
with positive p and α, b) a scenario with negative p and α, and c) a scenario with
positive p and negative α,
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