
A Signature–Based Approach to Formal Logic Verification

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch–Naturwissenschaftlich-Technischen Fakultät

der Martin Luther Universität Halle–Wittenberg

von Frau Janett Mohnke

geb. am: 02. April 1967 in: Luckenwalde

Gutachter:

1. Prof. Dr. Bernd Becker

2. Prof. Dr. Sharad Malik

3. Prof. Dr. Paul Molitor

Halle (Saale), 12. Februar 1999

Zusammenfassung

In der vorliegenden Arbeit untersuchen wir das Problem, für zwei Boolesche Funktionen zu testen,
ob es eine Permutation ihrer Eingangsvariablen gibt, unter der diese Funktionen äquivalent sind.
Eine Lösung für dieses Problem ist in verschiedenen Gebieten der Synthese und Verifikation kombi-
natorischer Schaltkreise von Nutzen. In der Logikverifikation findet es dann Verwendung, wenn die
genaue Zuordnung der Eingangsvariablen der zu verifizierenden Schaltkreise nicht mehr bekannt ist.
Das Problem ist NP–schwer, weshalb auf heuristische Lösungsansätze zurückgegriffen werden muß.
Der Lösungsansatz, der in dieser Arbeit vorgestellt wird, berechnet für jede der Eingangsvari-
ablen einer Booleschen Funktion Signaturen. Diese Signaturen sollen helfen, eine für Permuta-
tionsäquivalenz gültige Zuordnung der Variablen auszuwählen. Signaturen sind für eine große An-
zahl der getesten Beispiele sehr wirkungsvoll. Leider gibt es auch oft Variablen, die nicht eindeutig
identifiziert werden können. Interessanterweise gehören zu dieser Menge, für ein gegebenes Beispiel,
immer nahezu dieselben Variablen — unabhängig von der verwendeten Signatur. In der vorliegen-
den Arbeit wird dieses Problem eingehend untersucht. Außerdem zeigen wir, wie die vorgestellten
Methoden zur Lösung eines Problems der Verifikation sequentieller Schaltkreise herangezogen wer-
den können, dem Problem, eine Zuordnung der Speicherelemente zweier sequentieller Schaltkreise
zu finden, wenn diese nicht mehr bekannt ist, man aber weiß, daß die Zustände beider Schaltkreise
mit der gleichen Methode kodiert wurden. Die Effizienz der in dieser Arbeit vorgestellten Methoden
wird anhand einer Vielzahl von Experimenten veranschaulicht.

Abstract

We consider the problem of checking the equivalence of two Boolean functions under arbitrary
input permutations. This problem has several applications in the synthesis and verification of
combinational logic. In logic verification this is needed when the exact correspondence of inputs
between the two circuits is not known. The problem is NP–hard, thus recourse is taken to heuristics
that work well in practice. The approach presented in this thesis computes signatures for each input
variable that will help to establish correspondence of variables. Signatures work well for a large
number of the investigated examples. However, for each choice of signature, there remain variables
that cannot be uniquely identified. Our research has shown that, for a given example, this set of
problematic variables tends to be the same — regardless of the choice of signatures. In this thesis,
we investigate this problem. Furthermore, we demonstrate how the introduced techniques can
be applied to a problem in sequential logic verification, the problem of establishing the unknown
correspondence of the latches (memory elements) of two sequential circuits which have the same
state encoding. Experimental results on a large number of examples establish the efficacy of the
introduced methods.

Contents

1 Introduction 5

Acknowledgements . 8

2 Background 9

2.1 Notation . 9

2.2 The Problem of Complexity . 10

2.3 Boolean Functions . 11

2.4 Reduced Ordered Binary Decision Diagrams . 14

3 The Combinational Permutation Equivalence Problem 17

3.1 Problem Description . 18

3.2 Signatures . 19

3.2.1 Definition . 19

3.2.2 Solution Paradigm . 19

3.2.3 Special Signatures . 21

3.2.3.1 Satisfy Count Signatures . 21

3.2.3.2 Breakup Signatures . 25

3.2.3.3 Function Signatures . 31

3.3 Experimental Results . 33

4 Limits of Using Signatures 39

4.1 The Property of G–Symmetry . 40

4.2 Partial Symmetries . 46

1

2

4.3 Hierarchical Symmetries . 47

4.4 Group Symmetries . 53

4.5 Experimental Results . 57

4.6 The Variety of G–Symmetry . 59

5 The Latch Correspondence Problem 61

5.1 Problem Description . 62

5.2 Signatures . 63

5.2.1 Solution Paradigm . 63

5.2.2 Input Signatures . 64

5.2.3 Latch Output Signatures . 65

5.2.3.1 Simple Output Signatures . 65

5.2.3.2 Function Signatures for Latch Outputs 66

5.2.3.3 Canonical Order Signature . 67

5.2.4 An Example . 67

5.3 Experimental Results . 70

5.4 Symmetries in Latch Equivalence . 72

6 Conclusion 73

A Benchmark Descriptions 76

List of Figures

2.1 The Relation between P and NP . 10

2.2 The Boolean 3–Space (a) and the Description of f(x1, x2, x3) = x1x2 + x̄1x3 (b) . . . 12

2.3 Ordered Binary Decision Diagrams for f(x1, x2, x3) = x1x2 + x̄1x3 15

3.1 Cube Representation of f(x1, x2, x3) = x1x2 + x̄1x3 (a) and fx1(x1, x2, x3) = x2 (b) . 23

3.2 Breakup Signature for fx1(x1, x2, x3) = x2 with O = [0, 0, 0] 26

3.3 Pseudo–Code for breakup sig(G, o, l) . 29

3.4 Pseudo–Code for cal sig val(br sig vec, r, child i, ni) 30

4.1 Description of Benchmark Circuit t481 . 58

5.1 The Latch Equivalence Problem . 62

3

List of Tables

3.1 Satisfy Count Signatures for f(x1, x2, x3) = x1x2 + x̄1x3 25

3.2 The Quality of Signatures in Pπ . 34

3.3 Benchmarks with Aliasing after Signature Computation 37

4.1 Group Symmetry . 56

4.2 Benchmarks with G–Symmetries . 57

5.1 The Quality of Signatures in Lπ . 71

A.1 LGSynth91 Benchmarks, Part I . 77

A.2 LGSynth91 Benchmarks, Part II . 78

A.3 ESPRESSO Benchmarks, Part I . 79

A.4 ESPRESSO Benchmarks, Part II . 80

A.5 ESPRESSO Benchmarks, Part III . 81

A.6 Other Benchmarks . 81

4

Chapter 1

Introduction

For years very large scale integrated circuits and the resulting digital systems have conquered a
place in almost all areas of our life — even in security sensitive applications. Complex digital
systems control airplanes, have been used in banks and on intensive-care units. Hence, the demand
for error-free designs is more important than ever. In addition, economic reasons also underline
this demand: the design and production process of present day VLSI-circuits is highly time- and
cost-intensive. Moreover, it is nearly impossible to repair integrated circuits. Thus, it is desirable
to detect design errors early in the design process using computer-aided tools and not just after
producing the prototype chip. Circuits have become more complex regarding to their design and
the tasks that they are designed for as the level of integration on an integrated circuit (IC or
chip) itself has been increasing. While a handful of devices were integrated on the first circuits
in the 1960s, circuits with over a million devices can be manufactured nowadays. With that, the
probability increases that design errors remain undetected (e.g. the problems with the INTEL-
Pentium-processor in 1995). In other words, it is not just more important to get error-free designs,
but it also becomes an increasingly difficult task for a team of human designers to carry out a full
design without errors. So, the development and improvement of verification tools that are able to
prove the correctness of design of present day digital systems has obtained major significance.

Verification is the comparison of two models for consistency. Traditionally, checking the correctness
of a system is done by simulation based methods. In such an approach, the designer has to create
a complete set of test vectors which represents all possible inputs of the system. Then, the outputs
of the design for each of these input vectors must be analyzed in order to guarantee the correctness
of this design. It is obvious to see that this process is very CPU-time intensive and thus impractical
for larger designs.

As a result, another kind of verification strategies have been becoming popular: strategies that use
formal verification techniques. By using these techniques, the correctness of a design for all input
combinations can be guaranteed.

5

Introduction 6

Aspects of Formal Logic Verification

Nowadays, a digital system is designed with the help of computer–aided design tools that work at
different, almost independent levels in a hierarchical manner. Such a process of designing usually
starts with describing the system, which has to be designed, in an abstract model. On this model,
an extensive simulation is made. Then it becomes the golden specification [20]. Starting with this
golden specification, a detailed implementation is derived, passing through different design levels
step by step. First a synthesizable behavioral Register-Transfer-Level (RTL) description is derived
which describes the block structure behavior of the design. This description is then translated into
the structural description describing the combinational logic of the system. From this the transistor
netlist is derived which finally leads to the physical layout description.

To be able to catch bugs as early as possible in the above design process, it is important to verify
the functionality of the design at every level of this process against the golden specification. At first
glance, this so called implementation verification should play a minor role when computer-aided
design tools are used. Those methods should provide correctness by construction [23]. However,
because of the widespread use of synthesis tools this is not the case. While the synthesis algorithms
have guaranteed properties of correctness, their software implementations cannot be guaranteed to
be error–free. The same holds for the implementation of the operating system and the data bases.
So there is a need of implementation verification methods that support synthesis tools.

This verification proceeds in two phases [20]. In the first phase, a Boolean network is extracted
from the actual description (e.g., [7, 35]). Then, in a second phase, this Boolean network is verifyed
by some formal verification methods against the original (golden) specification. It is this part of the
verification process, that is the focus of this thesis. Moreover, we need to distinguish between the
verification of combinational and sequential circuits. In combinational circuits, the outputs depend
only on the current inputs, where in sequential circuits, the outputs depend not only on the current
inputs but also on the past sequence of inputs.

The Combinational Permutation Equivalence Problem

In this thesis, we focus on a special problem in combinational logic verification. The tools used
at the different levels in the design process may have their own naming conventions for the inputs
or the outputs of the circuit which has to be designed. Then the input/output correspondence
between the different descriptions of the circuit design gets lost. However, before we can verify the
equivalence of the two Boolean networks, we need to know this correspondence. The main focus
of this thesis is to determine such a lost correspondence for the inputs of two Boolean networks.
This problem is NP–hard. Thus, we need to consider techniques that are non-exhaustive and
work well in practice. We will introduce such techniques and demonstrate their practical efficacy.
Moreover, we shortly explain how they can be used to find a lost correspondence for the outputs
of two Boolean networks, although a evaluation of this would be beyond the scope of this thesis.

Note that a solution for the permutation equivalence problem can be used in another part of circuit
design as well. It also is important for Boolean matching. Boolean matching is the key operation

Introduction 7

in technology mapping. It checks whether an element of a given library can be used to implement
a part of a Boolean function. This can be formulated as checking the equivalence between a given
Boolean function, called the target function, and the set of functions representing a library element.
Often this is considered for any permutation of the input variables.

The Latch Correspondence Problem

Furthermore, we demonstrate how the techniques that we have used to handle the combinational
permutation equivalence problem can be easily applied to a problem arising from sequential logic
verification.

Verifying general sequential circuits is a very difficult task. The techniques that exist so far for
verifying those circuits are not applicable to very large designs. So their use in a practical design
methodology is limited. However, some sequential verification problems can be reduced to a com-
binational verification problem. One of these is the case when the corresponding latches (memory
elements) in the two designs that we have to test for equivalence, are identified. Thus it is desirable
to have a way to establish this correpondence between the latches of two given sequential circuits.
More formally, we define the following problem of sequential logic verification (we call it the latch
correspondence problem): given two sequential circuits, does there exist a correspondence between
the latches of these two circuits, such that the combinational parts are equivalent using this latch
correspondence?

It is easy to see that there is a connection between the combinational permutation equivalence
problem and this latch correspondence problem. We show that this is indeed the case, underline
the differences between the two problems, and demonstrate how we can apply the techniques of the
combinational permutation equivalence problem to the latch correspondence problem.

Contents

After our introduction in Chapter 1, we discuss the background of this thesis in Chapter 2.

In Chapter 3 and in Chapter 4, we describe the combinational permutation equivalence problem,
explain why it is NP–hard, and provide techniques to handle the problem. Moreover, an extensive
analysis and evaluation of our practical experiments is made.

Chapter 5 describes, how the techniques used to handle the combinational permutation equiva-
lence problem can be applied to the problem of finding a correspondence between the latches of
two sequential circuits.

Finally, we give a summary of the techniques provided in Chapters 3, 4, and 5 and mention some
ideas for future projects based on the results of this thesis in Chapter 6.

Introduction 8

Acknowledgements

I would like to thank my advisor Prof. Paul Molitor for the stimulating discussions, the helpful
advice and the constructive critical comments during the work on this thesis. I am particulary
indebted to him for his invaluable support, his patience and understanding after the birth of my
daughter Jasmin in 1994. This helped me very much to continue the scientific work on my thesis.

I would also like to express my special gratitude to Prof. Sharad Malik for giving me the opportunity
to come to Princeton University in 1992. These six months in Princeton laid the foundations of this
thesis. I am very thankful to him for his continuing encouragement and for the inumerable and very
helpful discussions during all the time after 1992. I not only appreciate very much his patience and
ability to explain things clearly but also profited a lot from his experience in presenting scientific
results.

I am very grateful to Dr. Michael Weber, who was my teacher, for introducing me into the topic
of VLSI circuit design and for supporting my research visits at University of Saarland and at
Princeton University. I also thank Dr. Michael Weber, who is the manager of DResearch Digital
Media Systems GmbH, for giving me the permission to use the equipment of our company to print
out my thesis.

I thank Prof. Günther Hotz from University of Saarland for inviting me to his chair at University
of Saarland and for his support during this time.

Also I would like to thank the International Research & Exchange Board IREX for the scholarship.
I am especially grateful to Beate Dafeldecker from IREX for her friendly help and support in
organizing the research visit in Princeton before, during and after my stay there.

I thank Prof. Tsutomu Sasao for the structural description of benchmark t481 which helped me to
figure out the characteristic of this circuit.

I would like to thank all my friends and colleagues from my time at Humboldt University in Berlin,
University of Saarland in Saarbrücken, Princeton University, and Martin–Luther University in
Halle who helped me with enlightening discussions, with encouragement and with their friendship.
Especially, I would like to thank Dr. Frank Bauernöppel, Laura Heinrich-Litan, Steve Chun-yao
Huang, Petra Ludt-Vogelgesang, Dirk Möller, Ralf Oelschlägel, Ines Peters, Dr. Klaus Peters, Anke
Remus, Dr. Christoph Scholl, and Wolfgang Vogelgesang.

Mein besonderer Dank gilt meinen Eltern, Monika und Gerhard Lochert, für eine wunderbare
Kindheit als eine der Quellen meiner Kraft und für die Hilfe und Ermutigung auf meinem Weg zur
Vollendung dieser Arbeit.

Last but not least I would like to thank my family for their love and their patience. I thank my
daugther Jasmin for beeing there, and I thank my husband Klaus for the hours of proof reading
and for providing me with enough chocolate during the last time of completing this thesis. Thank
you for beeing an inexhaustible source of motivation and encouragement!

Chapter 2

Background

In this chapter we review some basic notation and definitions that will be used in the sequel. In
addition, we discuss tractable and intractable problems — one of the basic aspects of not just
circuit design but also computer science. Finally, we discuss a state–of–the–art data structure
— the reduced ordered binary decision diagram [6] — and justify our use of it as the basic data
structure for our algorithms. For more information we refer to [23].

2.1 Notation

We mainly use the notations introduced in [23]. We use braces (i.e., {}) to denote unordered sets
and parentheses (i.e., []) to denote ordered sets. For example, an unordered set of three elements is
denoted by S = {a, b, c}. Vectors of elements are ordered sets. They are denoted by lowercase bold
characters. The cardinality of a set is the number of its elements. It is denoted by ||. Given a set S,
a partition of S is a set of disjoint subsets of S whose union is S. For example, PS = {{b}, {a, c}} is
a partition for our example set. Set membership of an element is denoted by ∈, set inclusion by ⊂
or ⊆. The symbol ∀ is the universal quantifier, the symbol ∃ the existential quantifier. Implication
is denoted by =⇒ and co–implication by ⇐⇒. The symbol : means such that.

The Cartesian product of two sets X and Y , denoted by X×Y , is the set of all ordered pairs (x, y),
such that x ∈ X and y ∈ Y . A relation R between two sets X and Y is a subset of X × Y . We
write xRy when x ∈ X, y ∈ Y and (x, y) ∈ R. An equivalence relation is a subset R of X × X
which is reflexive (i.e., (x, x) ∈ R), symmetric (i.e., (x, y) ∈ R =⇒ (y, x) ∈ R), and transitive (i.e.,
(x, y) ∈ R and (y, z) ∈ R =⇒ (x, z) ∈ R). A partial order is a relation between X and itself that is
reflexive, anti–symmetric (i.e., (x, y) ∈ R and (y, x) ∈ R =⇒ x = y) and transitive.

A function (or map) between two sets X and Y is a relation having the property that each element
of X appears as the first element in one and only one pair of the relation. A function between
two sets X and Y is denoted by f : X −→ Y . The sets X and Y are called the domain and the
co–domain of the function, respectively.

9

Background 10

Figure 2.1: The Relation between P and NP

2.2 The Problem of Complexity

Most problems of computer–aided design tasks for digital circuits are discrete in nature. In other
words, it is necessary to solve combinatorial decision and optimization problems. Optimization
problems can be reduced to sequences of decision problems. So from now on let us concentrate on
decision problems.

A decision problem is a problem with a binary–valued solution, i.e., TRUE or FALSE. For instance,
such a problem is the formal verification of digital circuits, i.e., the question whether the imple-
mentation and the specification of a digital circuit describe the same function.

Some of these decision problems can be solved by algorithms with polynomial complexity, i.e., the
number of elementary operations which are repeated in the algorithm is polynomial in the size
of some input to the algorithm. This class of problems is known as P or the class of tractable
problems [23]. Unfortunatly, it covers only a small part of the problems in the synthesis and
optimization of digital circuits. Then, there is another class of problems that could be solved by
polynomial algorithms on non–deterministic machines. These are machines which can start with
a guess before performing a deterministic algorithm. We call this class NP. Obviously P ⊆ NP.
The question of whether P = NP is still unsolved.

However, there is a class of problems for which it has been shown, that if any of these problems can
be solved with a polynomial algorithm, then P = NP . This class of problems is called NP–hard,
and the subclass of these problems which is also in NP is called NP–complete. Figure 2.1 shows
the relations among them.

The named property of NP–hard problems implies that if a polynomial algorithm for one of these
problems could be found then many other problems for which no polynomial algorithm has been
known so far could be solved by polynomial algorithms as well. In other words, it is very unlikely

Background 11

that there are polynomial algorithms for deterministic machines. That is, why these problems are
called intractable.

Unfortunately, most of the problems that have to be solved in computer–aided design of micro-
electronic circuits belong to these class of intractable problems. So it is necessary to think about
alternative solution possibilities for NP–hard problems. The basic solution idea is as follows: if
it is not possible to find an exact solution for a problem in reasonable time, i.e., if there is no
polynomial algorithm to solve this problem, then try to find polynomial algorithms which are not
guaranteed to find the exact solution for all problem instances but are able to provide good ap-
proximations to the exact solution for practical applications. Since these kind of algorithms work
with heuristics, i.e., problem–solving techniques which are developed based on experiences, they
are called heuristic algorithms. In other words, for NP–hard problems the effort of research is to
find heuristic algorithms that are expected to have polynomial complexity with small exponents
and provide good solutions for a lot of practical problem instances.

2.3 Boolean Functions

First, let us consider the Boolean n–space. This is the multi–dimensional space spanned by n
binary–valued Boolean variables and is denoted by Bn = {0, 1}n. A point in this space is referred
to as a minterm and is denoted c1 . . . cn with ci ∈ {0, 1}.
A completely–specified Boolean function is a mapping between two Boolean spaces. A Boolean
function with n input and m output variables is a mapping f : Bn −→ Bm. An incompletely–
specified Boolean function is defined over a subset of Bn. The minterms where the function is not
defined are called don’t care conditions. If we consider multiple–output functions, i.e., m > 1,
the don’t care components may differ for each output of the function. Therefore, incompletely–
specified Boolean functions are represented as f : Bn −→ {0, 1, ∗}m, where ∗ represents a don’t
care condition. For each output of f , we can divide its domain into three subsets: the off–set
includes all minterms for that the function value is 0, the on–set (also referred to as the satisfy set)
those minterms for that the function value is 1, and finally, the dc–set contains those minterms for
that the function value is ∗. A completely–specified Boolean function can also be described as the
set of its on–set minterms.

The Boolean n–space can be graphically represented as a hypercube. Here, a point in Bn is
represented by a binary–valued vector of dimension n. Now, when the binary input variables of a
Boolean function f are associated with the components of Bn, a point in this Boolean space can be
identified by the values of the corresponding variables. A literal is a variable xi or its complement x̄i,
and a product of n literals denotes a point (also referred to as a vertex) in Bn. Figure 2.2 (a) shows
this cube for the three–dimensional Boolean space, B3 with the three Boolean variables x1, x2, and
x3. In this cube of Figure 2.2(a) we can put the description of any Boolean function f with three
input variables and one output variable. Let us do this for the example function f = x1x2 + x̄1x3.
Let the black dots indicate those points of the Boolean three–space that belongs to the on–set, and

Background 12

Figure 2.2: The Boolean 3–Space (a) and the Description of f(x1, x2, x3) = x1x2 + x̄1x3 (b)

white dots the points of the off–set of function f , then the graphical description of function f in
a cube looks as described in Figure 2.2 (b). The generalization for incompletely–specified Boolean
functions and/or functions with more than one output variable is straightforward: use a separate
cube for each output, and denote those points of the domain that belongs to the dc–set with an
extra sign like ×.
The distance (or Hamming distance) between two vertices v1 and v2 in the Boolean n–space is the
number of components that their coordinates differ on. Considering for instance two points of the
Boolean three–space, v1 = 000 and v2 = 011, we see that the distance between these two points is
2.

In the following, we will consider completely–specified Boolean functions. We denote the set of
all those completely–specified Boolean functions with n input variables and m output variables
by Bn,m, the set of input variables by X = [x1, x2, . . . , xn], and the set of output variables by
Y = [y1, y2, . . . , ym]. Note that we use these sets as ordered sets of variables.

For the sake of simplicity, we will mostly consider a completely–specified Boolean function with
n input variables and one output variable. For any of these f ∈ Bn,1, we use the following basic
definitions and notations.

The lexicographical order relation for Boolean functions is defined as follows: the Boolean function
f is lexicographical smaller than a Boolean function g ∈ Bn,1 (f <L g) iff f(c1, . . . , cn) = 0 and
g(c1, . . . , cn) = 1 and the binary vector (c1, . . . , cn) is an encoding of the smallest integer, such that
f(c1, . . . , cn) �= g(c1, . . . , cn)[8].
The satisfy count of function f is the number of on–set minterms of function f and is denoted as
follows:

|f | = |{c1 . . . cn ∈ Bn : f(c1, . . . , cn) = 1}|.

Definition 2.1 [23] The cofactor of f(x1, x2, . . . , xi, . . . , xn) with respect to xi is
fxi(x1, x2, . . . , xi, . . . , xn) = f(x1, x2, . . . , 1, . . . , xn). The cofactor of f(x1, x2, . . . , xi, . . . , xn) with
respect to x̄i is fx̄i(x1, x2, . . . , xi, . . . , xn) = f(x1, x2, . . . , 0, . . . , xn).

Background 13

The cofactor functions fxi and fx̄i are considered as functions with the same number of input
variables as the function f , i.e., as functions with n input variables.

The logical composition of cofactors of a Boolean function f is denoted as a subfunction of f .

The essential variables of a Boolean function f are those variables from that f depends on, i.e., xi
is an essential variable of function f iff fxi �= fx̄i .

Definition 2.2 [23] A function f(x) = f(x1, x2, . . . , xi, . . . , xn) is (positive/negative) unate in
variable xi if fxi(x) ≥ fx̄i(x) (fxi(x) ≤ fx̄i(x)) for all possible assignments to the other variables
xj with j �= i, j = 1, 2, . . . , n. Otherwise it is binate in that variable.

A function is (positive/negative) unate if it is (positive/negative) unate in all essential variables.
Otherwise it is binate.

Besides the cofactor function, there are three other functions that will be used with respect to a
Boolean function f : the existential abstraction, the universal abstraction, and the Boolean differ-
ence.

Definition 2.3 [23] The existential abstraction (or smoothing) of function
f(x1, x2, . . . , xi, . . . , xn) with respect to a variable xi is ∃xif := fxi + fx̄i.

A minterm c1 . . . ci . . . cn belongs to the on–set of ∃xif if there exists an assignment to xi which
satisfies f . That is, f(c1, . . . , 0, . . . , cn) = 1 or f(c1, . . . , 1, . . . , cn) = 1. In other words, the
existential abstraction represents those minterms for which the function is true for at least one
assignment to xi.

Definition 2.4 [23] The universal abstraction (or consensus) of function
f(x1, x2, . . . , xi, . . . , xn) with respect to a variable xi is ∀xif := fxi · fx̄i.

A minterm c1 . . . ci . . . cn belongs to the on–set of ∀xif if all assignments to xi satisfy f . That is,
both f(c1, . . . , 0, . . . , cn) = 1 and f(c1, . . . , 1, . . . , cn) = 1. So the universal abstraction of a function
are those minterms for which the function is true for all assignments to xi.

Definition 2.5 [23] The Boolean difference of a function f(x1, x2, . . . , xi, . . . , xn) with respect
to a variable xi is ∂f

∂xi
:= fxi ⊕ fx̄i. ⊕ is the exclusive-or operator.

The Boolean difference represents the minterms for which f changes when variable xi changes, i.e.,
it represents the minterms for which xi is observable at f . When it is zero, then the function does
not depend on xi.

Background 14

Now let us define a special subset of Boolean functions from Bn,n. We denote with Pn ⊂ Bn,n the
set of all possible permutations on the set of input variables X = [x1, x2, . . . , xn], i.e., one-to-one
mappings of X onto itself. Pn is a group [17], and we call it permutation group in the sequel.
Let f ∈ Bn,1 be a Boolean function and π ∈ Pn be a permutation of the input variables in X. Then
we define:

f ◦ π(x1, . . . , xi, . . . , xn) = f(xπ(1), . . . , xπ(i), . . . , xπ(n)).

Often, we will consider a permutation π ∈ Pn as a map π : X −→ X defined with π(xi) = xπ(i).
Note that then π1 ◦ π2(xi) = π2(π1(xi)) according to this definition of π1, π2 ∈ Pn. Furthermore,
we describe with

π(x1, x2, . . . , xn) = (π(x1), π(x2), . . . , π(xn))

the complete permutation π and denote by

1(x1, x2, . . . , xn) = (x1, x2, . . . , xn)

the identity.

2.4 Reduced Ordered Binary Decision Diagrams

There are different ways to represent Boolean functions. We are especially interested in the repre-
sentation by binary decision diagrams.

A binary decision diagram (BDD) represents a set of binary–valued decisions resulting in an overall
decision which can be TRUE or FALSE. They are represented by trees or rooted, directed, and
acyclic graphs, where the decisions are associated with the vertices. A special kind of BDDs are
ordered BDDs which were introduced by Randal E. Bryant in 1986 [6].

Definition 2.6 [23] An OBDD is a rooted directed graph with vertex set V . Each non–leaf
vertex has as attributes a pointer index(v) ∈ {0, 1, . . . , n − 1} to an input variable in the set
{x1, x2, . . . , xn}, and two children low(v) and high(v) ∈ V . A leaf vertex v has as attribute a value
value(v) ∈ {0, 1}.
For any vertex pair {v, low(v)} (and {v, high(v)}) such that no vertex is a leaf,
index(v) < index(low(v)) (and index(v) < index(high(v))).

The restriction on the variable ordering guarantees that the graph is acyclic. Considering a vertex v
and its two children low(v) and high(v), we also call low(v) the 0–branch and high(v) the 1–branch
of vertex v. We associate a Boolean function with an OBDD as follows.

Background 15

Figure 2.3: Ordered Binary Decision Diagrams for f(x1, x2, x3) = x1x2 + x̄1x3

Definition 2.7 [23] An OBDD with root vertex v denotes a function f v such that: If v is a leaf
with value(v) = 1, then f v = 1. If v is a leaf with value(v) = 0, then f v = 0. If v is not a leaf and
index(v) = l, where l is associated with variable xi, then f v = x̄i · f low(v) + xi · fhigh(v).

Figure 2.3 shows two OBDDs of function f = x1x2+ x̄1x3 with the variable ordering x1, x2, x3. I.e.,
vertex index 0 is associated with variable x1, index 1 with variable x2, and index 2 with variable
x3. Changing the variable ordering in an OBDD means to change the relation from the indices to
the variables, thus the variables in the ROBDD need to be reordered.

OBDDs have more practical applications than other kinds of BDDs because of two properties. First,
OBDDs can be transformed into a unique form for representing a Boolean function f ∈ Bn,1 by
reduction of isomorphic subgraphs and redundant vertices.

Definition 2.8 [23] An OBDD is said to be a reduced OBDD (or ROBDD) if it contains no
vertex v with low(v) = high(v), nor any pair {u, v} such that the subgraphs rooted in v and in u
are isomorphic.

The OBDD in Figure 2.3 (b) is an ROBDD for function f = x1x2 + x̄1x3. Note that the ROBDD of
any Boolean function is unique only with respect to a certain variable ordering, i.e., with resepct
to a certain relation of the indices of the vertices of the ROBDD to the variables of the function.
In [6], Randal E. Bryant proved that ROBDDs are unique forms for representing Boolean functions.

Background 16

For this reason, they are especially suited for any problem in the computer–aided design of digital
circuits for which equivalence checks between Boolean functions are necessary. Here, equivalence
checking reduces to checking if the two unique representations of the two functions are the same.

The other property which has made ROBDDs popular in the circuit design area is that operations
on ROBDDs can be done in polynomial time of their size, i.e., the number of vertices [6]. However,
it would be a false conclusion that ROBDDs can be used to efficiently solve intractable problems.
Unfortunatly, the size of OBDDs may strongly depend on the ordering of the variables. For example,
the size of OBDDs for the adder function is very sensitive with respect to the selected variable
ordering [23]. While it is polynomial in the number of input variables in the best case, it is
exponential in the worst case. Other functions, like the arithmetic multiplier functions, do not
have an OBDD representation with polynomial size. They have exponential OBDDs regardless of
the selected variable ordering [6].

However, for a lot of common and reasonable practical examples of logic functions, a variable
ordering can be found such that the size of their OBDDs is tractable. Many researchers have
investigated heuristics to find optimal variable orderings (e.g., [3, 11, 12, 22, 32]). ROBDD packages
have been developed and improved that allow an efficient manipulation of Boolean functions with
the help of ROBDDs (e.g., [4, 18, 19, 24]). Alltogether, ROBDDs have developed to become the
state–of–the–art data structure for representing Boolean functions and have been successfully used
in many applications. The development of the ROBDD has led to a big factor in the progression of
research in synthesis and verification of digital systems during the last 10 years.

Chapter 3

The Combinational Permutation
Equivalence Problem

The background for the combinational permutation equivalence problem is the following task: we
need to test the equivalence of two Boolean functions, but we do not know the correspondence
between their inputs. In formal logic verification this may be the case while using different tools at
various stages of the design process which have their own naming conventions (see Introduction).
Here, often ROBDDs are used to check the equivalence of Boolean functions. For our task, the
problem is that we cannot use the ROBDD representations directly to check the equivalence. We
have to establish a correspondence between the input variables of the two functions before we can
apply this method. The most direct way to do this, is to try each possible correspondence. However,
it is clear that this cannot be a practical one: for two Boolean functions with n input variables
there are n! possible correspondences between the inputs of these two functions. In Section 3.1,
it is explained why this problem is NP-hard. So we need techniques that use heuristic methods.
Several papers have investigated the problem in recent years, for example, [9, 10, 21, 25, 29, 31, 33].
Except [29, 31], all have developed ideas for the ROBDD data structure and basically used the
following method: derive signatures for each input variable of a function to uniquely identify this
variable.

What is the basic idea behind using signatures? A signature is a description of an input variable
which is independent of the permutation of the inputs of a Boolean function f . So, it can be used
to identify this variable independent of permutation, i.e., any possible correspondence between the
input variables of two functions is restricted to a correspondence between variables with the same
signature. So, if each variable of a function f had a unique signature, then there would be at most
one possible correspondence to the variables of any other function. That is why the quality of any
signature is characterized by its ability to be a unique identification of a variable and, of course, by
its ability to be computed fast. The signatures that have been introduced in the cited papers differ
in terms of the quality. Nevertheless, we can say that this concept, in general, is a promising one
and successful in a large number of practical cases. In Section 3.2, we demonstrate this approach
in detail and introduce special signatures that are developed by us, mainly presented in [25]. In

17

The Permutation Equivalence Problem Pπ 18

Section 3.3, the utility of these signatures is demontrated on a large set of benchmarks and their
quality in comparison to the signatures developed in related papers is discussed.

3.1 Problem Description

Let us describe the actual problem as follows.

Definition 3.1 Let f and g be two Boolean functions of Bn,1 defined over the set of variables
X = [x1, x2, . . . xn].

The combinational permutation equivalence problem, Pπ, is defined as follows: does there exist a
permutation π ∈ Pn such that

f(X) ≡ (g ◦ π)(X)
is a tautology?

In addition to directly answering this question, the permutation π which establishes the equivalence
must also be provided (in the case when the answer is in the affirmative). This does not have to
be unique, as illustrated by the following example.

Example 3.1

X = [x1, x2, x3, x4]

f = x1x3(x̄2 + x4) + x2x4

g = x1x2(x̄3 + x4) + x3x4

π1(X) = (x1, x3, x2, x4)

π2(X) = (x3, x1, x2, x4)

In this example the functions f and g are obviously permutation equivalent with respect to the
permutation π1 of X. However, the permutation π2 establishes a correspondence for equivalence
between the inputs of f and g as well.

Depending on the application, either any such π or all such π may be needed.

This permutation equivalence problem (also referred to as the Boolean matching problem in lit-
erature [23]) is intractable, i.e., it is NP–hard, because the complement of the tautology problem
belongs to the NP–complete class of problems [15]. In other words, we need to find efficient
heuristics in order to be able to handle the permutation equivalence problem.

The Permutation Equivalence Problem Pπ 19

3.2 Signatures

Let us recall the problem. We want to check if two Boolean functions are equivalent independent
of the permutation of their inputs. Therefore, we need to establish a correspondence between the
input variables of these two functions. Signatures are the basic components of the approach which
we use to handle this problem.

3.2.1 Definition

In this context, a signature can be described as follows:

Definition 3.2 Let U be an ordered set, (U,≤).
A mapping s : Bn,1 ×X −→ U is a signature function iff:

∀f ∈ Bn,1∀π ∈ Pn and ∀xi, xj ∈ X : π(xi) = xj =⇒ s(f, xi) = s(f ◦ π, xj).
We call s(f, xi) a signature for the input variable xi of function f .

That means that a signature for an input variable xi of a Boolean function f ∈ Bn,1 is a description
of xi which provides special information about this variable in terms of f . Furthermore, it is very
important that this information is independent of any permutation of the inputs of f , i.e., if a
permutation π maps the variable xi to xj, then the signature of xi in f must be the same as the
signature of xj in f ◦ π.
Why the property of a signature to be an element of an ordered set is useful, we will demonstrate
in the following section. Note, that this property is not a necessary one, but it makes things easier
and the variety of signature functions that can be developed increases.

In the following, let Sn be the set of all signature functions for the input variables of a Boolean
function f ∈ Bn,1.

3.2.2 Solution Paradigm

We can use a signature to identify an input variable xi independent of permutation and to establish
a correspondence between this variable xi of f with a variable xj of any other Boolean function
g ∈ Bn,1. In order to establish a correspondence between these two variables, variable xi of f must
have the same signature as variable xj of g.

The main idea of this approach is clear: if we are able to compute a unique signature for each
input variable of f , then the correspondence problem is solved – there is only one or no possible
correspondence for permutation equivalence of function f with any other function g. If we find
for each variable of f a variable of g which has the same signature, then we have established a
correspondence. Otherwise, we know immediately that these two functions are not permutation
equivalent. The main problem that arises in this paradigm is when more than one variable of a

The Permutation Equivalence Problem Pπ 20

function f has the same signature, so that it is not possible to distinguish between these variables,
i.e., there is no unique correspondence that can be established with the inputs of any other function.
We call a group of such variables an aliasing group. Suppose there is just one aliasing group of
inputs of a function f after applying certain signatures. If the size of this group is k, then there are
still k! correspondence possibilities to test between the input variables of f and the input variables
of any other function g.

However, before we go into details of how signatures are generated and what the practical experi-
ences of using signatures are, let us illustrate this solution paradigm on an example of two Boolean
functions, f and g with four input variables, X = [x1, x2, x3, x4].

First, we compute a signature s ∈ S4 for each of the variables x1, . . . , x4 with respect to f . In this
context, a signature for a variable xi is a value or a list of values which provides special information
about xi in terms of f . Remember, since we want to use those signatures to identify each input
variable independent of the permutation of all input variables in the function, each signature for a
variable should be independent of the permutation of the other input variables.

Let us assume a signature is the assignment of an integer to each variable. For purpose of this
example, let us assume that

s(f, x1) = 3,

s(f, x2) = 2,

s(f, x3) = 1,

s(f, x4) = 2.

The signature list for function f , L(f), is an ordered list of the signatures of the variables in X for
f . Thus,

L(f) = [3, 2, 1, 2].

Now, given the Boolean function g we compute L(g). Since the signature is a permutation inde-
pendent property of the variable with respect to a function, a necessary condition for f and g to
be permutation equivalent is that their signature lists have the same elements. This can be easily
checked by sorting and comparing the two lists. If the lists do not contain the same elements, the
inequality of the two functions is already established. Note that in this way, the lists of signatures
can be considered as detailed output variable filters which were introduced by Lai, Sastry and
Pedram in [21]. In other words, the sorted lists of signatures for the input variables could be used
to identify the output variables of Boolean functions with more than one output independent of
permutation. However, this evaluation is out of the scope of this thesis. So let us come back to Pπ.

Let us assume that in our example the lists contain the same elements and let

L(g) = [2, 2, 3, 1].

Based on the signatures, we can directly establish that any permutation π for which the two
functions could be permutation equivalent, i.e., f = g◦π, has to satisfy π(x3) = x1 and π(x4) = x3.

The Permutation Equivalence Problem Pπ 21

Thus, the correspondence of the variables has been partially established. However, π(x1) could
either be x2 or x4 and π(x2) is then the remaining variable. In this case aliasing has occurred since
x1 and x2 have the same signature (in g).

There are two reasons for the existence of these aliasing groups: either the used signature function
was not strong enough to distinguish between the two variables or the variables have some special
properties that make it impossible to distinguish between them using signatures. In the first case,
we can use another signature function. This is the topic of Section 3.2.3. The second case is
more complicated: we need to find out that there is such a property (so that we do not apply one
signature after the other without any hope of success), and we need to apply a non–exhaustive
technique to handle those cases. In Chapter 4, we investigate this problem and show some ways
to overcome these limits of using signatures.

However, first let us come back to those cases where signatures have been proven to be very helpful.
Given signatures, they may be used in two possible ways. They may be directly used to establish
the correspondence, as suggested in the above example, or they may be used to establish a possibly
unique (in the absence of aliasing) ordering of variables for Pπ. Assuming there is no aliasing, the
variables can be sorted uniquely using the signature as a key, because signatures are elements of
an ordered set (see the definition). This establishes a unique order for the variables, and this can
be used for renaming the variables in a unique way or for constructing an ROBDD using this order.
A method to restructure an ROBDD from a given variable ordering to any other variable ordering
is proposed in [37]. This ROBDD will be a permutation independent unique representation for this
function. In the case where there is aliasing, instead of a single unique order of variables, there will
be a set of possible orders corresponding to all possible sorts of the list of variables. Note that this
set is unique for a given signature function. However, the cardinality of this set depends on the
amount of aliasing that occurs.

3.2.3 Special Signatures

In the following we introduce three kinds of signatures for an input variable xi of a Boolean function
f ∈ Bn,1 for that we investigated to be very successful in practical experiences.

3.2.3.1 Satisfy Count Signatures

The satisfy set of a Boolean function g ∈ Bn,1 is the number of vertices of the Boolean n–space for
which the function value is 1. Then, the satisfy count of g is the number of minterms in the satisfy
set of this function:

|g| = |{x ∈ {0, 1}n : g(x) = 1}|.
This number does not dependent on any permutation of the input variables of g. Let us examine
this fact on the example of the simple multiplexer function f(x1, x2, x3) = x1x2 + x̄1x3. Consider
Figure 3.1 (a). This figure shows the cube representation of the multiplexer function again. Black
dots indicate minterms where this function is equal to 1, white dots indicate the minterms where

The Permutation Equivalence Problem Pπ 22

the function is equal to 0. Computing the satisfy count of function f in the cube means to count
the number of black dots. Obviously, this counting process is permutation independent: we are
just interested in the number of black dots and not in their locations.

Furthermore, it is easy to compute: assuming the availability of g in an ROBDD it can be done in
time linear in the size of this ROBDD [6].

Now, if we consider as function g any function which provides special information of a variable xi
in f , we get the first class of signatures. We call them satisfy count signatures.

One of those subfunctions of f is the positive phase cofactor of f with respect to an input variable
xi:

g(x1, x2, . . . , xn) = fxi(x1, x2, . . . , xn) = f(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn).

The satisfy count of this function is a simple but very powerful signature for variable xi in function
f (see the experimental results of this chapter). Moreover, it can be computed on the ROBDD of
the original function f without even computing fxi explicitly. This counting is done exactly in the
same manner as computing the satisfy count of a function f as suggested by Bryant [6], except that
contributions along the paths with xi = 0 are ignored. We call this signature the cofactor satisfy
count signature. Aliasing occurs when two variables have the same satisfy count for the positive
phase cofactors. Note, that this signature has been independently used in other papers as well. For
example, in [21] Lai, Sastry and Pedram have used this as well as one of their input variable filters.

Suppose, we use the cofactor signature to distinguish between the input variables of a Boolean
function and aliasing occurs for some of these variables. What other subfunctions g can provide
new information for a variable xi in function f?

There are a few of candidates for g:

• the cofactor function with respect to the negative phase of xi:

fx̄i(x1, x2, . . . , xn) = f(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn),

• the existential abstraction of f with respect to xi:

∃xif = fxi + fx̄i ,

• the universal abstraction of f with respect to xi:

∀xif = fxi · fx̄i,

as well as

• the Boolean difference of f with respect to xi:

∂f

∂xi
= fxi ⊕ fx̄i .

However, examining the information which is provided by the satisfy counts of these functions, we
observe the following.

The Permutation Equivalence Problem Pπ 23

x

x
x

1

2
3

(b)(a)

x = 0
1

x = 1
1

Figure 3.1: Cube Representation of f(x1, x2, x3) = x1x2 + x̄1x3 (a) and fx1(x1, x2, x3) = x2 (b)

The satisfy count for the negative phase cofactor does not provide any additional information based
on the following property.

Property 3.1

2 · |f | = |fxi |+ |fx̄i |

Proof: Consider the satisfy count of the Boolean function f .

|f | = |xi · fxi + x̄i · fx̄i |
= |xi · fxi|+ |x̄i · fx̄i | − |xi · fxi · x̄i · fx̄i |
= |xi · fxi|+ |x̄i · fx̄i | − 0

=
1
2
· |fxi |+

1
2
· |fx̄i |,

because fxi (and fx̄i) is considered as Boolean function in n instead of n− 1 input variables, i.e.,
while with |xi · fxi | (and |x̄i · fx̄i |) just the positive (and negative) half of the Boolean n-space
with respect to xi is considered, |fxi | (and |fx̄i |) includes the complete Boolean n-space. Here,
each function value of fxi (and fx̄i) in the negative half of the Boolean n–space with respect to
xi is equal to the corresponding function value in the positive half.

To illustrate this, let us consider an example. Figure 3.1 shows the cube representations of function
f = x1x2 + x̄1x3 and its cofactor function with respect to x1, fx1 = x2. In this figure it is easy
to see that the cofactor function fx1 is constructed by mapping the positive half of the Boolean
three–space with respect to x1 to the negative half. 2

From Property 3.1 it follows that if for two input variables xi and xj of f |fxi | = |fxj |, then
|fx̄i | = |fx̄j |.
Considering the satisfy counts of the other three subfunctions of f , namely the existential abstrac-
tion, the universal abstraction, and the Boolean difference, we can observe similiar relationships.

The Permutation Equivalence Problem Pπ 24

If one of them has been used already no further advantage is to be gained by using the other two.
For example, if we include the satisfy count of the existential abstraction, then, as demonstrated by
the following two properties, the satisfy counts for the other two do not contribute any additional
information.

Property 3.2

2 · |f | = |∃xif |+ |∀xif |

Proof: Let us consider the satisfy count of the existential abstraction of function f with respect to
xi.

|∃xif | = |fxi + fx̄i|
= |fxi |+ |fx̄i | − |fxi · fx̄i |
= 2 · |f | − |∀xif |

This gives us the relationship among the satisfy counts of function f , and the existential and
universal abstraction of function f with respect to input variable xi. 2

Property 3.3

2 · |f | = 2 · |∃xif | − |
∂f

∂xi
|

Proof: First, let us consider the existential abstraction of function f with respect to xi again. Here,
we can establish the following relationship among existential abstraction, universal abstraction, and
Boolean difference of f with respect to xi.

∃xif = fxi + fx̄i

= fxi · (fx̄i + f̄x̄i) + fx̄i · (f̄xi + fxi)

= fxi · fx̄i + fxi · f̄x̄i + fx̄i · f̄xi + fx̄i · fxi

= ∀xif +
∂f

∂xi
+ ∀xif

= ∀xif +
∂f

∂xi

Now, we can establish the relationship among the satisfy counts of function f , its existential
abstraction, and its Boolean difference with respect to xi.

|∃xif | = |∀xif +
∂f

∂xi
|

= |∀xif |+ |
∂f

∂xi
| − |∀xif ·

∂f

∂xi
|

= |∀xif |+ |
∂f

∂xi
| − 0

= 2 · |f | − |∃xif |+ |
∂f

∂xi
|

The Permutation Equivalence Problem Pπ 25

Pπ |fxi | |∃xif |

i = 1 4 6
i = 2 6 6
i = 3 6 6

Table 3.1: Satisfy Count Signatures for f(x1, x2, x3) = x1x2 + x̄1x3

This gives us the desired relationship. 2

Using Property 3.2 and Property 3.3, we know that if |∃xif | = |∃xjf |, then |∀xif | = |∀xjf | as well
as | ∂f∂xi

| = | ∂f∂xj
| for any two variables xi and xj.

It is interesting to compare the information that the phase cofactors and the existential abstraction
(equivalently the universal abstraction or the Boolean difference) convey. The phase cofactors
provide information as to what is happening in each half subspace corresponding to xi = 0 and
xi = 1. The existential abstraction provides information as to the relationship across the two half
subspaces. Between the two of them, they tell the complete story as to what is happening in the
two halves, as well as how the two halves interact with each other.

However, there are several functions for that we cannot avoid aliasing using the satisfy count
of the positive phase cofactor and that of the existential abstraction (referred to as existential
abstraction satisfy count signature). Consider the simple example function in Table 3.1. For
this multiplexer function, f = x1x2+ x̄1x3, we cannot break the tie for x2 and x3 using the cofactor
signature as well as the existential abstraction signature.

Also the disadvantage of using |∃xif |, |∀xif |, or | ∂f∂xi
| as a signature is that this will need to construct

the ROBDD for the function ∃xif , ∀xif , or
∂f
∂xi

first, which may take time quadratic in the size of
the ROBDD of f [6].

We now examine what other information about a variable can be extracted from the ROBDD that
is independent of the permutation of all input variables.

3.2.3.2 Breakup Signatures

First, let us consider the satisfy count of a Boolean function g ∈ Bn,1 again. The idea is to break
it into n+ 1 special, permutation independent components:

s = [|g0|, |g1|, . . . , |gn|],

where |gk| is the number of minterms in the satisfy set of g that have distance k from the origin
O = [x0 = 0, x1 = 0, . . . , xn = 0] of the Boolean n-space (k = 0, 1, . . . , n). This is a good
characteristic of g and it is independent of the permutation of its input variables. So we can use it
to define several new signature functions. We call this kind of signatures breakup signatures.

The Permutation Equivalence Problem Pπ 26

Figure 3.2: Breakup Signature for fx1(x1, x2, x3) = x2 with O = [0, 0, 0]

First, we can use special subfunctions of f like fxi or ∃xif — similiar to the satisfy count signatures.
However, we also can use any other vertex than the origin of the Boolean n–space which may be
dependent on xi but independent of the permutation of the other input variables in f in order to
characterize the different levels: for example, the vertex O = [x1 = 0, x2 = 0, . . . , xi = 1, . . . , xn =
0].

We have investigated the first way with success (see the experimental results in Section 3.3), and
have used the cofactor function to create the cofactor breakup signature and the existential
abstraction to create the existential abstraction breakup signature.

An example for a cofactor breakup signature is shown in Figure 3.2. Again, we consider the function
f = x1x2 + x̄1x3 and the variable x1. This time, Figure 3.2 shows a cube representation for the
positive phase cofactor of f with respect to x1, fx1 = x2. Again, black dots indicate vertices
where this function is equal to 1, white dots indicate the vertices where the function is equal to
0. Using the origin of this cube [x1 = 0, x2 = 0, x3 = 0] and the distance, the vertices can be
separated in 4 different levels as shown in the figure. Then, the kth component of the actual
breakup signature is the number of black dots in the kth level (which is determined by distance
k from the origin). In this figure, the necessary permutation independence is easy to see: the
origin is permutation independent because each of the three variables is equal to 0, the distance is
permutation independent because it groups all vertices with a constant number of variables equal
to 1 in it together independent of the order of these variables themselves, and the counting step
itself is permutation independent because just the number of black dots (or minterms of the satisfy

The Permutation Equivalence Problem Pπ 27

set of fx1) in a level is interesting, not their places in this cube level. Similarly, we can compute
the breakup signature for the variables x2 and x3:

s(f, x1) = (0, 1, 2, 1),

s(f, x2) = (0, 2, 3, 1),

s(f, x3) = (1, 2, 2, 1).

For our example function, the cofactor breakup signature is more powerful than the cofactor sig-
nature and the existential abstraction signature: it helps to distinguish between the variables x2

and x3 as well.

The fact that the breakup signature is more powerful than the satisfy count signatures, can be
examined by another consideration. In [21] the authors use a simple method for analytically
comparing the effectiveness of signatures (they call them filters). Given a signature function s :
Bn,1 × X −→ U , a good and simple measure of the effectiveness of a signature function is the
cardinality of the co–domain of s, |s(Bn,1 × X)|. In other words, the more different values a
signature may have, the larger is the probability that it may uniquely identify a function. We
examine this further for the signatures we have developed.

The satisfy count of a Boolean function f with n input variables may assume 2n different values.
Now, let us examine the breakup signature for any function with n input variables. The value of
the kth signature component (k = 0, . . . , n) may be 0, 1, . . . , l where l equals the number of vertices
in the Boolean n–space with distance k from the origin. Thus, there are l+1 different possibilities
for this component and l =

(n
k

)
. Finally, the number of different breakup signatures that we can

get for a function with n input variables is
∏n
k=0[

(n
k

)
+ 1]. With Property 3.4 we immediately see

that the breakup signature for any Boolean function with n input variables is more powerful than
satisfy count signatures of it.

Property 3.4

2n <
n∏
k=0

[

(
n

k

)
+ 1]

Proof: It is
(n
k

)
+ 1 ≥ 2 for each k = 0, 1, . . . , n. From this fact it follows that

n∏
k=0

[

(
n

k

)
+ 1] ≥ 2n+1 > 2n,

and we are done. 2

The Permutation Equivalence Problem Pπ 28

In the last part of describing breakup signatures, we give an idea of how to compute them for a
given function g and a vertex O = [c1 . . . ci . . . cn] of the Boolean n–space on an ROBDD G for
g. We use a similiar counting technique as that used to compute the satisfy count of a Boolean
function [6]. The difference is that we need to compute a vector of values instead of a single value.
We call this vector br sig vec and create it in a bottom-up procedure on the ROBDD G of g.

The theoretical background of this calculation can be explained as follows. At each vertex v of the
ROBDD G, the algorithm computes the breakup signature of the subfunction which is represented
by the subROBDD with root vertex v. Say this function is g′ := gv . If v is a non–terminal node,
then we assume that g′ depends on n′ = n− j variables, where j ∈ {0, 1, . . . , n− 1} is the index of
node v. If v is a terminal node, then g′ is independent of any variable, i.e., n′ = 0. For each vertex,
the value vector br sig vec has n′ + 1 entries.

The number of all minterms in the Boolean n′–space that have distance k = 1, 2 . . . , (n′ − 1) from
the actual origin is (

n′

k

)
=

(
n′ − 1
k

)
+

(
n′ − 1
k − 1

)
.

This equation can be used as follows. Consider g′, the subfunction which is represented by the
subROBDD of G with root vertex v again. Let us consider the terminal case. If g′ = 1 or g′ = 0,
then there is exactly one entry in br sig vec, and this is |g′0| = 1 for g′ = 1 and |g′0| = 0 for g′ = 0.
Thus we guarantee that only the minterms of the on–set are counted. In the non–terminal case let
xi be the variable which is represented by the root vertex v. Then we compute the kth entry of
br sig vec of function g′ (k = 0, 1, . . . , n′) as follows:

1. if ci = 0 in the origin O:

|g′k| =

|g′0x̄i

| : k = 0
|g′n′−1
xi

| : k = n′

|g′kx̄i
|+ |g′k−1

xi
| : k = 1 . . . n′ − 1

2. if ci = 1:

|g′k| =

|g′0xi

| : k = 0
|g′n′−1
x̄i

| : k = n′

|g′k−1
x̄i
|+ |g′kxi

| : k = 1 . . . n′ − 1

This means regarding to the computation on the ROBDD: the kth entry of the vector br sig vec
of any non-terminal vertex v is computed by adding two special entries of the value vectors of
its children — one entry from the 0-branch child and one from the 1–branch child. Which ones
are added depends on the phase in which the variable xi represented by v occurs in the origin
O = [c1 . . . ci . . . cn]. The recursion terminates at the leaves where the value vector of the leaf
vertex with value 1 contains the single entry 1 and the leaf vertex with value 0 contains the single
entry 0. In this way, we make sure that only the minterms of the ON–set are counted in br sig vec.

The complete algorithm, called breakup sig, is described in pseudo–code in Figure 3.3. In this
algorithm, G.root is the node which occurs at the top of the ROBDD G. G.root.high and G.root.low

The Permutation Equivalence Problem Pπ 29

int∗
function breakup sig (G , o, l)
BDD G; co: actual ROBDD
int∗ o; co: point in Bool. n-space
int l; co: level of recursion
begin
if (br sig vec of G.root computed)
return br sig vec;
if (G = bdd zero) return 0;
if (G = bdd one) return 1;
br sig vec h← breakup sig (G.high, o, l + 1);
br sig vec l← breakup sig (G.low, o, l + 1);
create a new value vector br sig vec for G.root;
root← G.root.index;
low← G.low.root.index;
high← G.high.root.index;
co:index ∈ {0, 1, . . . , n− 1}
if (o[root] = 0) {
br sig vec[0]← br sig vec l[0];
br sig vec[n− root] ← br sig vec h[n− high];

}
else {
br sig vec[0]← br sig vec h[0];
br sig vec[n− root] ← br sig vec l[n− low];

}
for i from i=1 to n− root− 1 do
if (o[root] = 0)
br sig vec[i]←
cal sig val (br sig vec l, root, low, i) + cal sig val (br sig vec h, root, high, i−1);

else
br sig vec[i]←
cal sig val (br sig vec l, root, low, i−1) + cal sig val (br sig vec h, root, high, i);

if ((l = 0) && (root �= 0)) co: !! see comment in the text
complete br sig vec to |gk,o|, k = 0, . . . , n;
return br sig vec;

end breakup sig;

Algorithm breakup sig

Figure 3.3: Pseudo–Code for breakup sig(G, o, l)

are the subBDDs of G describing the 1–branch and the 0–branch of G.root, respectively, o is the
vertex which we compute the distances from and l indicates the level of the recursion beginning
with 0 for the top level.

The algorithm breakup sig works as follows. It considers the function represented by the ROBDD G
with root index G.root.index as a function in (n−G.root.index) variables and calculates the values
br sig vec[0] = |g0,o|, . . . , br sig vec[n − G.root.index] = |gn−G.root.index,o|. In other words, the
vector br sig vec which is created by breakup sig includes the breakup signature of the subfunction

The Permutation Equivalence Problem Pπ 30

int
function cal sig val (br sig vec , r, child i, ni)
int∗ br sig vec; co: value vector of the actual child
int r, co: node index of the root

child i, co: node index of the actual child
ni; co: to compute actual br sig vec[ni]

begin
if (child i = r + 1)
co: no gap to consider
return br sig vec[ni];
l ← child i− r − 1;
co: l is the number of levels between

root node and child node
v ← 0;
co: v is the return value
for i from i= min(l, ni) to 0 by −1 do {
if (ni− i > |br sig vec|)
co: there are no minterms with distance ni− i and larger
break;
v ← v +

(
l
i

) · br sig vec[ni− i];
co:

(
l
i

)
is the number of minterms with i ”1”’s in the l levels

br sig vec[ni− i] is the number of minterms with distance ni− i
in the subfunction of the actual child

}
return v;

end br sig vec;

Algorithm cal sig val

Figure 3.4: Pseudo–Code for cal sig val(br sig vec, r, child i, ni)

represented by the ROBDD of the actual root vertex (which need not be the root vertex of the
function). For leaf vertices, it returns 1 for the vertex marked with value 1, and 0 for the vertex
marked with value 0. For a non–leaf root vertex the value vector is computed using the vectors of
its children and taking care of the phase in which the variable represented by this actual vertex
occurs in o.

If there exists a gap between the root index and the index of the actual child of G, the number of
points added to a value br sig vec[i] by this child is not a single value of the vector of the child
but a combination of different values. This happens since we need to consider all possible value
combinations of the variables filling the gap. Let l be the number of levels between the root and
the child index, let br sig vec be the value vector of the actual child, and let g′ be the subfunction
of function g repesented by the actual child. The function g′ depends on n′ variables.

The Permutation Equivalence Problem Pπ 31

The number of minterms with distance k in g′ considered as subfunction in n′ + l instead of n′

variables is equal to:
min(k,l)∑
i=0

(

(
l

i

)
· br sig vec[k − i]).

Consider the ith term of this sum. Here,
(l
i

)
is the number of minterms with i components set to

1 in the l levels. Multiplying this number with the number of minterms with distance k − i in g′
considered as subfunction with n′ variables provides one part of the complete number of minterms
of g′ with distance k considered as subfunction in n′ + l variables. Adding all of such possibilities
for distance k provides the complete number of ON–set minterms of g′ considered in n′+ l variables.
This is carried out by procedure cal sig val shown in Figure 3.4 and can be done in time O(l). Thus
cal sig val has worst-case complexity O(n).

If the root index is not 0, then the idea of algorithm cal sig val has to be used at the top level of
breakup sig as well to assign the value vector of the root vertex to the desired signature (see the
if–statement commented with ’ !!’ in the pseudo-code of Figure 3.3). The computation of a vector
br sig vec of one vertex is O(n2), thus the complexity of breakup sig is O(|V | · n2), where |V | is the
number of vertices in G. However, in average cases it is more like O(|V | · n) since the worst case
runtime for cal sig val occurs seldom.

For a given Boolean function f and an input variable xi of f , there are mainly two functions that
are useful for computing a breakup signature for this input variable with respect to f . That is the
positve phase cofactor of f with respect to xi and the existential abstraction (see Section 3.2.3).
Here, the use of the cofactor function is preferred because it is not necessary to create the ROBDD
of a cofactor function fxi before computing the breakup signature. Instead of computing the
vector br sig vec of each vertex which is associated with xi by using the vectors br sig vec of
both children, we only have to assign the vector br sig vec of the 1–branch BDD using the idea of
procedure cal sig val.

The complexity of this procedure is O(|V | · n2), where |V | is the number of vertices in the ROBDD
of g. We see that the higher effectiveness of the breakup signatures in comparison to that one of the
satisfy count signatures must be paid with a higher complexity of the procedure which computes
the breakup signature. (The complexity to compute the satisfy count signatures is linear in the
number of ROBDD vertices of the actual function.) So it will probably be useful to apply satisfy
count signatures before applying breakup signatures. Further details are provided in Section 3.3.

3.2.3.3 Function Signatures

The last category of signatures for input variables that we want to introduce here are function
signatures. This kind of signatures does not represent special values or vectors of values, like the
satisfy count signatures and the breakup signatures, but special Boolean functions or vectors of
Boolean functions. These signatures can be applied to try to distinguish between input variables of
a Boolean function f after some variables have been uniquely identified. Thus we can explicitly use

The Permutation Equivalence Problem Pπ 32

the fact that we can uniquely identify some input variables by permutation independent information
computed on f . In other words, function signatures are special Boolean subfunctions of f that
depend on those variables only that have been uniquely identified by other signatures before (like
the satisfy count signature or the breakup signature).

How does this work? Let us consider a Boolean function g ∈ Bn,1 with the sequel of input vari-
ables X = [x1, x2, . . . , xn], and suppose that we have applied the introduced signatures to the
variables and that there are k variables with aliasing. For the sake of simplicity say, that these
are the variables x1, x2, . . . , xk. That means, x1, x2, . . . , xk are the variables which we still have
to identify uniquely. As described, we use special subfunctions of g that only depend on the
variables xk+1, xk+2, . . . , xn for this purpose. These are the variables that have had a unique de-
scription by the other signatures already. Now, if we use these signatures to order the variables
xk+1, xk+2, . . . , xn, then we get a unique and permutation independent order of these n − k vari-
ables. Let πcan ∈ Pn−k be the permutation which constructs this unique order, and g′ ∈ Bn−k,1
be a subfunction of g which is constructed by permutation independent operations on g and only
depends on the variables xk+1, xk+2, . . . , xn. Then, the Boolean function

ĝ = g′ ◦ πcan

is obviously a permutation independent information for function g.

Now, let us apply this in order to define function signatures for an input variable xi in a Boolean
function f ∈ Bn,1. We need to construct Boolean functions that have the properties of the function ĝ
and in addition can provide some special information about xi with respect to function f . The idea,
which immediately suggests itself is to use cofactor functions and existential abstraction functions
(as well as the universal abstraction and the Boolean difference) once again. This time, we need
to construct cofactor (or similar) functions evaluated to all variables x1, x2, . . . , xk that still have
aliasing. The so constructed subfunctions of f only depend on the variables xk+1, xk+2, . . . , xn. So,
each of them is a typical function g′ as described above.

Let us consider the cofactor functions evaluated with respect to the variables x1, x2, . . . , xk. Let xi
be one of these variables, then the two cofactor functions

fx1x2...x̄i...xk
as well as fx̄1x̄2...xi...x̄k

represent two function signatures for the variable xi. Similarly, we can apply this idea to the
existential abstraction and to other special subfunctions.

Moreover, we also can use other masks besides 000. . . 010. . . 0 and 111. . . 101. . . 1 used here. Similar
to the unique variables of a function f we can uniquely identify each aliasing group by the signatures
of its variables. Thus it is not necessary to set all aliasing variables but the actual xi to the same
value. What we need to do, is to guarantee that all variables of the same aliasing group are set
to the same value, and to keep track of which aliasing group is set to which value. So, with more
aliasing groups we have more distinct masks that we can create in this way.

The Permutation Equivalence Problem Pπ 33

This kind of signature functions seems to construct the strongest well–defined signatures that we
can describe for an input variable. Furthermore, it gives us new information about an input variable
which is completely different from the one we get using the other two kinds of signature functions.
The complexity of its computation depends on the two steps that are necessary to create a function
signature. The first step, to compute, for instance, the ROBDD of the cofactor function, is linear
in the size of the ROBDD of f . The second step, to reorder the input variables in this function
with respect to the unique order, is dominated by the actual reordering algorithm. We used the
algorithm introduced in [37] with very good practical results (see Section 3.3).

Finally, it is necessary to point out the following. One property of a signature for an input variable
of a Boolean function is that it is an element of an ordered set. This is important to be able to
use signatures for the creation of a unique permutation independent variable ordering. So, we need
an order relation for the function signature to be able to order the variables. Here we simply use
the lexicographical order relation for Boolean functions. To compare two Boolean functions f and
g lexicographically using their ROBDDs needs time linear in the number of essential variables of
these functions. This has been done as follows. We need to find the first point in the Boolean
n-space, i.e., the one with the lowest order in the ordering of these points, such that it is contained
in the ON–set of one function and in the OFF–set of the other. So we start at the root vertex in
the ROBDDs of f and g and keep walking left down both ROBDDs (i.e., taking the 0–branch) at
each variable unless pointers for both ROBDDs are the same. In this case, we branch right (i.e.,
along the 1–branch). When this terminates, one of the pointers will be the leaf vertex with value 1
and the other will be the leaf vertex with value 0. This gives us the required ordering among the
functions. Note that if f = g, then these two functions are represented by the same ROBDD and
we are done at the root vertex of this ROBDD. Since we are doing constant work at each level, this
procedure is linear in the number of essential variables of function f and g.

3.3 Experimental Results

We implemented the ideas presented in this chapter in the Berkeley SIS–system, release 1.3 [34].
Here, we used the UCB–BDD–package of the system. All experiments were done on a SUN Sparc-
station 10 with 64 MB RAM.

To test the quality of our signatures, we used all available benchmarks from the LGSynth91 [1] and
ESPRESSO [5] benchmark set for which we were able to construct the ROBDDs, as well as a couple
of additional benchmarks (act1, act2 – the actel 1 and actel 2 cells from the FPGA manufacturer
Actel; mult3 — a 3-bit-multiplier). In all there are 243 benchmarks.

On these benchmarks, we used the in Section 3.2 introduced signatures to distinguish between their
input variables step by step. Starting by considering all input variables as one aliasing group, we
organized the refinement process as follows. We applied a signature function to the variables of
each aliasing group, sorted these variables by their actual signatures, and separated the variables
with different signatures from each other. If there still was aliasing after this process, we applied
the next signature function.

The Permutation Equivalence Problem Pπ 34

%unique %cpu–time

co sig 39% 14.3%
p–symmetry 24% 8.4%
co br sig 24% 62.1%
ex sig 1% 0.1%
ex br sig 2% 1.5%
fctn sig 2% 13.6%

∑
92% 100.0%

Table 3.2: The Quality of Signatures in Pπ

Signature functions were applied in the following order:

1. co sig : cofactor satisfy count signature
2. co br sig : cofactor breakup signature
3. ex sig : existential abstraction satisfy count signature
4. ex br sig : existential abstraction breakup signature
5. fctn sig : cofactor function signatures with mask 000 . . . 1. . . 0 and mask 111 . . . 0. . . 1.

Note that the application of other than these two masks was not successful in
our experiments.

Here, we use those signatures first for which no ROBDD–constructions are necessary (namely the
first two signatures). Note again that at each step a signature function was applied for the variables
with aliasing only, i.e., once an input variable has been uniquely identified, no further work needs
to be done for this variable. Furthermore, most of the benchmarks have had more than one output
variable. Since we assume that the correspondence between the output variables of two circuits is
known, we can use all output functions of a benchmark sequentially starting with the first one in
the description.

Partial symmetries as known from literature appear relatively often in Boolean functions [28]. If
two input variables are partial symmetric, then there is no signature function which can distinguish
between these two variables. This will be discussed in detail in the next chapter (see Section 4.2).
However, partial symmetry can be detected easily using the methods introduced in [28]. Once they
have been detected it is enough to compute the signatures for one representative of a maximal
group of symmetric input variables. Our experiments have shown that it is the best with respect to
CPU–time to compute these symmetries between applying the cofactor signature and the cofactor
breakup signature.

Now let us come to our practical experiences with using signatures. Table 3.2 shows the percentage
of benchmark circuits which have had additionally a unique identification for their input variables
after applying a signature function (second column). Furthermore, it includes the part of CPU–time
which was necessary to apply this signature function (third column).

The Permutation Equivalence Problem Pπ 35

Using all the signature functions introduced in this chapter and the test for partial symmetries
(p symmetry), approx. 92% of all 243 tested benchmarks have a unique identification for their
input variables. Here, approx. 24% of the benchmarks contain partial symmetric variables.

Appendix A includes tables that provide details for this result. In these tables, each benchmark
circuit is listed with its constellation of aliasing groups after applying all signature functions, and
with the CPU–time which was necessary to exercise the complete procedure of computing signatures
and distinguishing input variables using these signatures.

The CPU–times are very promising. Even for our worst case in terms of CPU–time, which is C5315
with 178 input and 123 output variables, and 21194 ROBDD nodes, the procedure needs only
approx. 10 minutes to determine a unique identification (see Appendix A). In most of the other
cases, the CPU–time is in the order of a few seconds. The cofactor satisfy count signature (co sig)
is the most efficient signature function: it is able to identify the input variables of approx. 39% of
all benchmarks uniquely and needs just 14.3% of the CPU–time to do this. The cofactor breakup
signature breaks the tie for 24% of the benchmarks, but it takes over the half of the complete
CPU–time. We tested other orders of applying signature functions as well (e.g., use ex sig before
using co br sig), with the following result: the demonstrated order is the one which needs the
least amount of CPU–time. Avoiding ROBDD–constructions is more important than prefering
the signature functions with the best time complexity. The reason for the relatively low CPU–
time which was necessary to apply the existential abstraction satisfy count and breakup signature
function is that the number of benchmarks that these signatures were applied on is relatively
small in comparision to the complete set of benchmarks. Finally, we also observed that function
signatures have to be used last — for unique input identification of 2% of the benchmarks, 13.6%
of the total CPU–time was necessary.

These results show that the introduced approach to handle the permutation equivalence problem
seems to be very promising. To compare it with related work on the permutation equivalence
problem, let us discuss some of the key pieces of work here. For years this problem has been worked
on by several other authors. In 1990, F. Mailhot and G. De Micheli described a new algorithm for
Boolean matching which uses tautology checking based on Shannon decomposition [14]. Boolean
matching is the key operation in technology mapping. It checks whether an element of a given
library can be used to implement a part of a Boolean function. This can be formulated as checking
the equivalence between a given Boolean function, called the target function, and the set of functions
representing a library element. Often, this is considered for any permutation of the input variables.
This provides another application for our permutation equivalence problem.

In their Boolean matching algorithm F. Mailhot and G. De Micheli use the symmetry and unateness
property of input variables of a Boolean function as follows:

1. Any input permutation must associate each unate (binate) variable in the target function to
an unate (binate) variable in the function of the library element [14].

2. Variables or groups of variables that are interchangable (i.e., partial symmetric) in the target
function must be interchangable in the function of the library element [14].

The Permutation Equivalence Problem Pπ 36

Examining this in our context, they have used the property of an input variable of a Boolean
function to be unate or binate as a signature, as well as the property of an input variable to
belong to a set of partial symmetric variables (may be of size one). So, only variables belonging to
symmetry sets of the same size can correspond to each other for equivalence. Obviously, these two
properties may be useful for circuits with just a few number of input variables.

In 1992/93, several authors independently developed improvements for the Boolean matching al-
gorithm (e.g., [9, 10, 21, 25, 33]). The common feature of these approaches is, that all have used
ROBDDs for their computations and introduced signature–based methods to speed up the matching
process. Most of the signatures for a Boolean function f ∈ Bn,1 with respect to an input variable xi
that were introduced in the mentioned papers are based on analyzing the ON–set of f with respect
to xi in certain ways. Moreover, the property of xi to be an essential variable or not as well as the
property of xi to be unate or binate was used. The signatures proposed in [25] were introduced in
this thesis. One advantage of our methods for handling the permutation equivalence problem in
comparison to the other signature–based approaches is, that we present powerful signature func-
tions that can be computed needing just one ROBDD of the actual Boolean function (the cofactor
satisfy count signature and the cofactor breakup signature function). Since these computations do
not depend on the actual variable ordering of the ROBDD, we can apply the techniques for signature
computation outlined in this thesis as long as we can construct an ROBDD for the function with
any variable ordering. Furthermore, it is advantagous with respect to the CPU–time, necessary
to compute possible correspondences, to avoid as many ROBDD manipulations as possible, as our
experiments have shown.

Another approach, not based on the use of ROBDDs, was presented by I. Pomeranz and S. M. Reddy.
In [29, 31], the authors provide a method for handling the permutation independent Boolean equiv-
alence problem where the input correspondence as well as the output correspondence between two
function f, g ∈ Bn,m is not known. This method is based on another data structure, namely circuits
described at the gate level and works based on the following observation:

Let us consider an input pattern of function f with N 1’s that yields in an output pattern with M
1’s. The correspondence between the input and output variables of f and g is unknown. So this
pattern can correspond to any input pattern of g with N 1’s that yield in an output pattern with M
1’s.

Using this consideration, the authors partition the input/output pattern of function f and g into
subsets with the same number of 1’s in the input part and the output part of the pattern, respec-
tively. If f and g are permutation equivalent, then these partitions must be the same (modulo the
order of the 1’s in the pattern). Furthermore, a couple of signatures for each input variable can
be defined using the subsets of this partition: say, S(N,M) is the subset of input/output pattern
with N 1’s in the input part and M 1’s in the output part of the patterns, then a signature for
an input variable with respect to subset S is the number of patterns in S in which xi assumes the
value 1. (Note, that this works similar for output variables.) With the help of these signatures the
authors try then to distinguish among the input variables in a similar way as we described it in
Section 3.2.2.

The Permutation Equivalence Problem Pπ 37

circuit number of correspondences
name #i #o #n

CM150 21 1 64 ≈ 107

CM151 12 2 32 216
act2 8 1 12 4
addm4 9 8 225 16
cordic 23 2 86 4
dist 8 5 135 16
ex4 128 28 896 4
i3 132 6 134 ≈ 1023

lal 26 19 123 24
misg 56 23 109 5184
mlp4 8 8 141 16
mult3 6 6 44 8
mux 21 1 88 ≈ 107

mux cl 11 1 18 216
ryy6 16 1 27 4
sao2 10 4 123 16
t481 16 1 80 331776
ts10 22 16 271 720
term1 34 10 616 ≈ 108

Table 3.3: Benchmarks with Aliasing after Signature Computation

The advantage of this method is that it can be used on very large circuits for that no ROBDD

description is possible. However, most of the actual Boolean matching and formal verification tools
work with ROBDDs, and when this is the case, we think that the ROBDD–based methods should
be prefered because they can be applied directly. Moreover, the worst-case complexity of several
of the ROBDD–based approaches is less than the complexity of this approach. This complexity
depends strongly on the number of the input/output patterns that are used to distinguish among
the variables. Let us explain this further. Since it is not possible to use all pattern combinations
for the matching process (that would require the complete truth table description of the circuit),
the authors restrict the number of patterns that are used to distinguish among the variables by
bounding N . This is the number of 1’s in the input part of the actual considered set of patterns.
So, an upper bound for the number of considered input/output patterns is given by O(

(n
N

)
), where

n is the number of inputs of the circuit. However, this is a polynomial of degree N in the number
of input variables, n. In their experiments, the authors use 0 ≤ N ≤ 3 and n − 3 ≤ N ≤ n, i.e.,
they use all pattern with input combinations up to three 1’s or three 0’s. Thus, they have a set of
O(n3) input patterns for which simulation must be done in order to determine the corresponding
output pattern. This simulation is linear in the size of the circuit description. Then, they also
have to handle a set of O(n3) input/output patterns for the purpose to separate the variables.

The Permutation Equivalence Problem Pπ 38

Moreover, even in the set of benchmarks that the authors used for their experiments, there were
4 circuits for that all patterns with up to 4 1’s and 0’s, respectively, were necessary to get good
results. The quality of the results with respect to the correspondence possibilities between the
input variables is comparable with our results after applying the first two categories of signature
functions as presented in Section 3.2.3, although the authors handle the more general problem of
simultaneous input and output matching. Another advantage is, that it can be directly extended to
handle incompletly–specified functions [31]. Unfortunatly, the practical efficiency of the methods
introduced by I. Pomeranz and S. M. Reddy cannot directly be compared with that of our methods
since the authors do not provide CPU–times for their experiments.

Now let us consider the practical experiences with the signatures developed in this thesis again. For
the 8% of benchmarks with aliasing, the number of possibilities for correspondence between input
variables of two functions ranges from 4 to approx. 1023 after applying all signature functions.
Table 3.3 lists these benchmarks. In this table a description of each circuit (name, number of
inputs, outputs, and ROBDD nodes) is followed by the number of possible correspondences after
using signatures. For these circuits, the problem seems to be that there are special properties that
make it impossible to distinguish between the variables with aliasing with the help of signatures.
Here, the obvious solution of enumerating all remaining correspondence possibilities to handle Pπ
may be acceptable for examples with a very small number of those possibilities. However, a further
understanding of the other cases is necessary. This is the focus of the next chapter.

Chapter 4

Limits of Using Signatures

The method to handle the permutation equivalence problem introduced in the previous chapter
is not complete. There is no signature function which can uniquely identify all the variables of
the investigated benchmark sets. Comparing the most successful signature functions, we observed
that those benchmarks that have variables that could not be uniquely identified are always the
same over the different signatures. In other words, there is a nearly constant set of benchmarks
for which signatures could not help to solve the permutation problem. Unfortunately, there are
not just 2 or 3 variables of those benchmarks that are not uniquely identified, but about 15 and
more, such that the number of possible correspondences is still large. Furthermore, this seems to
be independent of the method used to solve that problem: in [29, 31], a totally different method
has been used, based on another data structure – circuits described on the gate level. However,
even here the same group of benchmarks causes problems [31]. Another observation is that those
benchmarks with non-uniquely identified variables are not the benchmarks with the most number
of inputs. From a statistical point of view, we can conjecture that the quality of the used signatures
is not the problem for practical applications: we did not find a relationship between the number
of input variables of a function and the ability of the signatures to distinguish between all these
inputs. Hence, it seems a likely supposition that the variables that cannot be distinguished by
the signatures have special properties that make it impossible to distinguish between them for the
permutation independent comparison of two Boolean functions.

In this chapter, we discuss a property of input variables that make it impossible to distinguish
between variables with aliasing with the help of signatures. This property is G–symmetry. In
Section 4.1, we introduce G–symmetry and explain why G–symmetry avoids a unique identification
of input variables with the help of signatures. In the Sections 4.2–4.4 , we discuss some special
kinds of G–symmetry that often appear in practice. In Section 4.5 we discuss our experimental
results on the 8% of benchmarks with aliasing. Finally, in Section 4.6 the variety of G–symmetry
in general is discussed. Parts of these results are presented in [26].

39

Limits of Using Signatures 40

4.1 The Property of G–Symmetry

G–symmetry can be defined as follows:

Definition 4.1 Consider a group G ⊆ Pn of permutations. A Boolean function f ∈ Bn,1 is G–
symmetric if f keeps invariant under all permutations π in G.

G–symmetry was defined similar by Hotz in 1974 [17]. The simplest example for G–symmetry is a
Boolean function f that is symmetric in all input variables. Here, G is equal to the permutation
group Pn, and we say, f is Pn – symmetric.
By definition, the group of permutations G may also be the group which contains the identity
1 only. So we can consider those Boolean functions with no G–symmetry as functions that are
G–symmetric with respect to the set G = {1}. In other words, we can formulate the following
property:

Property 4.1 For each Boolean function f ∈ Bn,1 the set G ⊆ Pn of permutations such that f is
symmetric with respect to all permutations in G forms a group.

Proof: Let π1 ∈ G and π2 ∈ G be two permutations of G. We need to prove that the permutation
π1 ◦ π2 ∈ G:

f ◦ (π1 ◦ π2) = (f ◦ π1) ◦ π2 = f ◦ π2 = f

In other words, the permutation π1 ◦ π2 keeps the function f invariant, thus π1 ◦ π2 ∈ G. 2

In order to understand the significance of G–symmetry for the permutation equivalence problem,
let us consider the relation RG on the set of input variables, X = [x1, x2, . . . , xn], which is defined
by a group of permutations G ⊆ Pn. Let xi ∈ X and xj ∈ X be two input variables:

xiRGxj ⇐⇒ ∃π ∈ G : π(xi) = xj.

Property 4.2 The relation RG is an equivalence relation.

Proof: This follows immediately from the property that G is a group.2

Let us denote withA = {A1, A2, . . . , Ak} the partition of the input variables inX which corresponds
to a relation RG . This partition is well–defined with respect to a G–symmetry, and it follows from
Property 4.1 and Property 4.2:

Fact 4.1 For each Boolean function f ∈ Bn,1 and its set of input variables X there is a well–defined
partition A of the input variables of f .

Limits of Using Signatures 41

Often it is enough to consider this partition A as an unordered set of subsets of the inputs. However,
sometimes it is necessary to look at it as an ordered set.

Property 4.3 Given a Boolean function f ∈ Bn,1 and the well–defined partition of its input vari-
ables, A = {A1, A2, . . . , Ak}, there is a well–defined and ordered partition of the input variables
with respect to f ,

Af = {Af1 , Af2 , . . . , Afk},
which is constructed as follows:

1. Af considered as unordered set of subsets is equal to partition A.

2. The ordering step works as follows:

(a) At first, we order the subsets by their size, such that |Afi | ≤ |Afi+1| for all i = 1, 2, . . . , k.

(b) If some subsets have the same size, then we use the elements of them to establish an
ordering, such that the result looks as follows: if |Afi | = |Afi+1| for any i ∈ {1, 2, . . . , k},
then j < l for xj ∈ Afi with j = min{h : xh ∈ Afi } and xl ∈ Afi+1 with l = min{h : xh ∈
Afi+1}.

Proof: The so constructed partition Af of the input variables of a Boolean function f contains
the same elements as the original partition A. So it is well–defined as an unordered set of subsets.
Furthermore, the ordering process is well–defined: Step 1.a orders those subsets uniquely that have
different sizes. Step 1.b orders the subsets with the same size uniquely. Note, that this second step
depends on the order of the input variables of the actual function f . In other words, the order of
the subsets in partition Af is just unique with respect to the Boolean function f which has been
considered. 2

Now we consider signatures again. What can we say about the relationship between signatures
and G–symmetry? There are two properties that complete our picture about signatures. The first
property is very important and can be formulated without further considerations:

Property 4.4 Let G ⊆ Pn be the group of permutations of X which constructs partition A. Con-
sider any element Al of A, any G–symmetric Boolean function f , and any signature function s ∈ Sn.
For any xi, xj ∈ Al : s(f, xi) = s(f, xj).

Proof: For all xi, xj ∈ Al there is a permutation π ∈ G such that π(xi) = xj (see definition of
partition A). Consider any xi, xj ∈ Al, a permutation π ∈ G such that π(xi) = xj , and any
signature function s. As defined, s(f, xi) = s(f ◦ π, π(xi)). This is equal to s(f, π(xi)) since f is
G–symmetric. Thus, s(f, xi) = s(f, xj) for any xi, xj ∈ Al. 2

This result now gives us a possible explanation for the trouble several benchmarks have with the
signature approach: it is possible that the benchmarks with aliasing include G–symmetric functions.

Limits of Using Signatures 42

Then there is no unique description by signatures for the input variables of these functions. Thus,
it is futile to try and distinguish all the variables with additional signatures. The immediate follow-
up question is then: what do we do in this case? Our response to this is that we do not really
need to uniquely identify the variables in most cases. Perhaps we can achieve our end goal of
establishing permutation independent function equivalence by identifying the variables involved in
the G–symmetry and exploring the exact nature of the G–symmetry. This is further explored in
the next sections.

Before we discuss it, let us develop the second property of signatures with respect to G–symmetry.
For this, we need to think about a universal signature function.

Definition 4.2 A universal signature function u : Bn,1 × X −→ U is a signature function
which has the following property. Given a Boolean function f ∈ Bn,1 and the partition of its input
variables, A = {A1, A2, . . . , Ak}:

∀xi, xj ∈ X : if xi ∈ Al, xj ∈ Ah with l �= h =⇒ u(f, xi) �= u(f, xj).

If two input variables xi and xj are not in the same subset of partition A of a Boolean function
f ∈ Bn,1, then the universal signature function must provide different signatures for these two
variables.

Such a universal signature function has the property to dominate any other signature function
s ∈ Sn in the following sense:

∀f ∈ Bn,1∀xi, xj ∈ X : if ∃s ∈ Sn : s(f, xi) �= s(f, xj)⇒ u(f, xi) �= u(f, xj).

In other words, if there is any signature function which can distinguish between two input variables
of a Boolean function, then the universal signatures of these two variables must be able to distinguish
between them as well. This property follows immediately from Property 4.4 and the definition of a
universal signature function. If two input variables xi and xj of a Boolean function f ∈ Bn,1 have
different signatures for any signature function s ∈ Sn, then they have to be in different subsets of
the partition A of the input variables of f (see Property 4.4). That is why the universal signatures
of these two variables must be different as well (see Definition 4.2). In this sense, we can say that
a universal signature function is the strongest signature function which can be constructed.

Limits of Using Signatures 43

Theorem 4.1 There is a universal signature function U : Bn,1 ×X −→ U .

Proof: At first we construct a candidate for a universal signature function. Then we show, that
this candidate is a signature function and that it is universal.

1. Construction:

Let us consider a Boolean function f ∈ Bn,1. From Fact 4.1, it follows that there is a well–
defined partition of the input variables of function f . Let us construct this partition:

A = {A1, A2, . . . , Ak} = {{x1
1, . . . , x

1
l1}, {x2

1, . . . , x
2
l2}, . . . , {xk1 , . . . , xklk}}.

Now, we select the lexicographical smallest of all functions that can be constructed by per-
muting the input variables of f :

fmin = min{g ∈ Bn,1 : g = f ◦ π with π ∈ Pn}.

This function, fmin has a unique partition A′ of its input variables as well.
What do we know about the relationship between function f and function fmin and the
partition of their input variables? We know, that fmin = f ◦ π̂ for a permutation π̂ ∈ Pn. In
other words, these two functions are permutation equivalent. From this fact, it follows that
the partition A′ has the same structure as partition A:

A′ = {A′1, A′2, . . . , A′k} = {{y1
1 , . . . , y

1
l1}, {y2

1 , . . . , y
2
l2}, . . . , {yk1 , . . . , yklk}}.

Furthermore, there is a 1–1–mapping Φ : A −→ A′ which maps the subsets of partition A to
the subsets of partition A′. Φ depends on the permutation π̂ which we use to construct fmin

and is defined as follows:
Φ(Ai) = π̂(Ai) = A′j

for all i = 1, . . . , k and the corresponding j ∈ {1, 2, . . . , k}.
Furthermore, there is a well–defined and ordered partition of the input variables of fmin:

Afmin = {Afmin
1 , Afmin

2 , . . . , Afmin
k },

which is constructed by ordering the subsets of partition A′ (see Property 4.3). With the help
of this partition we are able to construct our candidate for a universal signature function. Let
xi ∈ X be an input variable of f . Then,

U(f, xi) = j with π̂(xi) ∈ Afmin
j ,

where π̂ is a permutation of Pn which constructs the lexicographical smallest function, fmin =
f ◦ π̂.

Limits of Using Signatures 44

2. Proof of correctness:

We need to prove that U is a universal signature function. This is done in three parts:

(a) U is a well–defined mapping from Bn,1 ×X into an ordered set (U,≤).
Proof: U maps the set Bn,1 of all Boolean functions and their input variables X into the
set of indices of the subsets of the ordered partition Afmin, which is equal to the set of
integers from {1, 2, . . . , k} (k is the number of subsets in partition A). In other words,
U maps into the set of non–negative integers. This is an ordered set.

In order to prove that U is a well–defined mapping, we need to consider the case that
there are more than one permutations π̂ ∈ Pn that construct the lexicographical smallest
function fmin = f ◦ π̂.
Suppose, there are two of those permutations, π1 and π2. What can we say about these
two permutations? We know that

fmin = f ◦ π1 = f ◦ π2.

So it follows that f = f ◦ π1 ◦ π−1
2 , i.e., the permutation π1 ◦ π−1

2 keeps the Boolean
function f invariant. Now consider any input variable xi of function f . By definition of
partition A, it follows that the two variables xi and π−1

2 (π1(xi)) are in the same subset
of A.
Let us see what happens on applying the permutation π2 to these two variables. Re-
member that this permutation can be used to construct partition A′ from partition A.
We immediately deduce that the variables π2(xi) and π1(xi) are in the same subset
of partition A′. However, these are the two variables that xi is mapped on using the
permutation π1 and π2, respectively. So, we finally know that the input variable xi is
mapped into the same subset of partition A′, independent of the permutation which we
use to construct this partition. 2

(b) U is a signature function.

Proof: Let us consider the function fmin. This function is information about the Boolean
function f which is independent of any permutation of the input variables of f since we
use all π ∈ Pn for its construction. Also the partition Afmin is permutation independent
information for f . From this, it follows that the information we get for an input variable
xi using U is independent of any permutation of the inputs. 2

(c) U is universal.

Proof: Let us consider the mapping Φ : A −→ A′ again, which maps the subsets of
the partition of the inputs of function f to those subsets of the partition of the inputs
of function fmin. From the construction of this mapping, it follows that if two input
variables xi and xj of function f are in different subsets of partition A, then π̂(xi) and
π̂(xj) are in different subsets of the partition A′ of the lexicographical smallest function
fmin too. Remember, the permutation π̂ is a permutation of the input variables of
function f , which constructs the lexicographical smallest of all those functions: fmin =
f ◦ π̂.

Limits of Using Signatures 45

Now, if we order A′ as proposed in Property 4.3, then we get the well–defined and
ordered partition Afmin for the function fmin, and it follows for any Boolean function
f ∈ Bn,1 and for all input variables xi, xj ∈ X:

xi ∈ Al and xj ∈ Ah with l �= h iff π̂(xi) ∈ Afmin
p and π̂(xj) ∈ Afmin

q with p �= q.

This is the same as: for all xi, xj ∈ X :

xi ∈ Al and xj ∈ Ah with l �= h iff U(f, xi) �= U(f, xj).

In other words, the signature function U is universal. 2 2

The signature function U demonstrates the property of a universal signature function to dominate
all other signature functions very well. The partition A, which is the basic component for the con-
struction of U , is nothing else but the partition of the input variables which we try to construct with
the help of our practical signatures. Moreover, this partition is sorted independent of permutation
by those signatures. Now, if the universal signature for an input variable is the index of such a set
of the partition, then one thing is obvious: if there is a practical signature which is different for
two variables, then these two variables will be in two different subsets of the partition. Also the
universal signatures of these two variables will be different.

Why does it help to know that there is a universal signature function? It cannot be used in practice
since its construction would be computationally too intensive. However, it is useful to have such a
universal signature function for theoretical investigations.

In Section 3.2.3 we introduced a method for analytically comparing the effectiveness of a signature
function [21]. Remember, given a signature function s : Bn×X −→ U , a measure of the effectiveness
of a signature function is the cardinality of the co–domain of s, which is |U |. However, as we can see
here, a small co–domain does not automatically imply that the signature function is not efficient.
It depends on all properties of a signature function. In the case of the universal signature function,
it is: |U | ≤ n, where n is the number of input variables of the actual function. However, as we have
proven, the universal signature function is the most powerful signature function at all.

At the moment, we are interested in signatures in relationship to G–symmetry. With the help
of the universal signature function U we can prove, that if any two input variables of a Boolean
function have the same signature U , then there is a permutation π ∈ Pn \ 1 of the input variables
of this function, such that f = f ◦ π. This permutation π of the input variables keeps the function
f invariant, i.e., the function f is G–symmetric with respect to a group of permutations G �= {1}.
This property can be formulated as follows.

Limits of Using Signatures 46

Property 4.5 Let f be any Boolean function of Bn,1.
Let A = {A1, A2, . . . , Ak} be the partition of the input variables of f .

∀xi, xj ∈ X : U(f, xi) = U(f, xj) =⇒ xi, xj ∈ Al for some l ∈ 1, 2, . . . , k.

Proof: This follows immediately from the definition of U . 2

The property ensures that we do not need to think about other problems with signatures iden-
tifying input variables for permutation independent function equivalence. It demonstrates that
G–symmetry is indeed the only handicap for signatures to be able to uniquely identify an input
variable of a Boolean function independent of permutation. Thus, we now need to focus on G–
symmetries.

Specifically, we now discuss some special kinds of G–symmetry which often appear in practice. Of
course, this cannot be a complete enumeration of possible G–symmetries. We discovered these
cases in our quest to understand why signatures were proving to be inadequate for permutation
independent Boolean comparison in some cases.

4.2 Partial Symmetries

At first, let us consider the most common case. A Boolean function f ∈ Bn,1 is symmetric with
respect to a subset of input variables X̂ ⊆ X if f is invariant under all permutations π ∈ Pk of the
input variables in X̂ ⊆ X, where k is the number of input variables in X̂ . We say, that f is partial
symmetric with respect to X̂. Furthermore, the set X̂ is a maximal symmetry group (a maximal set
of symmetric variables) of f if f is symmetric with respect to X̂ , and there is no variable xi /∈ X̂
such that f is symmetric with respect to X̂ ∪ xi as well. This is the simplest kind of G–symmetry,
and it is well–known.

In the partition A of the inputs of a partial symmetric Boolean function f all input variables of
the subset X̂ are in one subset.

However, these symmetries are easy to detect and to handle.

Fact 4.2 A Boolean function f is partial symmetric with respect to the variables xi and xj iff
fxix̄j = fx̄ixj [28].

With the help of this fact we are able to test partial symmetry, since it is an equivalence relation [28].
Furthermore, different methods to improve this basic symmetry test have been developed. We use
the methods introduced in [28], while one of the methods, introduced there, is to use simple
signatures as proposed in Section 3.2.3.1.

After the detection of partial symmetries we are done, since each correspondence between symmetric
variables of two Boolean functions is fine for the purpose to test permutation equivalence.

Limits of Using Signatures 47

Finally, let us explain an algorithm to identify the input variables by signatures that considers
these symmtries. With our knowledge about symmetric variables, we see that one of the first steps
of this procedure is to determine all maximal groups of pairwise symmetric variables. As we know,
this can be done fast, and the advantage is that the signature computations can be restricted
to one representative of each maximal symmetry group. In order to combine the used methods
of symmetry detection [28] with the different signature functions as introduced in Section 3.2.3,
we determine the maximal symmetry groups after applying the cofactor satisfy count signature
function (see Section 3.2.3 and Section 3.3).

4.3 Hierarchical Symmetries

Investigations on our benchmark set have shown that for several examples the reason for the
existence of aliasing groups after computation of all signatures introduced in Section 3.2.3 is the
following kind of symmetry.

Definition 4.3 Let f ∈ Bn,1 be a Boolean function with the input variables X = [x1, x2, . . . , xn].
Let X1,X2 ⊂ X be two subsets of X.

X1 and X2 are hierarchical symmetric (h–symmetric) iff

1. |X1| = |X2| > 1

2. X1 and X2 are maximal symmetry groups of f . (see Section 4.2)

3. f is H(X1,X2)–symmetric, where H(X1,X2) is the subgroup of the permutation group Pn
generated by the following set of permutations:

{π ∈ Pn|π(X1) = X2 and π(X2) = X1}.

I.e., f keeps invariant under any exchanging of the variables of X1 with those of X2.

A group of subsets of X, {X1,X2, . . . ,Xk} is h-symmetric iff:

∀i, j ∈ {1, 2, . . . , k} : Xi is h–symmetric to Xj .

Let us consider the following example:

Example 4.1 f = (x1 + x2) + (x3 + x4) + (x5 + x6)

Here, {x1, x2}, {x3, x4} and {x5, x6} are pairs of partial symmetric variables, but there is no partial
symmetry between two variables of different pairs. However, it is easy to see, that exchanging any
two of these three pairs keeps the function f invariant. This simple example illustrates h–symmetry.

Limits of Using Signatures 48

Property 4.6 H–symmetry is an equivalence relation on the partition of the set of input variables
of a Boolean function f in its maximal symmetry groups.

Proof: The symmetry and reflexivity is obviously to see. For transitivity we have to show the
following. Let X1, X2, and X3 be three disjoint sets of symmetric variables. If X1 is h–symmetric
to X2 and X2 is h–symmetric to X3, then X1 and X3 are h–symmetric as well. Therefore, let us
go through all points of the definition of h–symmetry:

1. |X1| = |X2| = |X3| > 1

2. true by assumption

3. We know, that exchanging X1 with X2 as well as exchanging X2 and X3 does not change the
function f . So, let us do the following. First, exchange the variables of X1 with those of X2.
After that, exchange the variables of X2 with those of X3. The resulting function is f , and
what we have done is to exchange the variables of X1 with those of X3 using the variables of
X2. This implies that X1 with X3 does not change function f . 2

The definition of h–symmetry indicates that this is a special kind of G–symmetry. Let us examine
the partition A of the input variables constructed by h–symmetry.

Property 4.7 If two subsets of input variables, X1 and X2 are h–symmetric, then all input vari-
ables of X1 and X2 are in one element Ai of partition A.

Proof: This follows from the definition of partition A. 2
Thus, from Property 4.4, we know that all of these variables have to have the same signatures,
i.e., they form an aliasing group. In other words, there is no way to distinguish between them via
signatures.

Luckily, there is a solution for this which is based upon our handling of partial symmetric variables.
To understand this, let us consider the algorithm to identify the input variables by signatures. Here,
we first determine all maximal groups of pairwise symmetric variables (see previous section). In
this way, pairwise symmetric variables are kept together in aliasing groups. Now, let us consider
two h–symmetric subsets, X1 and X2, of input variables of function f again. As we know, they
form an aliasing group: {X1 ∪ X2}. A correspondence between these variables and the variables
of an aliasing group of any other function g is possible if the variables of the other group have the
same signatures, and this aliasing group has the same structure, i.e., {Y1 ∪ Y2} with Y1 and Y2 are
maximal symmetry groups and |X1| = |Y1|. Then there are two possible correspondences between
these groups: (X1 ↔ Y1,X2 ↔ Y2) as well as (X1 ↔ Y2,X2 ↔ Y1). Because of h–symmetry both of
these correspondences are acceptable for our purpose. In other words, our remaining task in terms
of h–symmetry is to detect this kind of symmetry. That is sufficient to decide that no further work
needs to be done with these aliasing groups in order to solve the permutation problem, Pπ.

Limits of Using Signatures 49

So let us try and see what we have to do. First, we want to answer the following question. Let f
be a Boolean function with n input variables, X = [x1, x2, . . . , xn], and X1 and X2 be two disjoint
subsets of the set of inputs, X1,X2 ⊂ X. When is it possible to exchange X1 and X2 in the function
f without changing f itself?

Of course, a necessary condition is that the number of variables in X1 and X2 must be the same.
Otherwise you could not completely exchange one subset with the other. However, this is not
sufficient. Supposing that |X1| = |X2| = k let us see what sufficient condition exists for the
exchangeability of X1 and X2 in f .

Let fa1(X1)a2(X2) be the cofactor of f where the variables of X1 are set to a1 ∈ {0, 1}k and the
variables of X2 are set to a2 ∈ {0, 1}k . Now we are able to formulate our condition.

Fact 4.3 Exchanging two different, ordered subsets of variables, X1 = [x1
1, . . . , x

1
k] and X2 =

[x2
1, . . . , x

2
k], i.e., exchanging x

1
i with x

2
i for all i = 1, 2, . . . , k, does not change the function f

iff for all assignments a1, a2 ∈ {0, 1}k: fa1(X1)a2(X2) = fa2(X1)a1(X2).

Note that a well–known special case of this property is k = 1, i.e., the question if two variables, xi
and xj are exchangeable in a Boolean function f without changing f . In this case, we call xi and
xj a pair of symmetric variables, and we know that this symmetry can be shown using Fact 4.2.

In other words, Fact 4.3 is only a generalization of the well–known symmetry test for symmetric
variables to a test for the exchangeability of groups of variables.

Let us consider an example:

Example 4.2 f = x̄1x̄2x̄3x4 + x̄1x2x̄3x̄4 + x̄1x̄2x3x4 + x1x2x̄3x̄4

This function f is a Boolean function over the set of input variables X = [x1, x2, x3, x4]. There is
no pair of symmetric variables in it. We can prove it using Fact 4.2. However, two subsets of X,
X1 = {x1, x2} and X2 = {x3, x4} can be exchanged without changing f . We can prove that fact
having a look at the equation of Example 4.2. For a formal proof using Fact 4.3 it is necessary to
check the six different cofactor equations that can be constructed by the different assignments a1

and a2 to X1 and X2:

a1 a2 cofactor equation
00 01 fx̄1x̄2x̄3x4 = fx̄1x2x̄3x̄4 = 1
00 10 fx̄1x̄2x3x̄4 = fx1x̄2x̄3x̄4 = 0
00 11 fx̄1x̄2x3x4 = fx1x2x̄3x̄4 = 1
01 10 fx̄1x2x3x̄4 = fx1x̄2x̄3x4 = 0
01 11 fx̄1x2x3x4 = fx1x2x̄3x4 = 0
10 11 fx1x̄2x3x4 = fx1x2x3x̄4 = 1

Limits of Using Signatures 50

Note that we do not consider assignments with a1 = a2.

However, having a closer look at f we see that while exchanging x1 with x3 and x2 with x4 keeps
f invariant, exchanging x1 with x4 and x2 with x3 generates another function: f̂ = x1x̄2x̄3x̄4 +
x̄1x̄2x3x̄4+x1x2x̄3x̄4+ x̄1x̄2x3x4. This function is not equal to f , although we also have exchanged
the variables of X1 with those of X2.

Example 4.2 clarifies the following. In general there are two major problems that prevent us to
use Fact 4.3 in practice. The first one is its complexity. For two variable groups of size k there
are (22k−1 − 2k−1) tests necessary to check their exchangeability in the prescribed manner. There
are 2k different vectors of constant values in {0, 1}k. In the first step, the selected vector a1, say
00 . . . 0, has to be checked with all possible vectors a2 except the same as a1. That gives 2k − 1
different possibilities. Once that has been done, we can select another vector a1, say 00 . . . 01, and
start again with selecting the vector a2. However, we do not have to use a2 = 00 . . . 0 again, because
the equation

fX1←00...0X2←0...01 = fX1←0...01X2←00...0

has been tested in Step 1 already. Similarly, there are only 2k − 2 equations to test in the second
step, 2k − 3 in the third step, and so on. All in all, there are

∑2k−1
i=1 i = [2k · (2k − 1)]/2 different

cofactor equations that have to be tested for our purpose.

The second problem is that Fact 4.3 only holds for exactly one exchange of the variables of X1 with
those of X2, namely x1

i with x
2
i for all i = 1, 2, . . . , k. However, as shown in Example 4.2, there

are other possibilities to exchange the variables, as well. Those possibilities are not covered by the
cofactor tests of Fact 4.3. That implies that if we want to know if none of the possible exchanges
of the variables of X1 with those of X2 changes f , then it is necessary to apply a series of cofactor
tests similar to that formulated in Fact 4.3 to each of the k! exchanging possibilities.

Considering these two problems we know that it is not possible to use Fact 4.3 for a practical
solution of the general problem: there would be Θ(k! · 2k) cofactor tests necessary to check the
exchangability of two sets of variables with size k.

However, let us consider our special case – the test, whether X1 and X2 are h–symmetric.

Fortunately, there is one more property given on X1 and X2 that makes it comfortable for us to
use Fact 4.3 in this case. This property is the partial symmetry of the variables of X1 and X2,
respectively.

Let us see how we can use this in the detection of h–symmetries. A Boolean function f ∈ Bn,1
is symmetric with respect to a subset of input variables Xi ⊆ X iff f keeps invariant under all
permutations of the variables in Xi. Furthermore, since each vector a ∈ {0, 1}k with exactly l one’s
in it is a permutation of any other vector with l one’s in it, it is equivalent to say: f is symmetric
with respect to Xi if f only depends on the number of one’s in the input assignment to Xi [38].
We will call this number of one’s in an input assignment to a set of variables, Xi the weight of that
input assignment with respect to Xi.

Limits of Using Signatures 51

Now we can directly conclude the following two facts about the cofactor of f with respect to a set
of symmetric variables.

Fact 4.4 Let Vl be the set of all assignments of constant values to the set of symmetric variables,
Xi with the weight l. Let a1, a2 ∈ Vl. Then fa1 = fa2 .

This gives us the number of different cofactors with respect to a setXi of partial symmetric variables
that can be constructed.

Fact 4.5 Consider the set of all cofactors of f that can be constructed with respect to the set Xi of
partial symmetric variables. The maximal cardinality of this set is |Xi|+1 = k+ 1. (One cofactor
for every weight.)

With Fact 4.4 and 4.5 we can go back to our two problems checking the exchangeability of two sets
of variables in a function. We will see that these two problems are solved for h–symmetry.

First let us consider the complexity of the cofactor test again. Because of Fact 4.4 and 4.5 it
can be modified as follows: instead of all 2k possible assignments for the variables of X1 and X2,
respectively, we just have to consider k+1 assignments of X1 as well as of X2, one of every possible
weight. In other words, we do not have to test all combinations of the 2k assignments but only all
combinations of the k + 1 possible weights.

Fact 4.6 Exchanging two different subsets of partial symmetric variables, X1 and X2 does not
change the function f iff for each set of assignments Vl1 and Vl2 of {0, 1}k to the variables of X1

and X2 with weight l1 and l2 and l1 �= l2:
fVl1

(X1)Vl2
(X2) = fVl2

(X1)Vl1
(X2).

Note, that we have to know that X1 and X2 are sets of partial symmetric variables before using
Fact 4.6 for our purpose.

What about the weight combinations 0/0, 1/1, . . . , k/k? Obviously, we do not have to test the
combinations 0/0 and k/k, i.e., all variables of X1 and X2 set to 0 and 1, respectively, since an
exchange of the two variable groups with these assignments does not change the function value
of f . However, the same holds for all other combinations with the same weight. The reason of
this is the partial symmetry of the variable groups. In order to test the combination i/i with
i ∈ {1, 2, . . . , k − 1}, we have to select an assignment with weight i for the variables of X1 as well
as for the variables of X2. Since we can select any assignment with weight i, let us take the same
assignment for X2 as for X1. Now we have the same situation for the weight combination i/i as
for the combinations 0/0 and k/k – an exchange of the variable groups with these weights cannot
change the function value of f .

Suppose the symmetry of the variables of our two groups X1 and X2 is tested before, we get the
moderate number of (k2 + k)/2 tests necessary to check the h–symmetry of X1 and X2: k choices

Limits of Using Signatures 52

for the assignment to X2 in the first step, k−1 in the second, and so on. Dealing with ROBDDs we
know that these tests need only constant time on the given cofactors. The cofactor construction
itself needs time linear in the number of ROBDD nodes of f . So, in all, we need time O(k2|V |)
where |V | denotes the number of nodes in the ROBDD of f and k the size of the two variable groups
we want to test.

Let us now discuss the second problem with the cofactor test. As we know, if X1 and X2 are
different groups of partial symmetric variables, then f only depends on the weight of the inputs
of X1 and X2, but does not depend on the permutation of those variables in f . That is why it
is enough to do the cofactor tests of Fact 4.6 with respect to one possible exchange of X1 with
X2 in order to get the information about the exchangeability of X1 and X2 regarding to all other
exchanges as well. In other words, in the case of partial symmetry groups it is possible to exchange
the variables of the groups in either all or no combinations without changing the function f .

Now we can start with a description of the complete algorithm to determine the h-symmetry groups
of a Boolean function f ∈ Bn,1.
First, let us review on Example 4.1: f = (x1 + x2) + (x3 + x4) + (x5 + x6). As we know, there is
h–symmetry between certain variable groups in this example. This can be proved as follows:

1. Consider the groups of symmetric variables. In the case of this example there are three groups
with size 2: X1 = {x1, x2}, X2 = {x3, x4}, and X3 = {x5, x6}.

2. To prove the h–symmetry of these groups it is enough to check X1 with X2, and X2 with X3

(see Property 4.6). Three cofactor test are necessary in both cases: weight combination 0/1,
0/2, and 1/2. For X1 and X2 these are:

fx̄1x̄2x̄3x4 = fx̄1x2x̄3x̄4 = 1
fx̄1x̄2x3x4 = fx1x2x̄3x̄4 = 1
fx̄1x2x3x4 = fx1x2x̄3x4 = (x5 + x6).

Similarly this has to be done to test the exchangeability of X2 and X3.

Now, let us come to our algorithm. Given a Boolean function f ∈ Bn,1 we can determine the
h–symmetries of these variables in two steps:

Step 1: Create the list of all candidates for h–symmetry.

A candidate for h–symmetry is a set of same–sized partial symmetry groups of variables of f ,
except those of size one. Note, that we construct only maximal candidates. So, there is no
h–symmetry possible between different candidates.

Recall Example 4.1, here we have exactly one candidate, viz. {{x1, x2}, {x3, x4}, {x5, x6}}.

Step 2: For each candidate do: use Fact 4.6 and Property 4.6 to establish the h–symmetry groups.

Limits of Using Signatures 53

The second step of our algorithm, Step 2 has been described already on Example 4.1. The gen-
eralization is straightforward. Note that a candidate for h–symmetry could include sets of input
variables that belong to different h–symmetries. If this case has to be taken into account, then we
need to test the exchangeability of each pair of variable sets in the candidate. In other words, we
cannot use the property of one h–symmetry to be an equivalence relation.

Let us discuss Step 1. What is the best way to determine the list of candidates? One way is the
following: first compute all groups of partial symmetries of X with respect to function f [28], then
sort these groups by their size. A candidate is the set of all symmetry groups with the same size,
except the one including all groups of size one.

However, this kind of selection of candidates is not the best – any cofactor test (and so any
cofactor construction) that can be avoided is a bonus point with respect to CPU time and storage
requirements. Nevertheless, we already know a better way for this. Property 4.4 tells us that the
variables of any two partial symmetry groups must have the same signature to be a candidate for
h–symmetry. That is why the signature computation is an efficient pre–processing for the selection
of candidates for h–symmetry: only aliasing groups are candidates, furthermore only those groups
that consist of groups of partial symmetric variables. In this way we are likely to get a smaller set
of candidates, such that we can avoid cofactor constructions. Furthermore, the probability that
there are variable groups in one candidate that belong to different h–symmetries is less, because the
partition of the input variables by signatures is more qualified than just determining same–sized
groups of partial symmetric variable groups.

Thus to create the list of candidates for h–symmetry, we use all the signatures introduced in
Section 3.2.3 first. If there are aliasing groups, then we select those groups that consist of partial
symmetric variable groups, as candidates for h–symmetry.

4.4 Group Symmetries

Now we change our focus to the following kind of symmetry.

Definition 4.4 Let f ∈ Bn,1 be a Boolean function with n input variables X = [x1, x2, . . . , xn].
Let X1,X2, . . . ,Xk ⊂ X be k > 1 non-empty and pairwise disjoint subsets of X.
Let πi ∈ P|Xi| \ 1 be a permutation on the input variables of Xi, for all i = 1, 2, . . . , k.
The k groups of input variables are group symmetric (g–symmetric) iff

1. |Xi| > 1 for all i ∈ {1, 2, . . . , k}

2. There is a set [π1, π2, . . . , πk] of permutations of the variables in X1,X2, . . . ,Xk, such that
applying the permutations πi to Xi simultaneously for all i = 1, 2, . . . , k does not change the
function f .

Limits of Using Signatures 54

Note, that manipulating just one or a couple of variable subsets Xi may change the function f .
The following examples will help to clarify the definition.

Example 4.3 f = a0(x0 + x1) + b0(x2 + x3)

Here, {x0, x1} and {x2, x3} are pairs of partial symmetric variables, but there is no h-symmetry
between them because of the existence of the input variables a0 and b0. However, exchanging
{x0, x1} and {x2, x3} AND a0 and b0 keeps the function invariant. So, there is what we call
g–symmetry between the two subsets of input variables, {x0, x1, x2, x3} and {a0, b0}.
Group symmetries are a special kind of G–symmetry, too. So let us consider the partition A of the
n input variables constructed by this G–symmetry.

Property 4.8 If k subsets of input variables are g–symmetric, then each of these subsets form a
subset of the partition A of the inputs given by this special G–symmetry.

Proof: This follows from the definition of partition A. 2
In our example, A is as follows:

A = {{x0, x1, x2, x3}, {a0, b0}}.

Again, we have a case where signatures will be unable to distinguish between the variables and
thus results in the formation of aliasing groups (see Property 4.4).

Our practical experiences on the benchmark set show that this kind of G–symmetry appears rela-
tively often. One well–known example is an n–bit multiplier:

xnxn−1 . . . xn
2
+1 ∗ xn

2
. . . x2x1.

Exchanging xn
2
+i and xi for each i = 1, . . . , n2 simultaneously keeps the function invariant. The

partition A of these variables is:

A = {i = 1, 2, . . . ,
n

2
: {xi, xn

2
+i}}.

So there are 2
n
2 possible variable correspondences for an n-bit multiplier after signature compu-

tation. Taking the g–symmetry of the n–bit multiplier function into account, this number would
decrease by the half, i.e., instead of 2

n
2 possible variable correspondences there would be 2

n
2
−1,

which is still too large in general.

Moreover, it seems to be very complicated to detect a g–symmetry in general. Here, one major
problem is that not all possible permutations of the input variables in X1,X2, . . . ,Xk have to
change function f (see the definition of group symmetry). Thus, to be able to handle general
g–symmetries we need a way to detect g–symmetric groups of input variables and a way to select
those permutations of these variables that keep the g–symmetric function invariant. Considering
the very general property of g–symmetry, this looks like a complicated task.

Limits of Using Signatures 55

In looking for possible ways to handle g–symmetry we made the following interesting observation.
The subsets of input variables that result in a g–symmetry are often connected with each other in
the following sense: if we have identified the variables of one of these subsets, then it is possible
to identify the variables of the other subsets as well. With this knowledge we have developed a
heuristic to distinguish between variables of g–symmetric subsets.

This heuristic works as follows. Given a Boolean function f ∈ Bn,1 let us consider the following sit-
uation. There is a partial, permutation independent order of the n input variables of f constructed
by using the signatures introduced in Section 3.2.3. Furthermore, the groups of partial symmet-
ric input variables (see Section 4.2) are identified as well as the aliasing groups with h-symmetric
groups of input variables (see Section 4.3). Nevertheless, there are still unidentified groups of
aliasing variables. For the sake of simplicity, say these groups are the first k in the permutation
independent order of variables:

A = {A1, A2, . . . , Ak, . . .}
In this situation, we assume that all k groups of aliasing variables are connected by one g–symmetry
and use the observation that the groups of input variables that result in a g–symmetry are connected
with each other in the special sense just mentioned.

Now, we just assume that the input variables of one of these aliasing groups, say A1, are uniquely
identified. Under this assumption, we apply a couple of function signatures (see Section 3.2.3) to
each variable of the other k − 1 aliasing groups, i.e., we construct function signatures that depend
not only on those input variables that can be uniquely identified but also on those of aliasing group
A1.

The basic idea of this heuristic is that we may be able to find a unique function signature for each
of the input variables in A2 to Ak in the case of g–symmetry, because of the connection among
all k aliasing groups of such a g-symmetry. If this is the case, we can uniquely identify each input
variable in the aliasing groups A2 to Ak. Our practical experiences have shown that often this is
indeed the case.

Let us consider an example.

Example 4.4 f(a0, a1, a2, x0, x1, x2) = a0(x0 + x1) + a1(x1 + x2) + a2(x2 + x0)

This function f is g–symmetric with respect to the variable groups {a0, a1, a2} and {x0, x1, x2}. Let
us see how the heuristics works. We pick up one of these two aliasing groups, say {a0, a1, a2}, and
assume that we can uniquely identify these three variables. Under this assumption we can apply a
function signature to the other three variables which may depend on a0, a1, and a2:

fx0x̄1x̄2 = a1

fx̄0x1x̄2 = a2

fx̄0x̄1x2 = a0

Limits of Using Signatures 56

Order of {a0, a1, a2} Implicit Order of {x0, x1, x2}

(a0, a1, a2) (x2, x0, x1)
(a0, a2, a1) (x2, x1, x0)
(a1, a0, a2) (x0, x2, x1)
(a1, a2, a0) (x0, x1, x2)
(a2, a0, a1) (x1, x2, x0)
(a2, a1, a0) (x1, x0, x2)

Table 4.1: Group Symmetry

And indeed, the variables x0, x1, and x2 can be uniquely identified with these signatures. Further-
more, we can use the order relation for function signatures to get a unique order of the variables x0,
x1, and x2. Applying the lexicographically order relation for Boolean functions the unique order of
the three variables is (x2, x0, x1).

However, this unique description is not permutation independent. It depends on the permutation
of the input variables in A1, which is in the case of Example 4.4 (a0, a1, a2). So we need a way
to make the information permutation independent. Therefore, we consider the permutation π of
the input variables of f which results into the actual unique order of these variables given by the
signatures (assuming that there is a unique ordering). In our example, this permutation π is equal
to

π(a0, a1, a2, x0, x1, x2) = (a0, a1, a2, x2, x0, x1).

With the help of π, we construct the Boolean function f̂ = f ◦ π. This function is stored in a set
F̂ . Now, the same procedure is carried out for each possible order of the input variables in A1.
In the left column of Table 4.1 these orders are listed for the set of variables A1 = {a0, a1, a2} of
Example 4.4. Each of these orders implies an order for the variables {x0, x1, x2}, which are listed
in the right column of the table. As described for the first variable order in Table 4.1 the function
f̂ is computed and stored in F̂ .

When this has been done for all possible orders of the variables in aliasing set A1, then the lexi-
cographical smallest of all Boolean functions in F̂ is selected. The variable order which belongs to
this function and the function itself are the permutation independent information for function f .

Note, that we can also use any of the other sets of aliasing variables, A2, . . . , Ak. We decided to use
one of those sets with minimal size, since this reduces the number of steps necessary to construct
the set F̂ of Boolean functions.

This kind of G–symmetry has been independently investigated in [30] as well. In this paper,
the authors introduce methods to determine maximal sets of partial symmetric input variables of
a circuit without ROBDDs, mention that there are other than partial symmetries among input
variables and develop an idea to find candidates for this kind of symmetric input variables. This
idea is similar to that what we have used for our group–symmetry heuristics. In a later work,

Limits of Using Signatures 57

circuit number of correspondences cpu (in sec.) for
name #i #o #n sig +hsym +grsym sig all

CM150 21 1 64 ≈ 107 ≈ 107 1 0.8 4.9
CM151 12 2 32 216 216 1 0.2 0.5
act2 8 1 12 4 4 1 0.0 0.0
addm4 9 8 225 16 16 1 0.6 1.0
cordic 23 2 86 4 1 1 0.4 0.4
dist 8 5 135 16 16 1 0.3 0.7
ex4 128 28 896 4 4 1 27.4 40.8
i3 132 6 134 ≈ 1023 1 1 48.2 55.0
lal 26 19 123 24 1 1 0.2 0.2
misg 56 23 109 5184 216 1 1.6 36.4
mlp4 8 8 141 16 16 1 0.3 0.8
mult3 6 6 44 8 8 1 0.1 0.2
mux 21 1 88 ≈ 107 ≈ 107 1 0.9 4.9
mux cl 11 1 18 216 216 1 0.1 1.4
ryy6 16 1 27 4 1 1 0.1 0.1
sao2 10 4 123 16 16 1 0.2 0.6
t481 16 1 80 331776 331776 331776 0.6 0.6
ts10 22 16 271 720 720 720 2.1 2.2
term1 34 10 616 ≈ 108 ≈ 108 1 12.7 36.0

Table 4.2: Benchmarks with G–Symmetries

the authors consider the permutation equivalence problem. We briefly described their method to
handle the permutation problem in Section 3.3. In this paper, they mention that it is advantageous
to detect as many of that what we call group–symmetric variables as possible before attempting to
solve the permutation equivalence problem. However, they do not apply the idea introduced in [30]
to do this.

We have implemented our approach under the assumption that there is only one G–symmetry
between the aliasing groups and tested it for the examples of our benchmark set.

4.5 Experimental Results

Similar to our experiments with signatures, we implemented the ideas presented in this chapter in
the Berkeley SIS–system, release 1.3 [34]. All experiments were done on a SUN Sparcstation 10
with 64 MB RAM.

Table 4.2 lists the 8% of benchmarks with aliasing after signature computation which are the subject
of our research regarding to G–symmetries. In this table, a description of each circuit (name, number
of inputs, outputs, and ROBDD nodes) is followed by the number of possible correspondences after

Limits of Using Signatures 58

Figure 4.1: Description of Benchmark Circuit t481

using signatures only (sig), signatures and the algorithm to determine h–symmetry (+hsym), and
finally, signatures, the h–symmetry algorithm and the heuristic for g–symmetries (+grsym). The
last two columns include the CPU–time in seconds needed to apply the signatures and to apply the
signatures as well as all three heuristics on a SUN Sparcstation 10.

As can be observed, the results are promising. Approx. 20% of all benchmarks with aliasing
groups include h–symmetry. Furthermore, in all but one of these cases (namely misg) this is
the only reason for the existence of aliasing groups. The CPU–time necessary for the detection
of h–symmetry after signature computation is very promising. In many cases where h–symmetry
could not be detected there is no measurable CPU–time (i.e., 0.0 sec. in the table). Here, the
reason is that there are no classes of partial symmetries in the aliasing groups, so testing this
necessary condition is enough to establish the fact that there is no h–symmetry. Thus, no cofactor
computation is necessary in these cases. However, even in our worst case with respect to the CPU–
time, namely i3, it only takes 6.8 seconds to establish all h-symmetries. The reason for this fact
is that the variable groups that are tested within h–symmetry are rather small (i.e., size 2, 3, or
4), so that the quadratic factor of the complexity (O(k2|V |), see Section 4.3) is not too expensive.
Note that for i3 the results regarding to the correspondence possibilities is especially impressive,
too. After signature computation there are still approx. 1023 correspondence possibilities for the
input variables of i3 left, but all come from a permutation of h–symmetric variable groups.

For all but two of the rest the grsym–algorithm was successful. These two examples are ts10 and
t481. Our investigations have shown that the aliasing variables of both examples are involved in
a special symmetry as well. Unfortunately, we have not been able to automate the detection for
these cases.

Benchmark ts10 includes a group of six aliasing variables with rotational symmetry. We discuss
rotational symmetry in the next section.

The other example is the benchmark circuit t481. Figure 4.1 shows a description of it. This example

Limits of Using Signatures 59

has 16 input variables, X = [x0, x1, . . . , x15], and one output. By using the signatures introduced
in this thesis the set of inputs is divided into the partition

A = {{x4, x7, x8, x11}, {x5, x6, x9, x10}, {x0, x3, x12, x15}, {x1, x2, x13, x14}}.

Considering the structure of t481 we can observe that there is indeed a group symmetry between
the four groups of aliasing variables in partition A: for instance, applying the permutation

π(x0, . . . , x15) = (x12, x13, x14, x15, x8, x9, x10, x11, x4, x5, x6, x7, x0, x1, x2, x3)

does not change the function f . However, non of the four groups of aliasing variables can be used
to identify all other aliasing variables uniquely as described in Section 4.4. In other words, our
heuristic to assume that the variables of one of these aliasing groups can be uniquely identified and
then to try to distinghuish between the others does not work for t481. The reason for this fact may
be that there are permutations of the inputs of t481 that keep this function invariant but do not
involve all aliasing groups. For example, exchanging the variable x0 with x3 and the variable x1 with
x2 does not change t481 although just the last two aliasing groups are involved in this permutation.
In other words, the four aliasing groups of t481 are not completely connected with each other, thus
the heuristics introduced here cannot help to distinguish between the variables completely. The
characteristic of circuit t481 underlines once more the complexity of general G–symmetry.

4.6 The Variety of G–Symmetry

We introduced three kinds of G–symmetry that cover a wide range of symmetries appearing in
practice. For these symmetries we could provide efficiently working solution paradigms for the
permutation equivalence problem Pπ.

Nevertheless, it seems to be not possible to find a general solution paradigm which allows us to
handle G–symmetry efficiently because of the generality of this function property. Each kind of
G–symmetry seems to demand a special procedure to handle it. Although we feel that the G–
symmetries introduced in this chapter are those mostly appearing in practice, other symmetries
may appear as well.

Here is one of these G–symmetries for that we have even an example in our benchmark set (This is
ts10. See the previous section). Consider the following function:

f = x1x2 + x2x3 + x3x4 + x4x5 + x5x1.

It is obvious that rotating the five variables in function f (i.e., applying the permutation π =
(x5, x1, x2, x3, x4) to the inputs of f) does not change this function. So it is a kind of G–symmetry,
too. All five input variables of the Boolean function f will form one aliasing group that cannot be
refined by using signatures. Furthermore, there are no partial, no hierarchical, as well as no group
symmetries between these input variables. We call this kind of symmetry rotational symmetry and
define it as follows.

Limits of Using Signatures 60

Definition 4.5 Let f ∈ Bn,1 be a Boolean function.
Let Y = [y1, y2, . . . , yk] ⊆ X be a subset of the input variables of f .
Let π = (yk, y1, y2, . . . , yk−1) be a permutation of Pk.
f is rotational symmetric (r–symmetric) iff

1. k ≥ 3,

2. f is not partial symmetric in Y , and

3. f does not change on applying the permutations π to the variables of Y .

Note that also the permutation π−1 keeps f invariant as well as applying π more than once,
since the set G ⊂ Pn which constructs an r–symmetry is a group. Similar to group symmetry,
r–symmetry is neither easy to detect nor easy to handle. Furthermore, the heuristic applied for the
group symmetries, (i.e., assume one of the input variables of Y has been uniquely identified by a
signature, then try to use function signatures to distinguish between the others as well) does not
work very successful for rotational symmetry, as our experiments have shown. Rotational symmetry
illustrates the difficulties that may appear in general with G–symmetries.
However, partial symmetries, hierarchical symmetries, and group symmetries seem to be the most
common G–symmetries appearing in practice. So, the algorithms presented for handling these
symmetries have direct practical impact on the complete solution of the permutation problem.

Chapter 5

The Latch Correspondence Problem

In this chapter, we show that the signature–based methods used for solving the permutation equiv-
alence problem can be easily applied to a problem in sequential logic verification. This is the
problem of establishing the unknown correspondence for the latch variables (memory elements)
of two sequential circuits that have the same encoding of their states. If a correspondence of the
latches in the two circuits can be established, then the verification problem reduces to a combi-
national equivalence check on the combinational circuit defined by the latch boundaries. There
are several cases in which the correspondence may exist but is unknown. For example, the names
for the latches used in a specification may be different from those used in the implementation due
to modifications made by synthesis tools. The combinational equivalence check on the primary
output and next state functions can be done using ROBDDs. However, without the correspondence
of latches we cannot check if the corresponding ROBDDs of the combinational parts of the two
sequential circuits are the same. Thus, we need to establish a correspondence first, similar to the
combinational permutation equivalence problem.

The application of signature based methods for this problem is straightforward: derive a signature
for each latch variable in order to uniquely identify this latch. In [36], the authors have used this
method to identify corresponding latch variables in order to be able to simplify the product machine
traversal for sequential verification. This is especially useful when the state encoding of the two
machines that have to be verified are identical, but the state variable correspondence is not known.
Here, they have used signatures for input variables known from literature [9] to do this and have
made the observation that sometimes the task still remains too complex. We think that the ideas
presented in this thesis are able to improve upon this, since we do not just combine different input
signatures but also develop novel signatures which are especially suited for the latch equivalence
problem. Thus, these new signatures give better results, i.e., the set of pairs of latch variables
which are candidates for correspondence are determined more precisely.

We start with a problem description in Section 5.1. In Section 5.2, we describe the differences be-
tween establishing unknown input correspondence and establishing unknown latch correspondence,
introduce special signature functions for latch variables that can be easily computed on ROBDDs,
and explain a solution paradigm which uses these signature functions on an example. Then, we

61

The Latch Correspondence Problem Lπ 62

Figure 5.1: The Latch Equivalence Problem

demonstrate the utility of this approach by experimental results in Section 5.3 and discuss the
influence of symmetries in Section 5.4. The main results of this chapter are published in [27].

5.1 Problem Description

Let Fn,m,k be the set of all synchronous sequential circuits with n primary input variables, X =
[x1, x2, . . . , xn], m primary output variables, Y = [y1, y2, . . . , ym], and k latch variables, L =
[l1, l2, . . . , lk]. We can consider just the combinational part of a sequential circuit F ∈ Fn,m,k.
Therefore, let U = [u1, u2, . . . , uk] be the set of latches considered as input variables of F , and
let V = [v1, v2, . . . , vk] be the set of latches considered as output variables of F . Then we get
the combinational part of F , Com(F) as a Boolean function with n + k input and m + k output
variables and can define the latch permutation equivalence problem.

Definition 5.1 The latch permutation equivalence problem, Lπ (also refered to as the latch cor-
respondence problem) is defined as follows:

Let be F1 and F2 ∈ Fn,m,k. Does there exist a correspondence C between the latch variables of F1

and F2, such that the two synchronous sequential circuits have their combinational parts equivalent
using this correspondence:

Com(F1) =C Com(F2)?

This is illustrated in Figure 5.1. Here, we assume that the correspondences between the primary
inputs and outputs of F1 and F2 is known. The similarity of this problem to the combinational
permutation equivalence problem is obvious. We need to find a unique and permutation independent
description for each latch variable. The difference is that each latch variable has to be considered
as input and as output variable. So let us modify the approach used to handle the combinational
problem.

The Latch Correspondence Problem Lπ 63

5.2 Signatures

In Chapter 3, we define a signature as a description of an input variable that is independent
of any permutation of all inputs of a Boolean function f ∈ Bn,1. Thus, it can help to solve
the combinational permutation equivalence problem, Pπ, as follows. With the help of signatures
each input variable can be identified independent of permutation, i.e., any possible correspondence
between the input variables of two Boolean functions is restricted to a correspondence between
variables with the same signature. So, if each variable of a Boolean function f has a unique
signature, then there is at most one possible correspondence to the variables of any other Boolean
function.

This concept can be used to attack the latch correspondence problem, Lπ. Here we need to test
whether there exist a correspondence between the latches of two synchronous sequential circuits,
such that the combinational logic used to define them is equivalent under this correspondence.

Let us characterize this new problem and underline the differences from Pπ. We assume that the
correspondence between the primary inputs of the two circuits is known. So we have the first piece
of additional information in comparison to Pπ. Similar to Pπ, we also assume that we know the
correspondence between the primary outputs. These outputs are Boolean functions that depend
on the primary input variables as well as the input variables due to the latches. So, we can use the
primary outputs to compute signatures for the latch input variables. This is done in exactly the
same manner as for the combinational problem Pπ. In the following, we will call those signatures
input signatures and make some remarks regarding them in Section 5.2.2. However, latches
appear not only as input variables, but also as output variables. So, the most important difference
between the combinational problem Pπ and the sequential problem Lπ is that we can use latch
output signatures in addition to identify the latches independent of permutation. A latch output
signature is a description of a latch, considered as an output variable, that is independent of the
permutation of the latches as output as well as input variables. We will explain this in more detail
in Section 5.2.3.

In Section 5.2.4, we demonstrate how we establish a unique possible correspondence for the latches
for one of the benchmarks (see Section 5.3), namely ex4.slif. A general solution paradigm is given
in the next section.

5.2.1 Solution Paradigm

Let us start with describing the solution paradigm on an example of two circuits, F1 and F2, with
four latch variables [l1, l2, l3, l4]. Let the latches considered as input variables be the variables
[u1, u2, u3, u4], and the latches considered as outputs be the variables [v1, v2, v3, v4].

First, we look at the latches as input variables and compute an input signature sI(F1, ui) and
sI(F2, ui) for i = 1, 2, 3, 4 with respect to the primary outputs of F1 and F2 respectively. This is
done in exactly the same manner as described for the combinational permutation problem Pπ in

The Latch Correspondence Problem Lπ 64

Section 3.2.2. So let us suppose that we have two lists of input signatures that contain the same
elements:

LI(F1) = [2, 1, 3, 2] and LI(F2) = [1, 2, 2, 3].

Now, based on these signatures we can establish directly that any correspondence between the
latches of F1 and F2 has to identify latch l2 of F1 with latch l1 of F2, and latch l3 with latch l4.
Thus, a correspondence between the latches of F1 and F2 has been partially established. In this
case, there is a possible correspondence between the latches of F1 and F2 for latch equivalence.
However, both latch variables, l1 and l4 of F1 could correspond to l2 as well as to l3 of F2. In other
words, aliasing occurs between the latch variables l1 and l4 of F1 and between the latch variables
l2 and l3 of F2.

Since latch variables are not just input variables but also output variables, we have a second
possibility to distinguish between the latches with aliasing. We can consider them as output
variables and use latch output signatures to try to uniquely identify them. In our example, we have
to do this for the latch output variables v1 and v4 of F1, and for the variables v2 and v3 of F2. So
let us assume that

LO(F1, [v1, v4]) = [4, 5] and LO(F2, [v2, v3]) = [5, 4].

Now we are done, since we are able to establish a unique correspondence between the latch variables
l1 and l4 of F1 and the variables l2 and l3 of F2 as well: latch l1 of F1 has to correspond to latch l3
of F2, and latch l4 of F1 to latch l2 of F2.

This gives us the only possible unique correspondence between the latch variables. Furthermore,
if we require that signatures have to be elements of an ordered set, we can establish a unique
permutation independent order of the latches. In the case of our example, that would be the order
[l2, l1, l4, l3] for the latches of F1, and the order [l1, l3, l2, l4] for the latches of F2.

This example demonstrates that the possibility to consider latch variables as inputs as well as
outputs improves our chances to get a unique correspondence between the latches for a possible
latch permutation equivalence of two circuits. Of course, it is not guaranteed that such a unique
possible correspondence will be obtained. It strongly depends on the input and latch output
signatures that we use and on the characteristics of the latches. Thus we focus on the following
questions in the rest of this chapter. What input and latch output signatures can we use? What
special properties of the problem do we need to take care of? And, what special properties of the
latches may cause problems for our signature approach?

5.2.2 Input Signatures

Only some modifications need to be made when considering signatures for input variables as intro-
duced in Section 3.2.3 for use in Lπ. Let us consider F ∈ Fn,m,k again. It has m primary output

The Latch Correspondence Problem Lπ 65

functions, [y1, . . . , ym], that we can uniquely identify (see Section 5.1). These output functions de-
pend on the primary input variables x1, . . . , xn and on the latch input variables u1, . . . , uk. So we
can use them step by step, starting with y1 up to ym, to compute input signatures for the variables
u1, . . . , uk.

Let us describe this on an example. Consider F with two input variables, x1 and x2, two outputs,
y1 and y2, and four latches, l1, l2, l3, and l4. Then, the two output functions y1 and y2 are functions
that depend on the set of input variables [x1, x2, u1, u2, u3, u4]. Now, let us use the cofactor satisfy
count signature function in order to try to separate u1, u2, u3 and u4. In a first step, we compute
this signature using output function y1. Let us assume we get the partition [{u1, u3}, u4, u2]. This
means that we can uniquely identify the latch input variables u2 and u4 and thus the latches l2
and l4. Furthermore, we get a unique partial order of the latches: [{l1, l3}, l4, l2]. Now, we can use
output function y2 in a second step to try to distinguish between the latch input variables u1 and
u3 as well.

Note, that we cannot use the latch output variables, v1, . . . , vk, for that purpose, since these outputs
are not uniquely identified as yet.

5.2.3 Latch Output Signatures

Similar to an input signature, we can define a signature for a latch output variable vi of F ∈ Fn,m,k.
A signature for a latch output variable is a value, a vector of values, or a function that provides
special information about this latch output variable. This information has to be independent of any
permutation of the latch variables of F . In general, such a latch considered as an output depends
not only on the primary inputs of this sequential circuit, but also on the latches considered as input
variables. That is why a latch output signature has to be independent of the permutation of these
latch input variables as well. Furthermore, similar to an input signature, it has to be an element
of an ordered set.

Now let us develop latch output signatures that could be useful. Therefore, let us consider the
example circuit F ∈ Fn,m,k with two input variables, x1 and x2, two outputs, y1 and y2, and four
latches, l1, l2, l3 and l4, again. Suppose, we could not distinguish between the latches l1 and l3
considering them as input variables u1 and u3. Thus, we still have the partial order of the latches,
[{l1, l3}, l4, l2] (see previous subsection). Now, let us consider these latches as output variables of F ,
v1 and v3. These output variables represent Boolean functions, that depend on all primary input
variables and on the latches considered as input variables.

For simpler notation let us denote the considered latch output variable function as f . We can apply
the following kinds of latch output signatures to it.

5.2.3.1 Simple Output Signatures

Signature functions that can be directly developed by applying input signature functions as in-
troduced in Section 3.2.3 to latch output variables are called simple signature functions in the

The Latch Correspondence Problem Lπ 66

following.

Such a signature function could be for instance:

1. the satisfy count of the output function, |f |,

2. the vector of the cofactor satisfy count signatures of the input variables of f sorted by the
size of the satisfy counts,

sort(|fx1|, |fx2 |, . . . , |fu1 |, . . . , |fuk
|),

3. the breakup signature with respect to function f and origin O = [0, 0, . . . , 0],

[|f0|, |f1|, . . . , |fn+k|].

These signature functions satisfy all necessary properties since they are output signatures for f
(i.e., for v1 and v3, respectively) that are also independent of the permutation of the latch input
variables, u1, u2, u3, and u4.

If these simple output signatures do not break the tie, we have to apply some stronger latch output
signatures.

5.2.3.2 Function Signatures for Latch Outputs

Here we use the fact that we can uniquely identify the primary input variables of the circuit. In our
example, these are x1 and x2. So, any subfunction of a latch output variable f that is independent
of the latch input variables is a latch output signature. There are several possibilities for this
kind of subfunction. Let us consider our example F with the two primary input variables, x1 and
x2, and the four latch variables considered as inputs, u1, u2, u3, and u4, again. Subfunctions of a
primary output function f of this example that only depend on x1 and x2 are for instance fu1u2u3u4,
fū1ū2ū3ū4 , ∀u1u2u3u4f , and ∃u1u2u3u4f .

Such a function contains special information about f , and it is independent of the permutation of
the latch output variables as well as of the latch input variables of F . We call this kind of signature
a function output signature.

In the example, we need to compute function output signatures for the latch output variables v1
and v3. Let us consider v1 and denote the function computed by it as f again.

Furthermore, we can extend the idea of the function signature using exactly the idea of constructing
the function signatures for input variables (see Section 3.2.3). For each latch which is uniquely
identified at this point, the corresponding latch input variable can be uniquely identified as well. In
our example, this is the case for the latches l2 and l4. So, subfunctions of v1 and v3 that depend on
the primary inputs x1 and x2 and on the latch input variables u2 and u4 are latch output signatures
— with one minor restriction: we need to reorder the latch input variables u2 and u4 independent

The Latch Correspondence Problem Lπ 67

of permutation in these subfunctions. Therefore, let us use the order of the latches established by
previously used signatures. In the case of our example, the permutation which reorders the input
variables of such a subfunction would be: π = (x1, x2, u4, u2) (see the latch order of our example
in the previous section). Such a reordered subfunction of v1 and v3 has all the properties to be
a latch output signature, and we can again try to distinguish between v1 and v3. This process
can be iterated as long as we can uniquely identify at least one more latch. That is why we call
this extended function signature the iterating function signature. Our practical experiments have
shown that this is a very powerful signature.

5.2.3.3 Canonical Order Signature

There is another strong latch output signature. We call it the canonical order signature. For that
we use the methods introduced to handle the combinational permutation equivalence problem.
Remember, these methods can be used to establish a canonical and permutation independent
ordering of the input variables of a Boolean function.

Let us consider the Boolean function f which represents a latch output variable function of F again.
On the input variables of this function, the methods used in Chapter 3 and in Chapter 4 can be
applied in order to find a canonical permutation independent variable ordering. Suppose π ∈ Pn+k

is a permutation of the latch input variables of f which constructs this canonical order, then the
canonical order signature is the following function:

f can = f ◦ π.

This function is independent of the permutation of any input variable of f . Thus it is a latch output
signature. Note that finding this canonical ordering can be restricted to the latch input variables
because the primary input variables of f are uniquely identified by assumption.

5.2.4 An Example

In this section, we illustrate our solution paradigm with benchmark ex4.slif from the LGSynth91
benchmark set [1]. We will not use all signature functions here. However, the general paradigm of
finding a unique permutation independent order of the latch variables, as described in the previous
sections, will become clear.

Benchmark ex4.slif is the description of a sequential circuit with 6 input variables, v0, v1, . . . , v5,
9 output variables, v20.14, v20.15, . . . , v20.22, one clock variable, and 14 latches. Let us call these
latches l1, l2, . . . , l14 in the order of their appearance in the benchmark description. For more details
please see the benchmark description in the LGSynth91 set of benchmarks.

The Latch Correspondence Problem Lπ 68

We begin with computing a simple output signature: the satisfy count, |vi| of the latch variable li
considered as output vi of the actual circuit. Here, we get the following results:

|v1 |= 0 |v2 |= 288
|v3 |=128 |v4 |= 128
|v5 |=192 |v6 |= 64
|v7 |=128 |v8 |= 128
|v9 |= 96 |v10|= 128
|v11|=128 |v12|= 192
|v13|= 64 |v14|=128.

Using these signatures we get a partial, permutation independent order of the latches:

l1 {l6, l13} l9 {l3, l4, l7, l8, l10, l11, l14} {l5, l12} l2.

As you can see, there are three aliasing groups of latches, one of size 7 and two of size 2, for which
we have to do further computations. We now consider these latches as input variables, ui, and use
an input signature to try to distinguish between these latches. For doing that, we take one primary
output function, v20.i, after the other and compute the selected input signature with respect to
this output function.

Let us take the cofactor satisfy count signature as an input signature and start with primary output
function v20.14. We get the following results for the three aliasing groups:

group1 group2 group3

|v20.14u6 | = 256 . . .u3 = 0 . . .u5 = 128
. . .u13 = 256 . . .u4 = 0 . . .u12 = 128

. . .u7 = 0

. . .u8 = 256
. . .u10 = 0
. . .u11 = 0
. . .u14 = 256

Based on this we see that the latches of aliasing group 1 and group 3 cannot be distinguished using
the cofactor satisfy count signature with respect to primary output function v20.14. However, we
can split up group 2 in the subgroups {l3, l4, l7, l10, l11} and {l8, l14}. So, we get a finer partial order
for the latches:

l1 {l6, l13} l9 {l3, l4, l7, l10, l11} {l8, l14} {l5, l12} l2.

At this point we have four aliasing groups of latch variables, namely three of size 2 and one of
size 5. Now, we can continue with computing the cofactor satisfy count signatures with respect
to primary output function v20.15, analyzing the new situation with respect to those signatures
(i.e., is there a finer partition of the latches?), and so on for all primary outputs — until there is a
unique order of the latches.

The Latch Correspondence Problem Lπ 69

However, even after using all the primary output variables, we still have just a partial order of the
latches:

l1 {l6, l13} l9 {l4, l11} l7 l3 l10 l8 l14 {l5, l12} l2.

Now, there are three aliasing groups of size 2. So, let us try and see how the more complex output
signatures work. At first, we will use a vector of function signatures. This works as follows. We
consider the latch variables li of the three aliasing groups as output variables vi again. Then we
compute restrictions of such an output variable vi (output function f vi), that are independent of
the latch input variables. For the purpose of this example, let us take the following two functions:

(f vi
u1u2...u14

, f vi
ū1ū2... ¯u14

).

This is a vector of function signatures for each latch variable of the three remaining aliasing groups
of our benchmark circuit. Unfortunately, there is no difference between the function signatures of
l6 and l13, l4 and l11, and l5 and l12, respectively. (In our experiments we use six different function
signatures.) Applying the canonical order signature now, helps to distinguish between latch l4 and
l11, and we get the following partial order for the latches:

l1 {l6, l13} l9 l11 l4 l7 l3 l10 l8 l14 {l5, l12} l2.

Let us try the iterating function signature next. Here, we use the same functions as for the function
signature described above, but with one important difference. The restrictions of an output function
f vi that we compute, is not independent of all latch input variables, but only of those that are
still in aliasing groups. So, a vector of those restricted functions for latch variable li of one of our
aliasing groups is:

(f vi
u5u6u12u13

, f vi
ū5ū6 ¯u12 ¯u13

).

However, we need to reorder the unique latch input variables in the restricted functions in order to
get an iterating function signature (see Section 5.2). The new order is the permutation independent
and unique suborder that we get by the established order of our latch variables:

u1 u9 u11 u4 u7 u3 u10 u8 u14 u2.

By reordering the latch input variables in the two functions described above, we get an iterating
function signature for latch variable li:

(gvi
u5u6u12u13

, gvi
ū5ū6 ¯u12 ¯u13

),

and as our experiments have shown, we finally can establish a unique permutation independent
order of all latch variables with the help of these output signatures:

l1 l6 l13 l9 l11 l4 l7 l3 l10 l8 l14 l5 l12 l2.

The Latch Correspondence Problem Lπ 70

5.3 Experimental Results

We implemented the signatures and ideas presented in the previous sections in the Berkeley SIS–
system, release 1.3, in C [34]. To get an understanding about the quality of the signatures we
tested a set of 97 benchmarks. These are all fsmexamples and all smexamples from the LGSynth91
benchmark set for which we could construct the ROBDDs [1]. The experiments were conducted on
a SUN Sparcstation 10 with 64 MByte RAM.

The first experiment conducted was to determine the best signature order. There are several input
and latch output signatures that we can use to get a unique possible correspondence of the latches.
The best order of these signatures is the one with the smallest CPU–time required to obtain unique
correspondence. We tried the following orders:

• Use all input signatures first and then all latch output signatures.

• Use all latch output signatures first and then all input signatures.

• Use all those signatures first, for which no exhaustive ROBDD constructions are necessary –
do this with input priority and with latch output priority.

We observed that using the latch output signatures first seems to be the better choice. Thus, we
decided to use the following order for further investigations.

First compute three simple latch output signatures on each latch output variable f :

• |f |,

• sort(|fx1|, . . . , |fuk
|),

• breakup signature for f.

Then use some input signatures introduced in Section 3.2.3. These are the satisfy count signatures
and the breakup signatures. And finally use the more qualified latch output signatures: function
signature, canonical order signature, iterating function signature.

For the fsmexamples of the LGSynth91 benchmark set, the signature procedure could establish a
unique possible correspondence for all latches of all benchmarks in less than 2 seconds. Here,
using the simple latch output signatures was enough, except for benchmark shiftreg.kiss2. For this
example it was necessary to use the cofactor satisfy count signature function for input variables
as well. So, let us concentrate on considering the results of our investigations for the smexamples.
Table 5.1 presents these results. The first 5 columns include the benchmark characteristics (name,
number of inputs, outputs, and latches as well as the number of ROBDD nodes). The next 4 columns
show the number of possible correspondences of the latches after using the simple latch output
signatures (so-sigs), then after using the input signatures in addition (+i-sigs), next after using

The Latch Correspondence Problem Lπ 71

name #i #o #l #bdd # of correspondences with cpu time
so-sigs +i-sigs +fc-sig +itf-sig (in sec.)

(+can-sig)

clmA 382 82 33 2211 1 91.2
clmB 382 369 33 1998 1 95.3
daio 2 3 4 21 2 2 1 0.0
ex2 3 3 19 406 24 · 4! · 6! 27 · 3! 256 1 10.1
ex3 3 3 10 143 6 1 0.2
ex4 7 10 14 252 4 · 7! 8 8(4) 1 2.8
ex5 3 3 9 128 4 1 0.2
ex6 5 8 9 162 1 0.2
ex7 3 3 10 159 4 1 0.2
MinMax4 7 4 12 523 4! 1 0.2
MultiplierB 16 17 1 30 124 14! · 15! 13! · 14! 1 3.1
MultiplierB 32 32 1 62 249 1 25.4
s1196.bench 14 14 18 2822 1 0.2
s1238 15 15 18 2840 1 0.2
s1423.bench 17 5 74 13657 4 · 3! · 4! 3! · 4! 6 1 216.0
s1488.bench 8 19 6 489 1 0.0
s1494.bench 8 19 6 484 1 0.0
s208.1.bench 10 1 8 71 1 0.1
s208 12 3 8 82 1 0.1
s27.bench 4 1 3 12 1 0.0
s298.bench 3 6 14 118 2 2 1 0.2
s344.bench 9 11 15 180 3! · 4! 4! 1 0.7
s349.bench 9 11 15 178 3! · 4! 4! 1 0.7
s382.bench 3 6 21 176 2 2 1 0.3
s386.bench 7 7 6 142 1 0.0
s400.bench 3 6 21 176 2 2 1 0.3
s420.1.bench 18 1 16 203 1 0.7
s444.bench 3 6 21 191 2 2 1 0.3
s510.bench 19 7 6 185 1 0.0
s526.bench 3 6 21 169 2 2 1 0.7
s526n 4 7 21 164 2 2 1 0.7
s641.bench 35 23 19 777 4 1 0.7
s713.bench 35 23 19 777 4 1 0.6
s820.bench 18 19 5 309 1 0.0
s832.bench 18 19 5 309 1 0.0
s838.1.bench 34 1 32 659 1 4.4
s838 36 3 32 323 1 4.6
s953 17 24 29 508 1 0.3
sbc 40 56 28 1689 2 1 0.7

Table 5.1: The Quality of Signatures in Lπ

function and canonical order signature (+fc-sig (+can sig)), and finally after using the iterating
function signature (+itf-sig). The last column includes the CPU time in seconds needed to establish
a unique possible correspondence by using these signatures functions. The time 0.0 seconds means
that there was no measurable cpu–time. In Section 5.2.4, we demonstrated this process on the

The Latch Correspondence Problem Lπ 72

specific benchmark ex4.slif.

The results are very promising. We could establish a unique possible correspondence for all latches
of each benchmark of our actual set. For about 49% of the benchmarks it was enough to use simple
output signatures in order to uniquely identify each of the latches. Applying input signatures helps
to solve the problem for a further 18%. And finally, the function signature and the more exhaustive
iterating function signature establish a unique possible correspondence for the latches for 33% of
all benchmarks. Note, that the canonical order signature could uniquely identify exactly one latch
output, that is for ex4.slif. Note also that the CPU times are very modest.

5.4 Symmetries in Latch Equivalence

However, applying signatures to solve the latch equivalence problem does not guarantee a complete
solution. Similar to the combinational permutation problem, Pπ, this approach will fail if any kind
of latch symmetry appears in a circuit. Moreover, those symmetries are likely to appear in practice.
For example, circuits generated from high level descriptions are likely to have many symmetric (in
fact equivalent) state variables. In this case, signatures cannot help (see Chapter 4). Nevertheless,
we can extend the signature approach by considering latch symmetry and applying methods used
in Chapter 4.

Two latches l1 and l2 of F ∈ Fn,m,k are symmetric iff their variables u1 and u2 are input symmetric
with respect to all primary outputs y1, . . . , ym, and with respect to the latch outputs v3, . . . , vk.
Furthermore, the two functions v1(. . . , u1, u2, . . .), and v2(. . . , u2, u1, . . .) have to be equal. If this
is the case, then the two latches l1 and l2 can be exchanged in F without changing the circuit
function. It is obvious that this symmetry between two latches can be easily tested by using the
known tools in order to test the symmetry of the latch input variables [28]. ROBDDs are used to
compare the two latch output functions. It is possible that other kinds of latch symmetry can be
defined and handled in a similar way.

Chapter 6

Conclusion

In this thesis, an approach to handle the combinational permutation independent Boolean compar-
ison problem is presented, i.e., the problem whether two Boolean functions f and g are equivalent
independent of the permutation of their input variables. The approach concentrates on establishing
a possible correspondence for equivalence between the input variables of f and g. This problem
is NP–hard. So heuristic solutions are necessary. The approach introduced here uses signatures
for an input variable of a Boolean function f to handle the problem. In this context, a signature
is a special information about an input variable of a Boolean function f which is independent of
the permutation of all input variables of f . The data structure which is used to represent Boolean
functions is the reduced ordered binary decision diagram (ROBDD).

The following two observations could be made:

1. Signatures are especially well–suited to uniquely identify input variables independent of per-
mutation.

Three classes of signature functions are presented which were proven to work very efficiently.
In fact, in all cases were it was possible to uniquely identify an input variable in our large set
of benchmarks these signature functions were able to do it. Furthermore, in order to compute
several of these signature functions just one ROBDD describing the Boolean function is needed,
and of course, the computation does not depend on the variable ordering of the ROBDD. Thus
as long as we can construct an ROBDD for the function with any variable ordering, we can
apply these signature functions. This is a very modest requirement, since an inability to
construct the ROBDD for any variable ordering would preclude verification with the help of
ROBDDs even if you knew the variable correspondence.

2. The only limitation for signatures to be able to uniquely identify input variables are special
symmetries, that we call G–symmetries.
At first the limitations of using signatures to tackle the combinational permutation equiv-
alence problem are examined by presenting basic results which identify exactly what these
limitations are. The property of G–symmetry of Boolean functions is investigated, and a

73

Conclusion 74

universal signature function is introduced which dominates all other signature functions in
the following sense: if there is any signature function which can distinguish between two
input variables of a Boolean function, then the universal signatures of these two variables
must be different as well. In this sense, the universal signature function is the strongest sig-
nature function which can be constructed. Then the existence of a universal signature could
be proven and so a central theoretical result of this thesis: if any two input variables of a
Boolean function f have the same universal signature, then there is a permutation π ∈ Pn \1
of the input variables of f such that applying this permutation to the inputs of f does not
change this function. In other words, the only limitation for signatures to be able to uniquely
identify input variables are G–symmetries.
Next, new kinds of symmetry classes (i.e., special G–symmetries) are identified that help in
finding a correspondence between the input variables of two Boolean functions being com-
pared.

For our large set of benchmark circuits, the CPU–times necessary to establish such a unique cor-
respondence are very promising. Thus, in addition to providing theoretical insight, the algorithms
presented have direct practical impact for the complete solution of the permutation independent
Boolean comparison problem.

For years, the permutation equivalence problem has been worked on by several other authors
as well [9, 10, 21, 25, 29, 31, 33]. Considering all the approaches for handling the permutation
equivalence problem that were proposed in the last few years we can say the following. It is not
possible to say that one of these approaches presents the best method to handle the problem. Each
of these methods will work well for a special class of practical circuits. However, except for the
approach presented in this thesis, none of them takes general kinds of symmetry (that we call G–
symmetry) into account. That may be acceptable for application in technology mapping when just
a small number of inputs is involved. There, it may be feasible to try all correspondence possibilities
established after applying different signature functions or try using the method introduced in [31].
However, when permutation independent Boolean comparison has to be used for functions with a
large number of inputs, as in formal logic verification, it is definitely necessary to take G–symmetries
into consideration. This can be underlined by the theoretical investigations with respect to the
limits of signatures and by the experiments on the large set of benchmarks discussed in this thesis.
So, applying the methods that use the knowlegde about G–symmetries significantly sets the work
of this thesis apart from the other approaches.

Furthermore, it is shown that these methods can be used in order to handle other problems of
circuit design and verification as well. Here, it is demonstrated how the methods can be easily
extended and applied to handle one problem in sequential logic verification. That is the problem of
establishing the unknown correspondence between the latch variables of two sequential circuits with
the same state encoding. We call it the latch permutation equivalence problem. A solution of this
problem can be used to verify the combinational equivalence of two sequential logic circuits that
have the same state encoding, but the correspondence between the latch variables is not known.

Appendix 75

Experiments have shown that as long as there are no latch symmetries, signatures can be used
to establish a unique possible correspondence between the latches. The CPU times necessary to
establish such a unique correspondence are very promising.

Moreover, this method can be easily extended to identify equivalent latches in a circuit (see Sec-
tion 5.4). Thus we believe that it is especially suited to be added in sequential verification tools
that use product machine traversals. Here, computations can be made more efficient by exploiting
combinationally equivalent state variables (see for example, [13, 36]).

In our opinion, the methods presented here to tackle the latch correspondence problem can easily
be integrated with existing verification methods and so significantly improve the ability of these
techniques to handle sequential circuits with the same state encoding. This has direct practical
impact in sequential logic verification because it enlarges the class of sequential circuits for which
verification is feasible (see also [13]).

Finally, there are several ideas for future projects related to the work reported in this thesis.

The thesis shows that it is extremely difficult to handle G–symmetry in general. Furthermore, it
demonstrates the practical importance of G–symmetry of Boolean functions for logic synthesis and
verification. So it would be useful to investigate this further.

However, there are other important fields of investigation. One of these is to check other data
structures, i.e., other kinds of decision diagrams (for example OKFDDs [2]), circuit descriptions on
the gate level, etc., for their ability to be used in applying these signature–based methods for solving
the permutation problem. The advantage of this is that it would enlarge the class of combinational
and sequential circuits for that the permutation problem can be efficiently solved.

Another important area is the application of the signature–based methods to incompletely–specified
Boolean functions. With the extension of these methods to functions with DC’s, several improve-
ments in different areas of circuit design and verification would be possible. In technology mapping,
it would enlarge the degrees of freedom for efficient mappings of Boolean functions to a certain li-
brary. Some preliminary investigations on this issue were made in [16].

Moreover, it would be interesting to extend the approach to handle the combinational equivalence
problem for unknown input and unkown output correspondence of two Boolean functions with
more then one output. Here, the application of signature functions to the output variables of a
Boolean function is straightforward: satisfy count signatures and breakup signatures could also be
used to identify output functions. Furthermore, the permutation independently ordered signature
vector of the input variables of an output function could be used to identify this output function
independent of permutation. The influence of this extension regarding to G–symmetry and the
heuristics to handle special kinds of this symmetry has to be investigated.

Appendix A

Benchmark Descriptions

In this section we provide results for the 243 benchmarks from the LGSynth91 benchmark set
(Tables A.1–A.2) and the ESPRESSO benchmark set (Tables A.3–A.5) as well as three additional
benchmarks (Table A.6: act1 and act2 — the actel1 and actel2 cells from the FPGA manufacturer
Actel; mult3— a 3-bit multiplier). These are all benchmarks for that we were able to construct the
ROBDDs. Each table is constructed as follows. The first 4 columns contain a description of each
benchmark circuit: name, number of input and output variables, and number of ROBDD nodes.
In Column 5, the partition of the input variables after signature computation (see Section 3.3) is
shown ((x,y) indicates that there are x variable groups of size y in this partition. Note that classes
of partial symmetric variables are represented by one variable of this group only.). The last column
contains the CPU–time in seconds which was needed to compute all signatures and to construct
the partition of the input variables using these signatures on a SUN Sparcstation 10 with 64 MB

RAM. A time 0.0 sec. means that there was no measurable CPU–time. Please see Section 3.3 for
detailed comments relating to these results.

76

Appendix 77

name #i #o #n groups: (subsets, size) cpu (in sec.)

5xp1 7 10 66 (7,1) 0.0
9sym 9 1 26 (1,1) 0.0
9symml 9 1 26 (1,1) 0.0
ADDERFDS 33 17 458 (16,1) 0.1
C17 5 2 10 (5,1) 0.0
C1355 41 32 33195 (41,1) 31.4
C432 36 7 31179 (36,1) 6.4
C499 41 32 33195 (41,1) 29.0
C1908 33 25 12713 (33,1) 2.7
C880 60 26 7889 (57,1) 5.3
C5315 178 123 21194 (176,1) 631.3
CM138 6 8 39 (5,1) 0.0
CM150 21 1 64 (3,1),(3,4),(1,6) 0.8
CM151 12 2 32 (3,1),(3,3) 0.2
mux cl 11 1 18 (2,1),(3,3) 0.1
CM162 14 5 63 (13,1) 0.0
CM163 16 5 49 (13,1) 0.0
CM42 4 10 23 (4,1) 0.0
CM82 5 3 17 (2,1) 0.0
CM85 11 3 42 (11,1) 0.0
DES 256 245 7257 (256,1) 20.6
PARITYFDS 16 1 18 (1,1) 0.0
alu2 cl 10 6 187 (10,1) 0.0
alu4 cl 14 8 1168 (14,1) 0.1
alupla 25 5 2266 (25,1) 0.7
apex1 45 45 4519 (45,1) 1.8
apex2 39 3 2948 (34,1) 1.3
apex3 54 50 10826 (54,1) 7.0
apex4 9 19 985 (9,1) 0.1
apex5 117 88 2092 (111,1) 3.6
apex6 135 99 1623 (134,1) 39.3
apex7 49 37 568 (49,1) 4.2
b12 15 9 89 (15,1) 0.0
b1 3 4 8 (2,1) 0.0
b9 41 21 177 (36,1) 0.1
bw 5 28 104 (5,1) 0.0
c8 28 18 156 (28,1) 0.0
cc 21 20 77 (21,1) 0.0
cht 47 36 135 (47,1) 0.4
clip 9 5 227 (9,1) 0.0
cmb 16 4 37 (3,1) 0.0
comp 32 3 147 (32,1) 0.0
con1 7 2 18 (7,1) 0.0
cordic 23 2 86 (8,1),(2,2) 0.4
count 35 16 249 (34,1) 0.1
cps 24 109 1456 (21,1) 0.7
cu 14 11 68 (14,1) 0.1
dalu 75 16 4576 (74,1) 64.0
decod 5 16 39 (5,1) 0.0
duke2 22 29 599 (22,1) 0.1
e64 65 65 1761 (65,1) 0.7
ex1010 10 10 1074 (10,1) 0.1
ex4 128 28 896 (66,1),(2,2) 27.4

Table A.1: LGSynth91 Benchmarks, Part I

Appendix 78

name #i #o #n groups: (subsets, size) cpu (in sec.)

ex5 8 63 362 (8,1) 0.0
example2 85 66 759 (85,1) 3.9
f51m 8 8 69 (8,1) 0.0
frg1 28 3 186 (27,1) 0.1
frg2 143 139 3750 (143,1) 30.5
inc 7 9 96 (7,1) 0.0
i1 25 16 62 (17,1) 0.0
i2 201 1 1587 (21,1) 135.7
i3 132 6 134 (1,15),(1,14),(37,1) 48.2
i4 192 6 350 (110,1) 0.8
i5 133 66 963 (133,1) 1.4
i6 138 67 417 (138,1) 1.2
i7 199 67 505 (199,1) 528.6
i8 133 81 2551 (133,1) 3.2
i9 88 63 2393 (88,1) 1.7
k2 45 45 1616 (45,1) 1.4
lal 26 19 123 (17,1),(1,4) 0.2
misex1 8 7 48 (8,1) 0.0
misex2 25 18 151 (20,1) 0.0
misex3 14 14 2721 (14,1) 0.4
misex3c 14 14 483 (14,1) 0.1
mux 21 1 88 (3,1),(3,4),(1,6) 0.9
traffic cl 5 1 9 (2,1) 0.0
pair 173 137 18523 (173,1) 64.2
pcle cl 19 9 80 (19,1) 0.0
pcler8 cl 27 17 141 (27,1) 0.0
pdc 16 40 1196 (16,1) 0.2
pm1 16 13 48 (11,1) 0.0
rd53 5 3 18 (1,1) 0.0
rd73 7 3 32 (1,1) 0.0
rd84 8 4 43 (1,1) 0.01
rot 135 107 10225 (130,1) 29.0
sao2 10 4 123 (2,1),(4,2) 0.2
seq 41 35 5639 (39,1) 3.7
sct 19 15 136 (19,1) 0.0
spla 16 46 1121 (16,1) 0.2
squar5 5 8 40 (5,1) 0.0
t481 16 1 80 (4,4) 0.6
table3 14 14 1962 (14,1) 0.2
table5 17 15 1568 (17,1) 0.2
tcon 17 16 26 (17,1) 0.0
term1 34 10 616 (14,1),(2,2),(3,5) 12.7
too large 38 3 4404 (34,1) 1.3
ttt2 24 21 168 (24,1) 0.0
unreg 36 16 136 (36,1) 0.1
vda 17 39 1256 (17,1) 0.2
vg2 25 8 391 (23,1) 0.6
x1 51 35 1212 (50,1) 0.8
x2 10 7 40 (9,1) 0.0
x3 135 99 998 (134,1) 10.6
x4 94 71 758 (93,1) 1.1
xor5 5 1 7 (1,1) 0.0
z4ml 7 4 38 (3,1) 0.0

Table A.2: LGSynth91 Benchmarks, Part II

Appendix 79

name #i #o #n groups: (subsets, size) cpu (in sec.)

accpla 50 69 3795 (50,1) 1.2
al2 16 47 132 (15,1) 0.0
alcom 15 38 100 (14,1) 0.0
alu1 12 8 37 (12,1) 0.0
alu2 10 8 99 (10,1) 0.0
alu3 10 8 131 (10,1) 0.0
amd 14 24 345 (14,1) 0.1
apla 10 12 137 (10,1) 0.0
b10 15 11 590 (15,1) 0.1
b11 8 31 70 (8,1) 0.0
b12 15 9 89 (15,1) 0.0
b2 16 17 4059 (15,1) 0.5
b3 32 20 1237 (32,1) 0.3
b4 33 23 425 (33,1) 0.1
b7 8 31 70 (8,1) 0.0
b9 16 5 126 (16,1) 0.4
bc0 26 11 4254 (21,1) 0.7
bca 26 46 1591 (16,1) 0.2
bcb 26 39 1387 (16,1) 0.2
bcc 26 45 1130 (16,1) 0.2
bcd 26 38 928 (16,1) 0.2
br1 12 8 102 (11,1) 0.0
br2 12 8 100 (12,1) 0.0
chkn 29 7 643 (25,1) 0.3
clpl 11 5 37 (10,1) 0.0
cps 24 109 1456 (21,1) 0.7
dc1 4 7 25 (4,1) 0.0
dc2 8 7 94 (8,1) 0.0
dekoder 4 7 25 (4,1) 0.0
dk17 10 11 112 (10,1) 0.0
dk27 9 9 69 (9,1) 0.0
dk48 15 17 177 (15,1) 0.0
ex4 128 28 896 (66,1),(2,2) 27.6
ex5 8 63 362 (8,1) 0.0
ex7 16 5 126 (16,1) 0.4
exep 30 63 1249 (29,1) 0.2
exp 8 18 197 (8,1) 0.0
exps 8 38 522 (8,1) 0.0
gary 15 11 718 (15,1) 0.1
ibm 48 17 888 (48,1) 1.3
in0 15 11 670 (15,1) 0.1
in1 16 17 4059 (15,1) 0.5
in2 19 10 1384 (19,1) 0.2
in3 35 29 665 (34,1) 0.2
in4 32 20 1140 (32,1) 0.2
in5 24 14 680 (24,1) 0.1
in6 33 23 419 (33,1) 0.1
in7 26 10 234 (26,1) 0.0
inc 7 9 96 (7,1) 0.0
intb 15 7 751 (15,1) 0.2
jbp 36 57 577 (36,1) 0.3

Table A.3: ESPRESSO Benchmarks, Part I

Appendix 80

name #i #o #n groups: (subsets, size) cpu (in sec.)

lin.rom 7 36 414 (7,1) 0.0
luc 8 27 152 (8,1) 0.0
m1 6 12 49 (6,1) 0.0
m2 8 16 135 (8,1) 0.0
m3 8 16 152 (8,1) 0.0
m4 8 16 230 (8,1) 0.0
mainpla 27 54 9892 (26,1) 1.8
mark1 20 31 224 (20,1) 0.1
max1024 10 6 482 (10,1) 0.1
max128 7 24 169 (7,1) 0.0
max46 9 1 84 (9,1) 0.0
max512 9 6 169 (9,1) 0.0
misg 56 23 109 (31,1),(3,3),(1,4) 1.6
mish 94 43 130 (53,1) 0.4
misj 35 14 58 (16,1) 0.0
mp2d 14 14 76 (13,1) 0.0
newapla 12 10 61 (11,1) 0.0
newapla1 12 7 31 (11,1) 0.0
newapla2 6 7 18 (5,1) 0.0
newbyte 5 8 25 (5,1) 0.0
newcond 11 2 48 (10,1) 0.0
newcpla1 9 16 130 (9,1) 0.0
newcpla2 7 10 70 (7,1) 0.0
newcwp 4 5 12 (4,1) 0.0
newill 8 1 19 (8,1) 0.0
newtag 8 1 12 (5,1) 0.0
newtpla 15 5 84 (13,1) 0.0
newtpla1 10 2 21 (6,1) 0.0
newtpla2 10 4 39 (10,1) 0.0
newxcpla1 9 23 105 (9,1) 0.0
opa 17 69 461 (15,1) 0.1
p82 5 14 63 (5,1) 0.0
pdc 16 40 1196 (16,1) 0.2
pope 6 48 240 (6,1) 0.0
prom1 9 40 1859 (9,1) 0.2
prom2 9 21 974 (9,1) 0.1
risc 8 31 71 (8,1) 0.0
ryy6 16 1 27 (5,1),(2,2) 0.1
sex 9 14 63 (9,1) 0.0
shift 19 16 63 (19,1) 0.1
signet 39 8 8539 (38,1) 2.8
soar 83 94 982 (77,1) 1.4
spla 16 46 1121 (16,1) 0.2
sqn 7 3 57 (7,1) 0.0
t1 21 23 216 (21,1) 0.0
t2 17 16 189 (17,1) 0.0
t3 12 8 115 (11,1) 0.0
t4 12 8 91 (12,1) 0.0
ti 47 72 4461 (43,1) 1.4
tms 8 16 158 (8,1) 0.0
ts10 22 16 271 (16,1),(1,6) 2.1
vg2 25 8 267 (23,1) 0.6

Table A.4: ESPRESSO Benchmarks, Part II

Appendix 81

name #i #o #n groups: (subsets, size) cpu (in sec.)

vtx1 27 6 520 (24,1) 0.6
wim 4 7 24 (4,1) 0.0
x1dn 27 6 520 (24,1) 0.6
x2dn 82 56 266 (62,1) 0.5
x6dn 39 5 6243 (35,1) 2.0
x7dn 66 15 2020 (61,1) 1.6
x9dn 27 7 595 (24,1) 0.8
xparc 41 73 5319 (38,1) 2.0
Z5xp1 7 10 96 (7,1) 0.0
Z9sym 9 1 26 (1,1) 0.0
add6 12 7 55 (6,1) 0.0
addm4 9 8 225 (1,1),(4,2) 0.6
adr4 8 5 44 (4,1) 0.0
bcd 4 4 20 (4,1) 0.0
co14 14 1 28 (1,1) 0.0
dist 8 5 135 (4,2) 0.3
f51m 8 8 73 (8,1) 0.0
l8err 8 8 104 (8,1) 0.0
life 9 1 27 (2,1) 0.0
log8mod 8 5 76 (7,1) 0.0
m181 15 9 89 (15,1) 0.0
mlp4 8 8 141 (4,2) 0.3
radd 8 5 39 (4,1) 0.0
rckl 32 7 196 (32,1) 0.0
rd53 5 3 18 (1,1) 0.0
rd73 7 3 32 (1,1) 0.0
root 8 5 100 (7,1) 0.0
sqr6 6 12 70 (6,1) 0.0
sym10 10 1 32 (1,1) 0.0
tial 14 8 1273 (14,1) 0.2
z4 7 4 48 (3,1) 0.0

Table A.5: ESPRESSO Benchmarks, Part III

name #i #o #n groups: (subsets, size) cpu (in sec.)

act1 8 1 15 (7,1) 0.0
act2 8 1 12 (2,1), (2,2) 0.0
mult3 6 6 44 (3,2) 0.1

Table A.6: Other Benchmarks

Bibliography

[1] Combinational and Sequential Logic Benchmark Suite. International Workshop on Logic Syn-
thesis, 1991.

[2] B.Becker, R.Drechsler, and M.Theobald. OKFDDs versus OBDDs and OFDDs. In Proccedings
of ICALP LNCS94, pages 475–486, 1995.

[3] B. Bollig, M. Löbbing, and I. Wegener. Simulated annealing to improve variable orderings for
OBDDs. In Proceedings of the IWLS, May 1995.

[4] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD package. In
Proceedings of the DAC, pages 40–45, June 1990.

[5] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L. Sangiovanni-Vincentelli, editors. Logic
minimization algorithms for VLSI synthesis. Kluwer Academic Publishers, 1992.

[6] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. In IEEE Transac-
tions on Computers, volume C-35, pages 677–691, August 1986.

[7] R. E. Bryant. Extraction of gate level models from transistor circuits by four-valued symbolic
analysis. In Proceedings of the ICCAD, pages 350–353, November 1991.

[8] J. B. Burch and D. E. Long. Efficient Boolean function matching. In Proceedings of the
ICCAD, pages 408–411, November 1992.

[9] D. I. Cheng and M. Marek Sadowska. Verifying equivalence of functions with unknown input
correspondence. In Proceedings of EDAC, pages 81–85, February 1993.

[10] E.M. Clarke, K.L.McMillan, X.Zhao, M. Fujita, and J.Yang. Spectral transforms for large
Boolean functions with applications to technology mapping. In Proceedings of the DAC, pages
54–60, 1993.

[11] R. Drechsler, N. Drechsler, and W. Günther. Fast Exact Minimization of BDDs. In Proceedings
of the DAC, pages 200–205, 1998.

[12] R. Drechsler, N. Göckel, and B. Becker. Learning Heuristics for OBDD Minimization by
Evolutionary Algorithms. In Proceedings of PPSN (Parallel Problem Solving from Nature),
LNCS 1141, pages 730–739, 1996.

82

Appendix 83

[13] C.A.J.van Eijk and J.A.G. Jess. Detection of equivalent state variables in finite state machine
verification. In Proceedings of the IWLS, May 1995.

[14] F.Mailhot and G.D.Micheli. Technology mapping using Boolean matching and don’t care sets.
In Proceedings of the EDAC, pages 212–216, February 1990.

[15] M. Garey and D. Johnson. Computers and Intractability. W. Freeman, New York, 1979.

[16] G.Helmer. Anwendung von Signaturen bei der Verifikation unvollständig spezifizierter Boo-
lescher Schaltungen. Diplomarbeit, Martin–Luther–Universität Halle, 1997.

[17] G.Hotz. Schaltungstheorie. De Gruyter Lehrbuch, Walter De Gruyter, 1974.

[18] A. Hett, R. Drechsler, and B. Becker. MORE: An alternative implementation of BDD packages
by multi-operand synthesis. In Proceedings of the EURODAC, 1996.

[19] A. Hett, R. Drechsler, and B. Becker. Fast and efficient construction of BDDs. In Proceedings
of the ED& TC, 1997.

[20] J. Jain, A. Narayan, M. Fujita, and A. L. Sangiovanni-Vincentelli. Formal verification of
combinational circuits. In Proceedings of the 10th International Conference on VLSI Design,
pages 218–225, January 1997.

[21] Y.-T. Lai, S. Sastry, and M. Pedram. Boolean matching using binary decision diagrams with
applications to logic synthesis and verification. In Proceedings of the ICCD’92, pages 452–458,
October 1992.

[22] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic Verification using
Binary Decision Diagrams in a Logic Synthesis Environment. In Proceedings of the ICCAD,
pages 6–9, November 1988.

[23] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill International
Editions, London, 1994.

[24] S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagrams with attributed edges
for efficient Boolean function manipulation. In Proceedings of the DAC, pages 52–57, June
1990.

[25] J. Mohnke and S. Malik. Permutation and phase independent Boolean comparison. INTE-
GRATION - the VLSI journal 16, pages 109–129, 1993.

[26] J. Mohnke, P. Molitor, and S. Malik. Limits of using signatures for permutation independent
Boolean comparison. In Proceedings of ASP-DAC, August 1995.

[27] J. Mohnke, P. Molitor, and S. Malik. Establishing latch correspondence for sequential circuits
using distinguishing signatures. In Proceedings of MWSCAS, August 1997.

Appendix 84

[28] D. Möller, J. Mohnke, and M. Weber. Detection of symmetry of Boolean functions represented
by ROBDDs. In Proceedings of the ICCAD, pages 680–684, November 1993.

[29] I. Pomeranz and S.M. Reddy. On diagnosis and correction of design errors. In Proceedings of
the ICCAD, pages 500–507, November 1993.

[30] I. Pomeranz and S.M. Reddy. On determining symmetries in inputs of logic circuits. In IEEE
Transactions on CAD of Integrated Circuits and Systems, Vol. 13 , No. 11, pages 1428–1434,
November 1994.

[31] I. Pomeranz and S.M. Reddy. Simultaneous input and output matching for combinational
logic circuits. In University of Iowa, Department of ECE, Technical Report 8-2-1994, 1994.

[32] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proceedings of
the ICCAD, pages 408–411, November 1992.

[33] U. Schlichtmann, F. Brglez, and P. Schneider. Efficient Boolean matching based on unique
variable ordering. In Proceedings of the IWLS, May 1993.

[34] E. Sentovich, K. Singh, L. Lavagno, Ch. Moon, R. Murgai, A. Saldanha, H.Savoj, P. Stephan,
R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit synthesis.
Department of EECS, UC Berkeley, May 1992.

[35] K.J. Singh and P.A. Subrahmanyam. Extracting RTL models from transistor netlists. In
Proceedings of the ICCAD, pages 11–17, November 1995.

[36] S.Quer, G.Cabodi, P.Camurati, L.Lavagno, E.M.Sentovich, and R.K.Brayton. Incremental
FSM Re-encoding for Simplifying Verification by Symbolic Traversal. In Proceedings of the
IWLS, May 1995.

[37] K. H. Wang, T. T. Hwang, and C. Chen. Restructuring binary decision diagrams based on
functional equivalence. In Proceedings of EDAC, pages 261–265, February 1993.

[38] I. Wegener. The Complexity of Boolean Functions. John Wiley & Sons Ltd., and B.G. Teubner,
Stuttgart (Wiley–Teubner Series in Computer Science), 1987.

Erklärung

Ich versichere hiermit an Eides Statt, die vorliegende Arbeit selbständig, ohne unerlaubte Hilfsmittel
und nur mit Hilfe der angegebenen Literatur angefertigt zu haben.

Es ist das erste Mal, daß ich mich um einen Doktorgrad bewerbe.

Halle (Saale), den 3. Oktober 1998

Lebenslauf

1. Angaben zur Person

Name: Janett Mohnke, geb. Lochert

Geburtsdatum: 2. April 1967

Geburtsort: Luckenwalde

Wohnort: Welsestraße 91
13057 Berlin

Familienstand: verheiratet seit dem 2. September 1988
1 Tochter

2. Ausbildung/beruflicher Werdegang

1973 — 1983 Polytechnische Oberschule in Frankfurt (Oder)
Abschlußprädikat ”Auszeichnung”

1983 — 1986 Berufsausbildung mit Abitur zum Facharbeiter für Datenverarbeitung
in den Datenverarbeitungszentren Cottbus und Frankfurt (Oder)

Juli 1986 Abitur, Prädikat ”Auszeichnung”
Facharbeiterprüfung, Prädikat ”Auszeichnung”

1986 2monatige Arbeit als Programmierer im Datenverarbeitungszentrum
Frankfurt (Oder)

1986 — 1991 Informatikstudium an der Humboldt–Universität zu Berlin

Juli 1991 Diplom in Informatik, Prädikat ”Sehr Gut”

1991 — 1992 8monatiger Forschungsaufenthalt an der Universität des Saarlandes
in Saarbrücken am Lehrstuhl von Prof. Dr. Günther Hotz (SFB 124)

1992 6monatiger Forschungsaufenthalt an der Princeton University, N.J., U.S.A.
bei Prof. Dr. Sharad Malik mit einem Stipendium von IREX

1992 — 1994 Arbeit als wissenschaftlicher Mitarbeiter an der Humboldt-Universität
zu Berlin im Rahmen des BMFT-Projektes 01 IS 102 (OMSI)

1994 — 1995 Erziehungsurlaub

1995 — 1997 Arbeit als wissenschaftlicher Mitarbeiter an der Martin-Luther-Universität
in Halle (Saale) im Rahmen des DFG-Projektes Mo645/2-1

seit 1997 Software-Entwickler bei DResearch Digital Media Systems GmbH in Berlin

Halle (Saale), den 3. Oktober 1998

	Contents
	1 Introduction
	2 Background
	2.1 Notation
	2.2 The Problem of Complexity
	2.3 Boolean Functions
	2.4 Reduced Ordered Binary Decision Diagrams

	3 The Combinational Permutation Equivalence Problem
	3.1 Problem Description
	3.2 Signatures
	3.2.1 Definition
	3.2.2 Solution Paradigm
	3.2.3 Special Signatures
	3.2.3.1 Satisfy Count Signatures
	3.2.3.2 Breakup Signatures
	3.2.3.3 Function Signatures

	3.3 Experimental Results

	4 Limits of Using Signatures
	4.1 The Property of G–Symmetry
	4.2 Partial Symmetries
	4.3 Hierarchical Symmetries
	4.4 Group Symmetries
	4.5 Experimental Results
	4.6 The Variety of G–Symmetry

	5 The Latch Correspondence Problem
	5.1 Problem Description
	5.2 Signatures
	5.2.1 Solution Paradigm
	5.2.2 Input Signatures
	5.2.3 Latch Output Signatures
	5.2.3.1 Simple Output Signatures
	5.2.3.2 Function Signatures fo Latch Outputs
	5.2.3.3 Canonical Order Signature

	5.2.4 An Example

	5.3 Experimental Results
	5.4 Symmetries in Latch Equivalence

	6 Conclusion
	Appendix: Benchmark Descriptions
	Bibliography

