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Abstract 

The process of drying of porous media is a subject of active research and development 

in the industry and the scientific community due to its various applications in fields 

such as food processes, production of fuel cells and batteries, chemical process 

engineering, soil salinization, and salt weathering in buildings. The modeling 

approaches that are used to simulate the process of drying in porous media are 

traditionally based on continuum modeling, which considers the transport 

phenomena at the macroscopic scale. Another approach which has seen significant 

development in the last two decades is a discrete pore scale approach known as pore 

network modeling. While pore network modeling describes the pore scale phenomena 

based on first principles, its application to large sized porous media is limited by its 

very high computational cost. On the other hand, as the continuum modeling 

approach considers averaged behavior of the transport through conservation 

equations that are solved for a much larger volume, the continuum models are very 

robust and fast. The idea behind this thesis is to use the pore network simulations to 

assess and overcome the prediction capability of the existing continuum models for 

drying capillary porous media. 

In this thesis, we consider drying of rigid capillary porous medium (pore size in the 

range of micrometers) at ambient conditions (considering drying as an isothermal 

process). In such capillary porous media, the sorption phenomenon is negligible and 

the material is considered as non-hygroscopic. In this context, it has been shown by 

pore network simulations reported in recent literature that the traditional assumption 

of local equilibrium between the liquid and vapor phases is not valid, as significant 

non-equilibrium effects are observed at the macroscopic scale. In this context, this 

work aims to develop a continuum model of drying that captures the non-local 

equilibrium effect. This continuum model will be superior to the commonly used one-
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equation continuum model that regards saturation as the only process variable. It will 

account for the liquid and vapor phase transport by explicitly considering one 

transport equation for each of these phases. The two equations of this continuum 

model (referring to saturation and partial vapor pressure as the process variables) will 

be coupled by a source/sink term which should capture the non-local equilibrium 

phase change. This two-equation continuum model should also address other 

drawbacks of the one-equation continuum model and describe more realistically the 

physics of drying at the macroscopic scale. We will approach this problem in two 

successive steps. 

In the first step, we will focus on a simplified situation, upscaling the process of 

evaporation and vapor diffusion in a partially saturated porous medium, in which the 

liquid phase is immobile. We will formulate and validate a two-equation continuum 

model that captures important physical effects (such as non-local equilibrium effect) 

for the limiting case of immobile liquid phase. The two-equation CM will be formally 

derived from the upscaling of the pore-scale mass conservation equations of the liquid 

and vapor phases. This will enable us to obtain a deeper understanding and 

interpretation of the effective transport parameters and will also lead to the 

consideration of interfacial area as a macroscopic parameter of drying. In the next step, 

we will address the more complex situation of a fully saturated porous medium where 

the macroscopic capillary transport in the liquid phase is also taken into account. Here, 

we will address the modeling of mass transport at the porous medium surface (which 

is still an unresolved issue) by presenting correlations for the boundary conditions of 

the liquid and vapor transport equations. We will verify the solution of the two-

equation continuum model through independent reproduction of phase distributions, 

the drying kinetics and the non-local equilibrium effect. 

We will also evaluate the commonly used continuum model of drying with dissolved 

solute transport based on the classical macroscopic advective-diffusive transport 

equation by means of pore network simulations. The analysis will be focused on the 

first drying period (till the porous medium surface stays wet), since the most likely 

place of crystallization of the dissolved solute is the evaporative surface. The analysis 
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will study the impact of liquid fragmentation process on the dynamics of solute 

transport. With the help of pore network simulations, the transport phenomena at the 

surface will be studied based on 2D mapping of the liquid connectivity and solute 

concentration and Monte Carlo PNM simulations will stochastically characterize the 

respective pore scale effects.  

Overall, the work focuses on various fundamental aspects of drying capillary porous 

media and aims at bridging the gap between microscopic discrete models of drying 

and macroscopic continuum models. The insights presented in this work are expected 

to empower our ability of improving drying processes and the respective products, 

with a plethora of potential applications in practice. 
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Kurzzusammenfassung 

Der Prozess der Trocknung poröser Medien ist aufgrund seiner vielfältigen 

Anwendungen in Bereichen wie Lebensmitteltechnik, Herstellung von 

Brennstoffzellen und Batterien, chemische Verfahrenstechnik, Bodenversalzung und 

Verwitterung in Gebäuden Gegenstand aktiver Forschung und Entwicklung in 

Industrie und Wissenschaft. Die Modellierungsansätze, die verwendet werden, um 

den Trocknungsprozess in porösen Medien zu simulieren, basieren traditionell auf 

der Kontinuumsmodellierung, die die Transportphänomene im makroskopischen 

Maßstab berücksichtigt. Ein weiterer Ansatz, der in den letzten zwei Jahrzehnten eine 

bedeutende Entwicklung erfahren hat, ist ein Ansatz auf diskreter Porenskala, der als 

Porennetzwerkmodellierung bekannt ist. Während die Porennetzwerkmodellierung 

porenskalige Vorgänge basierend auf ersten Prinzipien beschreibt, ist ihre 

Anwendung auf großformatige poröse Medien durch ihren sehr hohen 

Rechenaufwand begrenzt. Da der Kontinuumsansatz andererseits das gemittelte 

Verhalten des Transports durch Erhaltungsgleichungen berücksichtigt, die für ein viel 

größeres Volumen gelöst werden, sind die Kontinuumsmodelle sehr robust und 

schnell. Die Idee hinter dieser Arbeit ist, die Porennetzwerksimulationen zu 

verwenden, um die Voraussagefähigkeit der bestehenden Kontinuumsmodelle für die 

Trocknung kapillarporöser Medien zu bewerten und ihre Einschränkungen zu 

überwinden. 

In dieser Arbeit betrachten wir die Trocknung von starren kapillarporösen Medien 

(Porengröße im Mikrometerbereich) bei Umgebungsbedingungen (unter Annahme 

isothermer Bedingungen). In solchen kapillarporösen Medien ist die Sorption 

vernachlässigbar und das Material wird als nicht hygroskopisch angesehen. In diesem 

Zusammenhang wurde durch Porennetzwerksimulationen aus der neueren Literatur 

gezeigt, dass die traditionelle Annahme eines lokalen Gleichgewichts zwischen der 
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flüssigen und der Dampfphase nicht gültig ist, da signifikante 

Nichtgleichgewichtseffekte im makroskopischen Maßstab beobachtet werden. Daher 

zielt diese Arbeit darauf ab, ein Kontinuumsmodell der Trocknung zu entwickeln, das 

lokale Ungleichgewichte erfasst. Dieses Kontinuumsmodell wird dem üblicherweise 

verwendeten Eingleichungs-Kontinuumsmodell überlegen sein, das die Sättigung als 

einzige Zustandsvariable betrachtet. Es wird den Flüssigkeits- und Dampftransport 

durch eine explizite Transportgleichung für jede dieser Phasen berücksichtigten. Die 

beiden Gleichungen dieses Kontinuumsmodells (mit Sättigung und 

Partialdampfdruck als Zustandsvariablen) werden durch einen Quellen- bzw. 

Senkenterm gekoppelt, der das lokale Ungleichgewicht erfassen soll. Dieses 

Zweigleichungen-Kontinuumsmodell sollte auch andere Nachteile des 

Eingleichungs-Kontinuumsmodells adressieren und die Physik des Trocknens im 

makroskopischen Maßstab realistischer beschreiben. Wir werden uns diesem Problem 

in zwei aufeinanderfolgenden Schritten nähern. 

Im ersten Schritt konzentrieren wir uns auf eine vereinfachte Situation, indem wir den 

Prozess der Verdeenstung und Dampfdiffusion in einem teilgesättigten porösen 

Medium, in dem die flüssige Phase immobil ist, hochskalieren. Wir werden ein 

Kontinuumsmodell mit zwei Gleichungen formulieren und validieren, das wichtige 

physikalische Effekte (wie den lokalen Ungleichgewichtseffekt) für den Grenzfall der 

immobilen flüssigen Phase erfasst. Das Zweigleichungen-Modell wird formal aus der 

Hochskalierung der Massenerhaltungsgleichungen der Porenskala für Flüssigkeit 

und Dampfphase abgeleitet. Dies wird uns ein tieferes Verständnis und eine bessere 

Interpretation der effektiven Transportparameter ermöglichen und auch zur 

Phasengrenzfläche als makroskopischen Parameter der Trocknung führen. Im 

nächsten Schritt werden wir uns der komplexeren Situation eines vollständig 

gesättigten porösen Mediums widmen, bei dem auch der makroskopische 

Kapillartransport in der flüssigen Phase berücksichtigt wird. Hier werden wir die 

Modellierung des Stofftransports an der Oberfläche des porösen Mediums (die noch 

ein ungelöstes Problem ist) adressieren, indem wir Korrelationen für die 

Randbedingungen der Flüssigkeits- und Dampftransportgleichungen darstellen. Wir 

werden die Lösung des Zweigleichungs-Kontinuumsmodells durch unabhängige 
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Reproduktion der Phasenverteilungen, der Trocknungskinetik und des lokalen 

Ungleichgewichts verifizieren. 

Wir werden auch das häufig verwendete Kontinuumsmodell der Trocknung mit 

Transport gelöster Stoffe basierend auf der klassischen makroskopischen advektiv-

diffusiven Transportgleichung mit Hilfe von Porennetzwerksimulationen evaluieren. 

Die Analyse konzentriert sich auf den ersten Trocknungsabschnitt (solange die 

Oberfläche des porösen Mediums nass bleibt), da der wahrscheinlichste Ort der 

Kristallisation des gelösten Stoffes die Verdunstungsoberfläche ist. Die Analyse wird 

den Einfluss des Prozesses der Fragmentierung der Flüssigkeit auf die Dynamik des 

Transports gelöster Stoffe untersuchen. Mit Hilfe von Porennetzwerksimulationen 

werden die Transportvorgänge an der Oberfläche anhand von 2D-Kartierungen der 

Flüssigkeitskonnektivität und der Konzentration gelöster Stoffe untersucht. Monte 

Carlo PNM-Simulationen werden, die jeweiligen Porenskaleneffekte stochastisch 

charakterisieren. 

Insgesamt konzentriert sich die Arbeit auf verschiedene grundlegende Aspekte der 

Trocknung von kapillarpörosen Medien und hat das Ziel, die Lücke zwischen 

mikroskopischen diskreten Modellen der Trocknung und makroskopischen 

Kontinuumsmodellen zu schließen. Die in dieser Arbeit vorgestellten Erkenntnisse 

sollen unsere Fähigkeit zur Verbesserung von Trocknungsprozessen und der 

entsprechenden Produkte steigern, mit einer Fülle von Anwendungsmöglichkeiten in 

der Praxis. 
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Chapter 1 

 

Introduction 

1.1 Overview 

A porous medium consists of a solid matrix and void volume in the form of 

interconnected pores. The degree of connectivity of the pores and the variation in the 

pore sizes is material dependent. Some examples of naturally existing porous 

materials include soil, rocks, fruits and vegetables. Synthetically produced porous 

materials include construction materials, such as bricks, paper, catalyst supports, 

electrodes, and the electrolyte membrane in fuel cells. A porous material is 

characterized mainly by its porosity (ratio of the void volume to the total bulk volume 

of the material), pore size distribution (degree of overall variation and distribution of 

the size of pores) and connectivity of the pores. Also, the shape of the individual pores 

can be an important parameter. The pores are usually randomly distributed with 

different shapes and sizes within the solid matrix leading to an irregularly structured 

material. The structural characteristics of the porous medium play a direct role in the 

transport and distribution of fluids through it. 

One of the most important transport processes within porous media is the process of 

drying. In the context of multi-phase flow, the process of drying can also be referred 

to as a two-phase flow process coupled with phase transition. Owing to its numerous 

complexities, it has been the subject of scientific research since many decades. The 

method of drying can entail freeze drying, vacuum drying, dielectric drying or, most 

usually, convective drying; either standalone or in combination with one another. In 
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this thesis, we consider convective drying, where the wet porous medium is exposed 

to sufficiently dry fresh air that acts as the drying agent.  

In convective drying, after the material subject to drying has been sufficiently warmed 

up by the air, drying is initiated. The process of drying is classically divided into two 

stages, namely: the first drying period and the second drying period. In the first drying 

period, which is also referred to as constant rate period (CRP), the surface of the 

material stays sufficiently wet and the liquid evaporates at a constant rate. The drying 

rate in the first drying period is a function of external conditions such as temperature, 

pressure, humidity of the drying air and its flow velocity. For a capillary porous 

medium, the surface stays wet until the viscous resistance in the liquid phase 

dominates the capillary forces (which are responsible for transport of liquid to the 

surface). Once, the surface dries out, the evaporation rate drops as a result of increase 

in the mass transfer resistance associated with vapor diffusion through the subsurface 

layers of the porous medium. During the entire process of drying, the transport 

phenomena can be influenced by various forces such as capillarity, gravity and 

viscous forces. The various environmental and industrial applications of drying range 

from soil physics, food processes and chemical engineering applications to many other 

industrial uses, see, e.g., Mujumdar (2014).  

Another important aspect in the drying of porous media is the drying in the presence 

of dissolved solute, which is still a topic of active research due to its diverse 

complexities and several environmental and engineering applications. The drying 

induced capillary transport of the dissolved solute towards the evaporation sites leads 

to the buildup of a concentration gradient in the liquid, which results in a 

simultaneous back-diffusion of the solute. Once the concentration has reached the 

solubility limit, the solute can precipitate into solid crystals. Interestingly, on one 

hand, the process of crystallization is undesirable, for example in construction bricks 

(Rijniers et al., 2005; Shahidzadeh-Bonn et al., 2010); On the other hand, there are 

various industrial processes where the formation of crystals is a desirable process, 

such as in the production of catalysts (Komiyama, 1985). The understanding of the 

transport phenomenon of the dissolved solute is important in addressing problems 



3 

 

like soil salinization (Chen, 1992; Sghaier et al., 2009) and salt weathering in building 

materials (Goudie et al., 2010).  

Due to its various aforementioned practical aspects, the research on the understanding 

of drying and two-phase flow in porous media is still relevant and active especially in 

the context of thin porous media (Prat et al., 2015; Vorhauer et al., 2018), which is a 

rapidly emerging field with applications in batteries (Altaf et al., 2020), fuel cells 

(Carrère et al., 2020; García-Salaberri et al., 2015; Médici et al., 2013) and loop heat 

pipes (Le et al., 2016). 

The research on the modeling of drying dates back to the beginning of the twentieth 

century. The more classical approaches are based on continuum modeling where the 

porous medium is considered as a fictitious continuum. The most basic notion 

towards modeling of drying in porous media is the so-called diffusion theory 

(Sherwood, 1929). This was a rather overly simplistic approach, which lacked the 

distinct consideration of the important pore scale mechanisms such as gravity, 

capillarity, external pressure, thermal effects and viscosity. Over time, this diffusion-

based treatment was developed into more complex and physically more realistic 

models. The drying model by Philip et al. (1957) presented a diffusion-based method, 

which in addition to the coupling of heat transfer, also considered vapor transport and 

capillarity in the liquid phase. Later, Luikov (1975) presented more detailed mass 

conversation equations on the basis of macroscopic flux relationships of each species 

where the gradient of total pressure was also considered. The most robust model was 

developed by Whitaker (1977) where the simultaneous mass and heat transfer 

equations were derived from the pore scale by means of volume averaging. 

Whitaker’s model is still modern and comprehensive model, so it is the basis of the 

macroscopic continuum models of drying presented and discussed in this thesis. 

While the continuum models are advantageous in regard of efficiency, short 

computational times and simpler approach (based on averaged description of the 

system elements), they have their limitations. For the solution of continuum model 

equations, the effective transport parameters need to be known a priori. These 

effective transport parameters (e.g. thermal conductivity, diffusivity and 
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permeability) that are needed to solve the continuum model equations depend on the 

drying conditions and the materials involved. Hence, it involves computing these 

parameters on the scale of the so called representative elementary volume (REV), 

where each REV is a local averaging volume which may consist of numerous pores in 

each coordinate axis. Consequently, the effective parameters represent the averaged 

behavior of the transport in pores contained in a REV. In principle, the size of the REV 

is determined such that the effective transport parameters do not vary upon further 

increase in the REV size. Also, there should be a clear distinction between the pore 

size, REV size and the total size of the system. In other words, the REV should be large 

enough compared to the size of the pores, but small enough compared to the total size 

of the system. This is classically referred to as the length scale separation rule 

(Whitaker, 1977). 

The effective transport parameters are traditionally computed from laboratory 

experiments. However, performing experiments in order to compute these 

parameters can be challenging in many ways, e.g. by large costs and measurement 

times. An alternative to performing laboratory experiments is to conduct pore scale 

numerical simulations. Due to the recent advances in the development of numerical 

techniques and computational power, this has become a viable alternative to 

laboratory trials. Pore scale numerical models are based on first-principle heat and 

mass balance equations and provide detailed pore scale insights such as phase 

distributions, as well as pressure distributions inside the porous medium. In this 

context, direct numerical simulation techniques by highly resolved Computational 

Fluid Dynamics (CFD) or by means of the Lattice Boltzmann Method (LBM) offer the 

most detailed description of the intricate pore scale transport phenomena. However, 

they are limited in their utility when it comes to large domain sizes due to their very 

high computational costs. A more pragmatic approach is a discrete network modeling 

scheme known as pore network modeling. This approach offers a good compromise 

between the computational efficiency and the preservation of the fundamental 

physics. 
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In pore network models (PNMs) the pore space is discretized into an interconnected 

network of pores and throats. Depending on the chosen physical conditions, the 

degree of complexity in the PNMs can vary. Some relevant examples in direct relation 

with this thesis concern the drying of porous media in the capillary dominated regime, 

drying in the capillary-viscous regime, and drying with consideration of dissolved 

solute transport. Examples of the individual physical effects that can be incorporated 

in the PNMs refer to viscosity (Prat et al., 1999), gravity (Laurindo et al., 1996) and 

heat transfer (Plourde et. al., 2003; Surasani et al., 2008). Other examples include the 

presence of liquid films (e.g., Prat, 2007; Vorhauer et al., 2015; Yiotis et al., 2003), 

wetting (Rahimi et al., 2016), and drying in presence of dissolved solute (Rahimi, 

2019).  

In addition to the computation of the effective parameters, which are needed as input 

parameters to solve the macroscopic CM equations (e.g., Attari Moghaddam et al., 

2017; Nowicki et al., 1992; Vorhauer et al., 2010; Kharaghani, 2020), the PNMs are also 

used to gain valuable insights about the importance and role of different mechanisms 

in the dynamics of the drying of porous media (Prat, 2002). The PNM used in this 

thesis is described in Chapter 2. 

Apart from PNMs, another discrete approach is the bundle of capillaries model 

(Metzger et al., 2005; Vu et al., 2019). In the bundle of capillaries model each throat is 

replaced by a bundle of capillaries such that the connection between two network 

nodes is represented by a bundle of capillaries instead of one cylindrical throat. This 

approach offers more flexibility in the representation of the volume porosity and area 

porosity of the porous medium (Metzger, 2019). However, a disadvantage of the 

bundle of capillaries model is that the influence on the drying behavior of factors other 

than the pore size distribution cannot be analyzed. In comparison, the PNM is a more 

comprehensive approach to simulate the drying of porous media.  

As mentioned, the PNM simulations can be used to compute effective transport 

parameters for macroscopic continuum models. This can be useful especially in the 

case of simulation of large-scale systems, where the PNM cannot be used standalone 

due to the high computational cost associated with the PNM. In the context of 
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coupling of the micro and macro scale approaches, this particular approach, where 

the effective parameters needed for the continuum model solution are computed from 

PNM simulations, can be referred to as sequential coupling. This sequential coupling 

approach however, has its limitations. For example, the information transfer in this 

approach is one-way, i.e. from micro scale to macro scale. In contrast to the sequential 

coupling approach, the coupling of the micro and macro scale approaches can also be 

achieved such that more synergy is produced, allowing us to take advantage of the 

strengths of both approaches. One example is the concurrent coupling (also known as 

real-time coupling), where two-way information exchange between the micro and the 

continuum scale is possible. In this approach, the interfaces at the boundary of the two 

systems are linked through interfacial flux and pressure distribution, see Sheng (2013) 

and references therein for more details on the advantages, limitations and 

implementation of the concurrent coupling approach. Note that in this thesis, we work 

with sequential coupling approach, i.e. by means of the computation of effective 

parameters and the development of continuum models through upscaling of the pore 

scale data obtained from PNM simulations. 

Before discussing the concept of upscaling, it would be worth understanding the 

fundamental parameters that are used to quantify macroscopically the state of the 

system. The most important parameters are porosity, saturation, and the evaporation 

rate of the system. Porosity is the ratio of total void space to the total volume of the 

system and is therefore a macro scale parameter. Here, it is important to mention that 

at the pore scale, the saturation and the evaporation rate refer to the degree of 

occupancy of volume of a throat with water and the rate of evaporation of water from 

that throat, respectively. Whereas, at the macroscopic scale they correspond to the 

degree of occupancy of the total void space with water and the sum of evaporation 

rate of all the evaporating meniscus throats in the system, respectively.  

The translation from pore to macro scale, of the parameters that quantify the liquid 

and vapor transport, is not straightforward and can require some modifications and 

adaptations. For example, in a drying porous medium, the diffusion of the water 

vapor at the pore scale is represented by the binary diffusion coefficient. However, for 
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the description at the macro scale, this will be replaced by the effective vapor 

diffusivity. Similarly, for the computation of liquid flow, the Darcy law at the pore 

scale is changed to the generalized Darcy law (consisting of effective permeability) at 

the macro scale. The capillary pressure at the scale of the individual throats is 

modified to the capillary pressure curve (that relates the average network saturation 

and the macroscopic capillary pressure) at the macroscopic scale. Apart from these 

parameters, there are other parameters that need to be upscaled, for example the 

effective solute diffusivity in the case of drying of a porous medium saturated with a 

saline solution. 

1.2 Motivation 

In the drying of porous media, it is commonly assumed that at the interface between 

the liquid and gas, there exists an equilibrium between the two phases such that the 

vapor pressure at the interface corresponds to the saturation vapor pressure. While 

this assumption is suitable for the liquid-gas interface at the pore-scale, it may not be 

appropriate for the local or REV scale, i.e. the scale at which the continuum model is 

discretized. For example, for hygroscopic materials (pore sizes are typically smaller 

than 100 nm (Geoffroy et al., 2014)), at the local scale, the partial vapor pressure varies 

from the saturation vapor pressure. This variation is characterized with respect to the 

material saturation and in the case of drying of hygroscopic porous media, the 

relationship between the saturation and vapor pressure is referred to as the desorption 

isotherm.  

In the case of non-hygroscopic porous media also referred to as capillary porous 

media (pore sizes are typically in the order of micrometers and water exists as free 

liquid (Geoffroy et al., 2014)), usually local equilibrium is considered between the 

liquid and gas phases.  However, this has been recently questioned. It has been shown 

that in the pore network simulations (based on capillary porous media) reported by 

Attari Moghaddam et al. (2017) that a noticeable non-local-equilibrium effect (NLE) is 

present. It was found that during drying, within the porous medium, the average 

vapor pressure deviated from saturation vapor pressure. This deviation from 

saturation vapor pressure, also referred to as NLE effect was found to be especially 
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significant on the porous medium surface. It was demonstrated in Attari Moghaddam 

et al. (2017) that similarly to the hygroscopic porous media, where the NLE effect is 

found to be significant (Bénet et al., 2009; Bénet et al., 1982), the NLE effect should also 

be considered in the simulation of drying capillary porous media. 

In Attari Moghaddam et al. (2017) a CM that combines the liquid and vapor flow 

equations into a single equation was used to reproduce the results of drying PNM 

simulations. This model has only saturation as the process variable, which makes it 

relatively simple to implement. The moisture transport coefficient, which represents 

the combined or lumped diffusivity of both the liquid and vapor phases, is computed 

by summing up liquid and vapor phase diffusivities. While this one-equation CM led 

to a good reproduction of the PNM saturation profiles, there are some issues and 

limitations that are intrinsic to the model. For example, it requires as input, the 

moisture transport coefficient function, which depends on local saturation as well as 

on the network saturation. This entailed three functions for the moisture transport 

coefficient each valid for different ranges of the network saturation. As long as the 

porous medium surface is wet, the boundary condition, i.e. the total evaporation rate, 

is a function of the surface NLE function (computed from the PNM simulation results). 

Once the evaporative surface becomes desaturated, the relationship between the total 

evaporation rate and the network saturation is needed to further continue the CM 

solution. This implies that instead of computing the boundary condition from the 

physical process conditions such as the boundary layer thickness and the partial vapor 

pressure, the one-equation CM requires information about the drying rate from PNM 

simulations, either directly or in the form of a surface NLE function. Therefore, the 

one-equation CM is unable to independently reproduce the drying kinetics.  

The factors that are discussed above strongly indicate that the one-equation CM is not 

suitable to simulate drying of capillary porous media due to the limitations that are 

inherent in its formulation. Therefore, a CM which is superior to the one-equation CM 

should be developed. In this regard, it is essential to capture the NLE effect that is 

evident from the PNM simulations of capillary drying porous media. This makes it 

vital that in addition to the saturation, we consider explicitly the vapor pressure as a 
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process variable as well. This will lead to a two-equation CM consisting of liquid and 

vapor phase equations, where the mass transport will be described by the 

simultaneous consideration of saturation and vapor pressure as the process variables.  

As mentioned in Sec. 1.1, the first drying period or CRP is the period in which the 

drying rate is the highest, owing to the non-zero surface saturation that prevails 

during this period. Due to the high evaporation rate, this period is considered 

desirable in many industrial applications of drying, as its extension translates into 

savings of time and energy associated with drying. Due to this consideration, the 

understanding of the transport phenomena at the surface is of great importance. Also, 

in many applications involving drying with a dissolved solute, the understanding of 

dynamics of mass transfer at the surface gains more significance, as the surface is the 

most likely location for the formation of crystals.  

In the development of the two-equation CM, one of the problems that will be 

addressed is the description of the mass transport at the surface at the macroscopic 

scale. This is because the structure of the two-equation CM demands the description 

of the mass transport at the surface in terms of both, the liquid and vapor phase. In 

other words, the solution of the two-equation CM would require individual boundary 

conditions for the liquid and vapor phase. This would require the development of 

better closure relationships between the mass transfer at the surface and the degree of 

saturation of the surface (Attari Moghaddam et al., 2018). As pointed out by Attari 

Moghaddam et al. (2018), the consideration of the non-local equilibrium effect at the 

surface will lead to an improved description of the transport at the surface. 

When discussing the mass transport at the surface, it is vital to mention the edge effect, 

which refers to a sharp variation of saturation in a thin region adjacent to the surface. 

As indicated by experiments and PNM simulations of drying, the edge effect is an 

intrinsic feature of the drying of capillary porous media (Attari Moghaddam et al., 

2018; Le Bray et al., 1999; Gupta et al., 2014). However, in the CMs of drying, this 

feature has not yet been considered. The consideration of this effect will make the CMs 

physically more realistic. Therefore, we should investigate whether we can capture 

this effect in the frame of the continuum modeling approach or not.  
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The study of drying of capillary porous media, where the liquid phase includes 

dissolved solute, is a topic of active research due to the various environmental and 

engineering applications. The transport of solute inside a drying porous medium is 

based on an interplay of advective (caused by capillary pumping of liquid towards 

the evaporating surface) and diffusive transport (Guglielmini et al., 2008; Huinink et 

al., 2002; Sghaier et al., 2007). If the solute concentration reaches the solubility limit, 

the solute precipitates into solid crystals. This process of crystallization can lead to 

undesirable effects such as material damage and changes in transport dynamics of 

fluid (Börnhorst et al., 2016; Larsen et al., 2017; Naillon et al., 2018; Scherer, 2004). 

Therefore, many researches have been conducted to understand the transport 

phenomena that lead to crystallization of dissolved solute (Guglielmini et al., 2008; 

Hidri et al., 2013; Huinink et al., 2002; Sghaier et al., 2007). These works are based on 

the continuum modeling (CM) approach (Whitaker, 1977), whereby the solute 

concentration is obtained by solving the advective-diffusive transport equation 

(ADE). In Pel et al. (2002) the reported results of experiments were found to be in good 

qualitative agreement with the solution of ADE. However, from other comparisons 

with experimental data (e.g., Shokri-Kuehni et al., 2018; Shokri, 2014), it has been 

argued that the classical macroscopic ADE might not lead to good results in the 

situation of drying. Therefore, in this thesis, we evaluate the ability of the classical 

ADE to predict solute transport under conditions of drying. 

The classical macroscopic advection-diffusion CM considers the liquid phase as 

continuous and connected at all times. However, it is known that during the drying 

of capillary porous media, the liquid phase gets fragmented into a main cluster, 

isolated clusters and isolated single menisci (see, e.g.,  Moghaddam et al. (2017) and 

references therein). Hence, it should be analyzed as to how the assumption that the 

liquid phase remains connected throughout the drying process will impact the 

development of the solute concentration profiles.  

1.3 The new work 

The various negative aspects and shortcomings in the state-of-the-art macroscopic 

CMs that have been discussed in the previous section consist mainly of: the flawed 
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assumption of local equilibrium between liquid and vapor phases, the inadequate 

modeling of mass transport at the surface, and the missing assessment of CM for 

drying in the presence of dissolved solute transport. For the analysis of the CMs, we 

will use PNM drying simulations as a benchmark and guide. The detailed information 

obtained from PNM simulations will aid the mathematical derivations and the 

development of new closure relationships, which are involved in the process of 

upscaling. 

In order to address the erroneous assumption of local equilibrium between liquid and 

vapor phase, we will work on the development of a CM that considers the NLE effect 

i.e. the local non-equilibrium between the liquid and gas phase. As mentioned, we will 

use PNM simulations for modeling insights and comparison of results. As a first step, 

we will consider a simplified situation in which the liquid phase is initially distributed 

in the form of small isolated clusters. This implies that the macroscopic transport in 

the liquid phase can be neglected, allowing us to focus on a situation where the mass 

transport occurs primarily in the vapor phase. This approach is similar to that in a 

previous work on the NLE effect (Ouedraogo et al., 2013), where the focus has been 

on hygroscopic porous medium at low saturation (i.e. soil that behaves as a 

hygroscopic porous medium when water content becomes very low). 

The NLE CM will be derived with the help of volume averaging method. The liquid 

and gas phase equations will be coupled by a NLE mass exchange term. The 

formulation of this NLE phase change term will entail the introduction of specific 

interfacial area as a macroscopic transport parameter. The relationship between the 

specific interfacial area and the local saturation will be obtained from the PNM 

simulations. The behavior of this parameter in this limiting regime of immobile liquid 

phase will also be discussed. 

The PNM simulations will generate the saturation profiles and the drying kinetics that 

will be used as reference data to analyze the results of the NLE CM. The macroscopic 

parameters that are needed to solve the NLE CM will be based on the results from 

PNM simulations. For this purpose, a method is developed that discretizes the 3D 

PNM computational domain into slices. The ground of this method stems from the 
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work by Attari Moghaddam et al. (2017), where the 3D PNM domain was discretized 

into slices or local averaging volumes. However, in this thesis, we will need to alter 

the discretization scheme, owing to the fact that we also need to perform the slice 

averaging of the partial vapor pressure (which is now also a state variable). Hence, 

contrary to the consideration in Attari Moghaddam et al. (2017) where two successive 

rows of pores were considered as part of a slice, our slice can only comprise of one 

row of pores (along with the interconnected throats). Also, the composition of the 

surface slice also varies from what was considered by Attari Moghaddam and 

coauthors, such that the surface slice now consists of only the surface pores and the 

vertical surface throats. The vapor pressure profiles and the total vapor flux obtained 

from the PNM are used to derive the effective vapor diffusivity. Similarly, the 

macroscopic specific interfacial area is computed by considering all the interfacial 

throats that are present in a slice.  

In the next step, a two-equation CM that captures the NLE effect for a fully saturated 

porous medium will be developed. This model will be an extension of the NLE CM 

for the limiting case of immobile liquid phase such that the macroscopic capillary 

transport in the liquid phase will also be taken into account. The mass transport in the 

liquid phase will be described by Hagen-Poiseuille equation, and the liquid pressure 

field and liquid flux will be obtained from the PNM simulation of drying. The 

introduction of far-field capillary transport in the liquid phase implies that we will 

address the problem of mass transport at the surface by presenting the formulations 

of the individual boundary conditions for the vapor and liquid phase equations. The 

macroscopic transport parameters computed from PNM simulations using the 

aforementioned slice averaging method, will serve as a guide and reference for the 

input parameters needed to solve the two-equation CM.  

In this thesis, we will analyze the CM of drying with dissolved solute transport, in 

terms of its ability to reproduce the solute concentration profiles obtained from PNM 

simulations. We will focus on the first drying period (also known as CRP), where the 

liquid at the surface remains connected with the liquid deep within the network. In 

the CRP, the classical CM of drying of capillary porous media considers the saturation 
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profiles to remain flat (no consideration of the edge effect) at all times during the 

drying process. We will investigate how this assumption affects the evolution of the 

solute concentration profiles.  

With the help of PNM simulations, we will study the relationship of connectivity and 

distribution of liquid phase at the surface with the solute concentration in the surface 

throats. Also, we will statistically characterize the transport at the porous medium 

surface with the help of PNM Monte Carlo simulations. In doing so, we will analyze 

the probability of onset of crystallization based on an arbitrarily selected threshold 

value of saturation concentration. Additionally, we will also characterize the liquid 

phase structure by computing, with respect to network saturation, the expected 

probability that a saturated surface throat is an isolated single throat, a main cluster 

throat, or an isolated cluster throat.  

Also, we will discuss the underlying reasons for the differences between the solute 

concentration profiles predicted by PNM simulations and CM solution. We will also 

discuss the averaged solute concentration profiles and the saturation profiles obtained 

from PNM simulations in comparison with the statistical analysis (that is performed 

with the help of Monte Carlo PNM simulations). We will elucidate the various pore 

scale mechanisms that control the solute concentration profiles and suggest a pathway 

for improvement in the CM of drying with dissolved solute transport.   

1.4 Outline of contents 

The organization of the next chapters of this thesis is as follows: 

Chapter 2 consists of the description of the pore network model that is used in this 

thesis. The chapter explains the geometry of the pore network as well as the 

fundamentals of the pore network model algorithm. The chapter is divided into 

sections based on the distinction in the respective transport regimes, such as capillary 

dominated regime, viscous-capillary regime, and pore network model with dissolved 

solute transport. It is explained in detail how the respective mechanisms for fluid and 

solute transport are implemented in the pore network model algorithm. 
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Chapter 3 describes the formulation of NLE two-equation CM for the limiting case of 

immobile liquid phase. Then, the method used for the extraction of macroscopic 

parameters from PNM simulations is explained. The results of the PNM simulations 

(i.e. phase distributions, drying kinetics, and NLE effect) are presented. This is 

followed by a discussion of the macroscopic parameters (i.e. effective vapor diffusivity 

and specific interfacial area) which are obtained from PNM simulation results. 

Subsequently, the NLE CM solution is compared with the corresponding results of 

the PNM simulations. The NLE CM is also discussed in comparison with classical LE 

CM (front model). The drying regime that consists of immobile liquid phase used in 

this chapter is also compared with the receding front period (RFP). Finally, the 

methodology adapted in this chapter and the key findings are summarized. 

In Chapter 4, the NLE two-equation CM for the full drying situation (drying of a fully 

saturated porous medium) is derived. The CM presented in this chapter considers the 

capillary liquid transport as well as the local evaporation and diffusion in the gas 

phase. This is followed by the comparison between the macroscopic parameters that 

are used for NLE CM solution and those computed from PNM simulations. The 

method for extraction of macroscopic parameters from PNM simulations is the same 

as that described in Chapter 3. The solution of the NLE CM, i.e. the phase 

distributions, drying kinetics and NLE effect, are compared to the corresponding 

PNM reference data. Then a sensitivity study of the macroscopic transport parameters 

is presented. This is followed by recapitulation of the key features and results 

obtained. 

In Chapter 5, we assess and evaluate the widely used CM that is based on macroscopic 

advective-diffusive transport equation using PNM simulations. First, the formulation 

and underlying assumptions of this CM are described. Then, the solute concentration 

profiles and saturation profiles obtained from PNM simulations for different network 

saturation values are presented. In conjunction, the influence of pore scale 

heterogeneities on the evolution of solute concentration is clearly highlighted with the 

help of a graphical illustration obtained from a 2D PNM simulation. Then, the effective 

solute diffusivity is obtained from PNM simulations and subsequently used for the 
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CM solution. The CM solution, i.e. the resulting solute concentration profiles, are then 

evaluated in comparison with the corresponding PNM profiles. This is followed by a 

detailed analysis of the liquid and solute transport at the surface with the help of PNM 

simulations. Finally, the key aspects of the study are summarized and discussed. 

In Chapter 6, we present a summary and overview of all chapters of this thesis. Finally, 

some possible pathways for future research related to this thesis are discussed. 
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Chapter 2 

 

Pore network drying model 

 

A part of this chapter is taken from “Ahmad, F., Rahimi, A., Tsotsas, E., Prat, M., Kharaghani, 

A.: From micro-scale to macro-scale modeling of solute transport in drying capillary porous 

media. Int. J. Heat Mass Transf. 165, 120722 (2021)”. Another part is taken from “Ahmad, 

F., Talbi, M., Prat, M., Tsotsas, E., Kharaghani, A.: Non-local equilibrium continuum 

modeling of partially saturated drying porous media: Comparison with pore network 

simulations. Chem. Eng. Sci. 228, 115957 (2020)”. 

 

Pore network modeling is a discrete mesoscale approach where the pore scape is 

conceptualized by a network of narrow channels or throats that are interconnected 

through pores (see Fig. 2.1). The pore network model used in this thesis consists of 

volume-less pore nodes that act only as computational points. For detail on the pore 

network models with pore volume, see Lu et al. (2020) and references therein. In this 

thesis, the pore network model is based on a regularly structured 3D cubic lattice 

geometry, based on the work in Metzger et al. (2007), where the throats are cylindrical 

in shape. The throat length, i.e. the distance between two adjacent pores, is uniform 

and called the lattice spacing. The radii of the cylindrical throats follow a normal 

distribution which is based on mean radius and standard deviation. The lateral edges 

are connected to each other (periodic boundary condition), whereas the bottom side 

of the network is impermeable. The network of pore nodes extends outside of the pore 

network domain through the top edge into the discretized boundary layer. External 
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mass transport occurs through this diffusive boundary layer from the evaporating 

meniscus throats at ambient conditions. 

 

Fig 2.1:  A sample three-dimensional pore network illustration with evaporative 

surface on top and a gas diffusion boundary layer of thickness Lbl (the pore nodes 

in the boundary layer are not shown here). The throats filled with liquid are 

represented in blue, the gas-filled throats in gray and all pores in red color.  

2.1 Drying algorithm in absence of viscous effect 

Throughout the drying process, we keep track of the structure of the liquid phase, i.e. 

the state of its connectivity, in terms of the total number of liquid clusters, and isolated 

liquid throats are always accounted for. A liquid cluster is defined as a set of liquid 

throats interconnected by liquid pores. The information about the connectivity of the 

pores and throats is stored in the form of matrices. Each pore and throat in the inside 

of the network and in the boundary layer is indexed. The matrix that stores the 

information about the neighbor throats of each respective throat is referred to as tnt. 

Similarly, the information about the neighbor pores of each respective pore is stored 
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in a matrix referred to as pnp. The information about the neighbor throats of each pore 

and vice-versa is stored in pnt and tnp, respectively. These matrices used in 

conjunction can provide the index numbers of all the neighbors of the throats and 

pores inside the network and in the boundary layer. For more detail on the 

construction of these matrices, see Metzger et al. (2007). Using these matrices together 

with the information about the degree of saturation of the throats and pores, the state 

of the liquid phase connectivity, i.e. the individual liquid clusters and single throats, 

can be identified. 

In the beginning of the drying process, evaporation occurs in the throats where the 

liquid phase forms an interface with the gas phase i.e., the throats at the surface that 

are exposed to the boundary layer. The interfacial throats are also referred to as 

meniscus throats. In each liquid cluster, the interfacial throat with the lowest capillary 

threshold is identified. The capillary threshold pressure Pc is calculated by the Young-

Laplace equation as   

𝑃𝑐   =  
2𝛾𝑐𝑜𝑠𝜃

𝑟𝑡
, 

(2.1) 

where 𝛾 is the surface tension, 𝜃 the wetting angle and rt the throat radius. In each 

liquid cluster, the throat with the lowest capillary pressure threshold is the throat with 

the highest potential to be invaded by the gas phase. See Fig. 2.2 for a simple 

illustration of the capillary pumping phenomenon. In other words, for each liquid 

cluster, the throat with the highest liquid pressure 

𝑃𝑙   =  𝑃𝑔 − 𝑃𝑐, (2.2) 

where 𝑃𝑔 is the gas pressure, will be invaded by the gas phase. For the computation of 

evaporation rate from meniscus throats, we need the vapor pressure at each pore 

inside the network and in the boundary layer. The vapor transport is based on Stefan’s 

flow, which for a throat k between the nodes i and j is expressed as  

𝐽𝑣,𝑘 = 𝜋𝑟𝑡
2  

𝑀̃𝑣 

𝑅̃ 𝑇 𝐿𝑡

𝑃𝑎𝑡𝑚𝐷𝑣𝑎𝑙𝑛 (
𝑃𝑣,𝑖 − 𝑃𝑎𝑡𝑚

𝑃𝑣,𝑗 − 𝑃𝑎𝑡𝑚
), 

(2.3) 
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where Lt, 𝑀̃𝑣, 𝑅̃, T, Dva and Pv denote length of the throat, molar mass of vapor, 

universal gas constant, temperature, air-vapor binary diffusion coefficient and vapor 

pressure, respectively. For more details on Stefan’s flow, see Irawan (2006). At each 

pore node, mass balance for vapor flux is applied, enabling us to obtain a system of 

equations, which is then numerically solved to obtain the vapor pressure field. This 

means that we obtain values of partial vapor pressure at each pore node present inside 

and outside (boundary layer) the network. The pores that lie next to a partially or fully 

saturated throat are considered to have saturation vapor pressure, whereas the pores 

at the top of the boundary layer are considered to have zero vapor pressure. These 

serve as boundary conditions for the numerical solution of the vapor pressure field.  

The discretization of the drying process is associated with the time for emptying of 

one meniscus throat, during which the vapor flow is assumed to be quasi-steady. For 

each cluster, the total evaporation rate from all the meniscus throats (computed from 

Eq. (2.3)) is assigned to the meniscus throat with the lowest capillary threshold for the 

respective cluster. Then, for each cluster, the time for emptying of all these meniscus 

throats is computed, the lowest among which is assigned as the time step. The phase 

distribution is updated, i.e. the saturation of the emptying throat is set to zero. For the 

next time step, the vapor pressure field is calculated based on the updated boundary 

conditions. 

As the drying process goes on, the liquid clusters shrink and split into isolated 

menisci. The calculation of vapor transport is considered independently for each 

cluster. To this end, it is essential to label the liquid clusters. This is achieved by 

employing a variant of the Hoshen-Kopelman algorithm (Metzger et al., 2006). The 

labeling algorithm is used to relabel the liquid clusters at each time step. The drying 

process goes on until the liquid in the network has been entirely evaporated. 
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Fig. 2.2: An illustration of capillary transport of liquid phase as a result of variation in 

capillary pressures across the two sections of a tube. The liquid phase is shown in blue 

and the gas phase in white. 

2.2 Drying algorithm in presence of viscous effect 

The presence of viscosity requires some modifications in the drying algorithm 

presented in Sec. 2.1. Due to the viscous resistance, the water from the cluster 

meniscus with the lowest capillary pressure threshold may not be pumped to the 

evaporating meniscus throats of the cluster (see Fig. 2.3). As a result, other menisci 

may also empty as the rate of evaporation from the menisci could overcome the 

insufficient compensation of water through capillary pumping. The challenge is to 

identify the moving menisci during each time step. For this purpose, it is necessary to 

compute the liquid pressure field inside each cluster.  

Firstly, for each cluster, the menisci with the lowest capillary threshold as well as the 

partially saturated ones are considered as moving, whereas the rest of menisci are 

considered to be stationary. Then stationary menisci are simply the ones whose mass 

loss from evaporation is fully compensated by the capillary pumping. However, the 

moving menisci have two categories: the ones that are emptying or receding and the 

ones that are refilling. The situation of a refilling meniscus can simply occur when, 

e.g., after a time step a newly formed meniscus within the considered cluster happens 

to be sufficiently larger, such that its liquid pressure is enough to compensate for the 

viscous forces that caused a meniscus to recede in the previous time step. As a result 

of this, a receding meniscus throat may turn into a refilling throat. However, the state 

of the moving meniscus does not impact the calculation of the liquid pressure field. 
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Note that the refilling only occurs in the partially saturated throats and the liquid 

cannot migrate into fully dried throats. 

The fact, whether a meniscus is moving or stationary, determines the boundary 

condition for the calculation of liquid pressure field. For the stationary menisci, the 

evaporation rate associated with the individual meniscus directly provides the 

information about the incoming liquid flow rate, whereas for the moving menisci, the 

liquid pressure at the interface computed from Eq. (2.2) is assigned as the boundary 

condition. Based on the known boundary conditions for the stationary and moving 

menisci, the liquid pressure field is obtained by applying liquid mass balance at each 

pore. The liquid flow rate Jl,k through a throat k that neighbors the pores i and j is 

computed based on the Hagen-Poiseuille equation as 

𝐽𝑙,𝑘 =  
𝜋𝑟𝑡

4𝜌𝑙 

8𝜇𝑙𝐿𝑡
(𝑃𝑙,𝑖 − 𝑃𝑙,𝑗), 

(2.4) 

where 𝜇𝑙 is the liquid viscosity. Due to the presence of viscous resistance to the liquid 

flow, the initially assumed states of the liquid throats have to be examined and, if 

necessary, modified through a number of iterative steps. Firstly, for all stationary 

throats, the discrepancy between incoming liquid flow and the outflowing liquid 

(mass loss through evaporation) is computed. Then the status of the stationary 

meniscus with largest negative discrepancy is updated to moving (emptying), as 

having a negative discrepancy means that the incoming liquid flow is not sufficient to 

compensate for the liquid outflow. Then, based on the updated boundary conditions, 

the liquid pressure field is computed again and the status of the meniscus with largest 

discrepancy is changed again to moving. Based on the updated boundary conditions, 

the liquid pressure field is computed repeatedly in a loop until there are no more 

stationary throats with negative discrepancy. The only difference between the non-

viscous and the viscous drying algorithm is linked to the correct identification of the 

status of meniscus throats. The rest of the algorithm is the same as described in Sec. 

2.1. 
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Fig. 2.3: An illustration of capillary liquid transport in presence of viscous resistance 

to the liquid flow. The liquid phase is shown in blue and the gas phase in white. 

Evaporation is from the top side of the container. The arrow in black shows the 

direction of liquid flow from the biggest throat to all other throats. The arrow in white 

shows the movement of meniscus which is receding as a result of insufficient liquid 

compensation due to viscous forces. 

2.3 Drying algorithm with dissolved solute transport 

The advective-diffusive transport of the dissolved solute in the liquid phase is 

modeled at the pore scale within the throats. Figure 2.4 illustrates a simple case of 

advective-diffusive solute transport inside a drying solution and the resulting 

variation in concentration field. The PNM with dissolved solute transport used in this 

thesis is set for a 3D regular cubic network, based on the work presented by Rahimi 

(2019). In the PNM algorithm that does not account for solute transport, the drying 

process is discretized according to time for emptying of one meniscus throat, here 

referred to as global time step. During each discretized time step, the boundary 

conditions for vapor pressure field are assumed to be stationary. However, in the 

PNM that accounts for solute transport, the time step is discretized according to the 

stability criterion of the advection-diffusion equation with an explicit solution scheme 
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(Licsandru et al., 2019). The explicit form of the equation governing the solute 

transport between nodes i and j for a throat k is given as 

𝑑𝐶𝑘

𝜕𝑡
 = 𝑈

𝐶𝑖  −  𝐶𝑘

𝐿𝑡
+  

2𝐷𝑠

𝐿𝑡
(

𝐶𝑗 − 2𝐶𝑘 − 𝐶𝑖

𝐿𝑡
), 

(2.5) 

where Ck denotes the solute concentration of throat k, Ci and Cj the concentration at 

the nodes i and j. The concentration at the nodes is computed assuming perfect mixing 

of the liquid at each node. In other words, we apply the mass balance at each node 

considering the total advective and diffusive solute flow between a pore and its 

neighboring throats. For the simple case of 2D pore network, the concentration at node 

i is expressed as 

𝐶𝑖  =
∑ 𝑢𝑘𝐴𝑘𝐶𝑘

2
𝑘=1  +  ∑ 2𝐷𝑠

4
𝑘=1

𝐴𝑘𝐶𝑘

𝐿𝑘

∑ 𝑢𝑘𝐴𝑘
4
𝑘=3  +  ∑ 2𝐷𝑠

4
𝑘=1

𝐴𝑘

𝐿𝑘

, 

(2.6) 

where k indicates the neighbor throats of the pore i. Throats 1 and 2 provide liquid 

flow to pore i, whereas throats 3 and 4 transport liquid away from pore i. Solute 

transport calculations are carried out within these time increments, assuming constant 

capillary flow rates until the global time step has elapsed. The time steps that satisfy 

the stability criteria for advection and diffusion are computed as 

∆𝑡𝑎𝑑𝑣 ≤  
𝐿𝑘

𝑈
 

(2.7) 

and 

∆𝑡𝑑𝑖𝑓𝑓 ≤  
1

2

(
𝐿𝑘

2 )
2

𝐷𝑠
, 

(2.8) 

respectively. The minimum of ∆𝑡𝑎𝑑𝑣 and ∆𝑡𝑑𝑖𝑓𝑓 is considered as the salt time step. An 

adaptive sub-discretization algorithm, based on the local Péclet number, is utilized for 

the throats to improve numerical accuracy of the model while keeping the 

computational time in check. If the Péclet number in a throat is above unity, it is 

discretized into sub-elements until the Péclet number in each sub-element is below 

unity. 
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When the solute concentration in a throat reaches a threshold referred to as the critical 

concentration (Ccr), crystallization occurs and the solution in the vicinity of the crystals 

rapidly becomes close to the solubility, also referred to as the saturation concentration 

(Csat), see, for example, Naillon et al. (2018), Patankar (1980). As a result, the solute 

concentration value does not supersede the threshold value of Csat after the time step 

has elapsed. As mentioned earlier, since the focus in this study is on the solute 

distribution prior to crystallization, no particular threshold value for crystallization is 

considered. The concentration can thus increase as dictated only by the competition 

between advection and back-diffusion and the changes in liquid saturation. Also, for 

simplicity, we neglect the influence of the solute concentration on the properties of the 

fluid. 

 

Fig. 2.4: An illustration of advective transport of dissolved solute through capillary 

liquid flow and back diffusion as a result of solute concentration built up in the 

solvent. Evaporation is from the top side of the container.  
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Chapter 3 

 

NLE continuum modeling: The limiting case of immobile 

liquid phase 

 

This chapter is partly taken from “Ahmad, F., Talbi, M., Prat, M., Tsotsas, E., Kharaghani, 

A.: Non-local equilibrium continuum modeling of partially saturated drying porous media: 

Comparison with pore network simulations. Chem. Eng. Sci. 228, 115957 (2020)”. 

 

The modeling of drying porous media has been a subject of research for decades. Heat 

and mass transfer during the two stages of drying is more commonly described using 

the concept of continuum modeling (CM). A presentation of the most popular 

continuum model in this context can be found  in Whitaker (1977), where heat and 

mass transfer during evaporation in a porous medium was extensively modeled in the 

framework of the volume averaging method. This widely used CM combines the 

equations for the liquid flow and for the vapor flow into a single equation under the 

assumption of local equilibrium (LE) between the vapor and the liquid phases. 

However, this assumption has been questioned (Bénet and Jouanna, 1982). It was 

argued that the equilibrium characteristic time 𝑡𝑒𝑞 ≈ 𝐿2/𝐷𝑣, where L is a characteristic 

length of the porous medium and 𝐷𝑣 is the vapor diffusivity, was too long for the local 

equilibrium condition to be satisfied during drying. This leads to a different class of 

models where the liquid flow equation and the vapor flow equation are not merged 

into a single equation and both contain a non-equilibrium phase change term. One can 

refer, for instance, to Li et al. (2019) for a presentation of the NLE CM together with 
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the more classical LE CM model. The NLE effect is considered to be especially 

significant in hygroscopic materials (see, e.g., Bénet and Jouanna 1982; Bénet et al., 

2009; Ouedraogo et al., 2013), where vapor pressure is influenced by the degree of 

saturation of the material. However, in capillary porous materials, in which 

adsorption phenomena are negligible and the vapor pressure is influenced only by 

temperature, the NLE effect has been treated as a seemingly less important issue. 

However, the pore network model (PNM) simulations reported in Attari Moghaddam 

et al. (2017) clearly indicate that the NLE effect is also present during the drying of 

capillary porous media. As a consequence of the NLE effect, it was shown that the 

saturation profiles computed  from the pore network simulations could not be 

simulated with the classical LE model using a single set of macroscopic parameters 

(Vorhauer et al., 2010). Also, the drying kinetics could not be simulated over the 

complete drying process using the classical one-equation CM model (Attari 

Moghaddam et al., 2017b). The conclusion was therefore that a NLE CM formulation 

should be considered not only for hygroscopic materials as suggested by Bénet and 

co-workers but also for capillary porous media. The present work is a step in this 

direction. 

The methodology used in this work is the same as in Attari Moghaddam et al. (2017).  

PNM simulations are used for generating reference data, such as saturation profiles 

and drying kinetics. Then, the NLE CM is tested against the volume averaged PNM 

data. Compared to Attari Moghaddam et al. (2017), the new feature is that a NLE 

continuum model is considered. Hints on the formulation of the NLE phase change 

term in this model are obtained using the volume averaging method. Also, as in 

previous work on the NLE effect, i.e. Ouedraogo et al. (2013), we focus on the 

conditions of low initial saturation. In our case, this corresponds to a situation where 

the liquid phase is formed by a set of disconnected small clusters. This implies that, in 

the context of PNM, while capillary pumping is considered, we can neglect the 

influence of viscosity in the liquid phase.  

These liquid clusters are minimally sized and are located randomly inside the network 

(see Fig. 3.1). We follow an iterative process to ensure that each cluster consists of just 
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one saturated node. In 3D PNM, this means that each cluster may consist of a 

maximum of six saturated throats that are connected through a saturated node. To 

generate this disconnected liquid phase distribution, we choose an initial fraction of 

nodes that would be assigned a saturation of one. Then, the chosen number of nodes 

are distributed randomly inside the network and assigned a saturation value of one. 

Next, the neighbor throats that are connected to these randomly located nodes are also 

assigned a saturation value of one. Following this, we begin a node by node scan of 

the whole network and ensure that each node has no other saturated node connected 

to it. For example, if a scanned node i has a neighbor node i+1 that is saturated, then 

we assign a saturation value of zero to one of the neighbor throats of node i+1. This in 

turn makes the node i+1 unsaturated. This is because a node becomes unsaturated if 

at least one of its neighbor throats becomes unsaturated. This process is repeated until 

all clusters are minimally sized, i.e. consist of one saturated node.  

This enables us to concentrate on a situation where the vapor transport is a dominant 

mechanism. Similarly to Attari Moghaddam et al. (2017), evaporation controls the 

mass transfer and the temperature variation is negligible. 

 

Fig. 3.1: A 2D representation of 50×50 pore network in which the liquid phase (shown 

in blue) is distributed as isolated clusters. The gas and solid phases are represented in 

white and grey, respectively. Note that for our discrete simulations 3D pore networks 

are used. 
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3.1 Description of the NLE CM for the limiting case of immobile 

liquid phase 

As discussed in several previous works, i.e. Li et al. (2019), Ouedraogo et al. (2013) 

and references therein, the NLE continuum model can be expressed as a system of two 

coupled equations, one for the liquid flow and one for the vapor flow. When the liquid 

phase is formed by small disconnected clusters, there is no macroscopic flow in the 

liquid phase and the model can be simplified. Under these circumstances, it can be 

expressed as    

𝜀
𝜕(1 − 𝑆)𝑃𝑣

𝜕𝑡
  =  ∇. (𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓 ∇𝑃𝑣)  + 

𝑅̃𝑇

𝑀̃𝑣

𝑚̇ 
(3.1) 

for the vapor flow and  

𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
 =  −𝑚̇  

(3.2) 

for the liquid phase (considered to be immobile). In Eqs. (3.1) and (3.2), ε, t, Deff, S, 

𝜌𝑙  and 𝑃𝑣  denote the porosity, time, macroscopic vapor diffusion coefficient, liquid 

saturation, water density and water vapor partial pressure, respectively. 𝑀̃𝑣, 𝑅̃ and T 

represent the molar mass of water, universal gas constant, and temperature; 𝑚̇ is the 

phase change rate between the liquid and vapor phases. The latter is also referred to 

as the NLE phase change term. Different formulations are proposed for 𝑚̇ in the 

literature. In the works of Bénet and co-workers, i.e. Ouedraogo et al. (2013) and 

references therein, 𝑚̇ = 𝛽
𝑅̃𝑇

𝑀̃𝑣
𝑙𝑛 (

𝑃𝑣

𝑃𝑣,𝑒𝑞
), where 𝑃𝑣,𝑒𝑞 is the equilibrium vapor pressure 

and 𝛽 is a phenomenological coefficient which notably depends on the porous 

medium microstructure. In Li et al. (2019), this term was expressed as 𝑚̇ = 𝑏𝜀(𝑆 −

𝑆𝑟𝑒𝑠)
𝑅̃𝑇

𝑀̃𝑣
(𝑃𝑣,𝑒𝑞 − 𝑃𝑣), where b is a coefficient and 𝑆𝑟𝑒𝑠 is the residual water content. The 

same expression was used in Pujol et al. (2011) with 𝑆𝑟𝑒𝑠 = 0. In order to clarify the 

formulation of 𝑚̇ a derivation using the volume averaging method (Whitaker, 2013) is 

presented in the following, taking advantage of the mathematical analogy with the 

problem of diffusion with heterogeneous reaction presented in Whitaker (2013). 

Starting point is the pore scale description of vapor transport in the domain occupied 

by the gas phase in the porous medium 
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𝜕𝜌𝑣

𝜕𝑡
= ∇. (𝐷𝑣𝑎∇𝜌𝑣), 

                    (3.3) 

where 𝜌𝑣 and 𝐷𝑣𝑎 denote the vapor density and air-vapor binary diffusion coefficient, 

respectively. The boundary condition at the solid-gas interface can be expressed as 

−𝐷𝑣𝑎∇𝜌𝑣. 𝐧𝑔𝑠 = 0,                    (3.4) 

where ngs is the unit vector in the direction perpendicular to the solid-gas interface. At 

the liquid-gas interface (Agl), we make use of the Hertz-Knudsen-Schrage (HKS) 

equation (Schrage, 1953) and express the boundary condition as 

−𝐷𝑣𝑎∇𝜌𝑣. 𝐧𝑔𝑙 = −
2

2 − 
√

𝑀̃𝑣

2𝜋𝑘𝐵
(

𝑃𝑣,𝑠𝑎𝑡

√𝑇𝑙

−
𝑃𝑣

√𝑇𝑔

),  

                     (3.5) 

where 𝐧𝑔𝑙, 𝑀̃𝑣, kB, , Tg, Tl denote the unit normal vector perpendicular to the gas-

liquid interface, molar mass of water vapor, Boltzmann constant, accommodation 

coefficient, gas temperature and liquid surface temperature, respectively. Assuming 

Tl = Tg and using T to represent the temperature, Eq. (3.5) can be expressed as 

−𝐷𝑣𝑎∇𝜌𝑣. 𝐧𝑔𝑙 = −
2

2 − 
√

𝑀̃𝑣

2𝜋𝑘𝐵𝑇
(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣). 

  (3.6) 

Using ideal gas law, we can express Eq. (3.3) in terms of Pv as  

𝜕𝑃𝑣

𝜕𝑡
= ∇. (𝐷𝑣𝑎∇𝑃𝑣). 

  (3.7) 

Similarly expressing Eqs. (3.4) and (3.6) in terms of Pv  

−𝐷𝑣𝑎∇𝑃𝑣. 𝐧𝑔𝑠 = 0,   (3.8) 

 

−𝐷𝑣𝑎∇𝑃𝑣. 𝐧𝑔𝑙 = −𝑘(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣),   (3.9) 

where 

𝑘 =
2

2 − 
√

𝑇𝑅̃2

2𝜋𝑘𝐵𝑀̃𝑣

.  

(3.10) 
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Here, with the intention to re-formulate the vapor transport equations at the pore-

scale we define a new variable 𝑃𝑣
∗ as 

𝑃𝑣
∗ = 𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣.  (3.11) 

Using Eq. (3.9) we re-formulate the problem of vapor transport at the pore-scale in 

terms of 𝑃𝑣
∗ and express Eq. (3.7) as 

𝜕𝑃𝑣
∗

𝜕𝑡
= ∇. (𝐷𝑣𝑎∇𝑃𝑣

∗). 
  (3.12) 

Similarly, we can express Eqs. (3.8) and (3.9) as 

−𝐷𝑣𝑎∇𝑃𝑣
∗. 𝐧𝑔𝑠 = 0,   (3.13) 

 

−𝐷𝑣𝑎∇𝑃𝑣
∗. 𝐧𝑔𝑙 = 𝑘𝑃𝑣

∗.   (3.14) 

Invoking the advantage of the analogy between the problem of diffusion and 

heterogeneous reaction presented in Whitaker (2013) and using the volume averaging 

method (Whitaker, 2013), we upscale the problem leading to the volume transport 

macroscopic equation 

 𝜀(1 − 𝑆)
𝜕𝑃𝑣

∗

𝜕𝑡
= ∇. (𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓 ∇𝑃𝑣

∗) + ∇. (𝐮𝑃𝑣
∗) − 𝑎𝑔𝑙𝑘𝑃𝑣

∗, 
(3.15) 

where we use the same notation for the volume averaged partial pressure as in the 

pore scale problem. In Eq. (3.15), agl is the liquid-gas interfacial area per unit volume 

𝑎𝑔𝑙 =
𝐴𝑔𝑙

𝑉
. 

(3.16) 

It is argued in Whitaker (2013) that the term ∇. (𝒖𝑃𝑣
∗) in Eq. (3.15) is negligible. Thus, 

Eq. (3.15) can be expressed as 

 𝜀
𝜕(1 − 𝑆)𝑃𝑣

𝜕𝑡
= ∇. (𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓 ∇𝑃𝑣) + 𝑎𝑔𝑙𝑘(𝑃𝑠𝑎𝑡 − 𝑃𝑣). 

(3.17) 

It is important to note that the effective diffusivity Deff is computed assuming zero flux 

on the liquid-gas interface. Also, note that the HKS theory was introduced for 

convenience in order to start from a formulation analogous to the one considered in 
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Whitaker (2013). It is to be noted that the HKS theory is not included in the PNM 

drying algorithm.  

For the characterization of liquid phase, we begin with the pore-scale expression 

𝜕𝜌𝑙

𝜕𝑡
= ∇. (𝜌𝑙𝐯). 

  (3.18) 

Applying the volume averaging method leads to 

𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
= ∇. 〈𝜌𝑙𝐯〉 +

1

𝑉
∫ 𝜌𝑙(𝐯 − 𝐰). 𝐧𝑙𝑔𝑑𝐴

𝐴𝑙𝑔

,  
(3.19) 

where v is the liquid phase mass average velocity and w is the velocity of liquid-gas 

interface. At a meniscus, we have 

𝜌𝑙(𝐯 − 𝐰). 𝐧𝑙𝑔 = 𝜌𝑣(𝐯𝒗 − 𝐰). 𝐧𝑙𝑔, (3.20) 

where 𝐯𝒗 is the velocity of the water vapor and 

𝜌𝑣(𝐯𝒗 − 𝐰). 𝐧𝑙𝑔 = −
𝑀̃𝑣

𝑅̃𝑇
𝐷𝑣𝑎∇𝑃𝑣. 𝐧𝑔𝑙. 

(3.21) 

Assuming isolated liquid clusters and considering Eq. (3.9), the convective liquid flow 

can be neglected, enabling us to express Eq. (3.19) as 

𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
= −

𝐴𝑔𝑙

𝑉
𝑘

𝑀̃𝑣

𝑅̃𝑇
(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣). 

(3.22) 

Taking into account Eq. (3.16), we express Eq. (3.22) as 

𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
= −𝑎𝑔𝑙𝑘

𝑀̃𝑣

𝑅̃𝑇
(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣).  

(3.23) 

The final form of the liquid and vapor phase equations of the two-equation CM for 

the limiting case of immobile liquid phase can thus be expressed as 

𝜀
𝜕(1 − 𝑆)𝑃𝑣

𝜕𝑡
= ∇. (𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓 ∇𝑃𝑣) + 𝑎𝑔𝑙𝑘(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣),  

(3.24) 
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𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
= −𝑎𝑔𝑙𝑘

𝑀̃𝑣

𝑅̃𝑇
(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣).  

(3.25) 

 

Therefore, the NLE phase change term can be expressed as 

𝑚̇ =  −𝑎𝑔𝑙𝑘
𝑀̃𝑣

𝑅̃𝑇
(𝑃𝑣,𝑒𝑞 − 𝑃𝑣), 

(3.26) 

where agl is the specific interfacial area between liquid and vapor phases and 𝑘 is a 

coefficient. In our case Pv,eq is equivalent to Pv,sat. Pv,sat is the saturation water vapor 

partial pressure since adsorption phenomena are not considered in the PNM 

simulations on the ground that they are negligible in capillary porous media. Another 

noticeable outcome from the derivation presented above is that the effective 

coefficient 𝐷𝑒𝑓𝑓 can be computed as if the liquid was simply acting as a solid obstacle 

to vapor diffusion. In other terms, and contrary to the consideration on vapor 

diffusion in drying by Philip and De Vries (1957), the derivation does not suggest that 

an enhancement effect should be considered in the determination of 𝐷𝑒𝑓𝑓  as a result of 

phase change within the representative elementary volume. One can refer, for 

instance, to Plumb et al. (1999) for more details on the vapor diffusion enhancement 

factor.  

To simulate the drying problem with the NLE CM (Eqs. (3.24) and (3.25)), three 

macroscopic coefficients must be determined, namely agl, 𝐷𝑒𝑓𝑓 and k, noting that agl 

and 𝐷𝑒𝑓𝑓 are functions of saturation. The method to determine these coefficients is 

presented in Sec. 3.2.  Then, initial and boundary conditions must be specified. The 

pore network is initially saturated with liquid and supposed to be at equilibrium. Thus 

𝑃𝑣 = 𝑃𝑣,𝑠𝑎𝑡 throughout the computational domain at t = 0. The initial liquid phase 

saturation is computed by volume averaging the initial liquid water distribution in 

the pore network.  

The two-equation CM is solved in 1D by discretizing the computational domain by 

using finite volume method. At the bottom of the domain, a zero-flux boundary 

condition is applied, whereas at the evaporative surface the specific evaporation rate 

is computed by the following equation: 
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𝜀(1 − 𝑆)
𝑀̃𝑣 

𝑅̃ 𝑇
𝐷𝑒𝑓𝑓∇𝑃𝑣. 𝐧 = − 

𝑀̃𝑣 

𝑅̃ 𝑇
𝐷𝑣𝑎

𝑃𝑣,𝑠𝑢𝑟𝑓 − 𝑃𝑣,∞

𝐿𝑏𝑙
, 

   (3.27) 

where Dva, Lbl, 𝐧, 𝑃𝑣,𝑠𝑢𝑟𝑓 and 𝑃𝑣,∞ denote the water vapor molecular diffusion 

coefficient, external boundary layer thickness, unit normal vector directed toward the 

external boundary layer, vapor pressure of the surface volume element and vapor 

pressure in the bulk air, respectively. The formulation of the boundary conditions at 

the evaporative surface is actually not that obvious with the two-equation NLE CM 

model since both liquid and vapor pores can be present at the surface. The question 

thus arises as to how the external evaporation flux should be split into a contribution 

from the evaporation of the surface liquid pores and a contribution from surface pores 

occupied by the gas phase. However, the consideration of an immobile liquid phase 

simplifies the modeling of the exchange at the evaporative surface, since no boundary 

condition is actually needed in conjunction with Eq. (3.2). For the CM solution, we 

require only the boundary condition for Eq. (3.1).  

3.2 Extraction of macroscopic transport parameters from drying PNM 

simulations 

Macroscopic parameters can be determined from dedicated PNM simulations (Øren 

et al., 1998; Blunt et al., 2001). Most of the literature in this regard pertains to the 

drainage process, and the focus is on relative and absolute permeabilities and capillary 

pressure curve. The use of PNM for drying porous media (Nowicki et al., 1992; Attari 

Moghaddam et al., 2017) has also been done along similar lines with the addition of 

computation of vapor diffusivity. This requires developing specific computations over 

a representative elementary volume (REV). In what follows, we proceed somewhat 

differently and apply a method inspired from the method used to determine the 

moisture transport coefficient from drying experimental results in previous works. 

Typically, in these experiments, transient saturation profiles were determined for a 

given set of conditions (e.g. Schoeber, 1976; Marchand and Kumaran, 1994; Pel et al., 

1996; Gomez et al., 2007). Subsequently, these saturation profiles were used to 

compute moisture transport coefficients. In our case, the saturation profiles are 
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obtained from volume averaging of the appropriate PNM drying simulation data and 

we also use the volume averaged vapor pressure profiles.  

The macroscopic parameters determined from PNM drying simulations are effective 

vapor diffusivity and specific interfacial area. As mass transport is in the gas phase 

only (immobile liquid phase), we do not compute liquid diffusivity. The dependency 

of macroscopic effective vapor diffusivity and specific interfacial area on local 

saturation is determined using the data obtained from PNM drying simulations. For 

our PNM, the computation is carried out on two levels: on the scale of pore throats, 

we compute the liquid saturation, and on the scale of volume-less pore nodes, we 

compute partial vapor pressure.   

The data at the pore scale is transformed into macroscopic scale by dividing the three-

dimensional pore network into horizontal slices of thickness Δz – an exemplary 3D 

pore network is illustrated in Fig. 3.2. Here one slice is the macroscopic averaging 

volume over which local saturation and vapor pressure are computed. As shown in 

Fig. 3.2, we characterize a slice such that it consists of pore-nodes which lie on the side 

of top bounding plane of the slice, horizontal throats directly connected to these pore-

nodes and the neighbor vertical throats that are directed towards the bottom. The local 

saturation of the slice is computed by calculating the ratio of liquid volume in the 

throats contained in the slice to the total volume of throats in the slice. For the 

computation of local vapor pressure in the slice, we compute the arithmetic mean of 

the vapor pressures of the pores contained inside the slice. The characterization of the 

surface slice is different from other slices due to the fact that in PNM the pore-nodes 

in surface plane do not have any directly connected horizontal throats.  

The vapor flow rate through vertical throats in a slice is computed using the vapor 

pressure of pore nodes as follows 

𝐽𝑣 = 𝜋𝑟𝑡
2  

𝑀̃𝑣 

𝑅̃ 𝑇 𝐿𝑡

𝑃𝑎𝑡𝑚𝐷𝑣𝑎𝑙𝑛 (
𝑃𝑣,𝑖 − 𝑃𝑎𝑡𝑚

𝑃𝑣,𝑗 − 𝑃𝑎𝑡𝑚
), 

(3.28) 

and summed up to give the total vapor flux passing through a slice. This total flux is 

then divided by the cross-section area of the plane (as illustrated in Fig. 3.2 by Aplane) 

to provide jv which is then used to compute Deff from the flux between two slices using   
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𝐷𝑒𝑓𝑓 = −
𝑅̃ 𝑇 

𝑀̃𝑣

𝑗𝑣

𝜀(1 − 𝑆) 
∂𝑃𝑣

𝜕𝑧

. 
(3.29) 

Apart from this, in order to neglect the local transport in liquid phase, the size of liquid 

clusters is kept small in a way that they do not span over a slice. Hence, interslice 

liquid transport is avoided by restricting the cluster size. Additionally, we compute 

the specific interfacial area 𝑎𝑔𝑙 by summing up cross-section area of interfacial throats 

belonging to a slice and divide it by the total macroscopic volume of that slice. It 

should be noted that the interfacial area is measured at the meniscus level and not at 

the pore-node, meaning that one gas pore can have several interfacial throats 

connected to it.  

 

Fig. 3.2: A sample pore network illustration with evaporative surface on top and a 

slice (local averaging volume) cut perpendicular to z direction from the pore network 

consisting of one row of nodes (connected to top side of vertical throats) for 

computation of vapor pressure. The throats filled with liquid are represented in blue 

and gas-filled throats in gray. Aplane represents network cross-section area and Δz 

represents the thickness of slice. The computational nodes in the external boundary 

layer on top of the network are not visible here. 
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3.3 Simulation results 

In this section, we present the macroscopic parameters computed from PNM 

simulations based on the method described in Sec. 3.2. Then, these parameters are 

used to solve the two-equation CM of drying and the consequent saturation profiles, 

vapor pressure profiles, evaporation rate, and non-local equilibrium effect are 

compared to the corresponding PNM simulation results. 

3.3.1 Pore network drying simulations 

The input parameters that specify the structure and physical conditions for PNM 

drying simulations are listed in Table 1. To minimize the influence of randomness in 

throat size distribution and initial liquid phase structure on the macroscopic 

parameters, we carried out 45 simulations, each with different realization of throat 

size distribution and initial liquid phase structure (location of liquid clusters). All the 

results shown in this section are averaged over these 45 simulations (unless stated 

otherwise). As the liquid phase is discontinuous and the size of clusters is very small, 

the viscosity of liquid phase becomes irrelevant. We operate in the capillary-

dominated regime as far as the evolution of the liquid phase is concerned. Mass 

transport through the network is purely controlled by diffusion in the gas phase. To 

produce the initial liquid phase structure with discontinuous liquid phase, we can 

have an arbitrary amount of liquid in the network. We choose an arbitrary initial 

network saturation of 0.26 for the PNM drying simulations and the subsequent CM 

solution.  

Structural property Unit Value Physical constant Unit Value 

Network size (nodes) - 252550 Temperature  K 293.15 

Boundary layer 

discretization  

- 25254 Pressure  Pa 105 

Mean throat radius mm 0.25 Diffusion coefficient  m2/s 2.56x10-5 

Standard deviation of 

throat radius 

mm 0.025 Saturation vapor 

pressure  

Pa 2339 

Throat length mm 1 Surface tension N/m 0.07274 

Network porosity - 0.594    

Table 1: Structural and physical parameters for PNM simulations. 
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The evolution of overall network saturation Snet with time and the change in 

normalized total evaporation rate with respect to Snet are shown in Fig. 3.3. The 

evaporation rate drops sharply as the surface water evaporates, followed by a 

consistent decrease in evaporation rate.  

  

Fig. 3.3: Variation of network saturation Snet with drying time (left) and normalized 

evaporation rate with respect to Snet (right). 

Compared to the classical drying kinetics for capillary porous media, no constant rate 

period (CRP) is observed. This behavior is in accordance with the initial condition 

imposed in our simulations for the liquid phase distribution. As illustrated in Fig. 3.4, 

the drying situation is characterized by a traveling drying front, where the saturation 

varies abruptly from the initial saturation to zero. The saturation plotted in Fig. 3.4 

and denoted by Sloc corresponds to the saturation determined in each slice of the 

network (as defined in Sec. 3.2). Referring to the drying kinetics classical description 

in three periods  (van Brakel, 1980), our case is close to the last period, referred to as 

the receding front period (RFP), where a dry zone develops into the porous medium 

from the surface (Pel et al., 1996). As will be discussed later, the dynamics of the drying 

front, i.e. how the position of the front scales with the elapsed time, is however 

different in our simulations.  
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Fig. 3.4: Saturation profiles (left) and normalized vapor pressure profiles (right) 

obtained from two-equation CM (blue dashed lines) and PNM (black solid lines). CM 

results are plotted for times that correspond to Snet of 95, 90, 80, 60, 40, 20 and 10 % of 

Snet,ini for PNM simulation results. The outer surface lies at z/H = 1 in both figures. 

3.3.2 NLE effect 

The ratio of Pv to Pv,sat as a function of both local saturation and network saturation 

characterizing the non-local equilibrium is obtained from PNM simulations and 

illustrated in Fig. 3.4.  

 

Fig. 3.5: Averaged value of NLE indicator as a function of local saturation (Sloc) for 

different intervals of network saturation (Snet). 
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Based on continuity of vapor flow, the closer a pore is to the boundary layer, the lower 

is the vapor pressure of the pore. Hence, when the drying front is on the surface, the 

vapor pores constituting the surface slice exhibit the lowest vapor pressure of any 

slice. As the drying front recedes into the network away from the boundary layer, the 

NLE effect decreases because the distance from the boundary layer increases. As 

shown in Fig. 3.5, the NLE effect increases abruptly, i.e. the ratio of Pv to Pv,sat decreases 

significantly, for very low saturations (Sloc < 0.03 in Fig. 3.5); this corresponds to the 

drying front where the saturation varies sharply over a small distance (see the 

saturation profiles in Fig. 3.4). 

3.3.3 Macroscopic water vapor diffusivity 

Figure 3.6 shows the variation of the ratio of Deff to Deff* with respect to local saturation 

obtained from PNM drying simulations. Deff* is Deff (Sloc= 0), i.e. the effective vapor 

diffusivity for a completely dry network. The local saturation here is computed as an 

arithmetic mean of saturation of the two successive local averaging volumes between 

which the vapor transfer occurs. As expected the value of Deff is highest when the 

vapor flux faces no resistance from the presence of liquid phase, i.e. when Deff is equal 

to Deff*.  

 

Fig. 3.6: Ratio of Deff to Deff* with respect to averaged local saturation. The black solid 

line represents the fitted profile through the discrete data points shown by blue 

symbols. 
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We observe an initial increase in Deff with decreasing Sloc followed by an intermediate 

period of approximately constant value and then a sharp increase in Deff until zero 

local saturation has been reached. The plateau for the intermediate local saturation 

range has generally not been observed in previous works, i.e. Pel et al. (1996), in which 

the vapor diffusivity decreases continually with increasing saturation. The difference 

is that here we start from a different liquid phase distribution where the liquid phase 

is distributed in small isolated clusters. The results shown in Fig. 3.6 indicate that the 

tortuosity of the gas phase does not vary significantly over the intermediate range of 

saturations in our case.     

3.3.4 Macroscopic specific interfacial area 

Using PNM drying simulations, we compute the specific interfacial area agl, i.e. the 

sum of interfacial area of the interfacial throats contained within a local averaging slice 

divided by the macroscopic volume of this slice. Initially, each local slice has 

approximately the same moderate value of agl of around 150 m2/m3, as illustrated in 

Fig. 3.7.  

 

Fig. 3.7: Specific interfacial area agl as a function of local saturation Sloc. The data points 

are averaged over finite local saturation intervals. The black solid line is a fitted 

function of agl out of the discrete data points (blue symbols). 
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As the drying process begins, the uniformly distributed liquid clusters in the 

evaporating slices split into isolated meniscus throats. The total interfacial area of 

these resulting isolated menisci is greater than that of the parent cluster. This 

phenomenon is the cause of the initial increase in agl until a peak is reached at around 

Sloc = 0.16. Upon further drying, the rate of local production of interfacial area is 

overcome by the rate of removal of liquid throats, resulting in consistent decrease of 

agl with local saturation. 

A key parameter introduced in the two-equation NLE CM is the specific interfacial 

area agl. It is a measure of liquid or gas phase tortuosity in a two-phase flow situation 

and is considered very important especially in the modeling of drainage process inside 

a porous medium. The general shape of the agl curve as illustrated in Fig. 3.7 is 

consistent with several previous results from the literature. For example in Joekar-

Niasar et al. (2008, 2010) we see a similar non-monotonic polynomial relationship 

between saturation and specific interfacial area. For comparison with experimental 

results we can refer to Culligan et al. (2006), where drainage experiments are 

performed on glass beads that have agl values in a similar range  as the one shown Fig. 

3.7, i.e. from 0 to 0.23 mm-1. More recently, the work done by Wang et al. (2019) has 

also qualitatively validated the specific interfacial area function.  

While operating in the limiting regime of immobile liquid phase, we could work with 

different degrees of initial network saturation Snet,ini. In order to illustrate the effect of 

degree of initial network saturation on agl, we arbitrarily selected 4 different values of 

initial network saturation and performed 15 simulations for each value of Snet,ini, each 

with a different realization of throat size distribution and location of liquid clusters. 

In Fig. 3.8 the averaged agl obtained from the various realizations for each case of Snet,ini 

is illustrated. For all Snet,ini, we see a qualitatively similar trend, i.e. an initial increase 

in agl followed by a consistent decrease with decreasing local saturation. When the 

results of different Snet,ini are compared quantitatively, it is observed that overall the agl 

values decrease with decrease in Snet,ini for their respective local saturation values. This 

is owed to the fact that while operating in the limiting regime of immobile liquid 
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phase, the total interfacial area per unit volume is higher when there are more liquid 

throats per unit volume.  

 

Fig. 3.8: Specific interfacial area agl as a function of local saturation Sloc simulated with 

varying degree of Snet,ini. Each of the four functions presented here is the result of 

averaging of 15 simulations, each with different realizations of the randomly 

generated throat size distribution and the liquid structure. 

This dependency of agl on the initial saturation illustrated in Fig. 3.8 can be related to 

some considerations about agl in two-phase flow modeling, where the specific 

interfacial area is modeled by a dedicated conservation equation (e.g. Hassanizadeh 

and Gray, 1990, 1993). As shown in Joekar-Niasar et al. (2008), the classical capillary 

pressure-saturation relationship is incomplete without the consideration of specific 

interfacial area. Considering the interfacial area is a vital step to circumvent the 

hysteresis in the relationships between capillary pressure and relative permeability 

and saturation. Here, the results shown in Fig. 3.8 can be seen as another illustration 

of the fact that the saturation alone is not sufficient to derive the macroscopic 

parameters, since the parametrization of the NLE phase change term in the NLE CM, 

i.e. Eq. (3.3), in fact depends on the initial network saturation Snet,ini through the 

dependency of agl on Snet,ini illustrated in Fig. 3.8.   
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Also, it can be noted from Fig. 3.8, that agl varies roughly linearly with local saturation 

for sufficiently low local saturation values. Then, it can be observed that our 

expression of the phase change term, i.e. Eq. (3.26), is consistent with the expression 

used in Li et al. (2019) or Pujol et al. (2011), namely 𝑚̇ = 𝑏𝜀(𝑆 − 𝑆𝑟𝑒𝑠)
𝑅̃𝑇

𝑀̃𝑣
(𝑃𝑣,𝑒𝑞 − 𝑃𝑣) in 

this range of saturation, which is the most critical for the NLE effect according to Figs. 

3.5 and 3.7.  

3.3.5 Comparison of solution of CM with PNM simulation results 

The macroscopic effective vapor diffusivity Deff and specific interfacial area agl 

(indicated by fitted functions illustrated in Fig. 3.6 and Fig. 3.7, respectively) obtained 

from PNM drying simulations are used to solve the two-equation CM (Eqs. (3.1) and 

(3.2)). The only missing parameter is the mass exchange coefficient k. The latter is used 

as a fitting parameter. Figure 3.4 shows the saturation profiles and normalized vapor 

pressure profiles obtained from the solution of two-equation CM at seven distinct 

times compared with corresponding PNM simulation results for the k value of 0.05 

m/s. Note that k is independent of local saturation. The comparison of saturation and 

vapor pressure profiles indicates that the two-equation CM reproduces the profiles 

with good accuracy.  

Figure 3.9 shows the evaporation rate obtained by the NLE CM compared with the 

evaporation rate obtained from corresponding PNM simulations results. The initial 

saturation assigned to the discretized finite volume elements of the CM is 0.26 and the 

corresponding initial vapor partial pressure is given as Pv,sat for all slices. The assigned 

initial condition for Pv is the reason for the higher initial value of evaporation rate of 

CM simulation compared to the corresponding initial value of PNM simulation (as 

can be seen in Fig. 3.9). However, the CM adjusts the value of Pv of surface volume 

element (and the surrounding elements) very quickly (in the first second of drying 

time), therefore this discrepancy in the initial evaporation rate does not affect the 

solution. 
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Fig. 3.9: Comparison of evaporation rates obtained from PNM drying simulations and 

those predicted by the two-equation CM. 

Additionally, we can analyze the ability of the two-equation CM to reproduce the NLE 

effect. This is illustrated in Fig. 3.10. In doing so, we illustrate the comparison of NLE 

effect reproduced by the two-equation CM simulation and the corresponding PNM 

simulation results for varying ranges of network saturation. Based on the convergence 

of saturation profiles, vapor pressure profiles, total evaporation rate and the NLE 

effect, it can be said that the two-equation NLE CM produces good results. 

 

Fig. 3.10: NLE effect obtained from PNM drying simulation and solution of two-

equation NLE CM for varying ranges of Snet. The solid lines represent the PNM results 

and the dashed lines represent NLE CM simulation results. 
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3.3.6 NLE CM simulation results compared with LE front model 

Since the drying front is quite sharp, the particular situation considered in this work 

is classically analyzed using a traveling front model under the assumption of local 

equilibrium, 𝑃𝑣 = 𝑃𝑣,𝑠𝑎𝑡 at the front, i.e. regardless of the degree of local saturation 

within the front region.  Under the classical quasi-steady approximation for the water 

vapor transport, the mass balance at the front is expressed as 

𝑗𝑣 =
𝑀̃𝑣 

𝑅̃ 𝑇
𝐷𝑒𝑓𝑓

∗
𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣,𝑠𝑢𝑟𝑓

𝑧𝑓
= 𝜀𝜌𝑙𝑆𝑛𝑒𝑡,𝑖𝑛𝑖

𝑑𝑧𝑓

𝑑𝑡
 , 

(3.30) 

where 𝑧𝑓 denotes the position of the front (distance from the surface) and 𝑆𝑛𝑒𝑡,𝑖𝑛𝑖 the 

initial network saturation. Combining Eq. (3.30) with the right-hand side of Eq. (3.27), 

i.e. 𝑗𝑣 =  
𝑀̃𝑣 

𝑅̃ 𝑇
𝐷𝑣𝑎

𝑃𝑣,𝑠𝑢𝑟𝑓−𝑃𝑣,∞

𝐿𝑏𝑙
, leads to an ordinary differential equation which can be 

solved analytically. This leads to a solution where the front position typically scales 

with the square root of time, i.e.  𝑧𝑓 ∝ √𝑡 . In what follows, the LE front model is 

referred to as the LE CM.  

Figure 3.11 shows the drying front position predicted by LE CM compared with that 

obtained from PNM drying simulations and the two-equation NLE CM. It can be seen 

that the NLE CM reproduces the drying front position very well. On the other hand, 

the drying front position predicted by the LE CM is shifted by a certain amount in 

relation to that obtained from PNM drying simulations. 
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Fig. 3.11: (Left) Variation of normalized drying front position ξ with respect to time. 

(Right) Total evaporation rate per unit area with respect to network saturation. Both 

figures present a comparison of results of PNM drying simulations presented in Sec. 

3.3.1 and the corresponding NLE CM and LE CM simulation results. 

The corresponding comparison of evaporation rate however reveals that the 

evaporation rates from PNM, LE CM and NLE CM do not differ significantly in the 

course of the process. Though it should be noted that in NLE CM, the initial 

evaporation rate drops instantaneously to the correct value corresponding to the 

initial evaporation rate of the PNM results. On the other hand, in the LE CM the 

initially overestimated drying rate affects the overall drying time as well as the drying 

front position as can be seen in the comparison of drying front position with respect 

to time (Fig. 3.11). Consistently with the NLE curves in Figs. 3.5 and 3.10, the impact 

of the NLE effect is only important at the beginning of the drying process when the 

drying front is at the surface or very close to it. Nevertheless, the impact of the error 

at the beginning associated with the LE CM affects the position of the drying front as 

illustrated in Fig. 3.11.  

3.3.7 Comparison with the receding front period 

The saturation evolution depicted in Fig. 3.4 resembles the evolution in the receding 

front period (RFP) reported in several previous works where the profiles were 

determined experimentally (e.g. Pel et al., 2002b; Pel et al., 1996).  However, there is 

an important difference. In the experimental results presented (Pel et al., 2002b; Pel et 

al., 1996), the position of the front scales linearly with time, see also Lockington et al. 

(2003), whereas in our case the front position scales with the square root of time (Fig. 

3.11). The difference is due to the impact of the viscous effects, which are completely 

neglected in our simulations since the liquid phase is disconnected. In the 

experiments, the liquid is still connected, i.e. percolating between the front and the 

sample bottom, and the receding of the front results from the balance between the 

evaporation rate and the liquid flow at the front.  In other words, the situation 

considered in our simulations rather corresponds to the special case where viscous 

effects in the liquid can be completely neglected compared to capillary effects. In this 
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limiting case, the liquid phase is disrupted during the receding front period, as shown 

for instance in Le Bray and Prat (1999).  

3.4 Remarks 

In this chapter, a non-local equilibrium (NLE) continuum model (CM) of drying was 

studied by comparison with pore network simulations for the case where the liquid 

phase is initially distributed in the form of small disconnected clusters. The CM was 

derived with the help of the volume averaging method. This led to the introduction 

of the specific interfacial area in the formulation of the NLE phase change term. Also, 

the upscaling suggests that there is no particular reason for introducing an 

enhancement factor in the vapor diffusion model.  

Pore network model (PNM) simulations indicated that an NLE effect should be 

expected not only for hygroscopic materials, as suggested in several previous works 

(Bénet and Jouanna, 1982; Bénet et al., 2009; Ouedraogo et al., 2013), but also in the 

case of capillary porous materials. The study also indicates that the NLE effect is 

particularly marked at the surface. This should be considered in the modeling of the 

coupling between the internal transfer, i.e. inside the porous medium, and the external 

transfer, i.e. within the external boundary layer. In other words, the study suggests 

that a significant improvement in the modeling of the drying process by means of 

continuum models can be expected from the consideration of the NLE effect in the 

porous medium evaporative surface region.  

The NLE CM led to a good agreement with the PNM drying simulations in both the 

saturation profiles and the drying kinetics.  However, for the considered situation, the 

NLE CM leads to only slightly better results than the simpler LE front model. 

Nevertheless, the NLE CM is much more conceptually consistent with the drying 

PNM simulations which clearly indicate an NLE effect.  

Like other macroscopic parameters, such as the capillary pressure curve or the relative 

permeabilities, the parameters of the drying model can be determined from PNM 

simulations. Within the framework of PNM, it is more classical to determine the 

parameters using dedicated algorithms. We mean here, for instance, a specific 
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algorithm to determine the permeability curve or the capillary pressure curve, see,  

e.g., Blunt et al. (2001) and references therein. In this respect, it would be interesting 

to develop a specific algorithm for determining the mass transfer coefficient k (that 

was used as a fitting coefficient in our two-equation continuum model) of the NLE 

phase change term, so as to study the impact of microstructure on this coefficient. For 

this purpose, in the framework of volume averaging method, this would require the 

development of the closure problem in order to compute k. 
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Chapter 4 

 

NLE continuum modeling for a fully saturated capillary 

porous medium 

 

Part of this chapter will be published as “Ahmad, F., Prat, M., Tsotsas, E., Kharaghani, A. 

Two-equation continuum model of drying appraised by comparison with pore network 

simulations”. 

 

Based on the findings in Attari Moghaddam et al. (2017), a CM was developed and 

presented in Chapter 3 (Ahmad et al., 2020) for a transport regime in which the NLE 

effect (already described in detail in Chapter 3) was expected to be more pronounced. 

In this transport regime, the mass transfer inside the porous medium is purely 

through vapor diffusion in the gas phase because the liquid phase is distributed into 

isolated clusters. The results indicated that the NLE mass exchange between the 

liquid and vapor phase was captured well by the introduction of a source/sink term 

that couples the liquid and vapor phase transport equations. In this chapter, we 

advance this NLE CM presented in Chapter 3 by considering a fully saturated 

capillary porous medium, whereby the mass transport within the porous medium is 

through liquid capillary pumping, vapor diffusion and the local evaporation 

through NLE mass exchange between the two phases. 

Hints about the coupling of the internal mass transfer and the external transport in 

the boundary layer are obtained from the findings presented in Attari Moghaddam 
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et al. (2018). The formulation of the NLE phase change term is the same as presented 

in Sec. 3.1. As in Chapter 3 and the rest of the thesis, a slow drying situation where 

temperature variations can be neglected is considered. Also, the archetypical drying 

situation where the drying process is macroscopically 1D with the evaporative 

surface at the top is considered. 

4.1 Description of the NLE CM for fully saturated porous medium 

The NLE CM is based on a mass conservation equation for the liquid phase and a 

mass conservation equation for the vapor phase. Considering the gas phase as a 

binary mixture of the vapor and a stagnant gas (typically water vapor and air in 

many applications), these equations read, respectively, 

𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
+ 𝛻. (𝜌𝑙𝑈𝐷) = −𝑚̇, 

(4.1) 

and 

𝛻. (𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓

𝑀̃𝑣

𝑅̃𝑇
𝛻𝑃𝑣) + 𝑚̇ = 0, 

(4.2) 

where 𝜀 is the porosity, S the saturation, 𝜌𝑙 the liquid mass density, 𝑈𝐷 the liquid 

Darcy (filtration) velocity, 𝑀̃𝑣 the molar mass of vapor, 𝑅̃ the universal gas constant, 

T the temperature, 𝑃𝑣    the vapor partial pressure, 𝐷𝑒𝑓𝑓  the effective vapor diffusion 

coefficient and 𝑚̇  the evaporation rate. As can be seen from Eq. (4.2), we have used 

the conventional quasi-steady-state assumption as regards the vapor transport. The 

liquid filtration velocity is expressed using the generalized Darcy’s law as 

𝑈𝐷 =  −
𝜅𝜅𝑟

𝜇𝑙
𝛻𝑃𝑙 , (4.3) 

where 𝜅 is the permeability, 𝜅𝑟 is the liquid phase relative permeability, 𝜇𝑙 is the 

liquid dynamic viscosity and 𝑃𝑙 is the liquid pressure. Introducing the capillary curve 

𝑃𝑐(𝑆) and noting that the total pressure in the gas phase is considered as constant, 

Eqs. (4.1) and (4.3) are combined to obtain 

𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
= ∇. (𝜌𝑙𝐷𝑙(S)∇𝑆) − 𝑚̇, 

(4.4) 

where 
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𝐷𝑙(S) = −
𝜅𝜅𝑟

𝜇

𝑑𝑃𝑐

𝑑𝑆
. 

(4.5) 

The internal volumetric evaporation rate 𝑚̇ is expressed as 

𝑚̇ = 𝑎𝑙𝑔𝑘
𝑀̃𝑣

𝑅̃𝑇
(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣), 

(4.6) 

where 𝑎𝑙𝑔 is the interfacial area between the gas phase and the liquid phase per unit 

volume of porous medium inside the REV, k is the mass exchange coefficient, 𝑃𝑣,𝑠𝑎𝑡 

is the saturation vapor pressure. The mass exchange coefficient k controls the extent 

of the local change between the liquid and the vapor phases. For details on the 

formulation and upscaling of 𝑚̇, one can refer to Chapter 3. Combining Eqs. (4.1)-

(4.6), the two-equation NLE CM for drying is deduced, where the equation for the 

liquid phase reads 

𝜀𝜌𝑙

𝜕𝑆

𝜕𝑡
= ∇. (𝜌𝑙𝐷𝑙(S)∇𝑆) − 𝑎𝑙𝑔𝑘

𝑀̃𝑣

𝑅̃𝑇
(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣), 

(4.7) 

and for the gas phase follows 

∇. (𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓

𝑀̃𝑣

𝑅̃𝑇
∇𝑃𝑣) +𝑎𝑙𝑔𝑘

𝑀̃𝑣

𝑅̃𝑇
(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣) = 0. 

(4.8) 

The boundary condition at the solid limiting surface is a no flux condition which 

reads 

−𝜌𝑙𝐷𝑙(S)∇𝑆. 𝐧 = 0, (4.9) 

and 

−𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓

𝑀̃𝑣

𝑅̃𝑇
∇𝑃𝑣. 𝐧 = 0. 

(4.10) 

In Eqs. (4.9) and (4.10)  𝐧 is a unit vector normal to the considered surface. The 

boundary condition at the open surface where the porous medium is in contact with 

the external gas (air typically) is much less obvious and actually still one major issue 

in the modeling of the drying process. In the case of the two-equation model, two 

boundary conditions must be imposed, one for the liquid transport equation (Eq. 

(4.7)) and one for the vapor transport equation (Eq. (4.8)). Consider the situation 

starting right after the very beginning of drying when a fraction of the network has 
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been dried and the liquid and gas phases coexist in the porous medium at the surface. 

Physically, one then expects that a fraction of the vapor flux at the surface is from the 

dry surface pores, whereas the complementary fraction corresponds to the 

evaporation from the liquid pores at the surface. Based on a classical boundary layer 

type expression for the vapor flux at the surface, this is expressed as 

−𝜌𝑙𝐷𝑙(S)∇𝑆. 𝐧 = (1 − 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦) 𝐷𝑣𝑎

𝑀̃𝑣

𝑅̃𝑇

(𝑃𝑣,𝑠𝑎𝑡 − 𝑃𝑣,∞)

𝐿𝑏𝑙
 

(4.11) 

for the liquid phase equation and  

−𝜀(1 − 𝑆)𝐷𝑒𝑓𝑓

𝑀̃𝑣

𝑅̃𝑇
∇𝑃𝑣. 𝐧 = 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 𝐷𝑣𝑎

𝑀̃𝑣

𝑅̃𝑇

(𝑃𝑣,𝑠𝑢𝑟𝑓 − 𝑃𝑣,∞)

𝐿𝑏𝑙
 

(4.12) 

for the vapor phase equation. Here, 𝐧 is the unit normal vector directed from the 

porous medium surface toward the external gas boundary layer, 𝐷𝑣𝑎 is the molecular 

diffusion coefficient, 𝐿𝑏𝑙 is the external boundary layer thickness and 𝑃𝑣,∞ is the vapor 

partial pressure in the external gas away from the porous medium surface. In Eqs. 

(4.11) and (4.12), 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 represents the fractional contribution of the dry pores to the 

evaporation rate, whereas the relative contribution of the wet pores to the evaporation 

rate is expressed by (1 − 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦). An obvious first choice is to simplify the problem 

and specify 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 according to 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 = 1 − S𝑠𝑢𝑟𝑓, where S𝑠𝑢𝑟𝑓 is the saturation 

at the considered surface. Physically, it is expected that the vapor pressure at the 

surface gradually decreases along the drying process. 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 as computed from 

PNM simulations will be presented later in Sec. 4.2.4. A study based on the impact of 

considering linear and non-linear relationship between 𝑆𝑠𝑢𝑟𝑓 and 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 will also be 

presented in Sec. 4.4.4. 

The one-dimensional two-equation CM is solved in MATLAB by discretizing the 

computational domain using the finite volume method. A fixed domain approach is 

considered. When the saturation becomes locally lower than a given residual value, 

denoted by Sres, then the saturation is assigned as S = Sres. In the simulations presented 

later in this chapter, Sres was taken equal to 10-6.  
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4.2 Macroscopic transport parameters 

For the solution of the liquid and vapor phase CM equations (Eqs. (4.7) and (4.8)), 

macroscopic transport parameters are required. Traditionally, these parameters have 

been determined from laboratory experiments. However, as an alternate to the tedious 

laboratory experiments, numerical PNM simulations have also been used to 

determine these parameters. In the laboratory experiments, the measured transient 

saturation profiles (e.g. Gomez et al., 2007; Marchand et al., 1994; Pel et al., 1996; 

Schoeber, 1976) are used to compute the moisture transport coefficient. This moisture 

transport coefficient is in fact the combined transport coefficient for the liquid and 

vapor phases. On the other hand, the use of dedicated numerical PNM simulations 

traditionally aims at computing the capillary pressure curve and the absolute and 

relative permeabilities (Blunt et al., 2001; Jabbari et al., 2019; Joekar-Niasar et al., 2011; 

Øren et al., 1998) based on the process of drainage. For the case of drying, however, 

the use of PNM simulations is similar to the experimental approach, i.e. it is based on 

the determination of saturation profiles (Attari Moghaddam et al., 2017b; Nowicki et 

al., 1992) and also on vapor pressure profiles obtained by the volume averaging 

method (as shown in Chapter 3). This approach consists of discretizing the PNM 

domain into slices or local averaging volumes, where the parameters are computed 

and averaged over the individual slices. Based on the locally averaged saturation and 

vapor pressure profiles, the macroscopic liquid and vapor phase diffusivities are 

computed. The method of discretization of the 3D PNM domain into 1D macroscopic 

domain is the same as described in Chapter 3 (see Fig. 3.2). For more details on the 

method of discretization and the method of computation of macroscopic parameters 

from PNM simulations, see Sec. 3.2. 

Since the solution of the drying CM will be compared with PNM simulations, it is 

important to mention the size of the pore network and the local averaging volume 

over which the parameters are averaged. Due to the computational bottleneck 

associated with PNM simulations, the size of the pore network is 25×25×51 i.e. 51 

nodes in the direction of the boundary layer. The size of the local averaging volume is 

equal to the size of one lattice spacing (the distance between two successive nodes) in 
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the vertical direction and to the size of the network in the lateral dimensions. Due to 

this small network size, we cannot claim that the macroscopic parameters computed 

from PNM simulations are in fact local. The size of local averaging volume for our 

PNM simulations should be rather 25 pores in each direction (Attari Moghaddam et 

al., 2017b) in order to be representative of the porous medium. This means that our 

local averaging volume and network size are much too small to fulfil the traditional 

length scale separation criterion (Whitaker, 1977).  

The fulfillment of length scale separation criterion ensures that the transport 

parameters are local, i.e. they only depend on the local saturation that is the saturation 

over a representative elementary volume (REV). As a result, the macroscopic 

parameters determined over a too thin system, which do not fulfil the length scale 

separation criterion, may be influenced by the size of the system. As in other systems 

affected by finite size effects, e.g. Stauffer et al. (2018), the consideration of a small 

network leads to a significant data scatter in the macroscopic parameters computed 

from PNM simulations. In Attari Moghaddam et al. (2017), this led to consider that 

the macroscopic parameters were dependent on both the local saturation, i.e. the slice 

averaged saturation, and the overall saturation, i.e. the whole network saturation.  

Although interesting for the modeling of drying in thin systems, this latter approach 

is not relevant for the modeling of the frequently encountered systems for which the 

length scale separation criterion is fulfilled. For this reason, we consider in what 

follows macroscopic parameters that only depend on the local saturation, as 

traditionally considered in the classical theory of two-phase flow in porous media 

under the local capillary equilibrium assumption (Whitaker, 1986). Nevertheless, even 

though our CM is preferentially developed for systems with well separated length 

scales, comparisons will be performed with the results of the PNM simulations. In 

other words, it will be shown that insightful comparisons between the CM model and 

the PNM simulations can be developed despite the network small size. 

In what follows, we present the profiles of the macroscopic parameters, which are 

used to obtain CM solution presented in Sec. 4.3, with the corresponding macroscopic 

parameters computed from PNM simulations for comparison. The influence of the 

macroscopic parameters on the CM solution will be discussed later in Sec. 4.4. 
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4.2.1 Liquid phase diffusivity 

The liquid phase diffusivity directly controls the evolution of the liquid phase within 

the network. The liquid diffusivity Dl is obtained from PNM simulation results as  

𝐷𝑙 = −
𝑗𝑙

𝜌𝑙 ∇𝑆
 , 

(4.13) 

where jl is local liquid flux crossing the considered averaging slice, whereas ∇𝑆 is the 

saturation difference between the two averaging slices adjacent to the considered 

plane divided by the distance between the two slices, i.e. the lattice spacing. As the 

other macroscopic parameters, 𝐷𝑙 is computed considering 15 realizations of the 

networks and saturation intervals of 0.01. For each realization of the throat size 

distribution, a given saturation interval can thus be obtained at various locations in 

the network. This means that several values of 𝐷𝑙 are assigned to each considered 

saturation interval from the consideration of the various slices over time and the 15 

realizations. As a result, owing to the small network size and averaging slice thickness, 

the liquid phase diffusivity obtained from PNM simulations shows a large scatter in 

the Dl values for each local saturation value. The idea is to specify Dl as sufficiently 

representative of the PNM microstructure in spite of the scattering.  

It can be first noticed that Figure 4.1 shows that liquid phase diffusivity computed 

from PNM simulations is significantly larger when the local saturation is larger than 

the irreducible saturation Sirr, that is, the value of local saturation at which the 

continuity of the liquid phase is disrupted (the liquid phase gets fragmented into 

disconnected clusters). As reported in Attari Moghaddam et al. (2017), for our pore 

network Sirr is computed to approximately 0.68 . Due to the small vertical size of our 

local averaging volume (one lattice spacing), the isolated clusters span over more than 

one averaging volume and thus we obtain Dl values for S < Sirr in the range of 10-14 – 

10-10 m2/s (as illustrated in Fig. 4.1). 

In order to reproduce saturation profiles that are close to those obtained from PNM 

simulation results (presented in Sec. 4.3), we adopt the Dl to the averaged PNM data. 

As reported in Attari Moghaddam et al. (2017), we also observed that for reproducing 

the saturation profiles of the PNM, the Dl values should be significantly higher for S 

> Sirr as compared to S < Sirr. We observed, moreover, that profiles of Dl that decrease 
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exponentially as we approach zero local saturation give better results. Based on these 

observations, a piece-wise profile was seen as the most adequate function for Dl where 

𝐷𝑙 = 𝑎1𝑒𝑥𝑝(𝑏1𝑆𝑙𝑜𝑐
𝑐1)  (4.14) 

for Sloc < Sirr, and 

𝐷𝑙 = 𝑎2𝑆𝑙𝑜𝑐 + 𝑏2  (4.15) 

for Sloc > Sirr. Equation (4.14) is based on an exponential function where the values of 

coefficients a1, b1 and c1 are 1.9210-12, 2 and 0.5, whereas Eq. (4.15) is a linear function 

where a2, b2 are equal to 2.1610-9 and -1.4610-9, respectively. In Fig. 4.1, we present 

the comparison of Dl based on Eqs. (4.14) and (4.15) and the discrete data points of Dl 

obtained from PNM simulation results over the 15 realizations, which are computed 

from local liquid flux jl based on Eq. (4.13)). Note that the ordinate in Fig. 4.1 is 

logarithmic, which causes the linear profile of Dl for S > Sirr to appear as non-linear.  

 

Fig. 4.1: Macroscopic liquid phase diffusivity Dl with respect to local saturation Sloc 

obtained from pore network simulations over 15 realizations. The black dashed line 

represents the macroscopic liquid diffusivity based on Eqs. (4.14) and (4.15). The 

vertical bars show the spread of the Dl obtained from PNM simulations based on Eq. 

(4.13) for the whole range of network saturation and the circular dots show the 

average of the PNM data. The discrete PNM data is averaged over local saturation 

intervals of 0.01.   
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4.2.2 Water vapor diffusivity 

The formulation of the vapor diffusivity can be performed in a simpler manner as 

compared to the liquid phase diffusivity. This is because unlike the liquid phase 

diffusivity, which in fact is a lumped parameter describing the liquid viscous-capillary 

transport, macroscopic vapor diffusivity has a similar physical meaning and 

formulation (vapor pressure gradient as the driving force) as that of the pore scale 

vapor diffusion coefficient. Based on the upscaling procedure, similar to our related 

previous work (Ahmad et al., 2020), we do not consider any enhancement effect (see, 

e.g., Plumb et al., 1999) caused by the water evaporation in the vapor diffusion 

formulation. A logical first step here is to consider the situation of vapor transport 

through completely dry region, i.e. for region where the local saturation is zero. We 

refer to it as 𝐷𝑒𝑓𝑓
∗  i.e., 𝐷𝑒𝑓𝑓(𝑆𝑙𝑜𝑐 = 0). For our pore network, 𝐷𝑒𝑓𝑓

∗  can be approximated 

from a relation based on the pore scale vapor diffusion coefficient 𝐷𝑣𝑎, the average 

throat radius and throat length, which can be represented as  

𝜀𝐷𝑒𝑓𝑓
∗  

𝐷𝑣𝑎
≈

  𝜋 𝑟𝑡,𝑚𝑒𝑎𝑛
2

𝐿𝑡
2 . 

 (4.16) 

Using Eq. (4.16), 𝐷𝑒𝑓𝑓
∗  can be expressed in terms of PNM structural characteristics and 

can be directly computed without performing any PNM simulations. Equation (4.16) 

is similar to the formulation for 𝐷𝑒𝑓𝑓
∗  presented in Vorhauer et al. (2010), where 

effective vapor diffusivity for drying PNM is presented based on a simple drying 

model with the assumption of local equilibrium at the macroscopic scale between 

liquid and vapor phase. However, as opposed to the formulation of vapor diffusion 

presented in this work, in Vorhauer et al. (2010) the porosity is implicit in the effective 

vapor diffusivity term. This is why we consider the term 𝜀𝐷𝑒𝑓𝑓
∗  in Eq. (4.16). Note that 

this is an empirical formulation specific to our considered PNM. For our PNM 

geometry (parameters given in Sec. 4.3), the value of 𝐷𝑒𝑓𝑓
∗  is equal to approximately 

8.6x10-6 m2/s. Figure 4.2 shows 𝐷𝑒𝑓𝑓 computed from PNM simulations as, 

𝐷𝑒𝑓𝑓 = −
𝑅̃ 𝑇 

𝑀̃𝑣

𝑗𝑣

𝜀(1 − 𝑆) ∇𝑃𝑣
, 

 (4.17) 
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where 𝑗𝑣 is the total vapor flux between two local averaging volumes driven by the 

macroscopic vapor pressure gradient between them. In the term (1 − 𝑆) in Eq. (4.17), 

we considered the average value of the saturation of the two averaging volumes 

between which the vapor flow is considered. As expected, the value of 𝐷𝑒𝑓𝑓 is smaller 

where the resistance to vapor flow i.e. liquid phase saturation is larger. When 

compared with 𝐷𝑒𝑓𝑓 computed from PNM simulations based on Eq. (4.17), the average 

value of 𝐷𝑒𝑓𝑓
∗  is approximately the same as that computed from Eq. (4.16). Similar to 

the liquid phase diffusivity, the effective vapor diffusivity obtained from PNM 

simulations also has a large scatter in the data, owing to the small size of the local 

averaging volume. 

 

Fig. 4.2: Effective water vapor diffusivity 𝐷𝑒𝑓𝑓 with respect to local saturation Sloc 

computed from PNM simulation over 15 realizations. The vertical bars show the 

spread in 𝐷𝑒𝑓𝑓 values obtained from PNM simulations for whole range of network 

saturation and the circular dots show the average of the PNM data. The discrete PNM 

data is averaged for local saturation intervals of 0.01.  

While considering the upscaling of the vapor diffusivity, the ratio between the 

effective vapor diffusivity and the pore-scale vapor diffusion coefficient is based on 

the tortuosity coefficient (which depends on the porous medium geometry and the 

gas phase saturation). For example, for granular porous medium, it is represented as 

𝐷𝑒𝑓𝑓/𝐷𝑣𝑎 = (𝜀(1 − 𝑆))10 3⁄ 𝜀2⁄  (Millington et al., 1961; Moldrup et al., 2001; Ouedraogo 
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et al., 2013). However, for the solution of the CM presented in Sec. 4.3, we do not 

consider the effective diffusivity computed from PNM simulations as illustrated in 

Fig. 4.2. Instead, we neglect the influence of local saturation on the effective vapor 

diffusivity and test a simpler approach by considering the effective vapor diffusivity 

to be equal to 𝐷𝑒𝑓𝑓
∗  i.e., independent of local saturation. This means that the main 

impact of the saturation on the macroscopic vapor diffusive transport is via the gas 

volume fraction 𝜀(1 − 𝑆). Note that this simplification is specific to the situation 

considered in this work and is a mere simplification which would need to be 

reconsidered depending on the porous medium. 

4.2.3 Specific interfacial area 

Figure 4.3 shows the comparison of specific interfacial area agl (computed by dividing 

the total interfacial area of all interfacial throats within a local averaging volume with 

the local macroscopic volume) obtained from PNM simulation results and the profile 

used for the CM solution.  

 

Fig. 4.3: Specific interfacial area agl as a function of local saturation Sloc. The vertical 

bars show the spread of agl computed from PNM simulations for whole range network 

saturation Snet and circular dots show the averaged agl for each local saturation interval 

of 0.01. The pore network simulation results are averaged over 15 realizations. Black 

dashed line represents the CM profile based on Eq. (4.18). 



60 

 

Initially, i.e., at Sloc = 1, the value of agl of each local slice is zero (except for the surface 

slice as the surface throats are exposed to the boundary layer in the beginning of the 

drying process). As Sloc deviates from unity, agl increases owing to the formation of 

meniscus throats. This leads to a consistent increase in agl with decrease in local 

saturation until a peak value is reached. Upon further drying, agl decreases 

consistently with local saturation as the rate of removal of liquid overcomes the rate 

of local production of agl. 

For Sloc < Sirr the specific interfacial area profile computed from PNM simulations 

shows scattered clouds of data similar to that of the other macroscopic transport 

parameters computed from PNM simulations as discussed in the above sections. For 

local saturation values larger than roughly the irreducible saturation Sirr, the specific 

interfacial area computed from PNM simulations does not show any scatter. As will 

be shown later, this is also the range of local saturation in which the deviation of vapor 

pressure from saturation vapor pressure is negligible. This implies that the agl profile 

for Sloc > Sirr does not influence the CM solution. Considering this, agl profile used for 

CM solution complies roughly with PNM. This profile used for CM solution is 

expressed as 

𝑎𝑔𝑙 =  𝑎3𝑒𝑥𝑝 (− (
𝑆𝑙𝑜𝑐−𝑏3

𝑐3
)

2

) + 𝑑3 , 
 (4.18) 

where values of the coefficients 𝑎3, 𝑏3, 𝑐3 and 𝑑3 are 600, 0.5, 0.3, and -37.30591 m2/m3, 

respectively.  

4.2.4 Interfacial area at the surface 

In the surface slice, the dynamics of interfacial area with respect to local saturation is 

different from that of the rest of the network. This is owed primarily to the fact that 

the surface slice consists only of vertical surface throats as the surface pores do not 

have any horizontal throats connected to them (slices in the rest of the network consist 

of vertical and the horizontal throats connected to the upper pore-node of the slice). 

Hence, there is no increase in the total number of interfacial throats in the surface slice 

with decrease in saturation. From PNM simulations, 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 is obtained by 

subtracting from unity the ratio of sum of interfacial area of saturated surface throats 



61 

 

to the sum of interfacial area of all surface throats. As illustrated in Fig. 4.4, 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 

computed from PNM simulations is a slightly non-linear function of surface 

saturation. However, for the CM solution a non-linear relationship defined as 

𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 = (1 − 𝑆𝑠𝑢𝑟𝑓)
2

,  (4.19) 

where 𝑆𝑠𝑢𝑟𝑓 is the saturation of the surface slice, leads to more satisfactory results (see 

Sec. 4.3). The impact of 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 on the CM solution is further studied in Sec. 4.4.4, 

where we also present a solution based on linear relationship between 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 and 

𝑆𝑠𝑢𝑟𝑓, i.e. 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 = 1 − 𝑆𝑠𝑢𝑟𝑓. 

 

Fig. 4.4: Comparison between PNM data and CM profiles for surface occupancy ratio 

of liquid phase as a function of surface saturation 𝑆𝑠𝑢𝑟𝑓. The CM profiles are based on 

Eq. (4.19) and  𝐴𝑠𝑢𝑟𝑓,𝑤𝑒𝑡 = 1 − 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦. 

4.3 CM solution compared with PNM simulation results 

In this Chapter, we aim to compare the solution of the two-equation NLE CM with the 

PNM simulations that have been presented in Attari Moghaddam et al. (2017). For the 

sake of completeness, we describe briefly the physical and structural parameters used 

for the PNM simulations in Attari Moghaddam et al. (2017). In order to minimize the 

influence of randomness in throat size distribution, the PNM results were averaged 

over 15 simulations, each with different realization of throat size distribution. The 

structural and physical parameters for these simulations are presented in Table 1. The 
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wetting angle between the liquid and solid phase is assumed to be zero. Due to the 

small size of the network, an unrealistically high value of liquid viscosity was chosen 

such that the viscous dissipation characteristic length (see e.g., Lehmann et al., 2008) 

is smaller than the total height of the network. This means that the thickness of two-

phase zone is restricted over sufficiently long period of drying leading to a viscous-

capillary drying regime with an initial capillary number of 0.014 (based on the 

definition in Metzger et al., 2007).  

Table 1: Structural and physical parameters for PNM simulations. 

The effective vapor diffusivity 𝐷𝑒𝑓𝑓, the specific interfacial area agl, the liquid phase 

diffusivity Dl and the fraction of surface dry pores 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 as presented respectively 

in Figs. 4.1, 4.2, 4.3 and 4.4 are used to solve the two-equation CM (Eqs. (4.7) and (4.8)). 

Apart from these, the mass exchange coefficient k, which is used as a fitting coefficient, 

is also needed. The mass exchange coefficient k is a function of network geometry, the 

value of diffusion coefficient in the gas phase and possibly some other factors (Pujol 

et al., 2011). For example, for our case, the mass exchange coefficient can be estimated 

roughly by taking the ratio of pore scale binary diffusion coefficient and the 

characteristic length of the local averaging volume. This comes out to be roughly of 

the order of 2.5×10-2 m/s. For the results presented in this section, the value of k is 

5×10-2 m/s, which is the same as that used in Ahmad et al. (2020) for the case of drying 

Structural property Unit Value Physical constant Unit Value 

Network size (nodes) - 252551 Temperature  K 293.15 

Boundary layer 

discretization  

- 252510 Pressure  Pa 105 

Mean throat radius mm 0.25 Liquid kinematic 

viscosity  

m2/s 0.028 

Standard deviation of 

throat radius 

mm 0.025 Saturation vapor 

pressure  

Pa 2339 

Throat length mm 1 Surface tension N/m 0.07274 

Network porosity - 0.594 Diffusion coefficient m2/s 2.5610-5 
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of a partially saturated medium with NLE effects, see Chapter 3. The solution of two-

equation CM is gauged on the basis of kinetics, phase distribution profiles and NLE 

effect. Initially, the saturation of the whole CM domain is unity and the respective 

initial vapor pressure corresponds to the saturation vapor pressure. The 

computational domain for the CM solution is discretized into 500 finite volume 

elements and it is found that the CM solution does not vary upon further refinement 

in the discretization. 

Figure 4.5 shows the variation of network saturation and normalized evaporation rate 

with drying time obtained from CM solution compared with that computed from 

PNM simulations. The results indicate that the solution of CM reproduces reasonably 

the drying kinetics. Apart from these, we also analyze the reproducibility of phase 

distribution by the CM solution through saturation and vapor pressure profiles. 

Figure 4.6 shows that the CM solution reproduces the saturation profiles and vapor 

pressure profiles satisfactorily throughout the drying process. 

  

Fig. 4.5: Variation of overall network saturation Snet with drying time (left) and 

normalized evaporation rate with respect to drying time (right). The black dashed line 

represents the solution of CM, whereas the blue solid line represents the profile 

obtained from PNM simulation results. 
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Fig. 4.6: Saturation profiles (left) and normalized vapor pressure profiles (right) 

obtained from two-equation CM solution and PNM simulations. The results are 

plotted for times that correspond to Snet of 0.90, 0.80, 0.60, 0.40, 0.20 and 0.10 for PNM 

simulation results. The outer surface lies at z/H = 1, where H is the network height.  

  

Fig. 4.7. Left: NLE effect obtained from PNM drying simulations and solution of two-

equation NLE CM for varying ranges of Snet. The lines and grey symbols represent CM 

solution and PNM data, respectively. Right: NLE function at the surface obtained from 

PNM drying simulations and that predicted by two-equation CM. 

Apart from analyzing the kinetics and phase distribution profiles, we also compare 

the ability of CM to reproduce the NLE effect. This is presented in Fig. 4.7 for the 

whole network as well as specifically for the evaporative surface. For ease of 
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comparison, the NLE effect for the whole network is compared with respect to 

different ranges of network saturation values. The results presented in Fig. 4.7 show 

that the CM solution reproduces satisfactorily the NLE at the surface as well as inside 

the whole network. 

The evolution of network saturation, normalized evaporation rate, saturation profiles, 

vapor pressure profiles and the NLE effect (Figs. 4.5, 4.6 and 4.7, respectively) show 

that the two-equation CM reproduces the PNM simulation results reasonably well. 

4.4 Sensitivity study 

4.4.1 On the mass exchange coefficient 

The mass exchange coefficient k allows control over the local phase change kinetics. 

An increase in the value of k implies that we approach the situation of local 

equilibrium where the variation in the local partial vapor pressure becomes negligible, 

whereas a decrease in the value of k implies that we have a local non-equilibrium 

situation where the variations in the local partial vapor pressure become significant. 

In terms of the liquid saturation profiles, this means that as the value of k increases the 

drying front becomes sharper (thinner), whereas as the value of k decreases, the drying 

front becomes smoother. A smoother and more continuous drying front allows for a 

better numerical convergence and as k becomes larger, the numerical convergence 

becomes more difficult due to the sharper drying front, which leads to larger 

computational times for the CM solution. Based on tests, we found that for our given 

set of parameters, the CM becomes unstable, i.e. numerical convergence problems 

arise, for values outside the range [10−3 − 10] m/s. We present in Fig. 4.8 the influence 

of the value of k on the evolution of network saturation and local saturation profiles 

with drying time.  
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Fig. 4.8: Comparison of evolution of network saturation and saturation profiles with 

drying time for different values of mass exchange coefficient, k i.e. for 5 and 0.005 m/s. 

The legend on the figure on the left is valid for both figures. The saturation profiles on 

the right are plotted for six different instants in time. 

We observe that for 𝑘 = 5 m/s, the drying front is sharper, i.e. the saturation profiles 

are more discontinuous, whereas they are smoother and more continuous for k =

0.005 m/s. This is because of the fact that for 𝑘 = 5 m/s we approach the situation of 

local equilibrium and the NLE effect is reduced significantly (e.g. the NLE effect at the 

surface where partial vapor pressure stays close to saturation vapor pressure, see Fig. 

4.9) and therefore, the drying rate is higher for 𝑘 = 5 m/s as compared to 𝑘 = 0.005 

m/s. Interestingly, the saturation profiles give the impression that the drying rate 

would be higher for situations where the drying front position is closer to the 

boundary layer. However, the extent of NLE effect is such that it overcomes the 

advantage provided by the less advanced position of the drying front. This 

comparison is analogous to comparisons between the so called traveling front model 

(LE CM) and NLE CM solutions (see e.g., Ahmad et al., 2020) where the drying front 

position reproduced by the LE CM recedes faster as compared to the NLE CM. The 

sharp and irregular decrease in the surface NLE function for 𝑘 = 0.005 m/s, 

illustrated in Fig. 4.9, is due to numerical convergence issues which become more 

significant for k values smaller than 1 × 10−3 m/s. 
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Fig. 4.9: Comparison of NLE effect at the surface for k values of 5 and 0.005 m/s. 

4.4.2 On the liquid phase diffusivity 

To analyze the influence of macroscopic liquid phase diffusivity on the drying 

behavior, we test two cases by varying the liquid diffusivity presented in Sec. 4.2.1, 

which we refer to as Dl,ref. The rest of the CM parameters are the same as the CM 

parameters described in Sec. 4.2. In Fig. 4.10, we present the network saturation 

variation and saturation profiles based on Dl = 0.5Dl,ref and Dl = 2Dl,ref.  

  

Fig. 4.10: Influence of Dl on evolution of network saturation and local saturation 

profiles with respect to drying time for three distinct times based on 2Dl, ref and 0.5Dl,ref, 

where Dl,ref is based on Eqs. (4.14) and (4.15) shown in Sect. 4.2.1. The legend on the 

figure on the left applies to the figure on the right as well. The saturation profiles on 

the right are plotted for times that correspond to Snet of 0.90, 0.40 and 0.10 for PNM 

simulation results. The evaporative surface lies at Z/H equal to 1. 
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As expected, drying becomes faster when liquid phase diffusivity is larger (see the 

variation of network saturation with respect to time presented in Fig. 4.10). This is 

because the capillary transport from slices deep in the network towards the drying 

front is enhanced. As a result, the drying front recedes relatively slower. This can also 

be observed from the saturation profiles corresponding to Snet of approximately 0.9 in 

Fig. 4.10, where the drying front corresponding to Dl = 2Dl,ref lies closer to the 

boundary layer (around Z/H = 1) as compared to Dl = 0.5Dl,ref, even though the 

saturation of the slices deep in the network is lower for Dl = 2Dl,ref. 

4.4.3 On the effective vapor phase diffusivity 

Similar to the study of influence of macroscopic liquid diffusivity on drying behavior, 

we investigate the influence of effective vapor diffusivity with the help of two test 

cases based on 𝐷𝑒𝑓𝑓
∗ =  0.8𝐷𝑒𝑓𝑓,𝑟𝑒𝑓

∗  and 𝐷𝑒𝑓𝑓
∗ =  1.2𝐷𝑒𝑓𝑓,𝑟𝑒𝑓

∗ , while the rest of the 

parameters are the same as the CM parameters described in Sec. 4.2. 𝐷𝑒𝑓𝑓,𝑟𝑒𝑓
∗  is the 

effective vapor diffusivity given in Sec. 4.2.2. 

  

Fig. 4.11: Comparison of influence of effective vapor diffusivity on evolution of 

network saturation and saturation profiles based on 𝐷𝑒𝑓𝑓
∗  corresponding to 0.8𝐷𝑒𝑓𝑓,𝑟𝑒𝑓

∗  

and 1.2𝐷𝑒𝑓𝑓
∗ . The legend on the figure on the left applies to the figure on the right as 

well. The saturation profiles on the right are plotted for times that correspond to Snet 

of 0.90, 0.40 and 0.10 for PNM simulation results. 
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The CM is very sensitive to the value of 𝐷𝑒𝑓𝑓
∗ , therefore we vary it only by a fraction of 

0.2 (Fig. 4.11). As expected, the saturation profile corresponding to network saturation 

of 0.9 does not show any impact to the change in 𝐷𝑒𝑓𝑓
∗ . This is because as long as the 

network surface is saturated there is no impact of 𝐷𝑒𝑓𝑓
∗  on the drying behavior, because 

the drying process is dictated by the vapor transport in the boundary layer, and 

effective vapor diffusivity caters for the vapor transport within the porous medium. 

As expected, 𝐷𝑒𝑓𝑓
∗  influences the drying kinetics and drying becomes faster for larger 

values of 𝐷𝑒𝑓𝑓
∗  as the resistance to vapor diffusion inside the porous medium 

decreases. 

4.4.4 On the specific interfacial area 

For the description of the drying process at the macroscopic scale, we not only need 

the local and network saturation but also the distribution of saturation inside the 

medium (Nowicki et al., 1992). The specific interfacial area which is a macroscopic 

parameter in the source/sink term of our NLE CM formulation provides a measure of 

the distribution of liquid inside the network. Since agl is a multiplier of mass exchange 

coefficient k in our CM formulation, we can estimate the influence of agl on the CM 

solution through the study of variation in k as presented in Sec. 4.4.1. This implies that, 

keeping all other factors constant, if the overall magnitude of agl increases, it would 

result in sharper drying front and a smaller NLE effect. Similarly, an overall decrease 

in magnitude of agl would result in a smoother drying front with a more pronounced 

NLE effect. A higher local specific interfacial area implies a more uniform local liquid 

phase distribution, i.e. a more fragmented liquid phase. This is correlated with a 

smaller NLE effect due to increase in tortuosity resulting in increased resistance to the 

local vapor transport. Similarly, a lower specific interfacial area implies a lower 

tortuosity resulting in a more pronounced NLE effect. 

In Sec. 4.3, we presented a CM solution based on non-linear profile for 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦, i.e. 

for 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 = (1 − 𝑆𝑠𝑢𝑟𝑓)
2

. Here, we discuss briefly the impact of linear relationship 

between 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 and 𝑆𝑠𝑢𝑟𝑓 on the CM solution. As illustrated in Fig. 4.12, the vapor 

partial pressure at the surface for linear profile of 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 shows a sharp drop initially 

as the drying begins. However, this drop does not affect the CM solution (as it occurs 
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for a relatively minute period, after which the partial vapor pressure at the surface 

corresponds roughly to that reproduced by the non-linear relationship between 

𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 and 𝑆𝑠𝑢𝑟𝑓. The selection of non-linear function for 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 results in a better 

reciprocation of the NLE effect at the surface. The phase distribution and drying 

kinetics for linear and non-linear profile for 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 (not shown here as the difference 

in them is not visible) are essentially the same. We observe that the impact of selection 

of the profile for 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 (linear vs non-linear function) on the CM solution is 

essentially limited to the NLE function at the surface. 

 

Fig. 4.12: Comparison of NLE effect at the surface based on linear and non-linear 

profiles for 𝐴𝑠𝑢𝑟𝑓,𝑑𝑟𝑦 for k = 0.05 m/s. 

4.5 The problem of length scale separation and the modeling of thin 

systems 

As mentioned earlier, the size of the PNM is too short for imposing a good length scale 

separation. Similar to that in Attari Moghaddam et al. (2017), a still better agreement 

between the PNM results and the CM could be obtained by considering the 

macroscopic transport parameters such as the liquid and effective vapor diffusivities 

as functions of both the local saturation and the network (overall) saturation. As 

demonstrated in Attari Moghaddam et al. (2017), such an approach is an interesting 

way for taking into account the impact of the poor length scale separation and 
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modeling the drying process in thin systems using CMs. However, this double 

saturation approach lacks a theoretical basis and was developed essentially from a 

heuristic/empirical standpoint. In this thesis, the motivation was not the study of thin 

systems but the modeling of drying in classical porous media where the length scale 

separation is met. Because of the poor length separation, the PNM results were 

considered as simply providing guidance about the macroscopic parameters behavior. 

The latter were then freely modified, compared to the ones directly deduced from the 

PNM simulations, so as to obtain eventually a reasonable agreement between the 

PNM drying results and the CM ones. In doing so, it is our belief that the relevance of 

the two equation NLE CM could be established in spite of the poor length separation 

in the PNM simulations. Nevertheless, it would be certainly more convincing to 

perform PNM simulations over much larger network sizes that fulfil the criterion of 

length scale separation. However, this is not possible with the present version of our 

PNM code.   

4.6 Remarks 

In this work, a two-equation continuum model (CM) of drying aimed at capturing the 

non-local equilibrium (NLE) effect, for a porous medium fully saturated in the 

beginning of drying, was developed and the results were compared with pore 

network simulations. This CM is an extension of our previously developed CM 

(Ahmad et al., 2020; Chapter 3), which was valid for the limiting case of immobile 

liquid in a partially saturated porous medium. We approached the problem of mass 

transport at the surface by employing a closure relationship for the mass transfer at 

the surface based on the degree of occupancy of the surface pores. This allows 

predicting the NLE effect at the surface with a reasonable degree of accuracy. Also, it 

is conceptually more consistent with the drying PNM simulations as compared to the 

conventionally used continuum modeling approaches, e.g., Schlünder’s model that 

does not consider the influence of dry surface pores on the surface evaporation 

dynamics (Attari Moghaddam et al., 2018; Haghighi et al., 2013; Lehmann et al., 2013; 

Schlünder, 1988; Talbi et al., 2019). 
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The NLE two-equation CM formulation is physically more consistent than the 

previously developed one-equation CM (Attari Moghaddam et al., 2017b), since it 

avoids using a NLE surface function relating the vapor partial pressure and the 

surface saturation as input parameter for the CM model. On the contrary, this function 

is an output of the model. Indeed, the results indicate that the newly developed two-

equation CM reproduces independently the PNM simulation results, i.e. the drying 

kinetics, phase distribution profiles and the NLE effect with a reasonable degree of 

accuracy. 

The sensitivity study of the macroscopic parameters provided useful insights into the 

process dynamics. We observed that the mass exchange coefficient has a significant 

impact on the local equilibrium dynamics. For higher values of the mass exchange 

coefficient, the CM approaches the LE situation where the drying front is sharper and 

more discontinuous. For lower values of mass exchange coefficient, the NLE effect 

becomes more significant and the drying front becomes smoother. As for other 

transport processes in porous media, it would be interesting to develop, via an 

upscaling procedure, the closure problem allowing to compute the mass exchange 

coefficient from digital images of microstructures.  

In this chapter, we validated the NLE CM against PNM simulations. It would be 

interesting to test this model against experimental data. Also, a recurrent problem in 

the modeling of drying process is the possible impact of liquid films (Prat, 2007; Yiotis 

et al., 2012; Yiotis et al., 2004) and other secondary capillary structures such as liquid 

rings and bridges (Kharaghani et al., 2021; Vorhauer et al., 2015) that can be present in 

the pore space after the displacement of bulk menisci. These secondary capillary 

structures were not considered in the proposed CM model, nor in the PNM 

simulations. This would represent an interesting extension of the present model.  
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Chapter 5 

 

Continuum model of drying with dissolved solute transport 

 

This chapter is partly taken from “Ahmad, F., Rahimi, A., Tsotsas, E., Prat, M., Kharaghani, 

A.: From micro-scale to macro-scale modeling of solute transport in drying capillary porous 

media. Int. J. Heat Mass Transf. 165, 120722 (2021)”. 

 

As mentioned in Chapter 1, the drying of capillary porous media saturated with saline 

solution is an important process as it has several environmental and industrial 

applications. In this chapter, we aim to assess and evaluate the commonly used model 

based on the classical macroscopic advective-diffusive equation (ADE) (Guglielmini 

et al., 2008; Huinink et al., 2002; Sghaier et al., 2007). Similar to that of the previous 

chapters, we use pore network model (PNM) simulations as a benchmark. Recently, 

comprehensive pore network models for the drying-induced solute transport inside 

porous media have been presented (Dashtian et al., 2018; Rahimi, 2019). In this 

manuscript, we employ a 3D PNM which is based on Rahimi, (2019). 

We focus on the capillary-dominated regime in a homogeneous porous medium. This 

is a regime frequently observed in laboratory experiments (e.g. Coussot, 2000; 

Eloukabi et al., 2013; Faiyas et al., 2017; Gupta et al., 2014; Pel et al., 2002). In this study, 

we focus on the CRP, which is also a period in which the liquid phase in the porous 

medium is connected to the porous medium evaporative surface. As reported in 

several previous works (e.g. Eloukabi et al., 2013; Lazhar et al., 2020; Shokri-Kuehni et 
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al., 2018; Shokri, 2014), salt crystallization is frequently observed at the porous 

medium surface during the CRP. This is fully consistent with the semi-analytical or 

numerical solutions of the commonly used ADE (Guglielmini et al., 2008; Huinink et 

al., 2002; Sghaier et al., 2007), which predict that the locus of the maximum solute 

concentration is at the drying surface. Since crystallization occurs when the solution 

concentration reaches a critical value, the most likely place of crystallization is the 

surface. As reported in Eloukabi et al. (2013), the crystallization process at the surface 

and the subsequent development of a salt crust on top of the porous medium (a 

classical situation where the evaporative surface is on top of the porous sample is 

assumed) can have a severe impact on the evaporation rate. In this chapter, we focus 

on the situation prior to the crystallization, i.e. on the solute distribution before the 

onset of crystallization. 

Also, the influence of the solute concentration on the properties of the fluid is 

neglected in this study for simplicity. In this respect, the important feature is to impose 

the same fluid properties for the PNM simulations and the CM. Based on this, the 

value of initial solute concentration can be arbitrarily chosen and its influence on other 

parameters is not investigated in this work. Since the contact angle of a saline aqueous 

solution is relatively high, the development of liquid films is not favored (Sghaier et 

al., 2006). For this reason, liquid films are assumed to be negligible in this study. 

5.1 Continuum model for drying with dissolved solute transport 

As exemplified in, for instance, Guglielmini et al. (2008), Huinink et al. (2002), Sghaier 

et al. (2007), the continuum drying model in the presence of solute aims at predicting 

the evaporation rate, the liquid distribution, i.e. the saturation profiles, and the solute 

concentration distribution within the sample. While the corresponding model 

generally requires a numerical solution (Diouf et al., 2018; Hidri et al., 2013) for both 

the evolution of the saturation and the solute concentration, a much simpler approach 

is possible when only the CRP in the capillary regime is considered in the classical 

configuration where a homogeneous porous medium is limited by impervious walls 

at the bottom surface and along the lateral sides with evaporation only at the top 

surface. First, the evaporation flux j is constant in the CRP and therefore just an input. 
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Second, the fact that the saturation, S, is spatially uniform can be exploited (Huinink 

et al., 2002) to obtain its evolution as, 

𝑆 = 1 −
𝑗

𝜌𝑙𝐻𝜀
 , 

(5.1) 

where 𝜌𝑙 is the liquid mass density, 𝜀 the porosity and H is the height of the porous 

sample. The advective-diffusive equation classically used for modeling the solute 

transport during the drying process in the considered 1D macroscopic configuration 

reads (Sghaier et al., 2007)   

𝜕𝜌𝑙𝜀𝑆𝐶

𝜕𝑡
+  

𝜕

𝜕𝑧
(𝜌𝑙𝜀𝑈𝑆𝐶)  =  

𝜕

𝜕𝑧
(𝜌𝑙𝜀𝑆𝐷𝑠

∗
𝜕𝐶

𝜕𝑧
), 

(5.2) 

where C is the solute concentration, z is the vertical spatial coordinate, U is the average 

liquid velocity, also referred to as the interstitial velocity, and 𝐷𝑠
∗ is the effective solute 

diffusion coefficient. The boundary condition needed to solve Eq. (5.2) is expressed by 

zero flux at both boundaries (top evaporative surface and the boundary on the 

opposite end of the surface) of the 1D domain expressed as 

𝜌𝑙𝜀𝑈𝑆𝐶 −  𝜌𝑙𝜀𝑆𝐷𝑠
∗

𝜕𝐶

𝜕𝑧
= 0. 

 

(5.3) 

The effective solute diffusivity 𝐷𝑠
∗  is a function of liquid saturation S. The respective 

function is expressed using the classical formulation (Huinink et al., 2003; Moldrup et 

al., 2001), which depends on the pore-scale solute diffusivity, porosity and saturation 

percolation threshold Sc,  

𝐷𝑠
∗ =  

𝑆 − 𝑆𝑐

1 − 𝑆𝑐
 𝐷𝑠

∗(1), 
(5.4) 

  
where  𝐷𝑠

∗(1) is the value of effective solute diffusivity for fully saturated region, i.e., 

when S = 1. It is generally expressed as a function of porosity and tortuosity of the 

porous medium and pore-scale solute diffusion coefficient Ds. Since  𝐷𝑠
∗(1) depends 

on the microstructure of the considered porous medium, it needs to be determined for 

our particular porous medium, i.e. our pore network model. This is performed in Sec. 

5.3.1. The value of Ds is considered as 1×10-9 m2/s which is close to that of the common 

salts such as sodium chloride. 
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Like the saturation, the velocity field U(z) in Eq. (5.2) can also be obtained analytically 

(Huinink et al., 2002) as 

𝑈 =  
𝑗

𝜀𝜌𝑙𝑆
(

𝑧

𝐻
), 

(5.5) 

  
where z = 0 is at the porous domain bottom and z = H at the evaporative surface. 

Equation (5.2) is solved numerically with MATLAB using the analytical solutions 

according to Eqs. (5.1) and (5.5) for the evolution of saturation and velocity.  

5.2 PNM simulations 

The three-dimensional PNM simulations are carried out on a network that consists of 

25 computational nodes in each spatial direction. The pore size distribution is 

characterized by a mean throat radius of 250 µm with a standard deviation of 25 µm 

and a uniform throat length of 1 mm. The network porosity is 0.59 and drying occurs 

at room temperature and pressure. The average total drying flux 𝑗̇ (which stays nearly 

constant with time as our study is limited to CRP) in the PNM and CM simulations is 

3.025×10-6 kg/m2/s. The competition between the advective and diffusive solute 

transport is characterized by the Péclet number defined as 𝑃𝑒 =  
 𝑗̇𝐿𝑐ℎ

𝜀𝜌𝑙𝐷𝑠
∗. The initial 

Péclet number is computed by using the total network height as the characteristic 

length Lch and the initial effective solute diffusivity 𝐷𝑠
∗(1). In the simulations, 𝑃𝑒 = 0.2 

at the beginning of drying. This is relatively small but sufficient to have a noticeable 

advection effect. The advective transport becomes more dominant with time because 

the effective solute diffusivity decreases with the decrease in saturation.  

As performed in Chapters 3 and 4, the macroscopic variables in the CM with dissolved 

solute transport are interpreted within the framework of the volume averaging 

method (Whitaker, 1977), where the macroscopic variables are expressed as volume 

averages of the corresponding microscopic variables over a representative averaging 

volume. For the comparison of the PNM results with the CM solution, the data 

obtained from PNM simulations are therefore transformed into macroscopic data by 

volume averaging. Hence, the three-dimensional PNM domain is vertically split into 

local averaging volumes or slices where each slice consists of vertical throats and their 
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bottom side neighbor horizontal throats. However, in this chapter, for the slice 

averaging method, a more simplified approach is followed. The configuration of all 

the slices in the network is the same, as opposed to that in Chapter 3 and 4 where the 

configuration of the surface slice is different from the rest of the network (see Fig. 3.2, 

where a slice of thickness ∆z is indicated). We adopt a simpler approach in this chapter 

because here we only operate in CRP where the drying rate is fixed, eliminating the 

need to compare the kinetics (and hence, the consideration of macroscopic partial 

vapor pressure) in the comparison of CM solution with PNM.  

As mentioned in Sec. 2.3 where the PNM for dissolved solute transport is described, 

we consider the pores as volume-less computational nodes. This assumption leads to 

an overestimation of the porous medium porosity (through the overlap region of all 

neighboring throats at each pore). However, as we consider the capillary dominated 

regime, the consideration of pore body volume does not impact the liquid 

fragmentation dynamics because based on the geometric constraints, the radius of the 

pore body is always larger or equal to its neighbor throat radii. This means that the 

invasion percolation dynamics is the same in PNM with and without pore body 

volumes. As the liquid fragmentation dynamics is not affected, the use of PNM 

without the pore body volume can be considered to be adequate in the capillary 

dominated regime. On the other hand, considering the pore body volumes can lead to 

lower irreducible saturation and a longer CRP if the mean throat radius is sufficiently 

high (see, e.g., Lu et al., 2020). Also, the mixing process taking place in the pores might 

depend on the pore body volume. Perfect mixing, i.e. a uniform solute concentration, 

is assumed in the pore bodies in our model. Although, we do not believe that the 

consideration of a pore network with pore body volumes would change the main 

conclusions of the present work, this aspect would deserve further investigations. 

We perform multiple PNM simulations with different realizations of throat size 

distribution. Though the network saturation at the end of CRP may vary among 

simulations, it can be reliably considered that the CRP lasts in fact down to a network 

saturation of 0.7. Hence, in the CM simulations, the analysis is limited to a network 

saturation of 0.7. We have considered an arbitrarily chosen value of 10 kg/m3 as the 
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initial solute concentration for all simulations in this work. In the capillary-dominated 

regime, the depletion of liquid from the network occurs such that the continuity of the 

liquid phase decreases as the initially connected bulk liquid phase is split into clusters 

and isolated single throats (Le Bray et al., 1999). At any instant during the drying 

process, the largest liquid cluster with respect to volume is characterized as the main 

cluster. All other liquid clusters are characterized as isolated clusters, because they are 

isolated from each other and more importantly from the main cluster which spans 

over the entire network height. Each isolated liquid cluster eventually breaks down to 

several single isolated liquid throats which are the smallest structural element of the 

liquid phase. This increasing discontinuity of the liquid phase directly influences the 

solute transport because solute transport can only occur between the connected liquid 

phase elements (as liquid films are not considered). Hence, it is important to represent 

the solute concentration with respect to the liquid phase elements, i.e. the main cluster, 

the isolated clusters and isolated single throats. In Fig. 5.1 we present the 

instantaneous mapping of the solute concentration for a 2D pore network of 100×100. 

The solute concentration gradient in the main cluster can be seen in Fig. 5.1a. The 

progressive fragmentation of the liquid phase from the main cluster into isolated 

clusters is also shown in the cut-outs in Figs. 5.1b-d, where the solute concentration 

increase that develops as a result of shrinking and further fragmentation of an isolated 

cluster can be clearly observed. 

In Fig. 5.2 we present the instantaneous local solute concentration profiles and the 

corresponding saturation profiles for regular intervals of network saturation ranging 

between 0.9 and 0.7. The profiles are obtained using the slice averaging method. For 

the sake of simplicity, the isolated single throats are considered together with isolated 

clusters as part of the isolated liquid phase. The total liquid phase saturation in a slice 

is computed as  

𝑆 =
∑ 𝑆𝑡𝑖𝑉𝑡𝑖

𝑖=𝑛
𝑖=1

∑ 𝑉𝑡𝑖
𝑖=𝑛
𝑖=1

, 
(5.6) 
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where n is the number of throats in the slice, 𝑆𝑡𝑖 is the saturation in throat i (𝑆𝑡𝑖 = 1 if 

the throat is fully filled with liquid, 𝑆𝑡𝑖 = 0 when the throat is empty), 𝑉𝑡𝑖 is the volume 

of throat i. Similarly, the main cluster saturation is computed as 

𝑆𝑚𝑐 =
∑ 𝑆𝑡𝑖𝑉𝑡𝑖

𝑖=𝑛𝑚𝑐
𝑖=1

∑ 𝑉𝑡𝑖
𝑖=𝑛
𝑖=1

, 
(5.7) 

where 𝑛𝑚𝑐 is the number of throats of the main cluster in the considered slice. The 

isolated cluster saturation can be simply computed as 𝑆𝑖𝑐 = 𝑆 − 𝑆𝑚𝑐. The slice 

averaged solute concentration 〈𝐶〉 in the total liquid is computed as 

〈𝐶〉 =
∑ 𝐶𝑖𝑆𝑡𝑖𝑉𝑡𝑖

𝑖=𝑛
𝑖=1

∑ 𝑉𝑡𝑖
𝑖=𝑛
𝑖=1

. 
(5.8) 

The slice averaged concentration in the main cluster 〈𝐶〉𝑚𝑐 is computed as 

〈𝐶〉𝑚𝑐 =
∑ 𝐶𝑖𝑆𝑡𝑖𝑉𝑡𝑖

𝑖=𝑛𝑚𝑐
𝑖=1

∑ 𝑉𝑡𝑖
𝑖=𝑛𝑚𝑐

𝑖=1

. 
(5.9) 

While the slice averaged solute concentration in isolated clusters 〈𝐶〉𝑖𝑐 is computed as 

〈𝐶〉𝑖𝑐 =
∑ 𝐶𝑖𝑆𝑡𝑖𝑉𝑡𝑖

𝑖=𝑛𝑖𝑐
𝑖=1

∑ 𝑉𝑡𝑖
𝑖=𝑛𝑖𝑐
𝑖=1

, 
(5.10) 

where 𝑛𝑖𝑐 refers to the number of throats of isolated clusters in the considered slice. 

The saturation profiles in Fig. 5.2 reveal that the proportion of liquid in the isolated 

liquid elements increases for lower network saturations. At the network saturation of 

0.7, the proportion of liquid in isolated liquid elements is approximately equal to that 

in the main cluster except for a few slices furthest away from the evaporative surface. 

Another important phenomenon is the presence of strong edge effect (Attari 

Moghaddam et al., 2018; Attari Moghaddam et al., 2017) (a sharp drop in saturation 

profiles) adjacent to the evaporative surface. A less marked edge effect is also visible 

in the region adjacent to the bottom surface. The focus being on what happens at the 

evaporative surface, the edge effect only refers to the vicinity of the evaporative 

surface in this study. In the early stages of drying, the number of meniscus throats per 

slice is the highest in the surface slice compared to all other slices in the network, since 

the network is open to evaporation only from the top. Consequently, it is more likely 
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that the meniscus with the largest radius is located in the surface slice, leading to 

higher degree of fragmentation of the liquid phase at the surface. Additionally, the 

higher evaporation rate at the surface and the lack of liquid compensation by capillary 

pumping leads to fast shrinking of the isolated clusters and single throats. It must be 

noted that such an edge effect is not expected to be visible in the saturation profile 

measurements reported in the literature. In the pore network simulations, the edge 

effect is typically in a region with a thickness of around 4-5 lattice spacings (the lattice 

spacing is the distance between two nodes in the network). This is much too small to 

be detected by the NMR set-ups used to measure the saturation profiles (e.g. Gupta et 

al., 2014). In addition, the interpretation of the NMR signal is much less obvious in the 

vicinity of the porous medium surface, where measurement artefacts might affect the 

saturation measurements. Another important difference in Fig. 5.2 with the 

experimental profiles (e.g. Gupta et al., 2014; Thiery et al., 2017), is that the PNM 

profile is not flat for high network overall saturations, i.e. in Fig. 5.2a (Snet = 0.90) and 

Fig. 5.2b (Snet = 0.85), whereas the profiles are typically flat for similar global 

saturations in the experiments (Gupta et al., 2014; Thiery et al., 2017). As discussed in 

Le Bray et al. (1999), this is a finite size effect due to the network small size. The profiles 

tend to get flat (except in the region of the edge effect) only after the breakthrough 

(BT), which is the moment when the gas phase reaches for the first time the porous 

medium opposite side. As discussed in Wilkinson (1986), the liquid saturation at BT 

scales as 1 −  𝑆𝐵𝑇 ∝ 𝑁−0.48, where N is the network size (= the number of pores in one 

spatial direction). In our simulation N = 25 and 𝑆𝐵𝑇 ≈ 0.9, whereas in the experiments 

N >> 25 and thus  𝑆𝐵𝑇 is expected to be very close to 1. Thus, the period before 

breakthrough is typically not documented in the experimental works and is typically 

not captured by the CM which predicts a flat saturation profile right from the 

beginning of the capillary regime. The edge effect is not predicted by the commonly 

used continuum model either, i.e. Eq. (5.1).  
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Fig. 5.1: A 2D PNM representation of the instantaneous distribution of solute in main 

cluster and isolated clusters for a network of 100  100 pores. The evaporative surface 

lies at the top of the network. The gas phase is shown in white in all plots, whereas 

the solid phase is shown in grey in (a) and in white in (b), (c) and (d). The subplot (b) 

is a cut-out from (a) and illustrates a section of the main cluster. The subplot (c) 

represents the splitting of an isolated cluster from its parent main cluster illustrated 

in (b), whereas (d) indicates the subsequent fragmentation and shrinking of the 

isolated cluster shown in (c). The color bar on the left indicates the range of solute 

concentration. Note that results of 3D PNM simulations are presented in the rest of 

the chapter. 

As can be seen from Fig. 5.2, the edge effect in the saturation profiles can be observed 

in the main cluster as well as in the isolated liquid elements. The instantaneous solute 

concentration profiles in the main cluster and for the total liquid phase have the typical 

exponential-like shape resulting from a dominant convective effect (the back-diffusion 

is not sufficient to spatially equalize the concentration (Huinink et al., 2002)). As 

discussed in some details in Pel et al. (2018), two main effects contribute to the 
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concentration build-up in the porous medium top region: the advective transport of 

the ions toward the surface where they accumulate, and the saturation decrease (the 

concentration in a shrinking liquid volume necessarily increases). In the main cluster, 

both effects contribute to the concentration build-up since the main cluster spans the 

network, but the situation is actually subtler because the change in the main cluster 

saturation is due to two effects: the loss of water due to evaporation and the 

fragmentation. Isolated clusters initially form by detachment from the main cluster. 

The loss of water due to evaporation increases the concentration in the main cluster 

since again the same amount of salt is contained in a smaller volume of solution. The 

fragmentation affects only marginally the concentration in the main cluster (i.e. only 

in the vicinity of the throat whose invasion leads to an isolated cluster detachment). 

By contrast, the convective accumulation effect is expected to be limited in the isolated 

liquid clusters since there is no transport over a large distance. It is therefore expected 

that the change in concentration in the isolated clusters is mostly due to the cluster 

shrinking effect due to evaporation (as illustrated in Figs. 5.1c and 5.1d). This is 

consistent with the shape of the isolated cluster concentration profiles in Fig. 5.2. 

Owing to the so-called screening effect, i.e. the fact that the evaporation rate is very 

low inside the medium and only significant in the network top region, there is limited 

change in isolated cluster concentrations away from the top surface. This can also be 

observed in Fig. 5.1a on the left where the concentration in the isolated clusters that 

are screened from evaporation is the lowest (as these got fragmented from the main 

cluster in the early stages of drying and then got screened from evaporation by the 

main cluster on the right side and the isolated clusters and single liquid throats on the 

top). The concentration increase in the screened liquid clusters is mainly due to the 

birth of new isolated clusters with slightly higher concentration from the main cluster.  

The abrupt increase in isolated cluster concentration in the network top region in Fig. 

5.2 results from a combination of at least two effects. First, this is the evaporation active 

region. As a result, the isolated clusters shrink (as illustrated in Figs. 5.1c and 5.1d), 

which again leads to a concentration increase. Second, new isolated clusters are 

formed from the main cluster with a relatively high concentration (as illustrated in 

Figs. 5.1b and 5.1c), since the concentration in the main cluster is high in this region. 
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In this respect, the edge effect contributes to the concentration build-up since the 

saturation decrease is faster in the top region than elsewhere in the medium. Another 

interesting aspect lies in the fact that the concentration in the main cluster is slightly 

higher than the average concentration in the total liquid phase, except in the edge 

effect region where the main cluster concentration is comparable to or lower than in 

the total liquid phase. In particular, the concentration maximum at the surface is 

observed in the isolated clusters. This is a clear indication that the crystallization must 

start in isolated throats or clusters connected to the surface. However, since the 

corresponding volume of solution can be small, this does not lead necessarily to a 

significant crystal development. This point is addressed in more details further in this 

chapter.  

The concentration profiles depicted in Fig. 5.2 are computed as indicated by Eqs. (5.7) 

to (5.9) and are therefore instantaneous solute concentration profiles. In Attari 

Moghaddam et al. (2017), it was shown that the spatial average, i.e. the slice averaging, 

should be combined with a time average to obtain meaningful macroscopic velocity 

profiles from the PNM velocity field. Thus, the question arises as to whether a similar 

time-averaging procedure should be combined with the slice averaging procedure as 

regards the concentrations. We do not think that this is necessary because the 

instantaneous concentration profiles actually integrate the time-averaging effect on 

the velocity field, i.e. the evolution of the velocity field in the network as a function of 

time up to the time the three concentration profiles are computed. Nevertheless, one 

can argue that the instantaneous profiles can be misleading in situations where the 

solute concentration in a single isolated throat increases sharply as the result of the 

liquid mass loss due to evaporation. However, such a single isolated throat with very 

high solute concentration usually corresponds to little liquid volume that 

consequently empties rapidly. Hence this instantaneous phenomenon does not result 

in a sharp fluctuation in the slice concentration. Since the local solute concentration is 

computed by considering liquid contained in all the throats in a slice, the contribution 

of the liquid and solute mass in a single throat is not significant. Moreover, the time 

for evaporation of the single isolated throats is relatively small, hence its influence on 

the time-averaged solute concentration profile would be small as well. 
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Fig. 5.2: Left: Saturation profiles for main liquid cluster, isolated liquid clusters 

including single isolated throats, and total liquid. Right: Solute concentration profiles 

for the respective liquid elements. The legends illustrated in (a) apply to the rest of the 

rows. Plots in (a) to (e) represent results for network saturation values of 0.90, 0.85, 

0.80, 0.75 and 0.70, respectively. The profiles are averaged for data obtained from 15 

PNM simulations, each with different realization of throat size distribution. 

5.3 Solution of classical CM in comparison with PNM results 

The only missing parameter for solving the commonly used CM summarized in Sec. 

5.1 is the effective solute diffusion coefficient 𝐷𝑠
∗. The method used for computation of 

this parameter for pore network simulations is explained in this section. 
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5.3.1 Extraction of effective solute diffusivity from PNM simulations 

In this section, we compute the macroscopic solute diffusivity using the volume 

averaging method described in Sec. 5.2. In PNM simulations, the pore-scale solute 

diffusivity is fixed; however, similar to the classical CM formulation of effective 

diffusivity, the effective solute diffusivity computed from PNM simulations is a 

function of local saturation. Macroscopic solute diffusivity is computed from PNM 

simulation results based on   

𝐷𝑠
∗(𝑆) =  

𝑗𝑠,𝑑𝑖𝑓𝑓

𝜌𝑙𝜀𝑆 𝜕𝐶 𝜕𝑧⁄
 , 

(5.11) 

where js,diff, S, 𝜕𝐶 𝜕𝑧⁄  denote the macroscopic solute diffusive flux, the slice average 

saturation and the gradient of the slice average concentration along the spatial 

coordinate z, respectively. The pore-scale solute diffusive flow rate across a vertical 

throat k is computed by   

𝐽𝑠,𝑑𝑖𝑓𝑓,𝑘 =  𝐴𝑘  𝐷𝑠

𝜕𝐶

𝜕𝑧
, 

 

(5.12) 

where Ak, Ds, and 
𝜕𝐶

𝜕𝑧
 denote the cross-section area of the vertical throat k, the pore-

scale solute diffusivity and the pore-scale concentration gradient across throat k, 

respectively. Using Eq. (5.12), the solute diffusive flow rate across all the vertical 

throats in a slice is computed and summed up to obtain the macroscopic diffusive flow 

through the slice. This macroscopic diffusive flow rate is divided by the macroscopic 

cross-section area of the slice to obtain the macroscopic solute diffusive flux js,diff  which 

is then used to compute the macroscopic solute diffusivity based on the macroscopic 

concentration gradient through the slice in consideration (Eq. (5.11)).  

As Fig. 5.3 illustrates, the effective solute diffusivity computed from PNM simulation 

results is nearly a linear function of local saturation, consistently with the usual 

functional form given by Eq. (5.4). The data points in Fig. 5.3 have been computed by 

averaging the values of effective solute diffusivity for intervals of slice average 

saturation equivalent to 0.005. In fact, there are values of effective solute diffusivity 
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for local saturation smaller than 0.7, because as shown in the saturation profiles of Sec. 

5.2, the local saturation is smaller in the region near the evaporative surface as 

compared to the rest of the network. However, in CM the local saturation is assumed 

to be uniform in space, hence, at any instant, the network saturation and local 

saturation are equal. Moreover, as mentioned early in Sec. 5.2, we consider a network 

saturation of 0.7 as the lower threshold value of CRP. Therefore, in Fig. 5.3, we do not 

consider values smaller than the threshold value of 0.7. 

 

Fig. 5.3: Black square symbols represent the effective diffusivity obtained from PNM 

simulation results. The dashed blue line indicates fitted profile based on parameter 

adjustment of the classical formulation of effective diffusivity (Eq. (5.4)). 

Figure 5.3 also shows the profile obtained from fitting the parameters using the 

classical formulation expressed by Eq. (5.3). This fitted profile is based on 𝐷𝑠
∗(1) =

𝜀0.86𝐷𝑠 and Sc = 0.69. As can be seen, Eq. (5.4) is quite well adapted to represent the 

PNM computed effective diffusion coefficient.  

5.3.2 CM solution 

In this section, we employ the effective solute diffusivity obtained from PNM 

simulation results to solve the CM. The solution of CM is compared with the PNM 
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slice averages in Fig. 5.4. The CM solution complies well with the concentration 

profiles obtained from PNM simulation results except for the region near the 

evaporative surface. For the comparison with CM solution, PNM results are 

considered for the whole bulk liquid regardless of the distinction between the main 

cluster and the isolated clusters.  

 

Fig. 5.4: CM solution based on effective diffusivity extracted from PNM simulation 

results compared with corresponding PNM simulation results. The profiles are 

presented for network saturations of 0.9, 0.85, 0.80, 0.75 and 0.70. The arrow indicates 

the trend of the profiles with decrease in overall network saturation Snet. 

As can be seen, the CM solution underestimates the concentration at the surface. This 

means, for instance, that the CM model should predict the crystallization onset later 

than the PNM solution. This might explain why the time of first crystallization 

determined from CM simulation is longer than in the experiments (Hidri et al., 2013). 

Based on the non-compliance in CM solution adjacent to and at the evaporative 

surface, it is evident that in order to further improve the CM solution, an investigation 

dedicated to studying the dynamics of solute transport at the surface must be 

performed. In this regard, the pore scale insight offered by PNM simulations can be 
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exploited. To this end, we present a detailed analysis focused on transport at the 

porous medium surface in the following sections. 

5.4 Liquid phase connectivity and solute transport at the surface 

In Fig. 5.5, we present the instantaneous solute concentration and the liquid 

connectivity mapping for the liquid in vertical surface throats for various network 

saturation values. Note that the results presented in this section are based on one PNM 

simulation, as opposed to the results presented in Sec. 5.2 which are averages of 

multiple simulations, each with a different realization of throats size distribution. 
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Fig. 5.5: The column on the left shows the liquid connectivity for vertical surface 

throats, where the red color represents throats that belong to the main cluster, green 

color represents the isolated single throats and yellow color represents the throats that 

belong to isolated liquid clusters. The column on the right maps the solute 

concentration for the corresponding throats, where the legend (vertical bar) indicates 

the range of solute concentration values in the throats. Plots in (a) to (d) represent 

results for network saturation values of 0.90, 0.80, 0.75 and 0.70, respectively. The size 

of the throats is scaled up for ease of visualization. 

The liquid connectivity plots for various network saturation values presented in Fig. 

5.5 reveal that the majority of surface throats belong to the main cluster. Moreover, 

there is no distinct trend in the variation of the proportion of isolated liquid phase 

with decrease in network saturation. This is because, as mentioned in Sec. 5.2, the 
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surface throats that belong to isolated liquid phase get evaporated quickly because of 

their limited volume (and hence limited supply of liquid through capillary pumping) 

and higher evaporation rate on the surface (no evaporation screening effect because 

of direct exposure to the boundary layer). The proportion of surface throats that 

belong to isolated liquid phase is an important factor as the solute concentration 

values in the isolated clusters and isolated single throats are relatively high as 

compared to that in the main cluster, regardless of the network saturation value.  

The solute concentration maps presented in Fig. 5.5 reveal that the solute 

concentration fluctuates spatially in the main cluster at the surface. This is more visible 

for the network saturations Snet = 0.9 and 0.8. For the lower saturations, the 

concentration fluctuations in the main cluster are hidden by the quite large 

concentration variation range due to the very high concentrations reached in a few 

isolated throats. For this reason, the concentration distribution in the main cluster at 

the surface for Snet = 0.75 and 0.7 are more specifically shown in Fig. 5.6. As discussed 

in Veran-Tissoires et al. (2014) for the simpler evaporation-wicking situation, two 

main factors explain the concentration fluctuations in the main cluster. The first one is 

referred to as the internal disorder effect. Due to the internal disorder of the pore 

space, i.e. the fact that the throat sizes vary randomly, the pore-scale velocity field also 

fluctuates spatially. This means that the mean velocity in a throat varies from one 

throat to the other. Also, the velocity field in the throats fluctuates in time due to the 

main cluster mass loss and fragmentation. As a result of these fluctuations, the 

concentration, which greatly depends on the advective transport, also fluctuates. The 

second factor is referred to as the surface disorder effect. As a result of the throat size 

variation at the surface and the formation of wet patches of different sizes (a wet patch 

refers to a 2D cluster of saturated throats (Attari Moghaddam et al., 2018) at the surface 

which is surrounded by gas throats), the evaporation rate varies from one wet throat 

to the other at the surface. These evaporation rate variations induce velocity variations 

in the vertical wet throats connecting the network to the surface, which, in turn, induce 

concentration variations. In particular, the spacing between the wet patches at the 

surface plays a key role on the diffusive vapor flux per pore (see e.g., Chauvet et al., 

2009). Similarly, a dry patch refers to a 2D cluster of gas throats surrounded by liquid 
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throats. Larger dry patches between the wet patches may result in higher evaporation 

fluxes through the wet patches, therefore higher solute concentration pores that have 

higher evaporation rate. The liquid patch on the mid-left of Fig. 5.6, for network 

saturation of 0.75, is an example of the high solute concentration as a result of high 

evaporation rate because it is surrounded by large dry patches. 

 

Fig. 5.6: Solute concentration maps for main cluster surface throats for network 

saturations of 0.75 and 0.70. The saturated throats that belong to isolated liquid phase 

are not shown. Legend (vertical bar) indicates the range of solute concentration values 

in the throats. 

The solute concentration maps for network saturations of 0.75 and 0.70 presented in 

Fig. 5.5 show that solute concentration can rise to very high values in the isolated 

liquid phase compared to the main cluster. This is due to two main factors in case of 

single isolated throats. First the lifespan of such a throat is quite short since the volume 

of solution in it is small and evaporation is intense at the surface. Thus, the 

concentration is already high in such a throat when it forms, since it forms as the result 

of fragmentation of the main cluster or an isolated cluster where the concentration is 

high. Then the volume of solution in the throat rapidly decreases due to evaporation, 

which leads to a sharp increase in solute concentration. A similar process occurs in 

isolated clusters connected to the surface, with in addition subsequent fragmentations 

and increases in the concentration due to the solution volume shrinking effect.  
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5.5 Statistical analysis of transport at the surface based on PNM Monte 

Carlo simulations 

As presented in Sec. 5.4, the evolution of solute concentration at the surface is strongly 

linked to the evolution of liquid structure at the surface. However, the heterogeneity 

in liquid phase structure is strongly dependent on the throat size distribution which 

varies in each PNM simulation. Therefore, in this section, we characterize 

stochastically the evolution of liquid phase structure and solute concentration at the 

surface. Moreover, as the main purpose of the PNM simulations is to provide a 

benchmark for the CM solution, a key parameter in this comparison can be the onset 

of crystallization based on a threshold value of solute concentration. Due to the 

averaging of data on the scale of local slices and the subsequent averaging of these 

results among multiple simulations with different realizations of throat size 

distribution, it is possible that the onset of crystallization on the pore scale in a PNM 

simulation may not be visible in the resulting instantaneous saturation and solute 

concentration profiles presented in Sec. 5.2. Therefore, we need to perform a dedicated 

study at the pore scale. For this purpose, we conduct a thorough analysis based on 

Monte Carlo simulations by performing 70 PNM simulations with varying 

realizations of the throat size distribution. Similar to the surface analysis presented in 

Sec. 5.4, the statistical analysis is focused only on the vertical surface throats. 

Based on the data obtained from the Monte Carlo simulations, we characterize the 

liquid phase heterogeneity with respect to varying network saturation values and 

present the results in the form of a histogram. As indicated in Fig. 5.7, nearly all of the 

saturated surface throats are likely to be part of the main cluster until Snet = 0.8. Also, 

for network saturation of 0.75, the probability that a saturated surface throat belongs 

to the main cluster is still 0.97. However, when network saturation reaches 0.7, the 

probability that a saturated surface throats belong to the main cluster decreases to 

0.917, whereas that of belonging to isolated clusters and single isolated throats is 0.052 

and 0.031, respectively.  
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Fig. 5.7: Statistical analysis of the liquid phase heterogeneity based on Monte Carlo 

PNM simulations. The bars quantify the probability of a saturated surface throat being 

part of the main cluster, part of an isolated cluster or a single isolated throat. The line 

plot (corresponding to y-axis on the right) quantifies the surface slice saturation with 

respect to different network saturation values. 

Apart from the stochastic characterization of liquid connectivity of surface throats, 

Fig. 5.7 also illustrates the variation of surface slice saturation with network 

saturation. Interestingly, for the initial 10 % decrease in network saturation, there is a 

dramatic decrease of approximately 38 % in saturation of the surface slice. Afterwards, 

the decrease in surface slice saturation is for further 10 % decrease in network 

saturation, i.e. from Snet = 0.90 to 0.80, is relatively small, i.e. Ssur decreases from 0.62 

to 0.50. As network saturation decreases from 0.80 to 0.70, the surface slice saturation 

decreases from 0.50 to approximately 0.30. Overall, the decrease in surface slice 

saturation is the highest as network saturation decreases from 1 to 0.90. The edge effect 

is therefore quite significant with significantly less saturation in the top slice compared 

to the bulk.  
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Figure 5.8 illustrates the probability of reaching of specified threshold concentration 

value, denoted by Cth. In this example, Cth is equal to 50 kg/m3 whereas the initial 

concentration is as mentioned before C0 = 10 kg/m3. Thus, the threshold value 

corresponds here to an increase of the concentration by a factor 5 compared to the 

initial concentration. The line plot (corresponding to the y-axis on the right) represents 

the absolute probability of reaching the threshold value in a saturated surface throat 

(absolute probability does not distinguish between the main cluster and isolate liquid 

phase).  

 

Fig. 5.8: Statistical analysis quantifying the probability of reaching a concentration 

threshold value equal to 5 times the initial concentration. The line plot (corresponding 

to y-axis on the right) quantifies the absolute probability of reaching the concentration 

threshold value in surface throats with respect to different network saturation values. 

The bars (corresponding to the y-axis on the left) quantify the probability of reaching 

the concentration threshold value within the respective liquid phase elements with 

respect to the total number of throats in which the concentration threshold value is 

reached. 

As can be observed, the probability of reaching the threshold value for Snet values of 

0.90 and 0.85 is extremely low, while the probability of reaching the threshold value 
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is higher in single isolated throats as compared to the main cluster (as illustrated by 

the respective histograms). In other words, if one assumes for instance that the ratio 

Cth / C0 = 5 corresponds to the onset of crystallization, Fig. 5.8 shows that the 

probability of crystallization in this example for Snet values of 0.90 and 0.85 is quite 

low and that the crystallization, when it happens, occurs with a much greater 

probability in an isolated single throat than at the top of the main. As network 

saturation decreases from 0.75 to 0.70, the absolute probability of reaching the 

concentration threshold value for all saturated vertical surface throats increases 

significantly from 0.044 to 0.21. It can be observed that the probability of reaching the 

concentration threshold value in a saturated surface throat increases exponentially as 

the end of CRP is approached. 

At intermediate network saturation values, e.g. 0.80, the probability of reaching the 

concentration threshold value in isolated liquid phase approximately matches that of 

the main cluster.  It is obvious that the commonly used CM cannot capture these 

effects which reflect the impact of heterogeneities at a scale lower than the 

Representative Elementary Volume (REV) scale typically associated with the 

macroscopic modeling. 

At first glance, the results reported in Fig. 5.8 could be seen as in contradiction with 

the solute concentration profiles depicted in Fig. 5.2. Fig. 5.2 shows that the greater 

concentration at the surface is observed in the isolated cluster for all the considered 

network saturations. On the other hand, Fig. 5.8 shows that the concentration 

threshold value at the surface is reached with a greater probability in the main cluster 

when the network saturation is sufficiently low, for example S net = 0.7, in the case 

considered. The latter result simply reflects the fact that, as illustrated in Fig. 5.5, there 

are much more surface throats belonging to the main cluster than to isolated clusters. 

For instance, if the concentration threshold was selected such that the solute 

concentration is greater than the considered concentration threshold value in all liquid 

throats at the surface, the probabilities plotted in Fig. 5.8 would be simply given by 

𝜇𝑎𝑏𝑠−𝑚𝑐 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡ℎ𝑟𝑜𝑎𝑡𝑠 𝑖𝑛 𝑚𝑎𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡ℎ𝑟𝑜𝑎𝑡𝑠 
 

(5.13) 
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𝜇𝑎𝑏𝑠−𝑖𝑐 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡ℎ𝑟𝑜𝑎𝑡𝑠 𝑖𝑛 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡ℎ𝑟𝑜𝑎𝑡𝑠 
 

(5.14) 

 

with 𝜇𝑟𝑒𝑙−𝑚𝑐 =  𝜇𝑎𝑏𝑠−𝑚𝑐, 𝜇𝑟𝑒𝑙−𝑖𝑐 =  𝜇𝑎𝑏𝑠−𝑖𝑐 for this particular case.  

In terms of probability of crystallization during the CRP, the results can be 

summarized as follows. As shown in Fig. 5.2, the crystallization should systematically 

start in the isolated clusters. This is because the fast evaporation of the isolated clusters 

connected to the surface leads to a rapid increase in the solute concentration. 

However, these clusters can be small or even can simply be liquid bridges (the single 

isolated throats in our simulations). As a result, this crystallization is likely to 

correspond to a relatively small amount of crystals. As a result, the formation of these 

crystals could only marginally affect the evaporation process. After a while, the 

crystallization concentration should be reached in the main cluster at the surface (as 

indicated by Fig. 5.2 and Fig. 5.8). Then, the development of crystals (efflorescence) 

can be expected to be much more important since the main cluster corresponds to a 

much greater amount of salt compared to an isolated cluster. A detailed analysis of 

the above dynamics would however require to include the crystallization process in 

the modeling and to couple the efflorescence development with the modeling of 

evaporation and solute transport processes. This is a quite challenging objective, 

which has not yet been addressed in the framework of pore network modeling.  

5.6 Remarks 

The drying pore network simulations reported in this study show two striking 

differences compared with the predictions of the commonly used continuum model 

as regards the saturation profiles during the CRP in the capillary dominant regime, 

which was the focus of this study. First the saturation profiles become flat in the bulk 

only after an initial period which is typically not seen with the CM, nor in the 

experiments (e.g. Gupta et al., 2014). Second a quite significant edge effect is observed 

leading to a significantly reduced saturation in the top region of the network 
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compared to the bulk. The ratio between the saturation in the bulk and at the surface 

can be greater than 2. The first effect is a finite size effect due to the small size of the 

considered network compared to the typical size of the porous medium in 

experiments. Therefore, this effect needs not specific consideration since it is expected 

to be negligible with usual porous media. However, it might need consideration in 

applications involving thin porous media, such as in fuel cells, for example, Prat et al. 

(2015). The second effect, referred to as the edge effect, is more problematic. Unlike 

the first effect, preliminary simulations (not shown in this study) suggest that it is not 

network size dependent.  

The comparison between the predictions of the commonly used continuum model 

(CM) and the pore network model as regards the solute transport shows that the CM 

underpredicts the concentration at the evaporative surface compared to the PNM 

simulations. This can be mainly attributed to the edge effect since the saturation 

variations are one of the important factors controlling the evolution of solute 

concentration. The greater saturation variation in the edge region leads to greater 

solute concentration compared to the predictions of the CM. This is an indication that 

the traditional continuum model should overpredict the crystallization onset time at 

the porous medium surface.  

Another important feature, which is not captured by the traditional CM, is related to 

the liquid phase structuration in liquid clusters. The PNM simulations show that the 

dominant mechanisms controlling the solute concentration variations in the porous 

medium top region are different in the percolating main cluster and the isolated 

clusters. The solute concentration variations are mainly due to the saturation 

variations in the isolated clusters and the combination of advective transport and 

saturation variations in the main cluster. The solute concentration at the surface is 

greater in the isolated clusters than in the main cluster. This suggests that an 

improvement should be to develop a drying continuum model making an explicit 

distinction between the main cluster, i.e. the percolating liquid phase, and the isolated 

cluster, i.e. the non-percolating liquid phase. 
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In this chapter, the macroscopic data were obtained from the PNM simulations by 

volume averaging considering relatively thin slices as averaging volumes. Then the 

question arises as to whether the slices can be considered as a truly representative 

averaging volume. In this respect, it would be interesting to consider thicker 

averaging volumes and perform simulations over larger networks. This is not possible 

with the current version of the drying PNM code used in this chapter. Although the 

traditional length scale separation criterion is therefore not fully met in our 

simulations, we however consider our work to give valuable insights into the short- 

comings of the conventional continuum model. 
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Chapter 6 

 

Summary and outlook 

6.1 Summary 

In this thesis, we addressed a series of shortcomings in the current state of the art of 

continuum modeling of drying capillary porous media. We used numerical pore 

network simulations to elucidate how the pore scale phenomena impact the 

macroscopic scale both at the surface and inside the porous medium. Also, the 

information obtained from pore network simulations guided the development of 

theoretical framework for more advanced continuum models. The main macroscopic 

transport parameters that were computed from PNM simulations are the effective 

vapor diffusivity, specific interfacial area, liquid phase diffusivity, interfacial area at 

the porous medium surface and effective solute diffusivity. The key aspects that were 

addressed include: the flawed assumption of local equilibrium between liquid and gas 

phases, the poor modeling of mass transfer at the porous medium surface, and in-

depth assessment of the continuum model of dying with dissolved solute transport. 

Throughout this thesis, we consider drying at ambient conditions and neglect any 

temperature variations. The considered porous medium is rigid, homogenous and 

non-hygroscopic. We do not consider heat transfer in the modeling approach and 

assume that evaporation is controlled by mass transfer. 

In addressing the erroneous assumption of local equilibrium between the liquid and 

vapor phases in a drying capillary porous medium, a two-equation continuum model 

was formulated based on an upscaling technique. In the two-equation CM, saturation 

accounts for the liquid phase and partial vapor pressure accounts for the respective 
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mass transport in the vapor phase. The liquid and vapor phase equations are coupled 

by a source/sink term that considers the NLE mass exchange between the two phases. 

In order to simplify the problem, it was decided to address the problem in two steps. 

In the first step, we neglected the macroscopic capillary transport in the liquid phase 

by considering an initial phase distribution in which the liquid is distributed into 

small disconnected clusters. The NLE CM was derived based on the volume averaging 

method. The formulation of the NLE mass exchange term, which couples the two 

equations of the NLE CM, is based on specific interfacial area, the deviation of vapor 

pressure from saturation vapor pressure and a mass exchange coefficient. The 

macroscopic parameters needed for the CM solution were computed from PNM 

simulations based on a network of 252550. These parameters were computed from 

the averaged results of a number of PNM simulations each with a different realization 

of throat size distribution and location of the isolated liquid clusters inside the 

network. 

The method of slice averaging, which was used to extract the macroscopic parameters 

from the 3D PNM simulations, is similar to what was recently used by Attari 

Moghaddam et al. (2017) with the exception of the configuration of the slice. A change 

in the slice discretization scheme was needed because of the consideration of partial 

vapor pressure as a process variable. For the solution of the NLE CM, effective 

diffusivity and specific interfacial area were computed from PNM simulations of 

drying. The mass exchange coefficient was not computed from PNM simulations and 

instead it was used as a fitting parameter such that a good agreement is obtained 

between the NLE CM solution and the PNM results. The comparison between the 

solution of NLE CM and the PNM simulations was based on saturation profiles, vapor 

pressure profiles, the NLE effect and the total evaporation rate. It was shown that the 

NLE CM produced the aforementioned PNM results with a good degree of accuracy. 

Following the development of the two-equation CM for the limiting case of immobile 

liquid phase, this CM was extended in order to consider the drying of a fully saturated 

capillary porous medium, such that in addition to the vapor diffusion, the evaporation 
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induced capillary-viscous transport in the liquid phase is also considered. Owing to 

the consideration of macroscopic transport in the liquid phase, the solution of the two-

equation CM required the formulation of boundary condition for the vapor phase. 

This means that we also addressed the problem of mass transport at the porous 

medium surface by introducing coupled formulations for the boundary conditions of 

the liquid and gas phase equations.  

Similar to the case of NLE CM for the limiting case of immobile liquid phase, the 

comparison between the solution of NLE CM for full drying and the PNM simulation 

results was made in terms of the drying time. This is different from what was 

previously considered in the work on the one-equation CM by Attari Moghaddam et 

al. (2017) where the comparisons between PNM and CM results were based on 

network saturation values. Comparing the state of the system in terms of drying time 

is more logical in terms of assessing the prediction capability of the CM. 

The derivation of the two-equation NLE CM was based on an upscaling technique, 

which permits the translation of the pore scale phenomena to the macroscopic scale 

on a firmer basis. The upscaling led to the introduction of specific interfacial area as a 

key macroscopic parameter in the NLE phase change term. Also, the formulation of 

the two-equation CM permits to distinguish between the process of local evaporation 

and the diffusive transport of the evaporated vapor. The CM formulation suggests 

that the presence of liquid phase does not influence the vapor transport other than 

acting as a mere inert hindrance similar to that of the solid phase. In other words, no 

enhancement factor is considered in the vapor diffusion model.  

The formulation of the two-equation NLE CM captures the transport phenomena 

involved in the drying of a non-hygroscopic porous medium in a more physically 

realistic way as compared to the aforementioned one-equation CM. Unlike the one-

equation CM, the two-equation CM does not require the NLE surface relationship 

between the vapor partial pressure and the surface saturation as an input parameter. 

Instead, this NLE relationship is an output of the two-equation CM. The results 

showed that the NLE two-equation CM for the fully saturated porous medium can 
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independently reproduce the reference PNM data, i.e. the drying kinetics, the phase 

distributions and the NLE effect with a reasonable degree of accuracy. 

Additionally, the NLE two-equation CM was investigated by performing a sensitivity 

study of the macroscopic parameters. It was observed that mass exchange coefficient 

is a key factor that directly affects the dynamics towards the local equilibrium. For 

example, the CM approaches the LE situation for higher values of mass exchange 

coefficient resulting in a sharper drying front. For lower values of mass exchange 

coefficient, the NLE effect becomes stronger and as a result the drying front is 

smoother and more continuous.  

In this thesis, the macroscopic advective-diffusive transport equation was investigated 

in its ability to reproduce the evolution of solute concentration in a drying capillary 

porous medium, while focusing only on the constant rate period (CRP). For this 

purpose, using PNM simulations as a guide and reference for comparison, the 

influence of liquid phase fragmentation (splitting of main liquid cluster into isolated 

elements, i.e. isolated clusters and isolated single meniscus throats) on the solute 

concentration profiles was elucidated. The CM was solved with the help of effective 

solute diffusivity obtained from PNM simulations. 

The solute concentration profiles obtained from the solution of CM of drying with 

dissolved solute transport showed a discrepancy with the corresponding PNM results 

in the edge effect region near the porous medium surface i.e. the CM underpredicted 

the solute concentration in this edge effect region. Hence, a dedicated study focusing 

on the transport at the surface was performed with the help of PNM simulations. This 

study consisted of 2D mapping of the solute concentration in the surface throats and 

a statistical analysis of the evolution of liquid connectivity and solute concentration in 

the surface throats with the help of PNM Monte Carlo simulations. Based on an 

arbitrarily selected threshold value for saturation concentration, the prediction 

capacity for the onset of crystallization was statistically analyzed.  

Based on the detailed analysis with the help of PNM simulations, it was observed that 

the larger saturation variation in the edge effect region is the main reason for the larger 
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solute concentration in this region as compared to the rest of the network. As the 

traditional CM does not consider the edge effect, therefore it would overpredict the 

time for onset of crystallization. 

PNM simulations showed that the dominant mechanisms controlling the solute 

concentration variations in the porous medium top region are different in the main 

cluster and in the isolated parts of the liquid phase: the solute concentration variations 

are due to advective transport and saturation variations in the main cluster, whereas, 

for the isolated liquid phase, they are due to the birth of isolated clusters as they get 

fragmented from the main cluster and their subsequent shrinkage. However, the 

classical CM does not capture these phenomena of fragmentation in the liquid 

clusters. Therefore, it is important to consider these heterogeneities related to the 

evolution of liquid structure in the CM formulation in order to make the CM more 

accurate and physical realistic. 

6.2 Outlook 

The size of the REV (determined in previous works with the existing PNM codes for 

the capillary controlled invasion percolation simulations) is 252525. The maximum 

size for the pore network used in this thesis is 252550, i.e. twice the REV size. This 

violates the length scale separation criterion, which is a requirement that needs to be 

fulfilled in order to compute volume averaged data from PNM simulation results. 

Thus, pore network simulations on significantly larger networks (e.g. with 300 pores 

in the direction of the boundary layer) should be performed. However, this is not 

possible with the current form of the PNM codes, which can take up to 100 days on a 

multi-core computer (Attari Moghaddam, 2017) for one realization in capillary-

gravity regime (without consideration of secondary capillary structures or dissolved 

solute transport) for a network of 100100101 nodes. Hence, it is important to 

develop PNM codes that are suitable for high performance computing (HPC) on 

workstations that can take advantage of the power of parallel computing. Once the 

HPC codes for the simple drying situation are developed, they can be extended to 

consider drying in presence of secondary capillary structures and dissolved solute 
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transport. Then, comparisons between the volume averaged data obtained from HPC 

PNM simulations and the corresponding solutions of CM can be performed for the 

purpose of validation and assessment.  HPC PNM simulations of drying will also shed 

light on the transport phenomenon at the porous medium surface and will help to 

validate the boundary conditions for the two-equation CM as well. Using the HPC 

PNM codes, an extensive statistical analysis can also be performed based on Monte 

Carlo simulations with variations in throat radius, throat length, throat size 

distribution, Bond number, capillary number and Péclet number. 

Regarding the improvement in the classical CM for drying in presence of dissolved 

solute transport, a logical next step is to take into account the liquid phase 

fragmentation process in the continuum model formulation. This implies developing 

a drying continuum model that makes an explicit distinction between the main 

cluster, i.e. the percolating liquid phase, and the isolated liquid elements, i.e. the non-

percolating liquid phase. This CM would be termed as a three-equation CM which 

consists of a transport equation based on vapor phase, percolating liquid phase 

saturation and the non-percolating liquid phase saturation, respectively. A starting 

point for approaching this problem can be a model that has been proposed for the 

two-phase flow in porous media in Doster et al. (2010), which can be extended and 

adapted to the situation of drying. 

An important phenomenon which was not considered in this thesis is the presence of 

secondary capillary structures. In this respect, an attractive option is to consider the 

liquid in the film region as a distinct phase, such that the liquid phase saturation is 

characterized by the film saturation and bulk saturation, respectively. Here, a PNM of 

drying with continuous liquid films, which is based on the work by Prat (2007), 

already exists and can be used for pores scale insights and benchmark results. As a 

first step, the problem can be approached in simplified manner by considering a 

regime in which the bulk liquid is distributed into isolated clusters and the mass 

transport towards the evaporative surface is through capillary liquid films (as no dry 

zone would form within the network). This transport regime, which is in fact 

analogous to the problem of drying (without liquid films) in the presence of immobile 
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liquid phase (see Chapter 3), can be referred to as drying with hyperdeveloped 

continuous liquid films. The mass transfer from the bulk liquid to the liquid in the film 

region can be characterized by a source/sink term based on the specific interfacial area 

between films and bulk menisci and the deviation of the film saturation from the 

maximum film saturation (which is known a priori). Once, the simplified version of 

the CM is validated, it can then be extended for the situation in which the vapor phase 

exists within the network as well. However, the fact that the current form of the PNM 

with continuous liquid films does not consider the inter-cluster mass transport 

through liquid films, can be a challenge in this respect. In this regard, one option is to 

characterize the secondary capillary structures experimentally consisting of X-ray 

microtomography based drying in 3D random packings of glass beads. 
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Appendix A: Simulation parameters 

Table A.1: Physical properties or materials used in simulations at temperature of 

293.15 K and pressure of 1 atm. 

Physical property Unit Value 

Air-vapor binary diffusion coefficient  m2/s 2.5610-5 

Vapor pressure in bulk air Pa 0 

Equilibrium vapor partial pressure Pa 2339 

Molar mass of water vapor kg/kmol 18.02 

Surface tension between water and air N/m 0.07274 

Universal gas constant J/kmolK 8314.5 

Solute diffusion coefficient (pore scale)  m2/s 110-9 

 

Table A.2: Structure and fluid physical parameters used for simulations in Chapter 3. 

The right most column shows the parameters used for the simulation results 

illustrated in Fig. 3.8. 

Parameter Unit Chapter 3   Fig. 3.8 

Network size (nodes) - 252550 252550 

Boundary layer discretization  - 25254 25254 

Boundary layer thickness mm 4 4 

Mean throat radius mm 0.25 0.25 

Standard deviation of throat radius mm 0.025 0.025 

Throat length mm 1 1 

Network porosity - 0.594 0.594 

Initial network saturation - 0.26 0.24, 0. 20, 0.14, 0.08 

Number of realizations - 45 15 each 
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Table A.3: Structure and fluid physical parameters used for simulations in Chapter 4.  

Parameter Unit Chapter 4 

Network size (nodes) - 252551 

Boundary layer discretization  - 252510 

Boundary layer thickness mm 10 

Mean throat radius mm 0.25 

Standard deviation of throat radius mm 0.025 

Throat length mm 1 

Network porosity - 0.594 

Initial network saturation - 1 

Number of realizations - 15 

Viscosity of liquid phase m2/s 0.028 

 

Table A.4: Simulation parameters used in Chapter 5 with distinction with respect to 

the corresponding chapter sections. 

Parameter Unit Sec. 5.2 - 5.4 Sec.  5.5 

Network size (nodes) - 252525 252525 

Imposed drying rate kg/m2/s 3.02510-6 3.02510-6 

Mean throat radius mm 0.25 0.25 

Standard deviation of throat radius mm 0.025 0.025 

Throat length mm 1 1 

Network porosity - 0.594 0.594 

Initial network saturation - 1 1 

Number of realizations  - 15 70 

Initial Péclet number - 0.2 0.2 

Initial solute concentration kg/m3 10 10 

Threshold solute concentration kg/m3 - 50 
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