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1 Introduction

1.1 General Consideration

The subject of phase behavior of polymer melts, polymer mixtures (or blends) and poly-
mer interfaces [1, 2, 3, 4, 5, 6, 7] has attracted a great deal of attention because of
intriguing physical properties and an essential role in polymer technology. The practi-
cal importance arises from the many industrial applications of these materials and
scientific importance arises from the complex behavior they display, a molecular de-
scription of which is a challenging problem in statistical mechanics. Therefore, the study
of phase behavior of polymer blends or alloys is very important for the design of new
multiphase materials as well as to understand their complex behavior.

Polymers do not mix at a molecular level at equilibrium under a wide variety of
circumstances because any slight incompatibility of monomers in enthalpic interactions
and/or entropic packing effect is amplified by the number of monomers in the macro-
molecule and cannot be balanced by the entropy of mixing. If such a pair of polymers
are dispersed mechanically, there will be domains of one polymer in the other. In such a
situation, one is interested to know the nature of the interface between the two coexisting
phases and determination of the interfacial energy. The morphology of the mixture will
be greatly influenced by the interfacial energy [8], which will control the domain size,
while the microscopic structure of this interface will determine the degree of adhesion
between the phases. Thus the mechanical properties of the whole mixture will be largly
controlled by properties of these interfaces. Further, interfacial properties of polymers
play important role in kinetics of the phase separation. Moreover, one may be interested
to know at what condition the two components mix. An important feature of polymeric
interfaces is that they are often characterized by structure and correlations on scales
significantly larger than the monomer size [5], resulting in a degree of universality of
interfacial properties. Correlations between interfacial and bulk properties are present
on various length scales. The mechanical stability of the alloy depends upon the local
interfacial structure - the interfacial width, the conformation of polymers, enrichment of
chain ends or the solvent at the interface.

Polymer interfaces play an important role in polymer technology of polymers includ-
ing adhesives, blends, resists and coatings. Polymeric materials provide an exceptionally
varied class of interfacial systems. Polymers can have interfaces with air or solid sub-
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strates (external interfaces or surfaces), but also can form internal interfaces, for example
the interface between two incompatible homopolymers. The material properties of poly-
mers depend sensitively on the structure and the properties of the interfaces between
different phases. Therefore, key to applications of polymeric materials is the ability to
control surface or interfacial properties. In polymer blends or filled polymer compos-
ites, for example, interfacial tension and adhesion are primary factors in establishing
microstructure, strength, and mechanical properties.

Polymer blends are generally “structurally asymmetric” corresponding to species-
dependent local intramolecular features such as monomer shape, branch content, and
persistence length [9, 10] or aspect ratio. Such asymmetries are expected to have a
major impact on blend thermodynamics and phase diagrams, and can give rise to non-
Flory-Huggins miscibility behavior. The nonideal free energy of such mixtures involves
an excess entropic part due to athermal (packing) correlations induced by the structural
asymetries, and also an enthalpic part [11]. The Flory-Huggins like theories [12] describe
the dependence of the phase transition on the molecular weights of the two polymers,
the composition of the blend, and the interaction parameter χ [12, 13]. Differences in
the chemical structure may lead also to different spatial extension of the chemical repeat
units corresponding to different persistence length [9, 10], i.e. the stiffness disparities.
Such stiffness disparities may occur even in chemically very similar materials e.g., dif-
ferent polyolefins [14]. The phase behavior and the surface properties [15] of Polyolefins
[16, 17] with varying microstructure has recently attracted considerable interest. The
mixtures are often modeled [11, 16, 18, 19] as blends of flexible and semiflexible poly-
mers. Helfand and Sapse [20] extended the self-consistent field theory to Gaussian chains
with different statistical segment lengths. For infinitely long chains, in the strong segre-
gation limit, they have obtained analytical expressions for interfacial width ‘w’ and the
interfacial tension ‘σ’. Both increase upon increasing the statistical segment length of
one component, keeping χ and other components unaltered, see the chapter 2. Similarly,
Fredrickson and Liu [21] have obtained an expression of free energy for a mixture of a
flexible and semiflexible polymers based on two order parameters, the detailed is de-
scribed in chapter 2. Morse and Fredrickson [22] have studied polymer interfaces using
the self-consistent field theory. They have obtained analytic expressions for interfacial
width and interfacial tension both of which decrease with the increase in rigidity of the
semiflexible polymers. They considered a symmetric system of semiflexible polymers.

Fredrickson, Liu and Bates [18], and Liu and Fredrickson [23] have shown that a
small positive contribution to the Flory-Huggins parameter χ arises due to the stiffness
disparity of the chains. Similar results have been reported, by Singh and Schweizer [11]
using the polymer reference interaction site model (PRISM), by Freed and Dudowicz
[24] using the lattice cluster theories and by Mueller [25] in the Monte Carlo simula-
tions. As the back folding of the chains becomes less probable with increasing stiffness
and the number of intermolecular contacts increases the Flory-Huggins parameter χ in-
creases and reflects so the increase of the repulsive interaction between different types
of monomers. Worm like chain model [26] has been also used to study the stiffness
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disparity of the polymer blends.

Freed and Pesci [27] have obtained an entropic contribution to χeff that arises from
differences in monomer shape using lattice cluster expansion [28]. Weinhold and cowork-
ers [19] have estimated excess entropic contribution to the free energy of mixing of poly-
mer blends of different stiffnesses. Mueller has studied [29, 30] the phase behavior of
polymer mixture of flexible and semiflexible polymers by computer simulation for very
low stiffness disparity. This author has shown that the critical temperature, at which
two component phase separate, increases with the increase in stiffness of semiflexible
components in flexible-semiflexible polymer blend.

Gauger and Pakula [31] have investigated a mixture of flexible and very stiff chains
in the canonical ensemble and used the subblock method to analyze their simulation
data. Due to the stiffness and the excluded volume constraints, they found evidences
for a separation into a pure phase of stiff chains and a phase of mixed composition.
Further Yethiraj and coworkers [32] have investigated an athermal mixture of flexible
and stiff chains in the vicinity of hard walls. Their finding is an entropy-driven surface
segregation of the stiffer chains at melt like densities, because the stiffer species packs
more efficiently at the hard walls. For the general review of liquid-crystalline order in
polymer systems the reader is referred to an article by Holyst and Oswald [33].

It is well-known that when there is a large difference in flexibility, such as in a blend
of rods and coils, the system will phase separate for entropic reasons alone [34]. Liquid-
crystal polymers and their mixtures are studied both because of their practical utility
and due to fundamental interest [35, 36]. In the case of mixtures one wants to know how
the location of varoius phases, isotropic and nematic, and their transitions depend on
the properties of the two components, their rigidities, polymerization indices, interaction
etc. An approach to this problem requires a model for the liquid crystal polymers. New
high-performance materials which contain blends of small molecule liquid crystals or
liquid-crystalline polymers with flexible polymers are typically multidomain composites.
Since liquid crystals and liquid-crystalline polymers are quite stiff they mix poorly with
flexible polymers [21, 37]. In spite of the fact that interfacial tension plays an important
role to determine mechanical strength, adhesion and toughness of a polymer blend (as
described above), relatively little is understood about the role of backbone stiffness in
determining interfacial tension.

Most notably, Mueller and Werner [38] have studied the effect of the stiffness dis-
parity in the interfacial properties of the well segregated phases by using the Monte
Carlo simulations and compared their data with self-consistent field theory. They have
used the bond fluctuation model (BFM) [39]. Due to limitations of this lattice based
approach their work is restricted to rather small bending rigidities of the semiflexible
components. In their study the stiffest chain exceeds the stiffness of the flexible one only
by a factor of 1.5. Such a low stiffness disparity does not cover the whole range of the
semiflexible chains whose flexibility lies between completely flexible chain and stiff rod.
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As mentioned above polymer blends are structurally asymmetric. Bates and Fredrick-
son [16] have calculated excess free energy of mixing in polymer blend in which two
different types of monomers differ in volume. Sakurai et al. [40] have studied the effect
of segment size asymmetry on the scattering function. They used small-angled neutron
scattering techniques to study the effect of segment size asymmetry in the structure
factor. They have studied the phase diagram and obtained upper critical solution tem-
perature behavior. Pesci and Freed [41] have provided the theoretical description of the
computation of the corrections to the F-H approximation, heats of mixing for lattice
models of flexible polymer blends where the monomers may cover several lattice sites
and therefore have different sizes and shapes.

Computer simulation has become a major tool in polymer science, complementing
both analytical theory and experiment. The physics of polymer blends possess uni-
versality [1, 4, 42, 43]. Further in polymer blends the global material properties and
local interfacial properties are closely related. These properties of polymer blends make
them particularly suited for computer simulation [42]. The computer simulation can
simultaneously provide a detailed microscopic picture of the interfacial structure, and
information on the thermodynamics of the intefaces. Comparing to experiment, sim-
ulation provides a test of the microscopic model which has been used and comparing
to theories, they serve as a test of the theory within a well-defined microscopic model.
Moreover, they may provide structural information which may not yet be accessible ex-
perimentally or theoretically. They can thus contribute substantially towards a deeper
understanding of the connections between the microscopic parameters, the microscopic
structure and the macroscopic properties of a material [4]. For example, the Flory-
Huggins theory [12] is not free of uncontrolable approximations (see chapter 2). To test
the reliability of the theory, one needs to compare theory and experiments. However,
comparing theory with experiments is not sufficient because in most cases, the agreem-
net is not good, but one cannot tell whether the discripencies are due to inadequacies
of the model used in the theory or due to inaccuracies of the approximations. Since
the simulation can be performed on exactly the same model which the analytical theory
considers (but avoiding the uncontrolled mathematical approximations of the later), the
simulations provide “benchmarks” against which these theories can be reliably tested.
Such a test of Flory-Huggins theory is carried out by Deutsch and Binder [44, 45]. True
symmetrical monodisperse polymer mixtures hardly exist, and the temperature range
over which Tc(N) can be studied is limited by the glass transition temperature from
below and by chemical instability of the chains from the above. Simulations are free of
such limitations, of course, and can test such theories much more stringently than the
experiment.

In the present work also the phase behavior and interface properties of polymer
blends of different stiffnesses will be studied by using computer simulations. Further,
the interface properties of polymers with different monomer sizes which is referred as
‘monomer size disparity’ will be discussed. The main goal of the present work is to test

4



existing mean filed theories (dealing with the asymmetric polymer interfaces) using the
computer simulations. Further, the developement of off-lattice model [46, 47] to study
the unsymmetric polymer-polymer interfaces is also one of the main aims of the present
work. All the interface properties which characterize the interface for the stiffness dis-
parity system and monomer size disaprity systems are studied. The critical value of
Flory-Huggins parameter, χ, is estimated by the simulation data for the systems of low
stiffness disparity.

1.2 Scope of the Present Work

This section is devoted to the scope of the present work. First part of the chapter 2
deals with a general review of analytical theories which are used to study phase behav-
iors of polymer blends and polymer-polymer interfaces. The second part of the chapter
2 is devoted to discuss computer simulation methodology to study phase behavior and
interface properties of polymers.

The chapter 3 deals with different systems of study, model and technical details.
Three different systems of polymers namely, flexible-semiflexible system, flexible-stiff
rod system and polymers with different monomer sizes i.e., monomer size disparity have
been studied. The models which are used to study the interfaces of flexible-semiflexible,
flexible-stiff rod and system with monomer size disparity have been discussed. The tech-
niques to determine the interfacial tension by using virial theorem and capillary wave
spectrum are also presented.

In chapter 4 results will be presented and discussed. All the interface properties
which characterize interfaces namely, interfacial tension, monomer density profiles, in-
terfacial width, chain orientation near the interface, distribution of chain ends and center
of mass of chains have been studied for flexible-semiflexible polymers and system with
monomer size disparity. Studying interfacial properties at weak segregation limit (by
reducing Flory-Huggins parameter), the critical value of χ below which the two types
of polymers mix, have been estimated for flexible-semiflexible polymer systems. The
simulation data have been compared with the mean filed data.

The chapter 5 deals with our findings and consclusions. Further we briefly discuss
about an outlook on the future work.
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2 Phase Behavior and
Polymer-Polymer Interface

2.1 General Consideration

In this chapter, the theoretical methods which are used to study the phase behavior of
polymer mixtures and interface properties of two different types of polymer systems will
be discussed briefly.

All the theoretical methods that are used to study polymer interfaces can be catago-
rized as being either an analytical or a simulation technique. The analytical techniques
can be further classified as being either microscopic or phenomenological. The exam-
ples of microscopic approaches are lattice mean-field theories, self-consistent field (SCF)
theory, and certain scaling and renormalization group theories. Similarly, the examples
of phenomenological approaches include Landau theories of phase transitions [48] and
Cahn-Hilliard theory [49]. A big advantage of working with polymeric liquids, as well as
other types of mesoscopic systems in which the phenomena of interest occur at length
scales that greatly exceed the fundamental molecular dimensions (e.g. monomer size),
is that it is often possible to explicitly “coarse-grain” a microscopic description into a
phenomenological one, thus providing microscopic expressions for the phenomenologi-
cal coefficients. Simulation methods for studying polymer interfaces are almost always
based on microscopic models, but vary widely in the level of detail ascribed to the
monomers, the intermolecular potentials, and the realism of the molecular dynamics.
Simulations can be performed on lattices of various symmetries, or in continous space.
The techniques most commonly used for polymer simulations are Monte Carlo, Molecu-
lar Dynamics and Brownian Dynamics. Simulation methods will be discussed briefly in
section 2.4.

The complicated polymeric systems partly simplify the physics. For example, the
very fruitful approach to the study of the system near it’s critical point is based on the
mean-field Flory-Huggins free energy [12] and the de Gennes random phase approxima-
tion (RPA) [13] for the scattering intensity. de Gennes showed that the mean-field theory
is rather good for high molecular mass mixtures, in contrast to the low molecular mass
mixtures, for which the mean-field theory breaks down close to the critical point. Due
to the chain connectivity, the effective range of interactions between polymers, which
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is roughly the extension of the chains, becomes very large for high molecular weights
and according to the Ginzburg criterion, the critical region in which critical fluctuations
become important is very small as a result. The mean-field approach is qualitatively
correct if the correlation lengh ξ ∼ ( T

Tc
− 1) comparable or smaller than the typical

length scale in the system i.e. the radius of gyration ∼ √
N . When we compare two

length scales for large N, we find that the mean-field theory breaks down very close to
the critical point, i.e. for |T−Tc|

Tc
∼ 1

N
[3].

The phase behavior of binary and ternary polymer mixtures is of long standing inter-
est. For large molecular weight, the configurational entropy of mixing contribution to the
Gibbs free energy is strongly reduced in comparison with mixtures of small molecules,
therefore, many polymer mixtures are strongly incompatible. We are interested in such
strongly segregated systems i.e., far from critical region to study interface properties.
The systems in weak segregation limit will be studied to understand the phase behavior
of flexible-semiflexible polymer blends.

2.2 Phase Behaviour in Polymer Mixtures

2.2.1 Flory-Huggins Theory

Flory-Huggins theory [12] provides the reference framework for considering polymer
blend problems. Flory and Huggins [12] formulated a lattice model which captures
the essential features of the competition between configurational entropy of mixing and
enthalpy contributions. Based on the Flory-Huggins (FH) lattice theory, the free energy
of mixing ∆Fmix for an asymmetrical system (in which two types of monomers have
different sizes) is given by [50];

∆Fmix

kBT
=
φA lnφA

zANAv0
+

(1− φA) ln(1− φA)

zBNBv0
+
χABφA(1− φA)

v0
(2.1)

where zA = vA

vo
, zB = vB

vo
and vo is any reference volume, vi (i=A, B) is the volume of ith

type of a monomer, φA denotes the volume fraction of component A and incompressibility
is assumed. kB is Boltzmann constant and T is temperature. NA and NB are the degree
of polymerization of the A and B components respectively. Furthermore, the parameter,
χAB, denotes the degree of interaction between two types of segments, A and B, and is
a quantitative measure of the miscibility. Knowing the free enrgy, one can easily find
the binodal and spinodal curve [12, 13]. Further the critical value of χAB i.e., χc can be
obtained by third derivative of right hand side of 2.1 with respect to φA and it is given
by (for a system in which two types of monomers have equal size but different number
of monomers per chain);

χc =
1

2

(
1√
NA

+
1√
NB

)2

(2.2)
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If the value of χAB is less than χc, the two components A and B mix. For a symmetrical
system (NA = NB), this expression reduces to,

Nχc = 2 (2.3)

To derive Flory-Huggins free energy functional 2.1, they used several approximations.
Therefore, from a theoretical point of view, one can see following sources of errors.

• Flory-Huggins theory is a mean-field theory and so neglects those large composition
fluctuations that occur close to the critical point. It neglects any local composition
fluctuations also.

• In Flory-Huggins theory it is assumed that there is no change of volume on mixing
the two species and no extra space is created when the two polymers are mixed.

• The local structure of monomers may lead to difficulties in packing.

A huge amount of effort has gone into making a more refined theory of polymer mixtures.
Although many of the resulting methods have had their successes, no single improved
method has achieved universal applicability. Dudowicz and Freed [51] (see below) have
studied the local structure and packing effects whereas Schweizer and Curro [52] (see
below) has attempted to adapt methods to deal with small-molecule liquids. Despite all
its shortcomings, Flory-Huggins theory provides the reference framework for considering
polymer blend problems.

The critical behavior of binary polymer mixtures is itself a very interesting reserch
subject. Analyzing the critical behavior enables us to discuss the universality class of the
polymer mixture, and hence, one can investigate to what extent the mean field approx-
imation, which was first introduced to polymer systems by Flory, is correct. Therefore,
knowledge of the critical behavior characteristic of polymer mixtures is important from
a technical point of view when a precise determination of the critical temperature is
required.

2.2.2 Lattice Cluster Theory

Lattice cluster theory (LCT) is an extension of the Flory-Huggins lattice model. It is
able to distinguish polymer structural detail [53]. In LCT, a branched polymer can
be distinguished from a linear polymer, distinction that is not possible in the original
Flory-Huggins (F-H) formulation of the lattice model. Further, it is possible to include
contributions to thermodynamic properties from packing and induced local correlations.
As a result, χ which is strictly energetic in origin in the F-H model, also has an entropic
component in LCT. The model can be developed in a compressible (vacancies allowed)
or incompressible form. The LCT provides a solution to the lattice model beyond the
traditional F-H calculation by expanding the free energy in a double power series in 1

z
and

εij

kBT
where z is the lattice coordination number and εij is the interaction energy between
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monomers i and j. In the interaction energies, terms in the expansion are retained to
the second order. The LCT free-energy expression contains corrections to the FH lattice
energy expression that are in the form of a polynomial expression in the site fractions.
The coefficients in polynomial contain information that depend on polymer structure.
In this model, chain stiffness can also be incorporated by using a bend or flex energy. It
captures the detail effects of structure on polymer blend.

The standard lattice models consider the equal volumes for a monomer, a solvent
molecule and a void. Therefore, in blends also both types of monomers occupy the vol-
ume of a single lattice site. This deficiency has led in both the lattice and ‘equation of
state’ models to the introduction of a phenomenological unit volume and of a variety of
different composition dependent combining rules for describing this unit volume in mix-
tures. But Nemirovsky and coworkers [54] have considered more general lattice models
of polymer solutions in which different monomers can occupy different number of lattice
sites.

Nemirovsky et al. have considered calculations to a level of sophistication that ex-
ceeds that of Flory’s theory in order to describe the architecture dependence of ther-
modynamical properties of polymer melts, blends and solutions. The fact that different
sizes of monomers of two different types of polymers, say A and B, is believed to influ-
ence many thermodynamic and interfacial properties of these systems [55].

Pesci and Freed [41] have provided the theoretical description of the computation of
the corrections to the F-H approximation, heats of mixing for lattice models of flexible
polymer blends where the monomers may cover several lattice sites and therefore have
different sizes and shapes. They have obtained the corrections as an expansion in inverse
powers of the lattice coordination number z and the Van der Walls interaction energies
εij (in units of kBT ) using the convenient ordering recipe that z ∼ εij and considering
terms through order z−2.

2.2.3 PRISM

Schweizer and co-workers [56, 57, 58] have studied polymer melts and blends using poly-
mer reference interaction site model (PRISM) theory. PRISM theory is the polymeric
generalization of the RISM theory of Chandler and co-workers. The PRISM model al-
lows certain structural features of polymers to be incorporated. Each polymer structure
has a unique structure factor that, in principle, can be calculated. PRISM is unique
among the models used in study of polymers because it is able to incorporate details of
the polymer’s structure. The radial distribution function for all possible site-site pairs is
calculated using a series of coupled integral equations. To solve these integral equations,
some closure relations are necessary. These closure relations generally deal only with
repulsive interactions, as these interactions are thought to be the controlling factor for
polymer structure. The attractive forces between sites on the chain can be handeled in a
perturbation theory and are first order corrections to the theory. Using this theory one
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can calculate structure factors which can be used to see how blend miscibility is affected
by subtle structural differences. The only other model capable of distinguishing small
structural differences is the lattice cluster model of Freed and coworkers (see previous
subsection). PRISM can be used on any level of detail for polymer chain, from repre-
senting each atom in the chain to treating the chain as a Gaussian thread. An equation
of state can be obtained directly from the radial distribution functions calculated from
the PRISM formulation. Equation of state determined from the PRISM formalism are
far from inferior to those obtained by other methods [59, 60]. PRISM has ability to
deal with polymer blends. Solubility parameters for polymers can be calculated directly
from the radial distribution functions, by integrating the pair-pair energy function times
the radial distribution function. Subtle structural effects on blend miscibility can be
investigated systematically using PRISM. PRISM can also be applied to polymers with
gross differences in architectures. Block copolymers, star polymers, and ring polymers
can also be described with PRISM. PRISM can describe the structure of polymers with
varying stiffness also. Coarse-grained models can be used as first predictions of struc-
ture. It also fits simulation data (structure factors) of particular models quite well.

Singh and Schweizer [11] have studied the possibility of nonlocal entropy-driven
‘athermal phase separation’ in binary polymer blends. For the idealized gaussian thread
model, PRISM predicts no entropy driven phase separation [61, 62, 63]. Contrary to
PRISM predictions, Singh and Schweizer [11] have shown that for the more realistic,
finite thickness semiflexible chain model athermal phase separation is observed under
certain conditions. This arises from spatially nonlocal, nonrandom packing correlations
induced by local chain rigidity present in any realistic non-Gaussian model of polymer
structure. The entropy packing effects display many nonuniversal features including a
sensitive dependence on chain length, blend composition, monomer volume difference,
and both the mean and relative aspect ratios of the polymers. So, they have carried out
study of athermal spinodal phase diagrams and structural correlations for various values
of ratio of hard core diameters.

Weinhold et al. [19] have estimated quantitatively the excess entropic contributions
to the free energy of mixing of binary blends of two tangent hard sphere polymers of
different stiffnesses by performing computer simulations and compressible PRISM calcu-
lations under constant density conditions. Their results show that the stiffer component
in the mixture is stabilized on blending while the flexible component is destabilized on
blending. It should be noted that the PRISM theory considers length scales of monomer
levels. To compare the analytical results with simulations they have used off-lattice
model. The Monte Carlo simulation method used standard reptation, crankshaft moves,
and chain identity exchanges [42]. In their study they do not consider very high stiffness
disparity.

10



2.2.4 Landau-de Gennes Free Energy Functional

Liu and Fredrickson [21] have calculated a free energy functional that depends on two
order parameters, namely the concentration and orientational density of polymer seg-
ments. The phase behavior of flexible polymers is described in terms of a single order
parameter (see above), which is composition of one type of polymers. However, due to
the fact that individual monomers may have a rigid, anisotropic character, a description
of stiff polymers must include the orientational density as a second order parameter.
To describe both the isotropic-nematic transition and ordinary phase separation, they
have expanded to arbitrary order in concentration and up to fourth order in orientation
density, by combining a density functional theory with a Landau-de Gennes theory for
the orientational order parameter. They have used a microscopic model of wormlike
chains rather than Gaussian chains to calculate the expansion coefficients. They have
explicitly computed the coefficients of the terms in the free energy expansion, so they
are not unknown parameters. The nonlocal terms in both the concentration and the ori-
entational density are included. The expression for the free energy functional obtained
by Liu and Fredrickson is the following;

F = FFH + FLdG (2.4)

where FFH is the usual Flory-Huggins free energy density (see equation, 2.1) and,

FLdG =
1

2
(B − w) S̄2 − C

3
S̄3 +

D

4
S̄4 (2.5)

where S̄ is the orientational order parameter, w is the Maier-Saupe parameter and the
coefficients B, C, D represent the entropic cost of orienting chains and depend up on
the flexibility parameter, κ (the ratio of elastic bending constant to the thermal energy),
and φ, composition of poymers. κ defines the flexibility of the polymers and it gives the
persistence length in units of bond length.

Using above free energy functional one can study phase behaviors of flexible and semi-
flexible polymers. Lee et al. [64] have studied the phase behavior of liquid crystalline
polymer/model compound mixtures using this free energy functional. Their experimen-
tal data agree very well with that obtained from the expression 2.4.

2.3 Polymer-Polymer Interfaces

2.3.1 Overview of Square Gradient Theory

To predict the width and interfacial tension of polymer-polymer interfaces in detail we
need to go beyond a description of the thermodynamics of spatially uniform mixtures
to include the effect on the free energy of concentration gradients. A detailed derivation
of the square gradient term relies on the use of the random phase approximation (RPA)
[13]. If one is considering polymer-polymer interface such that two types of monomers
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not only have different segment lengths, bA and bB but also different volumes (vA and
vB, for type A and type B monomers respectively), then free energy functional takes the
form [50];

∆F

kBT
=
∫
d�r

1

vo

[f [φ(�r)] +
1

36

[
b2A

zAφ(r)
+

b2B
zB(1− φ(r))

]
|∇(φ)|2] (2.6)

where

f [φ(�r)] =
φ lnφ

zANA

+
(1− φ) ln(1− φ)

zBNB

+ χφ(1− φ) (2.7)

is the Flory-Huggins free energy density, zA = vA

vo
, zB = vB

vo
and vo is any reference

volume.

For a symmetric polymer-polymer interface (when bA = bB, zA = zB and NA = NB)
above free energy functional gives the following expressions for interfacial width and
tension near the critical point. The interfacial width ‘w’ and tension ‘σ’ are given by [1],

w =
b
√
N

3

(
χ

χc
− 1

)− 1
2

(2.8)

and
σ

kBT
=

9

b2
√
N

(
1− χc

χ

) 3
2

(2.9)

for χ → χc respectively. In equations 2.8 and 2.9, b is statistical segment length kB is
the Boltzmann constant, T is the temperature and N is degree of polymerization. From
equation (2.8) and (2.9), we find that the interfacial tension vanishes and the interfacial
width becomes indefinitely wide as the two phases merge into one.

All of the square gradient theory is derived on the assumption that concentration
gradients were small compared with the overall size of the chain. But in the non-critical
regime (in the strong segregation limit) interfacial widths are already smaller than the
overall size of the polymer. Therefore, the square gradient theory valids only near to
the critical region [1, 6]. But square gradient theory gives corect qualitative conclusions
even for the strong segregation regime.

To obtain more accurate results, particularly for situations in which composition gra-
dients are steep on the scale of the polymer radius of gyration, we need to keep track of
the polymer configurations in more detail. This way is provided by self-consistent field
(SCF) methods. Helfand and Tagami [65] have studied symmetric polymer-polymer
interfaces following SCF methods, Helfand and Sapse [20] have studied unsymmetric
polymer-polymer interfaes by applying SCF methods. Using SCF methods they have
obtained analytic expressions for interfacial tensions and interfacial width.
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2.3.2 Self-Consistent Field (SCF) Theory

Helfand and Tagami [65] have studied the internal polymer-polymer melt interface. They
adopted the self-consistent field formalism of Edwards to the case of a symmetrical, flat
interface between two molten, flexible homopolymers. Apart from the energetic contacts
between type A and type B monomers, described by a Flory χ parameter, they recognized
the importance of cohesive forces that maintain nearly uniform density in polymer melts.
After prescribing the form of the interactions, they followed the Edward’s procedure of
generating statistical weights for the two types of chains via the solution of modified
diffusion equations. After framing the problem, they recognized that a full solution to
the nonlinear diffusion equations was not required; rather, only the steady state (ground
state approximation) solution was needed to capture the interfacial thermodynamics
in the limit of infinite molecular weight. In the incompressible limit, the form of the
interfacial composition profile is ‘tangent hyperbolic’. The interfacial width ‘w’ and
tension ‘σ’ are given by following expressions;

w =
b√
6χ

(2.10)

and,
σ

kBT
= ρob

√
χ

6
(2.11)

respectively, where ‘b’ is the statistical segment length, ρo is the uniform number density
of monomers, kB is the Boltzmann constant, T is the temperature and χ is the Flory-
Huggins interaction parameter. A follow-up paper by Helfand and Sapse [20] extended
above approach to asymmetric melt interfaces in which the two pure polymer components
differ in statistical segment lengths, bi, and/or segment volumes, vi (i =A or B). In their
contribution, Helfand and Sapse have defined a parameter,

β2
i ≡ 1

6
ρ0ib

2
i (2.12)

for both types of chains and difference in βi’s measures the asymmetry between different
types of polymers. They solved the diffusion equation

∂qi(�r,N)

∂t
=

(
b2i
6
∇2 − Ui(�r)

kBT

)
qi(�r,N) (2.13)

where qi(�r,N) is proportional to the probability density that the end of a molecule of
type i(i = A,B) and degree of polymerization N is at �r, Ui(�r) is the external field which
is replaced by ∆µ∗i (�r) i.e., the work of bringing a unit of i from bulk i to the point �r. It
is given by,

∆µ∗A(�r) =

(
∂∆f ∗[ρ̃A(�r), ρ̃B(�r)]

∂ρA

)
ρB

(2.14)

where ∆f ∗ is the free energy density of a hypothetical mixture of densities ρA, ρB, less
the free energy density of the material in bulk. The density of species i at �r can be
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written,

ρi(�r) =
ρ0i

Zi

∫ Zi

0
dNqi(�r, Z −N)qi(�r,N) (2.15)

where prefactor on right hand side slightly modified for Z finite. Equations 2.13,2.14
and 2.15 form a closed set of SCF. They solved the SCf equations employing folowing
assumtions;

• random mixing,

• no volume change on mixing,

• small compressibility, κ, and

• κ independent of composition.

Considering zeroth order in compressibility, they have obtained analytic expressions for
interfacial tension (‘σ’) and width (‘w’) which are given by;

σ

kBT
=

2

3
(χ
√
ρ0Aρ0B)

1
2

(
β3

A − β3
B

β2
A − β2

B

)
(2.16)

and,

w =

(
β2

A + β2
B

2χ
√
ρ0Aρ0B

) 1
2

(2.17)

We compare the simulation data with data obtained from these expressions. But in
their study, to obtain these expressions they did not consider the orientation of chains
near the interface. For the chains which are very stiff the orientational effect is impor-
tant as the chains orient parallel to the interface.

Schmid and Mueller [66] have compared self-consistent field (SCF) theories for poly-
mers near interfaces with Monte Carlo simulations quantitatively. These authors have
considered a planar interface between immiscible phases in a symmetric polymer blend
in self-consistent filed for flexible (Gaussian) and semiflexible chains. Within the frame-
work of SCF theory, they have defined the end-segment distribution functions,

Qi(�ro, s) =
∫
D̂(�r(.)) exp

[
−
∫ s

0
ds′Wi(�r(s

′))
]
δ(�ro − �r(s)) (2.18)

(for Gaussian chains) and,

Qi(�ro, �u, s) =
∫
D̂(�r(.)) exp

[
−
∫ s

0
ds′Wi(�r(s

′))
]
δ(�ro − �r(s))δ(�uo − �u(s)) (2.19)

(for semiflexible chains).
Where Qi(�ro, s) is end distribution for flexible chains, s varies from 0 to 1 and the func-
tional integral D̂(�r(.)) depends upon the assigned statistical weights which depend upon
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stiffness. Wi(�r) is the external field acting on the chain and depends upon coarse-grained

free energy functional which can be obtained from monomer density φi(�r). �u = d�r/ds
Na

is a dimensionless tangent vector constrained to unity. The end distribution functions
obey the diffusion equations,(

1

N

∂

∂s
− 1

6
b2∇2

�r +Wi

)
Qi(�r, s) = 0 (2.20)

(for Gaussian chains) and,

(
1

N

∂

∂s
+ a�u∇2

�r −
1

2η
∇2

�u +Wi

)
Qi(�r, �u, s) = 0 (2.21)

(for semiflexible chains)
with initial condition Qi(�r, 0) ≡ 1 (Qi(�r, �u, 0) ≡ 1), the laplacian on the unit sphere ∇2

�u,
η is the dimensionless stiffness parameter given by, η = b2

2a2 , a is monomer length, b is
statistical segment length and N is the number of monomers per chain. The average
density of type i is given by,

φi(�r) =
∫ 1

0
dsQi(�r, s)Qi(�r, 1− s) (2.22)

(for Gaussian chains) and,

φi(�r, �u) =
∫ 1

0
dsQi(�r, �u, s)Qi(�r, �u, 1− s) (2.23)

for semiflexible chains. The equations 2.18(2.19), 2.20(2.21) and 2.22(2.23) complete
the cycle of self-consistent equations. After solving these equations they have calculated
the distribution of chain ends and other interfacial properties for example, monomer
density profile, interfacial width, interfacial tension, distribtuion of bond vectors and
orientation of chains. They have compared their results of self-consistent field theory
with Monte Carlo data. Their results show that interfacial width decreases with the
increase in stiffness of semiflexible chains, the interfacial tension (in simulation) at large
χN is higher than would have been expected in an incomressible system of Gaussian
polymers. The concentration profile resembles a simple tangent hyperbolic profile. For
the chain orientation self-consistent field theory predicts a slightly too strong alignment.
The depth of the dip in concentration profile for semiflexible chains of low stiffness
(η ≤ 4) from SCF theory agrees very well with that of simulation results.

2.3.3 Landau - de Gennes Free Energy Functional

Liu and Fredrickson [67] have studied interfaces between polymers of different flexibili-
ties. By adding a gradient term in the free energy functional (2.4) they have obtained
free enrgy functional for the system with interfaces. The expression for the free energy
functional by Liu and Fredrickson is the following;

F = FFH + FLdG + Fgrad (2.24)
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where FFH and FLdG are already defined (equation 2.1 and 2.5) and Fgrad is given by;

Fgrad =
1

2
L1(φ)(∂kS

ij)
2
+

1

2
L2(φ)∂iS

ik∂jS
jk − L0(φ)∂iφ∂jS

ij +
1

2
M0(φ)(∇φ)2 (2.25)

where S̄ is the orientational order parameter and the coefficients in the expansion de-
pend up on κ’s (the ratio of elastic bending constant to the thermal energy) and φ.

Using above free energy functional these authors have studied interface properties
of isotropic semiflexible blends [67]. For asymmetric interfaces their expressions for
interface width (‘w’) and tension (‘σ’) are given by;

w =

√
2

3

(
(κA + κB)a

2
0

χ

) 1
2

(2.26)

and

σ

kBT
=

4

9a2
0

√
χ
κ

3
2
A − κ

3
2
B

κA − κB
(2.27)

where a0 is the monomer length.

2.4 Study of Polymer Blends by Simulation

2.4.1 Models

Phase behavior for mixtures of simple fluids can be simulated taking into account full
atomistic detail with chemically realistic forces. It is sufficient to simulate small boxes
containing atoms or molecules in the order of 103 [42], except from the region near a
critical point in Monte Carlo or Molecular Dynamics methods. These methods work
because fluids off critical points are already essentially homogeneous on a length scale
of 10 Å and staying away from the glass transition region. However, the situation is
fundamentally different for mixtures of polymers. This is due to varying length scales
for example, a single chain exhibits structure in the length of a chemical bond (≈ 1 Å)
to the persistence length (≈ 10 Å) to the coil radius (≈ 100 Å) to the correlation length,
ξ, which has lower bound (≈ 100 Å) of concentration fluctuations [42].

In this chapter we breifly discuss about various simplified models used in computer
simulation of polymers. There is no unique way to construct coarse-grained models of
polymer systems. The choice of model very much depends on the physical problems that
one may wish to address and also many details are fixed from the desire to construct
computationally efficient simulation algorithms. All the models used in computer simu-
lations are either off-lattice models (which are performed in continuous space) or lattice
models (which are performed in various symmetries of lattices).
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Figure 2.1: Models used to study polymers. (a) is a two dimensional lattice model, (b) is
perl necklace, off-lattice model and (c) is the bead spring, off-lattice model.

The simplest lattice model considers a regular lattice where each effective bead of
the polymer takes a single lattice site, and bond connecting two beads is just a near-
est neighbor link on the lattice. Figure 2.1(a) shows a two dimensional square lattice
model. Since each lattice site can at most be occupied by one bead, the walk cannot
intersect itself and thus an excluded volume interaction is automatically included. The
lattice algorithm that is now most widely used for the simulation of many-chain sys-
tems is the bond fluctuation model [39, 42] (not shown in the figure). This model is in
an intermediate between lattice (self avoiding walk) model and the off-lattice models,
because the vector that connects two monomers can take 108 values in three dimensions.

Figure 2.1(b),(c) show off-lattice models for polymer chains. The perl necklace model
in figure 2.1(b) is an athermal model. In this model, by a proper choice of the ratio d

l

(where d is diameter of a bead and l is bond length), one can ensure automatically that
chains cannot cross eachother if they respect excluded volume restrictions. The chain
consists of hard spheres of diameter d and fixed length l. The bead-spring model shown
in figure 2.1(c), can be used not only for Monte Carlo but also for Molecular dynamics
and Brownian dynamics simulations. It often is advantageous not to use a simple har-
monic potential for the bond lengths but rather allow only a finite extensibility of the
chains.

2.4.2 Simulation Methodology

In the simulation of polymer blends mainly used methods are Monte Carlo (MC), Molec-
ular dynamics (MD) and Brownian dynamics (BD). The MC method is a stochastic
strategy that relies on probabilities. In MC simulations of polymer blends there could
be several interacting potentials (for example see chapter 3, for our model) like ex-
cluded volume, connectivity between two consecutive beads, interaction between differ-
ent types of beads and potential controling the angle between subsequent bonds along
a chain (in semiflexible polymers), etc. These potentials then enter the transition prob-
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ability W (φ) = Min
(
1, exp

(
− δE

kBT

))
where δE is the energy change produced by the

change of configuration. According to standard Metropolis sampling (which is used in
the present work), the trial move is only carried out if W (φ) exceeds a random number
ζ distributed uniformly in the interval from zero to one, since then one generates an
ensemble of configurations (when equilibrium is reached) distributed according to the
canonical Boltzmann weights. In the MD simulation each monomer i of the system
moves according to Newton’s equations of motion. In contrast to MC, chances plays no
part in MD. BD is nothing but the numerical solution of the Smoluchowski equation
[68]. The method exploits the mathematical equivalence between Fokker-Planck type of
equation and the corresponding Langevin equation [69].

In a simulation of polymer blends there are two distinct aspects: one is the gen-
eration of equilibrium configurations of dense polymer melts and the relaxation of the
configurations of individual chains. For lattice model, dynamic Monte Carlo methods
such as combinations of ‘kink jump’ and ‘crankshaft rotation’ algorithms [42] or simple
hops of effective monomers in randomly chosen lattice directions (in the case of bond
fluctuation model [39]) or the ‘slithering snake’ technique are used for the equilibration
of the configurations. These algorithms need a nonzero concentration of vacancies. How-
ever, for off-lattice model, the most widely used algorithm is random hoping. Watching
the decay of the component of the end-to-end vector in the direction of the initial state,
as disorder diffuses in from the ends of the chains into their interior as time passes, one
can make sure that all ‘memory’ of the initial nonrandom state is lost. The second as-
pect is relaxation of the long wavelength degrees of freedom related to phase transitions
occuring in the studied system, for the unmixing of polymer blends, these are long wave-
length Fourier components of the volume fractions of species A, B in the system. If the
total numbers of both A-chains and B-chains are kept fixed, the conservation law of the
concentration leads to “hydrodynamic slowing down” [42] of these Fourier components,
i.e., extremely slow relaxation. The situation is worse near the critical point. It is due
to an anomalous growth of relaxation times which is called “critical slowing down” and
in addition there are severe finite size effects on the transition [42, 70].

The problem of ‘hydrodynamic slowing down’ can be avoided for symmetrical (as well
as weakly asymmetrical) polymer mixtures by carrying out the simulation in the semi-
grand-canonical ensemble rather than the canonical ensemble: only the total number of
chains n = nA + nB is fixed, while the ratio φA

(1−φv)
, φA= number density of A types of

monomers and φv =number density of vacancies, fluctuates in equilibrium with a given
chemical potential difference ∆µ = µA−µB between the chains with φA+φB = 1−φv =
constant. Thus in addition to the moves necessary to equilibrate the coil configuration,
one allows for moves where an A-chain is taken out of the system and replaced by B-chain
or vice-versa. The transition probability for the “semigrandcanonical” moves where one
goes from an old configuration (c) to a new configuration (c′) via an “identity switch”
of a chain (A ⇀↽ B), is given by;

W (c→ c′) = Min

(
1, exp

[
∆µ(M ′ −M)Nn

2kBT

]
exp

[−(E − E ′)
kBT

])
(2.28)
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where E, M are energy and order parameter of the old configuration and E ′, M ′ refer
to the new configuration, kB is the Boltzmann constant, T is the temperature and N is
the number of polymerization.

In principle, this semigrandcanonical ensemble procedure could be generalized to the
asymmetric case (NA �= NB or bA �= bB or VA �= VB or combination of these, where Ni

(i=A,B) are the number of monomers per chain, bi are the statistical segment lengths
and Vi are the volumes of monomers), but such moves would almost always fail in a
dense system due to excluded volume constraints. In the thermodynamic limit, where
nA, nB → ∞, the different ensembles of statistical mechanics yield completely equiva-
lent results, and for such equilibrium properties it then does not matter whether one
computes them in the garnd-canonical ensemble (both µA and µB are given separately,
nA and nB can fluctuate independently from each other), the semi-grand-canonical en-
semble, or the canonical ensemble (where both nA and nB would be fixed, while µA

and µB would both be fluctuating). Since experiments are done in canonical ensembele
only, and chain “identity switches” do not occur but due to this equivalence between
the statistical ensembles that distinction does not matter, in the thermodynamic limit.

Now we discuss methods to study the phase behavior in equilibrium. One approach
is the generalization of techniques for the estimation of chemical potentials in dense
polymer systems to chemical potential differences. However, this approach is hampered
by the slow relaxation effects (hydrodynamic as well as critical slowing down). Another
technique is based on the calculation of the structure factor S(q). As shown first by
Sariban and Binder [71], in the framework of a semigrandcanonical simulation, one can
estimate the spinodal curve from a linear extrapolation of S−1(q → 0) versus ε

kBT
and

then estimating the temperature T where S−1(q → 0) =0 for various concentrations
yields an estimate of the spinodal curve.

However, for a strong asymmetry between two different types of monomers and lim-
ited computing facilities no method described above can be applied. We have studied
the phase behavior of flexible-semiflexible polymer systems by studying the interfacial
properties. As described in the previous section, from equation 2.27 and 2.26, one can
estimate the critical value of Flory-huggins parameter, χ by analyzing the interface prop-
erties in weak segregation limit. When the value of χ decreases the interfacial tension
decreases and finally it vanishes for χ = χc. Similarly, when the value of χ decreases
the interfacial width increases and finally it diverges for χ = χc. By comparing the sim-
ulation data with equation 2.27, we can estimate the critical value of χ. In the present
work this method is followed.

The study of polymer-polymer interfaces by computer simulation also is not free of
difficulties. for example, very large system sizes are required to investigate, e.g. the
effect of capillary wave broadening. Inhomogeneous system of long flexible polymer
melts (with χ << 1) can be described by two parameters; χN and Rg (or Re), where N
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is the number of monomers per chain, Rg is the radius of gyration and Re is the end to
end distance of the chain [4]. However, for a polymer system of highly stiff chains [22]
or two types of polymers have large value of χ, i.e., the system is in strong segregation
limit [38] another length, lp (persistence length, see page 27) which characterizes the
length of the chain over which the monomers are still strongly correlated, also should be
taken into account.
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3 Systems, Model and Technical
Details

3.1 General Consideration

We study interface properties of two different types of systems; (1) the first type
of systems consist of interfaces between polymers of different stiffnesses which is called
‘stiffness disparity’, and (2) the second one consist of interfaces between polymers
having different sizes of monomers which is called ‘monomer size disparity’. In the
first case, apart from interface properties, the phase-behavior of polymer blends with
low stiffness disparity also has been studied. The models for these two types of
systems are different and described in section 3.2 and 3.3 respectively. To study inter-
face properties and phase separation for the systems outlined above, a numerical code
based on coarse grained continuous-space (off-lattice) model, has been developed.
Our approach differs significantly from the previous numerical studies which use lattice
models almost exclusively [42]. For the systems with interfaces continuous space (CS)
model serves better than the lattice model. Besides their inherent spatial isotropy and
the absence of pinning the CS models offer a simple way to determine surface tension
by measuring the pressure tensor which is one of the main goals of this work. Off-lattice
polymer constructions [7, 42, 46], in which varying angles and free rotation about the
covalent bonds are permitted, which is not possible due to restricted geometry in lattice
models, is a more general way than the lattice models to create the semiflexible chains
of any stiffness. Further provided the forces are short ranged, theoretical work [72]
suggests that interfaces in the continuum exhibit no roughening transition. Moreover,
lattice model is not a suitable choice to study monomer size disparity system.

The coarse-grained model can be obtained by combining n successive covalent bonds
along the backbone of a polymer chain into one effective segment. The coarse-graining
is done in such a way that the large-scale geometrical structure of the polymer coil is
left invariant, e.g; properties such as radius of gyration of the coil and the probability
distribution of its end-to-end distance are the same for the coarse-grained model and for
the chemically detailed model. This invariance of long wavelength properties can be re-
alized by introducing suitable potentials in the coarse grained model which control bond
lengths of the effective bonds, angles between effective bonds along the sequence of the
coarse-grained chain etc.. In coarse grained models, one loses the relevant information
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on a very small length scale only [42]. Coarse grained models which retain a minimal set
of relevant polymeric properties like, the connectivity of the macromolecules along the
bakbone, the excluded volume of the beads, and short ranged thermal interactions have
proven extremely efficient in investigating the universal thermodynamic properties of
polymeric multicomponent systems. Simulations performed on this coarse-grained level
require only a small number of parameters to compare with experiments and analytical
theory quantitatively [4].

Coarse grainning can be done in both lattice model and in off-lattice model. There
is no unique model description of a polymer chain system; infact, for different physi-
cal questions somewhat different models are optimal. For example, constant pressure
simulations of lattice models are difficult, whereas their implementation is relatively
straight forward for off-lattice models. Even at constant volume, off-lattice models have
the advantage that the pressure and the interfacial tension can be measured via the
virial theorem [7, 73, 74]. Moreover, off-lattice models are useful to capture hydrody-
namic flow in molecular dynamics simulations because by construction coarse grained
CS model keeps the long wavelength properties invarient. At the same time, off-lattice
models are more demanding with respect to computational resources while model like
bond fluctuation and other lattice models are well suited to the study of polymer melt
dynamics, the glass transition etc. [42].

3.2 Model for Stiffness Disparity

3.2.1 Model

We performed computer simulations of the interface properties of a three dimensional
phase separated sandwich-type system of flexible and semiflexible polymers. Figure 3.1
shows a typical snapshot of such a system.

As chain models a coarse grained continuous space model has been used. This off-
lattice model provides a more direct way, by setting restriction on bond angles, to
generate the semiflexible chains and allows the investigation of chains of any stiffness.
The polymer chains are modeled using the rod-bead model [42, 7] by a succession of
jointed spherical monomers. Each chain consists of N (with N =32) spheres of equal
diameter dmin =

√
3 which are connected by (N-1) bonds of variable length dmin ≤ d

≤ dmax ≈ 4
3
dmin. In our model the excluded volume is taken into account by the following

potential, Vex(r), between any two beads separated by a distance r;

Vex(r) =

{
0 , if r > dmin (diameter of the monomers)
∞ , else.

(3.1)

This excluded volume potential between any two beads is shown in the figure 3.2.
Similarly, the connectivity of chains is taken into account by following potential,

Vcon(r), between any two consecutive beads of a chain at a distance r;
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Figure 3.1: A typical system of study in which green monomers are from flexible chains
and red from semiflexible chains whose flexibility varies from flexible to al-
most stiff rod.

Vex(r)

0

dmin r

∞
0

Figure 3.2: Excluded volume potential between any two beads separated by a distance
r in stiffness disparity system.

Vcon(r) =

{
0 , if dmin ≤ r ≤ dmax

∞ , else
(3.2)

where dmin and dmax are already defined. The potential of connectivity Vcon(r), between
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two successive beads of a chain is shown in the figure 3.3. In the same way as in ex-

Vcon(r)

0

dmindmax r

∞∞
0

Figure 3.3: connectivity potential between two consecutive beads of a polyme chain.

cluded volume and connectivity, the potential for the bending restrictions (in semiflexible
chains) also is a stepwise potential see figure 3.4. Therefore, the bending restrictions is
defined by the following potential;

Vbending(θ) =

{
0 , if θ < θmax

∞ , else

where θ is the angle between any two consecutive bond vectors of a semiflexible chain
(see figure 3.5) and θmax is maximum angle between two consecutive bond vectors of
a semiflexible chain permitted in the system. Choosing different values of θmax we can
generate semiflexible chains of any stiffness, ranging from flexible to stiff rod.

Vbending(θ)

0 θmax

0 ∞

θ

Figure 3.4: Bending potential for a semiflexible chain. θ is the angle between any two
consecutive bond vectors of the chain.

Semiflexible chains in which the angle between two consecutive bond vectors (θ in
Figure 3.5 ) is not larger than 90◦, 75◦, 60◦, 45◦, 30◦, 15◦ and 5◦ (the stiffest case
studied which is refered through out the present work as almost stiff rod) are generated.
The whole system consists of 512 flexible and semiflexible chains respective.

The interaction between segments which are not jointed directly is also modeled
by a stepwise potential. For simplicity, we assume that the interaction between equal
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Figure 3.5: Semiflexible chain model. θ ≤ θmax, the maximum angle chosen between two
consecutive bond vectors.

types of monomers A and B (type A for flexible chains and type B for semiflexible
chains), VAA = VBB = 0 and a repulsive potential acts between different monomers
VAB = kBTε where kB is Boltzmann constant and T is temperature and ε is the repulsive
interaction parameter between different types of beads and ε = 0.1 to study the interface
properties in strong segregation limit. However, to study phase behavior using the
interface properties of weak segregation limit the value of ε is decreased. Therefore,
ε is related to the Flory-Huggins parameter, χ, [12] in this model (see below). The
interaction potential is depicted in figure 3.6. The assumed range of the interaction
between two different types of monomers is denoted by d2type, in the present work, and

it has value ∼
√

5
3
dmin. This interaction potential between any two different types of

monomers can be expressed by following equation;

VAB(r) =



kBTε , if dmin < r < d2type

∞ , if r < dmin

0 , if r > d2type

where VAB(r) is the interaction potential between monomers of type A and type B
separated by a distance r. This potential is shown in the figure 3.6.

For estimations of the Flory-Huggins parameter the average number of interchain
contacts zeff of a monomer within a sphere of radius of the interaction range is deter-
mined for the pure components. The Flory-Huggins parameter

χ =
zeff,flex + zeff,stiff

2
· ε (3.3)

increases slightly with increasing stiffness of the semiflexible component because in the
semiflexible chains the contacts of monomers from other chains increase. For the flexible
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VAB(r)
kBT

0

dmin
d2type r

ε∞

0

Figure 3.6: Interaction potential between two different types of beads at a distance r.

chains χ is 0.32 and it is 0.366 for the stiffest case studied for ε = 0.1 (see above). The
value of Nχ is much higher than two and therefore our results correspond to strongly
immiscible blends and a stable interface can be expected for ε = 0.1.

3.2.2 Generation of Chains and Equilibration

To generate a system of stiffness disparity, 32 random walk chains (flexible chains) with
random bond length distribution dmin ≤ d ≤ dmax with no overlap with next nearest
neighbors within the chain [7] are generated. Other 32 random walk chains (semiflexible
chains) are generated by setting additional constraint on the bond angles between two
consecutive bond vectors of a chain viz; 0 ≤ θ ≤ θmax where θ is angle between two
consecutive bond vectors of a chain and θmax is the maximum angle between two con-
secutive bond vectors of a chain chosen in the system of study. To generate the interface
initially we have considered the initial box having three compartments in which the mid-
dle one has volume double than that of both sides (this simulation box has dimensions
64× 16× 16). One fourth of both sides of the box (along x-dimension) occupy flexible
chains and the remaining half of the box in the middle with semiflexible chains ran-
domly. Therefore, there are two interfaces located at 1

4
th and 3

4
th of the x-dimension of

the box. The overlaps between the segments are removed by stepwise increase (“blowing
up”) of the diameter of the spherical monomers followed by Monte Carlo steps. This
process is started with the minimum distance of any non directly connected monomers
and repeated until the minimum distance between any two monomers is equal or greater
than dmin. After removing the overlaps the size of the system is doubled by shifting y
and z coordinates to get a system of 256 chains in a 64× 32× 32 - parallelepiped. We
further multiply the system by shifting y and z coordinates to get finally the system
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of study with 1024 chains in a 64 × 64 × 64 - cube. Figure 3.7 shows one of such a
system which contains flexible chains and semiflexible chains with lp

a
=2 where lp is the

persistence length (see page 27) and a is the average bond length (see below).

Figure 3.7: Initial configuration for a system with flexible chains and semiflexible chains
of persistence length ( lp

a
)= 2.

Since the systems of study considers also very high stiff chains which form a nematic
phase, such a very stiff chains are generated in a different way than described above. We
tried to get equilibrium configuration for systems in which persistence length ( lp

a
) of the

semiflexible chain is greater than 13.6 following the method described above. However,
the system containing highly stiff chains form several domains (within a domain the
chains allign parallel to each other) and we could not get monodomain phase separated
equilibrium system. Therefore, to generate a system with highly stiff chains, persistence
length greater than 13.6, and flexible chains, we follow the method described below.
First, 512 stiff chains each chain containing 32 monomers are generated. All the chains
allign parallel to Z − axis of the simulation box and occupy middle half portion of the
box having dimensions 64×64×64. We performed random movement of the stiff chains
(along Z-axis) such that the mean squared displacement (MSD) of the center of mass
of chains is a few times of R2, mean squared end to end distance. The flexible chains
which were already equilibrated occupy either side of the box whose center of mass is
fixed to the 1

4
th of both sides of the box. The number of flexible chains is 512. After

having the system of flexible-stiff chains the overlapping between any two monomers is
checked. The diameter of both types of monomers is dmin. Then Monte-Carlo moves
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were performed as described below for both types of the monomers with suitable angular
restriction between two consecutive bond vectors of a stiff chain.

The interfacial properties of flexible polymers and liquid-crystalline polymers [9] de-
pend upon the direction of nematic director (for example, see [75] for macromolecular
systems and [76] for small molecular systems for the dependence of interfacial properties
on direction of nematic director in isotropic-nematic interface). In the present study
the most stable case in which nematic director is parallel to the interface plane will be
considered.

For equilibration and thermodynamical averaging, we perform Monte-Carlo steps ac-
cording the standard Metropolis algorithm with random choice of a monomer and cyclic
choice of one of the six directions along the coordinate axes (see the flow diagram). A
move is accepted according to transition probability P (E) = Min(1,exp(− δE

kBT
)) > ζ

where δE is difference of energy of new and old configurations, kB is Boltzmann con-
stant, T is temperature and 1 > ζ > 0 is a random number. The length of an attempted
step between zero and a maximum step length ∼ 0.23 × dmin is chosen randomly. To
accelerate the tests for hard-core overlapping and the calculations of the interaction en-
ergy after each attempted move, we follow the standard way by dividing the simulation
box into cubic cells of size lc with single occupancy and checking the particles in the
neighborhood of the moved particle only. Single occupancy is realized by the choice
dmin =

√
3× lc. The details of the linked cell method are described in [77, 78]. Further

Auhl [7] has applied the linked cell method for the flexible-flexible polymer systems.
However, for semiflexible chains we have to check angle between two consecutive bond
vectors of the chain (see the flow diagram). Two well defined interfaces are enforced in
the canonical ensemble in a thick film geometry (L × L × L), with periodic boundary
conditions in all the three directions. The interfaces are on average located in 1

4
th and

3
4
th of the x-dimensions of the simulation box. A Monte Carlo step for a monomer from

flexible chain and a monomer from semiflexible chain are described in the flow diagram,
figures 3.8 and 3.9.

To know whether a system has attained equilibrium configuration, the following cri-
terion is used. The parallel and the perpendicular (parallel and perpendicular according
to the interface) components of the radius of gyration Rg and the displacement of center
of mass of chains against the simulation time are monitored. According to this cri-
terion, system with interfaces will be expected in equilibrium when the mean squared
displacement (∆MSD) of center of mass of chains, after removal of overlaps between
monomers, is comparable to the mean squared radius of gyration of chains, R2

g. The
figure 3.10 presents mean squared displacement of center of mass of chains and mean
squared parallel and perpendicular components of radius of gyration for the system with
chains having persistence length ( lp

a
)= 2.0 and flexible chains. For each system of study,

the ∆MSD of center of mass of chains and parallel and perpendicular components of
R2

g are monitored. If both of theses quantities are comparable, calculations of interfacial
tensions and other quantities (see below) are started. Further, the ∆MSD of individ-

28



.

Calculation of distances to the predecessor (if M is not first) and successor (if M is not last) monomer in the 
chain.

Conformation will not be changed.

No

Yes

Yes

No

No

No

Yes

Yes

Random selection of a monomer M, and shift it by �V (cyclic choice in direction,
X, -X, Y, -Y, Z or -Z and by random displacement between 0 and 0.4),
new position for M is now, Rnew = Rold + �V , Rold is previous position.

Is the distance within the range, > dmin, < dmax?

Look through monomers in the neighboring linked cells. Is distance to any other
monomers from Rnew , ≥ dmin?

Counting of different types of monomers which are in the distance < d2type, from Rnew and Rold.

Look through further linked cells and count monomers of other types which are
in the distance < d2type, from Rnew and Rold

Energy difference (∆E)=Repulsion parameter × [(number of different types of monomers
which are at distance < d2type from Rnew) -(number of different types of monomers
which are at distance < d2type from Rold)]

∆E < 0? Selection of a random number, ζ ∈ [0, 1]

ζ < exp (−∆E
kBT )

Rnew will be new position of monomer M.

Figure 3.8: Flow diagram for a monomer from flexible chains.

ual components (flexible and semiflexible) also are not significantly different than that
of the sum of both components. To get equilibrium state 6.1 × 105 attempted moves
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Calculation of distances to the predecessor (if M is not first) and successor (if M is not last) monomer in the 
chain.

Calculation of the angles between consecutive bond vectors formed at position of M-1 (if M is not first or 
second monomer in the chain), M (if M is not first or last monomer in the chain) and M+1 (if M is not last or 
second last monomer in the chain).

Conformation will not be changed.

No

Yes

Yes

Yes

No

No

No

Yes

Yes

No

Random selection of a monomer M, and shift it by �V (cyclic choice in direction,
X, -X, Y, -Y, Z or -Z and by random displacement between 0 and 0.4),
new position for M is now, Rnew = Rold + �V , Rold is previous position.

Is the distance within the range, > dmin, < dmax?

Are all the angles < θmax?

Look through monomers in the neighboring linked cells. Is distance to any other
monomers from Rnew , ≥ dmin?

Counting of different types of monomers which are in the distance < d2type, from Rnew and Rold.

Look through further linked cells and count monomers of other types which are
in the distance < d2type, from Rnew and Rold

Energy difference (∆E)=Repulsion parameter × [(number of different types of monomers
which are at distance < d2type from Rnew) -(number of different types of monomers
which are at distance < d2type from Rold)]

∆E < 0? Selection of a random number, ζ ∈ [0, 1]

ζ < exp (−∆E
kBT )

Rnew will be new position of monomer M.

Figure 3.9: Flow diagram for monomers from semiflexible chains.

per monomer (AMM) were performed for the system with flexible chains. The AMM
increase with the stiffness of the semiflexible components of the system and 6.1 × 107
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AMM were performed for the system which contains flexible chains and chains with
persistence length ( lp

a
)= 13.6. For an isotropic-nematic interface also 6.1 × 107 AMM

were performed by keeping the proper restriction on the angle between two consecutive
bond vectors of a chain. To be ensured that the system is close enough to equilibrium,
the values of interfacial tensions are monitored during the calculations. The values of in-
terfacial tensions of the system, in which semiflexible component has persistence length
( lp

a
)= 2.5, against number of calculations are depicted in figure 3.12. They also show

that (as the values do not decrease monotonically with the time of calculations) the
systems are close enough to equilibrium at the time of calculation. Figure 3.11 shows
one typical configuration after achieving equilibrium condition.
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Figure 3.10: Mean squared displacement of center of mass and parallel and perpendicualr
components of radius of gyration during the Monte Carlo steps for a system
containing flexible chains and semiflexible chains with persistence length
( lp

a
)=2.

3.2.3 Single Chain Properties and Nematic Order Parameter

After describing the methods to generate the chains and attain the equilibrium config-
uration in subsection 3.2.2, the single chain properties and ordering of the highly stiff
chains will be described in this subsection.
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Figure 3.11: Equilibrated configuration for a system with flexible chains and semiflexible
chains with persistence length ( lp

a
)= 2.

Single chain properties

Before going over to present the results, we first define the quantities which characterize
the single chain properties by the help of figure 3.13. The end to end vector is denoted
by �R and the mean squared end to end distance is, R2. Similarly, R2

g is the mean squared
radius of gyration and R2

g(0) is the mean squared radius of gyration of the flexible chains.
The lower bound of statistical segment length, b, is introduced in the following way;

b =
R2

L
= aC1N (3.4)

where L = Na is contour length, a is the average bond length and C1N is ratio of R2

and Na2 which is denoted by C∞ in literatures when N → ∞. The aspect ratio Γ is
defined as the ratio of statistical segment length b and diameter of the bead dmin i.e.
Γ = b

dmin
. The persistence length, lp, is calculated by the average of projection of end to

end vector along the unit vector in the direction of first bond. Therefore, lp is calculated
using the following formula [79];
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Figure 3.12: Interfacial tension as a function of number of calculations for a system with
flexible chains and semiflexible chains with persistence length ( lp

a
)= 2.5.

There are 3.4× 104 AMM between two succesive calculations.

lp =
〈
�R · �u1

〉
=

1

a

N∑
i=0

〈�a1 · �ai〉 (3.5)

where a is the average bond length, �ai are ith bond vectors, �R are the end to end vectors,
�u1 =

�a1

a
are the unit vectors along first bond vector and N is the number of monomers

in a chain. lp and/or C1N defines the chain stiffness.

Figure 3.13 shows the projection of end to end vector along the first bond vector. In
table 3.1, single chain conformational properties as a function of stiffness of semiflexible
component for all the systems are discussed.

Nematic Order Parameter

To know whether the system is in nematic phase for highly stiff chains, the nematic
order parameter has been calculated. To calculate nematic order parameter we need to
know the nematic director. For stiff rod, it is very easy to find the nematic director
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�R

�a1 · �R�a1

Figure 3.13: Projection of end to end vector (�R) along first bond vector in a semiflexible
chain.

Flexibility R2 R2
g

R2

R2
g

b
a

Γ = b
dmin

lp
a

χ S

Flexible 193 32 6.03 1.51 1.74 1.25 0.32 0.0082
90◦ 356 55 6.47 2.8 3.23 2 0.327 0.01
75◦ 511 76 6.72 4.03 4.65 2.5 0.335 0.0215
60◦ 766 106 7.22 6.07 7.00 4.2 0.340 0.053
45◦ 1309 159 8.23 10.4 12.00 7.2 0.346 0.097
30◦ 2217 220 10.07 17.6 20.32 13.6 0.351 0.16
15◦ 3657 327 11.18 28.91 33.38 28.0 0.362 0.97
5◦ 3801 339 11.21 30.05 34.69 30.02 0.366 0.99

Table 3.1: single chain conformations as a function of the stiffness parameter, here the
persistence length ( lp

a
) and statistical segment length ( b

a
) are in unit of bond

length and S is the nematic order parameter described in the text. All these
quantities discussed in this table increase as a function of stiffness.

however for semiflexible chains first we have to calculate the ordering tensor (Q), for
the chain ordering, by the following way [80]. The shape of the molecule is obtained by
representing each chain in terms of semi-axis lengths of an equivalent spheroid with the
same moment of inertia as the molecule and one can obtain this by diagonalizing the
moment of inertia tensor of the molecule. For molecule ‘k’, the elements of the moment
of inertia tensor, Ik, are given by,

Iαβ,k =
N∑

i=1

(r2i δαβ − riαriβ) (3.6)

where α, β = x, y, z are the cartesian coordinates, δα,β is the Kronecker delta, riα is
the distance in the α direction of site i from the center of mass of the molecule, and
r2i = r2x + r

2
y + r

2
z and N is the number of monomer in the molecule ‘k’. The eigenvector

which is denoted by �ek corresponding to the smallest eigenvalue of Iαβ,k is reffered to as
the molecular axis vector of the chain. The nematic director for the semiflexible chains
is obtained by diagonalizing the ordering tensor, Q defined by,

Qαβ =
1

Np

Np∑
k=1

3

2
ekαekβ − 1

2
δαβ (3.7)
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ekα is the αth (α = x, y or z) component of the molecular axis vector, �ek. Then the
order parameter is given by,

S = −2 < λ > (3.8)

where λ is the middle eigenvalue of Q.

The nematic order parameters for the semiflexible component of the systems of study
are presented in table 3.1. From table it is clear that upto persistence length ( lp

a
) = 13.6

there is not nematic ordering but for higher values of persistence length the semiflexible
polymers form the nematic phase.

Orientational parameters

Of special interest in a system containing stiff chains is the orientational order. In
polymer systems, one can define orientational parameters in different length scales e.g.
orientational parameter of bond vectors and chain orientational parameters. Systems
with the planar interface in the y − z−plane has a distinguished direction along the
x−axis, hence the order-parameter-field of bond ordering,

S (x) =
3 〈a2

x (x)〉 − a2

2a2
(3.9)

is the most direct measure of the order near the interface and also in the bulk. 〈a2
x (x)〉

and 〈a2〉 are the mean squared of x−component of bond vector and of the bond vector
respectively (see chapter 4).

In similar way, the chain orientational parameters, perpendicular (∆Rg⊥) and par-
allel (∆Rg‖), with respect to interface plane of chain orientation

∆Rg⊥ =
3 〈Rg2

x〉 − 〈Rg2〉
〈2Rg2〉 (3.10)

and

∆Rg‖ =
3(〈Rg2

z〉+
〈
Rg2

y

〉
)/2− 〈Rg〉2

2 〈Rg2〉 (3.11)

can be introduced where 〈Rg2〉 is the averaged radius of gyration of the chains and
〈Rg2

i 〉 (i = x, y, z) is the corresponding component of square of radius of gyration of
the polymer chains. Therefore, when the chains orient parallel to the interface, parallel
orientational parameter ∆Rg‖ will be positive and has maximum value 0.25 while the
perpendicular orientational parameter ∆Rg⊥ will be negative and has minimum value
−0.5. Similarly, when the chains orient perpendicular to the interface, parallel orienta-
tional parameter ∆Rg‖ will be negative while the perpendicular orientational parameter
Rg⊥ will be positive (see chapter 4).
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Figure 3.14: Orientational correlation between two bonds of different chains. Long range
orientational order is obtained for lp

a
> 13.6. Above shown persistence

lengths (lps) are in unit of average bond length (a).

Additionally, single chain orientational parameters introduced above, the orienta-
tional correlation between bond vectors of different chains is of interest. The orienta-
tional correlation, (Pα(r)), between bonds from different chains is defined by the follow-
ing way.

Pα(r) =
3 < cos2(α) > −1

2
(3.12)

where α is the angle between bonds of different chains separated by a distance r. In
the case of nematic ordering (when all the bonds in different chains are parallel),
Pα(r) = 1. In a complete uncorrelated case there is no orientational correlation be-
tween two different bonds and hence Pα(r) = 0. When the bonds in different chains are
perpendicular, Pα(r) = −0.5. In the intermediate case (i.e. the case between nematic
ordering and orientational disorder) Pα(r) lies between 0 and 1. Figure 3.14 shows the
profile of Pα(r) for all the stiffness disparity systems studied in the present work. From
figure 3.14, it is observed that there is no nematic ordering in our systems of study upto
the persistence length ( lp

a
) of the semiflexible component 13.6 which is consistent with
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the nematic order parameter calculated in the previous sub-subsection. As we expect
the value of the orientation correlation increases when the stiffness of the semiflexible
component increases.
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3.3 Model for Monomer Size Disparity

In the previous section, the model for stiffness disparity was discussed. In this section
the model for monomer size disparity will be discussed.

3.3.1 Model

We performed again computer simulations of a sandwich type two-component system
of homopolymers with different monomer sizes. Figure 3.15 shows a typical snapshot
of such a system. The coarse grained continuous space model is used, similar to the
cas of stiffness disparity. In these systems, there are two types of monomers; type A
having diameter dA = dmin =

√
3, as in the case of stiffness disparity systems, and type

B having diameter dB = 2× dA. These systems in general are known as “systems with
monomer size disparity”. The following types of dispair systems are studied;
(a) dB = 2× dA and NA = NB i.e. diameter of monomers of type B is double than that
of type A and number of monomers per chain in type A chains is equal to number of
monomers per chain in type B chains. Such a system is referred as “monomer size
disparity with equal number of monomers per chain”.
(b) dB = 2 × dA and RA

g ∼ RB
g (NB = 3

4
NA) i.e. diameter of monomers of type B is

double than that of type A monomers and radius of gyration of type A chains is almost
equal to that of type B chains which is referred as “monomer size disparity with
almost equal radius of gyration”.

The interfacial properties of above two kinds of systems are compared to that of the
symmetrical system in which two types of monomers differ only by their interaction. The
symmetrical system is same as flexible-flexible polymer system in the case of stiffness
disparity case.

The polymer chains are modeled by a succession of jointed spherical monomers ac-
cording to rod-bead model [42, 7], same model as in stiffness disparity case. A chain
consists of N spheres of equal diameter which are connected by (N-1) bonds. For A
types of chains we consider N =32. However, for B types of chains there are two cases
to study two different kinds of systems (a) and (b) as described above. In the system
of monomer size disparity with equal number of monomers per chain, each type B chain
has N = 32 monomers whereas in the system of monomer size disparity with almost
equal radius of gyration, each type B chain consists of N =24 monomers.

Since there are two types of monomers with different sizes, the excluded volume also
depends upon the types of monomers and it is given by the following potential;

VBB,ex(r) =

{
0 , if r > dB (diameter of type B monomers)
∞ , else
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Figure 3.15: A typical snapshot of a monomer size disparity system. Monomers from Red
chains have diameter double than that of monomers from green chains.

VBB,ex(r)

0 dB r

0∞

Figure 3.16: Excluded volume potential between two type B monomers in monomer size
disparity systems.

where VBB,ex(r) is the excluded volume potential between two type B monomers at a
distance r. This excluded volume potential is shown in the figure 3.16.

Similarly, the excluded volume potential between type A and type B monomers is
given by;
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Figure 3.17: Excluded volume potential between type A and type B monomers in
monomer size disparity systems.

VAB,ex(r) =

{
0 , if r > dB+dA

2

∞ , else

where dB+dA

2
is the minimum distance between type A and type B monomers and

VAB,ex(r) is the excluded volume potential between type A and type B monomers at
a distance r. VAB,ex(r) is shown in the figure 3.17. The excluded volume potential be-
tween any type A beads is same as the excluded volume potential between two beads
in stiffness disparity case as discussed in subsection 3.2.1 (see Eq. 3.1 and figure 3.2).
Similarly, the connectivity between two consecutive monomers in a type B chains is
assured by the following potential;

Vcon,B(r) =

{
0 , if dB ≤ r ≤ dBmax

∞ , else

where dBmax ∼ 7
3
dmin, Vcon,B(r) is the connectivity potential between two consecutive

beads of a type B chain separated by a distance r. This value of dBmax ensures that there
is not intersection between type A and type B chains. Vcon,B(r) is shown in the figure
3.18. The potential for the connectivity of two consecutive monomers from type A chains
is same as that in the case of stiffness diaparity, discussed in subsection 3.2.1. Therefore,
the distance between any two consecutive beads of a chain depend upon whether the
spheres are type A or type B.
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Figure 3.18: Conectivity potential between two consecutive monomers from type B
chains in monomer size disparity systems.

The interaction between segments which are not directly jointed is also modeled
by a stepwise potential. For simplicity we assume that the interaction between equal
types of monomers A and B, VAA = VBB = 0 and a repulsive potential acts between
different types of monomers VAB,int = kBTε where kB is the Boltzmann constant, T
is the temperature and ε is a parameter to be chosen in the model which defines the
Flory-Huggins parameter χ and ε = 0.1, in the present work. The assumed range of

the interaction between two different types of monomers is d12type ∼
(

1
2
+
√

5
3

)
dmin.

Therefore, the interaction potential between two different types of monomers is given by
the following potential;

VAB,int(r) =



kBTε , if dB+dA

2
≤ r ≤ d12type

0 , if r > d12type

∞ , if r < dB+dA

2

where VAB,int(r) is the interaction potential between type A and type B monomers
separeted by a distance r. As mentioned above, the interaction parameter ε is related
to the Flory-Huggins parameter χ which is estimated in our model in the following way;

χ = zeffε (3.13)

where zeff is the average number of interchain contacts of a monomer within a sphere
of radius of the interaction range between type A and type B monomers in an athermal
mixture of two types of chains (see Fig 3.20). From table 3.2 it can be seen that χ
decreases for the unsymmetric systems (that is system with different sizes of monomers)
as zeff decreases for such systems.
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Figure 3.19: Interaction potential between type A and type B monomers separated by a
distance r in the monomer size disparity systems.

Figure 3.20: Povray diagram of an athermal mixture of monomer size disparity system
with equal number of monomers per chain.
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3.3.2 Generation of Chains, Equilibration and Single Chain
Properties

Generation of chains

To generate the system of monomer size disparity with equal number of monomers per
chain, 32 random walk chains (type A chains) with random bond length distribution
dmin ≤ d ≤ dmax with no overlap with next nearest neighbors within the chain [47]
are generated. Other four random walk chains (type B) are generated with random
bond length distribution dB ≤ d ≤ dBmax with no overlap with next nearest neighbors
within the chain. Each chain consists of 32 monomers per chain. To generate the size
disparity system with almost equal radius of gyration, 6 random walk chains (type B
chains, each chain having 24 monomers per chain) with random bond length distribu-
tion dB ≤ d ≤ dBmax with no overlap with next nearest neighbors within the chain are
generated. The type A chains are generated following the same way as described above
and there are 32 type A chains in both the systems. The symmetric system is same as
the system of only flexible chains in the stiffness disparity case.

To generate the interface initially, a box having three compartments in which the mid-
dle one has volume double than that of both sides (this simulation box has dimensions-
64 × 16 × 16) is considered. One fourth of both sides of the box (across x-dimension)
occupy type A chains and the remaining half of the lattice in the middle with type B
chains. The overlaps between the segments is removed by stepwise increase (“blowing
up”) of the diameter of the spherical monomers followed by Monte-Carlo steps. This
process is started with the minimum distance of any monomers which are not directly
connected. For symmetric system, the process lasts when the minimum distance between
any two monomers is equal or greater than dmin. However, for unsymmetric systems, the
process goes on until the distance between any two type B monomers is equal or greater
than dB, the distance between any two type A monomers is equal or greater than dmin

and distance between type A and type B monomers is equal or greater than dB+dA

2
. The

system is enlarged by shifting y and z coordinates to get a system having dimensions
64×32×32 - parallelepiped. In doing so number of chains is increased by four times. We
further multiply the system by shifting y and z coordinates to get final system of study
64× 64× 64 -cube. The final system consists of 512 type A chains and 64 type B chains
in the system of monomer size dispartiy with equal number of monomers per chain.
Similarly, it has 512 type A chains and 96 type B chains in the system of monomer size
dispartiy with almost equal radius of gyration. Figure 3.21 shows an initial configura-
tion for the system of monomer size disparity with equal number of monomers per chain.

Equilibration of chains

For equilibration and thermodynamical averaging the Monte-Carlo steps have been
performed according to the standard Metropolis algorithm with random choice of a
monomer and cyclic choice of one of the six directions along the coordinate axes, as
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Figure 3.21: Povray diagram of initial configuration of monomer size disparity with equal
number of monomers per chain.

described in the stiffness disparity system. The length of an attempted step is chosen
randomely between zero and a maximum step length ∼ 0.23× dmin. To accelerate the
tests for hard-core overlapping and for the calculations of the interaction energy after
each attempted move, we follow the standard way by dividing the simulation box into
cubic cells of size lc with single occupancy for type B monomers and checking the parti-
cles in the neighborhood of the moved particle only. There could be several particles of
type A monomers in a cubic cell. Therefore, in this case we have to check overlapping
of moved particle within cell also (see the flow diagrams 3.25, 3.26). For the symmetric
system, we consider a cubic cell of size unity, so that there will be only single occupancy
for type A and type B monomers. The techniques of equilibration of chains for the
stiffness disparity systems and size disparity systems differ in the following way. In the
former case, in linked cell method we chose the size of cell such that there
is single occupancy for both types of monomers and in the later case, the
size of a cell is such that larger size of beads occupy single cell and hence
there could be many monomers of type A in the same cell. The details of the
linked cell method are described by Allen and Tildesley and by Sadus [77, 78]. Auhl
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[7] has already applied the linked cell method for the flexible-flexible polymer systems.
If there are many particles in one cell, during sorting of particles in appropriate cells
two arrays are created namely, ‘head-of-chain’ (HEAD) and ‘linked-list’ (LIST). HEAD
has one element for each cell and it contains the identification number of one of the
particles sorted into that cell. This number is used to address the element of a LIST,
which contains the number of the next particle in that cell. In turn, the LIST array
element for that particle is the index of the next particle in the cell, and so on. By
following the trial of link-list references, we will eventually reach an element of LIST
which is zero. This indicates that there are no more particles in that cell, and we move
on to the HEAD particle for the next cell and so on. Two well defined interfaces are
enforced in the canonical ensemble in a thick film geometry (L× L× L), with periodic
boundary conditions in all the three directions. The interfaces are on average located in
1
4
th and 3

4
th of the x-dimensions of the simulation box.

To know whether systems have attained equilibrium configurations, the same idea
like in the case of stiffness disparity, is followed. The parallel and the perpendicular
(parallel and perpendicular according to the interface) components of the radius of gy-
ration, Rg, and the mean squared displacement of center of mass of chains (∆MSD)
against the simulation time are monitored. The figure 3.22 presents (∆MSD) of center
of mass of chains and mean squared parallel and perpendicular components of radius of
gyration for the system in which two types of monomers have different sizes but equal
number of monomers per chain. For each system of study, the ∆MSD of center of mass
of chains and parallel and perpendicular components of R2

g are monitored and until
both of these are comparable we do not start calculation of interfacial tension and other
quantities. The ∆MSD of individual components are also not significantly different than
that of total system. Further the values of interfacial tensions after the calculations are
also monitored. The values of interfacial tensions of the system, in which both types
of chains have equal number of monomers per chain but different sizes of monomers,
against number of measurements are depicted in figure 3.23. They also show that (as
the values do not change monotonically with the time of measurements) the systems are
close enough to equilibrium at the time of measurement. To get equilibrium state we
performed 6.1× 105 attempted moves per monomer (AMM) for the symmetric system,
i.e. the system with the same sizes of monomers. However, for the system having differ-
ent sizes of monomers we have to perform 107 AMM. Figure 3.24 depicts an equilibrium
system in which both types of chains have equal number of monomers per chain but two
types of monomers have different sizes.
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Figure 3.22: Perpendicular and parallel components of square of radius of gyration and
mean squared displacements of center of mass for the system with monomer
size disparity with equal number of monomers per chain.

Single Chain Properties

The single chain conformations are presented in table 3.2 (page 37). When the diameter
of type B monomers is larger than that of type A monomers the ratio R2

R2
g
will be higher

than 6. The dependence of R2

R2
g
on segment number of the B type of chains shows that

type B chains are slightly stiff. Here also the statistical segment length b is defined
according to equation 3.4. The statistical segment length for the type B chains with 24
monomers per chain is determined according to equation 3.4 using C1N for N = 32. In
table 3.2, R2 is the mean squared end to end distance, R2

g is the mean squared radius of
gyration, b is the statistical segment length and χ is the Flory-Huggins parameter, N is
number of monomers per chain and NP is the number of chains in the system of study.
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Figure 3.23: Interfacial tension versus number of calculations for the system with
monomer size disparity with equal number of monomers per chain. There
are 4.8× 104 AMM between two successive calculations.

3.4 Calculation of the Interfacial Tension

In the present systems of study, due to different kinds of disparities, i.e. the stiffness
disparity in the flexible-semiflexible blend and monomer size disparity in monomer size
disparity systems, a straight forward application of the semi-grand-canonical identity
changes between different polymer types are rather inefficient. Therefore, the interfa-
cial tension cannot be calculated by the reweighting of the composition distribution as
successfully applied in most Monte Carlo investigations interfacial tension [29]. Alterna-
tively, we can calculate the interfacial tension by analyzing the spectrum of the capillary
fluctuations and as advantage of off-lattice model by using virial theorem. The virial
theorem method successfully applied to determine the free energy costs of a hard wall
[74] in a concentrated polymer solution, and to determine the interfacial tension [7, 73]
in a binary polymer blend. Auhl [7] has calculated anisotropy in the pressure tensor in
flexible-flexible polymer systems for the same chain model as in present study. In the
present work the method used by Auhl, is extended to apply for the flexible-semiflexible
polymer systems and a system containing polymers with different monomer sizes.
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Figure 3.24: Povray diagram of final configuration of monomer size disparity system with
equal number of monomers in a chain.

Virial theorem method

Calculating the interfacial tension by using virial theorem [77] is one of the most direct
and rigorous methods, it rests on the determination of the anisotropy of the pressure
tensor of a system with an interface.

The interfacial tension, σ can be expressed as,

σ

kBT
=

∆F

∆A
(3.14)

where ∆F is the change in the free energy for a corresponding change ∆A in the cross
sectional area, kB is Boltzmann constant and T is temperature.

The change of free energy can be calculated by considering the forces caused by a
small deformation of the simulation box. This results in

σ

kBT
=
f⊥L⊥
L2
‖

− f‖
L‖

(3.15)
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Calculation of distances to the predecessor (if M is not first) and successor (if M is not last) monomer in the 
chain.

Conformation will not be changed.

No

Yes

Yes

No

No

No

Yes

Yes

Random selection of a monomer M, and shift it by �V (in cyclic direction,
X, -X, Y, -Y, Z or -Z and by random displacement between 0 and 0.4),
new position for M is now, Rnew = Rold + �V , Rold is previous position.

Is the distance within the range, > dB, < dBmax?

Look through monomers in the linked cell belonging to M and neighbouring linked cells of M
Is distance to any other types of monomers from Rnew ,≥ (dB + dmin)/2? And,
Is distance to same type of monomers ≥ dB?

Counting of different types of monomers in the linked cells belonging to M and
neighbouring linked cells of M which are in the distance, < d12type from Rnew or Rold.

Energy difference (∆E)=Repulsion parameter × [(number of different types of monomers
which are at distance < d12type from Rnew) -(number of different types of monomers
which are at distance < d12type from Rold)]

∆E < 0? Selection of a random number, ζ ∈ [0, 1]

ζ < exp (−∆E
kBT )

Rnew will be new position of monomer M.

Figure 3.25: Flow diagram for a monomer from type B chains that is, for a larger size
monomer.
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Calculation of distances to the predecessor (if M is not first) and successor (if M is not last) monomer in the 
chain.

Conformation will not be changed.

No

Yes

Yes

No

No

No

Yes

Yes

Random selection of a monomer M, and shift it by �V (in cyclic direction,
X, -X, Y, -Y, Z or -Z and by random displacement between 0 and 0.4),
new position for M is now, Rnew = Rold + �V , Rold is previous position.

Is the distance within the range, > dmin, < dmax?

Look through monomers in the linked cell belonging to M and neighbouring linked cells of M
Is distance to any other types of monomers from Rnew ,≥ (dB + dmin)/2? And,
Is distance to same type of monomers ≥ dmin?

Counting of different types of monomers in the linked cells belonging to M and
neighbouring linked cells of M which are in the distance, < d12type from Rnew or Rold.

Energy difference (∆E)=Repulsion parameter × [(number of different types of monomers
which are at distance < d12type from Rnew) -(number of different types of monomers
which are at distance < d12type from Rold)]

∆E < 0? Selection of a random number, ζ ∈ [0, 1]

ζ < exp (−∆E
kBT )

Rnew will be new position of monomer M.

Figure 3.26: Flow diagram for a monomer from type A chains that is, for a smaller size
monomer.
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type of chains N NP R2 R2
g

R2

R2
g

b
a

χ

A 32 512 193 32 6.03 1.51 0.32
B 32 64 709 112.36 6.31 1.62 0.196
B 24 96 480 64 7.5 1.62 0.212

Table 3.2: Single chain conformations as a function of monomer diameter of chains. In
this table statistical segement lengths are in units of average bond length for
the respective type of chains. For the chains with smaller bead the average
bond length is 1.998 whereas for the chains with larger beads it is 3.749.

where f⊥,‖ are the forces acting on the boundary of the simulation box perpendic-
ular and parallel with respect to the interface plane. L⊥ is the length of the system
perpendicular to the interface plane and L‖ is the length of the system parallel to the
interface plane. The force is calculated by a small homogeneous uniaxial deformation
of the chains. The details of this method is described in [7]. The deformation (which
we suppose a small uniaxial compression/expansion of the probe) matrix, we use in our
method is given by;


 1 + α 0 0

0 1 0
0 0 1


 (3.16)

where α is deformation parameter. Using virial theorem the force components f⊥,‖ can
be expressed as [7];

f⊥,‖L
kBT

=
d

dα

∣∣∣∣∣
α=0

ln 〈exp (−∆E(α)/kBT )〉0 (3.17)

where 〈(. . .)〉0 denotes average of (. . .) in the undeformed system and ∆E(α) is the
difference in total potential energy of deformed and undeformed conformations. This
formula is general and is valid for any models. The differential coefficient in equation
3.17 is not so easy to calculate. Therefore, we calculate the differential coefficient in
right hand side of Eq. 3.17 by a set of finite difference quotients. One can write,

d

dα

∣∣∣∣∣
α=αi

ln

〈
exp

(−∆E(α)

kBT

)〉
0

≈
∆ ln

〈
exp

(−∆E(α)
kBT

)〉
0

∣∣∣∣∣
αi

∆α
(3.18)

for very very small ∆α. To evaluate right hand side of Eq. 3.17, we find a set of such
finite differences for several αi’s and extrapolate it to α = 0.

In the case of the step potentials, Ui, Eq. 3.18 and hence Eq. 3.17 can be further
simplified and finally we get,

f⊥,‖L
kBT

∣∣∣∣∣
α

=
∑

i

1

∆α
〈∆WiMi(α, α+∆α)〉configurations (3.19)
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where i is the type of interaction (there are four types of interaction for semiflexible and
three types of interactions for flexible polymer chains),

∆Wi = 1− (exp(−∆Ui/kBT ))

is the change of weight and
Mi(α, α±∆α)

is the number of monomers entering/leaving the interaction range for i of another
monomer when changing the compression/expansion from α to

α±∆α.

To use the full information contained in a given configuration of chains and to opti-
mize the averaging we consider small ∆α, calculate the force for several α and extrapolate

so obtained set
f⊥,‖L

kBT

∣∣∣∣∣
α

to α = 0. For the systems considered in the present work, the

contributions to the pressure tensor from all the interactions present have to be cal-
culated. These are the excluded volume, chain connectivity, the repulsing interaction
between different types of the monomers and the bending energy (only for the semiflex-
ible chains).

The distance between the monomer pairs in the case of small compression/expansion
of the probe will be within interaction neighbourhood (‘collisions’), divided by the de-
formation factor α and multiplied by a weight factor which is derived from the height of
the step potential. The potential which models the connectivity in our model will play
a role when the distance is larger than certain distance, the potential which models the
repulsion between different types of monomers will play the role when the distance is
larger/smaller than certain distance. The potential which takes into account excluded
volume effect in our model plays a role when the distance between any two monomers
is less than the certain distance and the potential which models the bending energy (in
semiflexible polymers) in our model will play a role when the angle between two consec-
utive bond vectors of a chain is greater than a certain angle.

Next, the deformation factor α has to be considered, this depends up on the fact
whether compression is considered or expansion. Further it depends up on whether our
system is stiffness disparity or monomer size disparity. At the first we describe various
weight factors for stiffness disparity systems and then for monomer size disparity systems.

For the four interactions which appear for monomer pairs in heterogeneous polymer
models (flexible-semiflexible polymer system) used in present study, one obtains the
following weight factor;

• Excluded Volume: E = 0, if the distance is > dmin, ∞, else, between any two
monomers and it is applicable just for compression, weight factor 1.

52



• Connectivity: E = 0, if the distance is < dmax, ∞, else, between any two con-
secutive monomers in a chain and it is applicable just for expansion, weight factor 1.

• Bending Energy: E = 0, if the angle is > θmax, ∞, else, between any two
consecutive bond vectors in a semiflexible chain and it is applicable for expan-
sion/compression, weight factor 1.

• Repulsion: Repulsion between different types of monomers; E = ε, if distance
between two monomers is < d2type, E = 0, else, and ε = 0.1 acts between all
the different types of monomers and applicable for compression/expansion with
weight factor (1 − exp(−ε)) in the case of compression ( in case a monomer falls
to the interaction range of the other) and weight factor exp(ε) − 1 in the case of
expansion (in case monomer just goes out of the interaction range of the others).

Similarly, for the three interactions which appear for monomer pairs in heterogeneous
polymer models (polymer with different sizes of monomers) used in present study, one
obtains the following weight factor;

• Excluded Volume: E = 0, if the distance between any type B monomers is
> dB, ∞, else.
E = 0, if the distance between any type A monomers is > dmin, ∞, else.
E = 0, if the distance between any different types of monomers is > dB+dmin

2
, ∞,

else, and it is applicable just for compression, weight factor 1.

• Connectivity: E = 0, if the distance is < dBmax, ∞, else, between any two con-
secutive monomers in a type B chain.
E = 0, if the distance is < dmax, ∞, else, between any two consecutive monomers
in a type A chain, and it is applicable just for expansion, weight factor 1.

• Repulsion: Repulsion between different types of monomers; E = ε, if distance
between two monomers is < d12type, E = 0, else, and ε = 0.1 acts between all
the different types of monomers and applicable for compression/expansion with
weight factor (1 − exp(−ε)) in the case of compression ( in case a monomer falls
to the interaction range of the other) and weight factor exp(ε) − 1 in the case of
expansion (in case monomer just goes out of the interaction range of the others).

Capillary wave spectrum method

An alternative way of measuring the interfacial tension is the analysis of the capillary
fluctuation spectrum [38, 73, 81, 82]. In general, polymer-polymer interfaces are not
flat but exhibit long-wavelength capillary wave fluctuations. In the case of interface,
there exits a type of fluctuation that survives even deep in the two-phase region. This is
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because the interface breaks a continuous symmetry, the translational invariance, which
results existence of long-wavelength transversal excitations known as Goldostone bosons
[81]. The energy of these capillary waves of the local interface position vanishes as the
wave length approaches infinity. These fluctuations strongly influence all quantities that
depend on transversal degrees of freedom [81]. Capillary wave-like distortions of the
interface can be thermally driven even at low temperatures because they cost very little
energy. The effects of such fluctuations on interfacial properties were first considered by
Buff et al. [83] and later systematically studied by Werner et al. [81, 84] and Lacasse
et al. [73]. Capillary wave distortions can occur at large wave length with very little
energy cost and are ultimately suppressed by finite size effects (system boundaries).
The thermally excited capillary waves will be present at a polymer-polymer interface,
even far away from the critical point, and such capillary waves may make a significant
contribution to the measured interfacial width [85]. Moreover, the apparent width of a
capillary-wave-roughend interface will depend on the length scale over which the inter-
face will be averaged by the measurement (see figure 3.4) which will differ according to
the technique used.

Let the deviation of the interfacial position from its mean position be h(y, z). Ac-
cording to the capillary wave theory [84] the free energy cost of these fluctuations is
proportional to the increase in the interfacial area caused by these fluctuations. Hence,
the free energy cost for the deviations from a flat planar interface is given by [84]

Hcw =
∫
σ

2
(∇h)2 dz dy + ..... (3.20)

In this expression, higher order gradient terms are assumed to be very small and ne-
glected. σ is the interfacial tension. This capillary wave hamiltonian can be diagonalized
by means of the Fourier transformation with respect to y and z which yields,

Hcw =
σ

2

∑
(�q2)|h(�q)|2 (3.21)

where �q is the wave vector. From the equipartition theorem one can easily get the mean
squared value of h(�q)) which is,

< |h(�q)|2 >= 1

(σ�q2)
(3.22)

Therefore, the local mean squared displacement of the interface is given by,

s2 =
∑

�q

〈
|h(�q)|2

〉
=

1

4π2

∫ 〈
|h(�q)|2

〉
dq =

1

2πσ
ln

(
qmax

qmin

)
(3.23)

Here the lower cut-off qmin and the upper cut-off qmax have to be introduced as the in-
tegral

∫ dq
q
diverges logarithmically both for q → 0 and q → ∞. It could be necessary to

cut off these divergences in a smooth way, using suitable correction terms in the capillary
wave hamiltonian to get the more accurate description [86]. The maximum value of the
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wave-vector clearly has to be set by a microscopic distance; it does not make sense to
talk about a capillary wave whose wave length is much smaller than the intrinsic diffuse-
ness of the interface, so this sets the value of qmax. The wave length cannot be bigger
than the total size of the interface, so we are left with conclusion that the roughness of
polymer-polymer interface depends on the size of the container. Therefore, the possible
minimum value of q is 2π

L
and the maximum value of q is 2π

B0
where L is the system

size and B0 is the coarse graining length on which the interface assumes its ‘intrinsic’
structure [81].

In principle, one can find the interfacial tension using capillary wave spectrum
method by calculating the local mean squared displacement of the interface i.e. by
using the formula 3.23 [81]. However, for this purpose the system should be very large
and in the present system of study it cannot be applied. Therefore, in the present work
the method used by Lacasse et al. [73] and by Auhl [7] is followed.

To find the total interfacial width which contains the effects of capillary wave fluc-
tuations, it is assumed that the capillary waves can be decoupled from fluctuations in
density and in order parameter. Hence, the averaged interfacial profile Ψ(x) can be writ-
ten as the convolution of the intrinsic interfacial profile ψ(x − x0) and the probability
p(x0)dx0 of finding the interface at x0 [73],

Ψ(x) =
∫ ∞

−∞
ψ(x− x0)p(x0) dx0 (3.24)

Differentiating with respect to x one gets that Ψ′(x) is the convolution of two well-
bounded functions, ψ′(x − x0) and p(x0). Associating a functional measure to the well
bounded function and using convolution theorem one gets,

∆2 = ∆2
0+ < (∆X0)

2 > (3.25)

where ∆2 and ∆2
0 are related to the total and intrinsic interfacial width respectively (see

below) and < (∆X0)
2 > is the mean squared fluctuation on the interfacial position at

x0.
Assuming equipartition of thermal energy on the modes of capillary waves and taking

into account that a lower cutoff of wave vectors of capillary waves is given by the size
Ls of the subsystem considered and a upper cutoff is determined by a scale l0 of local
bending rigidity or the intrinsic width of the interface, for 〈(∆X0)

2〉 results [85],
〈
(∆X0)

2
〉
=
kBT

2πσ
ln(
Ls

l0
) (3.26)

and we get finally

∆2 = ∆2
0 +

kBT

2πσ
ln(
Ls

l0
) (3.27)

Determining the effective interface width for a set of subsystems of size Ls the in-
terfacial tension can be determined without assumptions about the lower cutoff l0. For
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this purpose the density profile of the interface within a subbox of cylindrical shape was
described by

Ψ(x− x0) = 0.5

(
1 + tanh

(x− x0)

w

)
(3.28)

and using the relationship ∆2 = (π2/12) ·w2 from the slope of the dependence of ∆2 on
ln(Ls) the interfacial tension is obtained by a least square fit. Fig. 3.4 shows the graph
of square of interfacial width versus the system size and the least square fitted line for
one of the configurations used for the analysis of the capillary wave spectrum.

In the Eq. 3.27, l0 is the lower cutoff length which is the coarse graining length
on which the interface assumes its ‘intrinsic’ structure [81]. To determine the intrinsic
width, we choose persistence length, lp, of the semiflexible chains as the lower cutoff
length. The results obtained in this way will be discussed below.

Using both methods (analysis of capillary wave spectrum and virial theorem) de-
scribed above, the interfacial tensions from 16 different configurations, such that output
of former is input of successive, for each system of study have been calculated in stiff-
ness disparity systems. We performed 2.4× 104 attempted move per monomer (AMM)
between two successive configurations for the systems of flexible chains and number of
AMM increased with increasing stiffness of the semiflexible chains. For the system with
the highest stiffness of our study the number of AMM between two successive configura-
tions was 6.0×104. Fig. 3.12 shows for a system with intermediate stiffness disparity ( lp

a

=2.5) the values obtained by both methods for the 16 configurations used for the mea-
surement of interfacial tension. For the size disparity system, the interfacial tension is
calculated just by using virial theorem from 16 different configuration such that output
of former is input of successive. 4.8× 104 AMM between two successive configurations
were performed. Figure 3.23 shows the interfacial tension from 16 different configu-
rations for the system of monomer size disparity with equal number of monomers per
chain. Capillary wave spectrum method could not be used to calculate the interfacial
tension for monomer size disparity systems because of small system sizes considered in
the present work.

56



1 2 3 4
0

5

10

w
2

lp = 1.25
lp = 4.2
lp = 13.6
lp = 30.02

lnLs

Figure 3.27: Square of interfacial width versus the logarithm of subsystem size, (Ls),
as a function of stiffness of the semiflexible components. Arrows mark the
square of intrinsic width for the respective systems.
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4 Results and Discussions

4.1 General Consideration

In this chapter, results will be presented and discussed. Further, if possible, they will
be compared with mean-field results. As mentioned in previous chapters, the interest
is especially in the interfacial properties of asymmetric polymer blends and their phase
behavior.

The interfacial properties of polymers with various degrees of flexibilities are dis-
cussed in section 4.2. The systems consist of flexible and semiflexible polymers whose
flexibility varies fom flexible polymers to stiff rod. Various quantities which characterize
the polymer-polymer interface have been studied. The interfacial tension as a function
of statistical segment length of semiflexible component has been calculated using virial
theorem and capillary wave spectrum method. Simulation results are compared with
the mean field results of Helfand and Sapse [20], and Liu and Fredrickson [67]. Sim-
ilarly, the interfacial width as a function of stiffness of semiflexible chains is studied
by simulation and they are compared with the mean field results of Helfand-Sapse and
Liu-Fredrickson. The monomer density profiles are also obtained as a function of chain
stiffness of semiflexible components. Further, we study the orientaions of chains and
bonds. The other interfacial properties which characterize the interface are distribution
of chain ends and center of mass of polymer chains. All of these quantities are studied
as a function of chain stiffness of semiflexible component.

In section 4.3, the interface properties of polymers with different monomer sizes will
be presented. We study and compare our results for interfacial properties of two dif-
ferent types of systems; (1) a system having two different types (say type A and type
B) of polymer chains such that the diameter of a type B monomer is double than that
of type A monomer but the number of monomers per chain for both types of polymers
is equal i.e, “monomer size disparity with equal number of monomers per chain” , and
(2) a system having two different types (say type A and type B) of polymer chains with
almost equal radius of gyration, however, the diameter of type B monomers is double
than that of type A monomers. The results of such asymmetric polymer-polymer inter-
faces are compared to the interfacial properties of symmetric system in which the size of
monomers of both types of chains as well as number of monomers per chain are equal.
The simulation results are compared with mean field results of Helfand and Sapse [20].
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Other interfacial properties like density profile, chain orientation, distribution of chain
ends near the interface and distribution of center of mass of polymer chains are also
studied.

In section 4.4, we estimate the critical value of Flory-Huggins parameter as a function
of degree of chain flexibility in a system of flexible-semiflexible polymers such that semi-
flexible chains are far from isotropc-nematic transition. In simulation, one can study
phase diagram of polymer mixture by using semi-grandcanonical techniuqes in which
types of chains are fluctuating but total number of particles remains constant. Because
of high stiffness disparity for our systems of study such techniques will be inefficient for
the present study. By calculating interfacial tension for weak segregation limit, we esti-
mate the value of Flory-Huggins parameter χ at which the interfacial tension becomes
zero, corresponding value of χ is critical value of χ at which two types of polymers get
phase separated.

4.2 Interfaces of Flexible and Semiflexible Polymers

In this section we describe the results about the interface properties of flexible and semi-
flexible polymers at strong segregation limit. As mentioned before the present study
covers the whole range of flexiblity of semiflexible polymers from flexible to stiff rods. We
have studied interfacial tension, interfacial width, density profile, distribution of chain
ends near the interface, distribution of center of mass of polymers near the interface,
orientation of chains and bonds near the interface as a function of stiffness of the semi-
flexible chains. All these results will be presented and discussed in following subsections.

4.2.1 Interfacial Tension

Fig. 4.1 shows the obtained results for the interfacial tension of an interface between
chains without additional bending restrictions and semiflexible chains described in previ-
ous chapter versus the statistical segment length of the stiffer chains estimated according
to Eq. 3.4. The results obtained by the virial theorem and by the capillary wave method
agree very well within the error bars estimated by the fluctuations of the single mea-
surements (see above). The interfacial tension increases with increasing stiffness of the
semiflexible component and levels of for values of stiffness beyond the semiflexible re-
gion b� L which is visible also by the violation of the relationship b = 2lp − 1 in Table
3.1. In Fig. 4.1 also simulation results obtained by Mueller and Werner [38] within the
bond-fluctuation model for a rather limited range of stiffness disparity are displayed.

The interfacial tensions obtained by using virial theorem are higher than that by
capillary wave spectrum method. This systematic difference can be attributed to the
fact that virial theorem gives the difference of free energy per cross sectional area of the
interface while capillary method is related to the interfacial area. Therefore, a little bit
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higher interfacial tension obtained by virial theorem is not unexpected.

In the simulation results it can be seen that there is a very strong tendency towards
saturation of interfacial tension with increasing statistical segment length of semiflexible
components. Moreover, from these results it can be seen that there is no change in the
saturation property of interfacial tension even though the statistical segment length of
semiflexible component crosses the isotropic-nematic transition region and hence we are
dealing with isotropic-nematic (flexible-stiff rod) interface instead of isotropic-isotropic
interface, provided in the isotropic-nematic interface the polymers forming nematic phase
are parallel to the interface plane (when one considers the isotropic-nematic interface the
interfacial tension (in fact, interfacial properties) depend on the direction of orientation
of polymers which form the nematic phase [75]. In the present work, only one case of the
isotropic-nematic interface of flexible-stiff poylmers is considered in which the nematic
director is parallel to the interface. The interfacial tension gets saturated before the
stiffer chains form nematic phase and this trend of interfacial tension continues. The
profile of interfacial tension against the statistical segment length of semiflexible com-
ponent is very smooth after segment length in our model crosses the value 6.07.

These simulation results are compared with the mean-field results of Helfand and
Sapse [20], and Liu and Fredrickson [67].

Helfand and Sapse [20] obtained for the interfacial tension, σ, of a planar inter-
face between two phases of Gaussian chains with different statistical segment lengths
interacting via a Flory-Huggins-type interaction

σ

kBT
=

2

3

√
α

(
(β3

A − β3
B)

(β2
A − β2

B)

)
(4.1)

The βi ( i = A,B )

βi =

√
1

6
ρ0ibi (4.2)

are the parameters which contain the chain statistics. The statical segment lengths bi are
defined in the same way as in Eq. 3.4 and the ρ0i are the number densities of statistical
segments in both bulk phases respectively. For comparison with simulation data we will
use the mapping

ρ0i =
ρ0

C∞i
(4.3)

which corresponds to the introduction of statistical segments by Eq. 3.4. ρ0 is then the
number density of beads which is the same for both chains. The interaction parameter
α of the interaction between two statistical segments is then given by

α = ρ0χ (4.4)
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Figure 4.1: Interfacial tension as a function of statistical segment length of semiflexible
polymers. The statistical segment lengths are in units of average bond length.

with the Flory-Huggins-parameter χ for the interaction of two beads of chains of different
kind as defined by Eq. 3.3. For the interfacial tension of chains with the same segment
length the Helfand Tagami result [65],

σ

kBT
= ρbb

√
χb

6
(4.5)

is reproduced with now ρb and χb as the number density and interaction parameter of
statistical segments. Fig. 4.1 shows clearly that the Helfand-Sapse results [20] agree
well with the simulation data in the really semiflexible range of our system but differs
increasingly with increasing stiffness. Expected reasons are as well effects of finite chain
length as also the formation of local order with increasing stiffness. It will be discussed
below.

Liu and Fredrickson [67] analyzed the interfacial tension of binary blends of polymers
with different stiffness starting from a wormlike chain hamiltonian for both chains and
with an interaction hamiltonian quadratic in both order parameters, concentration and
orientation. Using a Landau-de Gennes expansion for the orientational part of the free
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energy, fixing the value of the Maier-Saupe parameter and assuming weak orientation
only, they obtained;

σ

kBT
=

4

9a2
0

√
χ
κ

3/2
A − κ3/2

B

κA − κB

(4.6)

where a0 is the monomer length and κi ( i = A,B ) is the dimensionless persistence
length ( in units of a0 ) of the ith component of the polymer blend. Eq. 4.6 has the
drawback showing not the expected dependence on monomer density as eg Eqs. 4.1 and
4.5 and also not agreeing with Eq. 4.5 in the limiting case κA = κB = 1 .

Using the correction factor
√

3
8
proposed in [67], with the replacement κ = C1N+1

2
and

using our values for the average bond length as monomer length i.e., a0 ∼ a ∼ 2lc for
two flexible chains, we get almost complete numerical agreement with the results from
Eq. 4.5. With this choice of parameters the interfacial tension according to Eq. 4.6 in
Fig. 4.1 shows a less increase with increasing stiffness disparity as the Helfand-Sapse
result [20] and seems to agree better with the simulation result for large stiffness. But
the above discussed problems and the behavior at small stiffness disparities rules Eq. 4.6
out to be a suitable expression for describing the interfacial tension for unsymmetrical
polymer blends.

Up to now, the simulation results for finite segment numbers are compared with
mean-field results for long chains. In literature ( see e.g. [87] ) several corrections for
finite segment numbers are discussed. Ermoshkin and Semenov [87] reconsidered the
problem most recently and proposed corrections for interfaces between blends with dif-
ferent molecular weight and also for the case χN ∼ 1. Using the correction (1 − 4 ln 2

χN
)

obtained in [87] to Eq. 4.1 the reduction is too large but we get an almost complete
agreement for the region of small stiffness disparity using the correction factor (1−2 ln 2

χN
)

obtained in [88] as is visible from Fig. 4.1. A detailed discussion of possible physical rea-
sons for this disagreement is beyond the scope of this work but it may be related to the
problem already discussed by Binder [1] that a minimization of a free energy functional
in square gradient approximation is not sufficient for the strong segregation case χN > 1 .

As main reason for the differences between mean-field results and simulation at higher
stiffness disparities the strong orientation of bonds and chains near the interface must
be considered ( see below ). This is not taken into account in the approaches discussed
above. Moreover, when the persistence length ( lp

a
) of semiflexible chains is beyond ≈ 13.6

an isotropic-nematic transition will occur ( see table 3.1). This strong increase in or-
der in bulk is not accompanied by a visible change in the stiffness-dependence of the
interfacial tension. This is an additional hint that the orientation near the interface
is already large in the case of isotropic bulk phases and determines the stiffness depen-
dence of interfacial tension. To derive the formula 4.6, Liu and Fredrickson assumed that
the semiflexible polymers, in flexible-semiflexible polymer system, are far from nematic
phase. By increasing the persistence length of semiflexible component, the system will
be closer to isotropic-nematic transition. Therefore, the disagreement with their results
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for the system with flexible and highly stiff polymer chains is not unexpected. Further in
their study, they fix Maier-Saupe parameter. When we increase the stiffness parameter
of semiflexible chains the Maier-Saupe parameter of semiflexible chains also increases.
These could be the reasons why the difference between mean-field and simulation goes
on increasing with the stiffness of semiflexible component.

4.2.2 Density Profile and Interfacial Width

The entanglements in the interfacial zone are of major importance for the mechanical
properties of the blend. Therefore, the monomer density profiles of different compo-
nents of the polymer blends are also important. Figure 4.2 presents the density profiles
of the individual components as well as total monomer density profile as a function
of the stiffness parameter of the semiflexible component. The density profiles for the
different stiffness parameters are not much different until the persistence length ( lp

a
) of

semiflexible component is 13.6. The profiles become sharper in the semiflexible side
as the stiffness increases. When the persistence length ( lp

a
) of the semiflexible compo-

nents is larger than 13.6, it forms a nematic phase and the density profiles also become
quite different and molecularly sharp which clearly shows decrease in interfacial width
significantly. We can describe these profiles also by the tangent hyperbolic function
3.28. For example, figure 4.2 shows the tangent hyperbolic function fitted for the sys-
tem with flexible-semiflexible polymers in which semiflexible component has persitence
length ( lp

a
) =2.5. A reduction of the total monomer density is observed at the center

of the interface and the effect increases with the increase in the stiffness of semiflexible
component. When the persistence length ( lp

a
) of the semiflexible component of polymers

is more than 13.6 the reduction of the total monomer density at the interface is very
high as shown in the figure 4.2. The minimum value of total monomer density is 0.95
in the case of persistence length ( lp

a
) of semiflexible component 13.6 whereas it is about

0.85 and 0.63 for the systems with isotropic-nematic interfaces with persistence length
( lp

a
) of semiflexible component 28.0 and 30.02 see figure 4.3. It should be noted that in

the present work, the nematic director in isotropic-nematic interface is parallel to the
interface plane. Thus it is observed that as the stiffnes of the semiflexible component
increases the density profile becomes sharper in semiflexible side and the depth of dip
in the total density at the interface goes on increasing.

These results qualitatively agree with the previous results of Schmid and Mueller [66]
for symmetric polymer-polymer interface and results of Liu and Fredrickson [67]. How-
ever, Mueller and Werner [38] have reported that the reduction of the total monomer
density at the center of the interface is almost independent of the stiffness of the semiflex-
ible component and the density profiles for stiffness disparity are almost independent
of stiffness of semiflexible component. The reason may be that they considered very
small stiffness disparity (C1N = 3.13 is highest characteristic ratio, estimated from their
data), therefore, in their results the reduction of total monomer density at the center
of the interface is almost independent of stiffness. In the present results also if we just
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consider very small stiffness disparity as in their case (e.g. statistical segment length of
semiflexible component = 1.51 and 2.8 only), we cannot see the small difference in the
reduction of total monomer density at the center of the interface and density profiles
are also almost independent of statistical segement length of semiflexible component
which agrees very well with their results up to the stiffness disparity they studied. Com-
paring the flexible-flexible polymer interface with the interface of flexible polymers and
semiflexible polymers with persistence length ( lp

a
) 13.6, the amount of reduction of total

monomer density at the interface is little different and the density profiles are also not
much different.
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Figure 4.2: Normalized total monomer density and individual component density as a
function of chain stiffness of the semiflexible polymers. Persistence lengths
lps are in unit of average bond length. φ(x) is the normalized monomer

density. Tangent hyperbolic function describing φ(x) of the system with lp
a

= 2.5 is also shown.

The total interface width w (compare to Eq. 3.27) is determined as already explained
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in 3.4 by fitting the density profile to the model function 3.28. The intrinsic width w0

follows then analyzing Eq. 3.27. As already discussed above as lower cutoff length the
minimum of persistence length lp is used. We get a slight decrease of total interface
width with increasing stiffness disparity within the range of an isotropic phase for the
semiflexible chains but a sharp decrease down to a molecularly sharp interface as visible
in Figure 4.2 for the interface between flexible chains and stiff chains in nematic state.
Figugre 4.4 shows also the data for the intrinsic width (considering persistence length
as the lower cut off length).
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Figure 4.3: Depth of the dip in monomer density profile as a function of chain stiffness
of the semiflexible polymers.

Further, the intrinsic width keep on increasing until we consider the flexible-semiflexible
interface such that semiflexible polymers are isotropic. But the intrinsic width has small-
est value for isotropic-nematic interface (i.e. the interface between flexible-stiff rod poly-
mers). Therefore, the intrinsic width also decreases when we pass from isotropic-isotropic
interface to isotropic-nematic interface of polymers i.e. intrinsic width decreases with
increasing statistical segment length of semiflexible component when the statistical seg-
ment length is greater than the value at which isotropic-nematic transition takes place.
In figure 4.4, it can be seen that the difference in total interfacial width and intrinsic
width decreases as a function of statistical segment length of semiflexible component.
This means the contribution from the capillary wave to the interfacial width also de-
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creases as a function of statistical segment length of semiflexible component. In all these
discussions, we have considered isotropic-nematic interface in which the nematic director
of polymers with nematic phase is parallel to the interface plane.
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Figure 4.4: Interfacial width as a function of statistical segment length of semiflexible
polymers. The width and statistical segment length both are in units of
average bond length.

Within the work shortly characterized above Helfand and Sapse [20] obtained for the
intrinsic interfacial width parameter w,

w =

√
β2

A + β2
B

2α
(4.7)

The results for our systems are again obtained with the replacements according to
Eqs. 4.4 and 4.2 and shown also in Fig. 4.4. The end effect rises the value of interfacial
width by a factor of (1+2 ln 2

χN
) [89]. Figure 4.4 also presents the data obtained by using

this correction factor in the mean-field expression obtained by Halfand-Sapse i.e Eq.
4.7. As for the interfacial tension a reasonable agreement between the intrinsic width
and mean-field data with finite end corrections is observed in the semiflexible range and

66



increasing differences approaching the isotropic-nematic transition. The intrinsic width
approaches the total width for large stiffness disparities because the increasing interface
stiffness prevents the formation of capillary waves within the considered subsystems.

Liu and Fredrickson [67] obtained for their wormlike chain model

w =

√
2

3
a0

√
κA + κB

χ
(4.8)

With the same treatment as for the interfacial tension the values for our systems are
also shown in Fig. 4.4 and a similar relationship between the analytic results in [20] and
[67] and our simulation data as in Fig. 4.1 can be observed for the predicted interfacial
width.

Moreover, it should be noted that the results for the interfacial tension and the
interface width derived in [38] from the Helfand and Sapse [20] results and also the re-
sults following from the free-energy-functional in [87] by minimization with the ínterface
profile Eq. 3.28 and using the same mapping procedure as in Eqs. 3.4 and 4.3 agree
completely with the results in Figs. 4.1 and 4.4 for the case C∞A = C∞B = 1 but show
strong increasing deviations at larger stiffness disparities. Using instead Eqs. 3.4 the
formal equivalent mapping procedure

b′ = a
√
C1N

χ′
b = χ (4.9)

ρ′b = ρ0

leading also to Eq. 4.5 but now with parameters b′ , χ′
b and ρ′b , an almost complete

agreement with the analytic results in Figs. 4.1 and 4.4 up to large stiffness disparities
is obtained.

Mueller and Werner [38] have also reported that the total interfacial width de-
creases with increase in the stiffness of semiflexible component in the blend of flexible-
semiflexible polymers which agrees with the present results.

4.2.3 Orientation of Chains and Bonds in the Interface Region

The thermodynamic quantities which were discussed in previous subsections are not suf-
ficient to understand the microscopic structure of the polymer interfaces. The width of
the interfacial region and the orientation of polymers on different length scales influence
the material properties. They also play an important role for reactions at interfaces. The
polymers stretch parallel to the interface. The shape of a polymer, near the interface
is a prolate ellipsoid. The existence of a planar interface destroys the isotropy in the
bulk polymer and consequently orientation of bonds as well as chains relatively to the
interface will be observed.
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Quantitatively, the orientation of the bond vectors near the interface region have been
studied. We study the following bond orientational parameter (defined in the chapter
3);

S (x) =
3 〈a2

x (x)〉 / 〈a2〉 − 1

2
(4.10)

where �a are the bond vectors. The bond orientation parameter is positive for perpen-
dicular and negative for the parallel orientation. The profile of the bond orientation
is shown in the figure 4.5. In figure it is seen that bond vectors prefer to allign par-
allel to the interface. The orientation effects increases upon increasing the stiffness of
the semiflexible component. Further the bond orientation parameter are not much dif-
ferent for different systems of studies in the flexible side whereas in the semiflexible
side they are different which is the effect of stiffness of the semiflexible component. In
the orientational profile the oriented region is broader in the compartment occupied by
the stiffer chains. Further, in contrast to the width of the density profile, the spatial
range over which the orientation of bonds extends grows with increase in the stiffness
of the semiflexible component. Therefore, the orientational width and the width of the
compositional profile are two independent microscopic length scales. Similar results are
obtained by Mueller and Werner [38].

Further, we have studied the orientation of the parallel and the perpendicular com-
ponents of the radius of gyration of the polymer chains. We have studied the following
orientational parameter (as defined in the chapter 3) for the polymer chains near the
interface;

∆Rg⊥ =
3 < Rg2

x > − < Rg2 >

2 < Rg2 >
(4.11)

and

∆Rg‖ =
3(< Rg2

z > + < Rg2
y >)/2− < Rg >2

2 < Rg2 >
(4.12)

where ∆Rg⊥ and ∆Rg‖ are the perpendicular and parallel orientational parameters of
the radius of gyration of polymer chains (perpendicular and parallel with respect to the
interface plane), < Rg2 > is the mean squared radius of gyration of the chains and
< Rg2

i > (i = x, y, z) is the ith component of mean squared radius of gyration of the
polymer chains. Therefore, if the chains orient parallel to the interface, parallel orienta-
tional parameter (∆Rg‖) will be positive (maximum value 0.25) while the perpendicular
orientational parameter (∆Rg⊥) will be negative (minimum value -0.5). If the chains
orient perpendicular to the interface, ∆Rg‖ will be negative and ∆Rg⊥ will be positive.
If there is no preferred orientation of the chains, ∆Rg‖ and ∆Rg⊥ both the quantities
will be equal to zero. The profiles of these quantities are shown in the figure 4.6.

As shown in the figure, ∆Rg‖ and ∆Rg⊥ in the flexible side remains almost constant

(until the persistence length ( lp
a
) of the semiflexible chains increases upto 13.6) while in

the semiflexible side they are different which is not unexpected as semiflexible chains
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Figure 4.5: Orientation parameters of bonds as a function of stiffness of semiflexible
component. lps are in unit of average bond length.

possess different degrees of flexibilities. In the isotropic-nematic interface, the chains in
the flexible side remains unaffected till they are very close to interface. However, at the
vicinity of the interface, they strongly stretch parallel to the interface. At the mean time,
in the semiflexible region the semiflexible chains get stretched more and more parallel to
the interface as the degree of flexibility decreases. In the isotropic-nematic interface the
nematic chains prefer to allign parallel to the interface and they do it perfectly which is
depicted in the figure 4.6. The polymer chains prefer to allign parallel to the interface as
∆Rg‖ is positive in all the cases and ∆Rg⊥ is negative (at the interface region) while in
both bulk phases no preferential orientation takes place for the isotropic-isotropic inter-
face. In the case of isotropic-nematic interface, nematic chains prefer to allign perfectly
parallel to the interface plane even in the bulk phase. The orientation effects become
stronger with the increase of the stiffness of semiflexible chains. For isotropic -isotropic
interfaces, the orientational effect tends to be small unless the system is close to the
isotropic-nematic transition. Passing through the interface region the elliptic chains
first attempt to maximize the homocontacts with their own bulk phase (A-A and B-B
segment contacts, respectively) in order to minimize the energy by rotating their longest
axes into the interface plane as far as possible.
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Figure 4.6: Orientation parameters of chains as a function of stiffness of semiflexible
polymers. The persistence length are in units of average bond length.

4.2.4 Distribution of the Chain Ends and Density of Center of
Mass of the Chains

The distribution of the chain ends are important for the interdiffusion and healing prop-
erties at interfaces between long polymers [15]. Further on the theoretical side, the
behavior of chain ends is related to corrections to the ground state approximations [90].
Chain end effects give a large corrections to the interfacial tension and width (e.g., see
the subsections 4.2.1 and 4.2.2) and they also play an important role for long range
interactions between interfaces. Due to entropic reason polymers orient themselves by
putting their ends preferentially at the center of the interfaces. Since A type of chains (in
polymer blend of type A and type B) close to the interface prefer to put the chain ends
into the B phase and vice versa, the chain ends are more at the interface than they are
at the bulk side. A chain close to interface prefers to put its ends to its minority phase
because of entropic reason. Therefore the density of ends of type A chains is increased at
the side of type B chains and decrease close to the interface at the A side and vice versa.
When this effect increases the interface becomes sharper and we cannot see such a effect
in the weak segregation limit. If we calculate the total chain end distributions, we find
effectively an enrichment of chain ends at the center of the interface and a depletion in
the wings of the profile. The result of polymer chain ends being located preferentially
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close to the interface is that whole chains tend to orient themselves parallel to the in-
terface and hence the shape of the polymer chains near the interface is prolate ellipsoid
(see previous subsection).
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Figure 4.7: Distribution of chain ends as a function of stiffness of semiflexible components
in flexible-semiflexible polymer systems. The persistence lengths lps are in
units of average bond length.

Figure 4.7 shows the profiles of the distribution of the chain ends as a function of
stiffness of semiflexible components. In Fig. 4.7, Nρe(x)

2ρ(x)
versus x coordinate haven been

plotted where ρe(x) is the number density of chain ends at ‘x’, ρ(x) is the total monomer
density at ‘x’ and N is the number of monomer per chain. We have presented the above
described quantitiy as a function of chain stiffnes of semiflexible component. It shows
the chain end distributions for flexible chains, semiflexible chains and sum of them.
Chain ends are enriched at the center of the interface, and this effect goes along with a
depletion away from the interface. A - polymers like to put their ends into B rich phase
and vice versa. Similar results are obtained theoretically for Gaussian chains by Schmid
and Mueller [66]. The effect becomes stronger when the chain stiffness increases. In
the figure 4.7, it can be seen that the maximum value of the profile increases with the
increase of the stiffness of semiflexible component of the blend. As a result the mini-
mum value away from the interface is smallest for the system having highest value of
stiffness for semiflexible component. Further the total chain end distribution becomes
more asymmetric as a function of stiffness of semiflexible component. In the flexible side
the profiles are not much different but in the semiflexible side they are different which
is reflected at the total value of end distributions.

Analogous observations apply to figure 4.8 which presents the normalized density of
centers of mass of the chains, ρcm(x)

ρcm
(where ρcm(x) is the number density of center of

mass of polymer chains at x and ρcm is the average density of center od mass of polymer
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Figure 4.8: Distribution of center of mass of flexible chains, semiflexible chains and sum
of them. The persistence lengths lps are in units of average bond length.

chains) except for the maxima at the interface being now exchanged to minima due
to the enrichment of centers of mass of chains in the interface region next to the bulk
phase of the component. The density of center of mass has a minima at the center of the
interface. This figure presents the normalized density of center of mass of flexible chains,
semiflexible chains and the sum of them. The profile has minimum at the interface and
this effect goes on increasing as the stiffness of the semiflexible component increases
while the maxima at the interface in the profile of the chain ends distribution goes on
increasing with the increase in the stiffness of the semiflexible component. As in the
case of chain end distributions, the profiles in the flexible side are not much different
but in the semiflexible side they are. Therefore, the total profiles are not symmetric.
The maximum value in the profile which contains sum of center of mass of flexible and
semiflexible chains away from interface increases as a function of stiffness of semiflexible
component.

4.3 Interfaces of Polymers Having Different Monomer
Sizes

In the previous section the results of interface properties of flexible-semiflexible polymer
systems are discussed. This section is devoted to results and discussions about the in-
terface properties of polymers with different monomer sizes. These systems consist of
two types of polymer chains, viz; type A and type B. A type of polymer chains have
monomers with diameter dA = dmin (which is defined already in chapter 3) whereas B
type of polymer chains have monomers with diameter, dB = 2×dA. We study and com-
pare interfacial properties of polymers having monomers of different sizes ‘monomer size
disparity with equal number of monomers per chain’ and ‘monomer size disparity with
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almost equal radius of gyration’ (see chapter 3). The interface properties of monomer
size disparity systems are compared to that of symmetrical system.

The interfacial properties which have been studied, are as those of stiffness disparity
presented in section 4.2. The interfacial properties namely, interfacial tension, interfacial
width, density profile, orientation of chains, distribution of chain ends and center of mass
of chains for the systems described above have been studied.

4.3.1 Interfacial Tension

The interfacial tension for unsymmetric systems of two types of polymers which differ
in the sizes of monomers are calculated as described above by virial theorem and these
results are compared with the analytic expression given by Helfand and Sapse [20];

σ

kBT
=

2

3

√
α

(
(β3

A − β3
B)

(β2
A − β2

B)

)
(4.13)

which is same as in Eq. 4.1. The βi ( i = A, B) are same as in equation 4.2 and ρ0i are
also same as in equation 4.3 in the section 4.2. However, the interaction parameter, α,
between two statistical segments is now given by,

α = χ
√
ρAρB (4.14)

with the Flory-Huggins parameter χ for the interaction of two beads of chains of differ-
ent types as defined in equation 3.13. The mapping procedures to compare simulation
results with mean field are same as in the subsection 4.2.1. From equation 4.1 it is
seen that the interfacial tension depends mainly on number density of different compo-
nents, the interaction parameter χ and statistical segment length of the two components.

Table 4.1 shows simulation results and the data obtained from mean-field expression
of Helfand and Sapse equation (4.13). From table 4.1, it can be seen that the interfa-
cial tension decreses with the increase in ‘monomer size disparity’. It is seen that the
interfacial tension decreases in both cases, namely in monomer size disparity with equal
number of monomers per chain and monomer size disparity with almost equal radius of
gyration, in comparison to symmetrical system containing smaller size of beads. More-
over, for the asymmetric systems the interfacial tension is higher for the monomer size
disparity with almost equal radius of gyration than that for the monomer size disparity
with equal number of monomers per chain. We have compared also the ratio of interfa-
cial tension to the Flory-Huggins parameter, χ, for different systems of studies. Table
4.1 presents the ratio of σ

kBT
and χ for the systems of study. The ratio of interfacial

tension ( σ
kBT

) to Flory-Huggins parameter, χ also has larger value for the monomer size
disparity with almost equal size of polymer chains than that of monomer size disparity
with equal number of monomers per chain.

It is clear that simulation data agrees very well with the mean-field data by taking
into account the finite chain length effects. Following the description in subsection 4.2.1
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type of system σ
kBT

σ/kBT
χ

σ
kBT

H-S w
a

w
a
(H-S)

symmetrical 0.0615± 0.0058 0.192 0.0707 1.655 0.73
NA = NB 0.0261± 0.007 0.133 0.0284 1.05 0.723
RA

g ∼ RB
g 0.0303± 0.0075 0.143 0.0331 0.979 0.659

Table 4.1: Interfacial tension and width for size disparity systems and symmetrical sys-
tem. The total interfacial width are divided by respective bond lengths that
is, 1.998 in symmetrical system and 3.749 in the unsymmetrical systems.

we take into account of finite length effects to describe the small difference between
simulation and mean field results. Helfand et al. [88] have obtained the corrections in
the interfacial tension due to the finite length of the chains. They have obtained that
the interfacial tension is reduced by a factor of (1− ( ln 2

χNA
+ ln 2

χNB
) because of finite chain

length of the polymer chains. This factor becomes ∼ 0.8 for unsymmetric systems and
describes very well the very small difference between simulation results and mean-field
data obtained from the analytic expression of Helfand and Sapse. When the statistical
segment length of one of the components increases i.e., when the asymmetry in two
types of chains increases, the interfacial tension increases but in our system of study it
decreases because the Flory-Huggins parameter and number density of the type B chains
also decrease. From table 4.1, it is seen that the interfacial tension for the asymmetric
system is lower than that for the symmetric system. As seen in the table 4.1 for the size
disparity case simulation data agree very well with the mean field results which implies
that the mean field results describe the systems of lower values of χ and number density.
The main resons for the lower value of interfacial tension for asymmetric systems are
the lower value of χ and monomer density. As seen from the Eq. 4.5 the interfacial
tension depends up on both of these quantities and increase with the increase with
any of these quantities. It is seen that the small increase in interfacial tension due to
increase in statistical segment length of the asymmetric system cannot compensate the
huge reduction due to number density and χ.

4.3.2 Density Profile and Interfacial Width

Figure 4.9 shows the normalized monomer density profile for the type A monomers type
B monomers and their sum. The number density of type B monomers is multiplied by
eight as one type B bead has volume 8 times larger than that of the type A in monomer
size disparity systems. As in the case of stiffness disparity, one can describe these pro-
files by the tangent hyperbolic function, Eq. 3.28. A reduction of the total monomer
density is observed at the center of the interface. It can be seen from figure that the
monomer density profile for asymmetric polymer-polymer interfaces are not significantly
different than that of the symmetric interfaces. In the case of asymmetric system the
smaller beads penetrate more deep inside the bulk phase of larger beads than in the
symmetrical system increasing the size of the interfacial region. The dip in the center
of the interface increases slightly with monomer size disparity. But this increase is not
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Figure 4.9: Monomer density profile of individual components and sum of them in the
symmetric system and monomer size disparity systems.

significant as in the case of isotropic-nematic interface (see subsection 4.2.2). The dip at
the center of the interface is highest for the system of monomer size disparity with equal
number of monomers per chain for both types of chains whereas it has lowest value for
the symmetric system.

Table 4.1 shows total interfacial width as a function of diameters of different types of
beads. It depicted both the data one by simulation, and another by mean field expression
using Eq. 4.7. The same mapping as in the stiffness disparity case has been used. These
data show that total interfacial width increases with the asymmetry in the monomer
volume, i.e., the radius of monomers. The interfacial width is larger for the system in
which two types of monomers have differnt size but there are equal number of monomers
per chain than that the system in which two different types of monomers have almost
equal radius of gyration.

4.3.3 Orientations of Chains

In polymer blends the orientation of the polymers on different length scales influence
the materials properties. The thermodynamic propterties like interfacial tensions are not
enough to understand the microscopic structure of the polymer interfaces. The shape
of a polymer chain is a prolate ellipsoid near the interface. Due to entropic reasons
polymers orient themselves by putting their ends preferentially at the center of the
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interface. In the present work, the orientation of chains have been studied by defining
orientation parameter in terms of radius of gyration of polymer chains. The orientational
profiles of monomer size disparity systems are compared with that of symmetric system.
Orientations of the perpendicular and parallel (perpendicular and parallel with respect
to interface) components of radius of gyration are studied. The orientational parameters
which are studied are same as in the case of stiffness disparity Eq. 4.11 and 4.12. The
orientational profiles are shown in the figure 4.10. The figure shows that the polymers
in asymmetric systems with larger radius of beads orient more parallel to the interface
plane compared to symmetrical systems. Further the effect is less for the system of the
monomer size disparity with almost equal radius of gyration of chains than the system of
the monomer size disparity with equal number of monomers per chain. Mostnotably, the
orientation parameter in the side of small beads are not much different. If we see only
A types of chains (chains with small beads, i.e. left side in the figure 4.10), they stretch
more in the asymmetric system than that in the symmetric system. It is seen that A
types of chains are not much influenced by the interface and B types of chains get more
affected by the interface. Generally, there is weak nematic ordering near the interface but
it is seen from our results that the effect is stronger in asymmetric system with smaller
and larger beads than the symmetric system with the smaller beads. Passing through
the interface region the elliptic chains first attempt to maximize the homocontacts with
their own bulk phase (A-A and B-B segment contacts, respectively) in order to minimize
the energy by rotating their longest axes into the interface plane as far as possible.

4.3.4 Distribution of the Chain Ends and Density of Center of
Mass of the Chains

Since A types of chains (in polymer blend of type A and type B chains) close to the
interface prefer to put the chain ends into the B phase and vice versa, the chain ends are
more at the interface than they are at the bulk side. A chain close to interface prefers
to put its ends to its minority phase because of entropic reason. Therefore the density
of ends of type A chains is increased at the side of type B chains and decrease close
to the interface at the A side and vice versa. When this effect increases the interface
becomes sharper and we cannot see such a effect in the weak segregation limit. If we
calculate the total chain end distributions, we find effectively an enrichment of chain
ends at the center of the interface and a depletion in the wings of the profile. As a result
whole chains tend to orient themselves parallel to the interface and hence the shape of
the polymer chains near the interface is prolate ellipsoid (see above).

Figure 4.11 shows the distribution of the chain ends. Here we have plotted Nρe(x)
2ρ(x)

versus x coordinate where ρe(x) is the number density of chain ends, ρ(x) is the total
monomer density and N is the number of monomers per chain. Here we have presented
described quantity as a function of monomer size disparity in our systems of study. Fig-
ure shows the chain end distributions for type A chains (i. e. chains having small size
of beads), for type B chains ( i.e. beads with large size of beads) and sum of them. Fur-
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Figure 4.10: Orientation of chains in the symmetric system and monomer size disparity
systems.
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ther, it depicted chain end distribution for symmetrical system. It is seen that the chain
ends are enriched at the center of the interface. The effect increases with the monomer
size disparity. The peak has highest value for asymmetric system such that larger bead
size component has equal number of monomers per chain as that of chains with smaller
beads whereas the peak has lowest value for the symmetrical system. Total chain end
distribution becomes asymmetric for the asymmetric systems which we studied.

The distribution of the center of mass of chains are also important to understand the
interfacial properties as they give us insight of the location of chains. The profile for the
distribution of chain center of mass, viz; ρcm(x)

ρcm
, is shown in figure 4.12. ρcm(x) is the

density of center of mass of polymer chains at x and ρcm is the average density of center
of mass of chains. Therefore, this figure presents the normalized density of centers of
mass of the chains. In the chain end distributions, there is a maxima at the center of
interface (in total chain end distribution) whereas the total density of center of mass
has minima at the center of interface. In figure 4.12 we have presented the normalized
density of center of mass for type A chains (i.e. chains having smaller beads), for type B
chains (i.e. chains having larger beads) and sum of them. Further, to compare the results
of asymmetric systems to that of symmetrical system, we have presented distribution
of center of mass for the symmetrical system also. The minimum value at the center
of interface is lowest for asymmetrical system in which both types of chains have equal
number of monomers per chain and it is highest for the symmetrical system.

4.4 Phase Behavior in Flexible-Semiflexible Polymer
Blend

We study the dependence of critical value of Flory-Hugins parameter, χ, and hence the
critical temperature Tc on stiffness of semiflexible component.

In this section, the critical value of χ(χc) has been estimated as a function of stiffness
of semiflexible components in flexible-semiflexible polymer blend. As described in chap-
ter 2, one can study phase diagram in polymeric systems by using semi-grandcanonical
ensemble. In this method one types of chains are converted into other type and vice
versa, to take into account density fluctuation. The total number of particles in the
system remains constant. However, we consider very high stiffness disparity, so this
method becomes inefficient as it violates excluded volume effect. The behavior of inter-
facial tension and interfacial width in weak segregation limit has been studied and from
these data critical value of χ has been estimeted. In the present work, we estimate value
of χ at which interfacial tension vanishes by studying behavior of interfacial tension at
weak segregation limit. The behavior of interfacial tension at strong segregation limit
will be also discussed.

To know whether the system has attained equilibrium in the weak segregation limit,
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Figure 4.13: MSD of center of mass of polymers and square of interfacial width versus the
AMM for weak segregation limit for flexible-semiflexible system in which
semiflexible polymers have persistence length ( lp

a
) =4.2 when χ =0.136.

the interfacial width and the mean squared displacement (∆MSD) of center of mass are
monitored. For the weak segregation limit the interfacial width increases (see below)
and hence the idea which was used for the strong segragation limit (see section 3.2.2)
may not be enough for the equilibration. If the square of interfacial width and ∆MSD
are comparable, the calculations of interfacial tensions and interfacial widths are started.
Figure 4.13 shows the graph of∆MSD and square of width for persistence length ( lp

a
)=

4.2. In all the systems of weak segregation limit, such graphs are produced before
starting any calculations to ensure the system has attained equilibrium condition.

4.4.1 Interfacial Tension in Strong and Weak Segregation Limit

In the strong segregation limit, mean-field theory predicts that the interfacial tension
varies as the square root of Flory-Huggins parameter, χ (Eq. 4.1) . However, in the weak
segregation limit the behavior is different. In weak segregation limit Flory-Huggins-de
Geenes formula for interfacial tension and interfacial width are given by (from chapter
2);

σ

kBT
=

9

b2
√
N

(
1− χc

χ

)3/2

(4.15)
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straight line fitted to the weak segregation data and dashed line is the curve
from the formula of strong segregation limit (Eq. 4.1).
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Figure 4.15: ( σ
kBT

)
2
3 versus 1

χ
in flexible-semiflexible polymer system in which semiflexible

component has persistence length ( lp
a
= 2.0). The solid line is the straight
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the formula of strong segregation limit (Eq. 4.1).

82



5 10 15
0

0.05

0.1

0.15

0.2

(
σ

k
B

T
)2 3

1
χ

1
χc
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the formula of strong segregation limit (Eq. 4.1).
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Figure 4.18: Interfacial tension versus
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χ for flexible-flexible polymer system. The solid

line is the straight line from the Eq. 4.1 and the dashed line is the curve
from Eq. 4.15.
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0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

σ
k

B
T

√
χ

Figure 4.21: Interfacial tension versus
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systems Eq. 4.15 Eq. 4.1 Eq. 4.15 M-F Eq. 4.1 M-F

lp =1.25 0.18402 0.109 0.1744 0.125
lp =2.0 0.1886 0.121 - 0.145
lp =2.0 0.1939 0.14 - 0.165
lp =4.2 0.2283 0.165 - 0.192

Table 4.2: Table of the prefactors in equations 4.15 and 4.1 obtained after comparing our
data with mean filed. Here lps are in units of average bond length. In the col-
umn of system means, the system contains flexible polymers and semiflexible
polymers of given persistence length.

and

w =
b
√
N

3

(
χ

χc

− 1

)(−1/2)

(4.16)

respectively. In these equations, b is statistical segment length, N is the number of
monomers per chain and χc is the critical value of χ. To derive these formulas, it is
assumed that the system is symmetrical, i.e. the number of monomers per chain in type
A and type B polymers is equal and further the statistical segment length for both types
of chains are equal. Therefore, when one considers asymmetrical systems the prefactors
in equations 4.15 and 4.16 will be different. However, exponents in right hand side will
be the same. From the equation 4.15, it is seen that interfacial tension decreases with
decrasing χ and finally vanishes when χ = χc. Similarly, from 4.16 the interfacial width
increases with decrasing χ and finally becomes infinite when χ = χc.

As described above (see Eq. 4.15), ( σ
kBT

)
2
3 linearly varies with 1

χ
and the interfacial

tension vanishes when χ =χc. Figure 4.14 shows the dependence of ( σ
kBT

)
2
3 on 1

χ
for

the flexible-flexible polymer system. We can describe the behavior by a straight line
as shown. Further, the figure shows interfacial tension at strong segregation limit and
described curve (see Eq. 4.1 and 4.5). It can be seen in the figure that the data of
strong segregation limit (SSL) does not follow the straight line fitted for the data of
weak segregation limit (WSL). From the fitted straight line for the data of interfacial
tension in weak segregation limit, we have estimated the critical value of χ. Further,
the prefactors in equation 4.15 also has been calculated. Table 4.2 shows the prefactors
in the equation 4.15, from mean field and present work. The prefactors from mean-field
and present work are not much different. The difference is less than 5%.

Figure 4.18 presents interfacial tension as a function of square root of χ for all the
range of study in the present work for the flexible-flexible polymer system. From figure
4.18 it can be seen that the data of strong segregation limit follow a linear behavior
whereas that of weak segregation limit shows different behavior. We have calculated the
slope of the straight line described to the data at SSL which is not far from the mean-
filed value. Table 4.2 shows the slope of the fitted line from present work and mean filed.
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Figure 4.22: Total interfacial width as a function of the interaction parameter, χ for
flexible and semiflexible with persistence length ( lp

a
= 1.25). Arrow marks

the critical value of χ, estimated using the data of interfacial tension.

Figures 4.15, 4.16 and 4.17 presents the interfacial tension in WSL for the system of
flexible-semiflexible polymers in which semiflexible chains have persistence length ( lp

a
)

=2.0, 2.5 and 4.2 respectively. Also shown are the data for SSL. As described above,
for the flexible-flexible polymer system, we have estimated the critical value of χ for all
these systems of study and presented in figure 4.26. The prefactors in the equaion 4.15
are determined for all the systems of study and presented in the table 4.2. Figures 4.19,
4.20 and 4.21 presents the interfacial tension as a function of square root of χ for all
the range of study in the present work for the system of flexible-semiflexible polymers
in which semiflexible chains have persistence length ( lp

a
) =2.0, 2.5 and 4.2 respectively.

Further, table 4.2 presents the slope of the straight line fitted for SSL case.

4.4.2 Interfacial Width in Weak and Strong Segregation Limit

Figure 4.22 shows the dependence of total interfacial width on Flory-Huggins parame-
ter, χ, for flexible-flexible polymer blend. In figure 4.22, the arrow marks the critical
value of χ estimated from the interfacial tension. From figure, it can be seen that the
interfacial width diverges at very very low value of χ. Werner and coworkers [81] also
have studied the behavior of interfacial tension, width and other interfacial properties
at weak segregation limit using Monte Carlo techniques. Similarly, other figures 4.22,
4.24 and 4.23 show the interfacial width as a function of χ for the system of flexible-
semiflexible polymers in which semiflexible chains have persistence length ( lp

a
)= 2.0, 2.5

and 4.2 respectively. It can be seen from the figures that the interfacial width increases
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Figure 4.23: Total interfacial width as a function of the interaction parameter, χ for
flexible and semiflexible with persistence length ( lp

a
= 2.0). Arrow marks

the critical value of χ, estimated using the data of interfacial tension.
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Figure 4.24: Total interfacial width as a function of the interaction parameter, χ for
flexible and semiflexible with persistence length ( lp

a
= 2.5). Arrow marks

the critical value of χ, estimated using the data of interfacial tension.
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Figure 4.25: Total interfacial width as a function of the interaction parameter, χ for
flexible and semiflexible with persistence length ( lp

a
= 4.2). Arrow marks

the critical value of χ, estimated using the data of interfacial tension.

with the decrease in the interfacial tension. The interfacial width will be infinite at the
critical value of χ.

4.4.3 Estimation of Critical Value of χ

As described above we have estimated the critical value of χ as a function of stiffness
of semiflexible component in our systems of study. We have carried out the study of
flexible-flexible polymer blend and flexible-semiflexible (with varying persistence lenth
up to 4.2) polymer blends. First, we studied the dependence of interfacial tension on
Flory-Huggins parameter χ by reducing value of χ from strong segregation limit. The
data are compared with mean-field expressions in equations 4.15 keeping the same mean-
field exponents. Further comparison of our estimated value of critical χ with that of
Werner et al. [81] for the flexible-flexible polymer blend shows that our result for this
system (χC = 0.0795) are not much different from their result (χC = 0.08, estimated
from their graph).

Figure 4.27 shows the ratio of critical temperature for a system with flexible-semiflexible
chains to that of flexible-flexible system. It can be seen from the figure that the critical
temperature increases with the increase in stiffness of semiflexible components.
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Figure 4.26: critical value of F-H parameter as a function of stiffness of the semiflexible
component. Here the persistence length are in units of bond length.
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Figure 4.28: Nχc as a function of stiffnes of the semiflexible components.

The data have been compared to mean filed. From mean filed theory, one gets [1],

Nχc =
1

2


 1

(C1NA)
1
4

+
1

(C1NB)
1
4




2

(4.17)

where C1Ni (i = A,B) is the characteristic ratio as defined in chapter 3 of ith component
and N is the number of monomers in a chain. The value of Nχc as a function of stiffness
of the semiflexible component, in the blend of flexible-semiflexible polymers, has been
calculated using above formula and from simulation data. Figure 4.28 shows both the
data. Both data show that the value of Nχc decreases with increase in stiffnes of the
semiflexible polymers. The mean filed theory gives lower values of Nχc in comparison
to simulation which is not unexpected as the mean field theory neglects the fluctuations.
The nature of both data is the same.
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5 Conclusions and Outlook

An extensive simulations of highly incompatible polymers with different stiffnesses and
polymers with different monomer sizes have been presented. Of special interest is to
study interfacial properties in both cases and phase behavior in stiffness disparity sys-
tems.

The flexibility of semiflexible polymers covers whole range, i.e. from flexible to stiff
rod. The semiflexible chains are constructed by keeping restrictions on the consecutive
bond vectors of a chain. The thermodynamic quantities like interfacial tension and inter-
facial width have been studied. The interfacial tension increases with increase in stiffness
of the semiflexible component and there is a strong tendency towards saturation. It gets
saturated well below the stiffness of semiflexible chains which form nematic phase. In
this range of low stiffness of semiflexible chains the simulation data agree very well with
the self-consistent field (SCF) theory data of Helfand and Sapse [20] by taking account
of finite length of the polymers. The intrinsic interfacial width which is calculated by
considering persistence length as the lower cutoff length also agrees very well with mean
field SCF theory of Helfand and Sapse [20] by taking into account the finite length of the
polymers. The intrinsic interfacial width increases with the stiffness of the semiflexible
polymers whereas the total interfacial width decreases. The interfacial width decreases
remarkably in the isotropic-nematic interface than in isotropic-isotropic interface. To
characterize the local structure of the interface, the density profile of different monomer
species, distribution of chain end, distribution of center of mass of chains, orientation
profiles of chains and bonds are studied as function of stiffness of the semiflexible com-
ponents. As the stiffness increases the density profile becomes sharper in semiflexible
side and the depth in the total density profile goes on increasing. The flexible chains
in a region rich in stiff chains cost more configurational entropy than stiff chains in a
flexible-rich region. Therefore, flexible chains are expelled from the stiff-rich side, leading
to steeper gradients in monomer density profile. A similar effect is seen in the phase be-
havior of blends of stiff and flexible chains [91]. The chain ends are more in the interface
and the effect increases with the increase in the stiffness of the semiflexible component.
Center of mass of chains have minima at the center of the interface. Near the interface,
the polymers are stretched parallel to the interface. The polymers are strongly stretched
on side of semiflexible polymers and the effect increases with the stiffness of the semiflex-
ible component. The individual bonds also orient parallel to the interface and the effect
is stronger on side of semiflexible polymers. The effect increases with the stiffness of the
semiflexible components. Untill the semiflexible chains in a flexible-semiflexible system
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are close to isotropic-nematic transition, the orientational effect tends to be small. This
leads to interfacial tensions governed solely by the composition profile and so it agrees
very well with that of Helfand-Sapse. In the case of flexible-highly-stiff polymer system
the interfacial tensions governed not only by compositional profile and hence one has to
take into account the orientational profiles also. For such a system a mean field theory
beyond Helfand-Sapse is an essential.

The critical value of χ for a flexible-semiflexible polymer systems are estimated using
the mean field exponents. From our results, it is seen that the mean filed exponents are
correct. The critical value of χ decreases with the stiffness of the semiflexible component
hence the critical temperature increases.

The interfacial tension for a monomer size disparity system agrees very well in both
cases namely, monomer size disparity with equal number of monomers per chain and
monomer size disparity with almost equal radius of gyration of two types of chains. The
interfacial width increases with the monomer size disparity. The monomer density pro-
files are calculated for the different species. Similarly, to the case of stiffness disparity
the polymer chains prefer to orient parallel to the interface in the interface region. The
chains having larger beads of unsymmetric systems orient more parallel to the inter-
face in comparison to the symmetric system. The effect is not strong like the case of
semiflexible chains close to isotropic-nematic transition. The chain ends are more at the
interface and the effect is stronger for the monomer size disparity systems. The center
of mass of polymers have minima at the interface.

The main conclusion of the present work is the following. The mean filed thoery of
Helfand-Sapse is correct for the flexible-semiflexible polymer system provided semiflexi-
ble chain are far enough from isotropic-nematic transition. It can describe the monomer
size disparity system also.

The effect of flexible-semiflexible diblock copolymers on the flexible-semiflexible ho-
mopolymer interfaces and polydispersity effect will be our future work in this field.
Further the combination of stiffness disparity and monomer size disparity (which are
studied in the present work) may help to model any polymer blends.
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Summary

Motivation

The subject of phase behavior of polymer melts, polymer mixtures (or blends) and
polymer interfaces [1, 4] has attracted a great deal of attention because of intriguing
physical properties and an essential role in polymer technology. Polymers do not mix at
a molecular level at equilibrium, under a wide variety of circumstances because any slight
incompatibility of monomers in enthalpic interactions and/or entropic packing effect is
amplified by the number of monomers in the macromolecule and cannot be balanced
by the entropy of mixing. If such a pair of polymers are dispersed mechanically, there
will be domains of one polymer in the other. In such a situation, one is interested to
know the nature of the interface between the two coexisting phases and determination of
the interfacial energy. The morphology of the mixture will be greatly influenced by the
interfacial energy, which will control the domain size, while the microscopic structure
of this interface will determine the degree of adhesion between the phases. Thus the
mechanical properties of the whole mixture will be largly controlled by properties of
these interfaces. Therefore, key to applications of polymeric materials is the ability to
control surface or interfacial properties.

Polymer blends are generally “structurally asymmetric” corresponding to species-
dependent local intramolecular features such as monomer shape, branch content, and
persistence length or aspect ratio. Therefore, a systematic study of unsymmetric polymer-
polymer interface is highly demanding. Helfand and Sapse [20] extended the self con-
sistent field theory to infinitely long Gaussian chains with different statistical segment
lengths. In the strong segregation limit, they have obtained an analytical expressions
for interfacial width w and the interfacial tension σ.

Computer simulation has become a major tool in polymer science, complementing
both analytical theory and experiment. Comparing to experiment, simulation provide
a test of the microscopic model which has been used and comparing to theories, they
serve as a test of the theory within a well-defined microscopic model. Moreover, they
may provide structural information which may not yet be accessible experimentally or
theoretically. For example, the Flory-Huggins theory [12] is not free of crude approxima-
tions. To test the reliability of the theory, one needs to compare theory and experiments.
However, comparing theory with experiments is not sufficient because in most cases, the
agreemnet is not good, but one cannot tell whether the discripencies are due to inadequa-
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cies of the model used in the theory or due to inaccuracies of the approximations. Since
the simulation can be performed on exactly the same model which the analytical theory
considers (but avoiding the uncontrolled mathematical approximations of the later), the
simulations provide “benchmarks” against which these theories can be reliably tested.

Keeping these views in mind we have carried out an extensive Monte Carlo simula-
tions of unsymmetric polymer-polymer interfaces.

Systems and Model

As mentioned above, the main goal of this thesis is to test mean filed theories for
two kinds of dispair systems, namely ‘stiffness disparity’ in which two types of chains
have different stiffnesses and ‘monomer size disparity’ in which two types of chains have
different sizes of monomers. The phase behavior in the case of low stiffness disparity
systems has been also studied. The stiffness disparity in our systems covers the whole
range of semiflexible polymers that is, from flexible to stiff rod. In the monomer size
disparity sytems the diameter of type B monomers is double than that of type A.

To do this we use a continuous space (CS) coarse-grained model. In the flexible
polymers there are only three interactions, viz; excluded volume, chain connectivity and
repulsion between two different typs of monomers. In the semiflexible polymers another
interaction which restricts the flexibility of the polymers also acts. In our model all the
interactions are modeled by step potentials. The semiflexible polymers are generated
by the restriction on the angle between two consecutive bond vectors of a chain. After
the generation of chains and removing the overlapping between any two monomers, the
system is equilibrated using Monte Carlo techniques (standared Metropolis algorithm is
used). For the strong segregation limit we believe that the systems attained the equilib-
rium when the mean squared dispalcement of center of mass of polymers is comparable to
square of radius of gyration. For the weak segregation limit we believe that the systems
attained the equilibrium when the mean squared dispalcement of center of mass of poly-
mers is comparable to square of interfacial width. The interfacial tension is measured by
virial theorem and capillary wave spectrum method. The virial theorem method which
was used to measure interfacial tension for symmetric systems is developed further for
the unsymmetric systems and it is tested by capillary wave spectrum method for the
stiffness disparity systems.

Conclusions and Outlook

Our results reveal that the interfacial tension increases with the stiffnesses of the
semiflexible components and there is strong tendency towards saturation. It levels of
well below the stiffness of semiflexible polymers which changes phase from isotropic
to nematic. For the really semiflexible region our results agree very well with that of
Helfand-Sapse and of Liu-Fredrickson too by taking finite length effects. For the system
with flexible-highly stiff polymers they do not agree as these theories does not take into
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account the ordering of polymers near the interface (chains orient parallel to the inter-
face plane and the effect is stronger for the stiff chains). The intrinsic interfacial width
increases with the stiffness of the semiflexible chains and it agrees with the mean field
results. The monomer density profiles become steeper in the semiflexible side and the
depth in the dip of profile increases with stiffness of the semiflexible components. The
bonds orient parallel to the interface and the effect becomes stronger with the increase
of stiffness of the semiflexible component. The profiles of chain ends and chain center
of mass show that chain ends have peak at the interface whereas center of mass has
minima. By studying interfacial properties at the weak segregation limit the critical
value of χ has been estimated for low stiffness disparity systems. It is found that χc de-
creases (hence Tc increases) with the increase in the stiffness of the semiflexible polymers.

The interfacial tension decreases with the monomer size disparity and agrees within
errorbars to the mean filed results. The interfacial width is higher for the monomer size
disparity systems. The chains stretch parallel to the interface and the effect is stronger
for the monomer size disparity system in comparison to the symmetric system. The pro-
files of chain ends and chain center of mass show that chain ends have maxima whereas
chain center of mass has minima at the interface. This effect is stronger for the dispair
system in comparison to the symmetrical system.

Thus our results show that the mean-field theories can describe a system of monomer
size disparity (up to really semiflexible region). For highly stiff chains a more sophis-
ticated theory which takes into account of orientation of chains needs. In principle
Liu-Fredrickson theory should work but in the contribution which we cited, they as-
sume that semiflexible chains are far from nematic phase. In addition, this theory does
not produce correct limiting values for flexible chains. The polymer blends are always
asymmetric and it is due to stiffness disparity or size disparity or combination of both.
Therefore, our work can be extended to model any polymer blends in the coarse-grained
level with a suitable choice in stiffness and size of respective components.

The open questions from the present work could be the following. One can further
develop the CS model to study flexible-semiflexible diblock copolymer on the flexible-
semiflexible homopolymer interfaces. Further one can study polydispersity effect on
both types of systems.
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Zusamenfassung

Motivation

Das Phasenverhalten von Polymergemischen und die Eigenschaften von Polymer-
Polymer-Grenzflächen [1, 4] haben sowohl wegen der interessanten physikalischen Prob-
leme als auch wegen ihrer technischen Bedeutung beträ chtliches Interesse erlangt. Poly-
mergemische können in vielen Fällen keinen einphasigen Zustand einnehmen. Bereits
geringe Unterschiede der Wechselwirkung oder auch Packungseffekte wachsen linear mit
der Zahl der Monomere und können deshalb durch die Mischungsentropie nicht kom-
pensiert werden. Werden solche Systeme mechanisch dispergiert, bilden sie Domänen
der nahezu reinen Phasen. In diesen Fällen sind die Struktur der Grenzfläche zwischen
den koexistierenden Phasen und die Grenzflä chenenergie von besonderem Interesse.
Die Morphologie der Mischung wird dabei stark von der Grenzflächenenergie beeinflußt,
weil diese die Dom änengröße bestimmt. Die mikroskopische Struktur der Grenzflä
che bestimmt dagegen den Grad der Adhäsion zwischen den Phasen. Die mechanis-
chen Eigenschaften eines Polymergemischs werden damit wesentlich von den Eigen-
schaften der Grenzflächen bestimmt. Für viele Anwendungen ist die Steuerung der
Grenzflächeneigenschaften deshalb von Bedeutung.

Polymergemische sind generell ”strukturell unsymmetrisch”, d.h. die Komponen-
ten unterscheiden sich z.B. durch Größe und Form der Monomere, den Verzweigungs-
grad oder die Persistenzlänge und das Aspektverhältnis. Systematische Untersuchun-
gen unsymmetrischer Polymer-Polymer-Grenzflächen sind deshalb notwendig. Helfand
und Sapse [20] erweiterten die SCF-Theorie auf den Fall langer Gaußketten mit unter-
schiedlichen statistischen Segmenten und konnten für den Grenzfall starker Inkompati-
bilität geschlossene Ausdrücke für die Grenzflächendicke w und die Grenzflächenspannung
σ erhalten.

Computersimulationen sind zu wichtigen Werkzeugen der Polymerwissenschaft gewor-
den, die analytische Theorien und Experimente ergänzen. Ein Vergleich mit Experi-
menten liefert einen Test der verwendeten mikroskopischen Modelle und Vergleiche mit
analytischen Ergebnisse erlauben einen Test der Theorie im Rahmen eines wohldefinierten
mikroskopischen Modells. Außerdem werden strukturelle Informationen erhalten, die
weder experimentell noch analytisch zugänglich sind. Die Flory-Huggins-Theorie [12]
enthält z.B. starke Näherungen, um diese zu testen, wäre ein Vergleich von Theorie
und Experiment notwendig. Eine mangelnde Ü bereinstimmung der Ergebnisse kann
dabei aber sowohl durch ein ungeeignetes Modell wie durch Näherungen im Verlauf
der Auswertung verursacht sein. Um eine Theorie zuverlässig zu testen, ist es deshalb
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notwendig, für das von der analytischen Theorie untersuchte Modell sichere Ergebnisse
zu gewinnen.

Unter Berücksichtigung dieser Überlegungen wurden umfangreiche Monte-Carlo-Simulationen
unsymmetrischer Polymer-Polymer Grenzflächen durchgeführt.

Systeme und Modell

Das Hauptziel der Arbeit ist der Test von ”mean-field”-Theorien für unsymmetrische
Systeme. Diese sind einmal Polymere mit Ketten unterschiedlicher Steifigkeit und weit-
erhin Polymere unterschiedlicher Segmentgröße. Außerdem wird das Phasenverhalten
im Fall nicht zu großer Unterschiede der Kettensteifigkeit untersucht. Die Grenzflä ch-
eneigenschaften werden für Unterschiede der Steifigkeit von vö lliger Flexibilität bis zum
steifen Stab betrachtet. Als Unterschied der Segmentgröße wird der Faktor 2 verwendet.

Als Modell wird ein gitterfreies Kugel-Stab-Modell verwendet. Im Falle flexibler
Ketten werden dabei nur drei Arten von Wechselwirkungen betrachtet: ”Excluded vol-
ume”, Zusammenhalt der Kette und eine abstoßende Wechselwirkung ungleichartiger
Monomere. Bei semiflexiblen Ketten wird weiterhin eine eingeschränkte Biegsamkeit
durch Einschränkungen f ür aufeinanderfolgende Bindungsvektoren berücksichtigt. Alle
diese Wechselwirkungen werden durch Stufenpotentiale beschrieben. Nach der Erzeu-
gung der Ketten und der Beseitigung vom Überlappungen der Hartkugel-Bereiche der
Wechselwirkungen werden die Systeme durch Monte-Carlo-Techniken äquilibrisiert (
Standard Metropolis Algorithmus ). Als Kriterium für die Einstellung des Gleichgewichts
wurde dabei im Falle starker Wechselwirkung eine mittlere quadratische Verschiebung
der Schwerpunkte der Ketten von der Größerordnung des Gyrationsradius angenom-
men. Für Systeme in der Nähe des kritischen Punktes wurde als Kriterium eine mittlere
quadratische Verschiebung von der Größe der Grenzflächendicke verwendet. Die Gren-
zflächenspannung wurde durch Anwendung des Virialsatzes und aus einer Analyse des
Kapillarwellenspektrums bestimmt. Die Anwendung des Virialsatzes wurde dabei auf
den Fall semiflexibler Ketten erweitert und mittels der Kapillarwellenanalyse getestet.

Schlußfolgerungen und Ausblick

Die Ergebnisse zeigen, daß die Grenzflächenspannung mit der Steifigkeit der semi-
flexiblen Komponente anwächst und mit wachsender Steifigkeit schnell in einen kon-
stanten Wert einmündet. Dieser konstante Wert wird bereits deutlich unterhalb der
Steifigkeit erreicht, bei der die semiflexiblen Polymere einen Übergang vom isotropen
zum nematischen Zustand erfahren. Im tatsächlich semiflexiblen Bereich ergibt sich bei
Berücksichtigung der Effekte endlicher Kettenlänge eine gute Ü bereinstimmung mit den
Ergebnissen von Helfand-Sapse und Liu-Fredrickson. Bei größerer Steifigkeit ergeben
sich zunehmende Abweichungen, die auf die stark anwachsende Ordnung der Ketten
parallel zur Grenzfläche zur ückgeführt werden. Die intrinsische Grenzflächendicke im
semiflexiblen Bereich wächst mit der Steifigkeit und ist in Ü bereinstimmung mit ”mean-
field” Resultaten. Das Dichteprofil ist auf der Seite der semiflexiblen Ketten steiler und
die Dichtereduktion in der Grenzfl ächenmitte nimmt mit der Steifigkeit der semiflexiblen
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Ketten ebenfalls zu. Die Bindungen der Ketten orientieren sich parallel zur Grenzfläche
mit zunehmender Tendenz mit wachsender Steifigkeit. Die Profile der Kettenenden und
der Kettenschwerpunkte zeigen Maxima bzw. Minima an der Grenzflächenmitte. Aus
Untersuchungen der Grenzflächenspannung in der Nähe des kritischen Bereichs wurde
χc für den semiflexiblen Bereich bestimmt. χc wächst mit zunehmender Steifigkeit der
semiflexiblen Komponente an.

Die Grenzflächenspannung verringert sich bei ungleichen Segmentgrö ßen und stimmt
innerhalb der Fehler mit ”mean-field” Resultaten ü berein. Die Grenzflächendicke wächst
dabei an. Die Ketten orientieren sich parallel zur Grenzfläche bei stärkerer Orientierung
als im symmetrischen System. Die Profile der Kettenenden und der Kettenschwerpunkte
zeigen Maxima bzw. Minima an der Grenzflächenmitte mit ebenfalls verstärkten Effek-
ten im Vergleich zu symmetrischen Systemen.

Die Resultate zeigen, daß ”mean-field” Theorien das Verhalten im semiflexiblen Bere-
ich richtig wiedergeben. Für größere Steifigkeiten erscheinen Theorien notwendig, die
die Orientierung in der N ähe der Grenzfläche berücksichtigen. Die Theorie von Liu-
Fredrickson ist dafür vorgesehen, kann die Orientierung aber nur in ausreichendem Ab-
stand von der nematischen Phase beschreiben und außerdem den flexiblen Grenzfall
nicht korrekt reproduzieren.

Gemische realer Polymere können im Rahmen einer vergröberten Beschreibung durch
eine Kombination von unterschiedlicher Steifigkeit und unterschiedlicher Segmentgröße
beschrieben werden, die verwendete Methode ist dafür geeignet. Weitere mögliche
Fragestellungen sind die Untersuchung von Grenzflächen mit Blockcopolymeren unter-
schiedlicher Steifigkeit und Effekte der Polydispersität.
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