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The inverse Hooke’s law and complementary strain energy density has been
examined in the context of the theory of coupled gradient elasticity for second
gradient materials. To this end, it was assumed that the potential energy density
is a quadratic form of the strain and of the second gradient of displacement. Exis-
tence of the coupling term significantly complicates the problem. To avoid this
complication the equation for the potential energy density was transformed in
order to present it as an uncoupled quadratic form of a modified strain and the
second gradient of displacement or of the strain and a modified second gradient
of displacement. These transformations, which is in essence a block matrix diag-
onalization, lead to a decoupling of strains and strain gradient in the potential
energy density andmakes it possible to determine tensorial relations for the com-
pliance tensors of fourth-, fifth- , and sixth-rank. Bothmodifications result in the
same compliance tensors and are valid for an arbitrary material symmetry class.
In the case of hemitropic materials, the compliance tensors have the same sym-
metry and the same form as the stiffness tensors and are characterized by eight
independent constants, namely the two classical isotropic constants, five con-
stants in the strain gradient part and one constant in the coupling term. Explicit
expressions for these eight parameters are obtained from the tensorial relations
for the compliance tensors and are compared with the direct solution of a linear
system for the compliance’s. All three solutions are identical, what we consider
as a verification of the presented results.
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1 INTRODUCTION

A natural generalization of classical elasticity is the strain gradient elasticity which deals with those models of continuous
media where a strain energy density depends on the first and second gradients of displacements. The motivation to intro-
duce such an energy is the inability to describe size effects, surface and interface energies and to smooth out singularities
in classical solutions, for example, around dislocations or boundary discontinuities.
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From the beginning of the 20th century, a variety of non-classical theories has been suggested to overcome the short-
comings of the classical theory of elasticity. The Cosserats [1] introduced first the rotation gradient and the associated
coupled stresses in the motion equations and thus created the polar media.
The more general continua can be found after almost 50 years in the following papers [2–4]. These continua are called

second gradient continua [4] or strain-gradient [3], where stored energy depends not only on strain, but also on higher
derivatives of the displacement. More recently, the generalized continua was also applied to modeling materials at the
micro- and nanometer scale [5, 6], to describing phenomena like dislocations [7], to composites with high contrast (at
a lower scale) in material properties [8–12], to catching some phenomena in regions with a stress concentration [13], to
including boundary and surface energies [14, 15] or to removing singularities, when discontinues appear in the boundary
conditions, for example, [16–19]. It has been shown in numerous papers [20–23] that the limitations of classical elasticity
theory can be overcome with such gradient expansion.
Using the generalized continua involves higher gradients of the displacement leading to additional parameters that

depend on themicrosructure. The development of a general method for determining these additional parameters by using
a computational approach was attempted [24,25].
In classical elasticity, eight symmetry classes can be distinguished [26], while in gradient elasticity 17 symmetry classes

need to be distinguished [27,28]. For isotropic hexads ℂ6 we have index representations [29,30] and a spectral decompo-
sition [31]. For anisotropic hexads matrix representations can be found in [32]. But this is only the strain gradient part of
Hooke’s law. At the same time, approximately 30% of all known crystals are not centro-symmetric [33], such that mirror
operations are not in the materials symmetry groups, and the coupling tensor ℂ5 does not vanish. Even in the case of
hemitropy, with 𝑆𝑂(3) as the symmetry group, an independent component remains in ℂ5 (see [34]). Nevertheless, the
tensor ℂ5 is usually assumed to vanish, since this decoupling simplifies the analysis considerably.
Unfortunately, there is no mathematical or physical reasoning behind this, but the opposite is the case. Physically,

with ℂ5 = 0, 30% of all known crystals are excluded. Also mathematically there are points in favor of ℂ5: for analytic
homogenization, often an asymptotic series expansion is used for Hooke’s law. Then,ℂ5 is the first order correction term,
and ℂ6 the second order correction term [35–37].
In the present paper we extend the results [38] for coupled strain gradient elasticity, where potential energy density was

presented as uncoupled quadratic form of the strain andmodified second gradient of displacement. This allows to evaluate
explicit tensorial expression of the complementary energy in the coupled case. For the case of hemitropic materials, the
compliance tensors 𝕊4, 𝕊5, 𝕊6 are determined from the tensorial relations.
Being able to invert the general, coupled Hookean law is important for extending the classical proofs of elasticity to the

strain gradient case. For example, variational principles that involve the complementary energy and hence lower bound
approximations (like the Reuss average) require the complementary strain energy. It is our hope that the formalization
of the inversion helps to put the strain gradient theory on the same, firm mathematical foundations on which classical
elasticity stands.
The presentation is organized as follows. In the next section we introduce notations used in the paper. The Section 3

contains a brief description of the block diagonalization of the composite stiffness in strain gradient elasticity, what leads
to a decoupling of strains and a modified strain gradient (or the other way around) in the energy density equation and
allows for the determination of the complementary strain energy in coupled strain gradient elasticity. In Section 4 the
inverse constitutive tensors and the complementary strain energy in the coupled case are presented in the tensorial form.
For the case of hemitropic materials, the compliance tensors 𝕊4, 𝕊5, 𝕊6 are determined from the tensorial relations. The
last section presents a concluding remark and a discussion.

2 NOTATION

Scalars, vectors, second- and higher-rank tensors are denoted by italic letters (like 𝑎 or 𝐴), bold minuscules (like 𝐚), bold
majuscules (like𝐀), and blackboard boldmajuscules (like𝔸), respectively. The strain and strain gradient energy density is

𝑤 =
1

2
𝐇2 ⋅ ⋅ℂ4 ⋅ ⋅𝐇2 + 𝐇2 ⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℍ3 +

1

2
ℍ3 ⋅ ⋅ ⋅ ℂ6 ⋅ ⋅ ⋅ ℍ3, (1)

where ℂ4, ℂ5, ℂ6 are the stiffness tensors and the strains and the second gradient of displacement are defined as:

𝐇2 =
1

2
(𝐮 ⊗ ∇ + ∇⊗ 𝐮), ℍ3 = 𝐮 ⊗∇⊗∇, (2)
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which are calculated from the displacement field 𝐮(𝐱), where 𝐱 is the position vector of a material point. For convenience
we drop the independent variable 𝐱. “⊗” denotes the dyadic product. ∇ is the nabla operator, with ∇𝑖 =

𝜕

𝜕𝑥𝑖
𝐞𝑖 , where

𝐞𝑖 denotes an orthonormal base vector. Repeated indices imply a summation. The nabla operator acts as follows on the
displacement field 𝐮:

𝐮⊗∇ =
𝜕𝑢𝑖
𝜕𝑥𝑗

𝐞𝑖 ⊗ 𝐞𝑗 = 𝑢𝑖,𝑗𝐞𝑖 ⊗ 𝐞𝑗 . (3)

The complementary elastic energy or stress energy density is given by

𝑤∗ =
1

2
𝐓2 ⋅ ⋅𝕊4 ⋅ ⋅𝐓2 + 𝐓2 ⋅ ⋅𝕊5 ⋅ ⋅ ⋅ 𝕋3 +

1

2
𝕋3 ⋅ ⋅ ⋅ 𝕊6 ⋅ ⋅ ⋅ 𝕋3, (4)

where 𝕊4, 𝕊5, 𝕊6 are the compliance tensors. The stresses and the double stresses are defined as

𝐓2 =
𝜕𝑤

𝜕𝐇2
= ℂ4 ⋅ ⋅𝐇2 + ℂ5 ⋅ ⋅ ⋅ ℍ3, (5)

𝕋3 =
𝜕𝑤

𝜕ℍ3
= ℂ𝑇5 ⋅ ⋅𝐇2 + ℂ6 ⋅ ⋅ ⋅ ℍ3. (6)

This is the generalized Hookean law. Here the indices give the tensorial rank of𝐇2,ℍ3,ℂ4,ℂ5,ℂ6, 𝕊4, 𝕊5, 𝕊6. The inverse
is

𝐇2 =
𝜕𝑤∗

𝜕𝐓2
= 𝕊4 ⋅ ⋅𝐓2 + 𝕊5 ⋅ ⋅ ⋅ 𝕋3, (7)

ℍ3 =
𝜕𝑤∗

𝜕ℍ3
= 𝕊𝑇5 ⋅ ⋅𝐓2 + 𝕊6 ⋅ ⋅ ⋅ 𝕋3. (8)

The dots are scalar contractions of the form

𝐯1 ⊗ …⊗ 𝐯𝑘 ⋅… ⋅⏟⏟⏟
𝑛 dots

𝐰1 ⊗ …⊗𝐰𝑙 = (𝐯𝑘−𝑛 ⋅ 𝐰1)… (𝐯𝑘 ⋅ 𝐰𝑛)𝐯1 ⊗ 𝐯𝑘−𝑛−1 ⊗𝐰𝑛+1 ⊗ …𝐰𝑙 . (9)

For the double and triple scalar contractions in Equations (1) and (4) the associations are

(10)

(11)

where 𝛿𝑖𝑗 is the Kronecker symbol.

3 BLOCK DIAGONALIZATIONS

In second-gradient elasticity, the potential energy density is a quadratic form of the strain 𝐇2 and the second gradi-
ent of displacement ℍ3, see Equation (1). The presence of the coupling tensor ℂ5 significantly complicates the deter-
mination of conditions for positive definiteness of 𝑤 as well as the calculation of the compliance tensors 𝕊4, 𝕊5, 𝕊6
needed for the definition of the complementary energy density. It has been shown [38] that it is possible to decouple
𝐇2 and ℍ3 in 𝑤 by a transformation of the elastic energy density, which leads to a block diagonalization of its matrix
representation.
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4 of 11 NAZARENKO et al.

3.1 Variant 1

To decouple the strain and strain gradient contributions, Equation (1) can be transformed by introducing amodified strain
and a modified stiffness tensor of sixth-rank [38]:

𝑤 =
1

2
𝐇𝑚
2
⋅ ⋅ℂ4 ⋅ ⋅𝐇

𝑚
2
+
1

2
ℍ3 ⋅ ⋅ ⋅ ℂ

𝑚
6
⋅ ⋅ ⋅ ℍ3. (12)

Here the superscript𝑚 denotes the modified strains and the modified stiffness tensor, which are

𝐇𝑚
2
= 𝐇2 + ℍ3 ⋅ ⋅ ⋅ ℂ

𝑇
5 ⋅ ⋅ℂ

−1
4

(13)

and

ℂ𝑚
6
= ℂ6 − ℂ

𝑇
5 ⋅ ⋅ℂ

−1
4
⋅ ⋅ℂ5 . (14)

Given that the tensor ℂ5 is symmetric with respect to the first two and to the last two indices (𝐶𝑖𝑗𝑘𝑙𝑚), the transposition
of ℂ5 is 𝐶𝑇𝑖𝑗𝑘𝑙𝑚 = 𝐶𝑘𝑙𝑚𝑖𝑗 , that is, the first two and the last three entries are exchanged en bloc, such that

𝐇2 ∶ ℂ5 ⋅ ⋅ ⋅ ℍ3 = ℍ3 ⋅ ⋅ ⋅ ℂ
𝑇
5 ∶ 𝐇2 (15)

holds. It has been shown [38] that such a transformation simplifies the analysis of definiteness of 𝑤 and Equation (12)
has been used to derive inequalities for the material parameters such that 𝑤 is positive definite, including the coupling
parameter in ℂ5. In the next Section it will be shown that the modified form of the potential energy density allows also
to obtain tensorial expressions for the compliance tensors 𝕊4, 𝕊5, 𝕊6 and further to calculate the complementary energy
density.

3.2 Variant 2

The matrix representation of the potential energy density as block matrices can be obtain also by introducing a modified
second gradient of displacement and modified stiffness tensor of fourth-rank:

𝑤 =
1

2
𝐇2 ⋅ ⋅ℂ

𝑚
4
⋅ ⋅𝐇2 +

1

2
ℍ𝑚
3
⋅ ⋅ ⋅ ℂ6 ⋅ ⋅ ⋅ ℍ

𝑚
3
. (16)

As above the superscript𝑚 denotes themodified second gradient of displacement and themodified stiffness tensor, which
are specified as

ℍ𝑚
3
= ℍ3 + 𝐇2 ⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℂ

−1
6

(17)

and

ℂ𝑚
4
= ℂ4 − ℂ5 ⋅ ⋅ ⋅ ℂ

−1
6
⋅ ⋅ ⋅ ℂ𝑇5 . (18)

Remark 1. We should point out that all the equations for the potential energy density Equations (1), (12), (16) are identical
and both block diagonalizations are applicable independently of the material symmetry class.

4 INVERSE CONSTITUTIVE TENSORS AND THE COMPLEMENTARY STRAIN
ENERGY

Both modified equations for the potential energy density Equations (12) and (16) can now be used to determine the com-
pliance tensors 𝕊4, 𝕊5, 𝕊6 and hence for finding the stress energy density.
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4.1 Explicit expressions between stiffnesses and compliances

If the potential energy density is defined by Equation (12), using the inverse Hookean law for the modified strain and
second gradient of displacement of form

𝐓2 = ℂ
−1
4
⋅ ⋅𝐇𝑚

2
, (19)

𝕋𝑚
3
= (ℂ𝑚

6
)
−1
⋅ ⋅ ⋅ ℍ3, (20)

we can write down the complementary energy density like so:

𝑤∗ =
1

2
𝐓2 ⋅ ⋅ℂ

−1
4
⋅ ⋅𝐓2 +

1

2
𝕋𝑚
3
⋅ ⋅ ⋅ (ℂ𝑚

6
)
−1
⋅ ⋅ ⋅ 𝕋𝑚

3
. (21)

Here ℂ𝑚
6
is defined in Equation (14) and 𝕋𝑚

3
is determined as

𝕋𝑚
3
= 𝕋3 − ℂ

𝑇
5 ⋅ ⋅ℂ

−1
4
⋅ ⋅𝐓2 . (22)

Comparing Equations (4), (21) the compliance tensors 𝕊4, 𝕊5, 𝕊6 can be defined as:

𝕊4 = ℂ
−1
4
+ ℂ−1

4
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ (ℂ

𝑚
6
)
−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ

−1
4
, (23)

𝕊5 = ℂ
−1
4
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ (ℂ

𝑚
6
)
−1
, (24)

𝕊6 = (ℂ
𝑚
6
)
−1
. (25)

Using the same proceeding as above we can obtain the inverse Hookean law for the strain and modified second gradient
of displacement for the second variant of the modified equation of the potential energy density Equation (16). In this case,
the complementary energy density has form

𝑤∗ =
1

2
𝐓𝑚
2
⋅ ⋅(ℂ𝑚

4
)
−1
⋅ ⋅𝐓𝑚

2
+
1

2
𝕋3 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ 𝕋3 , (26)

with

𝐓𝑚
2
= (ℂ𝑚

4
)
−1
⋅ ⋅𝐇2, (27)

𝕋3 = ℂ6
−1
⋅ ⋅ ⋅ ℍ𝑚

3
. (28)

where ℂ𝑚
4
is defined in Equation (18) and 𝐓𝑚

2
is determined as

𝐓𝑚
2
= 𝐓2 − ℂ5 ⋅ ⋅ ⋅ ℂ

−1
6
⋅ ⋅ ⋅ 𝕋3 . (29)

Comparing Equations (4) and (26), the compliance tensors 𝕊4, 𝕊5, 𝕊6 are

𝕊4 = (ℂ
𝑚
4
)
−1
, (30)

𝕊5 = (ℂ
𝑚
4
)
−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
, (31)

𝕊6 = ℂ
−1
6
+ ℂ−1

6
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅(ℂ

𝑚
4
)
−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℂ

−1
6
. (32)

Remark 2. It should be noted that all three equations for the complementary energy density (4), (21), and (26) are identical.
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6 of 11 NAZARENKO et al.

Remark 3. Expressions for the compliance tensors 𝕊4, 𝕊5, 𝕊6 obtained by different variants (Equations (23)–(25) and
(30)–(32)) are identical, which will be demonstrated now.

Indeed, Equation (31) can be rewritten in the form

𝕊5 = (ℂ
𝑚
4
)
−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑚

6
⋅ ⋅ ⋅ (ℂ𝑚

6
)
−1
, (33)

which after triple contraction ℂ6
−1
⋅ ⋅ ⋅ ℂ𝑚

6
, where ℂ𝑚

6
= ℂ6 − ℂ

𝑇
5 ⋅ ⋅ℂ

−1
4
⋅ ⋅ℂ5, leads to

𝕊5 = (ℂ
𝑚
4
)
−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅

(
𝕀6 − ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
⋅ ⋅ℂ5

)
⋅ ⋅ ⋅ (ℂ𝑚

6
)
−1
. (34)

After triple contraction in ℂ5 ⋅ ⋅ ⋅ (𝕀6 − ℂ6
−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
⋅ ⋅ℂ5) we obtain

𝕊5 = (ℂ
𝑚
4
)
−1
⋅ ⋅
(
ℂ5 − ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
⋅ ⋅ℂ5

)
⋅ ⋅ ⋅ (ℂ𝑚

6
)
−1
, (35)

which can be transformed as

𝕊5 = (ℂ
𝑚
4
)
−1
⋅ ⋅
(
𝕀4 − ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
)
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ (ℂ

𝑚
6
)
−1
. (36)

Given that ℂ−1
4
= (ℂ𝑚

4
)
−1
⋅ ⋅(𝕀4 − ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
), latter equation is identical to Equation (24).

Accounting for the identityℂ4
−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ (ℂ

𝑚
6
)
−1
= (ℂ𝑚

4
)
−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℂ6

−1 (Equations (24) and (31)), Equation (23) can
be rewritten as

𝕊4 = ℂ
−1
4
+ (ℂ𝑚

4
)
−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ

−1
4
, (37)

and factoring out (ℂ𝑚
4
)
−1 leads to

𝕊4 = (ℂ
𝑚
4
)
−1
⋅ ⋅
(
ℂ𝑚
4
⋅ ⋅ℂ−1

4
+ ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ

−1
4

)
. (38)

Replacing ℂ𝑚
4
in brackets by (ℂ4 − ℂ5 ⋅ ⋅ ⋅ ℂ−16 ⋅ ⋅ ⋅ ℂ𝑇5 ) in accordance with Equation (18), gives the tensor 𝕊4 as

𝕊4 = (ℂ
𝑚
4
)
−1
⋅ ⋅
(
𝕀4 − ℂ

−1
4
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 + ℂ5 ⋅ ⋅ ⋅ ℂ6

−1
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ

−1
4

)
. (39)

We can see that the above equation is identical to Equation (30).
It is possible to apply to Equation (32) the analogical transformation. Accounting for the identity of Equations (24) and

(31), Equation (32) can be represented as

𝕊6 = ℂ
−1
6
+ ℂ−1

6
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
⋅ ⋅ℂ5 ⋅ ⋅ ⋅ (ℂ

𝑚
6
)
−1 (40)

and factoring out (ℂ𝑚
6
)
−1 leads to 𝕊6 in the following form,

𝕊6 =
(
ℂ−1
6
⋅ ⋅ ⋅ (ℂ𝑚

6
) + ℂ−1

6
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
⋅ ⋅ℂ5

)
⋅ ⋅ ⋅ (ℂ𝑚

6
)
−1
. (41)

Substituting expression for (ℂ𝑚
6
)
−1 (Equation (14)) in bracket we have

𝕊6 =
(
𝕀6 − ℂ

−1
6
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
⋅ ⋅ℂ5 + ℂ

−1
6
⋅ ⋅ ⋅ ℂ𝑇5 ⋅ ⋅ℂ4

−1
⋅ ⋅ℂ5

)
⋅ ⋅ ⋅ (ℂ𝑚

6
)
−1
, (42)

which is identical Equation (25).
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NAZARENKO et al. 7 of 11

Remark 4. It is seen from Equations (23)–(25) and (30)–(32) that for the special case of uncoupled strain gradient elasticity
if tensor ℂ5 = 0 the compliance tensors of the fourth- and sixth-rank are equal to the inverse stiffness tensors of the same
rank 𝕊4 = ℂ−14 and 𝕊6 = ℂ−16 .

4.2 Relations for compliance tensors of hemitropic material

We apply the results presented in the previous subsection to determine the relations for the compliance tensors 𝕊4, 𝕊5, 𝕊6
in the case of hemitropic materials. The stiffnessesℂ4,ℂ5,ℂ6 are in case of hemitropy characterized by eight independent
parameters and have the following form [3,31] [39]

ℂ4 =
[
𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

]
𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 (43)

ℂ5 =
[
𝜅(𝜀𝑖𝑚𝑘𝛿𝑗𝑙 + 𝜀𝑖𝑙𝑘𝛿𝑗𝑚 + 𝜀𝑗𝑚𝑘𝛿𝑖𝑙 + 𝜀𝑗𝑙𝑘𝛿𝑖𝑚)

]
𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 (44)

ℂ6 =
[
𝑐1(𝛿𝑗𝑘𝛿𝑖𝑚𝛿𝑛𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑛𝛿𝑚𝑙 + 𝛿𝑗𝑖𝛿𝑘𝑙𝛿𝑚𝑛 + 𝛿𝑗𝑙𝛿𝑖𝑘𝛿𝑚𝑛)

+𝑐2(𝛿𝑗𝑖𝛿𝑘𝑚𝛿𝑛𝑙𝛿𝑗𝑚𝛿𝑘𝑖𝛿𝑛𝑙 + 𝛿𝑗𝑖𝛿𝑘𝑛𝛿𝑚𝑙 + 𝛿𝑗𝑛𝛿𝑖𝑘𝛿𝑚𝑙)

+𝑐3(𝛿𝑗𝑚𝛿𝑘𝑙𝛿𝑖𝑛𝛿𝑗𝑙𝛿𝑖𝑛𝛿𝑘𝑚 + 𝛿𝑗𝑛𝛿𝑖𝑚𝛿𝑘𝑙 + 𝛿𝑗𝑙𝛿𝑖𝑚𝛿𝑛𝑘)

+𝑐4(𝛿𝑗𝑛𝛿𝑖𝑙𝛿𝑘𝑚𝛿𝑗𝑚𝛿𝑘𝑛𝛿𝑖𝑙)

+ 𝑐5𝛿𝑖𝑙𝛿𝑗𝑘𝛿𝑚𝑛
]
𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 ⊗ 𝐞𝑛, (45)

where 𝛿𝑖𝑗 is the Kronecker symbol and 𝜀𝑖𝑗𝑘 the Levi-Civita permutation symbol, 𝜆 and 𝜇 are Lamé’s coefficients,
and 𝜅 and 𝑐1,2,3,4,5 are the higher order material parameters. One can check that the following index symmetries
hold [40]

𝐻𝑖𝑗 = 𝐻𝑗𝑖, (46)

𝐻𝑖𝑗𝑘 = 𝐻𝑖𝑘𝑗, (47)

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘, (48)

𝐶𝑖𝑗𝑘𝑙𝑚 = 𝐶𝑗𝑖𝑘𝑙𝑚 = 𝐶𝑖𝑗𝑘𝑚𝑙, (49)

𝐶𝑖𝑗𝑘𝑙𝑚𝑛 = 𝐶𝑙𝑚𝑛𝑖𝑗𝑘 = 𝐶𝑖𝑘𝑗𝑙𝑚𝑛 = 𝐶𝑖𝑗𝑘𝑙𝑛𝑚 . (50)

Substituting Equations (43) - (45) in relations for compliance tensors Equations (23) - (25) and accounting for Equation (14)
we obtain that tensors 𝕊4, 𝕊5, 𝕊6 have the same symmetry and the same structure as tensors ℂ4, ℂ5, ℂ6 and are charac-
terized by eight independent constants 𝑠1,2,3,4,5,6,7,8

𝕊4 =
[
𝑠1𝛿𝑖𝑗𝛿𝑘𝑙 + 𝑠2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)

]
𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 (51)

𝕊5 =
[
𝑠8(𝜀𝑖𝑚𝑘𝛿𝑗𝑙 + 𝜀𝑖𝑙𝑘𝛿𝑗𝑚 + 𝜀𝑗𝑚𝑘𝛿𝑖𝑙 + 𝜀𝑗𝑙𝑘𝛿𝑖𝑚)

]
𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 (52)

𝕊6 =
[
𝑠3(𝛿𝑗𝑘𝛿𝑖𝑚𝛿𝑛𝑙 + 𝛿𝑗𝑘𝛿𝑖𝑛𝛿𝑚𝑙 + 𝛿𝑗𝑖𝛿𝑘𝑙𝛿𝑚𝑛 + 𝛿𝑗𝑙𝛿𝑖𝑘𝛿𝑚𝑛)

+𝑠4(𝛿𝑗𝑖𝛿𝑘𝑚𝛿𝑛𝑙𝛿𝑗𝑚𝛿𝑘𝑖𝛿𝑛𝑙 + 𝛿𝑗𝑖𝛿𝑘𝑛𝛿𝑚𝑙 + 𝛿𝑗𝑛𝛿𝑖𝑘𝛿𝑚𝑙)

+𝑠5(𝛿𝑗𝑚𝛿𝑘𝑙𝛿𝑖𝑛𝛿𝑗𝑙𝛿𝑖𝑛𝛿𝑘𝑚 + 𝛿𝑗𝑛𝛿𝑖𝑚𝛿𝑘𝑙 + 𝛿𝑗𝑙𝛿𝑖𝑚𝛿𝑛𝑘)

+𝑠6(𝛿𝑗𝑛𝛿𝑖𝑙𝛿𝑘𝑚𝛿𝑗𝑚𝛿𝑘𝑛𝛿𝑖𝑙)

+ 𝑠7𝛿𝑖𝑙𝛿𝑗𝑘𝛿𝑚𝑛
]
𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑘 ⊗ 𝐞𝑙 ⊗ 𝐞𝑚 ⊗ 𝐞𝑛, (53)
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8 of 11 NAZARENKO et al.

where 𝑠1,2,5,6,8 are defined as

𝑠1 =
4𝜅2 − (𝑐3 − 𝑐4)𝜆

2(3𝜆 + 2𝜇)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)
, (54)

𝑠2 =
𝑐3 − 𝑐4

4(6𝜅2 + (𝑐3 − 𝑐4)𝜇)
, (55)

𝑠5 =
2𝜅2 + 𝑐3𝜇

4(2𝑐3 + 𝑐4)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)
, (56)

𝑠6 =
2𝜅2 − 𝑐3𝜇 − 𝑐4𝜇

4(2𝑐3 + 𝑐4)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)
, (57)

𝑠8 =
𝜅

4(6𝜅2 + (𝑐3 − 𝑐4)𝜇)
. (58)

The parameters 𝑠3,4,7 have more complicated form,

𝑠3 = −
𝜅2(4𝑐2

1
− 12𝑐1𝑐3 − 8𝑐2𝑐3 − 10𝑐1𝑐4 − 8𝑐2𝑐4 − 4𝑐2𝑐5 − 4𝑐3𝑐5 − 3𝑐4𝑐5 − 2(2𝑐3 + 𝑐4)

2)

4(2𝑐3 + 𝑐4)(10𝑐
2
1
+ 12𝑐1𝑐3 + 4𝑐2𝑐3 + 4𝑐

2
3
− 4𝑐1𝑐4 − 8𝑐2𝑐4 − 2𝑐3𝑐4 − 2𝑐

2
4
− 10𝑐2𝑐5 − 𝑐3𝑐5 − 3𝑐4𝑐5)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)

−
𝜇(4𝑐2

1
𝑐3 + 2𝑐1𝑐

2
3
+ 𝑐2

1
𝑐4 + 𝑐1𝑐3𝑐4 − 2𝑐2𝑐3𝑐4 + 𝑐1𝑐

2
4
− 4𝑐2𝑐3𝑐5 − 𝑐

2
3
𝑐5 − 𝑐2𝑐4𝑐5 − 𝑐3𝑐4𝑐5)

4(2𝑐3 + 𝑐4)(10𝑐
2
1
+ 12𝑐1𝑐3 + 4𝑐2𝑐3 + 4𝑐

2
3
− 4𝑐1𝑐4 − 8𝑐2𝑐4 − 2𝑐3𝑐4 − 2𝑐

2
4
− 10𝑐2𝑐5 − 𝑐3𝑐5 − 3𝑐4𝑐5)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)

,

(59)

𝑠4 = −
𝜅2(8𝑐2

1
+ 24𝑐1𝑐3 + 8𝑐2𝑐3 + 4𝑐1𝑐4 − 4𝑐2𝑐4 − 8𝑐2𝑐5 + 10𝑐3𝑐5 + 3𝑐4𝑐5 + 2(2𝑐3 + 𝑐4)

2)

4(2𝑐3 + 𝑐4)(10𝑐
2
1
+ 12𝑐1𝑐3 + 4𝑐2𝑐3 + 4𝑐

2
3
− 4𝑐1𝑐4 − 8𝑐2𝑐4 − 2𝑐3𝑐4 − 2𝑐

2
4
− 10𝑐2𝑐5 − 𝑐3𝑐5 − 3𝑐4𝑐5)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)

−
𝜇(−2𝑐2

1
𝑐3 − 3𝑐

2
1
𝑐4 − 4𝑐1𝑐3𝑐4 + 2𝑐2𝑐

2
4
+ 2𝑐2𝑐3𝑐5 + 2𝑐

2
3
𝑐5 + 3𝑐2𝑐4𝑐5)

4(2𝑐3 + 𝑐4)(10𝑐
2
1
+ 12𝑐1𝑐3 + 4𝑐2𝑐3 + 4𝑐

2
3
− 4𝑐1𝑐4 − 8𝑐2𝑐4 − 2𝑐3𝑐4 − 2𝑐

2
4
− 10𝑐2𝑐5 − 𝑐3𝑐5 − 3𝑐4𝑐5)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)

,

(60)

𝑠7 = −
𝜅2(4𝑐2

1
+ 24𝑐1𝑐3 + 40𝑐2𝑐3 + 8𝑐1𝑐4 + 16𝑐2𝑐4 − 4𝑐2𝑐5 + 2𝑐3𝑐5 + 4(2𝑐3 + 𝑐4)

2)

4(2𝑐3 + 𝑐4)(10𝑐
2
1
+ 12𝑐1𝑐3 + 4𝑐2𝑐3 + 4𝑐

2
3
− 4𝑐1𝑐4 − 8𝑐2𝑐4 − 2𝑐3𝑐4 − 2𝑐

2
4
− 10𝑐2𝑐5 − 𝑐3𝑐5 − 3𝑐4𝑐5)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)

−
𝜇(−6𝑐2

1
𝑐3 − 4𝑐1𝑐

2
3
+ 4𝑐2𝑐

2
3
− 4𝑐2

1
𝑐4 − 4𝑐1𝑐3𝑐4 + 6𝑐2𝑐3𝑐5 + 𝑐

2
3
𝑐5 + 4𝑐2𝑐4𝑐5 + 2𝑐3𝑐4𝑐5 + 𝑐

2
4
𝑐5)

4(2𝑐3 + 𝑐4)(10𝑐
2
1
+ 12𝑐1𝑐3 + 4𝑐2𝑐3 + 4𝑐

2
3
− 4𝑐1𝑐4 − 8𝑐2𝑐4 − 2𝑐3𝑐4 − 2𝑐

2
4
− 10𝑐2𝑐5 − 𝑐3𝑐5 − 3𝑐4𝑐5)(6𝜅2 + (𝑐3 − 𝑐4)𝜇)

.

(61)

4.3 Comparison to solving the defining linear system for the compliances

For a verification of the above expressions of the compliances 𝑠1…8, we set up linear equations for these parameters by
inserting𝐇2 and ℍ3 in Hooke’s law, inserting the obtained stresses in the inverted Hookean law and subtracting𝐇2 and
ℍ3 from the output, concisely written as

𝕊[ℂ[𝐇]] = 𝐇, (62)

where 𝕊4,5,6, ℂ4,5,6 and𝐇2,ℍ3 are abbreviated as 𝕊, ℂ and𝐇 and the squared bracket is the linear mapping according to
Equations (5)–(8). This needs to hold for arbitrary 𝐇, that is, the above equation needs to hold component-wise, hence
we can vary each of the components of 𝐇2 and ℍ3 independently, for example by setting 𝐻11 = 1 and leaving all other
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NAZARENKO et al. 9 of 11

components of 𝐇 equal to zero. Together, 𝐇2 and ℍ3 have 24 independent components. This gives an inhomogeneous
system of 24 × 24 = 576 linear equations for the components of 𝕊. Because of universal index symmetries and material
symmetries, we have much less independent equations. We already know that only eight independent equations can exist
in the hemitropic case.We obtained closed formexpressions for 𝑠1…8 by the aid of a computer algebra system.A comparison
of the obtained compliances with the ones calculated on the basis of Equations (23)–(25) and Equations (30)–(32) shows
the identity of all three variants. The solution was obtained by using the scientific computing system “Mathematica”, the
script is provided as supplementary material.

5 DISCUSSION

Tensorial relations for determining the compliance tensors within the linear theory of coupled gradient elasticity are
obtained for arbitrary material symmetry classes. The presence of the coupling term ℂ5 in the equation for the potential
energy density Equation (1) complicates the problem. Explicit expression for the compliances in terms of the stiffnesses
are obtained by substituting a modified strain or a modified strain gradient as an auxiliary variable that decouples the
strains and the strain gradient (Equation (1). This decoupling, or diagonalization, makes it possible to invert Hooke’s law
even in the coupled case, since it leaves only invertible tensors on the main diagonal, essentially as quadratic component
matrices w.r.t. a suitable basis. In summary, one can easily obtain the coupled compliance tensors 𝕊4, 𝕊5, 𝕊6 by forward
modification {ℂ4, ℂ5, ℂ6} → {ℂ4, ℂ

𝑚
6
} or {ℂ4, ℂ5, ℂ6} → {ℂ𝑚

4
, ℂ6}, inversion {ℂ4, ℂ𝑚6 } → {𝕊4, 𝕊

𝑚
6
} or {ℂ𝑚

4
, ℂ6} → {𝕊𝑚

4
, 𝕊6},

and then finally backward modification {𝕊4, 𝕊𝑚6 } → {𝕊4, 𝕊5, 𝕊6} or {𝕊𝑚4 , 𝕊6} → {𝕊4, 𝕊5, 𝕊6}. It is demonstrated that the
compliance tensors obtained from the both variants of modified energy density are identical.
In the case of hemitropic materials, the compliance tensors have the same symmetry and the same form as the stiffness

tensors and are characterized by eight independent constants. Explicit expressions for these eight parameters are obtained
from the tensorial relations for the compliance tensors Equations. (23)– (25) and Equations (30)–(32) and are compared
with the direct solution of a linear system for the compliances. All three solutions are identical.
The symbolic solutions given in the mentioned equations imply matrix inversions andmatrix multiplications when the

constitutive tensors are represented with respect to suitable bases. As in classical elasticity where only 𝕊4 = ℂ−14 , these
calculations are easy to do with numerical values. For highly symmetric materials, a symbolic evaluation is also doable,
but for anisotropic materials this is likely to give unmanageable expressions. As in classical elasticity, there is not much
that can be done about that.
To summarize, for the coupled gradient elasticity, the block diagonalization allows to obtain the inequality constraints

for the positive definiteness of the stiffness tensors, to invert Hooke’s law to obtain the relations for compliance tensors,
which allows to write down the complementary strain energy as a closed form expression even in terms of the stiffnesses.
This, in turn, opens the door to extend different theorems from classical elasticity to the coupled strain gradient case,
like the variational principle of the maximum of the complementary potential, from which in turn bounds for effective
elasticities like the Reuss average as well as uniqueness theorems can be generalized.
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