
Received: 21 October 2020 Revised: 20 January 2021 Accepted: 25 January 2021 Published on: 4 March 2021

DOI: 10.1002/gamm.202100002

O R I G I N A L PA P E R

A perspective on machine learning methods in
turbulence modeling

Andrea Beck1 Marius Kurz2

1Laboratory of Fluid Dynamics and
Technical Flows, University of Magdeburg
“Otto von Guericke”, Magdeburg,
Germany
2Institute of Aerodynamics and Gas
Dynamics, University of Stuttgart,
Stuttgart, Germany

Correspondence
Andrea Beck, Laboratory of Fluid
Dynamics and Technical Flows, University
of Magdeburg “Otto von Guericke”,
Universitätsplatz 2, 39106 Magdeburg,
Germany. Email: mail@beck.aero

Abstract
This work presents a review of the current state of research in data-driven turbu-
lence closure modeling. It offers a perspective on the challenges and open issues
but also on the advantages and promises of machine learning (ML) methods
applied to parameter estimation, model identification, closure term reconstruc-
tion, and beyond, mostly from the perspective of large Eddy simulation and
related techniques. We stress that consistency of the training data, the model,
the underlying physics, and the discretization is a key issue that needs to be con-
sidered for a successful ML-augmented modeling strategy. In order to make the
discussion useful for non-experts in either field, we introduce both the model-
ing problem in turbulence as well as the prominent ML paradigms and methods
in a concise and self-consistent manner. In this study, we present a survey
of the current data-driven model concepts and methods, highlight important
developments, and put them into the context of the discussed challenges.

K E Y W O R D S

closure models, LES, machine learning, RANS, turbulence simulation

1 INTRODUCTION

With the recently exploding interest in machine learning (ML), artificial intelligence (AI), Big Data, and generally
data-driven methods for a wide range of applications, it is not surprising that these approaches have also found their way
into the field of fluid mechanics [9], for example, for optimization and control [75], flow field reconstruction from exper-
imental data [38], or shock capturing for numerical methods [6,62]. An area with a particularly high number of recently
published research that uses ML methods is turbulence, its simulation, and its modeling. The reasons for this marriage
between these two fields are numerous, and some will be explored in this article. The most natural one might be—mostly
from the perspective of computational fluid dynamics (CFD), but also from the experimentalist’s view—is that, when
simulating or measuring turbulence, one naturally encounters large amounts of high-dimensional data from which to
extract rather low-dimensional information, for example, the drag coefficient of an immersed body. This generation of
knowledge (or at least models and ideas about knowledge) from a large body of data is at the core of both understanding
turbulence and ML—and of course many other fields. At least from the authors’ perspective, there often seems to exist a
mismatch between the tremendous amount of data from simulations or measurements that we have on turbulence, and
the tangible results we can actually deduce from that. Here is where ML and Big Data might help, for at least in theory,
they can make more effective use of the data we have.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. GAMM - Mitteilungen published by Wiley-VCH GmbH.

GAMM - Mitteilungen. 2021;44:e202100002. wileyonlinelibrary.com/journal/gamm 1 of 27
https://doi.org/10.1002/gamm.202100002

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fgamm.202100002&domain=pdf&date_stamp=2021-03-04

2 of 27 BECK and KURZ

In this article, we intend to give an overview of recent research efforts into turbulence modeling with ML methods or,
more precisely, data-driven closure models and methods. It is not meant to replace the already existing valuable review
articles on this matter, for example, [17,55,58], but to provide a complementary perspective with a particular focus on large
Eddy simulation (LES) methods, although many of the challenges and chances of ML in this field also directly transfer
to the Reynolds averaged Navier-Stokes (RANS) system. We have attempted to present both the simulative side and the
ML side in a concise and self-contained manner with a focus on the basic principles, so that the text may be useful to
nonspecialists as well, and provide a first starting point from which to venture further. The focus of this review is thus
not so much on specific examples of how ML methods can augment turbulence modeling (a very daunting task given the
current surge in publications), but on the challenges, chances, and capabilities of these methods.

Before discussing the combination of ML and turbulence models, we start in Section 1.1 with a brief introduction to
turbulence and the two prevalent simulation strategies, namely, RANS and LES. The discussion is focused on the formal
aspects of defining the governing equations and the associated solution and on the factors that influence them. This is
somewhat of a shift from the usual introduction to LES, but in the light of data-driven modeling, data-consistency (during
training) and model-data-consistency (during inference) are important aspects. Highlighting the different factors that
influence the LES solution and its modeling is not only helpful here but also motivates the use of ML methods in this
complex, high-dimensional, and nonlinear situation. With this introduction in place, we will then give a perspective on the
challenges and possibilities of ML and turbulence models in Section 1.2. Here, we discuss what types of challenges arise in
turbulence modeling, which are mostly specific to the ML approach, but also give reasons to be optimistic that data-driven
turbulence simulations can augment models and simulation approaches derived from first principles. Before discussing
the recent literature and presenting concrete examples, we first review the most basic ML paradigms and methods in
Section 2. Here, as in the rest of the manuscript, we mostly focus on supervised learning approaches. Also, since neural
networks are the most commonly used method in this context, the discussion will also lean towards them and related
methods. In Section3, we present a possible hierarchy of modeling approaches, from data-based parameter estimation to
the full replacement of the original partial differential equation (PDE). We focus on the general idea behind the methods
and on their relationship to the challenges and chances identified in Section 1.2. Due to the dynamic research landscape
and the high frequency of new publications and ideas, no converged state of accepted best practices has emerged yet, so
our goal here is not to rank the proposed methods but to equip the reader with the conceptual knowledge of the current
state of the art. Section 4 concludes with some comments and ideas for future developments.

1.1 Turbulence and turbulence modeling

Turbulence is a state of fluid motion that is prevalent in nature and in many technical applications. The blood stream
in the bodies of mammals can become turbulent, and the resulting increased stresses can lead to the onset of serious
medical conditions. Transition and turbulence govern the flow through turbo-machines and significantly influence their
efficiency and reliability. Finally, turbulent drag and heat transfer not only strongly influence the fuel consumption of
subsonic passenger aircrafts but also pose a great safety challenge for supersonic vehicles. This list is, of course, far from
exhaustive but serves to highlight the importance of understanding, analyzing, and predicting turbulent flows.

As opposed to laminar flow, turbulence is characterized by a broad range of interacting temporal and spatial scales.
This is an expression and a result of the nonlinearity of the governing equations, which leads to rich dynamics and a high
sensitivity to initial and boundary conditions. Turbulence shares this feature with other chaotic systems, and they all have
to cope with a number of challenges in experimental investigations, mathematical analysis and also numerical modeling.
Turbulence is typically characterized by the Reynolds (Re) number, a dimensionless ratio of the actions of inertia and the
counteracting viscous effects. The viscous 1D Burgers’ equation for a variable u(x, t) representing a velocity serves as an
incomplete but useful model for the turbulent cascade and highlights the influence of the Re number:

𝜕u
𝜕t

+ 1
2
𝜕u2

𝜕x
− 1

Re
𝜕2u
𝜕x2 = 0. (1)

Assuming an initial solution at time t = 0 with amplitude û and a single wavenumber k as u(x, 0) = û sin(kx), the initial
time derivative becomes

𝜕u
𝜕t

|||t=0
= −1

2
û2 sin(2kx) − û

Re
k2 sin(kx). (2)

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 3 of 27

Equation (2) already reveals a number of interesting insights. First of all, it is the nonlinear convective term that drives
the scale cascade by producing higher-frequency contributions (2kx), while the viscous term damps the initial waveform
(kx). The magnitude of this damping is a function of k2/Re, that is, regardless of Re, this term will dominate in the limit
k→∞1, a fact that motivates the choice of dissipative closure models. For small k and/or large Re, however, the evolution
of Equation (1) is dominated by the inviscid dynamics. Note that the Burgers’ equation should only serve as a limited
example for the incompressible NSEs, in which the quadratic nonlinearity in the convective fluxes is the most important
term for the turbulent dynamics.

For the full Navier-Stokes system, a famous result obtained by balancing production and dissipation derived by Kol-
mogorov [31] states that the ratio of the smallest to the largest occurring scale is given by 𝜂

l0
∝ Re−3∕4. Taking this estimate

to three spatial dimensions and accounting for the corresponding smallest temporal scales lead to the estimate for a lower
bound on the number of degrees of freedom required for a direct numerical simulation (DNS) of free turbulence [64]:

 ∝ n4
ppwRe3, (3)

where nppw is a measure of the accuracy of the discretization scheme. More important for our discussion here, however, is
the scaling of the Reynolds number, which can make a full resolution of all occurring scales unbearably expensive. Thus,
instead of solving the full governing equations, in the vast majority of practical applications, a coarse-scale formulation of
the NSEs is sought. These governing equations, that is, the LES or RANS equations describing the coarse-scale dynamics
and solution, are found as follows: we start from a general form of a conservation law for a vector of conserved quantities
U(x, t), for example, the NSEs, in the form

R(U) = 0. (4)

Here, R() is the temporal and spatial PDE operator. We now introduce a low-pass filter function (.) with linear filter
kernel and a filter width Δ, such that we obtain a separation into coarse and small scales of a quantity 𝜙 as 𝜙 and
𝜙′ = 𝜙 − 𝜙, respectively. Applying this operation to Equation (4) yields, under some assumptions, the coarse-scale
governing equations for Ū:

R(Ū) = R(Ū) − R(U)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=∶M≈M̂(Ū,(⋅))

. (5)

Note that Equation (5) incorporates both the RANS and LES methods, the difference being the choice of the filter. In
RANS, a temporal averaging filter is chosen, returning the time-averaged or mean solution field. In LES, filtering is usu-
ally done in physical space, and a significant part of the temporal and spatial dynamics remains present. In both cases,
the nonlinearity of U in R prevents the commutation of filter and PDE operator and introduces the closure problem:
although the LHS of Equation (5) is now formulated in coarse-scale quantities only, the RHS still contains a term that
requires modeling: R(U). This model term M̂ as an approximation of M must be formulated in coarse-scale quantities
Ū (and possibly free parameters) only; otherwise, the advantage of this approach would be lost. If, of course, R(U) was
known exactly (eg, from a precursor DNS), then M = M̂ would recover the exact closure term. This approach is termed
“perfect LES” and is used as a consistent framework of model development [35], but as it requires prior full-scale infor-
mation, it is not generalizable. Note also that, in order to solve for Ū numerically, R must be replaced by its discrete
equivalents. This entails a number of new difficulties, which will be discussed later.

Clearly, the introduction of the model M̂ infuses uncertainties and errors into the solution process. Still, the rationale
and justification for solving the coarse-scale equations instead of the original ones are given by

• Universality of the modeled regime: The filtered-out small scales are generally less affected by the boundary conditions
and thus show a much more isotropic behavior than the large scales, which makes them amenable to modeling [4]. In
addition, the small scales carry only a fraction of the kinetic energy, whereas the large (resolved) scales are dominating
the dynamics of the flow.

1The inviscid counterpart to the Navier-Stokes equations (NSEs), the Euler equations, lack the limiting viscosity. There are some suggestions that the
Euler system might develop singularities and thus contain different dynamics than the NSEs, but this is not considered here.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 27 BECK and KURZ

F I G U R E 1 Flow over an NACA 64418 airfoil at Rec = 106 and Mach number Ma= 0.2. Top row: underresolved direct numerical
simulation, shown are isocontours of the Q-vortex criterion, colored by velocity magnitude. Lower row: contours of vorticity magnitude, left:
flow field from large Eddy simulation, right: time-averaged (Reynolds averaged Navier-Stokes) results

• Structural stability of the coarse-scale solution: While single realizations of a turbulent field are highly sensitive to the
initial and boundary conditions and small-scale perturbations, the general structure of the solution is largely invariant
to them. It can be shown that the truncated NSEs have attractors that share a number of properties to those of the
continuous equations. This is the reason why the average and higher moments of the LES and DNS solutions are often
in good agreement [76].

• Computational necessity: Since Equation (5) contains only coarse-scale quantities (under the assumptions that the
model regularizes the solution sufficiently and aliasing is accounted for), it is computationally considerably cheaper
and avoids the requirement in Equation (3). In fact, the computational costs can be specified a priori (within certain
limits given by physical requirements) by choosing the filter width Δ.

In order to visualize the model challenge and the RANS and LES solution approaches, Figure 1 shows an example of
the two different coarse-scale formulations applied to an airfoil flow at Re= 106. In the top figure, an underresolved DNS,
the multiscale character of the turbulent boundary layer, is clearly visible. In the lower row, an LES (left) and a RANS
(right) solution of the flow field in the vicinity of the trailing edge are shown. In both cases, the fine-scale information is
lost through the filtering process (all fluctuations are discarded in RANS), and both formulations require an additional
model; however, the computational cost is reduced significantly as opposed to the full scale resolution.

While, so far, RANS and LES methods have shared the formalism, significant differences and challenges occur at
closer inspection. First, while the filter in RANS is always defined as a temporal average, and often, the steady version
of Equation (5) is solved (we exclude the unsteady RANS approaches here), there is a lot more ambiguity in LES as one

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 5 of 27

F I G U R E 2 Two-dimensional slices of the full and the filtered x-velocity field (top) and R(U) flux divergence (bottom, R(U) for direct
numerical simulation [DNS]) from a decaying homogeneous isotropic turbulence flow. Shown is the field solution (from left to right) for the
DNS, the local projection filter, the local top hat filter, and the global Fourier filter. Reproduced from [33]

is essentially free to choose any meaningful filter with specific properties. One such example is the option to choose
Favre-filtering for the compressible NSE. Another choice concerning the filter function directly are box filters, modal
filters, discrete vs continuous filters, or even discretization-induced filters. A subtle but important point for model devel-
opment is that any choice of filter always brings with it its own associated closure term M, which is clearly a function of
the chosen filter [59]. Figure 2 underlines this property by showing results of the simulation of decaying homogeneous
isotropic turbulence (DHIT), that is, a canonical turbulent flow in a periodic box. The upper row contains the results for
a velocity component v1 ∈ Ū, filtered from the DNS result (left column) with three different filters (second to fourth col-
umn) typical for LES. The bottom row shows the associated contributions to the closure R(U) for the corresponding filter.
The influence of the filter on the closure terms is clearly visible and stresses the role of the filter choice in LES. Additional
complexities in the formal LES equations arise from (a) the nonhomogeneity of the filter (even if the filter kernel itself is
shift-invariant, issues with grid stretching or at boundaries can occur) and (b) the discretization operator and its associ-
ated errors. The action of the numerical schemes becomes the most important factor in so-called implicitly filtered LES.
Here, the filter (.) is replaced by the discretization, which by design reduces the number of degrees of freedom of the full
solution U to a discretized version Ũ. Note that, while the ̃(⋅) operator is often also called a filter (and the LES formulation
is called “implicitly filtered” or “discretization/grid filtered”), its properties differ from (⋅) in important aspects: numerical
errors occur, which are particularly active on the marginally resolved scales, and the discretization operators themselves
can include nonlinearities (eg, for stabilization). This results in two issues worth noting: first, the actual solution Ũ is not
known a priori and cannot be determined from DNS data through filtering (as is true for Ū). Second, the choice of the
discretization determines the closure terms (see also Figure 2) and the discretization errors must become a part of their
model. For a recent and more thorough discussion of these intricacies of LES, we refer the reader to [33,49]. Fortunately,
the situation is less complex for the RANS method. Here, because only the mean solution is sought, the discretization
effects and their interaction with the closure play a much lesser role, which allows the RANS modeling efforts to focus
on “physics only,” whereas for grid-filtered LES, both numerical and physical aspects must be considered.

Summarizing this discussion, the closure problem of turbulence can be described formally rather easily at first glance,
but the resulting terms to be modeled can be influenced by a number of choices beyond the physical effects. In particular,
for grid-filtered LES, the numerical scheme, its errors, and its induced scale filter contribute strongly to the exact closure
terms. Thus, before attempting a data-based modeling approach, a careful appreciation and definition of the governing
equations, their solution, and the closure terms is necessary to ensure data consistency.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 27 BECK and KURZ

Now returning to Equation (5), finding a model M̂ ≈ M is the next task. Here, in general, two approaches are common:

m̂1 ∶= min
f (𝜃),𝜃

‖M − M̂(𝜃, f (𝜃)) ‖ or m̂2 ∶= min
f (𝜃),𝜃

‖J(M) − J(M̂(𝜃, f (𝜃))) ‖. (6)

In the first case, a best approximation to M is sought directly as a function of some relationship f (𝜃) with parameters 𝜃,
where both f and 𝜃 can themselves be functions of the coarse scale fields. In the second case, the model is designed to
approximate some derived quantity that is dependent on the model, for example, an interscale energy flux or a spectrum.
The most common form of models both for LES and RANS are from the m̂2 family and try to match the dissipation rate of
the kinetic energy. Two major strategies exist for proposing the function f in Equation (6): it can be posited explicitly, that
is, some functional form based on physical or mathematical considerations is assumed (so-called explicit modeling), or the
discretization error (possibly specifically modified) can replace f (implicit modeling). In any case, due to the complexities
in both the optimization process of Equation (6) and the interdependencies discussed above, the resulting models will be
approximate and often only effective and accurate under circumstances which are comparable to the one present during
their inception. A salient example of this is the fact that the constant for Smagorinsky’s model has to be retuned for
different discretizations and resolutions.

This section has served to highlight the challenges involved in model development and might help to explain why a
converged state of the art in LES models is still lacking. In the next section, we give some ideas on why ML methods might
help improve upon this situation.

1.2 Turbulence modeling and ML

Before discussing the challenges and opportunities in ML and turbulence modeling, we give a brief and possibly incom-
plete working definition of ML for the purpose of this paper without going into the details of the different methods (cf.
Section 2):

ML is a subfield of AI. It can be defined as a set of methods and algorithms for estimating the relationship
between some inputs and outputs with the help of a number of trainable parameters. The learning of these
parameters, that is, their optimization with respect to a given metric, is achieved in an iterative manner by
comparing the model predictions against ground truth data or evaluation of the model performance.

From this definition, it becomes instantaneously clear that ML algorithms are not the recommended method of choice
if the relationship between inputs and outputs is (a) known (eg, given analytically) and easy to evaluate. In this case,
ML methods typically suffer from two drawbacks: (1) They are approximations to the analytical function only, even with
possibly very high precision and (2) they are not as efficient to evaluate as the analytical function. ML methods are also
not recommended if (b) the relationship between inputs and outputs is unknown but simple: for example, if a simple
linear regression or quadratic curve fit will give sufficiently accurate results, then advanced ML algorithms will work but
are unnecessary.2 Lastly and trivially, ML methods are not useful if (c) input and output are not correlated. However,
this statement must be accepted with some caution; even if there is only a negligible correlation between feature A and
target Y as well as feature B and target Y, a feature made up of a nonlinear combination of A and B may result in a high
correlation to Y. In fact, this feature selection capability is a particular strength of some of the ML methods.

In the case of the turbulence modeling challenge outlined above, neither of these hindrances is true however. There is
no closed known analytical formulation (on coarse grid data only) to close the equations; simple models work acceptably
well but can be made to fail easily, and we also know that coarse grid quantities correlate with the subgrid terms (in
fact, the test filtering in the dynamic procedure of the Smagorinsky’s model is predicated on this). Therefore, it is at least
reasonable to expect that ML methods are viable candidates to help in turbulence model building.

Thus, a general application of an ML method to turbulence modeling can be formulated by specifying that the func-
tional form f and/or its parameters 𝜃 in Equation (6) are to be found by an ML method through training on data. As will
also be discussed later, the functions that can be approximated by ML methods are quite rich, and finding an optimal

2Linear regression can, of course, be formulated as an ML problem, and a least-squares fit is in fact the smallest building block of a neural network.
However, in this context, we consider ML methods to include only more complex approximators like multilayered neural networks or support vector
machines (SVMs).

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 7 of 27

function space that best represents the data is one of their strong points—thus, it is important to stress that ML methods
cannot just fit parameters to some given basis but also find the basis itself from data. This is somewhat orthogonal to the
previously described modeling concept of explicit and implicit closure modeling in that no a priori functional form of the
closure needs to be postulated. The training process of the ML model is then the optimizing w.r.t. a given error norm based
on the data available during the (offline) training phase. The application of an optimized model in a predictive manner
(often called inference or model deployment) is then just an evaluation on a new data point. If the model is able to gen-
eralize well, it will give useful predictions for this unseen data. Here, careful observation of model data consistency is a
key factor: the data during training (which implicitly defines the model) and inference must remain consistent.

With this brief conceptual overview of ML and turbulence modeling, we will now discuss some of the challenges
and possible drawbacks but also chances of ML methods in turbulence. These lists are far from complete and are meant
to raise general issues that may or may not be applicable to the specific case considered. It is expected that the surging
research efforts in this field will help to answer these questions in the next years.

1.2.1 Challenges for ML-augmented turbulence modeling

In this section, we try to summarize the challenges and difficulties ML-augmented turbulence models must tackle. Not
all of the issues are particular to ML, but casting them in an ML context is useful for the purpose of this discussion.

The need for data:ML methods are, at their core, optimization algorithms that find an optimal fit of functions to data.
What makes them so expressive is that the functions typically are high-dimensional and nonlinear. This makes
the optimization within the feature space costly, as the typical algorithms employed here are variants of a
gradient-based, iterative progression to the minimum. The rate of convergence is thus limited and a function of
the step size (called learning rate in ML), and there is no guarantee a global minimum has been found. Often in
practice, several optimizations are run parallel to check if the found minimum is stable w.r.t. the
hyperparameters and starting points. Thus, training an ML method requires significant amounts of data or a
cheap repetition of the data generation mechanism. As both experiments and DNS, which are the two “data
generation” choices for turbulence, are rather costly, this poses a significant challenge.3 Mining data from
existing databases is also not straightforward due to the issues of data consistency and data model consistency.
In addition to the availability and suitability of data, the question of cost-effectiveness comes into play: it must
be assured that the generation of training data constitutes a responsible use of computing time and
experimental resources and that the outcome (eg, an improved turbulence model) justifies the investment.

Consistent data and model: Defining target quantities and input data for an ML method to learn from is not a
straightforward task. As discussed above, while the solution and associated filter kernel to a RANS formulation
is rather clear, the situation for practical, discretization-filtered LES is a lot more ambiguous. This also translates
to any derived LES quantity computed from the solution field or through the application of the implicit filtering.
This makes both the target of an ML method as well as its inputs dependent on the chosen LES formulation and
discretization. In addition, the ML models must be made robust against training-inference inconsistency: even if
great care is taken to apply a model in a setting that corresponds to the one it was trained in, noisy data, the
probabilistic parts of the ML method, error accumulation, and the nonlinear nature of the underlying turbulent
process can lead to an input distribution that is vastly different from the one experienced in training. Even if the
model predictions themselves are stable against disturbed inputs, their overall effect can be troublesome. For
example, if the ML model predicts parameters in a closure model, and the predictions themselves are reasonable
and within range, the term the parameters are applied to can diverge from the training situation (eg, a velocity
gradient from training [DNS data] and become vastly different from the one during prediction [RANS/LES
solution]). Another example is the influence of discretization operators discussed above. Thus, in general, for an
ML model to be successful, training and inference data must be consistent, the inference problem must be well
posed, and the ML models must be made robust against unavoidable uncertainties. This is likely a crucial point
in determining whether the advantages of ML-augmented models can be brought to bear.

3We note that there are attempts to synthesize turbulent fields through generative models, for example, in [19,48], which potentially ameliorates this
situation.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 27 BECK and KURZ

Inclusive optimization: Along the same vein, closure models must be considered on the level of the system of
equations to be solved, not on a more fine-grained level. While this is true for any modeling approach besides
ML-based attempts, it is worth pointing out here. This means that the overall closure must be optimized (also in
the context of the discretization, see above) and that just improving the prediction of certain effects or terms
does not necessarily lead to better models. It is instead the interplay of the different terms that must be
considered. One example of this is the dynamics in turbulent boundary layers, where models that respect the
overall balance of the physical effects have been shown to be superior to approaches that prefer the modeling of
single contributions [36].

Physical constraints: Incorporating physical and mathematical prior information and constraints into the models is
likely important as it not only helps with data model consistency or even consistency of the model to the
governing PDEs but also makes the resulting models more robust and accurate and easier to train. In addition,
this information can help to reduce the amount of training data significantly by confining the parameter space
to a sensible subspace. There are a number of ways to enforce constraints in the ML process: the most obvious
one is through the selection of training samples that share a given property, for example, periodicity or positivity.
This informs the ML methods of their existence implicitly, and helps to construct surrogates that also obey them;
however, this is not guaranteed during inference or for extrapolated inputs. An additional measure is to explicitly
include the required constraint like symmetry or realizability into the loss function and optimize accordingly.
This usually leads to increased stability of the model but again does not enforce the fulfillment of the constraint.
So, while constraining the input or the model output is the current state of the art, there is research underway to
develop ML approximations with guaranteed properties, for example, [66]. However, the relative importance of
the respective constraints and the best way to enforce them remains an open challenge—not just for ML-based
methods. For more information and a list of invariants and constraints, we refer the reader to [51,73].

Generalizability, interpretability, and convergence: As with all models, some basic questions must be addressed to
ML-based formulations, and their properties must be understood. Among these properties, generalizability is
certainly one of the most desirable. This not only includes the applicability of a respective model outside of its
training regime (ie, at a Reynolds number not trained on) but also a consistent fallback mechanism in cases
where the model is likely to fail. Even before that, a means of measuring confidence in the model prediction
should accompany any model—in its simplest form, this could be an estimate of the position of the input data in
feature space and a comparison against the statistics gathered during training. However, it is still unclear if we
can expect more from ML in this context than from classical turbulence models, which all have their points of
failure and generalization issues. The simplest case of generalization capability of an ML-augmented model
should be at both limits of modeling: it should turn off in laminar flow and at the DNS resolution. A related but
subtler property, particularly in conjunction with a discretization, is the question of the convergence of the
model prediction with increasing flow resolution. Interpretability is probably the most illusive property on the
list, and one may argue that a correct model prediction is more important than an understandable one.
However, as it is unlikely that ML-augmented models will be ultimately successful without infusing expert
human knowledge, understanding the ML-decision making is a necessary condition. Some general work on
explainable ML algorithms can be found, for example, in [16,87].

Algorithmic and hardware considerations: ML methods, in particular neural networks, strive on graphic
processing units (GPUs) or even more specialized hardware (eg, tensor processing units, TPUs) and in their
native software environment like the Tensorflow [1] or PyTorch [57] suites, with Python being the usual
language in which the user interacts with the underlying computational kernels. Legacy LES and RANS codes
are, on the other hand, often written in C or Fortran, mostly with a focus on CPU execution, although GPU or
hybrid codes are on the rise. In any case, during a practical turbulence simulation enhanced by ML methods,
both classes of algorithms have to run concurrently, either on the same hardware or on specialized systems
between which communication takes place. How to find optimal hardware and software stacks and how to
balance the load between the flow solver and the ML kernels are an open field of research. Even tackling this
question is currently difficult, as the state of turbulence modeling and ML (or any combination of traditional
CFD and ML) is so fluent. In fact, as discussed in Section 3, the role of ML in this field is yet undefined, and with
this comes the uncertainty of “how much” ML will be incorporated into CFD. If only lightweight algorithms
with very few parameters run locally, the question of how to incorporate them into a flow solver is dramatically
different from the case when the full flow field itself or model terms are to be predicted by the ML methods. In
the first limit, ML can be incorporated as an additional feature into the codes; in the second limit, new flow

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 9 of 27

solvers need to be designed around the ML algorithms themselves. Finding the best compromise here must be
the next step after the possibilities and limits of ML for this application have been fully explored.

Efficiency and ease of use: Finally, from a practitioners point of view, the question that will likely determine the fate
of ML-based models is: Is it worth it? A general observation is that not always the best model or approach finds
widespread acceptance in the community, but rather the ones that are quite simple to understand and
implement, robust to handle and computationally cheap. What might also make these models harder to adopt
for nonspecialists is the fact that they are not describable in a few lines of algebra or code but instead as a
computational graph and its parameters. This is, of course, a technical issue that can be solved, but it makes
experimenting with the models much more cumbersome. So, while ML methods have shown to be rather
mighty in terms of accuracy, the other aspects are open for debate.

1.2.2 Opportunities for ML-augmented turbulence modeling

With the challenges identified in the previous section, we now aim to balance the discussion and give a perspective on the
motivation and opportunities for ML-augmented turbulence models. In Section 3, we will also present some successful
data-based turbulence models and describe their relationship to the challenges and opportunities.

A new paradigm: Although considerable efforts have been invested in the last decades into finding closure models
that are universal and accurate, there is still no generally accepted best model. This is due to the complexities and
interdependencies outlined above. All previous attempts at modeling based on proposing a functional form or a
set of equations have shown that some form of data-assistance is necessary to make the model useful, typically
through the introduction of parameters or the imposition of constraints (eg, limiters). This reveals that there is
still some form of functional relationship or knowledge not incorporated in these models—some external
information seems to be missing. Here again, ML methods can help by attacking the problem from an alternate
direction: the external data are not an afterthought to fix parameters but an integral part of the model
development itself. This is emphatically not meant as a replacement of mathematical theory or physical
reasoning in the modeling process, but rather as an inclusion of an additional stream of information.

Feature extraction: While abstractions like the energy cascade, the universality of small scales, scaling behaviors or
law-of-the-wall encapsulate the essence of the underlying mechanisms of turbulence and elucidate their effects,
they can give a false sense of providing the full picture. Typically, physically motivated closure models attempt to
exploit these known (or assumed) correlations. The most prominent example of this are eddy-viscosity based
closures: since the effects of small scale fluctuations are diffusive on average, a model that shares this behavior on
average is a good initial guess. Following Boussinesq, the subfilter terms are then modeled as proportional to the
mean velocity gradients, and model improvement comes from tweaking the proportionality constant. ML can
improve upon this situation not only by finding even better model constants but, more importantly, by
identifying new correlations automatically (feature extraction) from data, in particular very high-dimensional
data. Thus, we can expect not only better tuned existing models but also the discovery of a better functional basis
for model building.

Flexibility: ML methods can be designed to deal with nonstationary and nonhomogeneous statistics, that is, they can
approximate regime changes in space and time. This is highly interesting for turbulence as this could help
develop models capable of predicting intermittency and extreme events more reliably.

Incorporating discretization effects: An underappreciated aspect of LES is that a good closure model is an
ever-moving target. This is due to the fact that, with very few exceptions, LES for practical problems is based on
an implicitly filtered formulation. Here, the discretization itself acts as a low-pass filter and thus defines its very
specific (and typically inhomogeneous and anisotropic) closure terms. Thus, a well-tuned and investigated
closure approach for a given discretization can fail significantly in another setting. This strong nonlinear
interaction of model and numerical scheme adds additional dimensions to the closure problem—in a sense, this
can be seen as the introduction of an additional nonlinearity to the problem. While this makes the theoretical
approach to finding models exponentially more difficult, it should—at least conceptually—be naturally included
in an ML approach.

Exploiting existing turbulence data: As mentioned above, ML algorithms are not computationally cheap. In fact,
one may argue that data-fitting approaches or learning methods are per se data-hungry during training—at least

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 27 BECK and KURZ

if the typical incremental learning processes are used. Although generating the training data from scratch
through experiments or numerical simulation is possible, it is also prohibitively costly—after all, if the costs of
providing enough samples to lead to a converged ML model are orders of magnitude larger than using
established no-ML models in the first place, there is no justification for going the ML route. However, generating
new data specifically for model training is likely unnecessary in the long run: a large treasure trove of flow data
already exists, both from numerical and experimental sources, for example, in [39]. Mining these data, for
example, cleaning and processing the data in a consistent manner before injecting them in the training cycle
remains a challenge however. Here, the flexibility of ML approaches towards the input features and the inherent
capability of nonlinear feature combination can be beneficial in reducing the requirements on the training data.

Arbitrary input features: ML methods are able to incorporate both temporal and spatial data naturally and can also
deal with sparse data. Up to now, typical closure models are often exclusively based on exploitation of spatial
relationships or spatial data—for example, a velocity gradient at a certain position and given point in time. This
comes from the fact that (a) the scale production mechanism that is at the root of the closure problem is
formulated as a divergence and describes a spatial transport process and (b) that the vast majority of
scale-separation filtering in LES is formulated in physical space as well, with a notable exception being the work
by Pruett et al [52]. Incorporating both dimensions into the modeling process is an attractive idea as turbulence
is a nonlocal phenomenon.

Summarizing this discussion, ML-based methods are attractive tools that can help to extract more, often hidden,
knowledge from data, and thus provide a greater flexibility in modeling. The promise of ML here lies in the incorporation
of flexible, high-dimensional data and its natural use of nonlinear modeling assumptions. Still, as in any modeling process,
a number of challenges exist that need to be tackled, and no converged state of the art has been reached.

After briefly introducing selected ML algorithms for context in the next section, we will then discuss some successful
applications of ML methods to turbulence modeling in Section 3. This should not only represent a slice through the
current state of the art but also show the diversity of the ideas and methods currently under investigation.

2 ML ALGORITHMS

The terms AI, ML, and deep learning (DL) are often used synonymously due to the tremendous success of the latter two
in the last decades, making clear distinctions and definitions beyond general statements like the one given in Section 1.2
elusive. In principle, ML is only one specific discipline of many in the broad realm of AI but is currently the most promi-
nent one. A complementary field in AI is, for example, “Good Old Fashioned AI,” which encompasses AI systems that
can be written down in a symbolic, human-readable way [23]. They therefore build on explicit domain expertise incorpo-
rated into the systems. One of the most famous representatives of this field is the expert systems. Another famous example
for AI without the use of ML is the DeepBlue system, which was able to beat the chess world champion at the time, Garry
Kasparov, in 1997 by using AI [10] but without a hint of ML.

In contrast, ML algorithms are (at least to a certain degree) agnostic to the specific task they are used for. Rather,
they are able to learn from experience and adapt themselves to (or learn) the specific task autonomously based on data.
This is, of course, an idealized view since choosing a better suited ML algorithm over another for a specific task based
on experience already incorporates some form of expertise. The ML approach obviously has some advantages: foremost,
ML algorithms can be employed where no sufficient domain knowledge is available to build expert systems. Additionally,
existing algorithms can be used for a variety of tasks that are similar in structure (eg, using a neural network that is trained
on detecting visual edges in photographs can very easily be brought to recognize shock waves as sharp edges from flow
field data [6]) and only have to be adapted slightly, while traditional AI algorithms developed might be useless for the
new task.

The field of ML can be categorized according to several learning paradigms: the first is supervised learning (SL, cf.
Section 2.1). The foundation of an SL task is always an assumed correlation between at least two quantities, an input and
an output. It is then the ML algorithm’s task to approximate this unknown, but probably present, functional connection
between these quantities solely from sampled training data. In contrast, unsupervised learning (UL) tasks (cf. Section 2.2)
do not need labeled data pairs. This learning paradigm is of more an exploratory nature and confines itself to identify-
ing correlations and patterns inside data, as well as finding efficient low-dimensional representations. The last learning

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 11 of 27

F I G U R E 3 The two major paradigms
of supervised learning: regression and
classification. For a classification task, the
machine learning algorithm needs to find a
decision boundary, which separates the data
into classes. New data points can then be
classified by determining on which side they
reside. For regression, the algorithm
approximates the continuous functional
relationship of the data

paradigm is reinforcement learning (RL), which does not rely on a dataset but rather employs algorithms which learn by
interacting with an environment (cf. Section 2.3).

We are aware that the borders of these categories are fluent, and the assignment of applications and algorithms to the
specific fields is more often than not ambiguous. Moreover, many methods do not fit comfortably into this framework
but rather establish a small subcategory on their own. Nonetheless, this segmentation follows the usual classification
and gives orientation for more in-depth excursions in ML. In the following discussion, we put a special emphasis on SL
with neural networks, since they have become the de facto state of the art for many applications, among them turbulence
modeling.

2.1 Supervised learning

The basis of an SL task is a dataset of samples {Xi,Yi} from some unknown functional input-output relationship Y = f (X).
The task of the supervised ML algorithm is to approximate the true function f (X) solely based on this (possibly noisy)
dataset, which is commonly called training data. For continuous data, this task is called regression. Once a good approx-
imation to the true function is found, the model can be evaluated for data points, which were originally not part of the
training set (the generalization). If the data are discrete, that is, the algorithms have to assign the input data to a finite num-
ber of classes; this task is referred to as a classification task. The objective of the algorithm is then to find some (nonlinear)
decision boundary in the input space, which separates the data points of the different classes from each other. Based on
this decision boundary, new unknown data can be classified by determining on which side of the decision boundary they
reside. Both approaches of SL are shown in Figure 3.

As discussed above, ML algorithms are agnostic to the underlying learning task and can be applied to a wide variety
of problems. To accomplish this, ML models comprise free parameters, which have to be adapted for each learning task.
The search of good model parameters for a specific learning task can be formulated as an optimization task with regard
to some performance metric called loss function (Ŷ ,Y) or ‖Y − Ŷ‖, see Equation (6). A common loss function for a
regressor is, for example, the L2-distance between Y and Ŷ . The optimization task can therefore be interpreted as finding
a set of model parameters 𝜃, for which the loss function reaches a minimum on the given training set {Xi,Yi}:

𝜃opt = arg min
𝜃

 (𝜃 |{Xi,Yi}) . (7)

In the context of ML, this optimization process is commonly referred to as learning or training. A supervised ML
algorithm therefore has two distinct phases: in the learning phase, the free model parameters are adapted to minimize
the loss function for the given training dataset. In the inference phase, the trained model is evaluated on unseen data to
obtain predictions for the corresponding unknown output value. In the following, we will shortly introduce some of the
most common ML methods for SL: random forests, SVMs, and artificial neural networks (ANNs), with special emphasis
on the latter. Regardless of the specific architecture chosen, the SL paradigm of finding an unknown, nonlinear mapping
from input-output pairs {Xi,Yi} lends itself naturally to the task of parameter fitting (cf. Section 3.1) or subgrid flux
reconstruction (cf. Section 3.2) in model development.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 27 BECK and KURZ

F I G U R E 4 A schematic
view of the random forest
method. The depicted random
forest model comprises three
independently trained
decision trees, which receive
the same unseen input data xi.
The inferred class of xi is then
derived from the individual
predictions by a majority vote

2.1.1 Random forests

Decision trees are one of the most intuitive ML algorithms. This ML algorithm classifies data by dividing the training set
recursively according to decision rules until each of the resulting subsets contains only data of one distinct class. Training
the decision tree refers to finding a set of decision rules which divide the training set most efficiently. New unseen data
can then be classified with the same decision rules and the model can propose an assumed class for the respective input
data. Since it is not trivial to ensure that the found decision rules rely on intrinsic characteristics of the data and therefore
to generalize well to unseen data, decision trees are prone to overfitting and are highly sensitive to changes in the training
dataset. Therefore, more elaborate variants of decision trees are proposed in literature, with random forests as one of the
most famous representatives. The method of random forests was originally proposed by Ho [26], who extended the single
decision tree to an ensemble of individual decision trees to improve the generalization properties of the method. The main
idea is that each individual decision tree is trained only on a random subset of the training data or receives only a randomly
selected subset of the data features as input data. The overall class label for the data is then obtained by a majority vote
of the individual predictions, which significantly enhances the generalization abilities of the decision tree method (cf.
Figure 4). The idea to combine individual models to ensembles in order to enhance the overall prediction accuracy can
also be employed for other algorithms, for example, neural networks. The decision tree and random forest algorithms can
be easily extended to regression tasks by replacing the majority vote by averaging the individual predictions. In the field
of turbulence simulation, random forests were, for example, applied by Wang et al [82], who trained the model on DNS
data in order to correct the Reynolds stresses of RANS simulations.

2.1.2 Support vector machines

The SVM algorithm strives to find a hyperplane that separates the space spanned by the input features such that only data
points of one distinct class reside on each side of the hyperplane. New unseen data can then be classified by determin-
ing on which side of the separating hyperplane the respective data point resides. For most training datasets, however, the
classes are obviously not linearly separable. Boser et al [8] therefore proposed to employ a nonlinear mapping of the input
space in a high-dimensional (and possibly infinite-dimensional) feature space, in which the training data will always be
linearly separable by a hyperplane, as indicated in Figure 5. These computations in high-dimensional space are gener-
ally expensive. The so-called kernel trick can be used to keep the computational cost at reasonable levels. By choosing an
appropriate kernel function, computations in the high-dimensional feature space can be carried out implicitly by apply-
ing the kernel function, while the coordinates of the data points in the high-dimensional feature space never have to be
computed explicitly. SVMs were primarily applied for supervised classification tasks, but can also be transferred to regres-
sion [72] and to unsupervised tasks, for example, clustering [7]. One of their most interesting features is the capability to
enforce constraints directly through the kernel choice [70]. A more in-depth introduction to SVM can be found in [74].
In [41], SVMs are used together with decision trees and random forests to predict in which flow regions certain assump-
tions of RANS models become invalid, which can, for example, be used to dynamically adapt turbulence models based
on the prevalent flow regime.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 13 of 27

F I G U R E 5 General idea of a high-dimensional
feature space. Some nonlinear mapping φ is used to
transform the two-dimensional input space into a
three-dimensional feature space, in which the data
becomes linearly separable. The inverse mapping then
transforms the linear plane into the nonlinear decision
boundary in the two-dimensional input space on the left

2.1.3 Artificial neural networks

ANNs are the most widespread ML algorithm for many fields and applications, especially due to their generality and ease
of training on GPUs. Their name is derived from the somewhat constructed resemblance to structures in mammalian
brains [47,65], which was the initial motivation for the specific design of ANN as a combination of individual “neurons,”
shown in Figure 6. The classic feed-forward network is comprised of several concatenated layers. Each layer in turn con-
sists of a number of neurons. The input layer of the network receives a data vector X , which is then successively passed
through the hidden layers, which are not directly connected to the input or output, until the data are passed to the output
layer. ANN with few hidden layers are referred to as shallow ANN, while networks with many hidden layers are called
deep ANN. A typical design for the neurons is the perceptron as shown in Figure 6, which was originally formulated by
Rosenblatt [65] a simple mathematical model for neural activity. Each perceptron receives the outputs of the previous
layer Xi as inputs. These inputs are weighted by weights 𝜔i and summed up with an additional bias b. The output (also
called activation) of the perceptron is then obtained by applying a nonlinear activation function. Commonly used activa-
tion functions are sigmoidal functions like the sigmoid (g(x) = 1∕ (1 + e−x)) or the hyperbolic tangent (g(x) = tanh (x)).
More recently, the rectified linear unit (ReLU, g(x) = max {x, 0}) became the state of the art for many applications. The
computed output of the perceptron is then

Y = g

(N∑
i=1

𝜔iXi + b

)
. (8)

The output Y is passed as input for the neurons in the succeeding layer. The described architecture of a feed-forward
ANN with one or more hidden layers is commonly referred to as multilayer perceptron (MLP). The main objective during
training is to determine optimal weights to obtain accurate predictions from the network. Thus, a neural network is a
nested sequence of linear and nonlinear functions with variable parameters. It has been shown that ANNs are universal
approximators and can approximate any continuous functional relationship between input and output quantities solely
based on data [15,28,42].

A particularly successful branch of ML emerged over the last decade: DL. The method DL exploits that deeper
networks can learn more complex relationships since each additional layer provides a (potentially) more abstract and
complex representation of the data [37]. Training such deep and parameter-rich networks was made possible by a vari-
ety of circumstances. First, the method of backpropagation yields a very efficient way of optimizing the model’s weights.
The more recent success was also supported by the steadily increasing computational power, particularly by employing
highly parallel GPUs for training [69]. The other major contributing factor was the availability of large datasets, which are
needed to train deep networks, since they comprise an enormous amount of free parameters, and thus tend to overfit on
small datasets [37]. These advancements fueled the research and development in the field of DL and caused it to become
the most prominent and successful representative of ML for many applications.

A number of specialized ANN architectures exist, which are designed for a specific range of tasks. For multidimen-
sional data, for example, images, convolutional neural networks (CNNs) are the current state of the art [37,69]. In contrast
to the perceptron architecture, CNNs apply filter kernels to the input data in each layer, while the filter kernels them-
selves are learned during training. This generally results in a more sparse connection of succeeding layers and therefore
in less trainable weights than in classic fully connected networks. This approach is especially suited for multidimensional
data, which are not point-local, but rather have to be examined in context of their surroundings. Very deep ANN have

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 27 BECK and KURZ

F I G U R E 6 Shown on the left is the layout of a general feed-forward artificial neural network with two hidden layers, each comprised
of several neurons. The design of a perceptron neuron is shown in more detail on the right

F I G U R E 7 Shown on the left is the schematic of the recurrent neural network (RNN) approach when unrolled in time. Along with the
current sample of the sequence XN , the RNN receives information from the last timestep aN − 1, which allows it to retain temporal
correlations from the sequential data. For the long short term memory (LSTM) cell on the right, the rectangular shapes indicate layer-wise
operations according to Equation (8) with either a sigmoid (𝜎) or a hyperbolic tangent (tanh) as activation function. Round shapes imply
element-wise operations, with || indicating concatenation. For the LSTM, the retained information aN consists of the cell state cN and the
hidden state hN , while the latter is also the layer output Ŷ N = hN

shown to be more difficult to train, since they suffer from the vanishing and exploding gradients problem during back-
propagation; see, for example, [69]. To alleviate this restriction, He et al [24] proposed the residual neural network, which
introduces skip connections, allowing information to shortcut the nonlinear layers. The CNN layers therefore only have
to approximate the nonlinear fluctuations, while linear relationships are approximated quickly and stably. This allowed
us to design and train very deep CNN successfully, thereby allowing to build more expressive and accurate CNN [24].

For sequential data, that is, where the ordering of the data points is important, recurrent neural networks (RNNs) are
the established ANN architecture. A general schematic of the RNN principle is shown in Figure 7. The standard RNN
works like the perceptron network shown in Figure 6 when unrolled in time. However, along the current input sample of
the sequence XN , the RNN also receives some information aN − 1 from the last sample, which enables the RNN to memorize
information from previous samples. How the network output Y N and the memorized state aN are computed depends on
the specific RNN type. For long sequences, the RNN architecture leads to very deep networks in time, which again raises
the issue of vanishing and exploding gradients during backpropagation, rendering the standard RNN unsuitable for long
sequences [27]. More elaborate variants of RNN resolve this problem by introducing gating mechanisms which control
the error transport during backpropagation. Two of the most common variants are the gated recurrent units (GRU) [13]
and the long short term memory (LSTM) network [27], which is detailed in Figure 7. Due to their ease of trainability
and access to open source frameworks, SL for turbulence modeling is predominantly done with ANN variants, see the
examples in Section 3.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 15 of 27

F I G U R E 8 Two main applications of
unsupervised learning: clustering and
dimensionality reduction. For clustering, points
with high similarity (ie, near each other) are
grouped together in clusters to identify patterns in
data. The field of dimensionality reduction tries to
transfer high-dimensional data into efficient
low-dimensional representations by finding
appropriate transformations φ

2.2 Unsupervised learning

In contrast to the SL paradigm, UL does not need labeled data, that is, it does generally not require any information on
the exact solution of the problem. A common area of application for UL is clustering, which is the task of grouping data
points based on their similarity, which in consequence allows us to find unknown correlations and patterns in datasets. In
the following section, the k-means algorithm will be discussed exemplary as a common and straight-forward clustering
algorithm. However, also clustering variants of several SL algorithms like SVM [7] can also be found in literature. Another
major task of UL is the field of dimensionality reduction, which targets finding efficient low-dimensional representations
of data, while minimizing the resulting information loss—this is, of course, closely related to finding a cluster of data with
similar features. Both concepts are illustrated in Figure 8. Other applications of UL like probability density estimation
are not reported here, since this exceeds the scope of this work. In the context of turbulence modeling and analysis of
coarse-scale evolution, classical methods of dimensionality reduction like proper orthogonal decomposition (POD) or
dynamic mode decomposition can be seen as UL algorithms. Their comparison to and augmentation by ML-focused UL
algorithms is currently under way, for example, in [20]. Clustering methods applied to the local flow state can also become
a helpful initial step in selecting appropriate adaptive closure models.

2.2.1 k-Means

A popular and fairly simple clustering algorithm is the k-means method [43], for which a vast number of variations and
extensions are proposed in literature. The first step of the algorithm is to obtain a first guess of the k partition centroids by,
for example, choosing k data points at random as centroids or by more elaborate approaches [3]. Second, all data points
are assigned to the respective nearest cluster centroid, and thus, each data point is assigned to one of the k clusters. In a
third step, the cluster centroids can be updated by computing the center of all points assigned to the respective cluster.
The second and third steps are then repeated until the algorithm converges and the clusters cease to change. Thus, the
k-means algorithm eventually minimizes the average variance in the clusters. More elaborate variants of the k-means
algorithm increase the method’s accuracy and allow us to give guarantees and estimates of the method’s performance as,
for example, k-means++ [3]. An application of k-means clustering in conjunction with an NN for the prediction of an
eddy viscosity for the RANS equations can be found in [91].

2.2.2 Variational autoencoder and generative models

Autoencoders are a variant of ANN which is used for dimensionality reduction in a UL setting [25]. The autoencoder
consists of two parts: first an encoder, which transforms the high-dimensional input X into a low-dimensional (latent)
representation Z. This low-dimensional representation is then transformed back into the initial high-dimensional input
space by the decoder, yielding X̂ . The general layout is depicted in Figure 9. The characteristic hourglass shape forces
the autoencoder to find an effective low-dimensional representation of the input. The accuracy of the autoencoder can
then be determined by computing the error of the network’s input X and output X̂ vector. Autoencoders are conceptually
linked to the concepts of POD, principal component analysis and singular value decomposition, since all of these con-
cepts describe efficient low-dimensional representations of data. An extension of this method to variational autoencoders

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

16 of 27 BECK and KURZ

F I G U R E 9 Left: architecture of an autoencoder. The encoder transforms the input data X into a low-dimensional latent representation
Z, while the decoder transforms the data back into the input space X̂ ≈ X . Right: general generative adversarial network architecture
consisting of a generator and a discriminator. The former draws samples from the latent space and transforms them into approximate data
samples X̂ , while the discriminator is trained to distinguish between the fake samples generated by the generator and the true data samples X
from the dataset

(VAs) not only learns latent states Z, but a distribution given the input data. Thus, in inference mode, they are powerful
tools for generative methods [30], with application to the generation of synthetic turbulence in [18,48]. An alternative
variant of generative models are so-called generative adversarial networks (GANs [22]), in which two competing ML
methods (typically ANNs) improve their prediction in an adversarial feedback loop. The goal of this architecture as shown
in Figure 9 is to match the distribution encoded in the training samples and to be able to generate new samples that are
indistinguishable (by the learned discriminator) from a true input. Both the VA and GAN can thus be interesting candi-
dates for turbulence modeling as they learn a low-rank representation of high-dimensional data and can reproduce new
statistically congruent samples. An application of GANs to subgrid flux modeling is discussed in Section 3.2.

2.3 Reinforcement learning

In contrast to supervised and UL, the paradigm of RL is not restricted to learn solely from given data points, but to learn
from interaction with an environment and therefore to learn from experience. The agent is an ML algorithm that performs
actions to interact with an environment. These actions change the current state of the environment sn in a stochastic
manner, that is, the state change is generally not deterministic. Alongside the new state sn+ 1, the agent receives a reward
rn+ 1 based on a reward function, which has to be adapted to the specific learning task. The agent strives to adapt its actions
a in order to maximize the potential future reward. Training the agent then means to find a decision policy 𝜋(a|s), which
determines the actions the agent should take to maximize its future reward, given the current state. The agent interacts
with the environment across multiple episodes to gradually improve its policy 𝜋. The most straightforward approach is
to explore all possible combinations of states s and actions a and memorize the expected reward in a table. For future
episodes, the agent can then look up the current state s and perform the action, which promises the highest reward. This
method is called Q-learning [83].

Obviously, this approach has limitations for large problems, since the memory cost and the time the agent needs to
explore all possible combinations of states and actions are prohibitive for large problems. Instead, the approach of deep
RL uses deep ANN to learn the policy for the RL algorithm, which was also used for AlphaGo, the first AI to beat a
professional Go player [71]. A recent application of RL for turbulence modeling can be found in [50]. Here, a multi-agent
reinforcement method is used to dynamically adapt the coefficients of a turbulence model for the HIT test case.

3 EXAMPLES OF ML-AUGMENTED TURBULENCE MODELING

In the previous sections, we have focused on the challenges and chances of ML methods in turbulence modeling and
given a brief introduction to selected ML algorithms. In the following, we will discuss some successful applications of
these ML methods to RANS and LES problems in more detail. The majority of the following examples are from the SL
methods discussed in Section 2.1. Among them, ANN and derived methods (cf. Section 2.1.3) dominate the published

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 17 of 27

literature. We will thus follow this trend here, with exceptions being the discussion on generative models in Section 3.2
and the SL/UL Physics-informed neural network (PINN) approach in Section 3.3. We note that this discussion is far from
complete, but we will try to match the presented cases to some of the challenges outlined above and show how these
issues are tackled by the respective authors. We will focus here almost exclusively on SL, mainly due to the much larger
amount of research available than for other learning methods.

Recalling Section 1.2, the task of turbulence modeling is to find a model M̂ for the effect of the subfilter terms on
the resolved solution. For the purpose of this overview, one possible hierarchy for ML-augmented turbulence modeling
shown in Equation (9) is thus on which level the modeling occurs: the first and most common approach is to replace the
unclosed stresses by an a priori determined model function g with parameters 𝜃 and then fit or find the parameters through
optimization approaches. Alternatively, the objective can be formulated in terms of a derived metric, see Equation (6).
This approach has the clear advantages that (a) it can be used for model discrimination and that (b) existing turbulence
models are naturally incorporated. Furthermore, the effect of the model on the governing equations is typically via a
modified viscosity, which is often very easy to incorporate in existing schemes. The main point here is to stress that
the structural form of the model is posited a priori. We summarize these approaches as parameter estimation problems.
Opposed to this, the second level of turbulence modeling directly predicts the closure terms (either the stresses or the
forces), that is, no functional form g is assumed, and it is an outcome of the optimization. The rationale behind this is to
derive more universal closure models. The third level discussed here arguably leaves the realm of modeling—instead, it
directly approximates the solution û of the full (turbulent) equations through ML methods. While these methods give up
some of the rigorous results of classical approximation schemes for PDEs, their motivation comes mainly from the fact
that they are generally mesh-free and can work with sparse data.

L1 ∶ 𝜃opt ∶= arg min
𝜃

‖M − g(𝜃) ‖ ,
L2 ∶ (𝜃opt, gopt) ∶= arg min

g(𝜃),𝜃

‖‖‖M − M̂(𝜃, g(𝜃)) ‖‖‖ ,
L3 ∶ (𝜃opt, gopt) ∶= arg min

g(𝜃),𝜃
‖u − û(𝜃, g(𝜃))‖ + ‖‖ (û(𝜃, g(𝜃))) ‖‖ (9)

3.1 Parameter estimation

LES or RANS models based on physical or mathematical considerations are typically formulated as (collection of) func-
tions or transport equations of coarse grid data and associated tunable parameters 𝜃. These parameters might be obvious,
for example, as a scaling factor of a viscosity, or more hidden in the details of the model and its implementation, for
example, the choice of where and what to average over in the dynamic SmagorinskyŠs model. Since—when coming from
a turbulence modeling background—parameter estimation tends to be seen as the obvious and most direct approach, a
lot of literature focusing on this method with various flavors has been published in the last years. We do not aim to give
a concise overview here but highlight some interesting cases belonging to this L1 family.

From the RANS modeling community, a number of publications on fitting the Reynolds stress tensor (or the discrep-
ancy to existing models) based, for example, on a decomposition into its eigenvectors have been published [68,77,82].
Remarkable achievements have been the incorporation of field inversion techniques to reduce model-data inconsisten-
cies and the direct embedding of constraints like Galilean invariances into the network [34,40,56]. An example from LES
of a direct prediction of model coefficients is presented in [54],where the author learned the eddy viscosity from a tur-
bulent database and showed good a priori and a posteriori LES results. The main feature of this work was the saving in
computational time by a factor of 2 to 8 compared to an application of the dynamic Smagorinsky’s model. One of the
earliest applications in learning a viscosity coefficient is due to Sarghini et al, who used an MLP to construct a more com-
putationally efficient deep ANN representation of Bardina’s scale similarity model [67]. For compressible turbulence,
the authors in [85] propose to fit the coefficients of Clark’s closure model through an NN. One fact that is shared by the
LES-focused approaches in literature so far is that the question of interaction of discretization and model is often discarded
by focusing either on explicitly filtered LES or on global Fourier-based methods with a clear cutoff filter and homoge-
neous discretization properties. Such practical difficulties are not (yet) included in the modeling process. An interesting
exception to this for 2D turbulence is proposed by [45]. Here, the implicit modeling method in LES is followed in the way
that different numerical discretization operators for the inviscid fluxes (those with and without numerical dissipation)
are chosen based on the classification by a neural network. The training data are obtained from a coarse-grained DNS

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

18 of 27 BECK and KURZ

field and are distributed into bins corresponding to regions of no, negative, or positive eddy viscosity. While combining
numerical operators in such a way locally brings with it its own challenges, the results shown by the authors are promis-
ing and offer an interesting way of informing implicitly filtered, implicitly modeled LES. Care must be taken here in the
future, however, to ensure the consistency of the filter used to classify the DNS data and the dissipative characteristics of
the numerical operators.

3.2 Closure term estimation

The direct prediction of the closure terms instead of their modeling offers an alternative to the parameter estimation task
in the previous section. Here, the unknown terms in Equation (6) are directly approximated by the ML algorithm—either
as fluxes or as the forces themselves [5,21,79-81,84,86,90]. Important to stress, however, is that the mapping from the
coarse to the fine field is nonunique, and thus, each coarse field is associated with a distribution of corresponding closure
terms. This one-to-many mapping is naturally introduced by the information loss induced by the LES filter. For a given
filter and thus coarse-grained solution, an infinite number of associated fine-scale fields and closure terms exist—thus,
even exact closure terms should only be considered means of the ensemble [49].

The rationale for pursuing the direct estimation of the closure terms is 3-fold: (a) a direct closure avoids all modeling
assumptions and is complete in the sense that it includes all the necessary and available information; (b) if the perfect
closure is available, this opens the door for fitting and developing more accurate models; and (c) the research question
of whether the closure terms can be recovered from coarse-scale data only is of great interest in itself. In terms of the
discussion in Section 1.2, approaches from this group have some advantages: while they certainly need large amounts of
data to train on, the target quantity is simply the filtered DNS data–no additional, derived quantities need to be available
or computed. This reduces a strong source of data inconsistency and makes virtually any DNS data suitable for training.
Also, finding the full closure terms instead of their models directly avoids any balancing issues between model terms.
Furthermore, physical constraints can be enforced directly on the closure terms themselves without having to consider
the interaction of different model terms in order to fulfill the constraints for the entire model. A counterexample of this
would be the scale similarity model by Bardina with attached eddy viscosity model, where the contributions of both model
terms have to be balanced to achieve a physically consistent net effect. There are, of course, also drawbacks to consider:
interpretability of the resulting mapping is further reduced since the functional form and thus the predominant physical
effects of the closure terms cannot be recovered from the trained ML model in a straightforward manner. Another, more
severe shortcoming observed, for example, by [79] is the lack of long-term stability in this form of closure. This stems
from the unavoidable data-model inconsistency during inference in practical simulations. Said inconsistency is caused
by the interaction of the model predictions and numerical errors, which induces shifting data statistics and is amplified
by error accumulation and self-driving error growth at high wavenumbers. This can either be tackled by removal of this
energy through a dissipative mechanism [86] (essentially an additional model term) or the projection of the closure term
onto a stable basis with the desired properties [5].

In general, the results for the closure term approximation based on ML methods are highly encouraging. In [86], the
authors used a spatial MLP with approx. 500 000 parameters to predict the three components of the subgrid forces of the
incompressible momentum equations independently. As inputs, they chose velocity derivatives in the vicinity of the grid
point in question. A priori correlations of over 90% with the true subgrid force are reported. In an a posteriori application
of the subgrid force together with a dissipative regularization term, the approach outperforms classical closure models.
In [81], the authors applied a method for a stochastic model discrimination based on autoregressive models with external
influences on the reconstruction of subfilter fluxes in finite-volume LES. Here, the model was not only able to capture
the time-space structure of the subgrid fluxes reliably but also identify flow regimes, for example, the near-wall region in
a turbulent boundary layer, that require their own local model (an example of an unsupervised clustering method). An
approach to estimate the closure forces based on CNNs, which naturally incorporate spatial relationships in the mapping,
was investigated in [5], with good success for the reconstruction. Additionally, the influence of an a priori feature selection
revealed that the coarse-grained inviscid fluxes contribute noticeably to the training success. While the previous examples
almost exclusively build their prediction from spatial data, in [33], the temporal dimension was investigated as an input
into NN-based approaches, specifically using the GRU architecture for sequential data (see Section 2.1.3). As an additional
focus, the authors investigated the capabilities of the NNs to predict closure terms specific to a given filter kernel. Figure 10
presents the results of the predicted and true closure terms for a database of DHIT flows. As discussed in Section 1.1, the
choice of the filter also defines the closure terms. For all filter types investigated, the GRU networks were able to achieve

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 19 of 27

F I G U R E 10 Two-dimensional slices of the exact and predicted closure term of the x-momentum equation for a decaying
homogeneous isotropic turbulence flow for two filters. Top row: elementwise-L2 projection onto the space of polynomials of degree N = 5,
bottom row: top hat filter. The second column is obtained via a temporal NN based on a pointwise gated recurrent unit network, the third
column via a spatial multilayer perceptron. Reproduced from [33]

99.9% cross correlation in a priori tests based on a short series of temporal pointwise data of the coarse-scale variables,
making the prediction and target visually indistinguishable in the first two columns of Figure 10. These results suggest that
the subgrid force terms can be predicted with near-arbitrary precision, which offers the chance to significantly improve
practical closure models.

As stated above, a direct closure may suffer from instability due to exponential error growth and is thus not the method
of choice without any regularization. This can come in the form of improved model stability or regularization during
inference, for example, through an additional dissipation mechanism. An example of the former approach is shown in the
left diagram in Figure 11, where the evolution of the kinetic energy for the DHIT case is shown for GRU predictions. The
filtered DNS results serve as a reference. While the GRU predictions lead to a very accurate closure and thus LES solution
at first, the LES solution diverges strongly soon after. This is a result of a data-model inconsistency and the nonlinear
error accumulation of the truncated equations. One possible remedy is sketched in the right panel of Figure 11, where
stability training successfully reduced the sensitivity to uncertainties in the inputs during inference [89]. To this end, an
additional penalty term with a weighting factor 𝛼 is added to the loss function during training:

(𝜃opt, gopt) = arg min
𝜃,g(𝜃)

⎛⎜⎜⎜⎝‖Y − Ŷ‖
⏟⏞⏟⏞⏟
standard loss

+ 𝛼‖Ŷ − Ỹ‖
⏟⏞⏟⏞⏟

penalty

⎞⎟⎟⎟⎠ . (10)

The noisy output Ỹ is obtained by adding noise 𝜖(𝜎2) with variance 𝜎2 to the input vector X̃ = X + 𝜖(𝜎2) and applying
the ANN to this noisy input. The weighting factor 𝛼 and the noise variance 𝜎2 are additional hyperparameters which have
to be tuned to the specific application. During training, the optimizer thus needs to find a set of parameters which not only
minimizes the error on the training dataset but is also robust to random perturbations in the input data (cf. Figure 11).
This results in increased stability of the closure model and longer useful predictions. Another example of successful
subgrid flux estimation is described in [2]. Here, the authors tackle the problem of the ambiguity of coarse-scale data
and closure term by reconstructing them through generative models (a GAN conditioned on a finite-volume solution, cf.
Section 2.2.2). Thereby, they do not approximate the exact subgrid flux but a sample with identical statistical properties.
Their initial results for closing the viscous Burger’s equation (1) show very good a priori and a posteriori agreement with
filtered DNS data.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

20 of 27 BECK and KURZ

F I G U R E 11 Left: evolution of the kinetic energy for the decaying homogeneous isotropic turbulence case. The filtered direct
numerical simulation data are given as reference. Right: stability training to reduce the sensitivity to uncertain input data, basic idea from
[89]. Random perturbations 𝜖 are applied to the input features. The magnitude of the penalty term in the loss function (10) is then
proportional to the induced changes in the network output

Summarizing this section, direct estimation of the subgrid forces in the level 2 sense of Equation (9) has a range of
advantages over parameter estimation approaches. However, without additional modeling or stabilization, it can lead to a
diverging system in the long run. Nonetheless, availability of an accurate estimate of the exact closure at any time can likely
help to improve classical modeling approaches. Currently, both spatial and temporal neural networks have been shown
to be successful at this task; however, other approaches like kernel methods are likely also suitable. The generalizability
of the results and the transfer of the predictions to a practical model are currently open questions. Partially related to the
idea of closure term prediction is that of flow field deconvolution or approximate filter inversion, where the deconvolved
field is then used to obtain (through scale similarity arguments) an approximation of the exact closure term. Inverting the
filter by neural networks has, for example, been proposed in [44], and the reconstruction of the fine scale field through
superresolution approaches (essentially the inversion of the cutoff filter) has been proposed in [18].

3.3 Full PDE modeling

In the rough hierarchy outlined above, the third level of ML augmentation is the actual replacement of traditional PDE
solution methods (ie, the discretization of the underlying operators) by a learned approximation that is encapsulated in
an ML algorithm. The so-called PINNs are a prominent approach that follows this idea. They can be understood as a
combination of supervised (the prediction network) and unsupervised (the residual or constraint) learning methods. For
the linear transport equation (u) = 𝜕u

𝜕t
+ 𝜕u

𝜕x⃗
= 0, the associated minimization problem is given by Equation (11) (also

cf. L3 in Equation (9)). The task of the PINN is thus to find an approximation û under the constraints posed by the PDE.
This is achieved in two consecutive steps: first, in a supervised manner, a predictor for the solution field û as a function of
parameters 𝜃 is sought. The functional form g(𝜃) of this approximation is established by the ANN, and the parameters are
found in the optimization process. The goal of this step is thus to obtain a parameterized function that represents û and
that is expressed as a differentiable network graph. This graph can now be differentiated with automatic differentiation4

for any input feature, for example, 𝜕û∕𝜕t. From these derivatives and other atomic operations, the original PDE can be
reconstructed—the approximated PDE (û) is, of course, a function of 𝜃 and is thus optimizable by the ML method. The
optimization problem with respect to the ANN parameters is thus

(𝜃opt, gopt) = arg min
𝜃,g(𝜃)

⎛⎜⎜⎜⎝‖u − û‖
⏟⏟⏟
supervised

+ ‖‖ (û)‖‖
⏟⏞⏟⏞⏟

PDE

⎞⎟⎟⎟⎠ . (11)

4Of course, it could also be done analytically, but the graph itself is encapsulated in the network architecture and the framework, so automatic
differentiation that is already available through back-propagation is a natural choice.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 21 of 27

Clearly, as the loss in the supervised part tends to zero, the residual will also tend to zero as a measure of how well the
predicted solution fulfills the underlying PDE: û → u ⇒ (û) → 0. The residual or constraint evaluation does not require
any prelabeled training data; the “correct” answer is given by the PDE itself. Thus, this part of the process can be seen as
an unsupervised component. The optimization goal is then to find the best fit of both the solution field and the fulfillment
of the PDE.

While a lot of work on PINNs for a range of problems exists [60,61], the application of PINNs to turbulence is still in its
initial stages. In [29], the authors present a PINN for the prediction of an incompressible laminar and turbulent flow in a
DNS setting. Although the topic of this discussion is, strictly speaking, turbulence modeling, that is, a coarse-scale solution
to the DNS, the PINN method can also be directly transferred to the LES or RANS equations. To the best of our knowl-
edge, this has not been done yet but would be a natural step. Nonetheless, PINNs have some compelling properties that
could be exploited for RANS and LES and are thus discussed here alongside the other approaches. The PINN predictions
in [29] for laminar flow achieve low approximation errors, while these errors become considerably larger in the turbulent
case. The authors report, in general, a good agreement of short-term predictions, but data indicate that error accumulates
in the long run. An interesting outcome of their investigations is that, although no training data on the pressure field is
provided, the enforcement of the divergence condition through the constraint part of the network leads to the expected
pressure field, without having to split the equations. The efficiency of this approach compared to the classical PDE solu-
tion strategies is an open issue, especially since mathematical bounds on the approximation errors and the convergence
behavior of this approach have not been established yet. As with any numerical solution methods for PDEs, a tradeoff
between speed and accuracy has to be made, and it is not clear how the PINN approach fares here. Also, although the
authors note that their approach does not require grids nor does it introduce the classical dispersion and diffusion errors,
it remains clear that the approach is not error free and remains an approximation to the true PDE solution. This entails
that properties built into classical approximation schemes like conservation are also only approximated by PINNs and that
a mathematical analysis of the approach in terms of stability, convergence behavior, and thus efficiency is an open field of
research.

In light of the discussion in Section 1.2, PINNs and associated methods offer two desirable features for turbulence
modeling or turbulence simulation: as the equations themselves are approximated also all inherent physical constraints
are naturally included in the optimization process. In addition, PINNs exploit the equations themselves and thus need
very little labeled training data—the vast majority of training data can be unsupervised and thus generated on the fly. This
also removes the typical source of training data inconsistency. In addition, the data can be scattered randomly or focused
in regions of high solution variance, and the approach allows the direct inclusion of available DNS or experimental data.
How far a trained PINN is able to generalize is an issue that needs to be explored further; also, work on interpretability
is generally as incomplete as it is for other NN-based approaches. Finally, the question of efficiency arises: Can a PINN
be faster than a traditional PDE solver? If so, at what accuracy? Is there a hierarchy of approximations in the sense that a
PINN for an LES or RANS solution can indeed be much smaller and thus faster than that for a DNS? Can they be stable
if the underlying PDE is in itself an approximate model?

These open questions indicate that there is a lot of research necessary to ascertain the place of PINNs in turbulence
modeling and turbulence simulation. In particular, an issue of debate will be the new approximation paradigm introduced
by PINNs in that it requires (at least for now) relaxing many of the known and relied-upon properties of classical PDE
solvers. However, the advantages of PINNs have also been demonstrated by their original authors; thus, where and how
PINNs can fit will have to be established through future research.

4 CONCLUSION AND OUTLOOK

Progress in turbulence modeling has been rather incremental in the last decades, with a lot of efforts focused on improving
existing models in terms of their range of application, generalizability, stability, and performance when combined with dif-
ferent numerical schemes. The development of new models has, so far, predominantly been driven by mathematical and
physical considerations. Data-driven approaches have recently gained a strong interest and have been proposed as a “third
way” in closure modeling, with the potential of considerably accelerating and possibly unifying model development.

From the authors’ perspective, ML-augmented modeling will make neither physical reasoning nor mathematical
rigor obsolete. In fact, the opposite is even likely. As discussed in this paper, ML does not necessarily make model devel-
opment easier or more fool-proof; instead, its successful application requires a careful appreciation of the underlying
equations, their properties, their discretizations, and all the intricate and sometimes obscure details of the LES and

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

22 of 27 BECK and KURZ

RANS methods. In fact, the focus on ML methods might bring an old but often overlooked inconsistency in LES into
focus: the separation of a model from the mathematical and physical environment and conditions it was derived for.
Based on the theoretical work on explicitly filtered LES and “perfect” numerical schemes, it is easy to subscribe to the
notion that there exists, for example, one Smagorinsky’s model, and that its associated constant should thus be—based
on physical consideration—universal. However, in practical, grid-filtered LES computed with imperfect discretization
operators, many variants of the Smagorinsky formulation exist (eg, depending on how the associated velocity gradients
are computed), and the considered model interacts with this “dirty” data and environment in complex forms. This issue
contributes to large variations reported in LES benchmark results.

ML methods can bring these model-data inconsistencies into sharper focus, and a lot of research efforts are underway
to account for them. Thus, success in ML-augmented turbulence modeling will likely also mean a more thorough under-
standing and appreciation of the other aspects of LES, RANS, and turbulence and help to make the definition of what we
can expect from a coarse-grained solution sharper. In this sense, ML can offer capabilities that are indeed complemen-
tary to more traditional approaches. From our perspective, the feature extraction or the identification of undiscovered
correlations from data are among the most important ones.

The initial successes of ML in improving existing models or reconstructing the closure terms directly are remarkable.
What must come next is a consolidation of the many research directions and a generalization of the models to make
them actually useful in real applications. This task is made rather difficult by the fact that, although the initial driving
force behind data augmentation in turbulence modeling might have been the desire to derive more universal models and
reduce empiricism, ML introduces its own new level of hyperparameters, methods, and uncertainties. The resulting ML
models can have millions of tunable parameters and may lose all interpretability. Even transferring a published model
from one researcher to the next becomes not merely the task of providing a set of equations but the exchange of graphs,
training environments, and possibly large amounts of data. Another unanswered issue is the cost-benefit tradeoff, both
during training as well as during inference.

Thus, in order to achieve a level of consolidation of the research efforts and the chance to select the most promising
approaches to go forward, the next step should be the establishment of a means of comparing and benchmarking the
results. Such a database should contain a well-described training dataset, most likely from DNS, open to everyone, and
a private test set for the blind evaluation of the proposed models. Setting up such a validation case and administering it
should be approached as a community effort.

ACKNOWLEDGMENTS
This research was funded by Deutsche Forschungsgemeinschaft (DFG, German ResearchFoundation) under Germany’s
Excellence Strategy—EXC 2075—390740016. The authors gratefully acknowledge the support and the computing time
provided by the HLRS through the project “hpcdg.” Open access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare no potential conflict of interests.

REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,

A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] J. Alcala and I. Timofeyev, Subgrid-scale parametrization of unresolved scales in forced burgers equation using generative adversarial
networks (gan). 2020, arXiv preprint arXiv:2007.06692.

[3] D. Arthur and S. Vassilvitskii, k-means++: The advantages of careful seeding, Technical report 2006-13, Stanford InfoLab, June 2006.
[4] G. K. Batchelor, The theory of homogeneous turbulence, Cambridge University Press, Cambridge, MA, 1953.
[5] A. Beck, D. Flad, and C. D. Munz, Deep neural networks for data-driven LES closure models, J. Comput. Phys. 398 (2019), 108910.
[6] A. D. Beck, J. Zeifang, A. Schwarz, and D. G. Flad, A neural network based shock detection and localization approach for discontinuous

Galerkin methods, J. Comput. Phys. 423 (2020), 109824.
[7] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, Support vector clustering, J. Mach. Learn. Res. 2 (2001), 125–137.
[8] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the 5th Annual Workshop

on Computational Learning Theory, 1992, pp. 144–152.
[9] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics, Ann. Rev. Fluid Mech. 52 (2020), 477–508.

[10] M. Campbell, A. J. Hoane, and F. Hsu, Deep blue, Artif. Intell. 134 (2002), 57–83.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://tensorflow.org

BECK and KURZ 23 of 27

[11] J. Chan, Z. Wang, A. Modave, J. F. Remacle, and T. Warburton, GPU-accelerated discontinuous galerkin methods on hybrid meshes,
J. Comput. Phys. 318 (2016), 142–168.

[12] J. R. Chasnov, The decay of axisymmetric homogeneous turbulence, Phys. Fluids 7 (1995), 600–605.
[13] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On the properties of neural machine translation: Encoder-decoder approaches,

Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, October 2014, pp. 103–111.
[14] M. Curcic, A parallel fortran framework for neural networks and deep learning, ACM SIGPLAN Fortran Forum 38 (2019), 4–21.
[15] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (1989), 303–314.
[16] F. Doshi-Velez and B. Kim, Towards a rigorous science of interpretable machine learning, 2017, arXiv preprint arXiv:1702.08608.
[17] K. Duraisamy, G. Iaccarino, and H. Xiao, Turbulence modeling in the age of data, Ann. Rev. Fluid Mech. 51 (2019), 357–377.
[18] K. Fukami, K. Fukagata, and K. Taira, Super-resolution reconstruction of turbulent flows with machine learning, 2018, arXiv preprint

arXiv:1811.11328.
[19] K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata, Synthetic turbulent inflow generator using machine learning, Phys. Rev. Fluids 4 (2019),

064603.
[20] K. Fukami, T. Nakamura, and K. Fukagata, Convolutional neural network based hierarchical autoencoder for nonlinear mode decom-

position of fluid field data, Phys. Fluids 32 (2020), 095110.
[21] M. Gamahara and Y. Hattori, Searching for turbulence models by artificial neural network, Phys. Rev. Fluids 2 (2017), 054604.
[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets,

Adv. Neural Inf. Process. Syst. 27 (2014), 2672–2680.
[23] J. Haugeland, Artificial intelligence: The very idea, 5th ed., MIT Press, Cambridge, MA, 1990.
[24] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2016, pp. 770–778.
[25] G. E. Hinton and R. S. Zemel, Autoencoders, minimum description length and helmholtz free energy, Adv. Neural Inf. Process. Syst. 6

(1994), 3–10.
[26] T. K. Ho, Random decision forests, Proceedings of 3rd International Conference on Document Analysis and Recognition, Vol. 1, 1995,

pp. 278–282.
[27] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997), 1735–1780.
[28] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4 (1991), 251–257.
[29] X. Jin, S. Cai, H. Li, and G.E. Karniadakis, Nsfnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible

Navier-Stokes equations, 2020. arXiv preprint arXiv:2003.06496.
[30] D. P. Kingma and M. Welling, Auto-encoding variational Bayes, 2013. arXiv preprint arXiv:1312.6114.
[31] A. N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at

high reynolds number, J. Fluid Mech. 13 (1962), 82–85.
[32] N. Krais, A. Beck, T. Bolemann, H. Frank, D. Flad, G. Gassner, F. Hindenlang, M. Hoffmann, T. Kuhn, and M. Sonntag, Flexi: A high

order discontinuous galerkin framework for hyperbolic–parabolic conservation laws, Comput. Math. Appl. 81 (2020), 186–219.
[33] M. Kurz and A. Beck, A machine learning framework for les closure terms, 2020, arXiv preprint arXiv:2010.03030.
[34] J. N. Kutz, Deep learning in fluid dynamics, J. Fluid Mech. 814 (2017), 1–4.
[35] J. A. Langford and R. D. Moser, Optimal LES formulations for isotropic turbulence, J. Fluid Mech. 398 (1999), 321–346.
[36] J. Larsson, S. Kawai, J. Bodart, and I. Bermejo-Moreno, Large eddy simulation with modeled wall-stress: Recent progress and future

directions, Mech. Eng. Rev. 3 (2016), 15-00418.
[37] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521 (2015), 436–444.
[38] Y. Lee, H. Yang, and Z. Yin, PIV-DCNN: Cascaded deep convolutional neural networks for particle image velocimetry, Exp Fluids 58

(2017), 171.
[39] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. Eyink, A public turbulence database cluster and

applications to study lagrangian evolution of velocity increments in turbulence, J. Turbul. N31 (2008), 1–29.
[40] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance,

J. Fluid Mech. 807 (2016), 155–166.
[41] J. Ling and J. Templeton, Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier stokes

uncertainty, Phys. Fluids 27 (2015), 085103.
[42] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, The expressive power of neural networks: A view from the width, Adv. Neural Inf. Process.

Syst. (2017), 6231–6239. https://dl.acm.org/doi/abs/10.5555/3295222.3295371.
[43] J. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability, Vol. 1, 1967, pp. 281–297.
[44] R. Maulik and O. San, A neural network approach for the blind deconvolution of turbulent flows, J. Fluid Mech. 831 (2017), 151–181.
[45] R. Maulik, O. San, and J. D. Jacob, Spatiotemporally dynamic implicit large eddy simulation using machine learning classifiers, Physica D

406 (2020), 132409.
[46] R. Maulik, H. Sharma, S. Patel, B. Lusch, and E. Jennings, Deploying deep learning in openfoam with tensorflow, AIAA Scitech 2021

Forum (2021), 1485.
[47] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5 (1943), 115–133.
[48] A. Mohan, D. Daniel, M. Chertkov, and D. Livescu, Compressed convolutional LSTM: An efficient deep learning framework to model high

fidelity 3d turbulence, 2019. arXiv preprint arXiv:1903.00033.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://dl.acm.org/doi/abs/10.5555/3295222.3295371

24 of 27 BECK and KURZ

[49] R. D. Moser, S. W. Haering, and G. R. Yalla, Statistical properties of subgrid-scale turbulence models, Ann. Rev. Fluid Mech. 53 (2021),
255–286.

[50] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos, Automating turbulence modeling by multi-agent reinforcement learning, 2020. arXiv
preprint arXiv:2005.09023.

[51] M. Oberlack, Invariant modeling in large-eddy simulation of turbulence, Annual Research Briefs, Stanford University, Stanford, CA, 1997,
209–220.

[52] D. Oberle, C. D. Pruett, and P. Jenny, Temporal large-eddy simulation based on direct deconvolution, Phys. Fluids 32 (2020), 065112.
[53] J. Ott, M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi, A Fortran-Keras deep learning bridge for scientific computing, 2020. arXiv

preprint arXiv:2004.10652.
[54] A. Pal, Deep learning parameterization of subgrid scales in wall-bounded turbulent flows, 2019. arXiv preprint arXiv:1905.12765.
[55] S. Pandey, J. Schumacher, and K. R. Sreenivasan, A perspective on machine learning in turbulent flows, J. Turbul. 21 (2020), 1–18.
[56] E. J. Parish and K. Duraisamy, A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput.

Phys. 305 (2016), 758–774.
[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,

Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An imperative style, high-performance
deep learning library, in Advances in Neural Information Processing Systems, Vol 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d.
Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc, Red Hook, NY, 2019, 8024–8035.

[58] A. Pollard, L. Castillo, L. Danaila, and M. Glauser, Whither turbulence and big data in the 21st century? Springer, New York, NY, 2016.
[59] C. D. Pruett, Toward the de-mystification of les, Proceedings of the 3rd AFOSR International Conference on DNS/LES, 2001, pp. 1–8.
[60] M. Raissi and G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations, J. Comput. Phys.

357 (2018), 125–141.
[61] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and

inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019), 686–707.
[62] D. Ray and J. S. Hesthaven, An artificial neural network as a troubled-cell indicator, J. Comput. Phys. 367 (2018), 166–191.
[63] R. Rogallo, Numerical experiments in homogeneous turbulence, 1981. NASA TM-81315.
[64] R. S. Rogallo and P. Moin, Numerical simulation of turbulent flows, Annu. Rev. Fluid Mech. 16 (1984), 99–137.
[65] F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychol. Rev. 65 (1958),

386–408.
[66] G. Santin and B. Haasdonk, Kernel methods for surrogate modeling, 2019. arXiv preprint arXiv:1907.10556.
[67] F. Sarghini, G. De Felice, and S. Santini, Neural networks based subgrid scale modeling in large eddy simulations, Comput. Fluids 32

(2003), 97–108.
[68] M. Schmelzer, R. P. Dwight, and P. Cinnella, Discovery of algebraic Reynolds-stress models using sparse symbolic regression, Flow Turbul.

Combust. 104 (2020), 579–603.
[69] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61 (2015), 85–117.
[70] B. Schölkopf, P. Simard, A. J. Smola, and V. Vapnik, Prior knowledge in support vector kernels, Adv. Neural Inf. Process. Syst. 11 (1998),

640–646.
[71] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-

tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
Mastering the game of go with deep neural networks and tree search, Nature 529 (2016), 484–489.

[72] A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Stat. Comput. 14 (2004), 199–222.
[73] C. G. Speziale, Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence, J. Fluid Mech. 156 (1985),

55–62.
[74] I. Steinwart and A. Christmann, Support vector machines, Springer, New York, NY, 2008.
[75] H. Tang, J. Rabault, A. Kuhnle, Y. Wang, and T. Wang, Robust active flow control over a range of reynolds numbers using an artificial

neural network trained through deep reinforcement learning, Phys. Fluids 32 (2020), 053605.
[76] R. Temam, Approximation of attractors, large eddy simulations and multiscale methods, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 434

(1991), 23–39.
[77] B. Tracey, K. Duraisamy, and J. Alonso, Application of supervised learning to quantify uncertainties in turbulence and combustion modeling,

Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013, p. 259.
[78] B. C. Vermeire, F. D. Witherden, and P. E. Vincent, On the utility of GPU accelerated high-order methods for unsteady flow simulations:

A comparison with industry-standard tools, J. Comput. Phys. 334 (2017), 497–521.
[79] A. Vollant, G. Balarac, and C. Corre, Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning

procedures, J. Turbul. 18 (2017), 854–878.
[80] A. Vollant, G. Balarac, G. Geraci, and C. E. Corre, Optimal estimator and artificial neural network as efficient tools for the subgrid-scale

scalar flux modeling, in Proceedings of the Summer Program, Stanford University, Stanford, CA, 2014, 435–444.
[81] T. von Larcher, A. Beck, R. Klein, I. Horenko, P. Metzner, M. Waidmann, D. Igdalov, G. Gassner, and C. D. Munz, Towards a framework

for the stochastic modelling of subgrid scale fluxes for large eddy simulation, Meteorol. Z. 24 (2015), 313–342.
[82] J. X. Wang, J. L. Wu, and H. Xiao, Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies

based on dns data, Phys. Rev. Fluids 2 (2017), 034603.
[83] C. J. C. H. Watkins and P. Dayan, Q-learning, Mach. Learn. 8 (1992), 279–292.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 25 of 27

[84] C. Xie, K. Li, C. Ma, and J. Wang, Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by
artificial neural network, Phys. Rev. Fluids 4 (2019), 104605.

[85] C. Xie, J. Wang, H. Li, M. Wan, and S. Chen, Artificial neural network mixed model for large eddy simulation of compressible isotropic
turbulence, Phys. Fluids 31 (2019), 085112.

[86] C. Xie, J. Wang, and E. Weinan, Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence,
Phys. Rev. Fluids 5 (2020), 054606.

[87] Q. Zhang, Y. N. Wu, and S. C. Zhu, Interpretable convolutional neural networks, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 8827–8836.

[88] X. Z. Zhao, T. Y. Xu, Z. T. Ye, and W. J. Liu, A tensorflow-based new high-performance computational framework for CFD, J. Hydrodyn.
32 (2020), 735–746.

[89] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, Improving the robustness of deep neural networks via stability training, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4480–4488.

[90] Z. Zhou, G. He, S. Wang, and G. Jin, Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural
network, Comput. Fluids 195 (2019), 104319.

[91] L. Zhu, W. Zhang, J. Kou, and Y. Liu, Machine learning methods for turbulence modeling in subsonic flows around airfoils, Phys. Fluids
31 (2019), 015105.

How to cite this article: Beck A, Kurz M. A perspective on machine learning methods in turbulence modeling.
GAMM-Mitteilungen. 2021;44:e202100002. https://doi.org/10.1002/gamm.202100002

APPENDIX A. NOTES ON PRACTICAL ISSUES OF ML AND TURBULENCE MODELING

In this appendix, we briefly summarize some notes on practical issues that might be helpful to the community at
large. They are primarily drawn from our own experience employing ML methods in turbulence modeling in [5,33] and to
shock detection and capturing for high-order methods in [6] and from coupling a legacy Fortran code to ML frameworks.

A.1 Frameworks and codes
As mentioned in Section 1.2.1, the question of whether ML-augmented methods will see widespread acceptance and use in
the CFD community is an issue of efficiency. The computational efficiency of ML-based turbulence models is determined
by two different aspects: the evaluation of the model (the ML algorithm) and the coupling of the models into the flow
solver (the ML-to-CFD interface). The latter is especially crucial in order to incorporate ML-based turbulence models into
existing legacy codes. While most flow solvers are typically written in Fortran or C/C++, ML libraries like PyTorch and
TensorFlow are commonly used with their Python API. In the following section, we will give a quick overview of some
proposed coupling mechanisms currently found in literature. As with all the issues discussed herein, the dynamics of the
ML development allows us only to give a current snapshot.

In their own research, the authors have employed the forpy5 software package combined with the TensorFlow serving
API to extend the open-source solver FLEXI [32] with ML capabilities. A TensorFlow server is started at the beginning of
the simulation with a specified ANN. By means of the forpy package, the Fortran solver then calls Python routines during
runtime, which send the input data for the ANN to the TensorFlow server and pass the received results back into FLEXI.
While this approach can be used quite easily to extend existing software, the performance losses of this coupling strategy
are quite significant due to the Fortran-Python interface.

A recent example of an in situ coupling of the Tensorflow framework with OpenFOAM is given in [46]. Here, the
authors avoid the coupling of Python code by utilizing the TensorFlow C API, which can be used to directly link Tensor-
Flow to OpenFOAM. Further details on the coupling are given in a tutorial style. The reported overall performance was
comparable for the ML-based surrogate model and the traditional turbulence model. This is especially remarkable since
the evaluation of the surrogate model requires significantly more floating-point operations. Overall, this approach seems
highly suitable for large-scale applications.

Another recent approach to couple Fortran codes with a common ML library is the Fortran-Keras-Bridge (FKB)
[53], which extends the functionality of the underlying Neural Fortran library [14]. The FKB implements the basic

5https://github.com/ylikx/forpy

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/gamm.202100002
https://doi.org/10.1002/gamm.202100002

26 of 27 BECK and KURZ

F I G U R E A1 Left: Temporal evolution of the kinetic energy spectrum from t = 0 T* to t = 2.0 T* for the decaying homogeneous isotropic
turbulence (DHIT); I: initial spectrum, II: start of data collection t = 1.0 T*, III: end of data collection t = 2.0 T*, dashed line: k−5/3; Right: field
solution of the DHIT visualized by isosurfaces of the vorticity magnitude colored by velocity magnitude at t =T*

functionalities for training and execution of fully connected ANN in Fortran while allowing us to add more advanced
custom layers. The library is thus independent from TensorFlow. Additional tools are provided to convert saved models
from the Keras format into a format readable by the FKB and vice versa.

The methods discussed above use a CPU-only implementation of the flow solver. Independent of ML, noticeable work
is also dedicated to using the computational potential of GPU acceleration for classical scientific computing by using
hybrid programming approaches, for example, [11,78]. Also, first flow solvers leverage TensorFlow solely for its efficiency
and GPU abilities for traditional finite difference methods without using any ML [88]. The latter approach can especially
be trivially extended to also incorporate the ML capabilities of the TensorFlow library. Such developments might facilitate
the integration of ML-based modeling into flow solvers in the future.

A.2 A training dataset
One urgent question that ML and turbulence modeling has to answer is that of overall efficiency in terms of data acqui-
sition costs. Thus, sharing training data is not only reasonable from an economic perspective, but a common database
can also serve as a sorely needed benchmark with which to compare the myriad of different approaches touched on here.
One such dataset for DHIT has been discussed in the examples in Section 3.2. The dataset consists of 16 DNS runs of the
DHIT test case, of which 14 runs are available freely, and 2 runs are kept as hidden test datasets. Each DNS is initialized
from the same initial spectrum of the kinetic energy given by Chasnov [12] as

E(k, t = 0) = 1
2

asu0
2kp

−1
(

k
kp

)s

exp

[
−1

2
s
(

k
kp

)2
]
. (A1)

We chose s= 4, u0
2 = 5, and kp = 4 and construct the initial velocity components as proposed by [63]. The correspond-

ing pressure field is computed from these initial incompressible velocities by solving the associated Poisson equation in
spectral space. The Mach number based on the maximum initial velocity magnitude was set to 0.1 via the mean pressure.
The computational domain is a cube of size [0, 2𝜋]3 with periodic boundary conditions on all faces. The Reynolds num-
ber based on the Taylor mircoscale for the onset of the exponential energy decay is Re𝜆 ≈ 180. Figure A1 (left) shows the
temporal evolution of the energy spectrum of the DNS from the initial condition t = 0 (I) to t = 2 T* (III), where the eddy
turnover timescale is defined from the initial mean velocity and the integral length scale T∗ = vinitial∕Lint. Data collection
starts at t = 1.0 T* (II). The solution vector U and the time derivative R(U) = 𝜕U

𝜕t
are stored at Δt = 0.1 T∗ time intervals.

Thus, in total, 154 snapshots of the turbulent field are available, and each file has a size of approx. 11 GB.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

BECK and KURZ 27 of 27

All DNS computations were conducted with an eighth-order accurate Discontinuous Galerkin Spectral Element dis-
cretization of the compressible NSE described in [32]. The computational grid for the DNS consists of 643 equispaced,
cubical elements, in each of which the solution is approximated by a tensor product polynomial basis of degree N = 7,
leading to 5123 spatial degrees of freedom in total. The data are stored in the HDF5 format and can be interpolated onto an
equidistant grid for easier handling. Access to these data is currently available upon emailing the authors. In the future,
integration into an online database is planned. Another useful database with data on forced HIT with higher Re𝜆 but fewer
data points is hosted by the Johns Hopkins University and can be found at http://turbulence.pha.jhu.edu [39]. Certainly,
there are other datasets that we are not aware of.

 15222608, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/gam

m
.202100002 by U

niversitaet M
agdeburg, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

