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Abstract

The research presented in this thesis focuses on the mathematical modelling, analysis, and
development of numerical schemes to capture complex flows. We present results on selected
partial and ordinary differential equation problems arising in continuum mechanics and collective
dynamics.

As a result of the research of this thesis, the author worked on several research projects together
with collaborators. The applications concern four main topics. We first focus on the Navier-
Stokes system and fluid-structure interactions that describe blood flow and blood vessel wall
mechanics. The second direction in fluid mechanics is a complex flow of the Euler system with
variable congestion in an application to crowd dynamics. The research in collective dynamics
revolves around a density induced consensus protocol and its relevance to data segmentation.
Finally, we consider novel neural network approximations of PDEs, for which we develop dual
weight residual error estimator.

The investigation of theoretical and practical aspects of blood flow simulations focuses on error
estimates for the finite element approximation of elliptic partial differential equations on per-
turbed domains. Later, we study the impact of using a full Fluid Structure Interaction model
on important hemodynamical factors by developing a stenotic coronary artery benchmark. Fi-
nally, we present patient specific simulations of blood flow in cephalic arch, and discuss their
implications is clinical decision support.

The two-phase compressible/incompressible fluid model with variable congestion constraint is a
model of the macroscopic motion of a crowd with individual congestion preferences that exhibits
typical features of crowd dynamics. The results includes proof of the existence of weak solutions,
the development of asymptotic preserving finite volume schemes, and numerical simulations.

The research in collective dynamics introduces a novel density induced consensus protocol. The
communication rule is based on the following general paradigm: to influence the behavior of
an individual, communication with a sufficiently dense nearby crowd is required. The proposed
protocol is applied to both first-order and second-order systems. We investigate mathematical
properties, as well as presenting applications to data clustering and image processing.

Finally, we present an error estimator based on the dual weighted residual method for neural
network approximations of partial differential equations. It is destined to serve as an accurate
and simple stopping criterion that guarantees the accuracy of the solution independently of the
design of the neural network training.

All of the topics motioned above are supplemented with numerous computational examples.
By means of numerical simulations, we present the characteristics of the models under consid-
eration that validate theoretical findings.





Zusammenfassung

Diese Habilitationsschrift befasst sich mit der mathematischen Modellierung, Analyse und Ent-
wicklung von numerischen Verfahren zur Erfassung komplexer Strömungen. Wir präsentieren
Ergebnisse zu ausgewählten gewöhnlichen und partiellen Differentialgleichungen (PDG), die in
der Kontinuumsmechanik und kollektiven Dynamik auftreten.

Im Rahmen der Forschung dieser Arbeit arbeitete der Autor an mehreren Forschungsprojekten
mit. Die Anwendungen betreffen vier Hauptthemen. Wir konzentrieren uns zunächst auf das
Navier-Stokes-System und die Fluid-Struktur-Interaktion, die den Blutfluss und die Mechanik
der Blutgefäßwände beschreiben. Letzteres ist eine komplexe Strömung des Euler-Systems mit
variabler Stauung, die auf die Dynamik von Menschenmengen angewandt wird. Die Forschung im
Bereich der kollektiven Dynamik dreht sich um ein dichteinduziertes Konsensprotokoll und seine
Bedeutung für die Datensegmentierung. Schließlich betrachten wir neuartige Approximationen
neuronaler Netze von PDG, für die wir einen dual gewichteten Restfehlerschätzer entwickeln.

Wir untersuchen die theoretischen und praktischen Aspekte von Blutflusssimulationen, wobei
wir uns auf Fehlerschätzungen für die Finite-Elemente-Approximation von elliptischen PDG auf
gestörten Gebieten konzentrieren. Später untersuchen wir, wie sich die Verwendung eines voll-
ständigen Fluid-Struktur-Interaktionsmodells auf wichtige hämodynamische Faktoren auswirkt,
indem wir eine stenotischen Koronararterie-Benchmark entwickeln. Schließlich präsentieren wir
patientenspezifische Simulationen des Blutflusses in der Kopfader und erörtern deren Bedeutung
für die klinische Entscheidungsfindung.

Das zweiphasige kompressible/inkompressible Fluidmodell mit variabler Stauung ist ein Modell
der makroskopischen Bewegung einer Menschenmenge mit individuellen Staupräferenzen. Die
Ergebnisse umfassen den Nachweis über die Existenz schwacher Lösungen, die Entwicklung von
Finite-Volumen-Verfahren und numerische Simulationen.

Die Forschung im Bereich der kollektiven Dynamik stellt ein neuartiges dichteinduziertes Konsens-
Protokoll dar. Die Kommunikationsregel entspricht dem folgenden Prinzip: Um das Verhalten
eines Individuums zu beeinflussen, ist die Kommunikation mit einer ausreichend großen Men-
schenmenge in der Nähe erforderlich. Das vorgeschlagene Protokoll wird sowohl auf Systeme
erster als auch zweiter Ordnung angewendet. Wir untersuchen die mathematischen Eigenschaf-
ten und stellen Anwendungen für Datenclustering und Bildverarbeitung vor.

Schließlich präsentieren wir einen Fehlerschätzer auf Grundlage der Dual Weighted Residual Me-
thode für die Approximation von PDG durch neuronale Netze. Er soll als genaues und einfaches
Abbruchkriterium dienen, das die Genauigkeit der Lösung unabhängig von der Gestaltung des
Trainings des neuronalen Netzes garantiert.

Alle oben behandelten Themen werden durch zahlreiche Rechenbeispiele ergänzt. Anhand von
numerischen Simulationen werden die Eigenschaften der betrachteten Modelle aufgezeigt und
die theoretischen Erkenntnisse validiert.
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CHAPTER 1

Introduction and Outline of Thesis

The research presented in this thesis focuses on the mathematical modelling, analysis, and
development of numerical schemes to capture complex flows. We present results on selected
partial and ordinary differential equation problems arising in continuum mechanics and collective
dynamics. As a result of the research of this thesis, the author worked on several research projects
together with collaborators. The applications concern four main topics.

We first focus on the Navier-Stokes system and fluid-structure interactions that describe blood
flow and blood vessel wall mechanics. The second direction in fluid mechanics is a complex flow
of the Euler system with variable congestion in application to crowd dynamics. The research
in collective dynamics revolves around a density induced consensus protocol and its relevance
to data segmentation. Finally, we consider novel neural network approximations of PDEs, for
which we develop dual weight residual error estimator.

The investigation of theoretical and practical aspects of blood flow simulations focuses on the
study of the impact of modelling assumptions on the computational results. First, we con-
sider how a domain related error affects the discretization error and develop error estimates
for the finite element approximation of elliptic partial differential equations on perturbed do-
mains. Moreover, we develop a stenotic coronary artery benchmark to compare typical flow
configurations using Navier-Stokes in a rigid geometry with a fully coupled FSI model. The
relevance of vascular elasticity is investigated and its impact on the computation of important
hemodynamical factors.

The second example of a complex fluid flow is the two-phase compressible/incompressible fluid
model with a variable congestion constraint. It describes the macroscopic motion of a crowd
with individual congestion preferences. We prove that this system can be approximated by the
fully compressible Navier-Stokes system with a singular pressure supplemented with transport
equation for the congestion density. Furthermore, we develop a finite volume asymptotic pre-
serving scheme based on a conservative system formulation, carry out two-dimensional numerical
simulations, and show that the model exhibits typical crowd dynamics.

The research in collective dynamics introduces a novel density induced consensus protocol that
operates within the following general paradigm: to influence the behavior of an individual, com-
munication with a sufficiently dense nearby crowd is required. The system is an asymmetric
density-induced version of the Cucker-Smale model with short-range interactions. We examine
the basic mathematical properties of the system and concentrate on the presentation of inter-
esting behaviors of the solutions. Moreover, the first-order version of the protocol is considered,
for which we present applications to data clustering and image segmentation.

Finally, we explore the emerging field of (deep) neural networks applied to the numerical ap-
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proximation of PDEs. In this context, we develop an error estimator based on the dual weighted
residual method for neural network approximations of partial differential equations. It is destined
to serve as an accurate and simple stopping criterion that guarantees the accuracy of the solution
independently of the design of the neural network training.

All of these models share common features and mathematical challenges and are of great interest
from the applications point of view. This is a strong motivation to investigate their mathematical
structure, qualitative properties and design effective numerical solving techniques.

Below an overview of the results is given. We briefly introduce mathematical description of
considered phenomena, summarise the content and refer to the publications and corresponding
chapters.

Furthermore, we would like to state equal contributions made by the co-authors to the presented
results and corresponding publications.
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1.1 Theoretical and Practical Aspects of Blood Flow Simulations
The application of computational fluid dynamics (CFD) to blood flow is a rapidly growing field
of biomedical and mathematical research. Currently the development of numerical methods
in hemodynamics is evolving from a purely academic tool to aiding in clinical decision mak-
ing. However, the complexity of living organisms require special mathematical approaches that
provide accurate description and deal with its intrinsic variability. Hemodynamical simulations
face numerous challenges that are connected with measurements, medical image segmentation,
mathematical modelling and development of numerical methods.

In this direction of research we approached the topic from theoretical and application perspect-
ives. First, we developed finite element error estimates for the approximation of elliptic problems
under geometric uncertainty and showed that the uncertainty related to the domain can be a
dominating factor in the finite element discretization. Second, we studied the impact of fluid-
structure interactions (FSI) and its practical consequences in the blood flow simulation regime.
We solve the FSI problem in the Arbitrary Lagrangian Eulerian formulation and compare the
solutions to that of a Navier-Stokes flow on a prestressed domain. The solver is based on a
monolithic parallel Newton multigrid framework. The result shows that the compliance of the
vessel has a significant impact.

Collaborators and Publications The simulation of blood flow is a joint work with Thomas
Richter (Otto von Guericke University Magdeburg) and Lukas Failer (Siemens AG). The impact
of geometry perturbation and the impact of FSI in blood flow simulations is the topic of Chapter 2
and Chapter 3, respectively. Chapter 4 contains the description of a research project on cephalic
arch stenosis.

Chapter 2 is published in the paper

P. Minakowski and T. Richter. ‘Finite Element Error Estimates on Geometrically
Perturbed Domains’. In: Journal of Scientific Computing 84.2 (July 2020). doi: 10.
1007/s10915-020-01285-y

We develop error estimates for the finite element approximation of elliptic partial differential
equations on perturbed domains, i.e. when the computational domain does not match the real
geometry. The result shows that the error related to the domain can be a dominating factor in the
finite element discretization error. The main result consists of H1− and L2− error estimates for
the Laplace problem. Theoretical considerations are validated by a computational example.

Chapter 3 is published in the paper

L. Failer, P. Minakowski and T. Richter. ‘On the Impact of Fluid Structure Interac-
tion in Blood Flow Simulations’. In: Vietnam Journal of Mathematics (Jan. 2021). doi:
10.1007/s10013-020-00456-6

We study the impact of using fluid-structure interactions (FSI) to simulate the blood flow in a
stenosed artery. We compare typical flow configurations using Navier-Stokes in a rigid geometry
setting to a fully coupled FSI model. The relevance of vascular elasticity is investigated with

https://doi.org/10.1007/s10915-020-01285-y
https://doi.org/10.1007/s10915-020-01285-y
https://doi.org/10.1007/s10013-020-00456-6
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respect to several questions of clinical importance. Namely, we study the effect of using FSI on
the wall shear stress distribution, on the Fractional Flow Reserve and on the damping effect of a
stenosis on the pressure amplitude during the pulsatile cycle. The coupled problem is described in
a monolithic variational formulation based on Arbitrary Lagrangian Eulerian (ALE) coordinates.
For comparison, we perform pure Navier–Stokes simulations on a pre-stressed geometry to give
a good matching of both configurations. A series of numerical simulations that cover important
hemodynamical factors are presented and discussed.

Chapter 4 In Chapter 4 we present research results of the project “Simulation and Optimization
of Blood Flows in damaged Vessels” founded by the Federal Ministry of Education and Research
of Germany, grant number 05M16NMA.

We develop a prototypical computational tool that supports clinical decision making for patients
with stenosis. Blood flow is simulated as Newtonian fluid and Fluid-structure interactions on
patient-specific geometry that is reconstructed from medical images.

Focus is put on the cephalic arch in patients with end-stage renal disease. These patients require
a surgical arteriovenous connection for dialysis treatment. As a result, the pressure and the flow
rate in the cephalic vein exceed psychological values by order of magnitude, leading to cephalic
arch stenosis.

We perform virtual stenting and evaluate the effect of placing stents on flow characteristics and
hemodynamical factors. Finally, we discuss the application of adapted patient-specific simulation
to the evaluation of surgical treatment.
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1.2 Variable Congestion in Two-Phase Compressible/Incompressible
Flows

Our aim is to analyse the free-boundary two-phase fluid system that can be used to model
the congestions in the large group of individuals in a bounded area. Individuals have their
own preferences for how close they let the closest neighbour to approach and they carry this
information with them in the course of motion. They do not follow any neighbour trying to align
their velocities, nor are they trying to reach a certain target, as for example, the evacuation point.
We simply prescribe their initial velocity that determines their direction of motion and check
how the individual preferences as well as the initial distribution of the agents determines creation
of congestions.

We study two phase compressible/incompressible Euler/Navier Stokes systems with variable
congestion:

∂tϱ+ div(ϱu) = 0,

∂t(ϱu) + div(ϱu⊗ u) +∇π +∇p
(
ϱ

ϱ∗

)
− div S = 0,

∂tϱ
∗ + u · ∇ϱ∗ = 0,

0 ≤ ϱ ≤ ϱ∗,

π(ϱ∗ − ϱ) = 0, π ≥ 0,

with the initial data

ϱ(0, x) = ϱ0(x) ≥ 0, u(0, x) = u0(x), ϱ∗(0, x) = ϱ∗
0(x), ϱ0 < ϱ∗

0.

The unknowns are, ϱ = ϱ(t, x) – the mass density, u = u(t, x) – the velocity, ϱ∗ = ϱ∗(t, x) –
the congestion density, and π – the congestion pressure. The barotropic pressure p is an explicit
function of the density fraction p

(
ϱ
ϱ∗

)
=
(

ϱ
ϱ∗

)γ
, γ > 1, and plays the role of the background

pressure. The stress tensor S is a known function of u, characteristic for the Newtonian fluid,
namely

S = S(u) = 2µD(u) + λdivu I, µ > 0, 2µ+ λ > 0,

where D(u) = (∇u + (∇u)T )/2 denotes the symmetric part of the gradient of u, and I = I3 is
the identity matrix.

The congestion pressure π appears only when the density ϱ achieves its maximal value, the
congestion density ϱ∗. Therefore ϱ∗ can be referred to as the barrier or the threshold density. It
was observed that the restriction on the density is equivalent to the condition

divu = 0 in {ϱ = ϱ∗},

if ϱ,u, ϱ∗ are sufficiently regular solutions of the continuity equation and the transport equation.
For that reason, the system can be seen as a free boundary problem for the interface between
the compressible (uncongested) regime {ϱ < ϱ∗} and the incompressible (congested) regime
{ϱ = ϱ∗}.
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Moreover, in the inviscid case, S(u) = 0, we analyze the system numerically, i.e. we propose
the numerical scheme capturing the phase transition. To this end, we use the fact that incom-
pressibility can be obtained as a limit, when ε → 0, of the compressible Euler system with the
singular approximation πε of the congestion pressure:

πε

(
ϱ

ϱ∗

)
= ε

(
ϱ

ϱ∗ − ϱ

)α

, α > 0.

Collaborators and Publications The results concerning congestion in two-phase compress-
ible/incompressible flows are joint work with Pierre Degond (Imperial College London), Ewelina
Zatorska (Imperial College London), and Laurent Navoret (University of Strasbourg).

The existence of weak solutions and finite volume approximation to the two-phase compress-
ible/incompressible flows are addressed in Chapter 5 and Chapter 6, respectively.

Chapter 5 is published in the paper

P. Degond, P. Minakowski and E. Zatorska. ‘Transport of Congestion in Two-phase
Compressible/Incompressible Flows’. In: Nonlinear Analysis: Real World Applications 42
(2018), pp. 485–510. doi: 10.1016/j.nonrwa.2018.02.001

The existence of weak solutions to the two-phase fluid model with congestion constraint was
studied. The model encompasses the flow in the uncongested regime (compressible) and the
congested one (incompressible) with the free boundary separating the two phases. The congested
regime appears when the density in the uncongested regime achieves a threshold value that
describes the comfort zone of individuals. This quantity is prescribed initially and transported
along with the flow. We prove that this system can be approximated by the fully compressible
Navier–Stokes system with a singular pressure, supplemented with a transport equation for the
congestion density. We also present the application of this approximation for the purposes of
numerical simulations in the one-dimensional domain.

Chapter 6 is published in the paper

P. Degond, P. Minakowski, L. Navoret and E. Zatorska. ‘Finite Volume Ap-
proximations of the Euler System with Variable Congestion’. In: Computers & Fluids
169 (2018). Recent progress in nonlinear numerical methods for time-dependent flow &
transport problems, pp. 23–39. doi: 10.1016/j.compfluid.2017.09.007

We are interested in the numerical simulations of the Euler system with variable congestion
encoded by a singular pressure. This model describes for instance the macroscopic motion of
a crowd with individual congestion preferences. We propose an asymptotic preserving scheme
based on a conservative formulation of the system in terms of density, momentum and density
fraction. A second order accuracy version of the scheme is also presented. We validate the scheme
on one-dimensional test-cases. We finally carry out two dimensional numerical simulations and
show that the model exhibits typical crowd dynamics.

https://doi.org/10.1016/j.nonrwa.2018.02.001
https://doi.org/10.1016/j.compfluid.2017.09.007
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1.3 Density Induced Consensus Protocol
Many phenomena in daily life can be viewed as an interplay between ensembles of objects that
communicate and interact in a non-local manner. A basic example of such a phenomenon is the
flocking of birds where the objects – individual birds – interact with each other forming a larger
ensemble – a flock. Such systems of interacting individuals/agents/particles are often referred to
as multi-agent systems. Furthermore, when agents interact with their environment, i.e. fluids,
we naturally arrive at multi-scale agents-environment framework. Such systems have received
much attention due to broad range of engineering, physical and biological applications.

We introduced density-induced consensus protocol (DI protocol) for agent-based collective dy-
namics. The communication rule of the DI protocol reads as follows: the ith agent is influenced
by jth agent if

• the density of agents in close proximity to the ith agent is substantial enough (otherwise
the ith agent is an outlier),

• the jth agent is in close proximity to the ith agent.

The DI protocol operates within the following general paradigm:

To influence the behavior of an individual,
communication with a sufficiently dense nearby crowd is required.

The proposed protocol was applied to both first-order and second-order systems. The presenta-
tion starts with the former.

Consider an ensemble of N agents with (xi(t), vi(t)) ∈ R2d denoting the position and the velocity
of ith agent at the time t ≥ 0. The agents follow the density-induced consensus protocol





ẋi = vi, xi(0) = xi0 ∈ Rd,

v̇i =
∑

k∈Ni

κ(vk − vi), vi(0) = vi0 ∈ Rd.

Here κ > 0 is a fixed coupling strength. The neighbor set Ni of ith agent is defined through the
following relation: given positive parameters δ and m, for t ≥ 0 we define,

k ∈ Ni(t) ⇔ xk(t) ∈ B(xi(t), δ) and

#
{
k ∈ {1, ..., N} : xk(t) ∈ B(xi(t), δ)

}
> m,

where B(xi(t), δ) is an open ball centered at xi(t) with radius δ and #A denotes the cardinal
number of A.

Based on the above notation, we introduce first-order variant of the DI model. Consider N
agents with xi(t)∈Rd denoting the position of ith agent in a d-dimensional space at the time
t ≥ 0. The agents follow the protocol

ẋi = κ
∑

k∈Ni

(xk − xi), xi(0) = xi0 ∈ Rd.
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The protocol is specific to real-life phenomena related to societal dynamics, where individuals
do not interact with separate agents but are highly susceptible to the influence of crowds. It is
inspired by such phenomena as emergence of trends in decision-making and viral videos in social
media. In such a setting we view xi and vi as the opinion and the tendency of the individual,
respectively.

It is noteworthy that the considered communication rule is equivalent to the density-based spatial
clustering algorithm (DBSCAN) widely used in data classification.

Collaborators and Publications The results concerning density-induced consensus protocol are
joint work with Piotr Mucha (University of Warsaw) and Jan Peszek (University of Warsaw).
The first- and second-order systems are the topic of Chapter 8 and Chapter 7, respectively.

Chapter 7 is published in the paper

P. Minakowski, P. B. Mucha and J. Peszek. ‘Density-Induced Consensus Protocol’.
In: Mathematical Models and Methods in Applied Sciences 30.12 (July 2020), pp. 2389–
2415. doi: 10.1142/s0218202520500451

We study basic qualitative and quantitative analysis of second-order density induced consensus
protocol. That includes: the existence and uniqueness of classical solutions, conditional flocking
estimates, and conditional cluster stability in terms of cluster density. Moreover, we provide ana-
lytical examples signifying the rich dynamics of the system. Finally, we illustrate the variability
of possible behaviors by a number of numerical simulations.

Chapter 8 is based on the preprint

P. Minakowski and J. Peszek. ‘Data Clustering as an Emergent Consensus of Autonom-
ous Agents’. In: (2022). doi: 10.48550/ARXIV.2204.10585

We develop a data segmentation method based on a first-order density-induced consensus pro-
tocol. We provide a mathematically rigorous analysis of the consensus model leading to the
stopping criteria of the data segmentation algorithm. To illustrate our method the algorithm is
applied on selected images from Berkeley Segmentation Dataset.

https://doi.org/10.1142/s0218202520500451
https://doi.org/10.48550/ARXIV.2204.10585
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1.4 Dual Weight Residual Error Estimates for Neural Network
Solutions of Partial Differential Equations

Scientific machine learning is a rapidly evolving field of research that combines and further
develops techniques of scientific computing and machine learning. This relatively new research
field aims to employ machine learning techniques in order to improve current numerical solvers,
e.g. significantly decrease runtime.

In recent years, the emerging field of (deep) neural networks has reached the numerical approx-
imation of partial differential equations (PDE). Several approaches have been proposed that
aim at directly representing the solution to the PDE by a deep neural network. For this pur-
pose the network is considered as (differentiable) function N : Ω → Rc, where Ω ⊂ Rd is the
computational domain of dimension d ∈ N and c ∈ N is the size of the differential system.

The network is trained by integrating the differential equation (and the boundary conditions)
into the loss function. Several different approaches based on different realizations have been
presented:

The Deep Ritz method aims at minimizing the energy functional and it can be applied to
symmetric problems. For the Laplace equation, −∆u = f in Ω with u = g on ∂Ω, this means to
minimize

E(N ) = 1
2

∫

Ω
|∇N (x)|2 dx−

∫

Ω
N (x) · f(x) dx+ λ

∫

∂Ω
|N (x)− g(x)|2 dx,

with a parameter λ > 0, where the integrals are approximated by Monte-Carlo integration.
Training data is generated by picking random integration points.

The common rationale for the such an approaches discussed above is the excellent approximation
property of neural networks, in particular the capability of deep neural networks to uniformly
and simultaneously approximate differential functions and their derivatives. On the other hand,
it must be noted that the previous approaches, applied to common, low-dimensional (d = 1, 2, 3)
problems, cannot compete with established methods in terms of efficiency. While algorithms of
O(N) complexity exist for finite element or finite difference approximations of elliptic problems,
the training of the deep neural network is a by far more challenging task. Deep learning tech-
niques can be applied in the context of numerical simulation, as an extension of existing CFD
codes to increase their efficiency. One can generalize existing numerical methods as artificial
neural networks with a set of trainable parameters.

Estimator We aim at estimating the functional error of the neural network solution uN ∈ VN

obtained with the Deep Ritz approach. Let J : V → R be a linear functional and let z ∈ V be
the solution to the adjoint problem

−∆z = J in Ω, z = 0 on ∂Ω.

Since the network minimizer uN ̸∈ V does not satisfy the Dirichlet condition u = 0, a consistency
term remains when multiplying the error u− uN with the adjoint problem

J(u− uN ) = (∇(u− uN ),∇z) + ⟨∂nz, uN ⟩.
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From primal problem we derive the error identity

J(u− uN ) = (f, z)− (∇uN ,∇z) + ⟨∂nz, uN ⟩.

We must approximate z ∈ V by a discrete solution which is accurate, efficiently achievable and
which does not fall into the vicinity of Galerkin orthogonality, which, in the case of the neural
network error u − uN imposes the condition zh ̸∈ VN . The neural network spaces have no
similarity to local finite element spaces. Hence, we will approximate the adjoint solution in as
coarse as possible finite element space zh ∈ Vh ⊂ V and approximate

J(u− uN ) ≈ η(uN , zh) = (f, zh)Ω − (∇uN ,∇zh) + ⟨∂nzh, uN ⟩.

This error estimator is efficiently evaluated on the finite element mesh using a numerical quad-
rature rule within the domain and along the boundaries.

Collaborators and Publications The application of dual weighted residual method to the error
estimator of neural network approximations of PDEs is a joint work with Thomas Richter (Otto
von Guericke University Magdeburg) and is the topic of Chapter 9.

Chapter 9 is published in the preprint

P. Minakowski and T. Richter. Error Estimates for Neural Network Solutions of
Partial Differential Equations. 2021. arXiv: 2107.11035 [math.NA]

Extended version is published in the paper

P. Minakowski and T. Richter. ‘A priori and a posteriori error estimates for the Deep
Ritz method applied to the Laplace and Stokes problem’. In: Journal of Computational
and Applied Mathematics 421 (2023), p. 114845. issn: 0377-0427. doi: 10.1016/j.cam.
2022.114845

We derive a dual weight residual estimator for a functional of interest of neural network approx-
imations of PDEs and demonstrate its performance for the Laplace and Stokes equation. The
method is independent of the design of the neural network and the training procedure. The
evaluation on very coarse meshes already shows very good accuracy, such that little computa-
tional overhead is brought along. The estimator can be used as accurate and simple stopping
criterion during the training process. Hereby, we gain a first validation of the neural network
approximation and the error controlled training also helps to reduce the computational effort by
avoiding excessive training epochs.

https://arxiv.org/abs/2107.11035
https://doi.org/10.1016/j.cam.2022.114845
https://doi.org/10.1016/j.cam.2022.114845
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1.5 Additional Contributions

In addition to the previously presented works of the thesis’, we would like to mention additional
scientific results of the author together with collaborators. These do not represent a major
contributions to the thesis. However, are complementary to conducted research.

1.5.1 Numerical Benchmarking of the Fluid-Rigid Body Interactions

The research on fluid-structure interactions presented in Chapter 3 is complementary to the
benchmark studies

H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland and P. Minakowski. ‘Nu-
merical Benchmarking of Fluid-rigid Body Interactions’. In: Computers & Fluids 193
(Oct. 2019), p. 104290. doi: 10.1016/j.compfluid.2019.104290

H. von Wahl, T. Richter, C. Lehrenfeld, J. Heiland and P. Minakowski. Nu-
merical Benchmarking of Fluid-rigid Body Interactions. Version v1. June 2019. doi:
10.5281/zenodo.3253455

We propose a fluid-rigid body interaction benchmark problem, consisting of a solid spherical
obstacle in a Newtonian fluid, whose centre of mass is fixed but is free to rotate. A number of
different problems are defined for both two and three spatial dimensions. The geometry is chosen
specifically, such that the fluid-solid partition does not change over time and classical fluid solvers
are able to solve the fluid-structure interaction problem. We summarise the different approaches
used to handle the fluid-solid coupling and numerical methods used to solve the arising problems.
The results obtained by the described methods are presented and we give reference intervals for
the relevant quantities of interest.

1.5.2 Binary Mixtures

The research on the two-phase model presented in Chapter 5 and Chapter 6 is complementary
to the binary mixtures studies

M. Sykora, M. Pavelka, I. Peshkov, P. Minakowski, V. Klika and E. Romenski.
‘Comparison of the Symmetric Hyperbolic Thermodynamically Compatible framework
with Hamiltonian mechanics of binary mixtures’. In: (2022). doi: 10.48550/ARXIV.
2201.04460

We ask the question, how to adequately describe continuum thermodynamics of binary mixtures
where each of the constituents has its momentum? The Symmetric Hyperbolic Thermodynam-
ically Consistent (SHTC) framework and Hamiltonian mechanics in the form of the General
Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) provides two an-
swers, which are similar, but not identical, and are compared in this article. The comparison is
made on several levels of description, varying by the amount of detail involved, both analytically
and numerically. The GENERIC equations, stemming from the Liouville equation, contain terms
expressing self-advection of the relative velocity by itself, which lead to a vorticity-dependent
diffusion matrix after a reduction. The SHTC equations, on the other hand, do not contain
such terms. We also show how to formulate a theory of mixtures with two momenta and only

https://doi.org/10.1016/j.compfluid.2019.104290
https://doi.org/10.5281/zenodo.3253455
https://doi.org/10.48550/ARXIV.2201.04460
https://doi.org/10.48550/ARXIV.2201.04460
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one temperature that is compatible with the Liouville equation and possesses the Hamiltonian
structure, including Jacobi identity.

1.5.3 Singular Cucker-Smale Dynamics
The research on collective dynamics presented in Chapter 7 and Chapter 8, is complementary
to the review on the singular Cucker-Smale model

P. Minakowski, P. B. Mucha, J. Peszek and E. Zatorska. ‘Singular Cucker–Smale
Dynamics’. In: Active Particles, Volume 2: Advances in Theory, Models, and Applica-
tions. Ed. by N. Bellomo, P. Degond and E. Tadmor. Cham: Springer International
Publishing, 2019, pp. 201–243. doi: 10.1007/978-3-030-20297-2_7

This chapter is dedicated to singular models of flocking. We give an overview of the existing
literature starting from microscopic Cucker-Smale model with singular communication weight,
through its mesoscopic mean-field limit, up to the corresponding macroscopic regime. For the
microscopic CS model and its selected variants, the collision-avoidance phenomenon is discussed.
For the kinetic mean-field model we sketch the existence of global-in-time measure-valued solu-
tions, paying special attention to weak-atomic uniqueness of solutions. Ultimately, for the mac-
roscopic singular model, we provide a summary of existence results for the Euler-type alignment
system. This includes the existence of strong solutions on a one-dimensional torus, and the ex-
tension of this result to higher dimensions by restricting the size of the initial data. Additionally,
we present the pressureless Navier–Stokes-type system corresponding to a particular choice of
alignment kernel. This system is then compared—analytically and numerically—to the porous
medium equation.

https://doi.org/10.1007/978-3-030-20297-2_7
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1.6 Numerical Software
The results of numerical simulations presented in this thesis are implemented using several
numerical software packages.

Blood flow simulation results presented in Chapter 2 and Chapter 3 are computed in the finite
element toolkit Gascoigne3D

M. Braack, R. Becker, D. Meidner, T. Richter and B. Vexler. The Finite Element
Toolkit Gascoigne. Version v1.01. Oct. 2021. doi: 10.5281/zenodo.5574969

Chapter 3 resulted in documented example,

L. Failer, P. Minakowski and T. Richter. Gascoigne Documented Example: Blood
Flow and Virtual Stenting. url: https : / / gascoigne . math . uni - magdeburg . de /
index . php? - show = documentedexamples _ 05bloodflowsandvirtualstenting (visited
on 01/10/2021)

The source code of the finite volume simulations in Chapter 5 and Chapter 6 is available on
demand. In case of interest please send a request via email at piotr.minakowski@ovgu.de.

The source code for the simulations of the density induced consensus protocol has been performed
in Python and is available at

P. Minakowski. Density-induced Consensus Protocol (source code). Nov. 2019. doi:
10.5281/zenodo.3551842

The implementation of the dual weighed residual error estimator for neural network solutions
of partial differential equations is based on GascoignePytorch, a library implementing bindings
between Gascoigne3D and PyTorch [193].

N. Margenberg, P. Minakowski and T. Richter. GascoignePytorch. url: https://
kosinus.math.uni-magdeburg.de/gascoigne/gascoignepytorch (visited on 01/10/2021)

Simulation Videos We extend the presentation of numerical results by providing videos. They
are available under hyperlinks listed in the figures caption or by scanning QR codes placed on
the margins.

https://doi.org/10.5281/zenodo.5574969
https://gascoigne.math.uni-magdeburg.de/index.php?-show=documentedexamples_05bloodflowsandvirtualstenting
https://gascoigne.math.uni-magdeburg.de/index.php?-show=documentedexamples_05bloodflowsandvirtualstenting
https://doi.org/10.5281/zenodo.3551842
https://kosinus.math.uni-magdeburg.de/gascoigne/gascoignepytorch
https://kosinus.math.uni-magdeburg.de/gascoigne/gascoignepytorch




CHAPTER 2

Finite Element Error Estimates
on Geometrically Perturbed Domains

The content of this chapter is joint work with Thomas Richter, and is published in the paper

P. Minakowski and T. Richter. ‘Finite Element Error Estimates on Geometrically
Perturbed Domains’. In: Journal of Scientific Computing 84.2 (July 2020). doi: 10.
1007/s10915-020-01285-y

Chapter Summary. We develop error estimates for the finite element approximation of elliptic
partial differential equations on perturbed domains, i.e. when the computational domain does
not match the real geometry. The result shows that the error related to the domain can be a
dominating factor in the finite element discretization error. The main result consists of H1−
and L2− error estimates for the Laplace problem. Theoretical considerations are validated by
a computational example.

Chapter Organisation. After introductory Section 2.1, in Section 2.2 we provide the mathem-
atical setting and some required auxiliary results. Section 2.3 covers finite element discretization
and proves the main results of this work. We illustrate our result with computational examples
in Section 2.4.
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2.1 Introduction

The main aim of this work is to develop finite element (FE) error estimates in the case when
there is uncertainty with respect to the computational domain. We consider the question of how
a domain related error affects the finite element discretization error. We use the conforming
finite element method (FEM) which is well established in the scientific computing community
and allows for a rigorous analysis of the approximation error [92].

Our motivation is as follows. The steps to obtain a mesh for FE computations often come with
some uncertainty, for example related to empirical measurements or image processing techniques,
e.g. medical image segmentation [188, 189]. Therefore, we often perform computations on a
domain which is an approximation of the real geometry, i.e., the computational domain is close
to but does not match the real domain. In this work we do not specify the source of the error,
but we take the error into account by explicitly using the error laden reconstructed domains.

This theoretical result is of great importance for scientific computations. Vast numbers of en-
gineering branches rely on the results of computational fluid dynamics simulations, where there
is often uncertainty connected to the computational domain. A prime example of this is compu-
tational based medical diagnostics, where shapes are reconstructed from inverse problems, such
as computer tomography. The assessment of error attributed to the limited spatial resolution of
magnetic resonance techniques has been discussed in [176, 175]. For a survey on computational
vascular fluid dynamics, where modelling and reconstruction related issues are discussed, we
refer to [207]. Error analysis of computational models is a key factor for assessing the reliability
for virtual predictions.

Uncertainties in the computational domain have been studied from the numerical perspective.
Rigorous bounds for elliptic problems on random domains have been derived, for approximate
problems defined on a sequence of domains that is supposed to converge in the set sense to
a limit domain, for both Dirichlet [15] and Neumann [14] boundary conditions. Although our
techniques are similar, we consider a case where the geometrical error is not small, but where it
might dominate the discretization error.

When measurement data is available the accuracy of numerical predictions can be improved
by data assimilation techniques. Applications of variational data assimilation in computational
hemodynamics have been reviewed in [69]. For recent developments we refer to [108] and [186].
On the other hand, the treatment of boundary uncertainty can be cast into a probabilistic
framework. The domain mapping method is based entirely on stochastic mappings to transform
the original deterministic/stochastic problem in a random domain into a stochastic problem in
a deterministic domain, see [241, 227, 119]. The perturbation method starts with a prescribed
perturbation field at the boundary of a reference configuration and uses a shape Taylor expansion
with respect to this perturbation field to represent the solution [120]. In [7] and [70] a similar
technique was used to incorporate random perturbations of a given domain in the context of
shape optimization. Moreover, the fictitious domain approach and a polynomial chaos expansion
have been applied in [49]. We note, that the probabilistic approach is beyond the scope of
this work and the introduction of the boundary uncertainty as random variable increases the
complexity of the problem.

The above approaches incorporate additional information on the domain reconstruction, such
as measurement data or a probabilistic distribution of the approximation error. In comparison
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to these approaches our result can be seen as the worst case scenario. We only require that the
distance between the two domains is bounded.

The analysis presented in this paper starts with well-known results regarding the finite element
approximation on domains with curved boundaries. But in contrast to these estimates we cannot
expect the error coming from the approximation of the geometry is small or even converging
to zero. Instead we split the error into a geometric approximation error between real domain
and perturbed domain and into an error coming from the finite element discretization of the
problem on the perturbed domain. A central step is Lemma 2.3 which estimates the geometry
perturbation. Having in mind that this error is not small and cannot be reduced by means of
tuning the discretization, the typical application case is to balance both error contributions to
efficiently reach the barrier of the geometry error. Theorem 2.6 gives such optimally balanced
estimates that include both error contributions.

2.2 Mathematical Setting and Auxiliary Result

2.2.1 Notation

Let Ω ⊂ Rd be a domain with dimension d ∈ {2, 3}. By L2(Ω) we denote the Lebesgue space
of square integrable functions equipped with the norm ∥ · ∥Ω. By H1(Ω) we denote the space
of L2(Ω) functions with first weak derivative in L2(Ω) and by Hm(Ω) for m ∈ N0 we denote
the corresponding generalizations with weak derivatives up to degree m ∈ N0. The norms
in Hm(Ω) are denoted by ∥ · ∥Hm(Ω). For convenience we use the notation H0(Ω) := L2(Ω).
By H1

0 (Ω) we denote the space of those H1(Ω) functions that have vanishing trace on the
domain’s boundary ∂Ω and we use the notation H1

0 (Ω; Γ) if the trace only vanishes on a part
of the boundary, Γ ⊂ ∂Ω. Further, by (·, ·)Ω we denote the L2(Ω)-scalar product and ⟨·, ·⟩Γ
the L2-scalar product on a d − 1 dimensional manifold Γ, e.g. Γ = ∂Ω. Moreover, [∂nψ] is
the jump of the normal derivative of ψ, i.e. for x ∈ Γ with normal n⃗ (that is normal to Γ)
[∂nψ](x) := limh↘0 ∂nψ(x+ hn⃗)− limh↘0 ∂nψ(x− hn⃗).

2.2.2 Laplace Equation and Domain Perturbation

On Ω ⊂ Rd let f ∈ L2(Ω) be the given right hand side. We consider the Laplace problem with
homogeneous Dirichlet boundary conditions,

−∆u = f in Ω, u = 0 on ∂Ω. (2.2.1)

The variational formulation of this problem is given by: find u ∈ H1
0 (Ω), such that

(∇u,∇ϕ)Ω = (f, ϕ)Ω ∀ϕ ∈ H1
0 (Ω). (2.2.2)

The boundary ∂Ω is supposed to have a parametrization in Cm+2, where m ∈ N0. Given the
additional regularity f ∈ Hm(Ω), H0(Ω) := L2(Ω), there exists a unique solution satisfying the
a-priori estimate

∥u∥Hm+2(Ω) ≤ c∥f∥Hm(Ω), (2.2.3)

see e.g. [94].
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Υ

Ωr

Ω

≤ cS,1Υ

Figure 2.1: The domain Ω (bold line) and its reconstruction Ωr (dashed). The cover of the domain remainders
S = (Ω \Ωr)∪ (Ωr \Ω) by a set of rectangles. The left configuration fulfils Assumption A1. The
height hi of each rectangle Ri is bounded by cS,1Υ and the intersections of each rectangle with
the domain remainder Ri∩S do not overlap excessively. The shaded areas show the overlap. The
right configuration is excluded by Assumption A1.

In the following we assume that the real domain Ω is not exactly known but only given up to an
uncertainty. We hence define a second domain, the reconstructed domain Ωr with a boundary
that allows for Cm+2 parametrization. The Hausdorff distance between both domains is then
denoted by Υ ∈ R,

Υ := dist(∂Ω, ∂Ωr) := max{ sup
x∈∂Ω

inf
y∈∂Ωr

|x− y|, sup
y∈∂Ωr

inf
x∈∂Ω

|x− y|}.

This distance Υ is not necessarily small. When it comes to spatial discretization we will be
interested in both cases, h ≪ Υ as well as Υ ≪ h, where h > 0 is the mesh size. The two
domains do not match and either domain can protrude from the other, see Figure 2.1. In
order to prove our error estimates we require the following technical assumption on the relation
between the two domains Ω and Ωr.

Assumption A1 (Domains). Let Ω and Ωr be two domains with Ω∩Ωr ̸= ∅ and with Hausdorff
distance Υ ∈ R. Both boundaries allow for a local Cm+2 parametrization, m ∈ N0. Let

S := (Ωr \ Ω) ∪ (Ω \ Ωr).

We assume that there exists a cover of S by a finite number of open rectangles (or rectangular
cuboids) {R1, . . . , Rn(S)}. Each rectangle Ri is given as translation and rotation of (0, hi)×(0, ti)
for d = 2, or (0, hi) × (0, t1i ) × (0, t2i ) for d = 3, where the height hi is bounded by hi ≤ cS,1 Υ
with a constant cS,1 ≥ 0. Following conditions hold:

A1.a) On each rectangle R, the boundary lines ∂Ω ∩ R and ∂Ωr ∩ R allow for unique paramet-
rizations gR

Ω(t) and gR
Ωr

(t) over the base t, or (t1, t2) for d = 3, respectively.

A1.b) The area of the cover is bounded by the area of the remainder S, i.e.

∣∣∣
n(S)⋃

i=1
Ri ∩ S

∣∣∣ ≤ cS,2|S|,

where cS,2 > 0 is a constant.



2.2 Mathematical Setting and Auxiliary Result 19

For the following we set cS := max{cS,1, cS,2}.
Figure 2.1 shows such a cover for different domain remainders. From Assumption A1 we deduce
that each line through the height of the rectangle (marked in red in the figure) cuts each of the
two boundaries exactly one time. The second assumption limits the overlap of the rectangles.
These are shown as the shaded in the left sketch in Figure 2.1. Both assumptions on the domain
are required for the proof of Lemma 2.2 that is based on Fubini’s integral theorem. A more
flexible framework that allows for a wider variety of domains, e.g. with boundaries that feature
hooks, could be based on the construction of a map between two boundary segments on ∂Ωr

and ∂Ω. Such approaches play an important role in isogeometric analysis. We refer to [243] and
[244] for examples on the construction of such maps.

To formulate the Laplace equation on the reconstructed domain Ωr we must face the technical
difficulty that the right hand side f ∈ Hm(Ω) is not necessarily defined on Ωr. We therefore
weaken the assumptions on the right hand side.

Assumption A2 (Right hand side). Let f ∈ Hm
loc(Rd), i.e. f ∈ Hm(G) for each compact subset

G ⊂ Rd. In addition we assume that the right hand side on Ωr can be bounded by the right
hand side on Ω, i.e.

∥f∥Hm(Ωr) ≤ c∥f∥Hm(Ω). (2.2.4)

An alternative would be to use Sobolev extension theorems to extend functions f ∈ Hm(Ω) from
Ω to Ωr, see [45].

On Ωr we define the solution ur ∈ H1
0 (Ωr) to the perturbed Laplace problem

(∇ur,∇ϕr)Ωr = (f, ϕr)Ωr ∀ϕr ∈ H1
0 (Ωr), (2.2.5)

The unique solution to (2.2.5) satisfies the bound
∥ur∥Hm+2(Ωr) ≤ c∥f∥Hm(Ωr) ≤ c∥f∥Hm(Ω). (2.2.6)

Remark 2.1 (Extension of the solutions). A difficulty for deriving error estimates is that u is
defined on Ω and ur on Ωr ̸= Ω. Since the domains do not match, u may not be defined on all
of Ωr and vice versa. To give the expression u − ur a meaning on all domains we extend both
solutions by zero outside their defining domains, i.e. u := 0 on Ωr \ Ω and ur := 0 on Ω \ Ωr.
Globally, both functions still have the regularity u, ur ∈ H1(Ω ∪ Ωr). We will use the same
notation for discrete functions uh ∈ Vh defined on a mesh Ωh and extend them by zero to Rd.

□

The following preliminary results are necessary in the proof of the main estimates. They can be
considered as variants of the trace inequality and of Poincaré’s estimate, respectively.

Lemma 2.2. Let γ ∈ R, γ > 0, V ⊂ Rd and W ⊂ Rd for d ∈ {2, 3} be two domains with
boundaries ∂V and ∂W that satisfy Assumption A1 with distance

γ := dist(∂V, ∂W ).
For ψ ∈ C1(V ) ∩ C(V̄ ) it holds

∥ψ∥∂W ∩V ≤ c
(
∥ψ∥∂V + γ

1
2 ∥∇ψ∥V \W

)
,

∥ψ∥V \W ≤ cγ
1
2

(
∥ψ∥∂V + γ

1
2 ∥∇ψ∥V \W

)
,

(2.2.7)
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where the constants c > 0 depend on cS from Assumption A1 and the curvature of the domain
boundaries.

Proof. Let R be one rectangle of the cover and let x∂W = gR
W (t) ∈ ∂(W ∩V )∩R, see Figure 2.2.

By x∂V = gR
V (t) ∈ ∂(W ∩ V ) ∩ R we denote the corresponding unique point on ∂W ∩ R. The

connecting line segment x∂V x∂W completely runs through V \W , as, if the line would leave this
remainder, it would cut each line more than once which opposes Assumption A1.b). Integrating
the function ψ along this line gives

∣∣∣ψ(x∂W )
∣∣∣
2
≤ 2

∣∣∣ψ(x∂V )
∣∣∣
2

+ 2
∣∣∣
∫ x∂W

x∂V

ψ′(s) ds
∣∣∣
2
.

Applying Hölder’s inequality to the second term on the right hand side, with the length of the
line bounded by cSγ, we obtain

|ψ(x∂W )|2 ≤ 2|ψ(x∂V )|2 + 2cSγ

∫ x∂W

x∂V

|∇ψ(s)|2 ds.

Using the parametrizations x∂W = gR
W (t) and x∂V = gR

V (t) we integrate over t which gives
∫
|ψ(gR

W (t))|2 dt ≤
∫
|ψ(gR

V (t))|2 dt+ 2cSγ

∫ ∫ gR
W (t)

gR
V (t)

|∇ψ(s)|2 ds dt. (2.2.8)

The volume integral on the right hand side is exactly the integral over R∩(V \W ). The boundary
integrals can be interpreted as path integrals and therefore be estimated by

1
maxt{1 + |∇gR

W (t)|2}

∫

(∂W ∩V )∩R
|ψ|2 ds

≤ 1
mint{1 + |∇gR

V (t)|2}

∫

R∩∂V
|ψ|2 ds+ 2cSγ

∫

R∩(V \W )
|∇ψ|2 dx. (2.2.9)

As the boundaries allow for a C2 parametrization, we estimate

∥ψ∥2(∂W ∩V )∩R ≤ c(∂V, ∂W )cS

(
∥ψ∥2R∩∂V + γ∥∇ψ∥2R∩S

)
. (2.2.10)

Summation over all rectangles and estimation of all overlaps by means of Assumption A1 gives

∥ψ∥2∂W ∩V ≤ c(∂V, ∂W )cS

(
∥ψ∥2∂V + γ∥∇ψ∥2V \W

)
.

For ψ ∈ H1
0 (V ), the term on ∂V vanishes.

To show the second estimate on V \ W we again pick one rectangle R and consider a point
x ∈ V \W on the line connecting x∂V = gR

V (t) and x∂W = gR
W (t) such that we introduce the

notation x = x(t, s). By the same arguments as above it holds

|ψ(x(t, s))|2 ≤ 2|ψ(gR
V (t))|2 + 2cSγ

∫ ∫ gR
V (t)

x(t)
|∇ψ|2 dsdt.

We integrate over s and t to obtain

∥ψ(x)∥2R∩(V \W ) ≤
2

mint{1 + |∇gR
V (t)|2}γ∥ψ∥

2
R∩∂V + 2cSγ

2∥∇ψ∥2R∩(V \W ).

Summing over all rectangles gives the desired result. □
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Figure 2.2: Illustration of the proof of Lemma 2.2. Points in each rectangle R can be represented by local
coordinates (t, s), where 0 ≤ s ≤ cSγ and the range of t depends on the size of the rectangle. The
two boundary segments are given by the (smooth) parametrizations gR

V (t) and gR
W (t). Each line

in the direction of s cuts both boundaries exactly once. In the 3d setting, the base is represented
by two coordinates t = (t1, t2).

∂W
∂V

s R

t

x∂V = gR
V (t)

x∂W = gR
W (t)

≤ cSγ

The above lemma is later used in such a way that V and W can be substituted as both Ω and
Ωr, specifically to the case of use.

We continue by estimating the difference between the solutions of the Laplace equations on Ω
and on Ωr.

Lemma 2.3. Let Ω,Ωr ∈ Rd with ∂Ω, ∂Ωr ∈ Cm+2 satisfying dist(∂Ω, ∂Ωr) < Υ as well as
Assumption A1. Furthermore, let f ∈ L2

loc(Rd) satisfy Assumption A2 and let fr := f |Ωr . For
the solutions u ∈ H1

0 (Ω)∩H2(Ω) and ur ∈ H1
0 (Ωr)∩H2(Ωr) to (2.2.2) and (2.2.5) respectively,

it holds that
∥u− ur∥Ω + Υ

1
2 ∥∇(u− ur)∥Ω ≤ cΥ∥f∥Ω∪Ωr .

Proof. (i) We continuously extend u and ur by zero to Rd, c.f. Remark 2.1, such that u− ur ∈
H1(Ω ∪ Ωr) is well defined. We separate the domains of integration and integrate by parts

∥∇(u− ur)∥2Ω =
(
∇(u− ur),∇(u− ur)

)
Ω∩Ωr

+
(
∇(u− ur),∇(u− ur)

)
Ω\Ωr

=−
(
∆(u− ur), u− ur

)
Ω

+ ⟨∂n(u− ur), u− ur⟩∂(Ω∩Ωr)

+ ⟨∂n(u− ur), u− ur⟩∂(Ω\Ωr).

(2.2.11)

Combining the boundary terms on the right-hand side of (2.2.11), into an integral over ∂Ω and
a jump term over ∂Ωr ∩ Ω, we obtain

∥∇(u− ur)∥2Ω =−
(
∆(u− ur), u− ur

)
Ω

+ ⟨∂n(u− ur), u− ur⟩∂Ω

+ ⟨[∂n(u− ur)], u− ur⟩∂Ωr∩Ω.
(2.2.12)
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In Ω ∩ Ωr it holds f = fr and hence (weakly) −∆(u− ur) = 0, such that

−(∆(u− ur), u− ur)Ω = −(∆(u− ur), u− ur)Ω∩Ωr − (∆u, u)Ω\Ωr
= (f, u)Ω\Ωr

. (2.2.13)

On ∂Ω it holds u = 0 and on ∂Ωr ∩ Ω it holds ur = 0. Further, since u ∈ H2(Ω) it holds that
[∂nu] = 0 on ∂Ωr ∩ Ω. Finally, ur = 0 on Ω \ Ωr, such that the boundary terms reduce to

⟨∂n(u− ur), u− ur⟩∂Ω + ⟨[∂n(u− ur)], u− ur⟩∂Ωr∩Ω

= −⟨∂n(u− ur), ur⟩∂Ω∩Ωr − ⟨∂nur, u⟩∂Ωr∩Ω. (2.2.14)

Combining (2.2.12)-(2.2.14) and using the Cauchy-Schwarz inequality, we estimate

∥∇(u− ur)∥2Ω ≤ ∥f∥Ω\Ωr
∥u∥Ω\Ωr

+ ∥∂n(u− ur)∥∂Ω∩Ωr∥ur∥∂Ω∩Ωr + ∥∂nu∥∂Ωr∩Ω∥u∥∂Ωr∩Ω. (2.2.15)

Since u, ur ∈ H2(Ω ∩ Ωr), the trace inequality gives

∥∇(u− ur)∥2Ω ≤ ∥f∥Ω\Ωr
∥u∥Ω\Ωr

+ c
(
∥u∥H2(Ω) + ∥ur∥H2(Ωr)

)(
∥ur∥∂Ω∩Ωr + ∥u∥∂Ωr∩Ω

)
. (2.2.16)

Applying Lemma 2.2 twice: to ψ = u and to ψ = ∇u (same for ur), and extending the norms
from Ω \ Ωr to Ω and from Ωr \ Ω to Ωr give the bounds

∥u∥∂Ωr∩Ω ≤ cΥ
1
2 ∥∇u∥Ω\Ωr

≤ cΥ
(
∥∇u∥∂Ω + Υ

1
2 ∥u∥H2(Ω)

)
,

∥ur∥∂Ω∩Ωr ≤ cΥ
1
2 ∥∇ur∥Ωr\Ω ≤ cΥ

(
∥∇ur∥∂Ωr + Υ

1
2 ∥ur∥H2(Ωr)

)
.

(2.2.17)

With the trace inequality and the a priori estimates ∥u∥H2(Ω) ≤ c∥f∥Ω and ∥ur∥H2(Ωr) ≤
c∥fr∥Ωr ≤ c∥f∥Ω we obtain the bounds

∥u∥∂Ωr∩Ω ≤ cΥ∥f∥Ω, ∥ur∥∂Ω∩Ωr ≤ cΥ∥f∥Ω. (2.2.18)

Using the fact that u = 0 on ∂Ω we apply (2.2.7) twice and use the trace inequality to get the
estimate

∥u∥Ω\Ωr
≤ cΥ∥∇u∥Ω\Ωr

≤ cΥ 3
2

(
∥u∥H2(Ω) + Υ

1
2 ∥u∥H2(Ω)

)
≤ cΥ 3

2 ∥f∥Ω. (2.2.19)

We can then estimate ∥f∥Ω\Ωr
≤ ∥f∥Ω by extending to the complete domain. Combining (2.2.16)

with (2.2.18) and (2.2.19) we obtain the estimate

∥∇(u− ur)∥2Ω ≤ c
(

Υ
3
2 + Υ

)
∥f∥2Ω,

which concludes the H1-norm bound.

(ii) For the L2-estimate we introduce the adjoint problem

z ∈ H1
0 (Ω) : −∆z = u− ur

∥u− ur∥Ω
in Ω,
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which allows for a unique solution satisfying the a-priori bound ∥z∥H2(Ω) ≤ cs with the stability
constant cs <∞. Testing with u− ur and integrating by parts twice gives

∥u− ur∥Ω =− (z,∆(u− ur))Ω + ⟨z, ∂n(u− ur)⟩∂Ω

+ ⟨z, [∂n(u− ur)]⟩∂Ωr∩Ω − ⟨∂nz, u− ur⟩∂Ω.

It holds z = 0 and u = 0 on ∂Ω, [∂nu] = 0 on ∂Ωr ∩Ω and −∆(u− ur) = 0 in Ω ∩Ωr such that
we get

∥u− ur∥Ω = (z, f)Ω\Ωr
− ⟨z, ∂nur⟩∂Ωr∩Ω + ⟨∂nz, ur⟩∂Ω

≤ ∥z∥Ω\Ωr
∥f∥Ω\Ωr

+ ∥z∥∂Ωr∩Ω∥∂nur∥∂Ωr∩Ω + ∥∂nz∥∂Ω∥ur∥∂Ω.

The boundary terms ∥z∥∂Ωr∩Ω and ∥ur∥∂Ω are estimated with Lemma 2.2, the normal derivatives
by the trace inequality and the terms on Ω \ Ωr by (2.2.7)

∥u− ur∥Ω ≤ cΥ
3
2 ∥z∥H2(Ω)∥f∥Ω + cΥ∥z∥H2(Ω)∥ur∥H2(Ωr) + cΥ∥z∥H2(Ω)∥ur∥H2(Ωr).

The L2-norm estimate follows by using the bounds ∥u∥H2(Ω) ≤ c∥f∥Ω, ∥ur∥H2(Ωr) ≤ c∥f∥Ω and
∥z∥H2(Ω) ≤ c. □

Remark 2.4. The estimate ∥f∥Ω\Ωr
≤ c∥f∥Ω is not optimal. Further powers of Υ are eas-

ily generated at the cost of a higher right hand side regularity. Also, the estimate ∥∂n(u −
ur)∥ ≤ c(∥u∥H2(Ω) + ∥ur∥H2(Ωr)) by Cauchy Schwarz and the trace inequality could be en-
hanced to produce powers of Υ. The limiting term in (2.2.12) however is the boundary integral
|⟨∂nur, u⟩∂Ωr∩Ω| = O(Υ 1

2 ) which is optimal in the H1-estimate. In Remark 2.8 and Corol-
lary 2.9 we present an estimate that focuses on the intersection Ω ∩ Ωr only and that allows
us to improve the order to O(Υ) in the H1-case by avoiding exactly this boundary integral.

□

2.3 Discretization
The starting point of a finite element discretization is the mesh of the domain Ω. In our setting
we do not mesh Ω directly, because the domain Ω is not exactly known. Instead, we consider a
mesh of the reconstructed domain Ωr.

We partition Ωr into a parametric triangulation Ωh, consisting of open elements T ⊂ Rd. Each
element T ∈ Ωh stems from a unique reference element T̂ which is a simple geometric structure
such as a triangle, quadrilateral or tetrahedron. The numerical examples in Section 2.4 are
based on quadrilateral meshes. The map TT : T̂ → T is a polynomial of degree r ∈ N. We
will consider iso-parametric finite element spaces, that are based on polynomials of the same
degree r ≥ 1. In the following we assume structural and shape regularity of the mesh such that
standard interpolation estimates

∥∇k(ur − Ihur)∥T ≤ chr+1−k∥ur∥Hr+1(T ), k = 0, . . . , r ≤ m,
∥∇k(ur − Ihur)∥∂T ≤ chr+ 1

2 −k∥ur∥Hr+1(T ), k = 0, . . . , r ≤ m,
(2.3.1)

will hold for all elements T ∈ Ωh, c.f. [30]. The discretization parameter h represents the size of
the largest element in the mesh. See [209, Section 4.2.2] for a detailed description.
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On the reference element T̂ let P̂ be a polynomial space of degree r, e.g.

P̂ =̂ Qr := span{xα1
1 · · ·xαd

d : 0 ≤ α1, . . . , αd ≤ r}

on quadrilateral and hexahedral meshes. Then, the finite element space V r
h on the mesh Ωh is

defined as
V r

h = {ϕh ∈ C(Ω̄h) : ϕh ◦ TT ∈ P̂ on every T ∈ Ωh}.
This parametric finite element space does not exactly match the domain Ωr. Given an iso-
parametric mapping of degree r it holds dist(∂Ωr, ∂Ωh) = O(hr+1) and finite element approxim-
ation error and geometry approximation error are balanced. Iso-parametric finite elements for
the approximation on domains with curved boundaries are well established [91], optimal inter-
polation and finite element error estimates have been presented in [61, Section 4.4]. The case of
higher order elements with optimal order energy norm estimates is covered in [148]. From [209,
Theorem 4.37] we cite the following approximation result for the iso-parametric approximation of
the Laplace equation that also covers the L2-error and which is formulated in a similar notation.

Theorem 2.5. Let m ∈ N0 and let Ωr be a domain with a boundary that allows for a paramet-
rization of degree m + 2. Let fr ∈ Hm(Ωr) and uh ∈ V r

h ∩H1
0 (Ωh) be the iso-parametric finite

element discretization of degree 1 ≤ r ≤ m+ 1

(∇uh,∇ϕh)Ωh
= (fr, ϕh)Ωh

∀ϕh ∈ V r
h .

It holds

∥ur − uh∥H1(Ωr) ≤ chr∥fr∥Hr−1(Ωr), ∥ur − uh∥Ωr ≤ chr+1∥fr∥Hr−1(Ωr).

We formulated the error estimate on the domain Ωr although the finite element functions are
given on Ωh only. To give Theorem 2.5 meaning, we consider all functions extended by zero as
described in Remark 2.1. Combining these preliminary results directly yields the a priori error
estimates.

Theorem 2.6. Let m ∈ N0, Ω and Ωr be domains with Cm+2 boundary, distance Υ and that
satisfy Assumption A1. Let Ωh be the iso-parametric mesh of Ωr with degree 1 ≤ r ≤ m+ 1 and
let f ∈ Hr−1

loc (Rd) satisfy Assumption A2. For the finite element error between the fully discrete
solution uh ∈ V r

h

(∇uh,∇ϕh)Ωh
= (f, ϕh)Ωh

∀ϕh ∈ V r
h

and the true solution u ∈ H1
0 (Ω) ∩Hm+2(Ω) it holds

∥u− uh∥H1(Ω) ≤ c
(
Υ

1
2 + hr

)
∥f∥Hr−1(Ω),

as well as
∥u− uh∥Ω ≤ c(Υ + hr+1)∥f∥Hr−1(Ω).

Proof. (i) We start with the H1 error. Inserting ±ur and extending the finite element error
ur − uh from Ω to Ωr, where a small remainder appears, we have

∥∇(u− uh)∥2Ω ≤ 2
(
∥∇(u− ur)∥2Ω + ∥∇(ur − uh)∥2Ωr

+ ∥∇(ur − uh)∥2Ω\Ωr

)
. (2.3.2)
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The first and the second term on the right hand side are estimated by Lemma 2.3 and The-
orem 2.5 and, since ur = 0 on Ω \ Ωr, we obtain

∥∇(u− uh)∥2Ω ≤ c
(

Υ + h2r
)
∥f∥2Hr−1(Ω) + 2∥∇uh∥2Ω\Ωr

. (2.3.3)

We continue with the remainder ∇uh on Ω \ Ωr, which is non-zero on Ωh only

∥∇uh∥2Ω\Ωr
= ∥∇uh∥2(Ωh\Ωr)∩(Ω\Ωr).

This remaining stripe has the width

γh,Υ := O(min{hr+1,Υ}),

and we apply Lemma 2.2 to get

∥∇uh∥2(Ω\Ωr)∩(Ωh\Ωr) ≤ cγh,Υ∥∇uh∥2∂Ωr
+ cγ2

h,Υ∥∇2uh∥2Ωh\Ωr
, (2.3.4)

where the second derivative ∇2uh is understood element wise. This term is extended to Ωh

and with the inverse estimate and the a priori estimate for the discrete solution we obtain with
γ2

h,Υ = O(h2r+2) that

γ2
h,Υ∥∇2uh∥2Ωh\Ωr

≤ cinvγ
2
h,Υ h−2∥∇uh∥2Ωh

≤ cinvh
2r∥f∥2Ωh

≤ ch2r∥f∥2Ω. (2.3.5)

To the first term on the right hand side of (2.3.4) we add ±ur and ±Ihur, the nodal interpolation
of ur into the finite element space

γh,Υ∥∇uh∥2∂Ωr
≤ cγh,Υ

(
∥∇ur∥2∂Ωr

+ ∥∇(ur − Ihur)∥2∂Ωr
+ ∥∇(uh − Ihur)∥2∂Ωr

)
. (2.3.6)

Here, the first and last terms are estimated with the trace inequalities and, in the case of the
discrete term with the inverse inequality1, followed by adding ±ur we get

γh,Υ∥∇uh∥2∂Ωr
≤ cΥ∥f∥2L2(Ω) + chr+1∥∇(ur − Ihur)∥2∂Ωr

+ chr∥∇(ur − Ihur)∥2Ωr
+ hr∥∇(uh − ur)∥2Ωr

. (2.3.7)

We used both γh,Υ = O(hr+1) and γh,Υ = O(Υ). Then, collecting all terms in (2.3.3)-(2.3.7)
and using the interpolation estimates as well as Theorem 2.5 we finally get

∥∇(u− uh)∥2Ω ≤ c
(
Υ + h2r

)
∥f∥2Hr−1(Ω) + ch3r−1∥f∥2Hr−1(Ω), (2.3.8)

which shows the a priori estimate since 3r − 1 ≤ 2r for all r ≥ 1.

(ii) For the L2-error we proceed in the same way, but the remainder appearing in (2.3.2) does
not carry any derivative, such that, instead of (2.3.4) the optimal order variant of Lemma 2.2
with integration to the boundary ∂Ωh, where uh = 0, can be applied, i.e.

∥u− uh∥2Ω ≤ c
(
∥u− ur∥2Ω + ∥ur − uh∥2Ωr

+ Υ2∥∇uh∥2Ω\Ωr

)
.

The L2-estimate directly follows with Lemma 2.3, Theorem 2.5 and by the a priori estimate
∥∇uh∥2Ω\Ωr

≤ c∥∇uh∥2Ωh
≤ c∥f∥2Ωr

.
□



26 Chapter 2 Finite Element Error Estimates on Geometrically Perturbed Domains

∂Ω

Υ

∂Ωr

Υ

1

1

(0, 0)

On Ω = B1(0) and Ωr = B1(Υ) consider −∆u = 4 and
−∆ur = 4, respectively with homogeneous Dirichlet condi-
tions and the solutions

u(x, y) = 1− x2 − y2, ur(x, y) = 1− (x−Υ)2 − y2

and the errors

∥∇(u−ur)∥Ω =
√

8Υ 1
2 +O(Υ), ∥u−ur∥Ω =

√
πΥ+O(Υ3).

Figure 2.3: Illustration concerning Remark 2.8. The error estimates for u − uh are optimal, if the error is
evaluated on Ω. The lowest order terms O(Υ 1

2 ) appear in the shaded area Ω \ Ωr where ur and
(most of) uh are zero.

Remark 2.7 (Polygonal domains). In two dimensions, the extension of the error estimates
to the case of convex polygonal domains, where u ∈ H2(Ω) and ur ∈ H2(Ωr), is relatively
straightforward. In this case, Ωh fits Ωr such that the finite element error ur − uh can be
estimated with the standard a priori result ∥ur − uh∥ + h∥∇(ur − uh)∥ ≤ c∥f∥. The extension
of Lemma 2.2, which locally requires smoothness of the parametrizations gR

W (·) and gR
V (·), see

steps (2.2.8)-(2.2.10), can be accomplished by refining the cover of the domain which is described
in Assumption A1, see also Figure 2.1: All rectangles are split in such a way that the corners of
∂Ω and Ωr are cut by the edges of rectangles. This allows to derive the optimal error estimates
∥u−uh∥H1(Ω) = O(Υ 1

2 +h) and ∥u−uh∥H1(Ω) = O(Υ +h2). In three dimensions, such a simple
refinement of the cover is not possible and the extension to polygonal domains is more involved.

□

Remark 2.8 (Optimality of the estimates). Two ingredients govern the error estimates:

1. A geometrical error of order O(Υ 1
2 ) and O(Υ), that describes the discrepancy between

Ω and Ωr, in the H1 and L2 norms respectively. This term is optimal which is easily
understood by considering a simple example illustrated in Figure 2.3, namely −∆u = 4 on
the unit disc Ω = B1(0) and −∆ur = 4 on the shifted domain Ωr = B1(Υ). The errors in
H1 norm and L2 norms expressed on the complete domain Ω are estimated by

∥u− ur∥Ω =
√
πΥ + O(Υ3), ∥∇(u− ur)∥Ω =

√
8Υ + O(Υ).

A closer analysis shows that the main error – in the H1-case – occurs on the small shaded
stripe Ω \ Ωr such that

∥∇(u− ur)∥Ω\Ωr
= O(Υ

1
2 ), ∥∇(u− ur)∥Ω∩Ωr = O(Υ),

while the L2-error in Ω ∩ Ωr is optimal

∥u− ur∥Ω\Ωr
= O(Υ

3
2 ), ∥u− ur∥Ω∩Ωr = O(Υ).

2. The usual Galerkin error ∥ur−uh∥Ωr +h∥∇(u−ur)∥Ωr = O(hr+1) of iso-parametric finite
element approximations contributes to the overall error. For Ω = Ωr, i.e. Υ = 0, this

1We refer to [204, Chapter 1.4.3] or [20, 46] for recent developments on the local trace inequality and the inverse
estimate on meshes with curved boundaries.
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would be the complete error. This estimate is optimal, as it shows the same order as usual
finite element bounds on meshes that resolve the geometry.

□

In Section 2.4 we discuss the difficulty of measuring errors on an unknown domain Ω. The
optimality of the error estimates is difficult to verify which is mainly due to the technical problems
in evaluating norms on the domain remainders Ω \ Ωr, where no finite element mesh is given.
These remainders contribute the lowest order parts Υ 1

2 in the overall error. The following
corollary is closer to the setting of the numerical examples and it yields the approximation of
order Υ in the H1-norm error. In addition to the previous setting we require a regular map
Tr : Ω→ Ωr between the two domains. By pulling back Ωr to Ω via this map a Jacobian arises
that controls the geometrical error and that hence has to be controllable by Υ.

Corollary 2.9. In addition to the assumptions of Theorem 2.6 let there be a C1-diffeomorphism

Tr : Ω→ Ωr

satisfying
∥I − det(∇Tr)∇T−1

r ∇T−T
r ∥L∞(Ω) = O(Υ). (2.3.9)

Further, let the following regularity of problem data hold in addition to Assumption A2

f ∈W 1,∞
loc (Rd) ∩Hr−1

loc (Rd) (2.3.10)

and let the solution satisfy
∥u∥W 2,∞(Ω) + ∥ur∥W 2,∞(Ωr) ≤ c. (2.3.11)

Then, it holds
∥∇(u− uh)∥Ω∩Ωr∩Ωh

≤ c
(
Υ + hr

)
.

Proof. We start by splitting the error into domain approximation and finite element approxim-
ation errors

∥∇(u− uh)∥Ω∩Ωr∩Ωh
≤ ∥∇(u− ur)∥Ω∩Ωr + ∥∇(ur − uh)∥Ωr∩Ωh

. (2.3.12)

An optimal order estimate of the finite element error

∥∇(ur − uh)∥Ωr∩Ωh
≤ ∥∇(ur − uh)∥Ωr = O(hr) (2.3.13)

is given in Theorem 2.5. To estimate the first term of the right hand side of (2.3.12) we introduce
the function

ûr(x) := ur(Tr(x)),

which satisfies ûr ∈ H1
0 (Ω) and solves the problem

(JrF
−1
r F−T

r ∇ûr,∇ϕ̂r)Ω = (f̂r, ϕ̂r) ∀ϕ̂r ∈ H1
0 (Ω),

where f̂r(x) := f(Tr(x)) and where Fr := ∇Tr and Jr := det(Fr). See [209, Section 2.1.2] for
details of this transformation of the variational formulation. To estimate the domain approxim-
ation error in (2.3.12) we introduce ±ûr to obtain

∥∇(u− ur)∥Ω∩Ωr ≤ ∥∇(u− ûr)∥Ω∩Ωr + ∥∇(ûr − ur)∥Ω∩Ωr . (2.3.14)
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We introduce the notation er := u − ûr, extend the first term from Ω ∩ Ωr to Ω and insert
±JrF

−1
r F−T

r ∇ûr which gives

∥∇(u− ûr)∥2Ω∩Ωr
≤ ∥∇(u− ûr)∥2Ω

= (∇u,∇er)Ω − (JrF
−1
r F−T

r ∇ûr,∇er)Ω + (JrF
−1
r F−T

r ∇ûr,∇er)Ω − (∇ûr,∇er)Ω

= (f − f̂r, er)Ω + ([JrF
−1
r F−T

r − I]∇ûr,∇er)Ω

≤ ∥f − f̂r∥Ωc∥∇er∥Ω + ∥[JrF
−1
r F−T

r − I]∥L∞(Ω)∥∇er∥Ω, (2.3.15)

where we also used Poincaré’s estimate. For bounding f − f̂r we consider a point x ∈ Ω ∩ Ωr,
use the higher regularity of the right hand side (2.3.10) to estimate by a Taylor expansion

|f(x)− f̂r(x)| = |f(x)− f(Tr(x))| = |∇f(ξ) · (Tr(x)− x)| ≤ Υ|∇f(ξ)|, (2.3.16)

where ξ ∈ Ω is some point on the line from x to Tr(x). We take the square and integrate over
Ω to get the estimate

∥f − f̂r∥Ω ≤ cΥ∥f∥W 1,∞(ΩΥ), (2.3.17)
where ΩΥ is a enlargement of Ω by at most O(Υ), since intermediate values ξ used in (2.3.16)
are not necessarily part of Ω ∪ Ωr. This argument is also applicable to the second term on the
right hand side of (2.3.14) such that it holds

∥∇(ûr − ur)∥M ≤ cΥ∥ur∥W 2,∞(Ω∩Ωr) ≤ cΥ.

Combining this with (2.3.12), (2.3.13), (2.3.14) and (2.3.15) finishes the proof. □

Unfortunately this corollary can not be applied universally as the existence of a suitable map
Tr : Ω → Ωr depends on the given application. Here a construction, corresponding to the ALE
map, can be realised by means of a domain deformation d̂ : Ω→ R2

Tr(x) = x+ d̂(x), Fr(x) = I +∇d̂(x).

Such a construction is common in fluid-structure interactions, see [209, Section 2.5.2]. Given
that |d̂|, |∇d̂| = O(Υ) it holds

∥Jr∥L∞(Ω) = 1 + O(Υ), ∥I − JrF
−1
r F−T

r ∥L∞(Ω) = O(Υ).

While the assumption |d̂| = O(Υ) is easy to satisfy since dist(∂Ω, ∂Ωr) ≤ Υ, the condition
|∇d̂| = O(Υ) will strongly depend on the shape and regularity of the boundary.

We conclude by discussing a simple application of this corollary. Figure 2.4 illustrates the setting.
Let Ω be the unit sphere, Ωr be an ellipse

Ω = {x ∈ R2 : x2
1 + x2

2 < 1}, Ωr = {x ∈ R2 : (1 + Υ)2x2
1 + (1 + Υ)−2x2

2 < 1}.

It holds dist(∂Ω, ∂Ωr) ≤ Υ and we define the map Tr : Ω→ Ωr by

Tr(x) =
(

(1 + Υ)−1x1
(1 + Υ)x2,

)
, Fr = ∇Tr =

(
(1 + Υ)−1 0

0 (1 + Υ)

)
, Jr = 1.

This map satisfies the assumptions of the corollary

I − JrF
−1
r F−T

r = Υ(Υ + 2)
(
−1 0
0 (1 + Υ)−2

)
, ∥I − JrF

−1
r F−T

r ∥∞ = 2Υ + Υ2.
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Ωr

Ω

Υ

Tr : Ω → Ωr

Tr(x1, x2) =

(
(1 + Υ)x1

(1 + Υ)−1x2

)

Figure 2.4: Illustration of an example for the application of Corollary 2.9.
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Figure 2.5: Sketch of the computational domains w.r.t. the parameter Υ in two dimensions (left) and for
Υ = 0.1 in three dimensions (right).

2.4 Numerical Illustration

In this section we illustrate the theoretical results from the previous section. We compute
the Laplace problem on a family of domains representing different values of Υ. Moreover, we
numerically extend the analytical predictions and show that a similar behavior holds for the
Stokes system.

We consider Ω to be a unit ball in two and three dimensions and define a family of perturbed
domains ΩΥ, with the amplitude of the perturbation being dependent on the coefficient Υ,
cf. Figure 2.5.

In two dimensions, the boundary of the domain ΩΥ is given in polar coordinates (ϱ, φ) by

∂ΩΥ = {(1−Υ/5 + Υ sin(8φ), φ) for φ ∈ [0, 2π)},
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Figure 2.6: L2- and H1-errors w.r.t. mesh-size hmax for varying parameter Υ computed for the Laplace
problem in three-dimensions with linear finite elements.

and in three dimensions in spherical coordinates (ϱ, θ, φ) by

∂ΩΥ = {(1−Υ/5 + Υ sin(3φ) sin(3θ), θ, φ) for θ ∈ [0, π), φ ∈ [0, 2π)}.

For computations we take
Υ ∈ {0, 0.0125, 0.025, 0.05, 0.1}.

In order to illustrate the convergence result from Theorem 2.6, we compute the model problem
on a series of uniformly refined meshes. The dependence between the mesh size h and the
refinement level L reads h = 2−L. We denote the mesh approximating ΩΥ, with a mesh size h,
by Ωh,Υ.

The numerical implementation is realized in the software library Gascoigne 3D [39], using iso-
parametric finite elements of degree 1 and 2. A detailed description of the underlying numerical
methods is given in [209].

2.4.1 Laplace Equation in Two and Three Dimensions
We consider the following problem

−∆u = f in Ω, u = 0 on ∂Ω, (2.4.1)

where Ω is the unit ball in two dimensions and the unit sphere in three dimensions.

To compute errors we choose a rotationally symmetric analytical solution to (2.4.1) as

u(r) = − cos
(
π

2 r
)

with r =
√
x2 + y2 in two and r =

√
x2 + y2 + z2 in three dimensions, respectively, which results

in the right hand sides

f2d(r) = π

2r sin
(
π

2 r
)

+ π2

4 cos
(
π

2 r
)
, f3d(r) = π

r
sin
(
π

2 r
)

+ π2

4 cos
(
π

2 r
)
.
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Figure 2.7: L2- and H1-errors w.r.t. mesh-size hmax for varying parameter Υ computed for the Laplace
problem in two-dimensions with FE. Left: linear finite elements. Right: quadratic finite elements.
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Figure 2.8: L2- and H1-errors w.r.t. parameter Υ computed for the Laplace problem in two and three-
dimensions with linear and quadratic finite elements.

For the ease of evaluations the errors, the H1- and L2-norms will be computed on the truncated
domains

Ω′
2d = {(φ, ϱ) for φ ∈ [0, 2π) and ϱ ∈ (0, 0.88)},

Ω′
3d = {(φ, θ, ϱ) for θ ∈ [0, π), φ ∈ [0, 2π) and ϱ ∈ (0, 0.88)},

see also Remark 2.8. We hence do not compute the errors ∥∇(u − uh)∥ and ∥u − uh∥ on the
remainders Ω\Ωr. Therefore we expect optimal order convergence in the spirit of Corollary 2.9.
The restriction of the domain to an area within Ωh is also by technical reasons, as the evaluation
of integrals outside of the meshed area is not easily possible.

In Figures 2.6 and 2.7 we see the resulting L2- and H1-errors. We observe that for finer meshes,
Υ becomes the dominating factor of the error. In particular the use of quadratic finite elements
shows a strong imbalance between FE error and geometric error, which quickly dominates as seen
in the left part of Fig. 2.7. The result is consistent with Corollary 2.9. As soon as the FE error
is smaller than the geometry perturbation Υ, we do not observe any further improvement of the
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error. In Fig. 2.8 we show the convergence in both norms in terms of the geometry parameter
Υ. Linear convergence is clearly observed. The apparent decay of convergence rate in case of
the L2-error in three dimensions is due to the still dominating FE error in this case.

2.4.2 Stokes System in Two Dimensions
To go beyond the Laplace problem, we investigate the behavior of the solution to the Stokes
system with respect to the domain variation in two spatial dimensions. The problem is to find
the velocity u and the pressure p such that

div u = 0, −∆u +∇p = f in Ω, (2.4.2)

with homogeneous Dirichlet condition u = 0 on the boundary ∂Ω and a right hand side vec-
tor f. System (2.4.2) is solved with equal-order iso-parametric finite elements using pressure
stabilization by local projections, see [24].

We prescribe an analytical solution for comparison with the finite element approximation

u(x, y) = cos
(
π

2 (x2 + y2)
)(

y
−x

)
,

where the corresponding forcing term reads

f(x, y) = π cos
(
π

2 (x2 + y2)
)


yr2π + 4(y − x) tan

(
π
2 (x2 + y2)

)

−xr2π − 4(x+ y) tan
(

π
2 (x2 + y2)

)


 .

In Figure 2.9 we see the resulting L2- and H1-errors. Again we observe that Υ becomes the
dominant factor for finer meshes. This result is not covered by the theoretical findings, however
it shows that geometric uncertainty should be taken into account for the simulations of flow
models.
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Figure 2.9: L2- and H1-errors w.r.t. mesh-size hmax for varying parameter Υ computed for the Stokes
problem in two dimensions with linear finite elements.





CHAPTER 3

On the Impact of Fluid-structure Interaction
in Blood Flow Simulations

The content of this chapter is joint work with Lukas Failer and Thomas Richter, and is published
in the paper

L. Failer, P. Minakowski and T. Richter. ‘On the Impact of Fluid Structure Interac-
tion in Blood Flow Simulations’. In: Vietnam Journal of Mathematics (Jan. 2021). doi:
10.1007/s10013-020-00456-6

Chapter Summary. We study the impact of using fluid-structure interactions (FSI) to simulate
blood flow in a stenosed artery. We compare typical flow configurations using Navier-Stokes in
a rigid geometry setting to a fully coupled FSI model. The relevance of vascular elasticity is
investigated with respect to several questions of clinical importance. Namely, we study the effect
of using FSI on the wall shear stress distribution, on the Fractional Flow Reserve and on the
damping effect of a stenosis on the pressure amplitude during the pulsatile cycle. The coupled
problem is described in a monolithic variational formulation based on Arbitrary Lagrangian
Eulerian (ALE) coordinates. For comparison, we perform pure Navier-Stokes simulations on a
pre-stressed geometry to give a good matching of both configurations. A series of numerical
simulations that cover important hemodynamical factors are presented and discussed.

Chapter Organisation. After the brief introduction in Section 3.1 we present the monolithic
formulation of the FSI problem, see Section 3.2. The setting of the simulations is the topic
of Section 3.3. The numerical method is described in Section 3.4. Section 3.5 is dedicated to
the presentation of investigated hemodynamical factors and the discussion of numerical results
obtained on relevant test cases.

https://doi.org/10.1007/s10013-020-00456-6
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3.1 Introduction
The application of computational fluid dynamics (CFD) to blood flow is a rapidly growing field
of biomedical and mathematical research. Currently the development of numerical methods in
hemodynamics is evolving from a purely academic tool to aiding in clinical decision making [228,
37]. In particular the investigation of blood flow in stenosed arteries can help to shape medical
treatment. For example virtual/computed Fractional Flow Reserve (cFFR) can evaluate the
physiological significance of sclerotic plaque [229, 178, 36]. Moreover, the correct reconstruction
of wall shear stress (WSS) is of crucial importance for the cell signaling and as a consequence
for the stenosis development [151] or for the assessment of rupture of cerebral aneurysms [55].
These two factors are studied in detail.

Hemodynamical simulations face numerous challenges, that are connected with measurements,
medical image segmentation, mathematical modelling and development of numerical methods
[207]. In this work we confine to an idealized geometry and a Newtonian fluid and focus on the
comparison between a compliant wall vs. a rigid vessel wall. As a model example we have chosen
a curved channel that resembles a large human artery. Stenotic and non-stenotic configurations
are considered. The channel is preloaded by first considering a steady inflow to reach a certain
physiological pressure and diameter before starting the pulsatile heart cycle. We investigate the
aforementioned important clinical hemodynamical factors cFFR and WSS.

In the physiology of vessel macrocirculation the compliance plays a crucial role. However for
individual arteries the problem is still open and there is no gold standard that can be adapted into
clinical practice. For a discussion on assumptions in hemodynamic modelling of large arteries
we refer to [206, 225].

Numerous numerical studies were performed to compare rigid with compliant vessel simulations.
The results report reduction of WSS for compliant vessels compared to rigid walls. In the case
of a carotid bifurcation the authors of [194] reported significant WSS reduction, however have
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not observed significant changes in the flow patterns. Furthermore, computational studies of
flow in cerebral artery aneurysms indicated that rigid models tended to over estimate the WSS
magnitude [220]. Moreover, it is worth to mention that even vessels like the aorta, that are
often treated as rigid, can undergo substantial radial wall motion. The motion consists of bulk
deformation and wall compliance that results in notable changes of flow characteristics [136,
232].

3.2 Model Description
We consider a 3-dimensional domain Ω ⊂ R3, that represents a part of a vessel. The domain is
partitioned in the reference configuration Ω = F ∪I ∪S , where F is the fluid domain, S the
solid domain and I = ∂F ∩ ∂S is the fluid structure interface.

The velocity field v and the deformation field u are split into fluid vf := v|F , uf := u|F and
solid vs := v|S , us := u|S counterparts respectively. The pressure variable pf only exists on
the fluid domain.

The boundary of the fluid domain Γf := ∂F \I is split into the inflow boundary Γin
f and the

outflow boundary Γout
f . Similarly the solid boundary Γs = ∂S \I is split into inflow Γin

s and
outflow Γout

s boundaries. Boundary conditions are described in Section 3.3.

3.2.1 Fluid Material Model

Although, blood exhibits many unique properties, i.e. in certain regimes blood shows a non-
Newtonian behaviour, we confine this work to considering an incompressible Newtonian fluid
with the viscosity of µf = 0.033 g · cm−1s−1 and the density ϱf = 1 g · cm−3. The assumption of
a Newtonian model for blood rheology is widely accepted for large and medium vessels, see e.g.
[207]. The flow is governed by the Navier-Stokes equations

ϱf

(
∂tvf + (vf · ∇)vf

)
− µf div

(
∇vf +∇vT

f

)
+∇pf = 0 in F , (3.2.1a)

div vf = 0 in F . (3.2.1b)

3.2.2 Solid Material Model

Arterial walls consist of heterogeneous layers with significant difference in physical properties.
The schematic layer construction of an arterial wall consists of intima (inner layer), media
(middle layer), and adventitia (outer layer). For detail account we refer to [107] and [130]. We
briefly describe how the elastic constitutional law used in this work is derived.

Since arteries hardly change their volume within the physiological range of deformation [50],
they can be regarded as incompressible or nearly incompressible materials. This motivates the
application of a multiplicative decomposition of the deformation tensor (F) into its volumetric
part J 1

3 and the deviatoric part F̄:

F = I +∇us, F = J
1
3 F̄, where J = det F and F̄ = J− 1

3 F. (3.2.2)
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Its associated modified deviatoric Cauchy Green tensor C̄ then has the structure

C̄ = F̄T F̄. (3.2.3)

Thereby the free-energy function Ψ can be split in a volumetric and deviatoric part as described
in [130] or [115]:

Ψ = ΨV OL(J) + ΨDEV (C̄).

Artery and vein walls consist of elastin and colagen fibres. The measurements of stress-strain
curve exhibit stiffening effects at higher pressures due to the collagen fibres, c.f. [107]. Whereas
under low loading of the artery the properties of elastin dominates. This motivates to model the
artery as pseudo-elastic material. Following [82] and [130] we employ an exponential deviatoric
energy functional

ΨDEV (C̄) = µ

2γ

(
expγ(tr (C̄)−3)−1

)
. (3.2.4)

For the volumetric part of the energy functional the simple convex energy function

ΨV OL(J) = κ

2

(1
2(J2 − 1)− ln(J)

)
(3.2.5)

is used as stated in [22, 23]. By assuming hyperelastic stress response we obtain the second
Piola–Kirchhoff stress tensor Σs:

Σs(J,F) =∂ΨV OL(J)
∂C

+ ∂ΨDEV (C̄)
∂C

=µsJ
−2/3(I − 1

3 tr (FT F)(FT F)−1)eγ(J−2/3 tr (FT F)−3)

+ κs

2 (J2 − 1)J(FT F)−1,

(3.2.6)

with the material parameters µs = 44.2 kPa and γ = 20 as well as κs = 4998 kPa. Similar values
have been used in [19]. Moreover the solid density equals ϱ̂s = 1.2 g · cm−3.

The equation for the conservation of momentum in the elastic vessel wall is then given by

ϱ̂sdtvs − div
(

FΣs

)
= ϱ̂sfs in S , (3.2.7a)

dtus = vs in S , (3.2.7b)

where we formulated the hyperbolic problem as a first order system in time by introducing
the solid velocity vs and the deformation field us as separate variables. The solid problem is
formulated in the Lagrangian coordinates on the reference domain S , which is not moving with
time. Hence, the density ϱ̂s = 1.2 g · cm−3 is the reference density which is unaffected by any
compression or extension.

On the interior boundary of the solid domain, which is the interface to the fluid domain, the
typical coupling conditions of fluid-structure interaction problems are given. The proper handling
of the outer boundary, where the vessel is embedded in tissue, is a delicate task. For our study,
this difficulty is neglected and for further reading we refer to [174].
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3.2.3 Fluid-Structure Interactions
One aim of this work is to study the impact of coupled fluid-structure interactions on typical
blood flow configurations found in medical applications. We therefore couple the Navier-Stokes
equations (3.2.1) with the elastic material law (3.2.7) via coupling conditions on the common
interface I . The coupled dynamics of a fluid-structure interaction problem leads to a free
boundary problem with moving domains and a moving interface.

In the following, we briefly sketch the derivation of the coupled fluid-structure interaction prob-
lem. For details we refer to the literature [209, Chapter 5]. To overcome the mismatch of a
Navier-Stokes equations (3.2.1) defined in Eulerian coordinates, e.g. on the evolving fluid do-
main F (t), and the solid problem (3.2.7) derived on the fixed reference domain S we use the
well established concept of Arbitrary Lagrangian Eulerian (ALE) coordinates. See [87] or [209,
Chapter 5] for a detailed derivation. We denote by F the fixed fluid reference domain and by
Tf (t) : F → F (t) the ALE map. Then, the velocity and the pressure can be mapped onto
the fixed domain by defining v̂f := vf ◦ T−1

f and p̂f := pf ◦ T−1
f . This allows to transform the

Navier-Stokes problem in its variational formulation onto the fluid reference domain
(
Jf

(
∂tv̂f + (F−1

f (v̂f − ∂tTf ) · ∇̂)v̂f

)
,ϕ

)

F
+
(
Jf σ̂f F−T

f , ∇̂ϕ
)

F

+
(
Jf F−1

f : ∇̂v̂T
f , ξ

)

F
=
(
Jfϱf f̂ ,ϕ

)

F
,

(3.2.8)

where ϕ and ξ are test functions. We denote by Ff := ∇̂Tf the gradient of the deformation vari-
able and by Jf := det(Ff ) its determinant. Most characteristic feature of the ALE formulation
is the appearance of the domain convection term −(F−1

f ∂tTf ·∇)v̂ that takes care of the implicit
motion of the fluid domain. Furthermore, the Cauchy stress tensor is mapped to the reference
domain which gives rise to the Piola transform Jf σ̂f F−T

f . The reference stress is given by

σ̂f (v, p) = −p̂fI + ϱfνf (∇̂v̂F−1 + F−T ∇̂v̂T ).

It remains to describe the construction of the ALE map. Typically the ALE map is defined by
means of an artificial fluid domain deformation uf via

Tf (x, t) := x + ûf (x, t),

where ûf is an extension of the solid deformation us from S to the fluid reference domain F .
The most simple choice for the extension operator is to use a harmonic extension by implicitly
solving the vector Laplacian

−∆̂uf = 0 in F , uf = us on I , uf = 0 on ∂F \I . (3.2.9)

For a discussion of this extension operator we refer to the literature [209, Sections 3.5.1 and
5.3.5]. Hereby, Tf can be considered as a natural extension of the Lagrange-Euler map Ts(x, t) :=
x+us(x, t) such that we will skip the subscripts f and s when denoting the deformation T (x, t) :=
x + u(x, t), its gradient F = ∇T and its determinant J = det(F). In the following we skip all
hats referring to the use of ALE coordinates.

As the fluid reference domain F and the Lagrangian solid domain S do not move, they always
share the well defined common interface I . Here, we require the continuity of velocities, which
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is denoted by the kinematic coupling condition

vf = vs on I ,

continuity of normal stresses, denoted as dynamic coupling condition

FΣsn⃗ = Jσf F−T n⃗ on I ,

and finally, the geometric coupling condition which says that the evolving domains F (t) and
S (t) may not overlap and may not separate at the interface.

Since the velocity field and the deformation field are continuous across the interface, we formulate
the coupled fluid-structure interaction problem using global solution fields v ∈ H1(Ω)3 and
u ∈ H1(Ω)3. Hereby, the kinematic coupling condition and the extension condition uf = us

in (3.2.9) are strongly realized as parts of the function spaces. The dynamic coupling condition
is realized by testing the variational formulations of the Navier-Stokes equations and the solid
problem by one common continuous test function ϕ ∈ H1(Ω)3. The resulting variational system
of equations is given by

(
J(∂tv + (F−1(v− ∂tu) · ∇)v,ϕ

)
F

+
(
Jσ̂f F−T ,∇ϕ

)
F

+(ϱ̂s∂tv,ϕ)S + (FΣs,∇ϕ)S = (Jϱf f ,ϕ)F + (ϱ̂sf ,ϕ)S

, (3.2.10a)

(
JF−1 : ∇vT , ξ

)
F

= 0, (3.2.10b)

(∂tu− v, ψs)S = 0, (3.2.10c)
(∇u,∇ψf )F = 0. (3.2.10d)

For detailed account of monolithic formulations for fluid-structure interactions we refer to [209].

3.3 Simulation Setup
We perform pulsatile blood-flow simulations by numerically solving system (3.2.10). The simula-
tion setup that includes geometry and material parameters has been inspired by the Benchmark
paper [19]. Note however that in some of the cases the assumption of rigid vessel walls is
employed such that u = 0 and F = I on Ω. Then system (3.2.10) reduces to the standard
incompressible Navier-Stokes equations. In what follows we distinguish between FSI- and NS-
cases, respectively.

3.3.1 Geometry
The geometry of the computational domain reflects an idealized coronary artery. We show a
sketch of the geometry in Figure 3.1. It consists of three parts, two straight and one curved tube.
The straight parts are aligned with the x− and y− axes for inflow and outflow, respectively.
The centerline of the curved section is a part of a circle with center in (1, 0, 0) and radius R = 1.
It can be indicated as a parametrization ψC : [0, 3]→ R3

ψC(s) :=





(0,−1 + s, 0)T 0 ≤ s ≤ 1
(1 + cos(πs/2), sin(πs/2), 0)T 1 ≤ s ≤ 2
(s− 1, 1, 0)T 2 ≤ s ≤ 3.
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Figure 3.1: Computational domain showing Geometry 3 with a non-symmetric stenosis.

The fluid domain F is a cylinder around the centerline ψC(s) with radius rF = 0.15 cm. Fur-
thermore, the solid domain (i.e. the vessel wall) is a cylindrical outer layer of width 0.06 cm, i.e.
the outer radius is given by rS = 0.21 cm. These dimensions correspond to the dimensions of
realistic arteries.

We consider two stenotic and one non-stenotic configuration. The stenosis is modelled by a
reduction of the inner radius rF on the second part of the curved boundary. This can be
described by the parametrization

rsten
F (s) :=





0.15 cm 0 ≤ s ≤ 1.5
0.15 cm− 0.02 cm

(
cos(4πs)− 1

)
1.5 ≤ s ≤ 2

0.15 cm 2 ≤ s ≤ 3.

Moreover we proceed twofold. First, we consider a symmetric stenosis such that the fluid domain
is a cylinder of radius rsten

F (s) around the centerline ψC(s). Second, we modify the centerline in
such a way that the stenosis is only on the inner side of the curve. This is achieved by shifting
the centerline to match the radius variation, i.e.

ψshift
C (s) := ψC(s)− rsten

F (s)ω⃗(s),

where ω⃗(s) is the direction of the shift

ω⃗(s) =





(0,−0.02
(

cos(4πs)− 1
)
, 0) 1.5 ≤ s ≤ 2

(0, 0, 0)T elsewhere
.
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description centerline inner radius outer radius
Geometry 1 without stenosis ψC(s) 0.15 cm 0.21 cm
Geometry 2 symmetric stenosis ψC(s) rsten

F (s) 0.21 cm
Geometry 3 non-symmetric stenosis ψshift

C (s) rsten
F (s) 0.21 cm

Table 3.1: Summary of geometry configurations. Figure 3.1 shows Geometry 3.

In both stenotic configurations, the resulting reduction of the radius equals 0.04 cm and the lumen
area shrinks by 46% from 0.152π cm2 ≈ 0.07 cm2 to 0.112π cm2 ≈ 0.038 cm2. Computational
geometries are summarized in Table 3.1. Figure 3.1 shows Geometry 3.

3.3.2 Boundary Conditions
The blood flow is enforced by a Dirichlet inflow condition on the inflow boundary Γin

f given
by

Γin
f = {(x,−1, z) ∈ R3 |

√
x2 + z2 < 0.15 cm}.

We prescribe a parabolic inflow profile

vin(x, y, z, t) = vmax(t)
(

1− x2

0.152 cm2 −
z2

0.152 cm2

)
(0, 1, 0)T ,

where the maximum value vmax(t) is presented in Figure 3.2. The temporal inflow profile (3.3.1)
consists of three stages:

• Ramp phase (0 s ≤ t ≤ 0.1 s) with increasing inflow rate.

• Steady phase (0.1 s < t ≤ 0.3 s) with constant inflow rate.

• Pulsatile phase (0.3 s < t) with pulsatile inflow corresponding to heartbeats.

vmax(t) = 1
28.3





0.5(1.0− cos(πt/0.1))3.0 0 ≤ t ≤ 0.1
3.0 0.1 ≤ t ≤ 0.3
5.931
− 1.3933 cos(2π1t) + 1.3532 sin(2π1t)
− 0.9409 cos(2π2t) + 0.2332 sin(2π2t)
− 0.3026 cos(2π3t)− 0.1190 sin(2π3t)
− 0.2264 cos(2π4t)− 0.0631 sin(2π4t)
− 0.1064 cos(2π5t)− 0.2137 sin(2π5t)
+ 0.0402 cos(2π6t)− 0.0691 sin(2π6t)
− 0.0307 cos(2π7t)− 0.0451 sin(2π7t)
+ 0.0271 cos(2π8t)− 0.0735 sin(2π8t)

0.3 ≤ t ≤ 3.3
(3.3.1)

The third pulsatile part is an approximation, by means of a Fourier series of order 8, of a typical
coronary velocity profile provided by [1].

For the outflow of the fluid on Γout
f in the FSI case we apply absorbing boundary conditions:
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Figure 3.2: Inflow profile. The exact flow rate is given in (3.3.1).

(σn+1
f · n)|Γout =



(√

ϱf

2
√

2
Qn

An
+
√
p∗
)2

+ pe − p∗


 n, (3.3.2)

where p∗ = E
1−ν2 . The condition is equipped with the reference pressure pe which is chosen such

that a vascular pressure of 80 mmHg at t = 0.3 s is achieved. The absorbing condition explicitly
disallows pressure waves to reenter the domain, for details see [184]. The structure is fixed at
the inflow boundary and is allowed to move in y-z direction at the outflow boundary.

In order to compare both rigid and elastic computations, we run the FSI simulation first and
then prescribe the resulting reference pressure profile Pref (t) at the outflow boundary in the
rigid wall case such that

〈(
ϱfνf∇vf − pI

)
n⃗,ϕ

〉
Γout

f

=
〈
Pref (t)n⃗,ϕ

〉
Γout

f

.

This is the usual do-nothing outflow condition including a pressure offset, see [129].

The first two phases of (3.3.1) are designed to reach the intravascular pressure of 80 mmHg. This
procedure resembles pre-stressed of the vessel wall and it is required to apply the nonlinear solid
law described in Section 3.2.2 in the right tract of the stress-strain curve. We first start the FSI
simulation on the undeformed stress free reference domain and pre-stress the geometry by the
ramp and steady phases. The resulting geometry at t = 0.3s is then extracted to compute the FSI
as well as the Navier-Stokes simulation on this deformed geometry. This geometry corresponds
to a reconstructed artery geometry from MRI or CT images, as during the measurements the
blood flows with the pressure of at least 80 mmHg through the blood vessel. Due to the stiffening
effects of the material only small deformations will occur if the pressure is increased further. If
only the geometry from MRI or CT images is available one has to recompute the stress free
geometry to be able to observe these minor deformations due to the stiffening of the elastin
fibres. As the stress free reference domain is known here a priori, pre-stressing procedures as
discussed in [111] do not need to be applied.

3.3.3 Initial Conditions

The system is initially at rest as we start the simulation with zero velocity, zero displacement and
zero pressure at the boundaries. The FSI simulation is computed on the undeformed reference
domain, see Section 3.3.1. In the NS case, the geometry is rigid and corresponds to the deformed
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pipe which we obtain in the FSI simulation at time 0.3. Thus the NS geometry already takes
the deformation by the ramp and steady phases into account.

3.4 Numerical Approximation, Solution and Implementation
The realization of a numerical framework for monolithic fluid-structure interactions is very chal-
lenging and a detailed description is not possible in one manuscript. We therefore give a brief
description and refer to the relevant and detailed literature. See [209] for a comprehensive
overview.

We employ a very strict form of the ALE formulation, where all equations are solved on the
reference domain. No mesh update is used. This prevents the necessity of projections between
moving meshes and also it is the only straightforward approach for obtaining higher order dis-
cretization in time [211]. In principle this approach allows for direct Galerkin discretizations of
the monolithic variational formulation (3.2.10) and the choice of finite element spaces should be
based on the following considerations.

• The finite element mesh should resolve the fluid-structure interface I in reference frame-
work.

• In the fluid domain, the velocity-pressure pair Vh ×Qh should fulfil the inf-sup condition
to cope with the incompressibility constraint. Or, if a non-stable finite element pair is
used, stabilization terms must be added. Our realization is based on equal order tri-
quadratic elements for pressure and velocity, enriched with the local projection stabilization
method [24].

• To reach a balanced approximation of the velocity-deformation pairing the same function
space is used for the global deformation field.

To sum up, the discrete solution Uh := (vh,uh, ph) is found in the space Xh = [Vh]3× [Vh]3×V f
h ,

where Vh extends over the complete domain and V f
h over the fluid domain only.

In time we use a variant of the Crank-Nicolson time discretization scheme that gives better
stability properties by an implicit shifting. We refer to [211] for details. By restricting (3.2.10)
to the fully discrete setting, a system on nonlinear algebraic equations arises in each time step.
As nonlinear solver we employ a Newton scheme with an analytical evaluation of the Jacobian,
see [213] or [209, Section 5.2.2] for details on the derivation.

The resulting linear systems of equations are very large and extremely ill-conditioned with
condition numbers that are by far larger than those of fluid and solid equation on their own,
see [214, 12] for numerical studies. The approximation of these systems is still a great challenge,
in particular if it comes to 3d applications. Only few fast solvers for the nonlinear setting are
available [214, 12, 137]. Our approach is based on a multigrid solution that appears to be
superior in 3d. In [96] we present the solution approach, which is based on a partitioning of the
Jacobian based on two simple strategies:

1. Within the Navier-Stokes equations we neglect those parts of the Jacobian that come from
the derivative with respect to the domain extension uf . The resulting nonlinear solver is
an approximated Newton method that however still solves the original problem since the
residual is exact. In [209, Section 5.2.3] and [96] we have found that such an approximated
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Newton solver is even more efficient, despite slightly increased iteration counts. This is
due to the very costly evaluation of the full Jacobian that is not required in our approach.

2. We exploit the discretization of the equation dtus = vs. Precisely, if we consider the
Crank-Nicolson scheme

un
s = un−1

s + k

2

(
vn−1

s + vn
s

)

we replace the dependency of the solid stress tensor on the deformation by the velocity,
i.e. we replace the term Σs(un

n) by

Σs(us) = Σs

(
un−1

s + k

2
(
vn−1

s + vn
s

))
.

This equivalent transformation allows us to completely remove the new solid deformation
un

s from the discretized momentum equation, see [96].

The combination of these two modifications allows for a natural splitting of the Jacobian within
the multigrid smoother. Further, it allows to apply very simple iterations of Vanka-type, as
smoother in the geometric multigrid preconditioner, that are easy to parallelize. In [96, 95] we
have demonstrated the efficiency of the approach in different 3d configurations. The implement-
ation is based on the finite element toolkit Gascoigne3D [39].

In the context of hemodynamical fluid-structure interactions, a family of exact and inexact
Newton methods based on a separate treatment of the physical coupling conditions, the interface
location and the fluid- and solid-fields was previously studied in [185].

3.5 Simulations
We finally use the presented finite element framework for a computational analysis of several
hemodynamic parameters that are relevant to answer clinical questions. We focus on the de-
pendence of these parameters on the elasticity of the vessel walls. The additional effort of fully
coupled fluid-structure interactions over pure Navier-Stokes simulations is immense and should
be justified by corresponding effects.

The behavior of three specific parameters is investigated. The wall shear stress (WSS) plays an
eminent role in several applications. It is used as indicator to model the growth of atherosclerotic
plaques [245, 210] but also when it comes to deriving measures to evaluate the risk of plaque
rupture [152] or the rupture of aneurysms [55]. Both the minimum wall shear stress and the
distribution of the wall shear stress on the vessel walls are important measures. In Section 3.5.1
we analyze the effect of the different complexities, Navier-Stokes and fluid-structure interactions,
on the WSS distribution in all three different geometries.

Furthermore we analyze the computational fractional flow reserve (cFFR). The fractional flow
reserve (FFR) is a technique that measures pressure differences across a stenosis. In medical
practice, the FFR is determined by inserting a catheter in the artery and measuring flow para-
meters at maximum blood flow. During the procedure, the tip of the catheter, where the sensor
is located, is retrieved, such that measurements are available along the affected section of the
vessel. Healthy vessels should give a pressure ratio close to 1. If the ratio drops below 0.8, i.e.
a 20% drop in pressure, the stenosis is considered to be severe [230]. Aim of the computational
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fractional flow reserve is to replace the risky intervention by computer simulations based on
medical imaging.

Finally, we discuss the amplitude of the pressure oscillation during one heart cycle. In clinical
observation it is usually observed that the amplitude significantly drops after a stenotic region
in a blood vessel. By comparing Navier-Stokes simulations with coupled fluid-structure interac-
tions, we will show that this effect can only be described by considering the fully coupled model
including elastic vessel walls.

3.5.1 Wall Shear Stress (WSS)

The tangential component of the surface force at the vessel wall is denoted as wall shear stress
(WSS). By means of the Cauchy’s theorem we have

WSS = (σf (v, p)n⃗ · τ )τ = [I − n⃗n⃗T ]σf (v, p)n⃗, (3.5.1)

where n is a unit outward normal vector to the vessel wall and τ i corresponding tangential
vector. Note that WSS is a vector and its often confused with its magnitude |WSS|2 which is a
scalar quantity denoted by wss.

The plots of the wall shear stress are presented on the boundary of the fluid domain, see Fig-
ure 3.3, Figure 3.4 and Figure 3.5. The surrounding solid is removed from these plots such that
only the fluid domain is given.

We use the same scale ranging from 0 Pa to 20 Pa in all figures. The distribution of wss is always
presented for 3 different points in time. First, when the pulsatile flow reaches its minimum
inflow pressure, then, at maximum pressure and finally for an intermediate pressure value. Each
specific situation is shown from two different angles, such that the inner and outer surfaces are
well visible.

Comparing the coupled fluid-structure interaction model (left) with the pure Navier-Stokes flow
(right) always shows much higher wss values in the Navier-Stokes case. Regions of very high
wss are only found in the outside of the curve in the case of Navier-Stokes. In the case of the
FSI model, the values are smoothly spread. In general, the vessels are widened and show a larger
diameter of the lumen in the case of FSI. Due to computation of the Navier-Stokes simulations
on the deformed domain from the FSI simulation after the ramp phase (3.3.1) with pressure of
80mmHg and the stiffening effects of the material law the diameter between NS and FSI only
varies slightly.

Figures 3.4 and 3.5 show a shift of the wall shear stress distribution. High values are found
all around the stenosed parts, on the inside and the outside of the curved areas. Again, the
Navier-Stokes model is not able to yield an equal distribution of wss around the cylinder surface
and it only concentrates on the outside of the curved section.

To sum up, it appears to be important to consider elastic fluid-structure interactions, if the
spatial distribution of the wall shear stress is of interest. The Navier-Stokes model is nearly
unaware of the stenosis and always concentrates the WSS on the outside of the curved region.
If rupture locations [55] or localized growth processes are of interest [245, 210], the use of FSI is
essential.
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description FSI NS

Geometry 1 without stenosis 0.99 0.96
Geometry 2 non-symmetric stenosis 0.96 0.94
Geometry 3 symmetric stenosis 0.96 0.95

Table 3.2: Values of cFFR analysis in all three geometries, considering the fully coupled fsi model and the
pure Navier-Stokes case.

3.5.2 Computational Fractional Flow Reserve (cFFR)
The computational fractional flow reserve (cFFR) is the ratio of the maximum blood pressure
after the stenosis (distal) and before the stenosis (proximal). We denote by pd the distal pressure
and by pa the proximal pressure such that the computational fractional flow reserve is defined
by

cFFR = pd

pa
.

In our configuration, see Figure 3.1, we evaluate the distal and proximal values in

pa = p(0, 0, 0) and pd = p(1.7, 1, 0). (3.5.2)

Since the cFFR varies slightly with time the maximum value over the cardiac cycle is computed.
Further computational aspects of cFFR are covered by the recent benchmarking paper [54]. In
healthy vessels we expect cFFR ≈ 1 and in the medical practice, a stenosis with cFFR > 0.8 is
considered to be functionally non significant [230]. No medical intervention, e.g. by placing a
stent would be required.

The results of cFFR computations are presented in Table 3.2. The first striking observation is
that the Navier-Stokes model is not able to reflect the presence of the stenosis at all. A pressure
drop of about 5% is observed for all configurations and is only due to the curvature of the domain.
The FSI model is well able to yield cFFR ≈ 1 in the case of the healthy configuration and shows
a loss of about 5% in both stenotic geometries. Based on these simulations, the stenosis would
not be considered to be severe and in the need of an intervention. These results clearly show
that a pure Navier-Stokes simulation is not able to serve as computational basis for replacing
the medical FFR procedure by simulations.

3.5.3 Pressure Amplitude
The third quantity of interest is the dynamic pressure amplitude before and after the stenosis,
i.e., a temporally resolved analysis of the proximal and distal pressures pa and pd evaluated in
the coordinates as mentioned in (3.5.2). We study the progress of the pressure to investigate
possible damping effects of a stenosis. The change of the pressure profile after a strongly stenotic
region, is reported as an assessment tool for cardiovascular risk [203].

We show the evolution of the pressures pa(t) and pd(t) over the third heart beat in Figure 3.6. On
the left, we show results for the fully coupled FSI models, on the right we give the corresponding
pressure lines for the Navier-Stokes case. Comparable to the cFFR study given in the previous
section, the most striking observation is the invariance of the Navier-Stokes solution to the kind
of vessel geometry. For all cases, healthy vessel, centered stenosis and non symmetric stenosis,



48 Chapter 3 On the Impact of Fluid-structure Interaction in Blood Flow Simulations

Navier-Stokes FSI
proximal distal drop proximal distal drop

Geometry 1 39.2 32.7 7.5 32.1 31.4 0.7
Geometry 2 41.0 33.4 7.6 35.8 30.5 5.3
Geometry 3 41.3 33.6 7.7 35.8 30.4 5.4

Table 3.3: Pressure Amplitude in mmHg. We compare the drop of the amplitude over the stenotic region and
compare the results for pure Navier-Stokes flow (left) with fully coupled fluid-structure interactions
(right).

the Navier-Stokes results are nearly identical and always indicate a loss in pressure amplitude
of about 7.5%. In contrast, the FSI solution is able to better preserve the oscillation in the case
of the healthy vessel and shows a drop of about 5% for the two stenotic cases. A closer look
reveals that the distal pressure lines are very similar in all cases. The slight oscillations in the
distal pressure in case of the FSI simulation are not numerical instabilities. Instead they stem
from the oscillatory behavior of the elastic vessel wall.

Finally, Table 3.3 collects the amplitudes before and after the stenosis. This third study also
shows enormous qualitative and quantitative discrepancies between the simulation results de-
pending on the model under consideration.
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Figure 3.3: Wall Shear stress for Geometry 1 (without stenosis). On the left FSI, on the right NS. We show
each configuration from two different perspectives, such that inner and outer region of the curved
arch are visible. Small oscillations in the NS case are visual effects due to projections of the wall
shear stress onto the curved boundary only.

https://youtu.be/YBufeDCtPro https://youtu.be/b7ac-hhMPJA

https://youtu.be/YBufeDCtPro
https://youtu.be/b7ac-hhMPJA
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Figure 3.4: Wall Shear stress for Geometry 2 (symmetric stenosis). On the left FSI, on the right NS. We
show each configuration from two different perspectives, such that inner and outer region of the
curved arch are visible.

https://youtu.be/dskynFT6iqQ https://youtu.be/IIiyHBq7UmE

https://youtu.be/dskynFT6iqQ
https://youtu.be/IIiyHBq7UmE
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Figure 3.5: Wall Shear stress for Geometry 3 (non-symmetric stenosis). On the left FSI, on the right NS. We
show each configuration from two different perspectives, such that inner and outer region of the
curved arch are visible.

https://youtu.be/eGqmM7iYMwY https://youtu.be/rkQmzF-dFIo

https://youtu.be/eGqmM7iYMwY
https://youtu.be/rkQmzF-dFIo
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Figure 3.6: Distal and proximal pressure for one cardiac cycle



CHAPTER 4

Patient-specifc Simulation
of Blood Flow in Cephalic Arch

The content of this chapter is joint work with Lukas Failer and Thomas Richter. We present
research results of the project “Simulation and Optimization of Blood Flows in damaged Ves-
sels” founded by the Federal Ministry of Education and Research of Germany, grant number
05M16NMA. In what follows, we refer to this grant as a project.

Chapter Summary. We develop a prototypical computational tool that supports clinical de-
cision making for patients with stenosis. Blood flow is simulated as Newtonian fluid and
Fluid-structure interactions on patient-specific geometry that is reconstructed from medical im-
ages.

Focus is put on the cephalic arch in patients with end-stage renal disease. These patients
require a surgical arteriovenous connection for dialysis treatment. As a result, it changes flow
characteristics in the cephalic vein that causes abnormal blood flow and, in consequence, cephalic
arch stenosis (CAS).

We perform virtual stenting and evaluate the effect of placing stents on flow characteristics and
hemodynamical factors. Finally, we discuss the application of adapted patient-specific simulation
to the evaluation of surgical treatment.
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Cephalic vein

Axillary vein

Brachiocephalic shunt

Figure 4.1: Anatomy of the cephalic arch and brachiocephalic shunt.

4.1 Introduction
We study patient-specific blood flow patterns in the cephalic arch for patients with an arteri-
ovenous shunt. The cephalic arch is the final segment of the cephalic vein before its’ confluence
to the axillary vein to form the subclavian vein. A brachiocephalic shunt or fistula is an artifi-
cial connection constructed between brachial artery and cephalic vein usually at the level of the
distal forearm, see Figure 4.1 for an anatomic sketch.

The construction of efficient and long-lasting artificial vascular accesses is one of the crucial
points in long term treatment for patients suffering from end-stage renal disease (ESRD). When
an arteriovenous shunt is placed, the cephalic vein’s pressure and flow rates exceed the local
physiological range by orders of magnitude. Alteration of the flow conditions is often associated
with complications caused by the abnormal flow conditions In consequence, vascular access may
fail to provide adequate conditions for efficient hemodialysis. Brachiocephalic shut falls prey
to thrombotic incidents, mainly due to excessive neointimal hyperplasia and, consequently, to
stenosis localized in the cephalic arch. For a detailed medical description of cephalic arch stenosis
CAS we refer to [208, Chapter 19].

CAS is commonly treated with percutaneous transluminal angioplasty (PTA) and stenting. This
procedure involves using a catheter with a balloon to widen narrowed or obstructed arteries or
veins. Later if necessary, the stent is placed to widen the narrow vessel permanently. See
Figure 4.2 for three intravascular images, before and after PTA and after stenting.

Patient-specific blood flow simulations in the cephalic arch is a challenging problem. The vein
wall geometry and its’ mechanical properties vary between patients, and they change in time
due to damage and overgrowth inflicted by the altered flow conditions. In addition, the cephalic
vein is artificially embedded in the arterial part of the circulatory system when an arteriovenous
shunt is placed. This means that appropriate inflow and outflow conditions must be found. We
address these challenges in the following sections.

Our study aims to develop a prototype of a computational tool that supports clinical decision
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making. A precise knowledge of the local flow conditions in the context of physiological alter-
ations enables the appropriate adjustment of surgical treatment, e.g. the choice of stents that
are used to cure the stenosis. Since cephalic arch stenosis occurs only in patients treated with
hemodialysis, no specific stents have been designed deliberately for this anatomic configuration.
Furthermore, the manufacturers have no recommendations on which stent could be appropriate
for that particular application. The knowledge gained in the project enables the clinical partner
to understand better the natural history of the progressive disorder and better assess the chances
of success of different therapy options. In addition, the industrial project partners are now in a
position to adapt their product range to diseases such as cephalic arch stenosis in the context of
individualised medicine.

The application of computational fluid dynamics (CFD) to blood flow in cephalic arch has been
studied in [3], where the authors showed that a well-defined physiological WSS target range
can accurately predict the durability of patient-specific access. Similarly in [118] it has been
demonstrated that fistula failure is associated with the changes in wall shear stress resulting
from post-fistula alteration of hemodynamic characteristics that occur in the cephalic arch.

Commercial software solutions are currently not available to simulate the mathematical models
used here. Therefore, an essential part of the project was the extension of the finite element
toolkit Gascoigne [39] to compute patient-specific blood flow conditions with the necessary ac-
curacy in adequate time. In this chapter, we describe the prototype tool that may be further
developed to support clinical decision-making process.

4.2 Medical Data and Domain Reconstruction
An essential part of the project was the creation of a geometry of the cephalic arch. There is
currently no commercially available software that can automatically perform this task.

In this section we describe the reconstruction of the vein geometry from medical images. The
position of the centerline of the vein is determined based on two X-ray images, see Figure 4.3.
The diameter of the vein is reconstructed from intravascular ultrasound IVUS images, see Fig-
ure 4.2.

Data Source Anonymised medical data presented in this chapter have been obtained by project
partner OA Dr. Vladimir Matoussevitch from University Hospital of Cologne.

4.2.1 Intravascular Ultrasound Images
During the surgery IVUS images are used to determine the exact diameter of the stenosis. The
IVUS device is pulled back along a wire. In the middle of the IVUS picture one can see the tip
of the device. Around it, there is the black lumen of the vein surrounded by walls that we see
as white. The reconstruction is based on the representation of an image in polar coordinates.
We detect the vessel wall based on the steep gradient of the color value. Irregularities in the
detected points (red) are smooth out by fitting an ellipse with the least squares method (blue).
The thickness of the vessel wall is fixed, see the vessel outer boundary (orange, colors refer to
Figure 4.2). Moreover, note that the clearly visible white circle on the right picture of Figure 4.2
is a stent.
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Figure 4.2: Intravascular ultrasound images for three cases: before PTA (left), after PTA (center), and with
stent (right).

Figure 4.3: Position of the wire for IVUS from top(left) and side(right).

4.2.2 X-Ray Images

When the IVUS wire is placed into the patient X-ray images from the top and the side are
available, see Figure 4.3. The IVUS pictures contain only the information about the diameter
of the vein. However, we don not know a three-dimensional position of the wire. Two X-ray
images enables us to reconstruct the vein centerline.

The position of the second image from the side is rotated around the x-axes by 80◦. For every
marker we obtained the projected position in two planes. This enables us to reconstruct the
position in three-dimensions (vx, vy, vz). We can directly determine vx and vz from one image
and recompute vz via transformation of the values in the second image in the coordinate system
of the first image

vz = sin(θ)vy′ + cos(θ)
sin(θ)vy′ − 1

sin(θ)vy. (4.2.1)

In the original images a value of 60 px corresponds to 1 cm. Thereby we get a distance between
the markers of 1 cm. Moreover, we assume that the IVUS device is pulled back smoothly with
a constant velocity and we determine the final position of the IVUS via an additional x-ray at
final time. Finally, we place the IVUS images equidistantly distributed orthogonal to the wire
and perform additional smoothing in the direction of the wire to obtain final reconstruction of
the vein surface.
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Figure 4.4: Position of the markers in images from Figure 4.3 in two coordinate systems (center at the center
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Figure 4.5: Image 2 is rotated around the x-axis via the angle θ.
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4.2.3 Meshing
The next step of the workflow is a creation of computational mesh. We construct a coarse finite
element grid of hexahedra, based on the centerline of IVUS catheter. The wire is placed in the
cephalic vein and the outflow part of the axillary vein. The inflow part of the axillary vein is
added artificially. During refinement the coarse grid is adapted to the surface geometry.

Reconstruction Error The work on domain reconstruction has led to the conclusion that there
exist significant geometry uncertainty in patient-specific simulations. We addressed this issue in
Chapter 2 and [169].

4.3 Model of the Vein
In Chapter 3 we have developed a stenotic coronary artery benchmark. For a simulation of the
cephalic vein, previous models that described arteries had to be adapted to the special configur-
ation of the vein. We refer to Section 3.2 for a detailed discussion on the artery modelling.

The derived hyperelastic stress-strain relation (3.2.6) models an approximately incompressible
material and a stiffening effect due to collagen fibres. Since veins have a similar construction as
arteries the model is still valid. However, one has to choose appropriate material parameters.

To determine the material values for the vein in the subclavian and cephalic vein we adapt the
parameters µ and γ such that the behavior matches the tube law presented in [183]

p(x, t) = pe(x, t) +K(x)ϕ(A,A0), (4.3.1)

where
ϕ(A,A0) =

(
A

A0

)m

−
(
A

A0

)n

,

with practical choices

K(x) = Kv = c2
0ϱs

m− n, m ≈ 10, n = −3
2 .

Here pe(x, t) prescribed the reference pressure and A0(x) the vessel cross-sectional area at equi-
librium. The wave speed for the subclavian vein is assumed to be 1.437 m/s. This corresponds
to Kv = 197.5 Pa. For the parameter study we use a tube of length 10 cm with radius 0.5 cm
and wall thickness 0.1 cm. These values are in the same range as the values used for subclavian
vein. At the in and outlet we smoothly increase the pressure in the time interval I = [0, 1 s] and
observe the change in the domain in the middle of the cylinder. We set the reference pressure
to 0 mmHg and assume the cylinder to be at rest.

According to the parameter study, see Figure 4.6, we use µ = 20 kPa, γ = 30 and κ = 200 kPa.
These values are in the same range as the parameters determined in [82]. According to [107]
veins contain a relatively high amount of collagen; the elastin/collagen ratio is about 1 : 3. Hence
the exponential stiffening effects are much higher in veins then in arteries. Therefore, the larger
value of γ is appropriate.

For the remaining parameters we recall values from Chapter 3, i.e. the fluid viscosity of µf =
0.033 g · cm−1s−1, the density ϱf = 1 g · cm−3, and the solid density equals ϱ̂s = 1.2 g · cm−3.
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Figure 4.6: The relation of the change in area with respect to pressure.

Figure 4.7: Vein surface reconstructed from IVUS and X-ray images.

4.4 Simulations Setting

We perform pulsatile blood-flow simulations, on the patient-specific computational mesh. Sim-
ilarly to Chapter 3 we perform comparison between rigid and elastic vessel walls. Additionally
the mesh is modified to reflect geometry after the stent is placed.

Boundary and Initial Conditions

The computational effort of three-dimensional flow models only allows the calculation of flow
in a small area around the cephalic arch stenosis. Suitable pressure or flow rates must then be
prescribed at the edge of the simulation area. However, these are not directly available from
measurement data. Usually only average values are known or the measurements are taken in
areas far from the inflow/outflow boundaries. In addition, the measurement data are usually
highly error-prone and cannot be used directly for simulations.
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Figure 4.8: Boundary values obtained from one-dimentioal whole body circulation model.

Navier-Stokes FSI
WSSmin 0.042 Pa = 3.17 · 10−4 mmHg 0.068 Pa = 5.09 · 10−4 mmHg
WSSmax 1.176 · 102 Pa = 0.88 mmHg 1.018 · 102 Pa = 0.76 mmHg

Table 4.1: Values of WSS for stenotic cephalic arch geometry. We compare the results for Navier-Stokes flow
(left) with fully coupled fluid-structure interactions (right).

Boundary values were obtained from a customized one-dimensional whole body circulation model
developed by Computational Life [64]. The considered scenario is non-standard, since the vein
is directly connected via the shunt with the artery. Thus, the customization was made to reflect
this abnormal connection. In Figure 4.8 we present the values of the flow rate and the pressure
for one heart cycle.

Implementation The realization of a numerical framework for monolithic fluid-structure inter-
actions has been briefly discussed in Section 3.4, see also [209] for a comprehensive overview.
The implementation is based on the finite element toolkit Gascoigne3D [39].

4.5 Wall Shear Stress

Figure 4.9: WSS for patient-specific geometry with stent at time t = 0.3 (left) and t = 0.6 (right).

Let us recall, that the wall shear stress (WSS) plays an important role in several applications,
c.f. Section 3.5.1. It is used as an indicator to model the development of stenosis. We recall that
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WSS is defined as the tangential component of the surface force at the vessel wall, c.f. 3.5.1.

Figure 4.10: Wall shear stress for patient-specific geometry with stenosis, at time t = 0.3. On the left
FSI, on the right NS. For both models we show streamlines (top) and WSS from two different
perspectives (middle and bottom). A video of the FSI simulation of the blood flow in the cephalic
arch is available at https://youtu.be/6JspqmnnCQc.

We compare fully coupled fluid-structure interactions with Navier-Stokes simulations in patient-
specific geometry. The plots of the wall shear stress are presented on the boundary of the fluid
domain, see Figure 4.10. The surrounding solid is removed from these plots such that only the
fluid domain is given.

We observe the distribution of the WSS the vessel walls from two different angles with large
values in the vicinity of stenosis. Note the localisation of WSS at the outer boundary. Similar
bahaviour has already been observed for coronary artery benchmark.

In Table 4.1 minimal and maximal values of WSS are presented. The use of FSI model reduces
WSS by 14%.

https://youtu.be/6JspqmnnCQc
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We conclude that it is important to consider elastic fluid-structure interactions, if the spatial
distribution of the WSS is of interest. Computational tools based on the Navier-Stokes model
tend to overestimate the WSS values.

4.6 Virtual Stenting
Based on the reconstructed surface of the vein geometry, we develop tools that enable simulation
of an intervention, such as a virtual stenting. The geometry is altered in order to represent the
vein with a stent.

The computations are performed for rigid walls, see Figure 4.11. We observe that stented
geometry reduces maximal flow rate. Comparing Figure 4.9 with Figure 4.10 shows significant
reduction of the WSS in the formerly stenosed arena of the cephalic vein.

Virtual stenting procedures can be performed for the range of stent geometries. In such a way
the results of simulation could be introduced for the support of individualised therapy.

4.7 Support of Clinical Decision Making
Computer simulations have become an integral part of product development and testing in
mechanical engineering. This allows modifications to be implemented virtually quickly and cost-
effectively and potential weak points to be found. In medicine, simulations are still very rarely
used in investigating diseases and developing possible therapies. However, they could contribute
to a great gain in knowledge. For example, surgical interventions could be adapted virtually and
information from CT and MRI could be processed further.

The central object of the project work was the development of new numerical approximation
methods as well as the implementation of powerful software components on high-performance
computers so that realistic configurations can be simulated using complex and detailed math-
ematical models. One of the main mathematical difficulties encountered in the simulations of
such complex flow processes are the grid generation, which must lead to hierarchically nested
computational grids in order to be coupled with the fast multigrid solvers within the CFD
tools.

The project aimed to evaluate precisely these possibilities in the field of vascular diseases. As
an example, a cephalic arch stenosis in dialysis patients was examined more closely.

Accurate knowledge of the flow allows for the adjustment of stents used to treat the stenosis.
Because cephalic arch stenosis is a complication that only occurs in dialysis patients, no specific
stents have been developed for this configuration. Furthermore, there are no recommendations
from the manufacturers as to which stent developed so far can be optimally used for this sten-
osis.

The knowledge gained in the project enables the clinical partner to better understand the course
of the disease and to better assess the chances of success of different therapy options. In addition,
the industrial project partners are now in a position to adapt their product ranges to diseases
such as cephalic arch stenosis in the sense of individualised medicine.
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Figure 4.11: Wall Shear stress for patient-specific geometry with stenosis, times t = {0.0, 0.3, 0.6, 0.9}. On
the left FSI, on the right NS. For both models we show streamlines (top) and WSS from two
different perspectives (middle and bottom).

https://youtu.be/fYX1BiZkYtE https://youtu.be/ea3LSbbl63g

https://youtu.be/fYX1BiZkYtE
https://youtu.be/ea3LSbbl63g




CHAPTER 5

Transport of Congestion in Two-Phase
Compressible/Incompressible Flows

The content of this chapter is joint work with Pierre Degond and Ewelina Zatorska, and is
published in the paper

P. Degond, P. Minakowski and E. Zatorska. ‘Transport of Congestion in Two-phase
Compressible/Incompressible Flows’. In: Nonlinear Analysis: Real World Applications 42
(2018), pp. 485–510. doi: 10.1016/j.nonrwa.2018.02.001

Chapter Summary. We study the existence of weak solutions to the two-phase fluid model with
congestion constraint. The model encompasses the flow in the uncongested regime (compressible)
and the congested one (incompressible) with the free boundary separating the two phases. The
congested regime appears when the density in the uncongested regime ϱ(t, x) achieves a threshold
value ϱ∗(t, x) that describes the comfort zone of individuals. This quantity is prescribed initially
and transported along with the flow. We prove that this system can be approximated by the
fully compressible Navier-Stokes system with a singular pressure, supplemented with transport
equation for the congestion density. We also present the application of this approximation for
the purposes of numerical simulations in the one-dimensional domain.

Chapter Organization. In Section 5.2, we present details of approximation and prove the exist-
ence of solutions to the system (5.1.10) for ε fixed. Then, in Section 5.3, we recover the two-phase
system (5.1.15) by letting ε→ 0. After this, in Section 5.4 we recover the solution to the original
two-phase system (5.1.1). Finally, in Section 5.5 we briefly describe the numerical scheme and
present computational examples that illustrate the behaviour of approximate solutions to the
system (5.1.1).

https://doi.org/10.1016/j.nonrwa.2018.02.001
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5.1 Introduction
Our aim is to analyze the free-boundary two-phase fluid system that could be used to model
the congestions in the large group of individuals in a bounded area. Individuals are just the
agents that have their own preferences for how close they let the closest neighbour to approach
and they carry this information with them in the course of motion. They do not follow any
neighbour trying to align their velocities, nor they are trying to reach a certain target, as for
example, the evacuation point. We simply prescribe their initial velocity that determines their
direction of motion and check how the individual preferences as well as the initial distribution
of the agents determines creation of congestions. Such model could be used as a building block
of more involved crowds modelling [161], some progress in this direction has been made in our
recent numerical work [79].

Crowd modelling is a problem of strategic importance for safety reasons. It has been studied
in many parallel approaches. We can distinguish, for example, the mean-field game models
[86, 146], in which the individuals behave as the players following some strategy, or optimizing
certain cost; the microscopic models which describe precise position and velocity of an individual
(Individual-Based-Models) using Newtonian framework [114, 124, 233, 123]; or the macroscopic
models formulated in the language developed for the fluids [52, 125, 76, 132, 202]. The behaviour
of the crowd in the later is characterised by some averaged quantities such as the number density
or mean velocity. The macroscopic models, although less precise than the microscopic ones, are
computationally more affordable. Moreover, they allow for asymptotic studies that proved to
be useful for understanding various aspects like: swarming or pattern formation observed in the
experiments.

It is an extensive filed of research to develop continuum models that are able to exhibit features
of the kinetic approach. Although it would be desirable to use computationally cheap fluid
approach to describe the crowd dynamics, the nowadays models are not developed enough to
recreate behaviour observed in real world. In this paper we present, as far as we know, the
first mathematical result for the fluid model that incorporates various sizes of the individu-
als/particles and their inhomogeneities. Similar approach has been recently applied in [195] in
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the context of granular media flow with memory effects. In order to use this model for more
specific applications, its current version needs to be supplemented with agents specific features
and we postpone this topic to further research.

Our system writes as follows:
∂tϱ+ div(ϱu) = 0, (5.1.1a)

∂t(ϱu) + div(ϱu⊗ u) +∇π +∇p
(
ϱ

ϱ∗

)
− divS(u) = 0, (5.1.1b)

∂tϱ
∗ + u · ∇ϱ∗ = 0, (5.1.1c)

0 ≤ ϱ ≤ ϱ∗, (5.1.1d)

divu = 0 in {ϱ = ϱ∗}, (5.1.1e)

π ≥ 0 in {ϱ = ϱ∗}, π = 0 in {ϱ < ϱ∗}. (5.1.1f)

with the unknowns: ϱ = ϱ(t, x) – the mass density, u = u(t, x) – the velocity vector field,
ϱ∗ = ϱ∗(t, x) – the congestion density, also referred to as the barrier or the threshold density,
and π – the congestion pressure, that appears only when ϱ = ϱ∗.

The barotropic pressure is an explicit function of ϱ
ϱ∗

p

(
ϱ

ϱ∗

)
=
(
ϱ

ϱ∗

)γ

, γ > 1, (5.1.2)

and plays the role of the background pressure.

The stress tensor S is a known function of u, characteristic for the Newtonian fluid, namely

S = S(u) = 2µD(u) + λdivu I, µ > 0, 2µ+ λ > 0, (5.1.3)

where D(u) = (∇u +∇T u)/2 denotes the symmetric part of the gradient of u, and I = I3 is
the identity matrix.

In the system (5.1.1) variable ϱ∗ models preferences of the individuals, it is given initially and
then transported with the flow. Therefore, ϱ∗ depends on time and position, but more import-
antly it depends on initial configuration ϱ∗

0. The form of ϱ∗ relaxes the restrictions from the
models studied in [43, 197], where the threshold density ϱ∗ was either assumed to be constant or
independent of time. This allows to cover more physical applications. Including the transport
of the congestion density ϱ∗ allows also to study the system (5.1.8) with the contribution from
the pressure in the form of the pure gradient, without factor ϱ∗ as it was done in [197].

It is justified to call the above system the two-phase system because for ϱ(t, x) < ϱ∗(t, x) it
behaves as the compressible Navier-Stokeas system with the barotropic pressure, while when
the congestion is achieved, i.e. for ϱ(t, x) = ϱ∗(t, x), the system behaves like the incompressible
Navier-Stokes equations. We thus observe a switching between two phases: compressible and
incompressible depending on the size of the density ratio ϱ

ϱ∗ . The fluid systems with congestion
constraints have been recently intensively studied, especially in the hyperbolic regime [32, 33,
38]. The first analytical result for system (5.1.1) with ϱ∗ = 1 is due to P.-L. Lions and N.
Masmoudi [153], who showed that it can be obtained as a limit of compressible Navier-Stokes
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equations with barotropic pressure ϱγ with γ →∞, similar studies were performed recently for
the model of tumour growth [198, 237].

We will consider the system (5.1.1) in the 3-dimensional domain Ω with the smooth boundary
∂Ω, and the Dirichlet boundary conditions for the velocity vector field

u|∂Ω = 0. (5.1.4)

The initial conditions are given by:

ϱ(0, x) = ϱ0(x), (ϱu)(0, x) = m0(x), ϱ∗(0, x) = ϱ∗
0(x), (5.1.5)

and we assume that they satisfy:

ϱ0 ≥ 0,
∫

Ω
ϱ0 dx > 0,

m0 = 0 a.e. in {ϱ0 = 0}, m0
ϱ0

1{ϱ0>0} ∈ L2(Ω),
ϱ0 ≤ ϱ∗

0, a.e. in Ω, ϱ0 ̸≡ ϱ∗
0, ϱ∗

0 ∈ L∞(Ω).

(5.1.6)

Moreover, we assume that in the region of the absence of the individuals ϱ0(x) = 0, the congestion
density is equal to a constant value, being the characteristic mean preference of the group:

ϱ∗
0

∣∣∣
{ϱ0=0}

= ϱ̃∗ > 0. (5.1.7)

The main result of this paper is the existence of solutions to the system (5.1.1) under the
aforementioned assumptions on the constitutive relations and the initial condition, in the sense
of the following definition.

Definition 5.1 (Weak solution). A quadruple (ϱ,u, ϱ∗, π) is called a global finite energy weak
solution to (5.1.1), (5.1.4), with the initial data (5.1.5), (5.1.6), (5.1.7) if for any T > 0:

(i) There holds:
0 ≤ ϱ ≤ ϱ∗ a.e. in (0, T )× Ω, u|(0,T )×Ω = 0,

divu = 0 a.e. in {ϱ = ϱ∗}, (ϱ∗ − ϱ)π = 0,

and

ϱ ∈ Cw([0, T ];L∞(Ω)),
ϱ∗ ∈ Cw([0, T ];L∞(Ω)),
u ∈ L2(0, T ;W 1,2

0 (Ω,R3)), ϱ|u|2 ∈ L∞(0, T ;L1(Ω)),
π ∈M +((0, T )× Ω).

(ii) For any 0 ≤ τ ≤ T , equations (5.1.1a), (5.1.1b), (5.1.1c) are satisfied in the weak sense,
more precisely:

∫

Ω
ϱ(τ, ·)φ(τ, ·) dx−

∫

Ω
ϱ0φ(0, ·) dx =

∫ τ

0

∫

Ω

(
ϱ∂tφ+ ϱu · ∇φ

)
dx dt,
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holds for all φ ∈ C1([0, T ]× Ω),

−
∫

Ω
m0 ·ψ(0, ·) dx =

∫ τ

0

∫

Ω
(ϱu · ∂tψ + ϱu⊗ u : ∇ψ) dx dt

+
∫ τ

0

∫

Ω


πdivψ + p

(
ϱ

ϱ∗

)
divψ − S(u) : ∇ψ


 dx dt,

holds for all ψ ∈ C1
c ([0, τ)× Ω,R3),

∫

Ω
ϱ∗(τ, ·)φ(τ, ·) dx−

∫

Ω
ϱ∗

0φ(0, ·) dx =
∫ τ

0

∫

Ω

(
ϱ∗∂tφ+ ϱ∗div(uφ)

)
dx dt,

holds for all φ ∈ C1([0, T ]× Ω).

(iii) For a.e. τ ∈ (0, T ), there holds the energy inequality

E (ϱ,u, ϱ∗)(τ) +
∫ τ

0

∫

Ω

(
µ|∇u|2 + (µ+ λ)(divu)2

)
dx dt ≤ E (ϱ0,

m0
ϱ0
, ϱ∗

0),

where

E (ϱ,u, ϱ∗)(τ) =
∫

Ω

(1
2ϱ|u|

2 +
(
ϱ

ϱ∗

)
Γ
(
ϱ

ϱ∗

))
(τ) dx,

Γ
(
ϱ

ϱ∗

)
=
∫ ϱ

ϱ∗

0

p(s)
s2 dS.

Remark 5.2. The condition (ϱ∗−ϱ)π = 0 is not satisfied in the pointwise sense, its validity is jus-
tified using further information about the regularity of weak solution ala Lions-Masmoudi [153],
see (5.3.11) below. □

Remark 5.3. Introduction of the value of the weak solution at the final time for ϱ and ϱ∗ implies
that the initial condition for both of them is fulfilled, i.e. ϱ(0, ·) = ϱ0(·), and ϱ∗(0, ·) = ϱ∗

0(·).
The initial condition for the momentum is fulfilled only if the test function is divergence-free, i.e.
divψ = 0, due to the fact that π is only a measure. □

The main theorem of the paper states as follows.

Theorem 5.4. Let the initial conditions ϱ0, m0, ϱ
∗
0 satisfy the conditions above. Then the

system (5.1.1) with p and S given by (5.1.2), (5.1.3) respectively, has a weak solution in the
sense of Definition 5.1.

Remark 5.5. The same result holds for the lower dimensions, d = 1, 2. □

Theorem 5.4 is the first mathematical result on congested fluid system with time and space
variable congestion barrier ϱ∗. In the literature devoted to fluid models with constraint ϱ∗

is almost always equal to a constant. This is very severe mathematical simplification tacitly
assumed in most of hyperbolic as well as parabolic models. Actually, the only other earlier
result in which this assumption is not imposed is the previous work [197], where, however, only
special dependence on the space variable was covered.
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Including the space and time dependent congestion barrier ϱ∗ leads to a sequence of mathematical
difficulties already at the level of derivation of a-priori estimates, and definition of a weak
solution. If, in addition, ϱ∗ satisfies transport equation, it may lose its initial regularity due to
low regularity of the velocity vector field (u ∈ L2(0, T ;H1(Ω))). Moreover, the fact that the most
nonlinear term in the approximate compressible Navier-Stokes system – the pressure– depends on
two quantities that satisfy only hyperbolic PDEs causes further difficulties with identification of
the limit. In fact, the area of more general than isentropic pressure laws, depending for example
on more than one variables or in non-monotone way, is currently intensively investigated [41, 42,
149, 236], but so far this field is still at its infancy.

The core of the proof of Theorem 5.4 is to show that the system (5.1.1) can be obtained as a
limit when ε→ 0 of the following approximation

∂tϱ+ div(ϱu) = 0, (5.1.8a)

∂t(ϱu) + div(ϱu⊗ u) +∇πε

(
ϱ

ϱ∗

)
+∇p

(
ϱ

ϱ∗

)
− divS(u) = 0, (5.1.8b)

∂tϱ
∗ + u · ∇ϱ∗ = 0, (5.1.8c)

where the πε stands for the singular pressure of the form

πε

(
ϱ

ϱ∗

)
= ε

(
ϱ
ϱ∗

)α

(
1− ϱ

ϱ∗

)β
, α ≥ 0, β > 0. (5.1.9)

A similar form of the pressure
ε∇ 1
(

1
ϱ − 1

ϱ∗

)β

was proposed in [35] or [78]. Singularities of the pressure of this type were also previously studied
in the context of traffic models [35, 31, 34], collective dynamics [78, 77], or granular flow [159,
196, 195].

Note that for ε > 0 fixed and ϱ∗ = const. system (5.1.8) is purely compressible Navier-Stokes
system with singular pressure term. A similar system was studied in [103, 104]. From this
perspective, the new ingredients covered by this paper are the constitutive relation depending
on more than one transported quantities, and the singular limit ε→ 0 leading to the two-phase
free boundary problem. In the limit ε, uncongested (compressible) flow changes to incompressible
when the density ϱ hits the value ϱ∗. When this happens the dynamics of the system is modified
abruptly, meaning that the transition from the uncongested motion (ϱ < ϱ∗) to the congested
motion (ϱ = ϱ∗) is very sudden.

The first goal is to prove the existence of solutions to a certain reformulation of the system
(5.1.8). Our choice of approximation of the singular pressure (5.1.9) allows us to use some
of ideas developed in the previous work [155], see also the stability result from [162], and the
low Mach number analysis [102], in the context of geophysical flow model. In particular, we
essentially use the formulation involving a new unknown Z, that for ϱ, ϱ∗ smooth enough can
be identified with the density fraction Z = ϱ

ϱ∗ . We can formally check, that dividing (5.1.8a) by
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ϱ∗, multiplying (5.1.8c) by − ϱ
ϱ∗2 , and summing the resulting expressions, the system (5.1.8) can

be transformed to the following one

∂tϱ+ div(ϱu) = 0, (5.1.10a)

∂t(ϱu) + div(ϱu⊗ u) +∇πε(Z) +∇p(Z)− divS(u) = 0, (5.1.10b)

∂tZ + div(Zu) = 0, (5.1.10c)

with the initial data

ϱ(0, x) = ϱ0(x), (ϱu)(0, x) = m0(x), Z(0, x) = Z0(x). (5.1.11)

In consistency with the assumptions on ϱ0, m0, ϱ∗
0 from the previous section, we postulate that

ϱ0, m0, Z0 satisfy

0 ≤ c⋆ϱ0 ≤ Z0 ≤ c⋆ϱ0 a.e. in Ω, for 0 < c⋆ ≤ c⋆ <∞,
0 <

∫
Ω ϱ0 dx, Z0 ≤ 1,

∫
Ω Z0 dx < |Ω|, ϱ0

Z0

∣∣∣
{ϱ0=0}

= ϱ̃∗,

m0 = 0 a.e. in {ϱ0 = 0}, m0
ϱ0

1{ϱ0>0} ∈ L2(Ω).
(5.1.12)

The first condition from (5.1.12) should be understood as the restriction of the initial congestion
density, having in mind our notation Z = ϱ

ϱ∗ we see that the condition above means that ϱ∗
0

cannot be zero on the regions where the density ϱ0 is positive. The left condition means that
the congestion density is initially bounded. The restriction on the integral

∫
Ω Z dx < |Ω| means

that the assumption ϱ0 ̸= ϱ∗
0 holds on a set of non-zero Lebesgue measure.

Existence of solutions to system (5.1.10) with singular pressure replaced by the barotropic one
i.e. p(Z) = Zγ was studied in the recent paper [155]. In the present work we show that a similar
result holds even with a very low a-priori integrability of the pressure. Indeed, the classical
energy estimate does not provide a bound for the pressure, as it is for the barotropic case. This
can be somehow compensated by better estimate of the pressure argument Z. As a result, the
definition of the weak solution to (5.1.10) is very similar to the one from [155], namely:

Definition 5.6 (Weak solution of the approximate system with Z). A triplet (ϱ,u, Z) is called
a global finite energy weak solution to (5.1.10), (5.1.4), with the initial data (5.1.11), (5.1.12),
if for any T > 0:

(i) There holds:

0 ≤ c⋆ϱ ≤ Z ≤ c⋆ϱ a.e. in (0, T )× Ω, for 0 < c⋆ ≤ c⋆ <∞,

Z ≤ 1 a.e. in (0, T )× Ω, u|(0,T )×Ω = 0,

and

ϱ ∈ Cw([0, T ];L∞(Ω)),
ϱu ∈ Cw([0, T ];L2(Ω,R3)), u ∈ L2(0, T ;W 1,2

0 (Ω,R3)), ϱ|u|2 ∈ L∞(0, T ;L1(Ω)),
Z ∈ Cw([0, T ];L∞(Ω)).
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(ii) For any 0 ≤ τ ≤ T , equations (5.1.10a), (5.1.10b), (5.1.10c) are satisfied in the weak sense,
more precisely:

∫

Ω
ϱ(τ, ·)φ(τ, ·) dx−

∫

Ω
ϱ0φ(0, ·) dx =

∫ τ

0

∫

Ω

(
ϱ∂tφ+ ϱu · ∇φ

)
dx dt,

holds for all φ ∈ C1([0, T ]× Ω),
∫

Ω
(ϱu)(τ, ·) ·ψ(τ, ·) dx−

∫

Ω
m0 ·ψ(0, ·) dx

=
∫ τ

0

∫

Ω
(ϱu · ∂tψ + ϱu⊗ u : ∇ψ) dx dt

+
∫ τ

0

∫

Ω

(
πε(Z)divψ + p(Z)divψ − S(u) : ∇ψ) dx dt,

holds for all ψ ∈ C1
c ([0, T ]× Ω,R3),

∫

Ω
Z(τ, ·)φ(τ, ·) dx−

∫

Ω
Z0φ(0, ·) dx =

∫ τ

0

∫

Ω

(
Z∂tφ+ Zu · ∇φ

)
dx dt,

holds for all φ ∈ C1([0, T ]× Ω).

(iii) For a.e. τ ∈ (0, T ), there holds the energy inequality

E (ϱ,u, Z)(τ) +
∫ τ

0

∫

Ω

(
µ|∇u|2 + (µ+ λ)(divu)2

)
dx dt ≤ E

(
ϱ0,

m0
ϱ0
, Z0

)
(5.1.13)

where
E (ϱ,u, Z)(τ) =

∫

Ω

(1
2ϱ|u|

2 + ZΓ(Z)
)

(τ) dx, (5.1.14)

Γ(Z) =
∫ Z

0

πε(s) + p(s)
s2 dS.

Our second goal is to show the convergence of the weak solutions to the system (5.1.10), to the
solutions of the limit system:

∂tϱ+ div(ϱu) = 0, (5.1.15a)

∂t(ϱu) + div(ϱu⊗ u) +∇π +∇p(Z)− divS(u) = 0, (5.1.15b)

∂tZ + div(Zu) = 0, (5.1.15c)

0 ≤ Z ≤ 1, c⋆ϱ ≤ Z ≤ c⋆ϱ, (5.1.15d)

divu = 0 in {Z = 1}, (5.1.15e)

π ≥ 0 in {Z = 1}, π = 0 in {Z < 1}. (5.1.15f)

The weak solutions to the limit system are defined below.

Definition 5.7 (Weak solution of the limit system with Z). A quadruple (ϱ,u, Z, π) is called
a global finite energy weak solution to (5.1.15), (5.1.4), with the initial data (5.1.11), (5.1.12),
if for any T > 0:
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(i) There holds:

0 ≤ c⋆ϱ ≤ Z ≤ c⋆ϱ a.e. in (0, T )× Ω, for 0 < c⋆ ≤ c⋆ <∞,

Z ≤ 1 a.e. in (0, T )× Ω, u|(0,T )×Ω = 0,

divu = 0 a.e. in {ϱ = ϱ∗}, (ϱ∗ − ϱ)π = 0,

and

ϱ ∈ Cw([0, T ];L∞(Ω)),
Z ∈ Cw([0, T ];L∞(Ω)),
u ∈ L2(0, T ;W 1,2

0 (Ω,R3)), ϱ|u|2 ∈ L∞(0, T ;L1(Ω)),
π ∈M +((0, T )× Ω).

(ii) Equations (5.1.15a), (5.1.15b) are satisfied in the weak sense as in Definition 5.6, and
(5.1.15b) is satisfied in the weak sense as in Definition 5.1 (with p

(
ϱ
ϱ∗

)
replaced by p(Z)).

(iii) The energy inequality from Definition 5.6 holds for Γ(Z) =
∫ Z

0
p(s)
s2 dS.

The convergence result reads as follows.

Theorem 5.8. Let (ϱε,uε, Zε){ε>0} be a a sequence of weak solutions to the approximate system
(5.1.10), (5.1.9). Then, for ε → 0, the sequence (ϱε,uε, Zε) converges to the weak solution of
(5.1.15) in the sense of Definition 5.7

More precisely,

ϱε → ϱ in Cw([0, T ];L∞(Ω)), and weakly in Lp((0, T )× Ω),
Zε → Z in Cw([0, T ];L∞(Ω)), and strongly in Lp((0, T )× Ω),

for any p <∞, and

uε → u weakly in L2(0, T ;W 1,2(Ω,R3)).

Moreover,

πε(Zε) −→ π weakly in M +((0, T )× Ω).

We see that rewriting the system in terms of the conserved quantities (ϱ, ϱu, Z) causes that
the limit passage ε → 0 leads to the switching relation (1 − Z)π = 0. This resembles the
homogeneous condition from the works [32, 43, 153]. The novelty of this paper is the proof of
the fact that the same relation can be obtained for system with two densities, and that the final
relation (1−Z)π = 0 can be identified with (ϱ∗−ϱ)π = 0. For this we need to prove that various
weak formulations of the limit system are equivalent, and that the formal derivation of (5.1.8a)
by ϱ∗ leading to equation for Z can be inverted and made rigorous.
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5.2 The Existence of Solution for ε Fixed
When ε is fixed, say ε = 1, system (5.1.10) resembles the system considered in [155]. The dif-
ference is the presence of the singular pressure. It provides uniform L∞ estimate for Z, which,
however, does not imply the higher integrability of the pressure itself. Indeed, the energy es-
timate provides uniform bound for a corresponding potential energy whose singularity at Z = 1
is one order weaker. Therefore, in order to use the result from [155] to prove the existence of
approximate solution to (5.1.10), we need to approximate the singular pressure by a monotone
non-singular function of Z. This is obtained in our work by introducing the truncation para-
meter δ and a parameter κ that improves integrability of Z at the first approximation level.
Approximation like this was considered in the previous paper [197], where ϱ∗ was assumed to be
a function dependent on x only. The difference with respect to [197] is that now, the uniform
estimates as well as the effective viscus flux technique (see, for example, [187]) can be applied
to the variable Z only, but it does not imply strong convergence of the sequences approximating
ϱ nor ϱ∗.

In the following proof of existence of solutions we will recall some elements of the two approaches
from [197] and [155] in order to avoid repetitions.

5.2.1 Formulation of the Approximate Problem
The first level of approximation introduces truncation parameter δ in the singular pressure and
artificial pressure κZK , with K sufficiently large to be determined in the course of the proof.
We consider

∂tϱδ + div(ϱδuδ) = 0, (5.2.1a)
∂t(ϱδuδ) + div(ϱδuδ ⊗ uδ) +∇πδ(Zδ) +∇pκ(Zδ)− divS(uδ) = 0, (5.2.1b)

∂tZδ + div(Zδuδ) = 0, (5.2.1c)
with κ, δ > 0, and πδ, pκ given by

πδ(Zδ) =





Zα
δ

(1−Zδ)β if Zδ < 1− δ,
Zα

δ

δβ if Zδ ≥ 1− δ,
(5.2.2)

pκ(Zδ) = κZK
δ + Zγ

δ .

We drop the subindex δ when no confusion can arise, and we introduce the notion of weak
solution for the system (5.2.1).

Definition 5.9. A triplet (ϱ,u, Z) is called a global finite energy weak solution to (5.2.1), (5.1.4),
with the initial data (5.1.11), (5.1.12), if for any T > 0:

(i) There holds:
0 ≤ ϱ, 0 ≤ Z a.e. in (0, T )× Ω, u|(0,T )×Ω = 0,

and

ϱ ∈ Cw([0, T ];LK(Ω)),

ϱu ∈ Cw([0, T ];L
2K

K+1 (Ω,R3)), u ∈ L2(0, T ;W 1,2
0 (Ω,R3)), ϱ|u|2 ∈ L∞(0, T ;L1(Ω)),

Z ∈ Cw([0, T ];LK(Ω)).
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(ii) Equations (5.2.1a), (5.2.1b), (5.2.1b) are satisfied in the weak sense as in Definition 5.6
(with πε replaced by πδ, and p replaced by pk).

(iii) The energy inequality from Definition 5.6 holds for

Γ(Z) =
∫ Z

0

πδ(s) + pκ(s)
s2 dS. (5.2.3)

We have the following existence result for solutions defined by Definition 5.9 (see also [155],
Theorem 2).

Theorem 5.10. Let S satisfy (5.1.3), K > 6, β > 5/2, α ≥ 0, κ, δ, ε be fixed and positive, and
the initial data (ϱ0,m0, Z0) satisfy (5.1.12).

Then there exists a weak solution (ϱ,u, Z) to problem (5.2.1), (5.2.2) with boundary conditions
(5.1.4), in the sense of Definition 5.9.

Moreover, (Z,u) solves (5.2.1c) in the renormalized sense, i.e. (Z,u), extended by zero outside
of Ω, satisfies

∂tb(Z) + div(b(Z)u) +
(
b′(Z)Z − b(Z)

)
divu = 0, (5.2.4)

in the sense of distributions on (0, T )× R3, where

b ∈ C1(R), b′(z) = 0, ∀z ∈ R large enough. (5.2.5)

In addition,

0 ≤ c⋆ϱ ≤ Z ≤ c⋆ϱ a.e. in (0, T )× Ω. (5.2.6)

The proof of Theorem 5.10 requires further modification of the system (5.2.1) with two additional
approximation levels involving the parabolic regularisation of two continuity equations and the
Galerkin approximation of the velocity. This approximation allows, in particular, to deduce
inequalities (5.2.6). At this point existence of regular solution can be obtained following the
arguments presented in [155]. Also the compactness arguments needed to recover system (5.2.1)
are analogous, therefore we skip this part and focus only on the a-priori estimates needed to
perform the limit passages δ → 0, κ→ 0.

Having the existence of solutions to the system (5.2.1)–(5.2.2), we show that this solution can
be used to recover the weak solution to the system (5.1.10), where only the parameter ε is
present.

Theorem 5.11. Let ε be fixed and let (ϱκ,δ,uκ,δ, Zκ,δ) be a weak solution to the approxim-
ate system (5.2.1)–(5.2.2) established in Theorem 5.10. Then, for δ, κ → 0, the sequence
(ϱκ,δ,uκ,δ, Zκ,δ)κ,δ>0 converges to the weak solution of (5.1.10) in the sense of Definition 5.9.

More precisely,

ϱκ,δ → ϱ in Cw([0, T ];L∞(Ω)), and weakly in Lp((0, T )× Ω),
Zκ,δ → Z in Cw([0, T ];L∞(Ω)), and strongly in Lp((0, T )× Ω),

for any p <∞, and

uκ,δ → u weakly in L2(0, T ;W 1,2(Ω,R3)).
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Moreover,

πδ(Zκ,δ) −→ πε(Z) strongly in L1((0, T )× Ω).

In the next two sections we prove Theorem 5.11. Starting from the weak solution to the system
(5.2.1), we first derive uniform bounds and then we let δ → 0. The modification of the reasoning
needed to perform the limit passage κ→ 0 is explained at the end.

5.2.2 Uniform Estimates
In this section we obtain the uniform estimates for the weak solutions to the system (5.2.1)–
(5.2.2). This involves three a-priori estimates: the standard energy estimate, and two estimates
involving the application of the Bogovskii operator, one of which gives us the uniform bound
for the singular pressure and the other the uniform integrability of the pressure. All of the
aforementioned estimates are essential for performing the limit passage δ, κ → 0, as well as the
last limit passage ε → 0. However, as we shall see later on, the uniform integrability of the
pressure will no longer be valid in this case.

The energy estimate

We present a formal computation that can be made rigorous at the level of the Galerkin approx-
imation of the velocity. Multiplying the momentum equation (5.2.1b) by u and integrating by
parts with respect to space, yield the energy equality

d

dt

∫

Ω

1
2ϱ|u|

2 dx+
∫

Ω
∇ (πδ(Z) + pκ(Z)

) · u dx+
∫

Ω
S(u) : ∇u dx = 0. (5.2.7)

Note that the second term in our case is different than in [197], there is no additional ϱ∗ in front
of the gradient. This however allows us to proceed straightforwardly, for reader’s convenience
we repeat here the derivation

∫

Ω
∇ (πδ(Z) + pκ(Z)

) · u dx =
∫

Ω

π′
δ(Z) + p′

κ(Z)
Z

∇Z · (Zu) dx

= −
∫

Ω
Qκ,δ(Z)div(Zu) dx =

∫

Ω
Qκ,δ(Z)∂tZ dx = d

dt

∫

Ω
ZΓκ,δ(Z) dx

where we used the equation (5.2.1c), we denoted Q′
κ,δ(Z) = π′

δ(Z)+p′
κ(Z)

Z , and Γκ,δ is a solution
of the following ODE:

Γκ,δ(Z) + ZΓ′
κ,δ(Z) = Qκ,δ(Z).

Using the definition of Qκ,δ and πκ,δ we can express Γκ,δ as in (5.2.3). Integrating (5.2.7) with
respect to time, and using the definition of the stress tensor (5.1.3) we get the following uniform
estimates

sup
t∈[0,T ]

(
∥√ϱδuδ(t)∥L2(Ω) +

∥∥∥ZδΓκ,δ(Zδ)(t)
∥∥∥

L1(Ω)

)
≤ C,

∫ T

0
∥uδ∥2W 1,2(Ω,R3) dt ≤ C.

(5.2.8)
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The integrability of the pressure

The energy estimate obtained above is insufficient to control the L1 norm of the pressure, because
the singularity appearing in Γκ,δ(Z) at Z = 1 is of lower order than the singularity for πκ,δ(Z)
(take f.i. α = 2, β = 1 in (5.1.9) and use (5.2.3)). Therefore, further estimates are needed. The
first of them is obtained by testing the momentum equation by the function

ψ = ϕ(t)B
(
Z − 1

|Ω|

∫

Ω
Z(t, y) dy

)
, (5.2.9)

where ϕ is smooth and compactly supported in the interval (0, T ), and B is the Bogovskii
operator, i.e. a solution operator B : {f ∈ Lp(Ω);

∫
Ω f(y) dy = 0} → W 1,p

0 (Ω,R3) to the
following problem

divΦ = f, Φ|∂Ω = 0.

The main properties of B can be found, for example, in [187, Lemma 3.17], and [197, Appendix].
In particular, for Φ = B(f) we have the following estimate

∥∇Φ∥Lp(Ω,R3×R3) ≤ c(p,Ω)∥f∥Lp(Ω), 1 < p <∞.

Moreover, if f = divg, with g ∈ Lq(Ω,R3), divg ∈ Lp(Ω), 1 < q <∞, then

∥Φ∥Lq(Ω,R3) ≤ c(q,Ω)∥g∥Lq(Ω,R3).

Remark 5.12. Note that, alike for ϱ, the integral of Z over the space is an invariant of the
motion, therefore we have

∫

Ω
Z(t, x) dx =

∫

Ω
Z0(x) dx < |Ω|, (5.2.10)

according to (5.1.12), at least for sufficiently regular solutions. In what follows we denote∫
Ω Z0(x) dx = MZ . □

Remark 5.13. Function φ must be of a certain regularity in order to use it as a test function in
in the weak formulation of the momentum equation (5.2.1b), see Definition 5.9. In fact, it follows
from the construction of the solution in [155], that taking K sufficiently large guarantees admiss-
ibility of this function. □

Using in the weak formulation of (5.2.1b) the test function (5.2.9) results in the following equal-
ity

∫ T

0

∫

Ω
ϕ
(
πδ(Zδ) + pκ(Zδ)

)
(
Zδ −

1
|Ω|

∫

Ω
Zδ dy

)
dx dt

= −
∫ T

0

∫

Ω
ϱδuδ · ∂tψ dx dt−

∫ T

0

∫

Ω
ϱδuδ ⊗ uδ : ∇ψ dx dt

+
∫ T

0

∫

Ω
S(uδ) : ∇ψ dx dt,
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whose r.h.s. can be bounded using the uniform estimates (5.2.8) together with (5.2.6), provided
that K is sufficiently large, say K > 4. Therefore, one gets the following estimate, which is now
uniform with respect to κ and δ

∫ T

0

∫

Ω
ϕ
(
πδ(Zδ) + pκ(Zδ)

)
(
Zδ −

1
|Ω|

∫

Ω
Zδ dy

)
dx dt ≤ C. (5.2.11)

We then consider two complementary subsets of (0, T ) × Ω: Σ1 = {Zδ(t, x) < Z∗} and Σ2 =
{Zδ(t, x) ≥ Z∗}, for MZ

|Ω| < Z∗ < 1. The l.h.s. of (5.2.11) can be easily controlled on Σ1, because
on this subset Zδ stays far away from the singularity, for Σ2 we have

∫ T

0

∫

Ω
ϕπδ(Zδ)

(
Zδ −

1
|Ω|

∫

Ω
Zδ dy

)
1Σ2 dx dt

≥
(
Z∗ − MZ

|Ω|

)∫ T

0

∫

Ω
ϕπδ(Zδ)1Σ2 dx dt,

and so, from (5.2.11) it follows that

∥πδ(Zδ)∥L1((0,T )×Ω) + ∥Zδπδ(Zδ)∥L1((0,T )×Ω) ≤ C, (5.2.12)

as well as

κ∥Zδ∥K+1
LK+1((0,T )×Ω) ≤ C. (5.2.13)

The estimate (5.2.11) implies that the LK+1 norm of Zδ is bounded uniformly in δ, but not
uniformly in κ, which suggests that the passage to the limit δ → 0 should be performed as
first.

The equi-integrability of the singular pressure

Because πδ is a nonlinear function of Z, identification of the limit in this term, after letting
δ → 0 cannot be justified only by the uniform L1 bound. Following the idea from [104], we
can prove that the pressure πδ enjoys some additional estimate near to the singularity Z = 1.
Indeed, for K > 6, β > 5/2 and

ηδ(s) =




− log(1− s) if s ≤ 1− δ,
− log(δ) if s > 1− δ,

(5.2.14)

uniformly with respect to δ one has
∫ T

0

∫

Ω
πδ(Z)ηδ(Z) dx dt ≤ C. (5.2.15)

The proof follows by testing the momentum equation (5.2.1b) by the function of the form

ψ = ϕ(t)B
(
ηδ(Zδ)− 1

|Ω|

∫

Ω
ηδ(Zδ) dy

)
, (5.2.16)

where ϕ is smooth and compactly supported in the interval (0, T ). For the details of this estimate
we refer to [197], for β > 3 and to [103] for β > 5

2 . One of the difficulties in the proof of analogue
of (5.2.15) presented in [197] concerned the renormalization of the equation for ϱ

ϱ∗ . Here this
problem does not appear anymore, since (Zδ,uδ) is by definition a distributional solution of the
renormalized transport equation (5.2.4).
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5.2.3 Passage to the Limit δ → 0

Convergences Following from the Uniform Estimates

Using the uniform estimates (5.2.6), (5.2.8), and the Hölder inequality, we can deduce that up
to a subsequence

Zδ → Z weakly-* in L∞(0, T ;LK(Ω)),
ϱδ → ϱ weakly-* in L∞(0, T ;LK(Ω)),
uδ → u weakly in L2(0, T ;W 1,2(Ω,R3)).

(5.2.17)

Using the continuity equation (5.2.1a) and (5.2.1c), the first two convergences can be strengthened
to

Zδ → Z in Cw([0, T ];LK(Ω)),
ϱδ → ϱ in Cw([0, T ];LK(Ω)),

(5.2.18)

which together with the weak convergence of the velocity gradient, after using the momentum
equation (5.2.1b) implies that

ϱδuδ → ϱu in Cw([0, T ];L
2K

K+1 (Ω,R3)). (5.2.19)

This in turn, assuming that K is sufficiently large so that the imbedding of L
2K

K+1 (Ω,R3) to
W−1,2(Ω,R3) is compact, implies that

ϱδuδ ⊗ uδ → ϱu⊗ u weakly in Lq((0, T )× Ω,R3 × R3), (5.2.20)

for some q > 1. Moreover, the uniform bound (5.2.12) together with the growth condition
β > 5/2 in (5.2.2) imply that

Z ≤ 1 a.a. (t, x) ∈ (0, T )× Ω, (5.2.21)

and thus also

ϱ ≤ 1
c⋆

a.a.(t, x) ∈ (0, T )× Ω,

on the account of (5.2.6). Finally, from the uniform bounds (5.2.12) we can extract the sub-
sequence such that

πδ(Zδ)→ π(Z) weakly in M +((0, T )× Ω),
Zδπδ(Zδ)→ Zπ(Z) weakly in M +((0, T )× Ω),

(5.2.22)

for some π(Z), Zπ(Z) that need to be determined. Note, however, that (5.2.15) together with
De La Vallée-Poussin criterion allow us to deduce the equi-integrability of the pressure, therefore
the first limit can be strengthened to

πδ(Zδ)→ π(Z) weakly in L1((0, T )× Ω). (5.2.23)
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As for the second convergence, we cannot say that much immediately. However, using the fact
that πδ1(·) ≥ πδ2(·) provided δ1 ≤ δ2, we can estimate for any smooth, nonnegative, compactly
supported function ϕ(x, t)

lim inf
δ→0

∫ T

0

∫

Ω
ϕ
(
πδ(Zδ)Zδ − π(Z)Z

)
dx dt

≥ lim inf
δ→0

∫ T

0

∫

Ω
ϕ
(
πδ∗(Zδ)Zδ − π(Z)Z

)
dx dt

≥ lim inf
δ→0

∫ T

0

∫

Ω
ϕ
(
πδ∗(Z)− π(Z)

)
Z dx dt

(5.2.24)

where the last inequality is a consequence of the fact that · 7→ πδ∗(·) is non-decreasing function
for fixed δ∗. Using again equi-integrability of the pressure and letting δ∗ → 0 we verify that the
r.h.s. of (5.2.24) vanishes and thus

π(Z) ≥ Zπ(Z) (5.2.25)

in the sense of distributions. In order to say something more, we need to investigate the strong
convergence of the sequence Zδ, which is the purpose of the next section.

Strong convergence of Zδ

It was observed in [155], that the strong convergence of Zδ does not imply the strong convergence
of ϱδ. The proof of the strong convergence of Zδ requires an analogue of the effective flux equality
for the barotropic compressible Navier-Stokes equations. In our case it can be written as follows.

Lemma 5.14. Let ϱδ,uδ, Zδ be the sequence of approximate solutions enjoying the properties
from above. Then, at least for a subsequence

lim
δ→0+

∫ T

0

∫

Ω
ψϕ
(
πδ(Zδ) + pκ(Zδ)− (λ+ 2µ)divuδ

)
Zδ dx dt

=
∫ T

0

∫

Ω
ψϕ
(
π(Z) + pκ(Z)− (λ+ 2µ)divu

)
Z dx dt

(5.2.26)

for any ψ ∈ C∞
c ((0, T )) and ϕ ∈ C∞

c (Ω).

The proof of this fact can be seen as a special case of an analogous result proven in [155, cf.
Lemma 11]. On the account of (5.2.25) and the monotonicity of pκ(·) we obtain from (5.2.26)
that

lim
δ→0+

∫ T

0

∫

Ω
ψϕZδ divuδ dx dt−

∫ T

0

∫

Ω
ψϕZ divu dx dt ≥ 0, (5.2.27)

for any ψϕ ≥ 0. Recall that Zδ satisfies the renormalized continuity equation (5.2.4) with
b specified in (5.2.5). By density argument and standard approximation technique, we may
extend the validity of (5.2.4) to functions b ∈ C([0,∞) ∩ C1((0,∞)) such that

|b′(t)| ≤ Ct−λ0 , λ0 < −1, t ∈ (0, 1],

|b′(t)| ≤ Ctλ1 , −1 < λ1 ≤
q

2 − 1, t ≥ 1.
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The renormalization technique applied to the barotropic Navier-Stokes system is due to DiPerna
and Lions [84], and the above extension can be found, for example, in [101].

We can now write the renormalized continuity equation with b(Zδ) = Zδ logZδ:

∂t(Zδ logZδ) + div(Zδ logZδuδ) = −Zδdivuδ in D ′((0, T )× R3).

Passing to the limit δ → 0+, we hence obtain

∂t(Z logZ) + div(Z logZu) = −Zdivu in D ′((0, T )× R3).

Writing an analogous equation for the limit function Z and subtracting it from the above, we
obtain

∂t(Z logZ − Z logZ) + div[(Z logZ − Z logZ)u] = Zdivu− Zdivu, (5.2.28)

satisfied in the sense of distributions on (0, T )×R3. Integrating the above equation with respect
to time and space, and using the convexity of the function s 7→ s log s we get from (5.2.28)
that ∫ T

0

∫

Ω
Zdivu dx dt ≤

∫ T

0

∫

Ω
Zdivu dx dt,

which is an opposite to (5.2.27). Therefore, recalling (5.2.28) we see that Z logZ(t, x) =
Z logZ(t, x) almost everywhere in (t, x) ∈ (0, T ) × Ω, which yields the strong convergence of
Zδ in Lp((0, T ) × Ω) for any p < K + 1. With this at hand, we verify that (5.2.23) can be
replaced by

πδ(Zδ)→ π(Z) strongly in L1((0, T )× Ω),

similarly

pκ(Zδ)→ pκ(Z) strongly in L1((0, T )× Ω).

In order to complete the proof of Theorem 5.11, we have to show that we are allowed to let
κ → 0. Note that all the uniform estimates obtained above stay in force independently of κ.
Indeed, the only issue here is to see that the uniform LK+1 bound on Zκ, that was previously
obtained from (5.2.12) follows now directly from (5.2.21). On the account of (5.2.6), the same
is true also for the sequence ϱκ. The proof of Theorem 5.11 is now complete. □

5.3 Passage to the Limit ε→ 0

The purpose of this section is to prove our main Theorem 5.4. For technical reasons we first
perform the limit ε→ 0 in the auxiliary system (5.1.10) proving Theorem 5.8 and then we prove
equivalence between systems (5.1.15) and (5.1.1) in the certain class of solutions.
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5.3.1 Convergence Following from the Uniform Estimates
The estimates performed in the previous section give rise to several estimates that are uniform
with respect to ε. Indeed, passing to the limit in the energy estimate we obtain

sup
t∈[0,T ]

(
∥√ϱεuε(t)∥L2(Ω) +

∥∥ZεΓε(Zε)(t)
∥∥

L1(Ω)

)
≤ C,

∫ T

0
∥uε∥2W 1,2(Ω,R3) dt ≤ C.

(5.3.1)

Passing to the limit in (5.2.21) and in (5.2.6) we obtain

0 ≤ Zε ≤ 1, 0 ≤ c⋆ϱε ≤ Zε ≤ c⋆ϱε, (5.3.2)

in particular both sequences Zε, ϱε are uniformly bounded in Lp((0, T )×Ω) for p ≤ ∞. Therefore,
by means of the arguments from the previous section we get, up to the subsequence, that

uε → u weakly in L2(0, T ;W 1,2(Ω,R3),
Zε → Z in Cw([0, T ];L∞(Ω)),
ϱε → ϱ in Cw([0, T ];L∞(Ω)).

(5.3.3)

This information allows us to pass to the limit in all terms of the system (5.1.10), apart from
the nonlinear pressure terms p(Z) and πε(Z). Repeating the Bogovskii type estimate with the
test function (5.2.9) we obtain

∥Zεp(Zε)∥L1((0,T )×Ω) + ∥πε(Zε)∥L1((0,T )×Ω) + ∥Zεπε(Zε)∥L1((0,T )×Ω) ≤ C, (5.3.4)

however, the estimate (5.2.15) does not hold anymore. Therefore the convergence in the sense
of measures is the most we can hope for, we have

πε(Zε)→ π weakly in M +((0, T )× Ω),
Zεπε(Zε)→ π1 weakly in M +((0, T )× Ω).

(5.3.5)

For the background pressure, due to (5.3.2), we have

p(Zε)→ p(Z) weakly in Lp((0, T )× Ω),

for any p <∞. At this point, we can identify the second limit in (5.3.5) using the explicit form
of the pressure (5.1.9). We have

Zεπε(Zε) = ε
1

(1− Zε)β
= πε(Zε)− ε 1

(1− Zε)β−1 , (5.3.6)

thus letting ε → 0 and observing that the last term converges to zero strongly, we obtain the
relation

π1 = π (5.3.7)

in the sense of the measures. The recovery of the constraint condition (1 − Z)π = 0 and the
identification of the limit p(Z) = p(Z) require stronger information about the convergence of
Zε.
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5.3.2 Strong Convergence of Zε

The nowadays well known technique of proving the strong convergence of the density in the
compressible barotropic Navier-Stokes equations involves the study of propagation of the so
called oscillation defect measure [100]. Such level of precision is not needed in our case, because,
due to the singularity of the pressure argument Z, we have sufficiently high integrability of the
pressure in order to apply the DiPerna-Lions technique [84]. Nevertheless, a variant of effective
viscous flux equality is still needed. It can be derived the same way as in Lemma 5.14, after
observing that the inverse divergence operator ∇∆−1[1ΩZ] is regular enough to be used as a test
function in the limiting momentum equation.

With this information the statement of Lemma 5.14 adapted to the ε-labelled sequences gives
rise to the equality

lim
ε→0+

∫ T

0

∫

Ω
ψϕ
(
πε(Zε) + p(Zε)− (λ+ 2µ)divuε

)
Zε dx dt

=
∫ T

0

∫

Ω
ψϕ
(
π + p(Z)− (λ+ 2µ)divu

)
Z dx dt,

(5.3.8)

for any ψ ∈ C∞
c ((0, T )) and ϕ ∈ C∞

c (Ω).

Let us now explain the meaning of the product Zπ on the r.h.s. of (5.3.8). To this end, one
needs to come back to the limiting momentum equation

∂t(ϱu) + div(ϱu⊗ u) +∇π +∇p(Z)− divS(u) = 0,

and use the bounds (5.3.1), (5.3.2) to justify that π is in fact more regular than it follows just
from (5.3.5). Indeed, we have

π ∈W−1,∞(0, T ;W 1,2(Ω)) ∪ Lp(0, T ;Lq(Ω)) p, q > 1. (5.3.9)

Moreover from the equation for Z, we easily get

Z ∈ Cw([0, T ];L∞(Ω)) ∩ C1([0, T ];W−1,2(Ω)). (5.3.10)

Regularizing in space and time the limits Z and π using the standard multipliers ωn, Zn = Z∗ωn,
πn = π ∗ ωn, we can clarify the meaning of Zπ by writing

Zπ = Znπn + (Z − Zn)πn + Z(π − πn), (5.3.11)

and by passing to the limit with the support of mollifying kernel, see [197] for more details.

From (5.3.8) it follows that

(λ+ 2µ)
∫ T

0

∫

Ω
ψϕ

(
Zdivu− Zdivu

)
dx dt

=
∫ T

0

∫

Ω
ψϕ (π1 − Zπ) dx dt+

∫ T

0

∫

Ω
ψϕ

(
Zp(Z)− Zp(Z)

)
dx dt

≥
∫ T

0

∫

Ω
ψϕ (1− Z)π dx dt ≥ 0,

(5.3.12)
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where to get to the r.h.s. of the above we have used subsequently: monotonicity of p(·), (5.3.7),
and the limit of (5.3.2). Since both pairs (Zε,uε) and (Z,u) satisfy the renormalized continuity
equation, we can use the renormalization in the form b(z) = z log z to justify that

Zε → Z strongly in Lp((0, T )× Ω), ∀p <∞.

Note however, that this property is not transferred to the sequence ϱε, for which we only have
(5.3.3). Nevertheless, using this information and formula (5.3.11) we can justify that

π1 = Zπ,

which together with (5.3.7) implies (5.1.15f).

It remains to show the condition (5.1.15e), or rather its compatibility with the other conditions
in system (5.1.15). This follows from the following lemma proven by Lions and Masmoudi in
[153], that we recall here without the proof.

Lemma 5.15. [153, Lemma 2.1]
Let u ∈ L2(0, T ;W 1,2

0 (Ω,R3)) and f ∈ L2((0, T )× Ω) such that

∂tf + div(fu) = 0 in (0, T )× Ω, f(0, x) = f0(x) in Ω,

0 ≤ f0 ≤ 1, f0 ̸≡ 0, f0 ̸≡ 1,

then the following two assertions are equivalent

(i) divu = 0 a.e. on {f = 1},
(ii) 0 ≤ f(t, x) ≤ 1.

Applying this lemma for f = Z, we conclude the proof of Theorem 5.8. □

5.4 Recovery of the Original System
In Section 5.3 we proved that system (5.1.15) possesses a weak solution in the sense of Definition
5.7. Our next aim is to prove that this solution can be identified with the solution to the
original problem (5.1.1). In other words, we need to deduce the existence of ϱ∗ ∈ L∞((0, T )×Ω)
satisfying the transport equation, such that the measure in the momentum equation vanishes
for ϱ = ϱ∗.

We proceed similarly to [155]. Note that

ϱ0
Z0

∣∣∣∣
{ϱ0=0}

= ϱ0
Z0

∣∣∣∣
{Z0=0}

= ϱ̃∗ > 0.

When extended by 0 outside Ω the couples (ϱ,u) and (Z,u) satisfy the renormalized continuity
equations, due to uniform L∞ bounds for both ϱε and Zε. Therefore, we may test the equations
(5.1.15a), (5.1.15c) by ωn(x− ·), where ωn is a standard mollifier, which leads to

∂tϱn + div(ϱnu) = r1
n, (5.4.1)

∂tZn + div(Znu) = r2
n, (5.4.2)
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satisfied a.e. in (0, T ) × R3, where by an we denoted a ∗ ωn. It follows from the Friedrichs
commutator lemma, see e.g. [101, Lemma 10.12], that r1

n, and r2
n converge to 0 strongly in

L1((0, T )× R3) as n→∞.

We now multiply (5.4.1) by 1
Zn+λ , and (5.4.2) by − ϱn+λϱ̃∗

(Zn+λ)2 , with λ > 0, and obtain, after some
algebraic transformations, that

∂t

(
ϱn + λϱ̃∗

Zn + λ

)
+ div



(
ϱn + λϱ̃∗

Zn + λ

)
u


−

[
(ϱn + λϱ̃∗)Zn

(Zn + λ)2 + λϱ̃∗

Zn + λ

]
divu

= r1
n

1
Zn + λ

− r2
n

ϱn + λϱ̃∗

(Zn + λ)2 .

By passing with n→∞, we get

∂t

(
ϱ+ λϱ̃∗

Z + λ

)
+ div



(
ϱ+ λϱ̃∗

Z + λ

)
u


−

[
(ϱ+ λϱ̃∗)Z
(Z + λ)2 + λϱ̃∗

Z + λ

]
divu = 0. (5.4.3)

We distinguish two cases:

Case 1. For Z = 0, from (5.1.15d) it follows that ϱ = 0 and therefore ϱ+λϱ̃∗
Z+λ = ϱ̃∗, and

(ϱ+λϱ̃∗)Z
(Z+λ)2 + λϱ̃∗

Z+λ = ϱ̃∗, thus (5.4.3) becomes trivial.

Case 2. For Z > 0, we notice that ϱ+λϱ̃∗
Z+λ ≤ max{ϱ̃∗, 1

c⋆
}. By means of the strong convergence

of ϱλ = ϱ + λ and Zλ = Z + λ to ϱ and Z, respectively, we can now let λ → 0 in (5.4.3) to
obtain

∂t

(
ϱ

Z

)
+ div

(
ϱ

Z
u
)
− ϱ

Z
divu = 0.

Obviously, ϱ∗ defined as ϱ
Z satisfies ϱ∗ ∈

{
min{(c⋆)−1, ϱ̃∗},max{(c⋆)−1, ϱ̃∗}

}
a.e. in (0, T ) × Ω,

and thus Z = ϱ
ϱ∗ a.e. in (0, T )×Ω. This leads to the conclusion that the condition (1−Z)π = 0

can be replaced by
(
1− ϱ

ϱ∗

)
π = 0, or, equivalently by (ϱ∗ − ϱ)π = 0, where the product is

defined as in (5.3.11). This finishes the proof of Theorem 5.4. □

5.5 Numerical Scheme
Numerical simulation of two-phase flows with free boundary requires to design a method that
captures phase transition and the limit behaviour. In our case, the main difficulty is to propose
a scheme that is independent of singular pressure parameter ε (5.1.9). This property is referred
to as the Asymptotic Preserving (AP) property, see e.g.[73]. The passage with ε→ 0 resembles
the low Mach number limit problem, where one observes incompressible behaviour in regions
where the Mach number approaches 0. However, in the contrary to the low Mach number limit,
in our model the singularity is embedded in the definition of the singular pressure π.

We adapt numerical method from [78] where the Euler system with constant maximal density
constraint has been studied. One dimensional version of the Direct method is modified and ex-
tended to capture variable density constraint and the viscosity term in the momentum equation.
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In what follows we focus only on the new elements of our approach, for the detailed description
of the other parts we refer to [78] and references therein. Following this rule, we present our
technique on the time semi-discrete level, the discretization in space is omitted for brevity.

5.5.1 Discretization Scheme

To find an approximate solution to the system (5.1.8) we propose a splitting algorithm. Time is
discretized by one step finite difference (with fixed time step ∆t) and a finite volume method is
used in space. At each time step the set of the equations is decomposed into three parts which
are solved subsequently in three sub-steps.

Step 1: Hyperbolic Part

The numerical solution of the Euler part of the system follows the strategy presented in [78].
The flux in the mass balance and the singular pressure are treated implicitly:

ϱn+1 − ϱn

∆t + div(ϱn+1u∗) = 0, (5.5.1a)

(ϱn+1u∗)− (ϱnun)
∆t + div(ϱnun ⊗ un) +∇πε

(
ϱn+1

ϱ∗n

)
+∇p

(
ϱn

ϱ∗n

)
= 0. (5.5.1b)

The system (5.5.1) is reformulated on a discrete level in terms of singular pressure. Into (5.5.1a)
we substitute implicit mass flux from (5.5.1b) and obtain an elliptic equation for the singular
pressure

ϱn+1(πε)− (∆t)2∆πε

(
ϱn+1

ϱ∗n

)
= ϕ(ϱn, ϱ∗n,un), (5.5.2)

where the right hand side of (5.5.2) reads

ϕ(ϱn, ϱ∗n,un) = ϱn − (∆t)div(ϱnun) + (∆t)2div


div(ϱnun ⊗ un) +∇p

(
ϱn

ϱ∗n

)
 .

The singular pressure πε is computed by solving (5.5.2) by means of the Newton method with
numerical Jacobian. In the next step we invert singular pressure to get the density. The purpose
of this approach is to ensure that the density constrain is satisfied (ϱ ≤ ϱ∗), which now follows
from the definition of πε.

After the new density is obtained we directly update the momentum. This approach is called
the Direct method, see [78, Section 4.1]. The second approach presented in the literature is
referred to as the Gauge method [73] that is based on the decomposition of the momentum
ϱu = a +∇φ, diva = 0 into a divergence free part a, and the irrotational part φ. As reported
in [78] the Direct method indicates oscillations of the velocity in congested part, while the
Gauge method is diffusive in uncongested region. Since the first method does not introduce any
additional numerical dissipation, we adapt it for this work. For detailed description of the space
discretization we refer to [78].
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We would like to emphasize that (5.5.1) is a strictly hyperbolic problem, with characteristic wave
speeds λ1,2 = u ±

√
∂p

∂(ϱ/ϱ∗) . By the definition, the Courant–Friedrichs–Lewy (CFL) condition
for the explicit part is equal to max(|λ1,2|) ≤ σ∆x

∆t , with the Courant number σ. Splitting
for implicit singular and explicit background pressure (5.5.1b) provides that CFL condition is
satisfied uniformly in ε.

Step 2: Diffusion

For the sake of numerical simulations, we consider (5.1.3) in a simplified form S(u) = 2µ∆u.
We treat the diffusion term implicitly to avoid additional stability restrictions:

(ϱn+1un+1)− (ϱn+1u∗)
∆t + 2µ∆un+1 = 0. (5.5.3)

The presence of the diffusion term is important from analytical reasons only. In fact, the presen-
ted numerical scheme has been designed to solve the Euler system, therefore one can take
arbitrary viscosity, such that µ ≥ 0. The viscosity coefficient is fixed independently of ε and
small enough to recover compressible/incompressible transition. Equation (5.5.3) is discretized
in space by cell-centered finite volume scheme.

Step 3: Congestion Transport

The transport of the congested density is undoubtedly a main new feature of the model (5.1.8)
and so of the presented numerical scheme. Having the new velocity un+1 we compute the
congested density as follows

ϱ∗n+1 − ϱ∗n

∆t + un+1∇ϱ∗n = 0,

where a cell-centered finite volume scheme together with upwind is used in space.

5.5.2 Numerical Results
In this section we present four numerical examples that demonstrate behaviour of the proposed
model in one-dimensional periodic setting. As a consequence of finite volume framework the
proposed scheme conserves mass. As for domain we take the unit interval with the mesh size
∆x = 10−3 and the time-step ∆t = 10−4. In the following we choose singular pressure parameter
ε = 10−4 with the exponents α = β = 2, (5.1.9), and background pressure (5.1.2) with the
exponent γ = 2, if not stated differently.

The test cases are:

• Case 1 (constant congestion):




ϱ(x, 0) = 0.7,
ϱ∗(x, 0) = 1.0,

u(x, 0) =





0.8 if 0.2 < x < 0.6
−0.8 otherwise

,
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• Case 2: 



ϱ(x, 0) = 0.7,
ϱ∗(x, 0) = 0.8 + 0.15

(
tanh(50(x− 0.4))− tanh(50(x− 0.6))

)
,

u(x, 0) =





0.8 if 0.25 < x < 0.5
−0.8 if 0.5 < x < 0.75
0.0 otherwise

,

• Case 3:




ϱ(x, 0) =





0.8 if 0.3 < x < 0.7
0.1 otherwise

,

ϱ∗(x, 0) = 0.34 + 0.3(tanh(50(x− 0.275))− tanh(50(x− 0.725))),

u(x, 0) =





0.8 if 0.1 < x < 0.7
0.0 otherwise

,

• Case 4:




ϱ(x, 0) = 0.6,
ϱ∗(x, 0) = 0.9 + 0.05(cos(10πx)− cos(6πx) + cos(134πx) + cos(24πx)),

u(x, 0) =





0.8 if 0.3 < x < 0.7
−0.8 otherwise

,

Case 1 illustrates shock and rarefaction of the density for constant initial congestion density.
The initial value of the congestion density stays the same for all times, due to transport. The
congestions and rarefactions are created solely due to opposite initial velocities, exactly as in
the analogous case from [78]. In Figure 5.1 we moreover present the behaviour of unknowns for
different values of parameter in the singular pressure: ε ∈ {10−2, 10−4, 10−6}. These numerical
results show that the algorithm indeed satisfies the Asymptotic Preserving property. Note
that with ε decreasing to zero we approach incompressible limit more thoroughly. However, the
exact value of the maximal density constraint can never be reached by the numerically computed
density.

Case 2 and Case 3 show the main feature of presented model, namely variable congestion dens-
ity. For both cases the initial maximal density is set to “smooth hat”. In the first of them
the initial velocity describes the velocities of two groups of individuals that want to go in the
opposite directions. The individuals close to the contact line are more willing to compress (as
the congestion density is higher). We see that initially the individuals at the rear of the groups
press so intensively onto the front members, so that the whole “hat” is tightly filled. When this
happens, we see a similar effect as for elastic collision: part of individuals start to move in the
opposite direction to initially intended.

Case 3 describes a situation, when the well organized crowd moving in one direction with the same
velocity approaches a barrier ahead, being the group of individuals that move much slower and
prefer to keep bigger distances between each other. We observe how the faster individuals behind
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push the slower group to speed up, by filling the all available gaps between the individuals (this
is where the congestion occurs at position x ≈ 0.8). This kind of behaviour could be observed,
for example, at airports or in the groups of marathon runners.

Case 4 illustrates shock and rarefaction of the density when the maximal density constrain
consists of a sum of cosines (periodic setting) with different frequencies. This example mimics
randomness in the individual preferences of the members of population. We observe that con-
gested regions “freeze” maximal density due to the zero velocity, which is consistent with the
theoretical prediction. As expected from the properties of the limiting system (5.1.1f), for ε≪ 1,
the singular pressure πε is activated only in the congested region. In the theoretical part of the
paper, this pressure is merely a nonnegative measure in the limit and our simulations seem to
confirm this lack of regularity.

Another interesting feature observed in this case is the travelling wave-like behaviour of the
density of the crowd. Note that taking time derivative of (5.1.1a) and substituting ∂t(ϱu) from
(5.1.1b) we obtain wave-like equation for density. We observe this effect on the Figure 5.4
between time t = 0.25 and t = 0.5 at x = 0.2, where two "crowds" interfere with each other.
This leads to reaching the congestion density and propagation of the congestion in the opposite
directions.

Looking at the Figure 5.4 it seems that the scheme for the transport of the congestion density is
quite diffusive. The high spatial frequency oscillations present at the beginning are very quickly
washed away and there only subsists the small frequency components. Thus, the numerical
examples presented above should be treated just as the illustration of the behaviour of solutions
to the approximation (5.1.8).

The thorough numerical discussion as well as the study of two-dimensional case, has been ad-
dressed in [79]. It has been shown that the presented model, however without diffusion, exhibits
typical crowd behaviour like: stop-and-go waves and faster goes slower effect.
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Figure 5.1: Case 1: density, velocity, and singular pressure for ε = 10−2(green), ε = 10−4(yellow), ε =
10−6(blue). A video available at https://youtu.be/zB0Czbj1bsw.

https://youtu.be/zB0Czbj1bsw
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Figure 5.2: Case 2: density, velocity and singular pressure. A video of available at https://youtu.be/
5zLualVGdBs.

https://youtu.be/5zLualVGdBs
https://youtu.be/5zLualVGdBs
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Figure 5.3: Case 3: density, velocity and singular pressure. A video available at https://youtu.be/
GhhZ0c4xk6k.

https://youtu.be/GhhZ0c4xk6k
https://youtu.be/GhhZ0c4xk6k
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Figure 5.4: Case 4: density, velocity and singular pressure. A video available at https://youtu.be/
Ql2R2qEn9lM.

https://youtu.be/Ql2R2qEn9lM
https://youtu.be/Ql2R2qEn9lM




CHAPTER 6

Finite Volume Approximations
of the Euler System with Variable Congestion

The content of this chapter is joint work with Pierre Degond, Ewelina Zatorska, and Laurent
Navoret and is published in the paper

P. Degond, P. Minakowski, L. Navoret and E. Zatorska. ‘Finite Volume Ap-
proximations of the Euler System with Variable Congestion’. In: Computers & Fluids
169 (2018). Recent progress in nonlinear numerical methods for time-dependent flow &
transport problems, pp. 23–39. doi: 10.1016/j.compfluid.2017.09.007

Chapter Summary. We are interested in the numerical simulations of the Euler system with
variable congestion encoded by a singular pressure [80]. This model describes for instance
the macroscopic motion of a crowd with individual congestion preferences. We propose an
asymptotic preserving (AP) scheme based on a conservative formulation of the system in terms
of density, momentum and density fraction. A second order accuracy version of the scheme is
also presented. We validate the scheme on one-dimensionnal test-cases and compare it with
a scheme previously proposed in [80] and extended here to higher order accuracy. We finally
carry out two dimensional numerical simulations and show that the model exhibit typical crowd
dynamics.

Chapter Organisation. In Section 6.2 we present our numerical schemes using the two for-
mulations (6.1.1) and (6.1.8). They are referred to as (ϱ, q)-method/SL and (ϱ, q, Z)-method,
respectively. In Section 6.2.1 we describe the first-order semi-discretization in time and the
full discretization for the (ϱ, q, Z)-method. Then, in Section 6.2.2, we discuss the second order
scheme for the (ϱ, q, Z)-method. At last, in Section 6.2.3 we present the (ϱ, q)-method/SL for
the system written in terms of the physical variables (6.1.1). Section 6.3 is devoted to validation
of the schemes on the Riemann problem whose solutions are described in 6.5. Finally, in Sec-
tion 6.4 we discuss the two-dimensional numerical results: in Section 6.4.1 we present how these
schemes work for three different initial congestion densities, and in Section 6.4.2 we present an
application of (ϱ, q)-method/SL to model crowd behaviour in the evacuation scenario.

https://doi.org/10.1016/j.compfluid.2017.09.007
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6.1 Introduction
In this work we study two phase compressible/incompressible Euler system with variable con-
gestion:

∂tϱ+ div(ϱu) = 0, (6.1.1a)

∂t(ϱu) + div(ϱu⊗ u) +∇π +∇p
(
ϱ

ϱ∗

)
= 0, (6.1.1b)

∂tϱ
∗ + u · ∇ϱ∗ = 0, (6.1.1c)

0 ≤ ϱ ≤ ϱ∗, (6.1.1d)
π(ϱ∗ − ϱ) = 0, π ≥ 0, (6.1.1e)

with the initial data

ϱ(0, x) = ϱ0(x) ≥ 0, u(0, x) = u0(x), ϱ∗(0, x) = ϱ∗
0(x), ϱ0 < ϱ∗

0, (6.1.2)

where the unknowns are: ϱ = ϱ(t, x) – the mass density, u = u(t, x) – the velocity, ϱ∗ = ϱ∗(t, x) –
the congestion density, and π – the congestion pressure. The barotropic pressure p is an explicit
function of the density fraction ϱ

ϱ∗

p

(
ϱ

ϱ∗

)
=
(
ϱ

ϱ∗

)γ

, γ > 1, (6.1.3)

and plays the role of the background pressure.
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The congestion pressure π appears only when the density ϱ satisfying (6.1.1d) achieves its max-
imal value, the congestion density ϱ∗. Therefore ϱ∗ can be referred to as the barrier or the
threshold density. It was observed in [153], and then generalized in [80], that the restriction on
the density (6.1.1d) is equivalent with the condition

divu = 0 in {ϱ = ϱ∗}, (6.1.4)

if only ϱ,u, ϱ∗ are sufficiently regular solutions of the continuity equation (6.1.1a) and the trans-
port equation (6.1.1c). For that reason, system (6.1.1) can be seen as a free boundary problem
for the interface between the compressible (uncongested) regime {ϱ < ϱ∗} and the incompressible
(congested) regime {ϱ = ϱ∗}.

The main purpose of this work is to analyze (6.1.1) numerically, i.e. to propose the numerical
scheme capturing the phase transition. To this end we use the fact that (6.1.1) can be obtained
as a limit when ε→ 0 of the compressible Euler system:

∂tϱ+ div(ϱu) = 0, (6.1.5a)

∂t(ϱu) + div(ϱu⊗ u) +∇πε +∇p
(
ϱ

ϱ∗

)
= 0, (6.1.5b)

∂tϱ
∗ + u · ∇ϱ∗ = 0, (6.1.5c)

with the singular approximation πε of the congestion pressure:

πε

(
ϱ

ϱ∗

)
= ε




ϱ
ϱ∗

1− ϱ
ϱ∗




α

, α > 0. (6.1.6)

The singularity of the pressure πε implies that for every ε > 0 fixed ϱε ≤ ϱ∗. Note that for fixed
ε > 0, πε →∞ when ϱ→ ϱ∗. Therefore, at least formally, for ε→ 0, πε converges to a measure
supported on the set of singularity, i.e. {(x, t) ∈ Ω × (0, T ) : ϱ(x, t) = ϱ∗(x, t)}. The rigorous
proof of this fact is an open problem, at least for the Euler type of systems. There have been,
however, several results for a viscous version of the model, see [43] for the one-dimensional case,
[197] for multi-dimensional domains and space-dependent congestion ϱ∗(x) and [80] for the case
of congestion density satisfying the transport equation (6.1.1c). The last of mentioned results
requires a technical assumption α > 5/2 for the 3-dimensional domain. Intuitively, the value of
parameter α indicates the strength of singularity of the pressure close to ϱ = ϱ∗. However, since
taking the limit ε → 0 magnifies this singularity, the value of α > 0 might be arbitrary small
for sufficiently small ε. An alternative approximation leading to a similar two-phase system
was considered first by P.-L. Lions and N. Masmoudi [153], and more recently for the model of
tumour growth [198]. The advantage of approximation (6.1.6) considered here lies in the fact
that for each ε fixed, the solutions to the approximate system stay in the physical regime, i.e.
ϱ ≤ ϱ∗. This feature is especially important for the numerical purposes, see for example [161]
for further discussion on this subject.

System (6.1.1) is a generalization of the pressureless Euler system with the maximal density
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constraint

∂tϱ+ div(ϱu) = 0, (6.1.7a)
∂t(ϱu) + div(ϱu⊗ u) +∇π = 0, (6.1.7b)

0 ≤ ϱ ≤ 1 (6.1.7c)
π(ϱ− 1) = 0, π ≥ 0. (6.1.7d)

introduced originally by Bouchut et al. [38], who also proposed the first numerical scheme based
on an approach developed earlier for the pressureless systems, see for example [40], and the
projection argument. The model was studied later on by Berthelin [32, 33] by passing to the
limit in the so-called sticky-blocks dynamics, see also [240], and a very interesting recent paper
[195] using the Lagrangian approach for the monotone rearrangement of the solution to prove
the existence of solutions to (6.1.7) with additional memory effects.

The pressureless Euler equations with the density constraint were originally introduced in order
to describe the motion of particles of finite size. Our model extends this concept by including
the variance of the size of particles. In system (6.1.1) ϱ∗ is given initially and is transported
along with the flow.

One can also think of ϱ∗ as a congestion preference of individuals moving in the crowd (cars, ped-
estrians), which is one of the factors determining their final trajectory and the speed of motion.
The macroscopic modelling of crowd is one of possible approaches and it allows to determine the
averaged quantities such as the density and the mean velocity rather than the precise position of
an individual. One of the first models of this kind based on classical mechanics was introduced
by Henderson [127]. More sophisticated model was introduced by Hughes [131] where the au-
thor considers the continuity equation equipped with a phenomenological constitutive relation
between the velocity and the density. For a survey of the crowd models we refer the reader to
[62, 27, 201, 160, 134] and to the review paper [28].

As far as the numerical methods are concerned, the macroscopic models of pedestrian flow with
condition preventing the overcrowding were studied, for example in [234]. The influence of the
maximal density constraint was investigated also in the context of vehicular traffic in [35]. The
strategy that we want to adapt in this paper, i.e. to use the singularities of the pressure similar
to (6.1.6) has been developed in the past for a number of Euler-like systems for the traffic models
[35, 31, 34], collective dynamics [78, 77], or granular flow [159, 196]. In our previous work [80],
we have drafted the numerical scheme for system (6.1.1) in the one-dimensional case. We used
a splitting algorithm at each time step that consists of three sub-steps. At first, the hyperbolic
part is solved with the AP-preserving method presented in [78]. Next the diffusion is solved
by means of cell-centered finite volume scheme, and the transport of the congested density is
resolved with the upwind scheme.

The extension of this method to two-dimensions is one of the main results of the present paper.
We also propose an alternative scheme using different formulation in terms of the conservative
variables: the density ϱ, the momentum q = ϱu, and the density fraction Z = ϱ

ϱ∗ :

∂tϱ+ div q = 0, (6.1.8a)

∂tq + div
(
q ⊗ q
ϱ

+ πε(Z)I + p(Z)I
)

= 0, (6.1.8b)
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∂tZ + div
(
Z
q

ϱ

)
= 0, (6.1.8c)

with the initial data

ϱ(0, x) = ϱ0(x), q(0, x) = q0(x), Z(0, x) = Z0(x), (6.1.8d)

where Z0 = ϱ0
ϱ∗

0
, and q0 = ϱ0u0. I denotes the identity tensor. This is a strictly hyperbolic

system whose wave speeds in the x1-direction are given by:

λε
1(ϱ, q1, Z) = q1

ϱ
−
√
Z

ϱ
p′

ε(Z),

λε
2(ϱ, q1, Z) = q1

ϱ
,

λε
3(ϱ, q1, Z) = q1

ϱ
+
√
Z

ϱ
p′

ε(Z),

(6.1.9)

where pε = p + πε, and q1 denotes the component of q in the x1 direction. Consequently, in
region where the density ϱ is closely congested, i.e. Z is close to 1, the characteristic speeds of
the system are extremely large. This corresponds to the nearly incompressible dynamics.

The first scheme uses the physical variables ϱ,u, ϱ∗ as in (6.1.1), while the second one uses
the conservative variables: the density ϱ, the momentum q = ϱu, and the density fraction
Z = ϱ

ϱ∗ .

6.2 Numerical Schemes
In this section, we first introduce a numerical scheme based on system (6.1.8) using the conser-
vative variables. In order to use large time steps not restricted by too drastic CFL condition,
implicit-explicit (IMEX) type methods need to be designed. The scheme can be solved through
the following steps: first an elliptic equation on the density fraction Z is solved, and then we
update q and ϱ, respectively.

Such scheme is compared with an extension of the method introduced in [80], where the conges-
tion density is advected separately from the update of ϱ and q. For the sake of completeness, a
description of the scheme is given in Section 6.2.3.

Note that the scheme is unable to deal with vacuum. In what follows we require that ϱ0 > 0 (
vacuum is not allowed in the initial data). However, the effect of the background pressure (6.1.3)
is to smear out the vacuum regions.

6.2.1 The First Order (ϱ, q, Z)-Method

Discretization in time We adopt the previous work [78] to introduce a method treating im-
plicitly the stiff congestion pressure πε(Z). We consider a constant time step ∆t > 0 and ϱn,
qn, Zn, ϱ∗ n denote the approximate solution at time tn = n∆t, ∀n ∈ N. We thus consider the
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following semi-implicit time discretization:

ϱn+1 − ϱn

∆t +∇x · qn+1 = 0, (6.2.1a)

qn+1 − qn

∆t +∇x ·
(
qn ⊗ qn

ϱn
+ p(Zn)I

)
+∇x(πε(Zn+1)) = 0, (6.2.1b)

Zn+1 − Zn

∆t +∇x ·
(
Znq

n+1

ϱn

)
= 0. (6.2.1c)

Note that in the flux term in equation (6.2.1c), the momentum is taken implicitly. Inserting
(6.2.1b) into (6.2.1c), we obtain:

Zn+1 − Zn

∆t +∇x ·
(
Znq

n

ϱn

)

−∆t∇x ·

Z

n

ϱn
∇x ·

(
qn ⊗ qn

ϱn
+ p(Zn)I

)
+ Zn

ϱn
∇x(πε(Zn+1))


 = 0,

This is an elliptic equation on the unknown Zn+1, that can be written as:

Zn+1 −∆t2∇x ·
(
Zn

ϱn
∇x

(
πε(Zn+1)

))
= ϕ(ϱn, qn, Zn), (6.2.2)

where

ϕ(ϱn, qn, Zn)

= Zn + ∆t2∇x ·

Z

n

ϱn
∇x ·

(
qn ⊗ qn

ϱn
+ p(Zn)I

)
−∆t∇x ·

(
Znq

n

ϱn

)
.

The n-th time step of the scheme is decomposed into three parts: first get Zn+1 when solving
(6.2.2), then compute qn+1 thanks to (6.2.1b) and then ϱn+1 from (6.2.1a).

Discretization in space We only derive the fully discrete scheme in the one-dimensional case;
the two-dimensional formula are given in 6.6. We consider the computational domain [0, 1]
and a spatial space step ∆x = 1/Nx > 0, with Nx ∈ N: the mesh points are thus xi = i∆x,
∀i ∈ {0, . . . , Nx}. Let ϱn

i , qn
i , Zn

i , ϱ∗ n
i denote the approximate solution at time tn on mesh

cell [xi, xi+1]. The spatial discretization have to capture correctly the entropic solutions of the
hyperbolic system. To derive the fully discrete scheme, we thus make the same algebra on the
following fully discrete system:

ϱn+1
i − ϱn

i

∆t + 1
∆x(Fn+1

i+ 1
2
− Fn+1

i− 1
2

) = 0, (6.2.3a)

qn+1
i − qn

i

∆t + 1
∆x(Gn

i+ 1
2
−Gn

i− 1
2
) +

πε(Zn+1
i+1 )− πε(Zn+1

i−1 )
2∆x = 0, (6.2.3b)

Zn+1
i − Zn

i

∆t + 1
∆x(Hn+1

i+ 1
2
−Hn+1

i− 1
2

) = 0. (6.2.3c)
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where the stiff pressure is discretized by the centered finite difference and the numerical fluxes
Fn+1, Gn, Hn+1 (we denote implicit-explicit fluxes by current timestep n+ 1 and fully explicit
fluxes by previous timestep n) are splitted into centered part and the upwinded part:

Fn+1
i+ 1

2
= 1

2
(
qn+1

i+1 + qn+1
i

)
− (Dϱ)n

i+ 1
2
, (6.2.4)

Gn
i+ 1

2
= 1

2

((qn
i+1)2

ϱn
i+1

+ (qn
i )2

ϱn
i

+ p(Zn
i+1) + p(Zn

i )
)
− (Dq)n

i+ 1
2
, (6.2.5)

Hn+1
i+ 1

2
= 1

2

(
Zn

i+1
ϱn

i+1
qn+1

i+1 + Zn
i

ϱn
i

qn+1
i

)
− (DZ)n

i+ 1
2
. (6.2.6)

The upwinded parts are given explicitly. They can be given by the diagonal Rusanov (or local
Lax-Friedrichs) upwindings:

(Dw)n
i+ 1

2
= 1

2c
n
i+ 1

2

(
wn

i+1 − wn
i

)
, (6.2.7)

for any conserved quantities w, where cn
i+ 1

2
is the maximal characteristic speed (in absolute

value):

cn
i+ 1

2
= max

{∣∣∣∣λ
0
k

(
ϱn

i+1, q
n
i+1, Z

n
i+1
)∣∣∣∣ ,

∣∣∣∣λ
0
k

(
ϱn

i , q
n
i , Z

n
i

)∣∣∣∣ , k = 1, 2, 3
}
, (6.2.8)

where λ0
k are given by eq. (6.1.9) with ε = 0 (no congestion pressure). These correspond to

the eigenvalues of the hyperbolic system taken explicitly in (6.2.1). One could also consider less
diffusive numerical fluxes like the Polynomial upwind scheme [75].

Like in the semi-discrete case, we now obtain the fully discrete elliptic equation on Z by replacing
the implicit momentum terms appearing in the flux H (6.2.6) by their expressions given by the
momentum equation (6.2.3b). We get:

Zn+1
i − Zn

i + ∆t
∆x(H̄n

i+1/2 − H̄n
i−1/2)

− ∆t2
∆x2

1
2

(
Zn

i+1
ϱn

i+1
(Gn

i+ 3
2
−Gn

i+ 1
2
)−

Zn
i−1,j

ϱn
i−1

(Gn
i− 1

2
−Gn

i− 3
2
)
)

− ∆t2
∆x2

1
2

(
Zn

i+1
ϱn

i+1

(
πε(Zn+1

i+2 )− πε(Zn+1
i )

)
− Zn

i−1
ϱn

i−1

(
πε(Zn+1

i )− πε(Zn+1
i−2 )

))
= 0,

where H̄n denotes the same expression as (6.2.6) where all quantities are taken explicitly:

H̄n
i+ 1

2
= 1

2

(
Zn

i+1
ϱn

i+1
qn

i+1 + Zn
i

ϱn
i

qn
i

)
− (DZ)n

i+ 1
2
.

As explained in the introduction the main advantage of approximating the system (6.1.1) by
(6.1.5) with the singular pressure (6.1.6) is that it allows to keep the physical constraint Z ≤ 1
on each level of approximation. In fact, for ε > 0 fixed, our numerical scheme provides that
Z < 1 in the whole domain. For this to hold we solve first this elliptic equation with respect to
the congestion pressure variable πε:

Zn+1
i ((πε)n+1

i )− ∆t2
∆x2

1
2

(
Zn

i+1
ϱn

i+1

[
(πε)n+1

i+2 − (πε)n+1
i

]
(6.2.9)

− Zn
i−1
ϱn

i−1

[
(πε)n+1

i − (πε)n+1
i−2

])
= ϕ(ϱn, qn, Zn)i,
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where the right-hand side is given by:

ϕ(ϱn, qn, Zn)i =Zn
i −

∆t
∆x(Hn

i+1/2 −Hn
i−1/2) (6.2.10)

+ ∆t2
∆x2

1
2

(
Zn

i+1
ϱn

i+1
(Gn

i+ 3
2
−Gn

i+ 1
2
)−

Zn
i−1,j

ϱn
i−1

(Gn
i− 1

2
−Gn

i− 3
2
)
)
.

This equation is supplemented by periodic or Dirichlet boundary conditions. After solving the
equation for πε, we take Z(πε) =

√
πε/ε

1+
√

πε/ε
as the inverse function of πε(Z), the non-linear

equation is solved using the Newton iterations.

The (n+1)-th time step of the algorithm thus consists in getting Zn+1 by solving (6.2.9)-(6.2.10)
and then obtaining qn+1 from (6.2.3b) and ϱn+1 from (6.2.3a).

Stability Since the singular pressure πε is treated implicitly, the scheme remains stable even
for small ε. The stability condition only depends on the wave speeds of the explicit part of the
scheme, that is under the Courant-Friedrichs-Levy (CFL) condition:

∆t ⩽ ∆x
max

j=1,2,3; x∈[0,1],t∈[0,T ]

{
|λ0

j (x, t)|
} , (6.2.11)

where λ0
j , given by eq. (6.1.9), denotes the eigenvalues of the hyperbolic system with no conges-

tion pressure (ε = 0). The scheme is asymptotically stable with respect to ε.

Discrete energy Like in the viscous version of system (5-6) (see [80]), an energy is conserved in
time. Due to the numerical dissipation, our scheme does not preserve the energy at the discrete
level even for smooth solutions. However, we can point out that, on discontinuous solutions,
the local Lax-Friedrichs scheme selects a viscosity solution of the system with a decreasing
energy.

6.2.2 The Second Order (ϱ, q, Z)-Method

Discretization in time The second-order discretization in time is based on the combined
Runge-Kutta 2 / Crank-Nicolson (RK2CN) method as described in [65]: it consists of repla-
cing Euler explicit by Runge-Kutta 2 solver and Euler Implicit by Crank-Nicolson solver in
semi-discretization(6.2.1). Note that the second order convergence in time follows from the
theorey of partitioned Runge-Kutta methods. Both methods are of second order and so called
coupling conditions are satisfied. We here only detail the semi-discretized scheme. However, to
be unambiguous, we will denote by Dϱ, Dq, and DZ the numerical diffusion terms resulting from
the upwinding terms and the divergence operators will be replaced by centered fluxes. We thus
consider the following scheme:



6.2 Numerical Schemes 103

First step (half time step): get ϱn+1/2, qn+1/2 and Zn+1/2 from

ϱn+1/2 − ϱn

∆t/2 +∇x · qn+1/2 −Dn
ϱ = 0, (6.2.12a)

qn+1/2 − qn

∆t/2 +∇x ·
(
qn ⊗ qn

ϱn
+ p(Zn)I

)
−Dn

q +∇x(πε(Zn+1/2))=0, (6.2.12b)

Zn+1/2 − Zn

∆t/2 +∇x ·
(
Zn

ϱn
qn+1/2

)
−Dn

Z = 0. (6.2.12c)

Second step (full time step): get ϱn+1, qn+1 and Zn+1 from

ϱn+1 − ϱn

∆t +∇x ·
(
qn+1 + qn

2

)
−Dn

ϱ = 0, (6.2.13a)

qn+1 − qn

∆t +∇x ·
(
qn+1/2 ⊗ qn+1/2

ϱn+1/2 + p(Zn+1/2)I
)
−Dn+1/2

q

+∇x

(
πε(Zn) + πε(Zn+1)

2

)
= 0, (6.2.13b)

Zn+1 − Zn

∆t +∇x ·
(
Zn+1/2

ϱn+1/2
qn+1 + qn

2

)
−Dn

Z = 0. (6.2.13c)

Like in the first-oder scheme, equations (6.2.12b)-(6.2.12c) and (6.2.13b)-(6.2.13c) result in el-
liptic equations for πε. Solving this equation and inverting the function πε = πε(Z) allows to
find Z satisfying the restriction Z < 1. In practice, the scheme may fail capturing discontinu-
ities, in particular when small values of ε are concerned. Indeed, the semi-implicit pressure(
πε(Zn) + πε(Zn+1)

)
/2 in (6.2.13b) is constrained to be larger than πε(Zn)/2 preventing from

having large discontinuities in pressure. One way to overcome this difficulty is to dynamically
replace this semi-implicit pressure by an implicit pressure πε(Zn+1) as soon as the non-linear
solver of the elliptic equation detects a pressure lower than half the explicit one.

Discretization in space To get second order accuracy in space, we consider a MUSCL strategy.
For any conserved quantity v, it consists in introducing at each mesh interface left and right
values wL and wR:

wi,L = vi + 1
2 minmod(wi − wi−1, wi+1 − wi),

wi,R = vi −
1
2 minmod(wi − wi−1, wi+1 − wi),

where the minmod function is defined as:

minmod(a, b) = 0.5 (sgn (a) + sgn (b)) min(|a|, |b|).

Then all explicit terms in fluxes (6.2.4)-(6.2.5)-(6.2.6) depend on (ϱn
i,R, q

n
i,R, Z

n
i,R) and (ϱn

i+1,L, q
n
i+1,L, Z

n
i+1,L)

instead of (ϱn
i , q

n
i , Z

n
i ) and (ϱn

i+1, q
n
i+1, Z

n
i+1). Implicit terms are unchanged in order to be able

to get the elliptic equation.
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6.2.3 Congested Euler/Semi-Lagrangian Scheme ((ϱ, q)-method/SL)

Discretization in time We consider a scheme based on the non-conservative form (6.1.1) of the
congestion transport. This idea was proposed in [78] in the context of constant congestion and
in [80] in the context of variable congestion. The time-discretization reads:

ϱn+1 − ϱn

∆t +∇x · qn+1 = 0, (6.2.14a)

qn+1 − qn

∆t +∇x ·

q

n ⊗ qn

ϱn
+ p

(
ϱn

ϱ∗n

)
I


+∇xπε

(
ϱn+1

ϱ∗n

)
= 0, (6.2.14b)

ϱ∗n+1 − ϱ∗n

∆t + qn+1

ϱn+1 · ∇xϱ
∗n = 0. (6.2.14c)

Inserting(6.2.14b) into (6.2.14a) results in

ϱn+1−∆t2 ∆x

(
πε(ϱn+1/ϱ∗ n)

)
=

ϱn −∆t∇x · qn + ∆t2∇x · ∇x ·
(
qn ⊗ qn

ϱn
+ p(ϱn/ϱ∗ n)I

)
. (6.2.15)

This is an elliptic equation on the density ϱn+1. The n-th time step of the scheme is decomposed
into three parts: first get ϱn+1 when solving (6.2.15), then compute qn+1 thanks to (6.2.14b)
and then ϱ∗n+1 from (6.2.14c).

Discretization in space Like for the previous schemes, we restrict the description to the one-
dimensional case. Finite volume discretization is used for the spatial discretization of (6.2.14a)-
(6.2.14b) as in section 6.2.1, see also [78]. A semi-Lagrangian method is used to solve (6.2.14c)
and thus update the congestion density ϱ∗. The congestion density ϱ∗n+1

i at node xi and time
tn+1 is computed as follows: first we integrate back the characteristic line over one time step
and then we interpolate the maximal density ϱ∗n at that point. Using Euler scheme for the first
step, we obtain:

ϱ∗n+1
i =

[
Πϱ∗n] (xi − qi/ϱi ∆t)

where Πϱ∗n is an interpolation function built from the points (xi, ϱ
∗n
i ). We here perform a

Lagrange interpolation on the 2r + 2 neighboring points:

[Πϱ∗]|[xi,xi+1] = ΠLagrange

(
(xj , ϱ

∗
j ), i− r + 1 ≤ j ≤ i+ r

)
.

resulting in 2r + 1-th spatial accuracy. First (r = 0) and third (r = 1) order in space semi-
Lagrangian scheme will be used. For more details, we refer to [99].

The second order scheme Extension of the full scheme to second order accuracy in space
is made using the MUSCL strategy for the finite volume fluxes. Extension to second order
accuracy in time requires a Crank-Nicolson/Runge Kutta 2 method for (ϱ, q) and a second order
in time integration of the characteric line for the semi-Lagrangian scheme (with for instance
Taylor expansion) combined to a Strang splitting, see 6.7.
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6.3 One Dimensional Validation of the Schemes
6.3.1 Riemann Test-Case
We compare the numerical schemes on one-dimensional Riemann test-cases: the initial data is
a discontinuity between two constant states and the solutions are given by the superposition of
waves separating constant states. In 6.5, we give the form of these solutions with respect to the
relative position of left and right states in the phase space. In the case of colliding states, explicit
solutions can be numerically obtained. We thus consider the following Riemann test-case:

(ϱ0(x), q0(x), ϱ∗
0(x)) =





(ϱℓ, qℓ, ϱ
∗
ℓ ) = (0.7, 0.8, 1.2), if x ⩽ 0.5,

(ϱr, qr, ϱ
∗
r) = (0.7,−0.8, 1), if x > 0.5.

(6.3.1)

on the domain [0, 1]. The solution is made of two shock waves and an intermediate contact wave,
see (6.5.5). The CFL condition (6.2.11) can be estimated by:

∆t ⩽ ∆x
max

x∈[0,1],t∈[0,T ]
|v(x, t)|+

√
γ/min ϱ∗(x, t)

.

For the current Riemann test-case with γ = 2 and α = 2, the time step should satisfy ∆t ⩽
0.4∆x.

Comparison of the schemes (ε = 10−2) In Figure 6.1, we represent the solution at time
t = 0.1 with the different schemes using ∆t = 0.1∆x. The (ϱ, q, Z)-method refers to the method
introduced in Section 6.2.1 for the first order and in Section 6.2.2 for the second order scheme.
The (ϱ, q)-method/SL refers to the method described in Section 6.2.3. For the latter scheme, we
use the third order semi-Lagrangian scheme for the transport of the congestion density ϱ∗.

We observe that all the methods correctly capture the exact solution. The (ϱ, q)-method/SL
better captures the contact discontinuity at x ≈ 0.487 since we use a third order accurate
scheme for the transport of ϱ∗. Limiters could be used to avoid overshoot and undershoot at
this location.

Oscillations in momentum are brought forth at the discontinuity interface of the shock waves.
These oscillations are larger for second order schemes due to dispersion effects. In Figure 6.2,
we provide a zoom on these oscillations and compare the approximate solution to the exact
one. The amplitudes of the oscillations are larger for the (ϱ, q)-method/SL method. This may
be the counterpart of the decoupling of the variables (ϱ, q) and ϱ∗: in the computation of the
implicit pressure (see eq. (6.2.15), left-hand side), ϱ and ϱ∗ are not taken at the same time. We
finally note that, when running the simulation on large time, these oscillations do not increase
in magnitude nor in support: this is related to some L2 stability of the scheme.

Stiff pressure (ε = 10−4) With this value of ε, the intermediate congested state has maximal
wave speed equal to λmax ≈ 22. Hence, taking time step ∆t equal to 0.1∆x does not ensure the
resolution of the fast waves.

Figure 6.3 shows the solution at time t = 0.1 using the (ϱ, q, Z)-method with second order in
space accuracy. In the full second order scheme, the scheme switches automatically to a first
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ϱ q Z ϱ∗

ε = 10−2 order 2 in x 8.66× 10−4 1.28× 10−3 3.03× 10−4 5.70× 10−4

order 2 1.17× 10−3 3.52× 10−3 5.89× 10−4 5.77× 10−4

ε = 10−4 order 2 in x 9.75× 10−4 2.11× 10−3 3.70× 10−4 5.71× 10−4

order 2 9.89× 10−4 3.04× 10−3 3.84× 10−4 5.77× 10−4

Table 6.1: L1 error between the numerical solutions to Riemann problem (6.3.1) and exact solution at time
t = 0.1. Numercial solution computed using the (ϱ, q, Z)-method. Numerical parameters: ∆x =
1× 10−3, ∆t = 0.1 ∆x, α = 2, γ = 2.

order in time version of the scheme due to the large discontinuities in pressure, see Section 6.2.2.
We observe that the waves are well captured. As previously, oscillations in momentum develop
at schock discontinuities and we observe that the second order in time version of the scheme leads
to large uppershoots. In Table 6.1, we report the L1 error between numerical and exact solution:
we point out that the numerical errors are of the same order of magnitude independantly of the
value of ε. Quite similar results are obtained using the (ϱ, q)-method/SL.

6.3.2 Numerical Convergence Test-Case

We here consider the following smooth initial data:

ϱ0(x) = 0.6 + 0.2 exp
(
− (x− 0.5)2/0.01

)
,

q0(x) = exp
(
− (x− 0.5)2/0.01

)
,

ϱ∗
0(x) = 1.2 + 0.2

(
1− cos

(
8π(x− 0.5)

))
,

on the domain [0, 1] and perdiodic boundary conditions. We compute a reference solution at
time t = 0.05 using the second order in space (ϱ, q, Z)-method with small space and time steps
∆x = 5× 10−5 and ∆t = 0.1 ∆x (see Fig. 6.4).

Figure 6.5 shows the L1 errors between approximate solutions and the reference solution at
time t = 0.05 when the space step ∆x goes to 0. For first order scheme, time step is set
to ∆t = 5 × 10−6 while for second order schemes, time and space steps satisfy the relation
∆t = 0.1 ∆x and both are varying.

We observe that all the schemes exhibit their expected convergence rates. We point out that
(ϱ, q, Z)-method and (ϱ, q)-method/SL have the same level of numerical errors except for variable
ϱ∗: ϱ∗ is better resolved with (ϱ, q)-method/SL. This is all the more the case when using the
third order semi-Lagrangian scheme (on the right two plots of Fig. 6.5).

6.4 Two-dimensional Numerical Results

In this section we present the results of the numerical simulations in two-dimensions. As for
domain we take the unit square with the mesh size ∆x = 10−3 and the time-step ∆t = 10−4. In
the following we choose singular pressure (6.1.6) with the parameters ε = 10−4, α = 2, and the
background pressure (6.1.3) with the exponent γ = 2, if not stated differently.



6.4 Two-dimensional Numerical Results 107

0.0 0.2 0.4 0.6 0.8 1.0

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(%, q, Z)-method, order 1, time = 0.1

%

%max

Z

q

0.0 0.2 0.4 0.6 0.8 1.0

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(%, q, Z)-method, order 2, time = 0.1

%

%max

Z

q

0.0 0.2 0.4 0.6 0.8 1.0

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(%, q)-method/SL, order 1, time = 0.1

%

%max

Z

q

0.0 0.2 0.4 0.6 0.8 1.0

x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(%, q)-method/SL, order 2, time = 0.1

%

%max

Z

q

Figure 6.1: Approximate solution to Riemann problem (6.3.1) at time t = 0.1. Numerical parameters: ∆x =
1× 10−3, ∆t = 0.1 ∆x, α = 2, γ = 2, ε = 10−2.
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Figure 6.2: Approximate momentum q to Riemann problem (6.3.1) at time t = 0.1 and comparison with the
exact solution. Numerical parameters: ∆x = 1× 10−3, ∆t = 0.1 ∆x, α = 2, γ = 2, ε = 10−2.
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Figure 6.3: Approximate solution to Riemann problem (6.3.1) at time t = 0.1. Numerical parameters: ∆x =
1× 10−3, ∆t = 0.1 ∆x, α = 2, γ = 2, ε = 10−4.
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Figure 6.4: Reference solution at initial time (left) and time t = 0.05 (right). Numerical parameters: ∆x =
5× 10−5, ∆t = 0.1 ∆x, γ = 2, ε = 10−2.
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Figure 6.5: L1 errors for ϱ, q, Z and ϱ∗ as function of ∆x. Numerical parameters: ∆t = 5 × 10−6 for first
order scheme and ∆t = 0.1 ∆x for second order scheme, γ = 2, ε = 10−2. (ϱ, q, Z)-method:
(k-xt) k-th order in space and time. (ϱ, q)-method/SL: (k-xt)(m-x/n-t) k-th order in space and
time for the (ϱ, q)-method and m-th order in space and n-th order in time for the advection of
ϱ∗ by the semi-Lagrangian scheme. In dashed lines: first and second order curves.

First part is devoted to comparison of (ϱ, q, Z)-method and (ϱ, q)-method/SL described in Sec-
tion 6.2. Second is an application of (ϱ, q)-method/SL to the evacuation scenario. Third order
in space semi-Lagrangian scheme is applied.

6.4.1 Collision of 4 Groups with Variable Congestion

In the unit square periodic domain we specify 4 squares, with the centers in points (xc, yc) =
{(0.2, 0.5), (0.5, 0.2), (0.5, 0.8), (0.8, 0.5)}. The length of the side l of each square equals 0.2 (for
every square we introduce the notation Square((xc, yc), l)). We prescribe the initial momentum
of 0.5 pointing into the center of the domain provoking a collision. We consider three test cases
varying in the initial congestion density, namely:

Case 1: ϱ∗(x, 0) = 1.0;

Case 2: ϱ∗(x, 0) =





0.80 if x ∈ Square((0.2, 0.5), 0.2)
1.20 if x ∈ Square((0.5, 0.2), 0.2)
0.80 if x ∈ Square((0.8, 0.5), 0.2)
1.20 if x ∈ Square((0.5, 0.8), 0.2)
1.00 otherwise

;

Case 3: ϱ∗(x, 0) = 1 + 0.05(cos(10πx) + cos(24πx))(cos(6πy) + cos(34πy)).

The results of our simulations for these three cases are presented in Figures 6.6, 6.7, and 6.8.
We see that in case of constant congestion density (Case 1, Figure 6.6) the two schemes provide
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almost identical outcome. The essential difference appears when ϱ∗
0 varies. We see in Figure 6.7

that the initial discontinuities of ϱ∗ are significantly smoothened by the (ϱ, q, Z)-method, while
the (ϱ, q)-method/SL preserves the initial shape, which basically confirms our observations from
Section 6.3.2. This is even more visible in Figure 6.8, where the initial oscillations of ϱ∗ rapidly
decay when simulated by the (ϱ, q, Z)-method.

Another interesting observation following from Figures 6.7, and 6.8 when compared to Figure
6.6 is that the preference of the individuals ϱ∗ is significant factor to determine the density
distribution even far away from the congestion zone.

Moreover, comparing Figure 6.7 with Figure 6.6, we see a clear influence of the density constraint
on the velocity of the agents. Indeed, for the Case 2, there is a significant disproportion between
the velocities in the x and y directions at time t = 0.150 (see Figure 6.7 right). This corresponds
to the fact that the agents moving toward the center along y axis have ’more space’ to fill since
ϱ∗ for those groups is higher than the one for the groups moving in the x direction. This results
in a certain delay between collisions in two directions.

6.4.2 Application to Crowd Dynamics
In this section we investigate an influence of the variable density ϱ∗ on a possible evacuation
scenario. For this, we consider an impenetrable room in the shape of unit square, initially filled
with uniformly distributed agents. There is an exit located at x ∈ [0.4, 0.6], y = 0 that allows
for free outflow. The initial density ϱ0 = 0.6 and the initial momentum is equal to 0. The desire
of going to the exit is introduced in the system (6.1.1) (6.1.6) by adding the relaxation therm in
the momentum equation

∂tq + div


q ⊗ q

ϱ
+ πε

(
ϱ

ϱ∗

)
I + p

(
ϱ

ϱ∗

)
I


 = 1

β
(q − ϱw) , (6.4.1)

where w is the desired velocity, and β stands for the relaxation parameter. The desired velocity
is given by a unit vector field, that points into the centre of the exit,

w =
(
−x/((x− 0.5)2 + y2),−y/((x− 0.5)2 + y2)

)
.

In the numerical scheme we apply splitting of the momentum equation between the transport
and pressure part, and the relaxation (source) part, with the intermediate momentum q∗. After
the momentum is updated we perform implicit relaxation step, for given density ϱn+1,

q∗ − qn

∆t +∇x ·

q

n ⊗ qn

ϱn
+ p

(
ϱn

ϱ∗n

)
I


+∇x · πε

(
ϱn+1

ϱ∗n

)
= 0, (6.4.2a)

qn+1 − q∗

∆t = 1
β

(
qn+1 − ϱn+1w

)
. (6.4.2b)

We use the (ϱ,q)-method/SL, which requires to solve the transport equation for ϱ∗. This is
especially problematic in the corners of the domain, where the Dirichlet boundary condition is
considered. This leads to oscillations of ϱ and ϱ∗ close to these points. Nevertheless, we may
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Figure 6.6: Case 1: the comparison of (ϱ, q, Z)-method (top) and (ϱ, q)-method/SL (bottom) at time 0.025
(left), and 0.150 (right). A video available at https://youtu.be/jbNXJJd4Kbo.

https://youtu.be/jbNXJJd4Kbo
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Figure 6.7: Case 2: the comparison of (ϱ, q, Z)-method (top) and (ϱ, q)-method/SL (bottom) at time 0.025
(left), and 0.150 (right). A video available at https://youtu.be/TPEO9wUVPZg.

https://youtu.be/TPEO9wUVPZg
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Figure 6.8: Case 3: the comparison of (ϱ, q, Z)-method (top) and (ϱ, q)-method/SL (bottom) at time 0.025
(left), and 0.150 (right). A video available at https://youtu.be/Gvvlgq8bY_E.

https://youtu.be/Gvvlgq8bY_E
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observe, see Figure 6.9 and Figure 6.10, the so called stop-and-go behaviour, namely distinct
high velocity regions in the domain, one in the vicinity of the exit and the second one that
propagates in the direction opposite to flow.

This reflects an empirical observation that once a pedestrian arrives to the space of high con-
gestion, he or she slows down or even stops until some space opens up in front. This kind of
stop-and-go waves have been described, for example, by Helbing and Johansson in [126]. For
the description of the real evacuation experiments we refer to [123], see also [110]. In the last
of the mentioned papers the authors provide an experimental demonstration of the so called
faster goes slower effect. This means that an increase in the density of pedestrians does not
necessarily lead to a larger flow rate. Our simulations show that when the parameter ϱ∗ is low,
the outflow of the individuals is slower. This is especially visible in the third row of Figures 6.9
and 6.10 presenting the evacuation scenario for the initial barrier density in the shape of the
step function

ϱ∗
0(x, y) =

{
1.1 for 0.5 < x < 1,
0.9 for 0 < x < 0.5. (6.4.3)

This observation can be also confirmed in terms of speed of evacuation. Indeed, we performed
analogous simulations for 3 cases of constant ϱ∗

0 equal to 0.9, 1.0. 1.1 show that the speed
of emptying the room is bigger the bigger value of ϱ∗

0. To see this we have measured the
mass remaining in the room at time t = 1 and it is equal to 0.51030, 0.048037, and 0.457123,
respectively. We have moreover observed that evacuation speed of the room with individuals of
the average congestion preference equal to 1 initially can be improved by placing the individuals
with higher ϱ∗

0 closer to the exit. This is illustrated in the Figures 6.9 and 6.10 the second row,
for which, the initial congestion preference ϱ∗

0 equals

ϱ∗
0(x, y) = 1.1− 0.2y. (6.4.4)

The random distribution of preferences of the individuals with expected value equal to 1, on
the other hand, corresponds to the increase of the evacuation time (see Figures 6.9 and 6.10 the
bottom row).

6.5 Solution to the Riemann Problem
The one-dimensional Riemann problem for the system (6.1.8) is the following initial-value prob-
lem:

∂tϱ+ ∂xq = 0, (6.5.1a)

∂tq + ∂x

(
q2

ϱ
+ pε(Z)

)
= 0, (6.5.1b)

∂tZ + ∂x

(
Z
q

ϱ

)
= 0, (6.5.1c)

where pε(Z) = πε(Z) + p(Z), and

(ϱ, q, Z)(0, x) =
{

(ϱℓ, qℓ, Zℓ) for x < 0,
(ϱr, qr, Zr) for x > 0. (6.5.2)
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Figure 6.9: Stop-and-go behaviour for the evacuation scenario, with ϱ∗
0 being constant, with linear slope

in y−direction (6.4.4), step-function (6.4.3), and a random function. The congestion density
(upper) the density (middle) and the velocity amplitude (bottom) at times t = 0 (left column)
t = 0.5 (middle column), and t = 1.0 (right column). A video available at https://youtu.be/
sK9J5BoUmtE.

https://youtu.be/sK9J5BoUmtE
https://youtu.be/sK9J5BoUmtE
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Figure 6.10: The evacuation scenario for ϱ∗
0 being constant, with linear slope in y−direction (6.4.4), step-

function (6.4.3), and a random function. The figures present the values of the density ϱ, the
direction momentum |q| and the direction and values of the velocity v at time t = 1.0 for
different test cases. A video available at https://youtu.be/aoDw2aqvNEQ.

https://youtu.be/aoDw2aqvNEQ
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The purpose of this section is to find possible weak solution to (6.5.1) (6.5.2). We will also
consider the limit of these solutions as ε→ 0.

As already mentioned in the introduction, the system (6.5.1) is strictly hyperbolic provided
p′

ε(Z) > 0, see (6.1.9). The associated characteristic fields are given by:

rε
1(ϱ, q, Z) =




1

v −
√
Z

ϱ
p′

ε(Z)

Z/ϱ



, rε

2(ϱ, q, Z) =




1
v
0


 , rε

3(ϱ, q, Z) =




1

v +
√
Z

ϱ
p′

ε(Z)

Z/ϱ



,

where v = q/ϱ is the velocity. The second characteristic field is linearly degenerate (since
∇λ2 · r2 = 0). The two others characteristic field are genuinely non-linear.

We now present the elementary wave solutions of the Riemann problem.

6.5.1 Elementary Waves

Shock Discontinuities A shock wave is a discontinuity between two constant states, (ϱ, q, Z)
and (ϱ̂, q̂, Ẑ), travelling at a constant speed σ. We now fix the left (or right) state (ϱ̂, q̂, Ẑ) and
look for all triples (ϱ, q, Z) that can be connected to (ϱ̂, q̂, Ẑ) by the shock discontinuity. Across
the shock, the Rankine-Hugoniot conditions must be satisfied meaning that:

[q] = σ[ϱ],
[
q2

ϱ
+ pε(Z)

]
= σ[q],

[
Z
q

ϱ

]
= σ[Z],

where [a] := a− â denotes the jump of quantity a. Treating ϱ as a parameter, we check that the
two admissible states are of the form (ϱ, qh,±(ϱ), Z(ϱ)) with qh,± = ϱvh,±(ϱ) and

vh,±(ϱ) = v̂ ± sign(Z(ϱ)− Ẑ) 1√
ϱ̂ϱ

√√√√√√(ϱ− ϱ̂)


pε


 Ẑϱ
ϱ̂


− pε(Ẑ)


,

Z(ϱ) = Ẑ
ϱ

ϱ̂
.

The shock speed therefore equals:

σ± = v̂ ± sign(Z − Ẑ)
√
ϱ

ϱ̂

√√√√pε(Ẑϱ/ϱ̂)− pε(Ẑ)
(ϱ− ϱ̂) .

These solutions can also be expressed as functions of Z:

ϱ(Z) = Z
ϱ̂

Ẑ
,

vh,±(Z) = v̂ ± sign(Z − Ẑ) 1√
ϱ̂

√√√√√


1− Ẑ

Z



(
pε(Z)− pε(Ẑ)

)
.
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Note that the maximal density (ϱ∗ = ϱ/Z) does not jump across a shock discontinuity. Expand-
ing (ϱ(Z), qh,±(Z), Z) around Z = Ẑ, we obtain

ϱ(Z)− ϱ̂ = (Z − Ẑ) ϱ̂
Ẑ
,

ϱ(Z)vh,±(Z)− ϱ̂v̂ = (Z − Ẑ) ϱ̂
Ẑ
v̂ ± Z ϱ̂

Ẑ
sign(Z − Ẑ)

√
1
ϱ̂

√
(1− Ẑ/Z)

(
pε(Z)− pε(Ẑ)

)

≈ (Z − Ẑ) ϱ̂
Ẑ
v̂ ± Z ϱ̂

Ẑ
sign(Z − Ẑ)

√
1
ϱ̂Z

√
p′

ε(Ẑ)(Z − Ẑ)2

≈ (Z − Ẑ) ϱ̂
Ẑ


v̂ ±

√
Ẑ

ϱ̂

√
p′

ε(Ẑ)


 ,

Z − Ẑ = (Z − Ẑ) ϱ̂
Ẑ

Ẑ

ϱ̂
.

Note that (ϱ(Z), qh,−(Z), Z) is tangent at (ϱ̂, q̂, Ẑ) to r1(ϱ̂, q̂, Ẑ), therefore vh,− corresponds to
the 1-characteristic field, analogously vh,+ corresponds to the 3-characteristic field. The graph
of Z 7→ vh,−(Z) (resp. Z 7→ vh,+(Z)) is called the 1-Hugoniot curve (resp. 3-Hugoniot curve)
issued from (v̂, Ẑ).

To check the admissibility of the discontinuity, we need to check the entropy condition. If (v̂, Ẑ) is
the left state, the right states that can be connected to it by an entropic shock wave are those loc-
ated on the 1-shock curve

{(
vh,−(Z), Z

)
: Z > Ẑ

}
or the 3-shock curve

{
(vh,+(Z), Z) : Z < Ẑ

}
.

Indeed, on these curves the associated eigenvalue is decreasing. If on the other hand, (v̂, Ẑ) is the
right state, the left states that can be connected to it by an entropic shock wave are those loc-
ated on the 1-shock curve

{
(vh,−(Z), Z) : Z < Ẑ

}
or the 3-shock curve

{
(vh,+(Z), Z) : Z > Ẑ

}
.

Indeed, on these curves the associated eigenvalue is increasing.

Rarefaction Waves The rarefaction waves are continuous self-similar solutions, (ϱ(t, x), q(t, x), Z(t, x)) =
(ϱ(x/t), q(x/t), Z(x/t)), connecting two constant states (ϱ, q, Z) and (ϱ̂, q̂, Ẑ). They thus satisfy
the following differential equations:

ϱ′(s) = 1, q′(s) = ṽ(s)±
√
Z(s)
ϱ(s) p

′
ε(Z(s)), Z ′(s) = Z(s)/ϱ(s), (6.5.3)

Denoting q(s) = ϱ(s)ṽi,±(s) and parametrizing by ϱ, we obtain:

ṽ′
i,±(ϱ) = ±1

ϱ

√
Z(ϱ)
ϱ

p′
ε(Z(ϱ)), Z ′(ϱ) = Z(ϱ)/ϱ.

From the first and third equation of (6.5.3), we have (ϱ/Z(ϱ))′ = 0, and so, ϱ/Z(ϱ) = ϱ̂/Z(ϱ̂).
This means that as in the case of shock discontinuities the maximal density ϱ∗ does not jump.
Denoting ϱ∗ = ϱ/Z(ϱ) and making the change of coordinates vi,±(Z) = ṽi,±(ϱ) with ϱ = ϱ∗Z,
we thus have:

v′
i,±(Z) = ± 1

Z

√
1
ϱ∗ p

′
ε(Z).
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Hence, the states satisfy:
vi,±(Z) = v̂ ±

(
Fε(Z)− Fε(Ẑ)

)
, (6.5.4)

where Fε is an antiderivative of Z 7→ 1
Z

√
1
ϱ∗ p′

ε(Z).

The graph of Z 7→ vi,+(Z) (resp. Z 7→ vi,−(Z)) is called the 1-integral curve (resp. 3-integral
curve) issued from (v̂, Ẑ). If (v̂, Ẑ) is a left state, the right states that can be connected to it
by an entropic rarefaction wave are those located on the 1-integral curve

{
(vi,−(Z), Z) : Z < Ẑ

}

or the 3-integral curve
{

(vi,−(Z), Z) : Z > Ẑ
}

. Indeed, on these curves the associated eigen-
value is increasing. If (v̂, Ẑ) is a right state, the left states that can be connected to it by an
entropic rarefaction wave are those located on the 1-integral curve

{
(vi,−(Z), Z) : Z > Ẑ

}
or

the 3-integral curve
{

(vi,−(Z), Z) : Z < Ẑ
}

. Indeed, on these curves the associated eigenvalue
is decreasing.

Contact Discontinuities Since the second characteristic field is linearly degenerate, there are
linear discontinuities that propagate at velocity λ2 = v̂. Let us write the Rankine-Hugoniot
conditions:

[q] = v̂[ϱ],
[
q2

ϱ
+ pε(Z)

]
= v̂[q],

[
Z
q

ϱ

]
= v̂[Z].

From the first relation, we obtain v = v̂ and then the second relation states that the pressure
jump is zero. By strict monotony of the pressure, it implies that Z = Ẑ and the third equation
is satisfied. Along this discontinuity, the velocity and the pressure are thus conserved. Note that
every density jump is possible.

6.5.2 Solution to Riemann Problem
Let (ϱℓ, qℓ, Zℓ) and (ϱr, qr, Zr) be the left and right initial states (6.5.2). The solutions to Riemann
problems are determined as follows. First, in the (v, Z) plane, find out the intersection state
(vm, Zm) of the 1-st integral/Hugoniot curves issued from (vℓ, Zℓ) and the 3-rd integral/Hugoniot
curves issued from (vr, Zr). Then, compute the two densities ϱm,ℓ and ϱm,r so that the congestion
density across the two non-linear waves is conserved. Then we connect the two distinct inter-
mediate states by a contact discontinuity. We finally end up with the following solution:

(ϱℓ, qℓ, Zℓ)
shock/rarefaction→ (ϱm,ℓ, ϱm,ℓvm, Zm)

contact→ (ϱm,r, ϱm,rvm, Zm) shock/rarefaction→ (ϱr, qr, Zr) (6.5.5)

where ϱm,ℓ = Zmϱℓ/Zℓ and ϱm,r = Zmϱr/Zr. The nature of the non-linear waves (rarefaction or
shock) depends on the relative position of the states (vℓ, Zℓ), (vr, Zr) in the (v, Z) plane.

6.5.3 Limit ε→ 0
We are now interested in the asymptotic behaviour, when ε → 0 of the Hugoniot vε

h,± and the
integral curves vε

i,± obtained in the previous paragraph for the elementary waves. We have the
following result.
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Proposition 6.1. The graph of the Hugoniot curve,
{

(Z, vε
h,±(Z)) : Z ∈ [0, 1)

}
, tends to the

union of the set
{

(Z, v0
h,±(Z)) : Z ∈ [0, 1)

}
and the horizontal half straight line

{
(1, v) : v ∈ [v0

h,±(1),+∞)
}

.

The graph of the integral curve,
{

(Z, vε
i,±(Z)) : Z ∈ [0, 1)

}
, tends to the union of the set

{
(Z, v0

i,±(Z)) : Z ∈ [0, 1)
}

and the horizontal half straight line
{

(1, v) : v ∈ [v0
i,±(1),+∞)

}
.

The proof of this proposition uses the convexity of the pressure and are similar to the one
developed in [74].

Regarding the Riemann problem in the limit ε → 0, the intersection point of the 1-st integ-
ral/Hugoniot curves issued from (vℓ, Zℓ) and the 3-rd integral/Hugoniot curves issued from
(vr, Zr), denoted by (vε

m, Z
ε
m), has either a limit (v0

m, Z
0
m) with 0 ⩽ Z0

m < 1 or tends to a
congested state (v̄, 1). Then finding a solution can be divided into the following steps:

(1) compute the intersection (v0
m, Z

0
m) of the 1-st integral/Hugoniot curves and 3-rd integ-

ral/Hugoniot curves;

(2a) if Z0
m < 1, the solution is as described in the previous section, it is a usual Riemann

solution of the hyperbolic system with no congestion pressure;

(2b) if Z0
m ≥ 1, then the congested state is given by the following proposition.

Proposition 6.2 (Case Z0
m ≥ 1.). The solution consists in three waves:

(ϱℓ, qℓ, Zℓ)
shock→ (ϱ∗

ℓ , ϱ
∗
ℓ v̄, 1) contact→ (ϱ∗

r , ϱ
∗
r v̄, 1) shock→ (ϱr, qr, Zr)

where the intermediate velocity v̄ and pressure p̄ satisfy:

v̄ = vℓ −
√

1
ϱℓ

√
(1− Zℓ)(p̄− p0(Zℓ)) = vr +

√
1
ϱr

√
(1− Zr)(p̄− p0(Zr)),

the intermediate densities are given by:

ϱ̂ℓ = ϱℓ/Zℓ = ϱ∗
ℓ , ϱ̂r = ϱr/Zr = ϱ∗

r ,

and the shock speeds σ−, σ+ are given by:

σ− = vℓ −
√

ϱ∗
ℓ

ϱℓ(ϱ∗
ℓ − ϱℓ)

√
p̄− p0(Zℓ), σ+ = vr +

√
ϱ∗

r

ϱr(ϱ∗
r − ϱr)

√
p̄− p0(Zr).

This proposition can be proven using similar arguments as in [74].

Below, on Figure 6.11 we present two different solutions to the Riemann problem (6.5.1)-(6.5.2).
Depending on the initial location of the left and right states, the intersection state (vm, Zm)
might be a congested state or not.

6.6 Fully Discrete Scheme in Dimension 2
We consider the computational domain [0, 1] × [0, 1] and spatial space steps ∆x = 1/Nx,∆y =
1/Ny > 0, with Nx, Ny ∈ N: the mesh points are thus xi,j = (i∆x, j∆y), ∀(i, j) ∈ {0, . . . , Nx}×
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Figure 6.11: Intersection of the 1-integral/Hugoniot curve issued from the left state (ϱℓ, vℓ, Zℓ) = (0.8, 1, 0.2)
and the 3-integral/Hugoniot curve issued from the right state for ε = 10−3. The rarefaction
curves are in dashed line and the shock curve in solid line. Left: the right state is given by
(ϱr, vr, Zr) = (0.8, 0, 0.4) and the intermediate state (v0

m, Z
0
m) is not a congested state. Right:

the right state is given by (ϱr, vr, Zr) = (0.8,−2, 0.4) and the intersection point is very closed
to the congested line Z = 1.

{
0, . . . , Ny

}
. Let ϱn

i,j , qn
i,j , Zn

i,j , ϱ∗ n
i,j denote the approximate solution at time tn on mesh cell

[i∆x, (i+ 1)∆x]× [j∆x, (j + 1)∆x].

The two-dimensional version of (6.2.3) reads:

ϱn+1
i,j − ϱn

i,j

∆t + 1
∆x(Fn+1

(i+ 1
2 ,j) − F

n+1
(i− 1

2 ,j)) + 1
∆y (F̃n+1

(i,j+ 1
2 ) − F̃

n+1
1,(i,j− 1

2 )) = 0, (6.6.1)

qn+1
i,j − qn

i,j

∆t + 1
∆x(Gn

(i+ 1
2 ,j) −G

n
(i− 1

2 ,j)) + 1
∆y (G̃n

(i,j+ 1
2 ) − G̃

n
(i,j− 1

2 ))

+ (∇πε(Zn+1))i,j = 0, (6.6.2)
Zn+1

i,j − Zn
i,j

∆t + 1
∆x(Hn+1

(i+ 1
2 ,j) −H

n+1
(i− 1

2 ,j)) + 1
∆y (H̃n+1

(i,j+ 1
2 ) − H̃

n+1
3,(i,j− 1

2 )) = 0. (6.6.3)

where fluxes Fn+1, Gn, Hn+1 (in the first spatial direction) are defined:

Fn+1
(i+ 1

2 ,j) = 1
2
(
qn+1

1,(i+1,j) + qn+1
1,(i,j)

)
− (Dϱ)n

i+ 1
2 ,j
, (6.6.4)

Gn
(i+ 1

2 ,j) = 1
2
(
fn

(i+1,j) + fn
(i,j)

)
− (Dq)n

i+ 1
2 ,j
, (6.6.5)

Hn+1
(i+ 1

2 ,j) = 1
2

(
Zn

i+1,j

ϱn
i+1,j

qn+1
1,(i+1,j) +

Zn
i,j

ϱn
i,j

qn+1
1,(i,j)

)
− (DZ)n

i+ 1
2 ,j
, , (6.6.6)

with

fn =
[
(qn

1 )2 + p(Zn)
qn

1 q
n
2

]
.
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Fluxes F̃n+1, G̃n, H̃n+1 in the second spatial direction are defined by:

F̃n+1
(i,j+ 1

2 ) = 1
2
(
qn+1

2,(i,j+1) + qn+1
2,(i,j)

)
− (Dϱ)n

i,j+ 1
2
, (6.6.7)

G̃n
(i,j+ 1

2 ) = 1
2
(
f̃n

(i,j+1) + f̃n
(i,j)

)
− (Dq)n

i,j+ 1
2
, (6.6.8)

H̃n+1
(i,j+ 1

2 ) = 1
2

(
Zn

i,j+1
ϱn

i,j+1
qn+1

2,(i,j+1) +
Zn

i,j

ϱn
i,j

qn+1
2,(i,j)

)
− (DZ)i,j+ 1

2
, (6.6.9)

with
f̃n =

[
qn

1 q
n
2

(qn
2 )2 + p(Zn)

]
.

The upwindings Dϱ, Dq, DZ are defined similarly as for the one-dimensional case (sse (6.2.7)-
(6.2.8)).

The implicit pressure in (6.6.2) is discretized by the centered difference:

(∇πε(Zn+1))i,j =




πε(Zn+1
i+1,j)− πε(Zn+1

i−1,j)
2∆x

πε(Zn+1
i,j+1)− πε(Zn+1

i,j−1)
2∆y



.

Inserting equation (6.6.2) into (6.6.3), we obtain:

Zn+1
i,j − Zn

i,j + ∆t
∆x

(
H̄n

(i+ 1
2 ,j) − H̄

n
(i+ 1

2 ,j)

)
+ ∆t

∆y
( ¯̃
H

n

(i+ 1
2 ,j) − ¯̃

H
n

(i+ 1
2 ,j)
)

− ∆t2
∆x2

1
2

(
Zn

i+1,j

ϱn
i+1,j

(
Gn

(i+ 3
2 ,j),1 −G

n
(i+ 1

2 ,j),1

)
−
Zn

i−1,j

ϱn
i−1,j

(
Gn

(i− 1
2 ,j),1 −G

n
(i− 3

2 ,j),1

))

− ∆t2
∆x∆y

1
2

(
Zn

i+1,j

ϱn
i+1,j

(
G̃n

(i+1,j+ 1
2 ),1 − G̃

n
(i+1,j− 1

2 ),1

)

−
Zn

i−1,j

ϱn
i−1,j

(
G̃n

(i−1,j+ 1
2 ),1 − G̃

n
(i−1,j− 1

2 ),1

))

− ∆t2
∆y2

1
2

(
Zn

i,j+1
ϱn

i,j+1

(
G̃n

(i,j+ 3
2 ),2 − G̃

n
(i,j+ 1

2 ),2

)
−
Zn

i,j−1
ϱn

i,j−1

(
G̃n

(i,j− 1
2 ),2 − G̃

n
(i,j− 3

2 ),2

))

− ∆t2
∆x∆y

1
2

(
Zn

i,j+1
ϱn

i,j+1

(
Gn

(i+ 1
2 ,j+1),2 −G

n
(i− 1

2 ,j+1),2

)

−
Zn

i,j−1
ϱn

i,j−1

(
Gn

(i+ 1
2 ,j−1),2 −G

n
(i− 1

2 ,j−1),2

))

− ∆t2
∆x2

1
4

(
Zn

i+1,j

ϱn
i+1,j

(
πε(Zn+1

i+2,j)− πε(Zn+1
i,j )

)
−
Zn

i−1,j

ϱn
i−1,j

(
πε(Zn+1

i,j )− πε(Zn+1
i−2,j)

))

− ∆t2
∆y2

1
4

(
Zn

i,j+1
ϱn

i,j+1

(
πε(Zn+1

i,j+2)− πε(Zn+1
i,j )

)
−
Zn

i,j−1
ϱn

i,j−1

(
πε(Zn+1

i,j )− πε(Zn+1
i,j−2)

))
= 0,

where terms H̄n and ¯̃
H

n
have the same expressions as (6.6.6)-(6.6.9) but where all quantities

are taken explicitly.
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6.7 Second Order in Time (ϱ, q)-method/SL
The second order accuracy scheme for the (ϱ, q)-method/SL is based on a Strang splitting
between advection of congestion density and advection of (ϱ, q). It consists in the following
steps:

1. Compute ϱ∗ n+1/2 by solving the advection of over ∆t/2

ϱ∗n+1/2 − ϱ∗n

∆t/2 + qn

ϱn
· ∇xϱ

∗n = 0.

2. Compute (ϱn+1, qn+1) with the RK2CN scheme as proposed in [65]:

First step (half time step):

ϱn+1/2 − ϱn

∆t/2 +∇x · qn+1/2 −Dn
ϱ = 0,

qn+1/2 − qn

∆t/2 +∇x ·
(
qn ⊗ qn

ϱn
+ p(Zn)I

)
−Dn

q +∇x(πε(ϱn+1/2/ϱ∗,n+1/2)) = 0.

Second step (full time step):

ϱn+1 − ϱn

∆t +∇x ·
(
qn+1 + qn

2

)
−Dn

ϱ = 0,

qn+1 − qn

∆t +∇x ·
(
qn+1/2 ⊗ qn+1/2

ϱn+1/2 + p(Zn+1/2)I
)
−Dn+1/2

q

+∇x

(
πε(ϱn/ϱ∗,n+1/2) + πε(ϱn+1/ϱ∗,n+1/2)

2

)
= 0.

where Dϱ, Dq denote the numerical diffusion coming from fluxes.

3. Advection of ϱ∗ on ∆t/2 time step

ϱ∗n+1 − ϱ∗n+1/2

∆t/2 + qn+1

ϱn+1 · ∇xϱ
∗n+1/2 = 0.

A second order in time version of the semi-Lagrangian scheme has to be used. We here consider
the second order Taylor approximation of the caracteristic line whose one-dimensional version
reads:

ϱ∗n+1
i =

[
Πϱ∗n]

(
xi − vi∆t+ aivi

∆t2
2

)
.

where vi = qi/ϱi for all i and ai is an upwind finite difference approximation of the first derivative
of the velocity: ai = (vi − vi−1)/∆x if vi > 0 and ai = (vi+1 − vi)/∆x if vi ⩽ 0.



CHAPTER 7

Density-induced Consensus Protocol

The content of this chapter is a joint work with Piotr Mucha and Jan Peszek, and is published
in the paper

P. Minakowski, P. B. Mucha and J. Peszek. ‘Density-Induced Consensus Protocol’.
In: Mathematical Models and Methods in Applied Sciences 30.12 (July 2020), pp. 2389–
2415. doi: 10.1142/s0218202520500451

Chapter Summary. We introduce a model of collective behavior where agents receive informa-
tion only from sufficiently dense crowds in their immediate vicinity. The system is an asymmetric,
density-induced version of the Cucker-Smale model with short-range interactions. We prove the
basic mathematical properties of the system and concentrate on the presentation of interesting
behaviors of the solutions. The results are illustrated by numerical simulations.

Chapter Organisation. After introductory Section 7.1, in Section 7.2 we introduce the main
motivations behind the model (Section 7.2.1), we present the main results (Section 7.2.2) and
reformulate the problem in terms of graphs (Section 7.2.3), as well as deliver additional remarks
and comparison with other relevant models. Section 7.3 and Section 7.4 are dedicated to prove
the main results: Theorems 7.5 and 7.6, and to showcase the possible interaction between clusters
(No. 1 – No. 3). Finally, in Section 7.5, we present numerical simulations.

https://doi.org/10.1142/s0218202520500451
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7.1 Introduction
We consider an ensemble of N agents with (xi(t), vi(t)) ∈ R2d denoting the position and the
velocity of ith agent at the time t ≥ 0. The agents follow the density-induced consensus protocol
(DI)





ẋi = vi, xi(0) = xi0 ∈ Rd, (7.1.1a)
v̇i =

∑

k∈Ni

M(vk − vi), vi(0) = vi0 ∈ Rd, (7.1.1b)

where Ni is a neighbor set of ith agent. The definition of this set requires some care. It is not
empty if the number of other agents, in a given ball centered at the ith agent, is big enough.
Thus the interaction is engaged only if Ni is not trivial. In addition, due to technicalities related
to well possedness, the communication is delayed in time.

Hence it is defined through the following relation: given positive parameters δ,m and h, for
t ≥ h we define

k ∈ Ni(t) ⇔ xk(t− h) ∈ B(xi(t− h), δ) and

#
{
k ∈ {1, ..., N} : xk(t− h) ∈ B(xi(t− h), δ)

}
> m

(7.1.2)

where B(xi(t − h), δ) is an open ball centered at xi(t − h) with radius δ and #A denotes the
number of elements of the set A. For t ∈ [0, h) we take

k ∈ Ni(t) ⇔ xk(0) ∈ B(xi(0), δ) and

#
{
k ∈ {1, ..., N} : xk(0) ∈ B(xi(0), δ)

}
> m.

(7.1.3)
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Parameter 0 < h, negligibly small compared to the rest of parameters, is introduced to ensure
that the neighbour sets Ni(t) are well defined. Indeed, taking h = 0 causes instability of the
system if a particle is situated at the boundary of B(xi(t), δ). A natural interpretation of h is a
time step from a discrete in time version of (7.1.1). To grasp the intuition behind the behaviour,
we can view h as 0 and focus on the qualitative analysis of the model, which is the main goal of
the paper. Further explanation can be found in Remark 7.9. Parameter M = M(N,#Ni) is a
normalizing factor discussed later; to fix our attention we may assume that M = κ/#Ni, where
κ > 0 is the non-dimensional coupling strength and #Ni is the number of elements in Ni.

Condition (7.1.2) introduces a two-step verification of whether k belongs to the set of neighbors
of i. First, xk(t − h) is required to be close to xi(t − h). Second, the crowd density in the
immediate vicinity of i needs to be large enough so that the number of the individuals with
xk(t − h) ∈ B(xi(t − h), δ) is larger than m. If the second condition is not satisfied, the set of
neighbors of i is empty. Observe that the rightmost condition in definition (7.1.2) is asymmetric
and consequently so is the relation of adjacency ⇝ defined by k ⇝ i⇔ k ∈ Ni.

Dividing the right-hand side of (7.1.2) by δd (where d is the dimension of the space) identifies
m
δd as a threshold imposed on the empirical density of the particles. Hence, the interaction
is induced by sufficiently high density of the agents and the DI protocol operates within the
following general paradigm:

To influence the behavior of an individual,
communication with a sufficiently dense nearby crowd is required.

The protocol is specific to real-life phenomena related to societal dynamics, where individuals
do not interact with separate agents but are highly susceptible to the influence of crowds. It
is inspired by such phenomena as emergence of trends in decision-making and viral videos in
social media. In such a setting we view xi and vi as the opinion and tendency of the individual,
respectively (we elaborate it in Section 7.2.1).

Formally (7.1.1) is a second order system which in the kinetic formalism determines the accel-
eration of particles in terms of their positions and velocities. Indeed, it originates from a highly
recognizable model of collective behavior, the classical Cucker-Smale (CS) system





ẋi = vi, xi(0) = xi0 ∈ Rd, (7.1.4a)

v̇i = 1
N

N∑

k=1
ψ(|xi − xk|)(vk − vi), vi(0) = vi0 ∈ Rd, (7.1.4b)

with ψ(s) = (1 + s)−α.

Comparing the DI and CS models, we observe the first prominent feature of the DI protocol:
it leads to the emergence of sharply distinguishable, dense clusters. Moreover, we observe local
flocking, with nontrivial dependence on the density; particularly the time = 150 velocity of
singletons varies significantly, see Fig. 7.1.

The second prominent feature of the DI model is a structural asymmetry of the interactions
showcased in Fig. 7.2.
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(A)

(B)

time = 0.0 time = 30.0 time = 150.0

Figure 7.1: Behaviour of particles for DI (A) and CS (B). Identical initial data lead to sharper clusters for the
DI model. The color coding represents clusters of indirect communication - multiple clusters for
DI and a single cluster for (global) CS. A video available at https://youtu.be/qDFT0Q_8mFo.

In the case (A), at time = 2.0 the orange singleton already influences the cluster but the cluster
does not influence the singleton yet, because the number of the particles in the vicinity of the
singleton is insufficient for it to receive communication. Consequently, there is a period of time
when the singleton influences the cluster but is yet to be affected by the cluster, which results
in a particularly strong asymmetry of the interaction. On the other hand in the case (B), at
time = 2.0 the orange singleton is already influenced by the cluster. Therefore, a singleton
can change the direction of an entire crowd and whether it succeeds depends on the spacial
distribution of the crowd itself. These phenomena are generally impossible to obtain in most
well-known models of consensus.

Notation. In what follows we use bold symbols for points in RdN or Rd#A space, where
a cluster A is any subset of {1, ..., N}, namely

x = (x1, ..., xN ) ∈ RdN , v = (v1, ..., vN ) ∈ RdN , xA = (xi1 , ..., xi#A ) ∈ Rd#A .

This convention applies for instance to the initial data (x0,v0) ∈ R2dN .

7.2 Preliminaries
7.2.1 Motivations
The main motivation of our DI model and the reason why we decided to make it second-order is so
that it can be interpreted as a topological CS model with ”propagative” topology (as opposed to

https://youtu.be/qDFT0Q_8mFo
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(A)

(B)

time = 0.0 time = 2.0 time = 30.0

Figure 7.2: Interaction between a group and an individual for the DI model. Initially (A) and (B) differ only
by the shape of the cluster. In (A) the individual diverts the cluster while in (B) the cluster diverts
the individual. A video available at https://youtu.be/_y4g-qyu6l0.

”interference” topology presented by Shvydkoy and Tadmor [223]). Indeed, by taking M = κ/N
in (7.1.1b) we obtain

v̇i = κ

N

N∑

k=1
ψik(vk − vi), (7.2.1)

with suitable Ni- and xk-dependent ψik ∈ {0, 1}, which can be treated as a function of the
density of the particles in a neighborhood of xi. The larger the density around xi, the more
likely it is for ψik to be equal to 1. In [223] the ”interference” topological part of the interaction
can be roughly expressed as

ψik = 1
mγ

ik

, γ > 0, (7.2.2)

where mik is the density of particles between ith and kth particle. In (7.2.1) with the DI
interactions the neighboring particles actively enhance the propagation of information while in
(7.2.2) they impede it. This motivation is essential to our considerations and we provide more
extensive comparison to variants of the CS model in the sequel. Naturally, for the sake of
potential applications, unless a very peculiar phenomena are considered, the DI model should
be combined with vision-based interactions originating in classical models of animal behavior
[68][18], crowd dynamics [72][85] [4] and economics [16][17]. This is however outside of the scope
of the paper, which focuses solely on the interactions through clusters.

The second motivation originates in applications to opinion dynamics. Here we interpret xi as
the opinion of ith individual and vi as the tendency. Interaction propagated exclusively through
clusters is characteristic to phenomena that significantly emphasize influence of group-thinking
over the individual drive, such as observed in emergence of viral videos and news in social media
or in decision-making in consumption. It is also reasonable in phenomena, where clusters have
essential interpretation themselves, such as models of organization membership. In this case
an individual does not interact with other individuals, the change of the opinion occurs as the
singleton interacts with a cluster-organization.

https://youtu.be/_y4g-qyu6l0
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For more information on nonlinear opinion dynamics we refer to the works by Krause [144] and
Hegselmann and Krause [122]. We also recommend the survey [6]. Compared, for instance,
to the Hegselmann-Krause bounded confidence model [122], in which the interactions occur
only between similar-minded individuals, the DI protocol puts an emphasis on the individual’s
aptitude to conform with groups of similar-minded individuals. Of course the DI model is of
second order as opposed to more classical models of opinion dynamics.

Interestingly enough, a variant of the DI protocol is widely applied in computer science, par-
ticularly in machine learning. The cluster formation is equivalent to a density-based spatial
clustering algorithm (DBSCAN) [93]. The protocol has advantages such as: it does not require
to a-priori specify the number of clusters, it can find arbitrarily shaped clusters, and it does not
affect outliers.

Linear consensus

In what follows G = (V,E ,Φ) is an N -node digraph generating the ODE system

v̇ = −Av, A = diag(d1, ..., dN )−Φ, (7.2.3)

where

di =
N∑

k=1
Φik

is the out-degree of the ith node. Matrix A is known as the Laplacian matrix.

Theorem 7.1. Graph G is strongly connected if and only if rank(A) = N − 1.

Theorem 7.2. Denote the maximum out-degree of G by dmax(G) = maxi di. Then all the
eigenvalues of A are located in the disk

D(G) = {z ∈ C : |z − dmax(G)| ≤ dmax(G)}.

Proposition 7.3. If G is strongly connected then system (7.2.3) admits an asymptotically stable
steady state. This steady state belongs to the convex hull of {vi(0) : i = 1, ..., N}.
The above theorems and proposition are presented in Section 4 of [191] (Theorems 1 and 2
and Corollary 1, respectively). Second statement in Proposition 7.3 is presented in Corollary
2[191] and can be deduced from Perron-Frobenius theorem. Theorem 7.2 is a direct application
of Geršgorin circle theorem. We note that stability in Proposition 7.3 is actually exponential,
which follows immediately by solving (7.2.3) using Jordan decomposition of A.

7.2.2 Main Results

Hereinafter, we fix our attention by referring to the individuals following the DI protocol as
particles with position xi and velocity vi (of ith particle). Inter-particle interactions within the
DI model highly depend on the local density of the ensemble, and thus the following notion of
densely packed clusters is of significant importance.

Definition 7.4. We say that the cluster A ⊂ {1, ..., N} is r-densely packed at t if
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1. the Minkowski sum

xA (t− h) +B(0, r/2) := {x+ y : x ∈ xA (t− h), y ∈ B(0, r/2)}

is connected,

2. each open ball B(xk(t− h), r), for k ∈ A contains more than m particles,

with convention that t− h = 0 if t ≤ h.

As we show later in Lemma 7.11, interactions between the particles in any r-densely packed
cluster for r ≤ δ are propagated to the entire cluster, which serves as a stepping stone to obtain
a flocking estimate.

We perform basic qualitative and quantitative analysis of (7.1.1). That includes: the existence
and uniqueness of classical solutions, conditional flocking estimates, and conditional cluster
stability in terms of cluster density. Moreover, we provide analytical examples signifying the
rich dynamics of the system. Finally, we illustrate the variability of possible behaviors by a
number of numerical simulations.

The main results of the paper read as follows.

Theorem 7.5. Given the time interval [0, T ) ⊂ [0,+∞), parameters M,m, δ, h > 0 and initial
data (x0,v0) ∈ R2dN , the system (7.1.1) admits a unique classical W 1,∞([0, T )) solution with
nonincreasing velocity fluctuations

V (t) := max
i,j∈{1,...,N}

|vi(t)− vj(t)| ≤ V (s) ≤ V (0), 0 < s ≤ t ≤ T. (7.2.4)

In the following theorem M is a positive function of i, N and #Ni, thus it has a finite set of
possible values, and thus it is bounded below by a constant M∗ > 0. It is further discussed in
Section 7.2.3.

Theorem 7.6 (Dense clusters flock). Given the time interval [0, T ) ⊂ [0,+∞), parameters
M,m, δ, h > 0 and initial data (x0,v0) ∈ R2dN suppose that the entire ensemble {1, ..., N} is
r-densely packed with r < δ. For sufficiently large M the ensemble remains at least δ-densely
packed for all t > 0 and the particles flock exponentially fast.

In other words there exists a constant λ > 0 depending d, N and the initial data, such that

V (t) ≤ 2e−M∗λtV (0),

provided that

M∗ := inf M >
2V (0)
λ(δ − r) . (7.2.5)

Remark 7.7. Theorem 7.6 concerns the whole ensemble {1, ..., N} but also holds for any cluster
A ⊂ {1, ..., N} with the a priori assumption that A is sufficiently far away from the rest of the
particles so that it is never influenced by them. □



132 Chapter 7 Density-induced Consensus Protocol

Remark 7.8. Assumption (7.2.5) is first and foremost an assumption on M ; since the DI model
has local interactions, similarly to the short-range CS model, flocking occurs with high coupling
strength [177]. However it can be viewed also as an assumption on the initial density governed by
the constant r. With small r the cluster is initially more densely packed and the right-hand side of
(7.2.5) decreases. □

To illustrate possible behaviors of particles governed by the DI model, we provide the following
analysis of clusters’ interactions.

Clusters’ interactions. Let us consider two connected to each other clusters A and C .
Depending on the positions and velocities of individual particles within each cluster the following
scenarios may occur:

1. Stability: Cluster A remains connected. Cluster C eventually detaches from A and they
move separately.

2. Breaking: Cluster A breaks under the influence of cluster C . Cluster C detaches from A
together with a number of particles from A .

3. Sticking: Cluster A is diverted by cluster C . They remain connected indefinitely and their
total momentum changes in the direction of the total momentum of C .

The example showcasing all of the above scenarios, with a special choice of clusters A and C ,
can be found in Section 7.4.

7.2.3 Comparison with other Second-Order Models

In recent years, it was recognized that the global all-to-all character of interactions in the Cucker-
Smale (CS) flocking model not always corresponds to the actual behavior of agents in real-life
phenomena, be it flocks of birds, networks of unmanned aerial vehicles or in opinion dynamics.
The main issue is that, usually, the range of communication between autonomous agents is
finite, the interactions are not symmetric and the structure of the network of interactions is not
necessarily immersed in the standard Euclidean geometry. For instance, the range of perception
of a bird within a flock tends to be a finite cone-shaped area in front of it. Responding to these
issues a number of non-standard alignment CS-type models emerged recently. Among them is
the model with short-range interactions (CSδ model), the q-closest neighbors model (CSq model
– motivated by the analysis of empirical data in [18]) and the model with interference topology
(CSt model). Below we summarize similarities and differences between these models and the DI
model. Further, numerical comparison can be found in Section 7.5.

⋄ Short-range model CSδ. The CSδ model is a simple modification of the standard CS model
in which the smooth and decreasing communication weight ψδ is assumed to be compactly
supported on the set [0, δ]. For instance, the classical CS weight ψ(s) = (1 + s)− 1

2 could be cut-
off by taking ψδ(s) = ψ(s)χ[0,δ]. With such a modiffication qualitative behavior and particularly
asymptotics becomes significantly more difficult to study. Compared to the DI model, CSδ model
is symmetric and purely geometrical with j ∈ Ni(t) if and only if |xi(t)−xj(t)| ≤ δ. For further
information on the CSδ model we refer to [177, 135, 116, 223, 83].

⋄ The model with q-closest neighbors CSq. The CSq model is a modification of the CS model
with the sum in (7.1.4) taken over only those j that are at most q-closest to i in terms of



7.2 Preliminaries 133

position. This model is both density dependent and non-symmetric, with an opposite influence
of the density to the DI model. While in the DI model high density is used to propagate the
interactions, in the CSq model the interactions spread over constant mass of the particles and
thus with low density the interactions reach further. For further information on the CSq model
we refer to [67].

⋄ Topological model with interference CSt. Recently, Shvydkoy and Tadmor introduced a CS-
type alignment model, in which the interactions between the particles depend on the mass of
the particles belonging to a symmetric area between them. The higher the mass of the particles
between xi and xj , the lower the interaction, which justifies the interpretation that intermediate
particles interfere with the communication. The CSt model is density-dependent, symmetric
and, similarly to CSq, the influence of the density seems to be the opposite to the DI model. For
further information on the CSt model we refer to [223].

The main difference between the DI model and the aforementioned is that the agents interact
only with a densely-packed crowd (defined by the threshold m). Singletons, outsiders and agents
forming low-density clusters do not interact. As a somewhat surprising consequence we obtain
the possibility of a significant influence of the outsider particle on a cluster as showcased in
Fig. 7.2. While, interactions of crowds with highly influential individuals were studied in the
past [150, 218, 66], we obtain such phenomenon naturally within the framework of the model
without artificially boosting the influence of any individual. Whether an individual manages
to influence a cluster significantly depends not only on the models parameters but also on the
spatial structure of the clusters, c.f. Section 7.5.2.

Further state of the art for related models, including asymptotics [51, 116, 180, 68] and pattern
formation [231, 60], collision avoidance [53, 157] including models with singular interactions [199,
200, 247], time delay [59] and the recently emerging thermodynamical consistence [57, 117] can be
found in the surveys [58] (CS model with regular interactions) and [166] (CS model with singular
interactions). The surveys include also references to kinetic [5, 47, 181] and hydrodynamic [143,
222, 121, 221, 71] limits of the CS model.

On the Normalizing Factor M

There are many ways to normalize a consensus particle system, with the most popular promin-
ently represented in the works by Cucker and Smale [68] and Motsch and Tadmor [179]. The
first one, corresponding to M = κ

N , is the standard ”flat” Cucker-Smale normalization, which
connects the magnitude of the interactions to the total mass of the particles. The second one,
M = κ

#Ni
, corresponds to the non-symmetric Motsch-Tadmor normalization. Throughout the

paper we shall use a more general assumption that M is any positive function of i, N and #Ni

i.e.

M∗ ≥M = M(i,N,#Ni) ≥M∗ > 0. (7.2.6)

Existence of positive constants M∗ and M∗ above follows from the fact that M is a positive
function on a discrete domain (with fixed N). Of course, with M as in (7.2.6) we incorporate
both Cucker-Smale and Motsch-Tadmor normalizations.
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Communication on Graphs
The analysis of asymptotic or otherwise qualitative behavior of system (7.1.1) is based on two
foundations. The first is the analysis of how any particular configuration of particles x influences
their neighbor sets. This issue is closely related to the notion of r-densely packed clusters.
The second foundation is focused on the translation of the propagation of interaction to the
asymptotic behavior of the particles. This process was widely studied in the framework of graph
theory (see for instance the works by Olfati-Saber [191, 190]). This motivates the following
reformulation of (7.2.8). Recalling the possible dependence of M on i in (7.2.6) we take

Φik = Mi

M∗
iff k ∈ Ni, otherwise Φik = 0, (7.2.7)

and we rewrite (7.1.1) as

ẋi = vi, v̇i = M∗
N∑

k=1
Φik(vk − vi). (7.2.8)

Note that the lack of symmetry of the adjacency relation between the particles implies that
usually Φik ̸= Φki.

Equation (7.2.8) above, can be further restated as a model on graphs. To this end for any fixed
time t > 0 let G = G(t) with

G = (V,E ,Φ) be a digraph (or directed graph),

where V is the set of N nodes corresponding to the N particles and E = E (t) ⊂ V × V is the
set of edges between the nodes, that represents the connectivity of G. Matrix Φ = Φ(t) = [Φik]
describes interaction weights: kth node is interacting with ith node iff Φik > 0, or equivalently
iff k ∈ Ni. Then (7.1.1b) can be restated as

ẋ = v, v̇ = M∗(Φ−D)v, D = diag(d1, ..., dN ), (7.2.9)

where

di = #NiMi

M∗
=

N∑

k=1
Φik

is the (M -scaled) out-degree of the ith node of G.

The importance of the reformulation (7.2.9) lies in its usefulness in the proof of Theorem 7.6
following a 4-step strategy as presented in the diagram:

densely packed clusters −→ connectivity of G
↑ ↓

propagation of the density ←− control over velocity

It can be summarized as follows. Starting with a densely packed cluster at t = t0 we ensure (see
Lemma 7.11 below) that interaction between particles in such a cluster is propagated to every
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particle. In other words, the graph G(t0) is strongly connected. Using connectivity of G(t0), we
apply theory developed in [191, 190] to establish local-in-time exponential decay of the relative
velocity of the particles (see Lemma 7.12 below). This estimate enables us to control the changes
in the positions of the particles and in turn – it ensures the propagation of the density. This
leads back to the densely packed clusters at some t > t0 and an indefinite repetition of the
scheme.

7.3 Proof of the Main Results

In this section we prove Theorem 7.5 and Theorem 7.6.

7.3.1 Proof of Theorem 7.5

Proof. (Theorem 7.5: Existence.)

By the definition of Ni the system is elementarily solved on [0, h] – it is a linear system with
constant coefficients. Its unique solution is a linear combination of functions of the type tkeαt,
with k ≤ N and α determined by eigenvalues of the matrix appearing in (7.2.9).

The main difficulty is that neighborhoods Ni change with time, which causes discontinuities
of the right-hand side in (7.2.9). This is not particularly problematic unless the number of
discontinuities is infinite. Thus, we want to exclude an oscillatory behavior of solutions.

We proceed by induction. Suppose that the solution exists on [(k− 1)h, kh] for some k = 1, 2, ...
and the sets of neighbors Ni change finitely many times for each particle in the time interval
[(k − 1)h, kh]. Then in the time interval [kh, (k + 1)h] the system is well defined with a finite
number of discontinuities. In particular [kh, (k+ 1)h] can be decomposed into a finite collection
of intervals on which the system is linear. On each of these intervals a unique solution exists and
is a linear combination of functions of the type tkeαt. These intervals can be glued together and
while the smoothness of the solution may be lost at the endpoints, the right-hand side of (7.1.1)
is a bounded function of x,v and thus the solution belongs at least to W 1,∞([kh, (k+ 1)h]) and
is continuous and unique. Then such a solution, as a piecewise linear combination of analytic
functions, cannot exhibit an oscillatory behavior and the number of times of discontinuity in
[kh, (k+1)h] is finite. By induction, this procedure can be repeated indefinitely and the existence
of solutions with x and v continuous and v ∈W 1,∞([0, T )) is proved for any T > 0.

□

Remark 7.9. The reason to introduce the parameter h > 0 is to circumvent the problems
arising in the following scenario. Suppose that h = 0 and at t = 0 we have |x1(0) − x2(0)| = δ
and v1(0) = v2(0). Then it is unclear whether at t > 0 the particles will be within each others
range. Introducing h > 0 is an easy way to ignore this problem as shown in the above proof.

□

In order to prove the decay of velocity fluctuations we apply the L∞ method used, for instance
in [179].
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Proof. (Theorem 7.5: Decay of velocity fluctuations.) Fix t > 0 and let the maximal relative
velocity between the particles be realized by ith and jth particles i.e.

V (t) = |vi(t)− vj(t)|.

Using the (7.2.8) formulation of the velocity equation, we have

1
2

d
dt(vi − vj)2 = (vi − vj) ·


M∗

N∑

k=1
Φik(vk − vi)−M∗

N∑

k=1
Φjk(vk − vj)


. (7.3.1)

Observe that Φii does not play any role in (7.3.1), since it is multiplied by vi − vi = 0. Thus,
denoting M∗ := supM , we redefine it for all i ∈ {1, ..., N} as

Φii := NM∗

M∗
−
∑

k ̸=i

Φik > 0,

so that

M∗
N∑

k=1
Φik = M∗N for each i ∈ {1, ..., N}.

Then, we rewrite (7.3.1) as

1
2

d
dt(vi − vj)2 = (vi − vj) ·M∗N(vj − vi) + (vi − vj) ·M∗

N∑

k=1
(Φikvk − Φjkvk)

= −M∗NV 2 +N(M∗ −M∗η)(vi − vj) ·
N∑

k=1
(αikvk − αjkvk),

(7.3.2)

where

αik := M∗(Φik − η)
N(M∗ −M∗η) , η := 1

2 min
k,l∈{1,...,N}

Φkl ∈ [0,M∗/2M∗],

αik ≥ 0,
N∑

k=1
αik = 1.

Therefore the right-most term in (7.3.2) is a convex combination of elements in conv{vk : k ∈
{1, ..., N}} + conv{−vk : k ∈ {1, ..., N}} and thus – it can be bounded from the above by the
maximal diameter of such a set, which is V . Consequently, we have

1
2

d
dtV

2 ≤ −M∗NηV 2.

In the worst case scenario η = 0, so we deduce that V does not increase and the proof is finished.
□

Remark 7.10. The L∞ method applied in the above proof is rather complicated for what it can
accomplish for the DI model. However, we chose it to showcase why there is no unconditional
exponential flocking, which is precisely because the minimal decay rate η can be 0. On the other
hand if we suppose that all particles are at most at distance δ from one another and the number
of particles is greater than m, Φik = Mi

M∗
for all i, k ∈ {1, ..., N}, then in the above proof η = 1/2
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and V decays exponentially with exponent λ = M∗N/2. This is however of no surprise since
then equation (7.1.1b) is reduced to

v̇i =
N∑

k=1
Mi(vk − vi),

which is a simple linear model of consensus. The difficulty lies in the propagation of the interac-
tion between the particles if only some of the Φik are positive. It is addressed in Theorem 7.6 and
particularly in Lemma 7.12, presented below. □

7.3.2 Proof of Theorem 7.6
To prove Theorem 7.6 we utilize the 4-step strategy described in Section 7.2. First we show that
any r-densely packed cluster with r ≤ δ induces a strongly connected subgraph of G. That is to
say, the interaction propagates throughout any r-densely packed cluster of the particles.

Lemma 7.11. If A is an r-densely packed cluster at t ≥ 0 for r ≤ δ then for all i, j ∈ A we
have

(i) i ∈ Nj iff j ∈ Ni,

(ii) there exists a sequence {lk}pk=1 such that

l1 = i, lp = j and lk ∈ Nk+1 for all k ∈ {1, ..., p− 1}.

In particular A treated as a subgraph of G(t) is strongly connected.

Proof. Fix t ≥ 0. Since, for r < δ an r-densely packed cluster is also δ-densely packed, we will
prove the lemma assuming that r = δ.

First observe that condition 2 in Definition 7.4 implies that for all pairs i, j ∈ A we have
i ∈ Nj if and only if |xi(t − h) − xj(t − h)| < δ. Thus, assertion (i) follows and it re-
mains to show that G(t) is connected (then it is automatically also strongly connected by
(i)). Now suppose that the lemma is not true and there exists a δ-densely packed cluster
A that is not connected. Then there exist two particles with indexes i and j without a
connecting sequence {lk}pk=1. Let Ai and Aj be the maximal connected clusters including
i and j, respectively. Then dist(Ai,Aj) > δ, since otherwise we could find qi ∈ Ai and
qj ∈ Aj such that |xqi(t − h) − xqj (t − h)| ≤ δ and Ai ∪ Aj would be connected through
the pair (qi, qj). However with dist(Ai,Aj) > δ condition 1 in Definition 7.4 is not satis-
fied. Contradiction with the assumption that A is not strongly connected finishes the proof.

□

The next lemma uses the propagation of interaction within densely packed clusters, ensured by
Lemma 7.11, to provide a local flocking estimate.

Lemma 7.12. Let A be a cluster that is strongly connected in the interval [t1, t2) with constant
neighbor sets Ni for all i ∈ A . Assume further that no particle outside of A influences A .
Then there exist λ > 0 and a steady state vA ∈ conv{vi(t1) : i ∈ A }, such that

|vi(t)− vA | ≤ e−tM∗λ|vi(t1)− vA | for all i ∈ A and all t ∈ [t1, t2),

where M∗ is the minimal value of the function M , c.f. (7.2.6).
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Proof. If A is a strongly connected graph with no outside influence then it can be treated as a
separate ensemble of particles following equation (7.2.9). To finish the proof we apply Proposition
7.3 from the appendix, with A = M∗(D−Φ). Observe that within the assumptions of Lemma
7.12 the interaction matrix is constant. □

Finally we prove the following slightly reformulated version of Theorem 7.6.

Proposition 7.13. Fix (x0,v0). Let the initial ensemble of the particles {1, ..., N} associated
with positions x0 and velocities v0 be r-densely packed with r < δ. Then the ensemble remains
densely packed for all t > 0 and the particles flock exponentially fast, provided that

M∗ >
2V (0)
λ(δ − r) .

Proof. (Proposition 7.13 and Theorem 7.6.) Since, initially, the particles are r-densely packed for
r < δ and the maximal velocity of the particles is uniformly bounded, see Theorem 7.5. Thus,
there exists a time interval [0, T ] such that the particles are δ-densely packed for t ∈ [0, T ].
Moreover, the right-hand side of (7.4.3) is piecewise constant in time. Then by Lemma 7.11
and Lemma 7.12, for t ∈ [0, T ], the ensemble is a strongly connected cluster and each velocity
vi converges to a (piecewise constant) steady state vst(t) exponentially fast with exponent M∗λ.
Let

T ∗ := sup{T > 0 : {1, ..., N} is δ-densely packed for all t ≤ T} > 0.

We shall prove that if M∗ is large enough then actually T ∗ =∞. Assuming the contrary, for all
i, j ∈ {1, ..., N} and all t ∈ [0, T ∗], we have

xi(t)− xj(t) =
∫ t

0
vi(s)− vj(s)ds+ xi(0)− xj(0)

=
∫ t

0
(vi(s)− vst(s))ds+

∫ t

0
(vst(s)− vj(s))ds+ (xi(0)− xj(0)).

which leads to

|xi(t)− xj(t)| ≤
∫ t

0
|vi(s)− vst(s)|ds+

∫ t

0
|vj(s)− vst(s)|ds+ |xi(0)− xj(0)|. (7.3.3)

Let us fix in (7.3.3) any pair (i, j) such that |xi(0) − xj(0)| ≤ r. Such pairs exist since the
ensemble is r-densely packed. On [0, T ∗) the ensemble is densely packed and thus, by Lemmas
7.11 and 7.12 we have

|xi(t)− xj(t)| ≤ 2V (0)
∫ ∞

0
e−M∗λtdt = 2V (0)

M∗λ
+ r. (7.3.4)

Inequality (7.3.4) follows from Lemma 7.12, since vst(t) ∈ conv{vi(t) : i = 1, ..., N} and thus
|vst(t)− vi(t)| ≤ V (t) ≤ V (0) by Theorem 7.5. Therefore if

M∗ >
2V (0)
λ(δ − r) ,
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then |xi(t)−xj(t)| < r∗ ≤ δ for all t ∈ [0, T ∗]. This implies that any two particles of distance not
greater than r initially are of distance at most r∗ from one another. It is therefore easy to see that
for all t ∈ [0, T ∗] the r∗-neighborhood of the ensemble is connected and the number of particles in
each B(xi, r∗) is larger than m. Thus the ensemble is r∗-densely packed in [0, T ∗]. In particular,
the ensemble is r∗-densely packed at T ∗ and, again by boundedness of the velocity, we can find ε >
0 such that the ensemble is δ-densely packed in [0, T ∗+ε), which contradicts the assumption that
T ∗ < +∞. Consequently T ∗ =∞ and the ensemble is δ-densely packed, strongly and symmet-
rically connected and it flocks exponentially fast to the the steady state vst. The proof is finished.

□

7.4 Clusters’ Interaction
In what follows we perform the analysis of clusters’ interactions as introduced at the end of
Section 7.2.2. For this sake we consider a simple yet significant setting of cluster interactions,
where one cluster (C ) is a single particle (c). In such a case the three scenarios read:

1. Stability: Cluster A remains connected. Particle c detaches from A .

2. Breaking: A single particle b from A detaches from A under the influence of c.

3. Sticking: Cluster A changes its momentum under the influence of c.

0

addddd d
β

b

δ
d
γ

c

Figure 7.3: Scheme of the considered Cluster setting.

The setting.

Suppose that we have N+1 > m+1 particles in R2 distributed as in Fig. 7.3. All of the particles
are initially situated on the horizontal x1-axis. The left-most N particles form the cluster A .
Within this cluster the leftmost N − 1 particles are initially in the position near zero with zero
velocities. The distances between them are significantly smaller then δ. We shall refer to all
of these particles as a denoting its approximate position as xa(0) = 0. The rightmost particle
(b) in cluster A is in the position xb(0) = (β, 0) with zero initial velocity and β < δ. The last
particle under considerations, the singleton (c) is positioned at xc(0) = (γ, 0) with γ > δ and
γ− β < δ; the singleton’s initial velocity is (0, vc). Since we assume that 0 < h≪ β, δ, γ, r, 1/N ,
for simplicity of the presentation we set h = 0.

Note that not only is cluster A r-densely packed with r ≤ δ but actually each particle in A
interacts with each other particle. Moreover, the only non-zero initial velocity of the entire
ensemble is (0, vc), which implies that any change in the velocity of any one of the particles can
only occur in direction parallel to (0, vc).

To summarize, we have the following picture:

xa(0) ≈ (0, 0), va(0) = (0, 0), it describes the set of N − 1 particles,
xb(0) = (β, 0), vb(0) = (0, 0), 0 < β < δ,

xc(0) = (γ, 0), vc(0) = (0, c), γ > δ and γ − β < δ,

(7.4.1)
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with xa serving as a stand-in for all xi with i in the left-most cluster a. Then, for t > 0 we let the
particles follow the protocol (7.1.1). In what follows we successively reformulate and simplify
(7.1.1) in the configuration (7.4.1) leading to a formulation that can be expressed in terms of vc.
First note that configuration (7.4.1) leads to a characterization of the neighbor sets:

Na(0) = A = a ∪ {b}, Nb(0) = A ∪ {c}, Nc = ∅,

which implies that (7.1.1) takes the form:

v̇a = M(vb − va),
v̇b = M(N − 1)(va − vb) +M(vc − vb),
v̇c = 0.

(7.4.2)

Since the motion can occur only in directions parallel to (0, vc), we assume, without a loss of
generality, that the velocities appearing in (7.4.2) are scalar. Moreover, through a simple scaling
argument (e.g. d

dt v̄a(t) = d
dtva(Mt) etc.) we may further simplify assuming that M = 1. Then

(7.4.2) reduces to a scalar ODE

v̇a = −(va − vb),
v̇b = −(N − 1)(vb − va)− (vb − vc),

(7.4.3)

with initial data va(0) = 0, vb(0) = 0 and a constant vc. Then

d
dt(vb − va) = −N(vb − va)− (vb − vc),

which, with constant vc, implies

(vb − va)(t) = −e−Nt
∫ t

0
eNs(vb(s)− vc)ds. (7.4.4)

Inserting (7.4.4) to (7.4.3) yields

v̇b = −(N − 1)
(
−eNt

∫ t

0
eNs(vb(s)− vc)ds

)
− (vb − vc).

Thus vb satisfies the second order ODE

v̈b + (N + 1)v̇b + vb − vc = 0

with initial data vb(0) = 0 and v̇b(0) = vc. Since vc is a constant, introducing

Vb = vb − vc with Vb(0) = −vc and V̇b(0) = vc,

we obtain
V̈b + (N + 1)V̇b + Vb = 0.

By solving the above ODE, we find that

Vb(t) = V1e
−λ1t + V2e

−λ2t,
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where

λ1 = −(N + 1)−
√

(N + 1)2 − 4
2 ≈ −(N + 1),

λ2 = −(N + 1) +
√

(N + 1)2 − 4
2 ≈ −(N + 1)−1.

Here ≈ is the asymptotic equality as N →∞.

We recover V1 and V2 from the initial data by taking V1 + V2 = −vc and − λ1V1 − λ2V2 = vc.
Therefore

V1 = vc
1− λ2
λ2 − λ1

≈ vc
1
N

and V2 = vc
λ1 − 1
λ2 − λ1

≈ −vc(1 + 1
N

).

Hence we obtain the explicit formula on approximate Vb(t):

Vb(t) ≈ vc
1
N
e−(N+1)t − vc

(
1 + 1

N

)
e−(N+1)−1t ≈ −vc

(
1 + 1

N

)
e−(N+1)−1t. (7.4.5)

The three scenarios.

Our next goal is to obtain three distinct aforementioned scenarios within the configuration
expressed by (7.4.5). First we aim to distinguish scenarios No. 1 and No. 2 (the stability and
breaking scenarios), with particle c either failing to drastically change the structure of the cluster
A or scooping particle b out of the cluster A . Assume that N is large. By (7.4.5), For large N ,
(7.4.5) gives

vb − vc = Vb ≈ −vce
−(N+1)−1t, (7.4.6)

thus for any T > 0 we have

|xb(T )− xc(T )| =|γ − β|+
∣∣∣∣∣

∫ T

0
(vb(t)− vc)dt

∣∣∣∣∣

≈ |γ − β|+
∣∣∣∣∣

∫ T

0
−vce

−(N+1)−1sds
∣∣∣∣∣ ≈ |γ − β|+ |vcT |

and
|xa(T )− xb(T )| ≈ |β|+

∣∣∣∣∣vc

∫ T

0
e−Nt

∫ t

0
eNse−(N+1)−1sds

∣∣∣∣∣ ≈ |β|+
∣∣∣∣∣
vcT

N

∣∣∣∣∣ .

The above equations imply that if t = T is the breaking point for c ∈ Nb(t) i.e.

T = sup
{
t : c ∈ Nb(s) for all s ∈ [0, t)

}

or the breaking point for b ∈ Na(t) it needs to satisfy

|γ − β|+ |vcT | = δ or |β|+
∣∣∣∣∣
vcT

N

∣∣∣∣∣ = δ, (7.4.7)

respectively. Then scenarios No. 1 and No. 2 are distinguished as follows:
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1. With β = δ/2 and γ = δ so that γ − β = δ/2 in (7.4.7) we have

δ = |γ − β|+ |vcT | =
δ

2 + |vcT | >
δ

2 +
∣∣∣∣∣
vcT

N

∣∣∣∣∣ = |β|+
∣∣∣∣∣
vcT

N

∣∣∣∣∣ .

The above implies that at T the c particle breaks out from Nb while cluster A itself
remains unaffected (in particular b ∈ Na and a ∈ Nb), provided that N is large. Thus we
obtain the stability scenario No. 1.

2. With β = δ − ε and γ = δ so that γ − β = ε with 0 < ε≪ δ we have

δ − ε+
∣∣∣∣∣
vcT

N

∣∣∣∣∣ = |β|+
∣∣∣∣∣
vcT

N

∣∣∣∣∣ = δ,

if and only if

ε =
∣∣∣∣∣
vcT

N

∣∣∣∣∣ . (7.4.8)

On the other hand, taking the above into the account yields

|β|+
∣∣∣∣∣
vcT

N

∣∣∣∣∣ = δ − ε+ ε > ε+ |vcT | = |γ − β|+ |vcT |

which holds if |vc| satisfies

T |vc|
( 1
N

+ 1
)
< δ. (7.4.9)

If the above conditions are satisfied, the breaking point for b ∈ Na comes sooner than the
breaking point for c ∈ Nb and thus the b particle is removed from the cluster A , leading
to the breaking No. 2 scenario.

3. The last, sticking No. 3 scenario requires more preparation. For a fixed N and small vc,
we recall (7.4.6) to see that

Vb(t) = vb(t)− vc ≈ −vce
− 1

N
t

And recalling from (7.4.4) that

vb(t)− va(t) = −e−Nt
∫ t

0
eNsVb(s)ds ≈ vc

1
N
e− 1

N
t.

Integration of the above two equations leads to the uniform-in-time upper-bounds on the
relative distance between the sub-clusters

sup
t≥0
|xc(t)− xb(t)| ≤ |γ − β|+

∣∣∣∣
∫ ∞

0
Vb(t)dt

∣∣∣∣ ≈ |γ − β|+ |vcN |

and
sup
t≥0
|xa(t)− xb(t)| ≤ |β|+

∣∣∣∣∣

∫ t

0
(vb − va)(s)ds

∣∣∣∣∣ ≈ |β|+ |vc|.
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Hence, preservation of the cluster’s structure is ensured by taking

|γ − β|+ |vcN | ≤ δ and |β|+ |vc| ≤ δ, (7.4.10)

which holds for small vc. Such conditions ensure that the distance between the leftmost
sub-cluster a and the middle particle b remains smaller than δ indefinitely; in other words
cluster A is preserved for all t > 0. Furthermore the distance between the middle particle
b and the rightmost singleton c is also smaller than δ for all times. Hence A ∪ {c} is
a connected cluster. The connectivity of A ∪ {c} is weak in the sense that while A is
strongly and symmetrically connected (it is in fact δ-densely packed) and c influences A
through the middle particle b, there is no influence directed from A to c (Nc = ∅).

Remark 7.14. Let us describe how the total momentum (equal to the sum of velocities, since
M = 1) of the N + 1 particles evolves in each case No. 1 - No. 3. By the above considerations
one has:

vb ≈ vc(1− e−T/N ) and va ≈ vc(1− eT/N − 1
N
e−T/N ) (7.4.11)

In the first scenario the time of separation is of order T ≈ δ
vc

. Thus the momentum of the cluster
increases (here N + 1 ≈ N):

Mom := vb +Nva = vc(1− e−T/N ) +Nvc(1− e−T/N − 1
N
e−T/N ) ≈

vc
T

N
+Nvc

T

N
+ vce

−T/N ≈ δ + vce
−δ/(Nvc) (7.4.12)

In the second case by (7.4.8), (7.4.9) T ≈ εN
vc

, but Nε < δ and we get almost the same (T ≈ δ
vc

)

Mom := δ + vce
−δ/(Nvc). (7.4.13)

In the last case, the time of separation T is infinity, all velocities are reaching vc, so by condition
(7.4.10) Mom := Nvc ≈ δ.
Interestingly enough, in each of the scenarios No. 1 - No. 3 the growth of the momentum is
almost the same.

□

7.5 Simulations
In this section we present the results of numerical simulation of the DI model in several different
cases. The aim is twofold. First we compare the model with related models. Second we illustrate
its unique features, and provide insight to the theoretical results of this work.

Non-dimensional scaling Starting with the non-dimensional scaling of (7.1.1)




L̄

T̄ V̄
ẋi = vi, (7.5.1a)

1
T̄ M̄

v̇i = M

N

∑

k∈Ni

(vk − vi), (7.5.1b)
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where L̄, T̄ , V̄ are characteristic values for the length, the time, the velocity, respectively. The
characteristic M is inverse proportional to the characteristic time

M̄ = 1
T̄

= V̄

L̄
.

1
T̄

∂

∂t∗
= ∂

∂t

L̄

T̄

∂

∂t∗
xk = V̄ vk

Let us recall that the DI model is characterized by the set of parameters (N,M,m, δ). Together
with the volume of the domain, which in the case of two-dimensional square equals L2, we can
transform N,m, δ and L to the average particle density ϱa and the local minimal interaction
density ϱm, namely

ϱa = N

L̄2 , ϱm = m

πδ2 .

For the fixed L = 25 in the case of cluster formations (Sect. 7.5.1) we choose (N,m, δ) =
(64, 3, 2). In this example ϱm = 2.3ϱa , thus the necessary condition for a particle interaction is
to locally reach particle density that is more than two times of the average, however in practice
since the values are discrete its in fact three times more.

Computational domain is a two-dimensional square with the periodic boundary condition. Peri-
odicity is implemented by introducing domain extension of the size δ and ghost particle tech-
nique.

For the sake of visualisation we construct a directed graph that represents interactions G =
(V,E ,Φ), see Section 7.2. In each time-step we identify clusters as a strongly connected com-
ponents of graph G, and prescribe them a color from predefined list of colors. To this end we
apply an algorithm connected_components implemented in scipy.sparse.csgraph [139].

Numerical Scheme
As a numerical method we choose the classic 4th-order Runge-Kutta method (RK4), that is

one of the most widely used method to solve ODEs. The application of RK4 algorithm to system
(7.1.1), where we renamed the rhs in (7.1.1b) as a, yield the following numerical scheme





vn+1
i = vn

i + 1
6 (kv1 + 2kv2 + 2kv3 + kv4) , (7.5.2a)

xn+1
i = xn

i + 1
6 (kx1 + 2kx2 + 2kx3 + kx4) , (7.5.2b)

where

kv1 = a(xn
i , v

n
i ) dt, kx1 = vn

i dt,
kv2 = a(xn

i + kx1/2, vn
i + kv1/2) dt, kx2 =

(
vn

i + kv1/2
)

dt,
kv3 = a(xn

i + kx2/2, vn
i + kv2/2) dt, kx3 =

(
vn

i + kv2/2
)

dt,
kv4 = a(xn

i + kx3, v
n
i + kv3) dt, kx4 = (vn

i + kv3) dt.
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7.5.1 Cluster Formations
In the first scenario we show spontaneous behaviour of particles in time. Starting from N
particles that are randomly distributed and initially placed with a certain distance from the do-
main boundary. We observe particle interactions and clusters formations based on local particle
density.

Moreover, we present comparison with the Cucker-Smale (CS) type models. Beyond the classical
CS model, two local versions of CS model are considered: CSδ where any particle interacts only
within the ball of radius δ and CSq where any particle interacts with q−closest neighbours. The
weight function for CS models is given by ψ(s) = 1/

√
1 + |s|.

The initial velocity is equal vi(0) = ri(cos(αi), sin(αi)) + fi, ∀i = {1..N} with ri and αi be-
ing random numbers taken from the uniform distributions U([0, 1]) and U([0, 2π]) respectively.
Moreover, in order to avoid the average velocity being close to zero, for half of the particles
i ≤ N/2 we introduce the fixed contribution fi that is equal to fi = ri(0.5, 1).

For the sake of the comparison of different models we put M in such a way that it is always equal
to one over the number of particles within a cluster, c.f. Section 7.2.3. Tab. 7.1 summarizes
considered models with corresponding set of parameters.

model N M m δ q

(A) DI 64 1/#Ni 3 2
(B) CSδ 64 1/#Ni 2
(C) CSq 64 1/q ∞ 3
(D) CS 64 1/N ∞

Table 7.1: Summary of models considered in Section 7.5.1.

Fig. 7.4 (movie at https://youtu.be/axBgCEW6lNI)

presents the evolution of particles governed by DI, CSδ, CSq and CS models at t = 0, t = 30
and t = 150. We prescribe the same colour for particles that interact with each other at least
indirectly. In all of the cases we observe clustering and velocity alignment.

For DI and CSδ we have the same range of interaction δ = 2, but DI model on the top of the
geometrical condition requires more that 3 particles for the activation of interaction. This two
models form densely-packed clusters.

Global interaction models CSq and CS do not form clusters (or more precisely the entire ensemble
is a single cluster). Interestingly, for this particular random initial condition, the relatively small
number of closest neighbours q = 3 is enough to propagate interactions throughout the entire
ensemble.

Moreover, in Fig. 7.5 the maximal relative velocity between the particles V (t), c.f. (7.2.4), is
presented, showcasing regions of sharp decay for the DI model.

7.5.2 Sharp Change of the Total Momentum
Following Fig. 7.2 we investigate the phenomenon of a single particle diverting an entire cluster
and its dependence on the spatial distribution of particles within the cluster. This scenario has
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(A)

(B)

(C)

(D)

time = 0.0 time = 30.0 time = 150.0

Figure 7.4: Spontaneous behaviour of particles for DI(A), CSδ(B), CSq(C), and CS(D), see Tab. 7.1. A video
available at https://youtu.be/FRIGCH6ziCU.

been already addressed in the introduction. A cluster of 28 particles moves to the right with
velocity (0.1, 0), while a single particle moves in the opposite direction with velocity (2.7, 0),
facing the cluster. Thus the total momentum (equal to the sum of velocities) of the particles is

https://youtu.be/FRIGCH6ziCU


7.5 Simulations 147

0 25 50 75 100 125 150

0

1

2

3

time

V
(t

)

DI

CSδ
CSq
CS

Figure 7.5: The maximal relative velocity between the particles for DI, CSδ, CSq and CS models.

0.1.

We compare cases (A) and (B), c.f. Fig. 7.2 and determine whether the total momentum changes
its sign for the DI, CSδ, CSq and CS models with parameters M , m, δ and q as in Tab. 7.1. The
results are showcased in Fig. 7.6. As expected, in the case of the CS model the total momentum
is constant in both (A) and (B) cases. The total momentum for the CSδ model changes (note
that this is due to the non-symmetric normalization of the interaction M = 1/#Ni) but it
remains positive. In the case of the CSq model the total momentum changes sign in both (A)
and (B) cases. Finally, the DI model is the only one exhibiting a sharp distinction between (A)
and (B). In (A) the total momentum changes its sign and in (B) – it grows greater than for any
other considered model.

0 5 10 15 20 25 30

0

0.5

1

1.5

time

∑
i

v
i x

(t
)

DI (A)

DI (B)

CSδ (A)

CSδ (B)

CSq (A)

CSq (B)

CS (A)

CS (B)

Figure 7.6: Sum of horizontal velocities of particles for DI, CSδ, CSq and CS models.

7.5.3 Chain
In this scenario we present an interaction between a chain of particles and an individual. The
chain consists of 21 particles that are equally distributed in the vertical direction. The initial
velocity of the chain is small in comparison with the initial velocity of single particle and they
are directed facing each other.

The initial velocity equals v0 = (0.1, 0) and v0 = (−8, 0) for the chain and the individual,
respectively. The DI model parameters m = 3 and M = 1, and we consider three scenarios that
differs with parameter δ that equals 2, 3, 4, cf. (A), (B), and (C) in Fig. 7.7 respectively. Since
δ describes the interaction range we observe three different behaviours. In the case δ = 2, the
cluster splits, since the single particle is causing activation of interaction, and due the velocity
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difference it takes cluster with itself. For the second scenario, δ = 3, the chain deforms, but is
able to turn back the singe agent. In the third example, with δ = 4, the chain is very stiff, and
the single particle pushes the entire cluster.

(A)

(B)

(C)

time = 0.0 time = 10.0 time = 30.0

Figure 7.7: Interaction between chain and individual particle for DI(8, δ, 1, 3) model for δ = 2 (A), δ = 3 (B)
and δ = 4 (C). A video available at https://youtu.be/OdT2-g1Omvs.

Supplement Materials. Source code to reproduce simulations is available at [164].

https://youtu.be/OdT2-g1Omvs


CHAPTER 8

Data Clustering as an Emergent
Consensus of Autonomous Agents

The content of this chapter is joint work with Jan Peszek and is based on the preprint

P. Minakowski and J. Peszek. ‘Data Clustering as an Emergent Consensus of Autonom-
ous Agents’. In: (2022). doi: 10.48550/ARXIV.2204.10585

Chapter Summary. We present a novel data segmentation method based on a first-order
density-induced consensus protocol. We provide a mathematically rigorous analysis of the con-
sensus model leading to the stopping criteria of the data segmentation algorithm. To illustrate
our method, the algorithm is applied on selected images from Berkeley Segmentation Dataset.
The method can be seen as a clustering technique for multimodal feature space with lower
numerical complexity than other popular density-based algorithms.

Chapter Organisation. In Section 8.2 we compare the DI protocol to previous research on
consensus dynamics and density based clustering, focusing on unsupervised color image seg-
mentation. In Section 8.3 we provide an analysis of emergent behavior of the DI protocol based
on the interplay between density of the agents and connectivity. Sections 8.4 and 8.5 are dedic-
ated to the presentation of the main segmentation algorithm and its applications to color image
segmentation, respectively. Here, we also apply the results of Section 8.3 to derive the stop-
ping criterion. Finally, in Sections 8.6 we provide mathematical proofs related to the results of
Section 8.3.

https://doi.org/10.48550/ARXIV.2204.10585
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8.1 Introduction

The paper explores the relation between first-order collective dynamics and data clustering,
focusing on color image segmentation in image processing. Our main contributions include:

• A novel technique of unsupervised density-based clustering for multimodal feature space.

• The technique inherits the advantages of other density-based clustering methods, with
lower average numerical complexity and manageable parameters.

• Applications to color image segmentation.

• Mathematically rigorous analysis of the model leading to the stopping criteria for the
algorithm.

• Exploration of connection between data clustering and first-order collective dynamics.

Our approach is based on the recently introduced density-induced consensus protocol (DI pro-
tocol) for agent-based collective dynamics [165]. Consider N agents with xi(t) ∈ Rd denoting
the position of ith agent in a d-dimensional space at the time t ≥ 0. The agents follow the DI
protocol

ẋi = κ
∑

k∈Ni

(xk − xi), xi(0) = xi0 ∈ Rd. (8.1.1)

Here κ > 0 is a fixed coupling strength whose influence amounts, in practice, to time-scaling. The
neighbor set Ni of ith agent is defined through the following relation: given positive parameters
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δ and m, for t ≥ 0 we define,

k ∈ Ni(t) ⇔ xk(t) ∈ B(xi(t), δ) and

#
{
k ∈ {1, ..., N} : xk(t) ∈ B(xi(t), δ)

}
> m,

(8.1.2)

where B(xi(t), δ) is an open ball centered at xi(t) with radius δ and #A denotes the cardinal
number of A. Thus the communication rule of the DI protocol reads as follows: the ith agent is
influenced by jth agent if

• the density of agents in close proximity to the ith agent is substantial enough (otherwise
the ith agent is an outlier),

• the jth agent is in close proximity to the ith agent.

Interpreting the positions xi as data points in a multimodal feature space and evolving the data
in time using (8.1.1) results in a data clustering method based on a density-induced protocol
(hereinafter referred to as DIPCLUST). To explain this idea, here we fix our attention to 2D data
represented as vectors/positions in a Euclidean space. The positions xi(t)∈R2 for i ∈ {1, ..., N}
evolve according to (8.1.1) eventually leading to a steady state at the time t = ∞, typically
forming multiple clusters. Finally, the t = ∞ clustering is retroactively applied to the initial
t = 0 state, to establish the segmentation, see Fig. 8.1.

A) B)

C) D)
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• • •
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Figure 8.1: An ensemble of 13 agents with visualisation of their range of interactions. A) initial positions of
the agents; B) positions evolve towards the steady-state; C) steady state at t = ∞ defines the
clusters (color coded); D) clustering applied to the initial state.

It is noteworthy that the communication rule of (8.1.1) is equivalent to the density-based spa-
tial clustering algorithm (DBSCAN) [93] widely used in data segmentation [216]. Our method
inherits the advantages of the classical density-based clustering algorithms i.e.: no requirement
of initial specification of the number of clusters, arbitrary shaped clusters, robustness to outliers
and adaptability to various types of data due to the possibility of fine-tuning of the parameters.
The main difference is that, we do not need database-oriented range-queries, that lead to com-
putational complexity of DBSCAN. Instead, our procedure is based on local direct connectivity
defined by the neighbor sets Ni, and thus it is less computationally demanding.
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On the other hand, the DI protocol applies to consensus dynamics as discussed in [165]. In
particular it is reminiscent of the bounded-confidence consensus model by Hegselmann and
Krause [122]. Similarly, the agents are influenced only by like-minded (i.e. nearby) individuals
but in the case of the DI model the agents additionally exhibit a tendency to conform with
group-mentality and ignore the outliers. Since our method originates in consensus dynamics it
can be particularly useful in segmentation of data related to collective dynamics such as the
classification of pedestrians or the users of social networks.

Throughout the chapter we will sometimes interchangeably refer to agents following the DI
protocol as nodes, data or pixels depending on the context of applications.

8.2 Previous Research
8.2.1 Consensus Dynamics
Protocol (8.1.1-8.1.2) is a first-order variant of the DI model introduced in [165] which simulates
density based alignment in the spirit of the Cucker-Smale model ([68], see also surveys [58]
and [167]). First order models similar to (8.1.1) with a variety of interaction laws have been
extensively studied from the perspective of both mathematical theory and practical applications,
with prominence of applications in opinion dynamics. Opinion dynamics dates back to French’s
research on social influence [106], and further, to works by De Groot [81] and Lehrer [147]. More
modern approach, including nonlinear models, was established by Krause [144] and Hegselmann
jointly with Flache [105], among others. We emphasise the aforementioned work by Hegselmann
and Krause [122] introducing a bounded confidence opinion dynamics model. We also recommend
surveys [6] and [13] for more up-to-date information, and [4] where similar models are presented
in applications to vehicular traffic and crowd dynamics.

8.2.2 Density Based Clustering
Since most of the clustering techniques [2] are application dependent, they are not tailored for
the classification of an arbitrary feature space. Methods which rely explicitly on the number of
clusters or implicitly assume the same shape for all the clusters, are not well suited to analyse
data of unknown origin, see [133] for a survey.

Density based clustering is a class of unsupervised learning methods. Points that are in high-
density regions in a data space are clustered together and separated from other such clusters by
regions of low point density [128, 145].

As already mentioned in the introduction, we group points in a similar way as DBSCAN [93]
does. The OPTICS [11] algorithm is an extension of DBSCAN and removes its dependence on
parameters. Another related iterative technique is Mean-shift algorithm [56], where each object
is assigned to the densest area in its vicinity, based on kernel density estimation.

Unsupervised image segmentation is an important component in many image processing systems.
A nonparametric technique for the analysis of a complex multimodal feature space based on
mean-shift algorithm with application to image segmentation have been presented in [63].

On the other hand, one can apply AI based approaches. The usage of convolutional neural
networks for unsupervised image segmentation have been studied in [140] or [142].
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Note that, image segmentation is an ill-defined problem, since there is no unique ground-truth
segmentation of an image against which the output of an algorithm may be compared. For the
evaluation methods we refer to [235] and survey [246].

The connection between clustering and collective dynamics, has been already explored in the
context of particle swarm optimization (PSO) [89]. For density based PSO clustering algorithms
we refer to [9] and [112]. Moreover, PSO based image clustering have been developed in [192].
The only similarity of PSO and our DIPCLUST method is the agent based approach itself.
However the rules of the agents’ evolution are different, and lead to different characteristics
of the methods, e.g. PSO requires to a priori specify the number of clusters, and is based on
solving global optimisation problem – a computationally expensive process. On the other hand
DIPCLUST utilises a simple rule for the evolution of agents (8.1.1) allowing to employ techniques
of linear consensus theory [190, 191].

The PSO clustering algorithm aims to simultaneously minimize the distances within one cluster,
and to maximize the distances between clusters.

8.3 Emergent Dynamics of the DI Protocol
In this section we analyse the long time dynamics of the DI protocol, focusing on cluster form-
ation. Before we begin, let us introduce the necessary notation.

The DI consensus protocol (8.1.1) can be naturally represented in the language of graph theory.
The ensemble {1, ..., N} is identified with a directed graph (digraph) ({1, ..., N},E ) with edges
E defined by neighborhoods Ni:

E (i, j) = 1 ⇔ i ∈ Nj ,

cf. (8.1.2). Note that, since i ∈ Nj does not imply j ∈ Ni, the matrix E is not necessar-
ily symmetric, and thus the graph ({1, ..., N},E ) is directed. We shall refer to all subsets of
{1, ..., N} as clusters. What follows, is a natural inheritance of standard notions from graph the-
ory; for instance a cluster A ⊂ {1, ..., N} is weakly/strongly connected iff its respective graph
is weakly/strongly connected. We will also say that a cluster A ⊂ {1, ..., N} is isolated iff it is
not connected to any node outside of A .

Next we provide the essential notion of a densely-packed cluster introduced in [165].

Definition 8.1. We say that the cluster A ⊂ {1, ..., N} is r-densely packed at the time t if

1. the set ⋃

i∈A

B(xi(t), r/2)

is connected,

2. each open ball B(xi(t), r), for i ∈ A contains more than m agents.

There are multiple connectivity- and graph-related implications of Definition 8.1. Most of them,
are presented in Section 8.6, Lemma 8.7. The main application is the following theorem (also
proved in Section 8.6) on sufficient conditions ensuring that the clusters collapse into a single
steady state.
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Theorem 8.2. Suppose that at any time t0 the ensemble {1, ..., N} consists of K isolated con-
nected clusters A1, ...,AK with the property that the convex hulls of δ/2-neighborhoods of the
clusters do not intersect, i.e.

conv


 ⋃

i∈Ak

B(xi, δ/2)


 ∩ conv


 ⋃

i∈Al

B(xi, δ/2)


 = ∅ (8.3.1)

for all k, l ∈ {1, ...,K}. Then (8.3.1) persists in time and the clusters remain isolated. Moreover,
each r-densely packed cluster A with r satisfying

r

δ
Z

r
δ ≤ m

6#A
Z , Z := e

2m
3(#A )3 (8.3.2)

is δ-densely packed indefinitely, and converges to the steady state

xA := 1
#A

∑

i∈A

xi.

Remark 8.3. Condition (8.3.2) may not be clear at the first glance, but is easily viable from the
perspective of numerical computations. Intuition behind it is as follows. If A is r-densely packed
with r ≤ δ, then it is strongly connected (see Lemma 8.7 in Section 8.6 below). Consequently, if
r is significantly smaller than δ, the agents have room to move around, before the clusters ceases
to be at least δ-densely packed. Thus, the quantity r

δ represents the cluster’s rigidity, i.e. small
r
δ means that the cluster is flexible and the agents may move a lot before connectivity breaks.
Condition (8.3.2) requires rigidity to be small compared to quantities related to the cluster’s
volume and the algebraic connectivity for (8.1.1). In practice we usually have 2m ≪ 3(#A )3,
for which

Z ≈ 1

and then (8.3.2) can be reduced to
r ≈ δm

6#A
. (8.3.3)

We use simplification (8.3.3) in numerical computation. □

Remark 8.4. Theorem 8.2 states that as soon as convex hulls of the clusters’ influence re-
gions are disjoint and any cluster is sufficiently densely packed, then, from the perspective of
large-time behaviour, that cluster can be immediately replaced by its center of mass xA . It nat-
urally leads to a stopping criterion for the clustering algorithm presented in Section 8.4.1 below.

□

8.4 DIPCLUST Algorithm
The continuous model presented in Section 8.1 can be simulated with a time-discretization
scheme. This results in an iterative procedure that, for a given set of agents, performs clustering
by advancing their positions in time up to the point when a sufficiently densely packed config-
uration is reached. The procedure is presented in Algorithm 8.1 with a detailed description of
the key steps in sections 8.4.1 - 8.4.8.
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Input: data(0) and parameters (δ, m, nmax)
1 Pre-processing (optional);
2 Build δ−lattice;
3 for n = 0; n < nmax; n+ + do
4 Interactions(data(n), δ, m);
5 Advance the data in time;
6 Build δ/4−lattice;
7 Identify clusters;
8 Assign colors and outliers to clusters (optional);
9 Post-processing (optional);

Algorithm 8.1: Segmentation Procedure.

8.4.1 Input

The input consists of the given data(0) scaled to the unit cube [0, 1]d, parameters δ, m, and the
stopping time nmax. Parameters δ and m are chosen to fit particular types of data, similar to
other unsupervised data segmentation methods. The influence of parameters is investigated in
Section 8.5.1.

In order to fix the stopping time nmax we test Algorithm 8.1 on sample sets of data. We
perform the loop from Algorithm 8.1 until all clusters satisfy (8.3.1) and are r-densely packed
with r satisfying (8.3.3). Then we set nmax = the number of the last iteration. This process is
computationally expensive, but it needs to be performed only once for each type of similar data.
For example, in all applications presented in the sequel, we take nmax = 10.

8.4.2 Build δ-Lattice

By (8.1.1) and (8.1.2) the communication protocol is local and depends on interaction range
δ. Therefore, we introduce the division of [0, 1]d into a regular lattice of Nd

l cells, with the
edge length Nl = 1/δ. This serves the purpose of reducing the complexity of neighbor queries,
in order to compute the right hand side of (8.1.1). The agents within δ−distance are to be
found in adjacent cells. Thus, for uniformly distributed data, the complexity scales linearly with
the number of agents. This method is applied, for instance, in particle simulations of liquids,
c.f. [8].

8.4.3 Interactions

For a fixed n ∈ {0, ..., nmax}, we establish the connectivity between the agents at the nth
iteration, i.e. the neighbor sets Ni(n). It suffices to check conditions (8.1.2) for each i ∈ {1, ..., N}
and each k belonging to the same δ-lattice cell as i or to the adjacent cells.
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8.4.4 Advance the Data in Time

For temporal discretization we use a scheme from the Runge–Kutta family of explicit methods.
We advance in time with a well-known explicit Euler method

xn+1
i = xn

i + (∆t)κ
∑

k∈Ni(n)
(xn

k − xn
i ), x0

i = xi0.

Here Ni(n) is the neighbor set obtained in the previous step. We take (∆t)κ = 1/Kn, where

Kn = max
i

{
max{#Ni(n),m}

}
.

Naturally, other choices of (∆t)κ are possible, but one should make sure that the time-scale is
small, whenever the maximal local density of the agents is large.

8.4.5 Identify Clusters

After completing the nmax iteration we construct a δ/4-lattice. We refer to it as the lattice, but
the reader should contextually distinguish it from the previously introduced δ-lattice. Note that,
the maximal iteration nmax has been chosen so that we expect all isolated connected clusters to
be r-densely packed with r satisfying (8.3.3). In such a case the lattice cells emulate r-densely
packed clusters. The cluster assignment is performed as follows:

1. Cells of the lattice are divided into 2 groups: core cells with more than m agents inside
and outlier cells with m or less agents inside.

2. Any core cell forms a cluster along with all of adjacent core cells and, transitively, all
subsequent adjacent core cells etc..

3. Agents belonging to core cells are then assigned to the respective clusters.

4. Agents belonging to the outlier cells become outliers and are considered noise.

Finally the cluster assignment is retroactively applied to the initial values i.e. to data(0), as
showcased in Fig. 8.1.

Remark 8.5. Clearly, the scale of the lattice δ/4 is much greater than the density threshold
(8.3.3). However, at nmax we expect all of the connected isolated clusters to be r-densely packed
and asymptotically stable, by Theorem 8.2. Therefore the only inadequacy introduced by the
procedure described in Section 8.4.5, compared to what we would obtain with a finer r-lattice,
amounts to the merging of clusters. Naturally, other scales of the clustering lattice can be chosen,
but δ/4 provides a good balance between numerical complexity, accuracy of the algorithm and
resistance to the curse of dimensionality. □

8.4.6 Assign Colors and Outliers to Clusters

Optionally, for instance in the applications to color image segmentation, at this point we assign
values (colors) to each of the clusters obtained in Step 8.4.5. To do so, we simply take the
average value of the data within each cluster. Thus, if A is one of the clusters, it is assigned
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with the average value xA = ∑
i∈A xi/#A . Then, each outlier cell (and the agents within) is

assigned to the cluster with the closest average value xA .

In the case of color image segmentation, this step is responsible for defining the color scheme
and dealing with the outliers.

8.4.7 Complexity

For each time-step the most computational expensive part of the algorithm is to establish the
connectivity between the agents described in Section 8.4.3. Taking advantage of the δ-lattice
structure, for each agent we need to examine neighbors in adjacent lattice cells. In that case
only limited number of agents must be visited multiple times, therefore the average complexity
of O(N) is obtained. Moreover, we perform constant number of iterations, since nmax ≪ N =
number of agents.

As described in Section 8.4.5, identification of clusters is based on the δ/4-lattice. We denote by k
the number of core cells in the δ/4-lattice. Consequently, identifying clusters procedure requires
O(k log k) operations. Therefore an overall average runtime complexity of O(N) +O(k log k) is
obtained. If

k log k ≤ N, (8.4.1)

then we obtain complexity of order O(N). By the definition of the core cells, km ≤ N and
taking m

δd ≈ N
1 leads to k ≲ 1

δd . Thus (8.4.1) is ensured if

1
δd

log 1
δd
≤ N. (8.4.2)

This is the key point of our contribution, namely the development of a method of low complexity,
c.f. [242]. It outperforms mid complexity methods, e.g. DBSCAN, whose complexity is driven
by distance queries. Even if an indexing structure is used, a neighbourhood query executes in
O(logN) leading to an overall average complexity of DBSCAN of order O(N logN), with the
worst case of O(N2), c.f. [109].

Remark 8.6. The improvement of the algorithm’s numerical complexity hinges on assumption
(8.4.1), which we achieve by ensuring that δ satisfies (8.4.2) for any fixed N . It creates a lower
bound δ0(N, d) for the set of admissible parameters δ.

Observe, that taking nmax = 0, i.e. immediately skipping to step 8.4.5 of the algorithm, we
actually perform a simplified variant of the DBSCAN segmentation with δ/4 as the neighborhood
size. However, in a high-dimensional case δ0(N, d) can be relatively large resulting in far too
few clusters. In other words, proper clustering with the DBSCAN algorithm requires δ to be
small enough, so that we cannot ensure (8.4.1) and we do not gain much in terms of numerical
complexity. We visualize this phenomenon in the case of color image segmentation in Fig. 8.2.
Indeed, the image in column C and row 1 presents such a scenario: Algorithm 8.1 performed
with nmax = 0. It leads to the emergence of only 1 cluster and a poor representation of the
original image in column A and row 1. It indicates that the key point of our method, i.e. the
evolution of the agents’ positions in time, which breaks large clusters, is essential.

□
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8.4.8 Pre- and Post-processing
In order to improve clustering, we may perform pre- or post-processing. For instance, in color
image segmentation, we pre-process images with Gaussian blur. Post-processing might be needed
if the resulting segmentation produces a fairly large number of clusters. One can merge clusters
or run Identify clusters with a lattice of larger scale.

8.5 Application to Color Image Segmentation
In order to illustrate the DIPCLUST method, we apply Algorithm 8.1 to selected pictures from
Berkeley Segmentation Dataset (BSD) [158]. Size of the images is 481 times 321 what results in
N = 154401 pixels.

The position xi(t) ∈ R5 represents the ith pixel in a 5D feature space, where the modality is
realised by combining 2D spatial positions of pixels in an image and their 3D representations
in a color space (e.g. in RGB). In the feature space we define the combined distance d(i, j)
between pixels i and j, the spatial distance ds(i, j) and color distance dc(i, j) as follows:

ds(i, j)2 = (y1
i − y1

j )2 + (y2
i − y2

j )2,

dc(i, j)2 = (ri − rj)2 + (gi − gj)2 + (bi − bj)2,

d(i, j) =
√
ds(i, j)2 + dc(i, j)2,

where y1 and y2 are spatial coordinates and r, g, b are color values in the RGB color space. All
variables are normalised to [0, 1], therefore we work in a 5D unit cube.

Segmentation follows Algorithm 8.1. We apply Gaussian blur as pre-processing and for post-
processing we assign colors and outliers as described in Section 8.4.6. This process is illustrated
in Figure 8.2.

Column A of Figure 8.2 consists of 4 images with original positions of the pixels and colors inher-
ited from 0, 3, 7 and 10 iteration in each row, respectively. For instance, the image in column A
and row 2 presents the 5D pixels with combined coordinates xA

i (3) = (y1
i (0), y2

i (0), ri(3), gi(3), bi(3)).
Column B represents the projection of each pixel xA

i onto the 3D RGB space, e.g. for xA
i (3) we

have (ri(3), gi(3), bi(3)) in the image in column B and row 2. Column C consists of images with
original positions and colors obtained through the application of the cluster identification steps
of Algorithm 8.1 (c.f. Sections 8.4.5 and 8.4.6) with nmax = 0, 3, 7, 10, respectively. Column D
represents positions of clusters in the RGB space.

Observe the interesting case of image in Column C and row 1. Since no iterations of the loop in
Algorithm 8.1 was performed, the pixels are not sufficiently densely packed and only one cluster,
say A1, is identified by the procedure in Section 8.4.5. Then, according to Section 8.4.6, the
color of each pixel in A1 is changed to the average color of all pixels in A1, which happens to
be blue. All remaining pixels outside of A1 are outliers and are then assigned the same blue
color.

In order to show the parameters’ influence, we apply Algorithm 8.1 with various m and δ to a
picture of peppers, Figure 8.3.



8.5 Application to Color Image Segmentation 159

A) B) C) D)

Figure 8.2: Illustration of segmentation process, for parameters δ = 0.15, m = 40 and nmax = 0, 3, 7, 10.

We pick the interaction range δ ∈ {0.1, 0.2}. This choice is connected to a number of pixels N and
the dimension d, δ ≈ 5

√
1
N ≈ 0.1. This corresponds to the length of an edge of a 5−dimensional

cube with volume 1/N (average volume for one pixel).

The parameter m is set to be equivalent to the minimal cluster density being η times greater
than an average pixel density, with η ∈ {1, 5}.

Figure 8.3: Peppers, input picture for parameter discussion.
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8.5.1 Parameters

Figure 8.4, presents: fully segmented image (Column C) with nmax = 10, and two projections
onto the 3D RGB space (Columns B and D), as described above for Figure 8.1. We observe
that the number of clusters is directly connected to the interaction range δ, but seems mostly
independent of parameter m. Instead, parameter m, drives the dynamics of agents, c.f. Column
B, and thus – the final cluster assignment. Indeed, comparing rows 1 and 2 in Fig. 8.4, we observe
that the clusters in Column D are almost the same, but the segmented images in Column C
differ.

Note, that in extreme cases, for large δ and small m, one will obtain only one cluster. On the
other hand, with small δ and large m each point will be placed into its own cluster, like in the
input image.

B) C) D)
δ = 0.2, m = 260, η = 1

δ = 0.2, m = 1300, η = 5

δ = 0.1, m = 8, η = 1

δ = 0.1, m = 40, η = 40

Figure 8.4: Illustration of the influence of parameters.

Unsupervised color image segmentation is an image processing task without a unique result. The
BSD provides several human-performed segmentations for each picture. As pointed out in [246]
one cannot guarantee that any manually-generated segmentation image is better than another.
This is especially the case of nature images. Thus, the dependence on parameters can be seen as
an advantage of the presented method, allowing to encapsulate different results of color image
segmentation, similar to the manually-generated cases.

Note that the provided parameters are closely related to average density of pixels. In practise,
taking δ and m from small ranges of values leads to relatively small differences in the resulting
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segmented pictures, which corresponds to the slight variation between human-generated seg-
mentations. Thus, restriction of the set of admissible parameters to values related to average
density of the pixels, while ensuring that bounds established in Section 8.4.7 are satisfied, makes
finding the proper values of parameters manageable. This is further showcased by Fig. 8.5
below, where multiple different pictures are segmented using DIPCLUST with the same values
of parameters leading to mostly reasonable results.

8.5.2 Segmentation Results on BSDS500
Next, we present segmentation results on selected images from BSD, see Fig. 8.5. Images are
from both the test and the train set. Each pair consists of the original image on the left and
the segmented image on the right. Parameters are δ = 0.15, m = 308, η = 5, and nmax = 10.
The selected interaction range, results in a relatively small number of clusters. Note that, it
depends on the type of picture, typically images of nature exhibit similar colour, resulting in
fewer clusters.

Edge detection
Finally, we briefly showcase the impact of DIPCLUST segmentation on contour detection. In
Fig. 8.6 we present, image and edge detection for input (left) and segmented (right) image,
respectively. Contours are detected by the method of Canny [48]. We observe, the improvement
of edge detection for the segmented image compared to the direct application of Canny method to
the original image. The viability of DIPCLUST in contour detection requires further study.

8.6 Mathematical Proofs
In this section we prove Theorem 8.2. The starting point is Lemma 8.7, which connects the
notion of r-densely packed clusters with their connectivity. We recall the notation established
in Section 8.3.

Throughout this section we denote

x := (x1, ..., xN ) ∈ RdN .

Lemma 8.7. Suppose that x is a smooth solution to (8.1.1) with constant coefficients in [t0, t1).
Assume further that A is an isolated r-densely packed cluster at each t ∈ [t0, t1) for r ≤ δ. Then

1. a cluster A treated as a graph is strongly connected and undirected,

2. The graph diameter dA of cluster A , i.e. the maximal shortest path between any two
nodes, is upper-bounded by

dA ≤




#A if m = 1,[
3#A
m+1

]
− 1 if m ≥ 2.

(8.6.1)

3. The spatial diameter DA := max{|xi − xj | : i, j ∈ A } of a cluster A is upper-bounded by

DA ≤ rdA .
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4. There exists λ > 0 such that

|xi(t)−xA | ≤ e−λ(t−t0)|xi(t0)−xA |, ∀i ∈ A , t ∈ [t0, t1),

where xA is the center of mass of A . Moreover the exponent λ satisfies

λ ≥ 4κ
dA #A

. (8.6.2)

Proof. We refer to [165, Lemma 1 and Lemma 2], where variants of assertions 1 and 4 are proved
by modifying the theory of linear consensus developed in [190] and [191]. The only difference
here is that cluster A is undirected due to the symmetry of weight in (8.1.1), which further
implies that the steady state xA is indeed the center of mass of A . Assertion 1 implies that
A is an isolated, connected undirected graph with a minimal degree of m and assertion 2 holds
true due to Erdös, Pach, Pollack and Tuza’s classical work [90, Theorem 1]. To prove assertion
3, consider the graph G := (A ,Er), with Er(i, j) = 1 iff E (i, j) = 1 and |xi − xj | ≤ r. Then
G is an r-densely packed subgraph of (A ,E ) with the same nodes and fewer edges. Any two
nodes i and j in A are connected by a path π(i, j) ⊂ Er represented by a sequence of nodes
i = k1, ..., kl = j with

l ≤ dA and |xkα − xkα+1 | ≤ r for all α ∈ {1, ..., l − 1}.

Consequently, |xi − xj | ≤ rdA .

Finally, since λ(t) is the algebraic connectivity of the graph (A ,E ) multiplied by κ, inequality
(8.6.2) follows from McKay’s result published by Mohar in [173, Theorem 4.2], which states that
the algebraic connectivity of the graph is lower-bounded by 4 divided by the graphs diameter and
its number of nodes. □

We proceed with the following useful proposition.

Proposition 8.8. For any smooth solution x to system (8.1.1) and all t ≥ t0 ≥ 0 we have

C (t) := conv{xi(t) : i ∈ {1, ..., N}} ⊂ C (t0). (8.6.3)

Moreover the maximal velocity of each agent is uniformly bounded, i.e.

Vi(t) := max
t≥t0
|ẋi(t)| ≤ κ#Niδ. (8.6.4)

Proof. Fix any s ≥ t0 and let xi(s) belong to the boundary of C (s) and assume without a loss
of generality that xi(s) = 0. It suffices to show that ẋi(s) belongs to the cone ⋃τ>0 τC (s). With
χ{k∈Ni} denoting the characteristic function of the event that k ∈ Ni(t), we have

ẋi(s) = κ
∑

k∈Ni

(xk(s)− xi(s))

= κ#Ni

N∑

k=1

χ{k∈Ni}
#Ni

xk(s) ∈ κ#NiC (s),
(8.6.5)



8.6 Mathematical Proofs 163

since the sum on the right-hand side of (8.6.5) is a convex combination of elements belonging to
C (s).

The proof of (8.6.4) follows immediately from (8.1.1) and (8.1.2) after noting that |xi−xk| ≤ δ for
k ∈ Ni. □

The following lemma is the essential part of the proof of Theorem 8.2.

Lemma 8.9. Let x be a smooth solution to (8.1.1) and let A be a cluster in {1, ..., N} that
remains isolated at all times. Then there exists r∗ < δ such that if A is r-densely packed with
r ≤ r∗, then A is at least δ-densely packed for all t ≥ t0.

Proof. Any r-densely packed cluster is r∗-densely packed whenever r ≤ r∗, hence for the re-
mainder of the proof we will assume that r = r∗. Since, at t = t0, the agents are r-densely
packed for r < δ and the maximal velocity of the agents is uniformly bounded (see Proposition
8.8), there exists a time interval [t0, T ), such that the agents are δ-densely packed for t ≥ t0.

Cluster A is isolated and system (8.1.1) is piecewise linear with finitely many possible right-
hand sides, and thus, Lemma 8.7 holds locally at each t ≥ t0. Therefore there exists a piecewise
constant exponent λ(t) > 0 as in assertion 4 of Lemma 8.7. By assertion 2 as well as inequal-
ity (8.6.2) from Lemma 8.7 the exponent has the uniform lower bound

λ(t) ≥ 4κ
dA #A

≥ 4κm
3(#A )2 =: λ∗.

Therefore for all t ≥ t0 and all i ∈ A we have

|xi(t)− xA (t)| ≤ e−λ∗(t−t0)DA (t0),
DA (s) := sup

i,j∈A
|xi(s)− xj(s)|. (8.6.6)

Let

T := sup{t > t0 : A is δ-densely packed in [t0, t)} > 0.

We shall chose r small enough so that T =∞. For all i, j ∈ A and all t ∈ [t0, T ), we have

|xi(t)− xj(t)| ≤ |xi(t)− xA (t)|+ |xj(t)− xA (t)|. (8.6.7)

Let us fix in (8.6.7) any pair (i, j) such that |xi(t0) − xj(t0)| ≤ r. Such pairs exist since the
ensemble is r-densely packed initially. Applying (8.6.6) to the right-hand side of (8.6.7) leads to

|xi(t)− xj(t)| ≤ 2e−λ∗(t−t0)DA (t0). (8.6.8)

Alternatively |xi(t) − xj(t)| can be upper-bounded using equation (8.1.1) and Proposition 8.8
yielding

|xi(t)− xj(t)| ≤ |xi(t)− xi(t0)|+ |xj(t)− xj(t0)|
+|xi(t0)− xj(t0)| ≤ 2κ#A δ(t− t0) + r,



164 Chapter 8 Data Clustering as an Emergent Consensus of Autonomous Agents

which ensures that

|xi(t)− xj(t)| < δ

at least as long as

t− t0 <
1

2κ#A

(
1− r

δ

)
.

However for t− t0 ≥ 1
2κ#A

(
1− r

δ

)
, by (8.6.8) we have

|xi(t)− xj(t)| ≤ 2e− λ∗
2κ#A (1− r

δ )DA (t0)

and we require

r̃ := 2e− λ∗
2κ#A (1− r

δ )DA (t0) < δ. (8.6.9)

Then assertions 2 and 3 of Lemma 8.7 imply that

DA < 3r#A

m
.

Combining the above bounds yields

r̃ < 6re− 2m
3(#A )3 (1− r

δ
) #A

m
≤ δ,

which can be further rearranged into (8.3.2). Condition (8.3.2) holds for any sufficiently small
r > 0.

In conclusion, any pair i and j, initially of distance at most r from each other, remains of distance
r̃ < δ from each other throughout [t0, T ). Thus A is r̃-densely packed in [t0, T ) with r̃ < δ and,
by continuity, it is at least r̃+δ

2 -densely packed at t = T . Then, exactly as at the beginning of the
proof, A remains at least δ-densely packed past the time T which stands in contradiction with the
definition of T , unless T =∞. The proof is finished. □

Lemma 8.9 ensures that A remains δ-densely packed as long as (8.3.2) holds and A is an isolated
cluster. We are now ready to finalise the proof of Theorem 8.2.

Proof of Theorem 8.2: First observe that, by Proposition 8.8, condition (8.3.1) persists in time.
Hence, each of the clusters A1, ...,AK is isolated, and thus Lemma 8.9 applies with r∗ satisfying
condition (8.3.2). Therefore, each r∗-densely packed cluster is at least δ-densely packed indef-
initely. Consequently, for such clusters, assumptions of Lemma 8.7 are satisfied, and inequality
(8.6.6) holds for all t ≥ t0 thereby ensuring the convergence in Theorem 8.2. The proof is
finished.
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Figure 8.5: Additional segmentation results on the BSD.
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Figure 8.6: Edge detection on original and segmented images.



CHAPTER 9

Dual Weight Residual Error Estimates for Neural
Network Solutions of Partial Differential Equations

The content of this chapter is joint work with Thomas Richter, and is published in the pre-
print

P. Minakowski and T. Richter. Error Estimates for Neural Network Solutions of
Partial Differential Equations. 2021. arXiv: 2107.11035 [math.NA].

Chapter Summary. We develop an error estimator for neural network approximations of PDEs.
The proposed approach is based on dual weighted residual estimator (DWR). It is destined to
serve as stopping criterion, that guarantees the accuracy of the solution independently of the
design of the neural network training. The result is equipped with computational examples for
Laplace and Stokes problems.

Chapter Organisation. In Section 9.3 we quickly recapitulate the DWR method in its easiest
form and extend it to estimate the network error. Later we briefly present network architecture
in Section 9.4. Section 9.5 demonstrates the accuracy of the estimator for different applications
and shows how the estimator can be integrated as a stopping criterion in training.
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9.1 Introduction
In recent years, the emerging field of (deep) neural networks has reached the numerical approx-
imation of partial differential equations (PDE). Several approaches have been proposed that
aim at directly representing the solution to the PDE by a deep neural network. For this pur-
pose the network is considered as (differentiable) function N : Ω → Rc, where Ω ⊂ Rd is the
computational domain of dimension d ∈ N and c ∈ N is the size of the differential system.

The network is trained by integrating the differential equation (and the boundary conditions)
into the loss function. Several different approaches based on different realizations have been
presented:

The Deep Ritz method by E and Yu [88] aims at minimizing the energy functional and it can
be applied to symmetric problems. For the Laplace equation, −∆u = f in Ω with u = g on ∂Ω,
this means to minimize

E(N ) = 1
2

∫

Ω
|∇N (x)|2 dx−

∫

Ω
N (x) · f(x) dx+ λ

∫

∂Ω
|N (x)− g(x)|2 dx,

with a parameter λ > 0, where the integrals are approximated by Monte-Carlo integration.
Training data is generated by picking random integration points. See [215] for an overview and
further examples.

Another approach, denoted as DeepXDE (Lu, Meng, Mao and Karniadakis [154]), Unified Deep
Artificial Network [29] or DGM (Deep Galerkin Method) [224], see also [10], minimizes the
strong residual of the equation, either as collocation method in randomly picked points within
the domain and on the boundary (formulated once more for the Laplace problem)

E(N ) = 1
N1

N1∑

i=1
|f(xi) + ∆N (xi)|2 + λ

N2

N2∑

j=1
|N (xj)− g(xj)|2,

or by Monte-Carlo integration of the (strong) residual

E(N ) = ∥f + ∆N ∥2L2(Ω) + λ∥g −N ∥L2(∂Ω).

This second approach naturally extends to non-symmetric and nonlinear problems and we refer
to the above mentioned literature for examples.

Finally, a third variant, variational physics-informed neural network VPINN (Kharazmi, Zhang
Karniadakis) [141] approach is based on the variational formulation

E(N ) =
∣∣∣
∫

Ω
∇N (x) · ∇ϕk(x) dx−

∫

Ω
f(x) · ∇ϕk(x) dx

∣∣∣
2

and training data is generated by choosing specific test functions ϕk.

Common to all these approaches is that they aim at solving one specific PDE problem. In oppos-
ition there exists the large area of deep neural network approaches that consider parameterized
PDEs, which we will however not discuss here.

Instead, we will focus on the different approaches discussed above. The common rationale for the
three different approaches is the excellent approximation property of neural networks, in partic-
ular Pinkus [205] proved the capability of deep neural networks to uniformly and simultaneously
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approximate differential functions and their derivatives. In the context of PDEs Petersen and
coworkers [113] showed approximation results in Sobolev spaces and also gave convergence rates
in the number of layers, neurons and weights. In particular for high dimensional differential
equations, deep neural network based approaches promise to be superior [224, 154]. On the
other hand, it must be noted that the previous approaches, applied to common, low-dimensional
(d = 1, 2, 3) problems, cannot compete with established methods in terms of efficiency. While
algorithms of O(N) complexity exist for finite element or finite difference approximations of
elliptic problems, the training of the deep neural network is a by far more challenging task.

In this contribution we will tackle the question of reliability of deep neural network approaches,
i.e. to derive a posteriori error bounds for a trained network and also we aim at introducing
adaptivity into the training of the neural networks. Both aspects will be approached within
the concept of the dual weighted residual estimator (DWR) that has been introduced by Becker
and Rannacher [26]. We will handle the error between real solution u(x) and neural network
solution N (x) as a mixture of Galerkin error and consistency error. What we derive is not a
rigorous bound, but an efficient computational tool that can be used to validate neural network
solutions, that serves as an estimate in stopping criteria during the network training and that
can be localized to steer the training process in an adaptive procedure.

Training points can be chosen in several ways: fix points before training, e.g. grid points on a
lattice or random points, in each training epoch, one could select different training points, or
points can be chosen adaptively during training.

In [154] the authors propose Residual-Based Adaptive Refinement (RAR), in order to improve
the distribution of residual points during the training process. After training for a fixed number
of epochs on the initial set of residual points, the mean PDE residual is estimated by Monte
Carlo integration, i.e., by the average of values at a set of randomly sampled dense locations.
Then the training set is extended by new points with the largest residuals until the specified
threshold for the mean is reached. Similar strategy called adaptive collocation has been proposed
in [10]. Starting from the coarse set of points, the additional points are added to the training
set based on the evaluation of the residual.

Note, that evaluating the model at a larger number of points is quite inexpensive computa-
tionally, while the number of training points impacts the performance significantly. These two
approaches are based on strong formulation.

The stopping criteria of the training process have not been studied. A Commonly fixed number
of epochs is performed, see e.g. [88] or train until mean residual reaches specific threshold [154].
According to the authors knowledge this result is the first that introduces error estimation based
stopping criterion.

Deep learning techniques can be applied in the context of numerical simulation, as an extension
of existing CFD codes to increase their efficiency. One can generalize existing numerical methods
as artificial neural networks, with a set of trainable parameters.

In the context of solving time-dependent ODEs and PDEs. The authors recast finite volume
schemes as NN and train the underlying parameters to improve accuracy on coarse grids [171].
This approach was extended to finite element methods in [44].
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9.2 Finite Element and Neural Network Approximations

To keep the notation simple we will focus on Laplace problem. Let Ω ⊂ Rd be a d-dimensional
domain. We find the weak solution u ∈ V := H1

0 (Ω) to

−∆u = f in Ω, u = 0 on ∂Ω, (9.2.1)

where f ∈ L2(Ω) is the right hand side. By V = H1
0 (Ω) we denote the space of L2-functions

with first weak derivative in L2 with vanishing trace on ∂Ω. The solution u ∈ V is characterized
by the variational problem

(∇u,∇v) = (f, ϕ) ∀ϕ ∈ V , (9.2.2)

where we denote by (·, ·) the L2-inner product on Ω. Further, the solution is also equivalently
characterized as minimizer of the functional

E(u) ≤ E(v) := 1
2∥∇v∥

2 − (f, v) ∀v ∈ V , (9.2.3)

where ∥ · ∥ is the L2-norm.

9.2.1 Finite Element Approximation

Now, let Ωh be a triangulation of Ω into open triangular or quadrilateral (in 2d) elements
satisfying usual regularity requirements on the structure and the form of the elements. For an
element T ∈ Ωh we denote by hT = diam(T ) the element size and by

h = max
T ∈Ωh

hT

the maximum mesh size of the discretization which serves as a parameter for measuring the
fineness.

Error analysis By Vh ⊂ V we will denote the finite dimensional (finite element) subspace of
H1

0 (Ω). Then, let uh ∈ Vh be the approximation to u ∈ V given by

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vh. (9.2.4)

It holds
∥∇(u− uh)∥ ≤ ∥∇(u− ϕh)∥ ∀ϕh ∈ Vh,

such that the finite element error u−uh is bound by the interpolation error yielding the standard
estimate

∥∇(u− uh)∥ ≤ chr∥f∥Hr−1(Ω),

where r is the polynomial degree of the finite element space and using the notation H0(Ω) :=
L2(Ω) in the case of linear finite elements, r = 1. Naturally, this estimate requires sufficient
regularity of the right hand side f ∈ Hr−1(Ω) and also of the domains boundary, i.e. ∂Ω must
be convex polygonal for r = 1 or locally parameterizable by a Cr+1-function for r ≥ 1.
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9.2.2 Deep Ritz Approximation of the Laplace Problem
In principle, the Deep Ritz method as proposed by E and Yu [88] is based on minimizing the
energy functional (9.2.3) by representing the unknown solution uN ,u : Rd → R by a neural
network instead of a finite element function. Here, we denote by N the topology of the neural
network and by u ∈ RN the parameters of the network, where N = #N is the total number
of free parameters. Finally, uN ,u is the function that is realized by this specific combination of
network topology and parameter choice. Mostly we will simply use the notation uN and skip
the indication of the parameter vector u unless it is of relevance in the given context.

E and Yu [88] considered a network layout N with residual connection and differentiable activa-
tion functions, but we could also use different layouts. The framework of the Deep Ritz method
requires differentiability of the network, i.e. differentiable activation functions. Fig. 9.1 shows
the layout of the deep neural network as chosen by E and Yu, but also a simpler feedforward
network that can be used.

Having a certain network topology N in mind, the neural network approximation space WN

used in the Deep Ritz method is then given by

WN := {uN ,w : Rd → R, |w ∈ RN}. (9.2.5)

If N is finite and if the activation functions are differentiable it holds VN ⊂ H1(Ω). We can
however not expect uN = 0 on ∂Ω for uN ∈ VN , hence VN ̸⊂ V = H1

0 (Ω). In [29], the authors
discussed a modified setup of the neural network that strongly satisfies the homogeneous Dirichlet
condition.

Here we consider the penalized energy functional (compare [88])

Eλ(v) := 1
2∥∇v∥

2 − (f, v) + λ

2 |v|
2
∂Ω, (9.2.6)

where λ ∈ R+ is a parameter and | · |∂Ω is the L2-norm on the boundary of the domain. The
additional penalty term forces v to be close to zero along the boundary. The minimizer of (9.2.6)
in uλ ∈ H1(Ω) is characterized by the variational problem

(∇uλ,∇v) + λ⟨uλ, v⟩ = (f, v) ∀v ∈ H1(Ω), (9.2.7)

where ⟨·, ·⟩ denote the L2-inner product on the boundary ∂Ω. The weak solution uλ ∈ H1(Ω)
solves the Laplace problem with a disturbed Robin boundary condition, i.e.

−∆uλ = f in Ω, uλ + λ−1∂nuλ = 0 on ∂Ω. (9.2.8)

The penalized energy functional does hence introduce an additional modelling error term ∥u−uλ∥
that will depend on the parameter λ and that will converge to zero for λ→∞.

Training of the neural network is then by minimizing the modified energy functional (9.2.6) using
Monte Carlo integration. To be precise: N i ∈ N inner quadrature points xi ∈ ΩN i and N b ∈ N
boundary quadrature points xb ∈ ∂ΩNb are chosen, either randomly or based on a mesh of the
domain. The loss function is given by

l(uN ; xi,xb) := |Ω|
N i

N i∑

h=1

(1
2 |∇uN (xi

j)|2 − f(xi
j) · uN (xi

j)
)

+ |∂Ω|
N b

Nb∑

j=1

λ

2 |uN (xb
j)|2. (9.2.9)
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Details on this training process and also a study on the convergence of the neural network Deep
Ritz approximation is presented in Section 9.4.1.

Minimizing 9.2.9 will identify the weights u ∈ RN and result in an approximation uN ,u to the
optimal network realization uN ,ũ.

Error analysis An error analysis of the Deep Ritz approach is more delicate as compared to the
case of finite elements. First, a modelling error is introduced as the energy functional (9.2.6) is
distorted by the boundary penalty term and the minimizer uλ ∈ H1(Ω) does not exactly satisfy
Dirichlet conditions, i.e. there is the error u−uλ. Next, the approximation error uλ−uN of the
neural network space WN enters considering exact integration of the energy functional. This is
followed by the error introduced by Monte Carlo integration uN −uN ,ũ considering that ũ ∈ RN

represents an exact minimum and finally, uN ,ũ − uN ,u is the training error. All together, four
distinct contributions can be identified.

∥u− uN ,u∥ ≤ ∥u− uλ∥+ ∥uλ − uN ∥+ ∥uN − uN ,ũ∥+ ∥uN ,ũ − uN ,u∥.

The first we call model error, the second is the network approximation error, the third the
quadrature error or generalization error and finally, the fourth is the optimization or training
error.

Lemma 9.1 (Model error). Let f ∈ L2(Ω), λ ∈ R with λ > 0 and Ω be such that the solutions
u ∈ H1

0 (Ω) and uλ ∈ H1(Ω) to

(∇u,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω), (∇uλ,∇ϕλ) + λ⟨uλ, ϕλ⟩∂Ω = (f, ϕλ) ∀ϕλ ∈ H1(Ω)

satisfy ∥u∥H2(Ω) ≤ cs∥f∥ and ∥uλ∥H2(Ω) ≤ cs∥f∥. It holds

∥∇(u− uλ)∥ ≤ c

λ
∥f∥,

where c > 0 depends on the domain Ω only.

Proof. Let z ∈ H1
0 (Ω) be the solution to the adjoint problem

−∆z = ∇(u− uλ)
∥∇(u− uλ)∥ in Ω, z = 0 on ∂Ω. (9.2.10)

Since the right hand side of this problem is in L2(Ω), z ∈ H2(Ω) and ∥z∥H2(Ω) ≤ cs follows for
sufficiently smooth (or convex polygonal) domain Ω.

Multiplication of (9.2.10) with the error u− uλ and integration over the domain gives the error
identity

∥∇(u− uλ)∥ = (∇z,∇(u− uλ))− ⟨∂nz, u− uλ⟩∂Ω.

As u = 0 and z = 0 on ∂Ω this gives

∥∇(u− uλ)∥ = (∇(u− uλ),∇z) +
=0︷ ︸︸ ︷

λ⟨u− uλ, z⟩∂Ω︸ ︷︷ ︸
=(f−f,z)=0

+⟨∂nz, uλ⟩∂Ω.
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Finally, with (9.2.8) and using both the trace inequality and the regularity of adjoint and primal
solution gives

∥∇(u− uλ)∥ ≤ |∂nz|L2(∂Ω)|uλ|L2(∂Ω) ≤
c

λ
∥z∥H2∥uλ∥H2(Ω) ≤

c

λ
∥f∥.

□

The approximation properties of neural networks are already extensively studied in literature [21,
113] and they show convergence ∥uλ − uN ∥ → 0 for an increasing size of the neural networks.
For example, [113, Theorem 4.1] states that there for all ε > 0 the bound

∥∇(uλ − uN )∥ = O(ε)

is obtainable (given uλ ∈ H2(Ω)) with a neural network consisting of L = log2(ε−2) layers and
N = L · 2L weights and neurons. This approximately corresponds to

∥∇(uλ − uN )∥ ≈ O
( log(N)√

N

)

which, in terms of unknown N , is comparable to the linear finite element approximation.

The choice of the numerical quadrature points gives rise to the generalization error of the neural
network representation: does the training, based on a certain set of quadrature points also gives
an approximation on the complete domain? There are no a priori bounds for such kind of
errors but it has been shown [182, 217] that such generalization bounds are equivalent to the
stability of the training under perturbation of the training data, e.g. in the context of Deep
Ritz, by perturbing or leaving out single quadrature points. In the context of PINNs [219] show
convergence of neural network solution, to solutions of linear elliptic and parabolic PDEs as
the number of training samples is increased. Moreover [172] provides rigorous upper bounds on
the generalization error. Under stability assumptions of the PDEs, the authors show that the
generalization error is bounded by the training error and quadrature error.

Finally, the optimization error remains for which there is also no a priori error bound. Further,
there usually is no guarantee that we obtain a global minimum.

In the following sections we will present an a posteriori error estimator that will be able to give
predictions on the complete error u−uN ,u in goal functionals. While all error contributions are
included we will however not be able to distinguish between the different sources.

9.2.3 Deep Ritz Approximation of the Stokes Equations
As a second example we consider the Stokes equation on a two dimensional domain Ω ⊂ R2, i.e.
we find velocity v ∈ V 2 := H1

0 (Ω)2 and pressure p ∈ L := L2(Ω) \R such that

div v = 0, −∆v +∇p = f in Ω, v = 0 on ∂Ω, (9.2.11)

where we denote by f ∈ L2(Ω)2 a given right hand side. Considering a discrete pair of subspaces
Vh × Lh ⊂ V ×L , the finite element solution is defined by

(div vh, ξh) + (∇vh,∇ϕh)− (ph,∇ · ϕh) = (fh, ϕh) ∀(ϕh, ξh) ∈ Vh × Lh. (9.2.12)
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Assuming inf-sup stability of the discrete finite element pair the solution exists uniquely and
standard best approximation results hold, e.g. for the P 2−P 1 Taylor-Hood element it holds

∥∇(v− vh)∥+ ∥p− ph∥ ≤ ch2∥f∥H1(Ω), (9.2.13)

or, for equal-order linear finite elements for pressure and velocity, the solution to the stabilized
formulation

(div vh, ξh)+(∇vh,∇ϕh)− (ph,∇·ϕh)+h2(∇ph,∇ξh) = (fh, ϕh) ∀(ϕh, ξh) ∈ Vh×Lh (9.2.14)

satisfies the estimate
∥∇(v− vh)∥+ ∥p− ph∥ ≤ ch∥f∥. (9.2.15)

We refer to the literature, e.g. the monography of John [138] for these and further aspects on
the finite element approximations to the Stokes equations.

Having a saddle-point structure the Stokes system is not directly associated to an energy form.
Instead we realize the Deep Ritz method by introducing a penalty term to enforce the divergence
condition, e.g.

Eλ,α(v) := 1
2∥∇v∥2 − (f ,v) + α

2 ∥ div v∥2 + λ

2 |v|
2
∂Ω, (9.2.16)

where α, λ > 0 are two parameters controlling the balance between minimizing the energy and
satisfying the divergence constraint and the boundary values. The solution is characterized by
the variational problem vλ,α ∈ H1(Ω)2

(∇vλ,α,∇ϕ) + α(div vλ,α,div ϕ) + λ⟨vλ,α, ϕ⟩∂Ω = (f , ϕ) ∀ϕ ∈ H1(Ω). (9.2.17)

This variational problem in term is corresponding to the following classical formulation which
also reveals the disturbed boundary condition

−∆vλ,α − α∇ div vλ,α = f in Ω, λvλ,α + αn⃗div vλ,α − ∂nvλ,α = 0 on ∂Ω. (9.2.18)

Hereby, similar to Lemma 9.1 we get

Lemma 9.2 (Stokes model error). Let f ∈ L2(Ω)2, λ, α ∈ R with λ, α > 0 and Ω be such that
the solutions (v, p) ∈ V ×L and vλ,α ∈ H1(Ω)2 to (9.2.11) and (9.2.17), respectively, satisfy
∥v∥H2(Ω) + ∥p∥H1(Ω) ≤ cs∥f∥ and ∥uλ,α∥H2(Ω) ≤ cs∥f∥. It holds

∥∇(v− vλ,α)∥ ≤ c
( 1√

λ
+ 1√

α

)
∥f∥,

where c > 0 depends on the domain Ω only.

Proof. Due to similarity to Lemma 9.1 we just give a sketch, considering the adjoint (z, p) ∈
V ×L

∇(v− vλ,α)
∥∇(v− vλ,α)∥ = −∆z−∇q, div z = 0,

which gives the error identity

∥∇(v− vλ,α)∥ = (∇z,∇(v− vλ,α)) + (q,div (v− vλ,α)) + ⟨∂nz + qn⃗,vλ,α⟩∂Ω

−α(div vλ,α,div z)− λ⟨vλ,α, z⟩∂Ω − (p, div z)
︸ ︷︷ ︸

=0

= 1
λ
⟨∂nz + qn⃗,vλ,α⟩∂Ω − (div vλ,α, q), (9.2.19)
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to be estimated as

∥∇(v− vλ,α)∥ ≤ c
(
∥z∥H2(Ω) + ∥q∥H1(Ω)︸ ︷︷ ︸

≤cs

)
∥f∥

(
∥ div vλ,α∥+ |vλ,α|∂Ω

)
.

Diagonal testing of (9.2.17) then gives the claimed estimate

∥∇(v− vλ,α)∥ ≤ c
( 1√

λ
+ 1√

α

)
∥f∥.

□

For optimal scaling, the two parameters α and λ should be chosen similarly. This penalized
energy minimization formulation does not produce an approximation to the pressure.

9.3 A Posteriori Error Estimation for Neural Network Solutions
9.3.1 The Dual Weighted Residual Method
We start by giving a very short description of the dual weighted residual method such as presen-
ted in [25, 26] for the most simple case of the Laplace problem −∆u = f with homogeneous
Dirichlet data u = 0. As introduced above, V = H1

0 (Ω) and Vh ⊂ V is a discrete subspace.

Now, let J : V → R be a linear functional and let z ∈ V be the solution to the adjoint
problem

−∆z = J in Ω, z = 0 on ∂Ω, (9.3.1)

in variational formulation given as

(∇v,∇z) = J(v) ∀v ∈ V . (9.3.2)

This already gives the primal error identity

J(u− uh) = (∇(u− uh),∇z) = (f, z)− (∇uh,∇z), (9.3.3)

and, by using Galerkin orthogonality (∇(u − uh),∇vh) = 0 for all vh ∈ Vh the corresponding
dual error identity

J(u− uh) = (∇(u− uh),∇(z − zh)) = (∇u,∇(z − zh)) = J(u)− (∇u,∇zh), (9.3.4)

where zh ∈ Vh ⊂ V is the discrete solution to the adjoint problem.

Both simple error identities, (9.3.3) and (9.3.4) cannot be used in practice since the adjoint
solution z ∈ V and the primal solution u ∈ V are not known. Applying the DWR method
calls for an approximation of the primal or adjoint solutions in a subspace Vhh ⊂ V which is no
subspace of the discrete space, e.g. Vhh ̸⊂ Vh and to replace the error identities by

J(u− uh) ≈ (f, zhh)− (∇uh,∇zhh) ≈ J(uhh)− (∇uhh,∇zh) (9.3.5)

Various approaches are discussed in [26, Sec. 5] or [212, Sec. 3] and in general, the higher-order
postprocessing of same-space approximations uh, vh ∈ Vh, e.g. by polynomial of double degree
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on a coarser mesh has been proven to be both reliable and efficient. Anyway, this reconstruction
of higher order information is an approximation only such that the DWR method usually does
not give a rigorous error bound but only an approximation to the error. This however is usually
highly accurate.

The accuracy of the error estimator can be numerically validated by considering the effectiv-
ity index, e.g. the quotient of estimator value by real error, which in the case of the primal
formulation reads

effh := (F, zhh)− (∇uh,∇zhh)
J(u− uh) , (9.3.6)

which of course requires a guess of the true error J(u − uh). For linear elliptic problems one
usually observes effectiveness going to 1 (for h→ 0).

Besides error estimation the DWR method can be used for mesh adaptivity, e.g. for steering an
adaptive computation. This requires the localization of the error estimator, i.e. the identification
of local values ηT which attribute parts of the error to the element T of the mesh (or to each
node, edge, etc.). We refer to [212] for details. The basic step is to use Galerkin orthogonality
and to introduce interpolations Ihz ∈ Vh and Ihu ∈ Vh to the error identities (9.3.3), (9.3.4) to
derive at

J(u− uh) = (f, z − Ihz)− (∇uh,∇(z − Ihz)) = J(u− Ihu)− (∇zh,∇(u− Ihu)), (9.3.7)

followed by the approximation of the weights z − Ihz ≈ zhh − zh and u − Ihu ≈ uhh − uh as
mentioned above. Finally, local error indicators

J(u− uh) ≈
N∑

i=1
ηi(uh, zh)

are derived and their absolute values |ηi(uh, zh)| are considered for refinement. A localization is
effective, if the localization index

loch :=
∑N

i=1 |ηi(uh, zh)|
J(u− uh) , (9.3.8)

is close to 1. (A good localization must allow for introducing the absolute values, i.e. it must
cancel out local oscillations in the error estimator). We refer to [212, Sec. 4] for details.

The DWR method is easily extended to nonlinear problems, to systems of differential equations
and to time dependent problems. All this, further extensions and various applications have
already been demonstrated by Becker and Rannacher [26]. The fundamental problem that is
still open is a reliable and efficient procedure for approximating the weights and, in the case of
nonlinear problems, bounds on a higher order remainder that must usually be dropped.

9.3.2 Estimating the Network Error for the Laplace Equation
Within this framework we now aim at estimating the functional error of the neural network
solution uN ∈ VN obtained with the Deep Ritz approach. Since the network minimizer uN ̸∈ V
does not satisfy the Dirichlet condition u = 0, a consistency term remains when multiplying the
error u− uN with the adjoint problem

J(u− uN ) = (∇(u− uN ),∇z) + ⟨∂nz, uN ⟩. (9.3.9)
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The remaining steps are as in (9.3.3) and we derive the error identity

J(u− uN ) = (f, z)− (∇uN ,∇z) + ⟨∂nz, uN ⟩. (9.3.10)

Again, we must approximate z ∈ V by a discrete solution which is accurate, efficiently achievable
and which does not fall into the vicinity of Galerkin orthogonality, which, in the case of the neural
network error u − uN imposes the condition zh ̸∈ VN . The neural network spaces introduced
in Section 9.4 have no similarity to local finite element spaces. Hence, we will approximate the
adjoint solution in as coarse as possible finite element space zh ∈ Vh ⊂ V and approximate

η(uN , zh) = (f, zh)Ω − (∇uN ,∇zh) + ⟨∂nzh, uN ⟩. (9.3.11)

This error estimator is efficiently evaluated on the finite element mesh using a numerical quad-
rature rule within the domain and along the boundaries. The effectivity of the estimate is
measured by means of the effectivity index 9.3.6. We finally note that the error estimator 9.3.11
is not specific to the Deep Ritz method, instead it could also be used in the context of DeepXDE,
see [154], or for any other approximation technique that yields a H1-conforming solution.

9.3.3 Estimating the Network Error for the Stokes Equations

The estimate can directly be transferred to the Stokes equations, where we approximate the
solution based on the penalized energy form (9.2.16) such as described in Section 9.2.3. For a
goal functional J : H1

0 (Ω)2 → R we introduce the adjoint solution

div z = 0, −∆z−∇q = J in Ω, z = 0 on ∂Ω. (9.3.12)

The error identity for the network solution vN minimizing (9.2.16) is then derived as

J(v− vN ) =
(
∇z,∇(v− vN )

)
+
(
q,div (v− vN )

)
− ⟨∂nz + qn⃗,v− vN ⟩∂Ω

= (f , z)−
(
∇vN ,∇z

)
−
(

div vN , q
)

+ ⟨vN , ∂nz + qn⃗⟩∂Ω.

To evaluate and approximate this error identity we compute a coarse finite element approxima-
tion (zh, qh) ∈ Vh × Lh

−(div zh, ξh) + (∇zh,∇ϕh) + (qh, div ϕh) = J(ϕh) ∀(ϕh, ξh) ∈ Vh × Lh,

and define the Stokes error estimate as

η(vN , zh, qh) := (f , zh)−
(
∇vN ,∇zh

)
−
(

div vN , qh

)
+ ⟨∂nzh + qhn⃗,vN ⟩∂Ω. (9.3.13)

9.4 Network Architecture and Training
Let us recall from the introduction, that the network is considered as function N : Ω → Rc.
More precisely, N is a L-layer neural network with Nl neurons in the l-th layer. We denote the
weight matrix and bias vector in l-th layer by Wl ∈ RNl×Nl−1 and bl ∈ RNl , respectively. Given
an activation function σ, which is applied elementwise.
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Figure 9.1: Feed Forward Neural Network and Residual Neural Network architectures.

We consider two different architectures, feed forward neural network (FFNet):

N 0(x) = x ∈ Ω,
N l(x) = σ(WlN l−1(x) + bl) ∈ RNl , for 1 ≤ l ≤ L
N L+1(x) = WlN L−1(x) + bl ∈ Rc,

and residual neural network (ResNet):

N 0(x) = x ∈ Ω,

N k(x) = σ

(
Wl

(
σ(Wl−1N l−2(x) + bl−1)

)
+ bl

)
+ N k−2(x) ∈ RNl , for 1 ≤ l ≤ L/2

N L+1(x) = WlN L−1(x) + bl ∈ Rc.

We the employed notation N 0 is an input layer with l0 = d and N L+1 is an output layer with
Nl+1 = c. All hidden layers are of the same size H, i.e. l = H for 1 ≤ l ≤ L
Remark 9.3. In [88] the authors used a ResNet architecture, however we observed in that in
practise even simpler neural networks gives good results. □

9.4.1 Training
In this section we present some insights into the training process for the Deep Ritz method
applied to Laplace problem on a L-shaped domain. We refer to Section 9.5.1 for a precise
definition of the test case. Here, we study the effect of the network architecture, i.e. a Feed
Forward Neural Network (FFNet) and a Residual Neural Network (ResNet) on the training.

In Figure 9.2 we present training progress for residual networks of various size. In the left
sketch we show the loss function, i.e. the value of the penalized and approximated energy
functional (9.2.9) and on the right, we show the L2 error of the resulting approximations ∥u −
uN ,u∥ during training. In general the bigger the network the fever epochs are needed to reach
a certain error. However, this is not always the case. We observe a certain threshold for
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Figure 9.2: Training progress for networks of various size.
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Figure 9.3: Training progress for networks of similar size.

the number of network parameters above which increasing the size of the network does not
improve the solution. In general, the slope of the loss function is similar to the progress of the
L2-error. Naturally, once low loss levels are reached, larger networks are able to yield better
approximations.

In Figure 9.3 we present the training and approximation progress of networks with Feed Forward
and Residual architectures and same sizes. To be precise, for each architecture we consider a
small network with 481 parameters and a larger one with 921 parameters. The residual network
is faster to train, but this discrepancy gets smaller for larger networks. The advantage of residual
networks was already mentioned by E and Yu [88].

The above consideration show the need of for a quality measure of the solution that works across
architectures and training methods. In the following section we will present numerical examples
that demonstrate the usability of the error estimator for controlling the approximation error
during training. This estimate can then be used as stopping criterion once a sufficiently low
error level is reached.
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Figure 9.4: Solution of Laplace (top) and Stokes (bottom) during training progress,
epochs={0, 2500, 5000, 7500, 10000} (Laplace), epochs={0, 2000, 5000, 10000, 25000} Stokes.
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(0,−1)

(0,0)

(−1,0)

(−1,1)

(1,−1)

(1,1)

Figure 9.5: L-shaped domain and evaluation point xa = (0.5,−0.5) to define test case 1. The Laplace
problem is solved with homogeneous Dirichlet data and constant right hand side f = 1 such that
a corner singularity evolves.

9.5 Numerical Examples
In this section we will consider two test cases, the Laplace equation on a L-shaped domain
that has already been considered previously and the Stokes equations on a disc. We start by
showing the neural network Deep Ritz solutions to both test cases in Figure 9.4. We give the
approximation at different stages of the training procedure, at the beginning and after a certain
number of epochs (indicated in the figure caption).

9.5.1 Test Case 1. Laplace Equation
As first test case we consider the Poisson equation on the L-shaped domain ΩL = (−1, 1)2\[0, 1]2
shown in Figure 9.5. The functional of interest is to evaluate the solution in the point xa =
(0.5,−0.5)

−∆u = 1 in ΩL, u = 0 on ∂ΩL, J(u) = u(xa). (9.5.1)

We note that J ̸∈ H−1(ΩL) is not an admissible functional. The point evaluation should be
replaced by averaging over a small neighbourhood of the point xa. On the other hand it is well
documented that the non-regularized functional gives optimal performance in the context of the



9.5 Numerical Examples 181

L=1 L=2 L=4
epoch error estimate effh error estimate effh error estimate effh

500 -0.008480 -0.014786 0.57 0.010748 0.009397 1.14 0.018578 0.019248 0.96
1000 -0.003403 -0.006700 0.51 0.005855 0.007324 0.80 -0.004695 -0.004719 0.99
1500 -0.008228 -0.008022 1.03 -0.007460 -0.003477 2.15 -0.009242 -0.009126 1.01
2000 -0.006424 -0.004946 1.23 -0.009138 -0.011058 0.83 -0.006117 -0.006393 0.96

Table 9.1: The values of error and estimator with effectivity index effh, see (9.3.6), for different refinement
levels of dual solution h = 2−L.

dual weighted residual method, see [26, 212]. For comparison, we first determine a reference
value by resolved finite element simulations on very fine meshes. We identify it as

Jref = 0.1023612± 0.001953125.

First we demonstrate the performance of the DWR estimator

η(uN , zh) = (f, zh)Ω − (∇uN ,∇zh)Ω + ⟨∂nzh, uN ⟩∂Ω

as presented in Section 9.3.2. The adjoint solution zh will be computed as finite element ap-
proximation on very coarse meshes. Training results and estimator values are shown for neural
network solutions obtained with the Deep Ritz method and using the strong formulation. Both
network architectures of FFNet type and of ResNet type are considered. The complete set of
parameters is summarized as follows:

• FFNet : H = 20, L = 4, σ(x) = ELU(x),

• ResNet: H = 20, L = 2, σ(x) = max(x3, 0).

Note, since ResNet block consists of two layers, both architectures have same number of para-
meters and the Exponential Linear Unit (ELU) is defined as

ELU(x) =
{
x if x ≥ 0
ex − 1 if x < 0.

For the Deep Ritz approach and the strong formulation, all gradients are computed both with
automatic differentiation and finite difference approximation, respectively. We perform 8000
epochs and the estimator is evaluated every 100 epochs, see Figure 9.6.

One can observe that independently of the applied method, the estimator follows the error.
Consequently we study the dependence on the coarse mesh size h ∈ {0.5, 0.25, 0.0625} used to
approximate the adjoint solution and show the results in Figure 9.7. Increasing the level of
refinement improves the exactness of the estimator. Note however, that results are relatively
good even for extremely coarse meshes and the evaluation of estimator is computationally cheap.
The choice h = 0.5 corresponds to only 12 quadrilateral elements, the finest mesh with h = 0.0625
corresponds to just 768 elements. Further, many degrees of freedom reside on the boundary of
the domain such that the number of unknowns to approximate the adjoint solution ranges from
5 on the coarsest mesh to 640 on the finest mesh and from the results we observe that the
intermediate mesh with h = 0.25 comprising 16 unknowns is sufficiently accurate.
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Figure 9.6: Loss, error and estimator for different network architectures and Loss functions.

9.5.2 Test Case 2. Stokes Equations
For the second test case we consider the Stokes equations on a unit circle Ω = B((0, 0), 1). We
prescribe an analytical solution for comparison with the neural network approximation given
by

v(x, y) = cos
(
π

2 (x2 + y2)
)(

y
−x

)
,

and compute the corresponding forcing term as

f(x, y) = π cos
(
π

2 (x2 + y2)
)



y(x2 + y2)π + 4(y − x) tan
(

π
2 (x2 + y2)

)

−x(x2 + y2)π − 4(x+ y) tan
(

π
2 (x2 + y2)

)


 .

The functional of interest J(v) is an integral of a y-component of the velocity on a line segment
[0, 1]

J(v) :=
∫ 1

0
vy(x, 0)dx, Jref = − 1

π
.

In Figure 9.8 we present the loss function and the functional error as well as the error estimator.
The training of the Deep Ritz method is performed for 25000 epochs, with the Feedforward
Neural Network (FFNet d = 2, c = 2, H = 10, L = 20, σ(x) = ELU(x)). The adjoint Stokes
problem is approximated with equal order finite elements using pressure stabilization on a coarse
mesh level L = 3 that corresponds to h ≈ 0.04375. The results for some selected epochs together
with effectivity index are summarized in Table 9.2.
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Figure 9.7: Loss, error and estimator for different refinement levels of dual solution h = 2−L.
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Figure 9.8: Loss, error and estimator for Stokes problem.

epoch error estimate effh

5000 -0.0442546 -0.0425343 1.04
10000 -0.0262763 -0.0241991 1.08
15000 -0.0096646 -0.0118802 0.81
20000 -0.0134781 -0.0121668 1.10

Table 9.2: The values of error and estimator with effectivity index effh, compare (9.3.6).





CHAPTER 10

Conclusions and Outlook

We have presented new mathematical models for several continuum mechanics problems with
their analysis and numerical treatment. The applications include the Navier-Stokes system,
Fluid-structure interactions, the Euler system, and collective dynamics.

We now summarise the most significant achievements in this thesis and discuss several open
problems relating to the presented results, which we consider interesting for future research.

10.1 Theoretical and Practical Aspects of Blood Flow Simulations

In Chapter 2, we have demonstrated that small boundary perturbations have a crucial impact on
the result of the finite element simulations. The developed error estimates are linear with respect
to the maximal distance between the real and the approximated domains, cf. Theorem 2.6 for
the Laplace problem. We have illustrated the sharp nature of this bound in the computations
performed in Section 2.4.

Particularly, in the case of first and second-order approximation we observe how the relation
between the mesh size and aforementioned maximal distance impact the resulting L2- and H1-
errors. The same behaviour has been demonstrated numerically for the Stokes system.

In practice, we do not have control over the accuracy of the domain reconstruction. We have
shown that it is worth taking into account the geometric uncertainty when deciding on the
mesh-size in order to avoid unnecessary computational effort.

In Chapter 3, we have studied a prototypical geometry that represents a large, curved artery.
Three different configurations are considered: a healthy vessel and two cases where stenosis
is given in the curved area of the vessel. We consider the stenosis centred around the vessel
centerline and a shifted variant where it is concentrated on the inside of the curve. The blood
flow is driven by a time-dependent flow rate with clinically relevant values. For all configurations,
we study the effect of the elasticity in the vessel walls, i.e. we compare a pure Navier-Stokes
simulation with a fully coupled fluid-structure interaction system.

Three different indicators that are relevant in clinical decision making are investigated: the
distribution of the wall shear stress that is responsible for stenosis growth and risk of rupture,
the computational fractional flow reserve, which is used to estimate the severity of stenosis and
the amplitude of the pressure oscillation which also measures the severity of stenosis. In all
cases, we observe that the simple Navier-Stokes model cannot depict the effect of the plaque. In
particular, the pressure lines are nearly identical for all three geometrical configurations. The
FSI model is, however able to replicate clinical observations. For instance, the energy, in terms
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of pressure oscillations, is fully preserved throughout the curved region, if elasticity of the vessel
walls is taken into account.

Although the study covers only an idealised geometry and boundary conditions, the proposed
regime corresponds to a physiological blood flow. Therefore, we stress that the compliance of
the vessel has a significant impact on clinical hemodynamical factors. In medical practice, one
has to be aware of the difference in the results from CFD with FSI and NS models and the
limitations of the latter.

Chapter 4 presented a project dedicated to simulating blood flow in the cephalic arch for a
patient with arteriovenous fistula. The algorithms developed within the project combine medical
diagnostics, imaging methods, and computer simulations. This enables the development of new
treatment methods that can contribute to individual therapy.

This research topic will be further investigated in theoretical and practical directions. On the
one hand, we will develop finite element estimates on the perturbed boundary, e.g. for hemody-
namical factors as the wall shear stress. On the other, knowledge gained in the project enables
further development of computer models towards a commercially usable digital twin.

10.2 Variable Congestion in Two-Phase Compressible/Incompressible
Flows

In Chapter 5 we analysed the two-phase macroscopic model that can be used to model the
congestions in a large group of individuals in a bounded area. The motion of the individuals is
described by the averaged quantities: the density of the individuals, the mean velocity, and the
threshold density by means of the fluid equations. Similar models have been intensively studied
recently in the context of flows through an irregular channel, modelling the tumour growth or
description of the granular media.

The model encompasses the flow in the uncongested regime (compressible) and the congested
one (incompressible), with the free boundary separating the two phases. The congested regime
appears when the density in the uncongested regime achieves a threshold value that describes
the comfort zone of individuals. This quantity is prescribed initially and transported along with
the flow.

We showed that this system can be approximated by the fully compressible Navier-Stokes system
with a singular pressure, supplemented with the transport equation for the congestion density.
For this model, we proved that there exists a sequence of weak solutions that converges to the
weak solution of the two-phase flow with the free boundary. We also presented the application of
this approximation for the purposes of numerical simulations in the one-dimensional domain.

To the best of our knowledge, it is the first analytical and numerical result for the two-phase
compressible/incompressible flow with the barrier that can depend both on the space and time
variable.

In Chapter 6, we presented the numerical simulation of the Euler system with a singular pressure
modelling variable congestion. As the stiffness of the pressure increases (ε tends to 0), the model
tends to a free boundary transition between compressible (non-congested) and incompressible
(congested) dynamics.
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To numerically simulate the asymptotic dynamics, we propose an asymptotic preserving scheme
based on a conservative formulation of the system. We also propose a second-order accuracy ex-
tension of the scheme. The one-dimensional solutions to Riemann test cases are studied together
with their asymptotic limits that validate the code. We compare the results with those obtained
with the scheme proposed in Chapter 5. This latter scheme enables to better approximate the
congestion density at the contact wave as soon as we use high accuracy in its advection. On the
other hand, the former scheme seems to better preserve the maximum principle on that variable.
In two-dimensional simulations, we finally show the influence of this variable congestion density
on the dynamics and show that the model exhibits stop-and-go behavior.

The two schemes generate oscillations in momentum variable at discontinuities between conges-
ted and non-congested domains, in particular in the case of the second-order accuracy schemes. Spe-
cific methods should be designed to cure this artefact. Another direction of improvement, that
will be addressed in future work, concerns the treatment of the vacuum regions by the numerical
scheme.

Future research is to extend the considered model by non-local interaction kernels that model
repulsive-attractive and alignment forces. Moreover, the maximal density constraint in the form
of the singular pressure plays a similar role as the yield stress threshold in plasticity. Thus, we
aim to develop a new method based on singular pressure to capture perfect plasticity.

10.3 Density Induced Consensus Protocol
In Chapter 7 we proposed a model for collective behavior, where the agents interact only if they
have a sufficiently large number of neighbours. This model is inspired by the Cucke-Smale model.
We investigated the impact of the proposed interaction rule and compared it with previously
proposed models. Particularly, the density-induced interaction produces non-symmetric, short-
range interactions, and it allows for the existence of highly influential individuals, where just a
single individual can change the behaviour of an entire group. Interestingly, this last effect is
not imposed in the model but arises naturally from the density-induced interaction.

We studied the existence of solutions of the proposed model, the stability of dense clusters and the
convergence to consensus under some assumption of densely packed clusters. We also investigated
possible ways in which an individual can influence a whole cluster and presented numerical
comparisons with the short-range Cucker-Smale model, the model of q-closest neighbours and
the general Cucker-Smale model.

Chapter 8 explored the relation between density-based data segmentation and collective beha-
vior, introducing a variant of the density based clustering. We provided a rigorous mathematical
foundation for the method as well as an illustration in the case of color image segmentation.
Various aspects of the algorithm were discussed: influence of its parameters, stopping time and
numerical complexity. In particular, we achieved a linear average numerical complexity with
parameters that led to the emergence of an appropriate number of clusters. The key point is the
observation that an evolution of the date according to a density-based first-order ODE system
has a low computational cost and breaks unreasonably large clusters that would be obtained
using other methods.

Future research will be dedicated to explore connections between collective dynamics and clus-
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tering algorithms or more general machine learning. In particular, we will further develop a class
of unsupervised data segmentation methods based on collective dynamics.

Moreover, we will explore mathematical similarities between residual neural networks and kinetic
theory.

10.4 Dual Weight Residual Error Estimates for Neural Network
Solutions of Partial Differential Equations

Based on the dual weighted residual method, the error estimator of neural network approxima-
tions of PDEs is developed. We derive the estimator for a functional of interest and demonstrate
its performance for the Laplace and the Stokes equations. The method is independent of the
design of the neural network and the training procedure. The evaluation on a very coarse mesh
already shows very good accuracy, such that little computational overhead is introduced. The
estimator can be used as a simple and an accurate stopping criterion during the training pro-
cess. As a result of this, we gain a first validation of the neural network approximation, and the
error controlled training helps to reduce the computational effort by avoiding excessive training
epochs.

Besides error estimation, the DWR method can be used for mesh adaptivity, e.g. for steering
an adaptive computation. This requires the localization of the error estimator, i.e., identifying
local values of the interest functional that attribute parts of the error to the element of the mesh
(or to each node, edge, etc.).

In future work, we aim to develop mathematical foundations and implement numerical techniques
that combine classical discretization schemes with neural networks for simulating differential
equations while conserving the physical structure of the underlying problem.
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