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enzymes (van Kan, 2006) – and thrive on the dead plant mate-
rial, biotrophic pathogens strictly rely on living tissue to survive 
and complete their life cycle (Divon and Fluhr, 2007). In contrast, 
hemibiotrophs establish themselves during an initial biotrophic 
phase before necrotrophic growth is initiated (Mendgen and Hahn, 
2002; Münch et al., 2008). In general, infection sites of biotrophic 
fungi represent strong local metabolic sinks that drain nutrients 
from the host environment. Evidence obtained for the rust fungus 
Uromyces fabae suggest that nutrients are mainly taken up as hexoses 
(generated by secreted fungal invertase) and amino acids (Hahn 
et al., 1997; Voegele et al., 2001; Struck et al., 2002, 2004). Recently, 

IntroductIon
Substantial effort is being devoted to gain insight into plant– 
pathogen interactions to improve crop plants for sustainable agri-
culture. Phytopathogenic bacteria and fungi drive their own cellular 
metabolism with substrates being diverted from the colonized and/
or surrounding host cells. Nutrient acquisition from the host cells 
is crucial for the successful establishment of bacterial and fungal 
pathogens (reviewed by Divon and Fluhr, 2007). Plant–pathogens 
have evolved different strategies to divert nutrients from their plant 
hosts. While necrotrophic pathogens rapidly kill plant tissue usually 
by the secretion of highly efficient toxins and cell wall degrading 
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On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino 
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identifying the requirement for metabolic energy and the rearrangement of amino acid pools 
as common transcriptional motifs during early biotrophy. Both metabolome and transcript 
data were employed to generate models of leaf primary metabolism during early biotrophy 
for the three investigated interactions.
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a novel high-affinity U. maydis sucrose transporter Srt1 has been 
characterized, which is required for full virulence (Wahl et al., 2010). 
Effective nutrient provision by host cells is necessary to establish a 
compatible interaction with biotrophs, as indicated by increased 
resistance of the variegated barley albostrians mutant toward pow-
dery mildew fungus or by increased resistance of Arabidopsis over-
expressing invertase inhibitors toward clubroot disease (Jain et al., 
2004; Siemens et al., 2011). In addition, it was recently found that the 
induction of sugar efflux carriers in infected tissue by TAL-effectors 
of the bacterial rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) 
is required for pathogenicity (Chen et al., 2010).

Vice versa, a vast array of fungal genes coding for metabolic 
enzymes was found to be induced upon host colonization, provid-
ing evidence that pathogen metabolism adapts to the host environ-
ment and nutrient availability (as reviewed by Divon and Fluhr, 2007). 
Despite its importance for hexose provision to the invaders, the induc-
tion of invertases, and the concomitant increase in free hexoses can 
serve as a signal for the repression of photosynthetic gene expression 
(as reviewed in Biemelt and Sonnewald, 2006). Furthermore, elevated 
hexose contents constitute an important cue in defense signaling (as 
reviewed by Bolton, 2009). Similarly, the support of the host defense 
response by the provision of reducing equivalents in the cytosol via 
glucose-6-phosphate dehydrogenase (G6PDH) seems to be an essen-
tial metabolic process that heightens defense effectiveness (Scharte 
et al., 2009). In Arabidopsis, strong evidence has been gathered that 
lipid metabolism in the chloroplast is involved in regulating the bal-
ance between SA- and JA-mediated defense responses and the induc-
tion of the hypersensitive response, HR (Kachroo et al., 2003; Chanda 
et al., 2008; Chaturvedi et al., 2008; Raffaele et al., 2008).

Although metabolic processes are important determinants of 
compatibility during plant–pathogen interactions, our knowl-
edge on metabolic compatibility factors is scarce. Nevertheless, an 
increase in the sucrose/hexose ratio (Chou et al., 2000; Swarbrick 
et al., 2006) and elevated contents of nitrogen storage amino acids 
Gln and Asn (Olea et al., 2004; Tavernier et al., 2007; Horst et al., 
2010a) have frequently been observed during biotrophic interac-
tions, nourishing the hypothesis that a direct or indirect metabolic 
reprogramming of host metabolism occurs during the establish-
ment of fungal biotrophs on their hosts. Employing comparative 
metabolome analysis, our study aims at identifying metabolic pro-
cesses that are commonly altered during compatible interactions 
of biotrophic fungal leaf pathogens with agriculturally relevant 
cereal hosts. Pathosystems were selected to maximize biological 
diversity in the analyzed interactions and to minimize the chance 
of identifying effects specific to certain subclasses of pathogens. 
First, we have chosen to compare the response of barley, a C

3
-plant, 

with that of maize, a C
4
 plant, and second, the biotrophic lifestyle 

of the three fungal pathogens is quite diverse.
Ustilago maydis (Um), the causal agent of corn smut disease, 

is a biotrophic basidiomycete parasitizing maize and its natural 
ancestor teosinte. It can induce the formation of tumors on all aerial 
organs (Banuett, 1995) and exhibits a dimorphic lifestyle (Kahmann 
and Kämper, 2004): While haploid sporidia are not infectious and 
grow saprophytically in a yeast-like manner, filamentous growth 
is initiated upon mating of two compatible sporidia on the plant 
surface. Filamentous hyphae quickly form appressoria that pen-
etrate host cells. Immediately upon host entry at around 24 h post 

inoculation, the invading biotrophic hyphae grow both inter- and 
intra-cellular without disrupting the host plasma membrane. About 
4 days after penetration, the formation of hypertrophic host cells 
and concomitant tumor development are induced, while the fungal 
hyphae start proliferating in the apoplastic spaces that develop as a 
consequence of cell wall degradation and induced host cell enlarge-
ment (Doehlemann et al., 2008a,b).

Blumeria graminis f.sp. hordei (Bgh) is an obligate biotroph that 
causes powdery mildew disease on barley. Germination of wind-dis-
persed Bgh conidia on the barley leaf surface first produces a short 
primary germ tube prior to the formation of the infectious secondary 
germ tube, at the tip of which a hooked appressorium is formed. From 
the appressorium, a penetration peg is ejected within 15 h post inocu-
lation (Hückelhoven et al., 1999; Both et al., 2005) that penetrates 
cuticle and wall of the host epidermis cell beneath and subsequently, 
a haustorium is established in the periplasmic space of the colonized 
host cell that serves as a strongly invaginated feeding organ. Unlike U. 
maydis hyphae that grow filamentously through the colonized maize 
tissue, only the haustoria of Bgh reside inside the infected leaf, while 
the predominant portion of fungal hyphae are growing epiphytically, 
occasionally forming secondary haustoria in adjacent epidermal cells. 
Eventually at 5 days post inoculation, conidiophores emerge from the 
epiphytic mycelium that shed series of conidiospores from their tips.

In contrast to U. maydis and Bgh, the maize pathogen 
Colletotrichum graminicola leads a hemibiotrophic lifestyle (as 
reviewed by Bergstrom and Nicholson, 1999; Mendgen and Hahn, 
2002; Münch et al., 2008). Rain-dispersed conidia land on the leaf 
surface, produce germ tubes, which then differentiate sophisticated 
appressoria. During maturation, appressoria form rigid cell walls 
which melanize and synthesis of high concentrations of compat-
ible solutes results in generation of enormous appressorial turgor 
pressure by diffusion of water into the appressorium. At the appres-
sorial base, turgor pressure is translated into mechanical force that 
breaches the host cell wall. In the penetrated host epidermis cells, C. 
graminicola establishes itself as a biotroph within 36 h post inocula-
tion by forming an infection vesicle that produces lobed biotrophic 
primary hyphae. During the subsequent colonization of neighbor-
ing cells at around 72 h post infection, the formation of narrow-
bore secondary hyphae is initiated, which grow rapidly, are highly 
destructive and represent the necrotrophic lifestyle of the pathogen.

Thus, our set of fungal pathogens extends (i) an obligate bio-
troph that nourishes via epidermis-localized haustoria, Bgh, (ii) a 
biotroph that colonizes the entire leaf tissue by intra- and inter-
cellularly growing hyphae, Um, and (iii) a hemibiotroph, Cg, that 
switches from biotrophic colonization of epidermis cells to vast 
proliferation by necrotrophic hyphae throughout the entire leaf.

MaterIals and Methods
Plant and fungal cultIvatIon and InfectIon condItIons
For combined metabolite and transcript profiling experiments, 
Zea mays cv. Early Golden Bantam was cultivated as described in 
(Doehlemann et al., 2008a) and infected with U. maydis strain 
SG200 as described by Doehlemann et al. (2008a) or with C. 
graminicola strain CgM2 as described in Münch et al. (2011).

Combined metabolite and transcript profiling experiments with 
barley (cv. Golden Promise) after challenge with Bgh isolate B6 were 
conducted as described in Molitor et al. (2011).
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Principle component analysis of log-transformed metabolite 
ratios was performed with the MarkerView software (Version 
1.1.0.7, Applied Biosystems, Foster City, CA, USA) using the 
autoscale algorithm for scaling.

results
exPerIMental desIgn and saMPlIng strategy
The sampling time points in all three pathosystems were carefully 
adjusted to the on planta development of the respective patho-
gen and to the diurnal light/dark cycles of the growth regimen 
(Figure 1). For every interaction, infected leaves were harvested 
at two crucial stages: (i) shortly after the establishment of bio-
trophy and (ii) at time points late in the biotrophic interaction, 
with a corresponding sampling time point during necrotrophic 
colonization by C. graminicola at 96hpi serving as a reference for 
non-biotrophic colonization. To minimize artifacts by diurnal 
oscillations of metabolite contents, leaf material harvested at the 
end of the subjective light phase was prioritized for comparative 
analysis described below.

To produce leaf infections of barley (cv. Golden Promise) and 
maize (cv. Early Golden Bantam) with Bgh and Cg, respectively, 
expanding leaves of young plants were inoculated with conidia 
of Bgh and Cg. In contrast, the infection of Early Golden Bantam 
with Um was performed by injecting sporidia suspension into the 
leaf canal with a syringe, giving rise to infections on meristematic 
tissue of developing leaves. For all three interactions studied, tar-
geted analysis of 42 metabolites of central carbon and nitrogen 
metabolism as well as major low-molecular antioxidants was con-
ducted in four biological replicates per time point and treatment 
in three independent experiments. For each of the independent 
experiments, material from all four biological replicates used for 
metabolite determination was pooled for subsequent transcriptome 
analysis (as described by Doehlemann et al., 2008).

coMParatIve MetaboloMe analysIs
Since the aim of our work was to assess, whether common metabolic 
signatures of biotrophy can be identified in cereal leaves during 
compatible interactions with fungal leaf pathogens, we first tried 
to identify similarities between the patterns of the 42 determined 
metabolites by HCA. As our goal was comparing the dynamics of 
host metabolism, we employed metabolite ratios between infected 
and mock control leaves for the HCA analysis, in order to avoid 
complications by species and experiment specific variation in steady 
state contents of metabolites. Table S1 in Supplementary Material 
contains a compilation of the individual metabolite contents ± SE 
and the calculated metabolite ratios infected/mock ± SE for all 
three replicate experiments for all time points and pathosystems 
analyzed. For the sake of clarity, only two of the three replicate 
datasets were used for subsequent multivariate data analysis, with 
the results remaining comparable.

In the HCA, three major clusters could be distinguished that 
correspond to three different types of interaction (Figure 2). 
The most prominent cluster contained samples derived from U. 
maydis-induced tumors, irrespective, whether the samples were 
taken at the beginning (Um 108hpi) or at the end of the subjec-
tive light phase (Um 96hpi and Um 192hpi), and independent of 
the developmental state of the tumors. This indicates that tumor 

transcrIPtoMe analysIs by dna MIcroarray
Transcriptome data from U. maydis-infected maize leaf tissue was 
obtained from the same set of material described in Doehlemann 
et al. (2008a), which is deposited in the Gene Expression Omnibus1 
under the accession number GSE10023. The transcriptome data-
set of Bgh infected barley leaves represents the same dataset as in 
Molitor et al. (2011). Transcriptome data for C. graminicola infected 
maize leaves (infection procedure as in Münch et al., 2011) were 
obtained as described in Doehlemann et al. (2008a) and are depos-
ited in the Gene Expression Omnibus (see text footnote 1) under 
the accession number GSE31188. If not stated otherwise, a low 
stringent threshold of >1.5-fold change with no p-value filter was 
used for comparative analyses of transcriptome data.

MatchIng of barley and MaIze MIcroarray data
To connect the transcripts from different microarray platforms, we 
used the microarray platform translator on the PlexDB homepage2. 
The transformation was performed with the default settings.

calculatIon of MaPMan bIn enrIchMent and subsequent hca
The tool MapMan (Thimm et al., 2004) adapted for maize and bar-
ley Affymetrix microarrays was used to visualize the transcriptome 
data that was obtained as described above. For the analysis, the 
mean values from all three replicate experiments were employed. 
To calculate the percentage of regulated genes per MapMan BIN of 
primary carbon and nitrogen metabolism, the number of regulated 
features with fold change >2.0 was expressed as percentage of total 
number of features in the respective BINs, to enable a compari-
son of maize and barley data that do not share the same number 
of accessions per BIN. Percentage up-regulated and percentage 
down-regulated features were scored separately and used for hier-
archical cluster analysis (HCA) analysis after log transformation, 
median centering, and normalization as described for metabolite 
data below.

MetabolIte quantIfIcatIon and analysIs
For all three interactions analyzed in this report, metabolite con-
tents were determined in three independent experiments from 
subsets of the leaf material pools that were employed for tran-
scriptome analysis, such that material of four independent samples 
for metabolite analysis were pooled to generate one sample pool 
for transcript analysis per time point. All metabolite assays were 
conducted as described by Horst et al. (2010a).

MultIvarIate data analysIs
Mean values of the four biological replicates taken per time point 
and experiment were calculated for all individual metabolites prior 
to calculating the metabolite ratio between infected vs. non-infected 
tissue, which was employed for HCA. After log transformation of 
the data, median centered ratios were normalized and HCA was 
performed using the complete linkage algorithm of the program 
Cluster V2.11 (Eisen et al., 1998) and the results were visualized 
using Maple Tree3.

1http://www.ncbi.nlm.nih.gov/geo/
2http://www.plexdb.org/modules/MPT/mpt_help.php#overview
3http://mapletree.sourceforge.net/
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IdentIfIcatIon of MetabolIte deterMInants sPecIfIc for 
InteractIon stages
The obtained results indicate that there must be certain metabo-
lites, which can be used to discriminate the three major clusters 
produced in the HCA. Therefore, we conducted a principal com-
ponent analysis (PCA) to identify those metabolite changes that 
contribute most to the distinction between early post-penetration 
(Cg 36hpi and Bgh 24hpi), established biotrophic interaction (Um 
48hpi and Bgh 96hpi) and U. maydis-induced tumors. As already 
suggested by the HCA, principal component 1 (PC1), explaining 
41% of the variation, distinguished U. maydis tumor samples from 
the rest (Figures 3A,B). Including the time point 108hpi sampled at 
dawn did not affect the clustering (not shown). As inferred from the 
metabolite loading scores, Glc, Asn, Ser, Tyr, Gln, and Arg showed 
the strongest positive distinction, while 3-PGA, PEP, and pyroph-
osphate exhibited the strongest negative loading in the U. maydis 
tumor samples. PC2, explaining 17% of the variance, separated the 
necrotrophic interaction (Cg 96hpi), indicating substantial differ-
ences in the metabolite pattern to all other samples (Figure 3B), 
which was reflected by a strong positive loading of the phosphoryl-
ated intermediate F16bP and negative loading of the major amino 
acids Asp, Ala, and Glu. Finally, PC3, corresponding to 13% of the 
overall variance, was able to subdivide the early biotrophic interac-
tion time points (above the abscissa) from leaves with established 
biotrophy (below the abscissa, Figure 3B). Branched-chain amino 
acids, Gly, and His as well as phosphorylated intermediates of car-
bohydrate metabolism, G16bP, RubP, G1P, UDPglc, pyrophosphate, 
and the end product sucrose were the most important metabolites 
to separate these interaction stages from one another.

In general, we have observed numerous metabolite changes at 
most interaction stages (Tables 1 and 2), and therefore we analyzed 
not only the differences between the early interaction phase (Cg 
36hpi and Bgh 24hpi) and established biotrophy (Um 48hpi and 
Bgh 96hpi), but also assessed common metabolite dynamics among 
these stages. Looking only at those metabolites that changed in aver-
age more than 1.4-fold in all four situations of interest (Cg 36hpi, 
Bgh 24hpi, Um 48hpi, and Bgh 96hpi), we could identify glucose 
and the nitrogen storage amino acids Glutamine and Asparagine 
being consistently increased, while the glycolytic intermediate PEP 
and the Calvin cycle intermediate 3-PGA were commonly decreased 
(Table 1). This might indicate that the balance between carbon and 
nitrogen metabolism and respiration is already readjusted early 
during compatible interactions. As indicated by the low number 
of metabolites that were consistently altered more than 1.4-fold in 
infected leaves in all three pathosystems, the stringency of the inter-
species comparison needs to be low in order to identify common 
metabolic changes. For the vast majority of the regarded biotrophic 
interaction stages, changes in the abovementioned five metabolites 
were statistically significant in a Welch–Satterthwaite t-test, but not 
after Benjamini–Hochberg FDR correction.

dIstInct MetabolIte resPonses are not caused by confIned 
transcrIPtIonal PrograMs
By multivariate data analysis, we were able to identify common 
and distinct metabolite changes associated with different phases of 
compatible biotrophic interactions, which could represent potential 
metabolic compatibility factors. To identify potential host targets of 

development determines very profound changes in infected maize 
leaves (as already observed by Horst et al., 2010a) that even super-
impose diurnal variations in metabolite contents. Consequently, 
these samples were not within the focus of our further analysis, 
as many metabolic changes specific to tumor formation occur 
at late stages of the U. maydis – maize interaction. However, the 
metabolite changes in maize leaves during the initial coloniza-
tion phase at 48hpi, when no tumors had yet been formed, was 
most similar to that of barley leaves with strong powdery mildew 
colonization (Bgh 96hpi), suggesting that this cluster represents 
established biotrophic interactions. The third cluster is comprised 
of samples taken immediately after penetration (Cg 36hpi and Bgh 
24hpi). For the two latter clusters, it is remarkable that the physi-
ological situation of the samples, i.e., immediate post-penetration 
(Cg 36hpi and Bgh 24hpi) and established biotrophic interac-
tion (Um 48hpi and Bgh 96hpi), respectively, appears to be more 
important for sample parsing than host or pathogen involved. All 
three clusters mentioned so far were separated from the samples 
obtained from the necrotrophic phase of C. graminicola infection 
(Cg 96hpi). Interestingly, replicate samples of pre-penetration 
stages (Bgh 12hpi, Um 12hpi) or from developing leaf tissue (Um 
12hpi and Um 24hpi) did not cluster together when included in 
the HCA (not shown), indicating that despite strong transcrip-
tional changes for genes involved in central metabolism during 
basal defense reaction (see corresponding publications by Horst 
et al., 2010a and Molitor et al., 2011), central metabolism itself 
was not strongly altered at post-penetration stages. This indicates 
that changes in central leaf metabolism only occur upon physi-
cal interaction with pathogens inside the host tissue, when the 
drainage of nutrients to the pathogen and the suppression of host 
defense is being established.

Figure 1 | Mapping of sampling time points to respective infection 
stages in the three studied interactions. Bgh – barley (cv. Golden 
Promise) infected with Blumeria graminis f.sp. hordei isolate A6 (Wiberg, 
1974); Cg – maize (cv. Early Golden Bantam) infected with Colletotrichum 
graminicola strain CgM2; Um – maize (cv. Early Golden Bantam) infected 
with the solopathogenic Ustilago maydis strain SG200 (Kämper et al., 
2006). White bars indicate light period, and dark bars indicate dark period. 
Sampling time points analyzed in this study are indicated in black below the 
bars, while sampling time points that were disregarded are printed in gray. 
inf, Inoculation; pen, penetration, bio, initiation of biotrophic growth, haus, 
haustoria establishment; necro, commencement of necrotrophic growth; 
spo, formation of conidiospores begins.
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Figure 2 | Hierarchical cluster analysis of metabolome data from infected 
leaves. Mean values of metabolite contents from four biological replicates of 
infected and mock control leaves harvested at the indicated time points after 
infection with the respective pathogens (Bgh, Blumeria graminis f.sp. hordei; 
Cg, Colletotrichum graminicola; Um, Ustilago maydis) were used to calculate the 
metabolite ratio infected/mock for the indicated experimental replicates. After 
log transformation of the data, median centered ratios were normalized and 
hierarchical clustering analysis (HCA) was performed using the complete linkage 
algorithm of the program Cluster v2.11 (Eisen et al., 1998 – www.eisenlab.org) 
and the results were visualized using Maple Tree (http://mapletree.sourceforge.
net/). Metabolite ratios from two independent experiments (indicated by Roman 
numbers) of every pathosystem were used for HCA. Color intensity correlates 

with degree of increase (yellow) and decrease (blue) relative to the mean 
metabolite ratio. hpi, hours post infection. Amino acids and nucleotides are 
abbreviated according to three letter code, aKG, (α-ketoglutarate) Asc 
(ascorbate); %AsA red, (% reduced ascorbate); Cit, (citrate); E4P, (erythrose-4-
phosphate); F16BP, (fructose-1,6-bisphosphate); F6P, (fructose-6-phosphate); frc, 
(fructose); Fum, (fumarate); G16BP, (glucose-1,6-bisphosphate); G1P, (glucose-1-
phosphate); G6P, (glucose-6-phosphate); glc, (glucose); GSH, (glutathione); 
%GSH red, (% glutathione reduced); Icit, (isocitrate); PEP, (phosphoenol 
pyruvate); 3PG, (3-phosphoglycerate); 6PG, (6-phosphogluconate); Ppi, 
(pyrophosphate); Pyr, (pyruvate); RubP, (ribulose-1,5-bisphosphate); S6P, 
(sucrose-6-phosphate); suc, (sucrose); Succ, (succinate); T6P, (trehalose-6-
phosphate); UDPglc, (UDP-glucose).
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within MapMan BINs (Thimm et al., 2004) associated with central 
primary carbon and nitrogen metabolism, of which the functional 
annotations are quite robust (Table 3). If transcriptional repro-
gramming of metabolic pathways would account for the observed 
differences in the metabolome between early post-penetration 
and at established biotrophy, we would expect a similar clustering 
result of the transcript data as for the metabolite data. Surprisingly, 
an HCA comparing the fraction of regulated genes in MapMan 
BINs assigned to central carbon and nitrogen metabolism gave a 
completely different picture compared to the metabolome analysis 
(Figure 4). Only the samples reflecting established biotrophy (Um 
48hpi and Bgh 96hpi) still clustered together. On the pathway level, 

metabolic reprogramming by biotrophic fungi, we aimed at refin-
ing the underlying transcriptional changes governing the observed 
metabolic redirections.

We analyzed the corresponding transcriptome data obtained 
from the same pooled material that was used for metabolite analysis 
for transcriptional changes that could account for the observed 
dynamics in the metabolome. As not all genes in a pathway are 
subject to transcriptional regulation, it appeared instrumental to 
analyze the enrichment of transcriptional regulation within entire 
metabolic pathways. To avoid complications by annotation artifacts 
in the pairwise assignment of the maize and barley microarray fea-
tures, we preferred to calculate the enrichment of regulated genes 

Figure 3 | Principle component analysis of metabolite data. For principle 
component analysis (PCA), the same metabolite ratios as in Figure 1 were used, 
representing the ratio infected/mock calculated from the mean values of four 
sample replicates each. Per pathosystem, data from two independent 
experiments (designated by Roman numbers) were employed for PCA. (A) PC1 
vs. PC2. (B) PC1 vs. PC3. Bgh, Blumeria graminis f.sp. hordei; Cg, 
Colletotrichum graminicola; Um, Ustilago maydis; yellow, tumor, red, established 
biotrophy, blue, early biotrophy, black, necrotrophy. Amino acids and nucleotides 
are abbreviated according to three letter code, aKG, (α-ketoglutarate) AsA 

(ascorbate); %AsA red, (% reduced ascorbate); Cit, (citrate); E4P, (erythrose-4-
phosphate); F16BP, (fructose-1,6-bisphosphate); F6P, (fructose-6-phosphate); frc, 
(fructose); Fum, (fumarate); G16BP, (glucose-1,6-bisphosphate); G1P, (glucose-1-
phosphate); G6P, (glucose-6-phosphate); glc, (glucose); GSH, (glutathione); 
%GSH red, (% glutathione reduced); Icit, (isocitrate); PEP, (phosphoenol 
pyruvate); 3PG, (3-phosphoglycerate); 6PG, (6-phosphogluconate); Ppi, 
(pyrophosphate); Pyr, (pyruvate); RubP, (ribulose-1,5-bisphosphate); S6P, 
(sucrose-6-phosphate); suc, (sucrose); Succ, (succinate); T6P, (trehalose-6-
phosphate); UDPglc (UDP-glucose).
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 categorized into MapMan BINs. Mostly, clustering of samples occurred 
predominantly according to pathosystems, irrespective, whether only 
the previously analyzed samples were clustered or whether all available 
samples were used for the computation (Figure 5). Similar results were 
obtained when barley and maize genes were matched based on their 
closest homolog in rice (not shown). Although we still cannot rule 
out that part of the clustering is influenced by artifacts arising from 
matching the array annotations, the fact that Cg and Bgh samples 
form one cluster in the full transcriptome HCAs (Figure 5A) argues 
against a strong influence by such misinterpretations. At the bottom 
line, no infection stage specific clustering could be observed when 
transcriptome data were analyzed.

IdentIfIcatIon of MetabolIc genes regulated In resPonse to 
fungal InfectIon
Although we were unable to identify common motifs in the tran-
scriptional response of metabolic pathways at the early post-pen-
etration stage and during established biotrophy, we were surveying 
the transcriptome data for metabolic genes that were found to 
be regulated during biotrophic interactions in more than one 
pathosystem. To address this question, we had to decrease the 
fold change threshold down to 1.5-fold, as the standard twofold 
threshold appeared to be too stringent for such a cross-species 
comparison. Table 4 shows that genes involved in the TCA cycle 
and carboxylate metabolism as well as genes regulating the energy 
status of the nucleotide pool are consistently induced in more than 
one pathosystem. Similarly, remodeling of amino acid metabolism 
appears to be a common theme during compatible biotrophic inter-
actions. Surprisingly, the number of targets in central carbohydrate 
metabolism is quite scarce. While there seems to be different ways of 
transcriptional regulation of fructose-2,6-bisphosphate homeosta-
sis in all pathosystems, only few more genes in central carbohydrate 
metabolism were found, but not as consistent as genes involved 
in carboxylate, nucleotide, and amino acid metabolism, indicat-
ing that there is no strong regulation of carbohydrate flux on the 
transcriptional level.

Thus, a conserved transcriptional program that is activated to 
redirect primary metabolism during biotrophic interactions does 
not exist, indicating that the manipulation of host metabolism 

deregulation of major carbon metabolism was consistent enough 
to parse the MapMan BINs Calvin cycle, sucrose, and starch bio-
synthesis into the same cluster.

During early post-penetration biotrophy (Bgh 24hpi and Cg 
36hpi), the most pronounced changes in metabolite contents 
had occurred in the accumulation of most free amino acids (see 
Figure 3B and Table 2) as well as by decreased contents of phos-
phorylated intermediates of starch and sucrose biosynthesis (see 
Figure 3B). While between 8 and 19% of genes annotated to central 
carbon metabolism and between 12 and 53% of genes annotated 
to amino acid biosynthesis are up-regulated at 24hpi after Bgh 
infection, most of these MapMan BINs are not regulated at all at 
36hpi after Cg infection (Table 3), demonstrating that although 
both early post-penetration situations exhibit similar metabolite 
changes, transcriptional regulation of the corresponding metabolic 
pathways is utterly different. Likewise, the samples attributed to 
established biotrophy (Um 48hpi and Bgh 96hpi) were refined by 
PCA based on concomitant changes in phosphorylated interme-
diates of central carbon metabolism (see Figure 3B). In addition, 
the contents of the glycolytic intermediate PEP, and the Calvin 
cycle intermediates 3-PGA and F16bP (which are predominantly 
localized in the stroma in illuminated leaves, see Gerhardt et al., 
1987; Heineke et al., 1994 and Leidreiter et al., 1995) were consist-
ently diminished at 48hpi after Um infection and at 96hpi after 
Bgh infection (Table 2). MapMan BINs for sucrose and starch 
biosynthesis, the Calvin cycle, glycolysis, and major amino acid 
biosynthesis were much stronger deregulated in Um 48hpi than 
in Bgh 96hpi (highlighted in Table 3), again indicating a sincere 
difference on the transcriptional level despite similar metabolite 
changes as revealed by PCA.

To evaluate whether a more global transcriptome analysis would 
result in a similar outcome compared to the focused analysis of tran-
scripts involved in central metabolism, we matched all features on the 
Barley1 and the maize Affymetrix arrays via the corresponding gene 
annotations deposited at PlexDB4. An HCA employing features with 
fold change >2 from the whole transcriptome dataset resulted in a 
different sample parsing than in the previous analysis employing data 

Table 1 | Metabolites consistently altered in all biotrophic interactions.

Metabolite Bgh 24hpi Bgh 96hpi Cg 36hpi Um 48hpi Average

Glutamine 3.16 ± 0.52 2.19 ± 0.93 2.42 ± 0.34 2.48 ± 0.18 2.56

Glucose 1.37 ± 0.19 1.35 ± 0.16 1.43 ± 0.10 1.64 ± 0.26 1.44

Asparagine 1.81 ± 0.17 1.67 ± 0.52 2.76 ± 0.53 2.07 ± 0.10 2.07

3-PGA −1.28 ± 0.11 −1.41 ± 0.08 −1.12 ± 0.10 −2.04 ± 0.07 −1.46

PEP −1.25 ± 0.05 −1.37 ± 0.10 −1.25 ± 0.10 −2.08 ± 0.05 −1.48

No. oF MeTABoliTe wiTH F.c. > 1.5 iN iNFecTed leAveS

Metabolites increased  18 (12 – 3) 11 (3 – 0) 21 (11 – 0) 15 (12 – 11) 

Metabolites decreased 3 (0 – 0) 6 (1 – 0) 2 (0 – 0) 5 (4 – 2) 

Mean values of metabolite contents from four biological replicates of infected and mock control leaves harvested at the indicated time points after infection with 
the respective pathogens (Bgh, Blumeria graminis f.sp. hordei; Cg, Colletotrichum graminicola; Um, Ustilago maydis) were used to calculate the metabolite ratio 
infected/mock. Only metabolites with an average f.c. > 1.4 in both early and established biotrophic interactions are displayed (see right column). The total number 
of metabolites that were increased or decreased at the indicated time point of infection is indicated in the lower part of the table, with the first number in brackets 
giving significant changes in a t-test with p < 0.05, and the second number giving significant changes with p < 0.05 after Benjamini–Hochberg FDR correction. For 
individual p-values and Benjamini–Hochberg-corrected p-values, please see Table 2.

4www.plexdb.org
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IdentIfIcatIon of transcrIPtIonal sIgnatures In the 
InvestIgated PathosysteMs
Our analysis has only revealed a few genes of central primary 
metabolism that were regulated in all investigated pathosystems. 
As stated above, a conserved transcriptional program that is acti-
vated to redirect primary metabolism during biotrophic interac-
tions does not exist. Therefore, we set out to identify particular 

depends on the individual pathogen and the effector proteins it 
produces. Nevertheless, some metabolic pathways seem to be con-
sistently addressed on the transcriptional level in all investigated 
pathosystems. Nitrogen metabolism and energy status appeared 
to be regulated more consistently on the transcriptional level than 
carbohydrate metabolism, which might be rather controlled on 
the post-translational level or by interaction-specific modulations.

Table 2 | compilation of all substantial metabolite changes at biotrophic interaction time points.

Metabolite Bgh24 p- adj Bgh96 p- adj Cg36 p- adj Um48 p- adj 

  value p-value  value p-value  value p-value  value p-value

iNcreASed iN iNFecTed leAveS

aKG       1.25 ± 0.24 0.304 0.361   

Ala 1.54 ± 0.20 0.039 0.124         

AMP       1.98 ± 0.12 0.022 0.119   

Arg 1.60 ± 0.11 0.016 0.099    2.03 ± 0.18 0.004 0.050   

Asn 1.81 ± 0.17 0.071 0.136 1.67 ± 0.52 0.094 0.396 2.76 ± 0.53 0.046 0.146 2.07 ± 0.10 0.021 0.056

Asp 1.58 ± 0.18 0.023 0.107 1.28 ± 0.26 0.238 0.452 2.47 ± 0.61 0.054 0.145   

F16BP       1.68 ± 0.63 0.350 0.758   

G1P 1.34 ± 0.12 0.052 0.115 1.29 ± 0.09 0.032 0.242      

G6P       1.25 ± 0.09 0.054 0.136   

Glc 1.37 ± 0.19 0.269 0.310 1.35 ± 0.16 0.299 0.517 1.43 ± 0.20 0.038 0.144 1.64 ± 0.26 0.028 0.067

Gln 3.16 ± 0.62 0.056 0.118 2.19 ± 0.93 0.182 0.385 2.42 ± 0.34 0.043 0.150 2.48 ± 0.18 0.007 0.037

Glu       2.07 ± 0.25 0.004 0.070   

Gly 1.32 ± 0.16 0.097 0.154    2.50 ± 0.19 0.056 0.133   

His 1.94 ± 0.33 0.001 0.016    2.36 ± 0.43 0.018 0.111 1.88 ± 0.06 0.005 0.044

Ile 1.74 ± 0.10 0.013 0.099    2.17 ± 0.17 0.022 0.105 1.44 ± 0.08 0.010 0.034

Leu 1.45 ± 0.08 0.001 0.020 1.26 ± 0.42 0.931 0.982 2.07 ± 0.29 0.291 0.357   

Lys 1.54 ± 0.07 0.020 0.109       1.50 ± 0.43 0.224 0.517

Phe 2.47 ± 0.13 0.001 0.034 1.35 ± 0.39 0.312 0.492 1.99 ± 0.04 0.006 0.059 1.88 ± 0.13 0.008 0.030

Ppi    3.88 ± 0.92 0.064 0.302      

Pro       2.13 ± 0.51 0.088 0.177   

S6P       1.25 ± 0.11 0.065 0.146 1.25 ± 0.12 0.092 0.160

Ser 1.59 ± 0.18 0.050 0.135    2.22 ± 0.30 0.066 0.139 1.25 ± 0.02 0.004 0.048

Suc          1.59 ± 0.09 0.006 0.044

Succ          1.43 ± 0.05 0.001 0.024

Thr 1.77 ± 0.24 0.041 0.119 1.45 ± 0.33 0.166 0.394 2.38 ± 0.41 0.034 0.144 1.79 ± 0.15 0.014 0.044

Tyr 1.52 ± 0.21 0.031 0.118    1.97 ± 0.39 0.051 0.150 1.81 ± 0.04 0.000 0.003

UDP    1.29 ± 0.09 0.025 0.318      

UDPglc 1.50 ± 0.13 0.035 0.120 1.65 ± 0.19 0.015 0.294    1.28 ± 0.12 0.094 0.155

Val 1.81 ± 0.12 0.024 0.103    2.24 ± 0.14 0.007 0.051 1.30 ± 0.05 0.007 0.031

reduced iN iNFecTed leAveS

3-PGA 1.28 ± 0.11 0.075 0.130 1.41 ± 0.08 0.026 0.243    2.04 ± 0.07 0.033 0.074

aKG          1.89 ± 0.11 0.063 0.113

F16BP    1.21 ± 0.17 0.137 0.435    1.45 ± 0.08 0.047 0.099

Gly    1.42 ± 0.12 0.142 0.416      

Lys    1.25 ± 0.30 0.363 0.511 1.25 ± 0.27 0.291 0.357   

PEP 1.25 ± 0.05 0.051 0.128 1.37 ± 0.10 0.052 0.333 1.25 ± 0.10 0.095 0.181 2.08 ± 0.05 0.017 0.050

Ser            

Suc 1.25 ± 0.06 0.058 0.116         

Starch    1.63 ± 0.11 0.094 0.357    2.27 ± 0.04 0.006 0.041

The metabolite ratio infected/mock is given as the mean value of three independent experiments ± SE. In each experimental replicate, four biological replicates 
were analyzed. Leaves of infected and mock control leaves were harvested at the indicated time points after infection with the respective pathogens (Bgh, Blumeria 
graminis f.sp. hordei; Cg, Colletotrichum graminicola; Um, Ustilago maydis). Metabolites with an average f.c. > 1.25 at any biotrophic interaction time point are 
displayed. p-Values were calculated employing a Welch–Satterthwaite t-test and for multiple testing correction of p-values, Benjamini–Hochberg false discovery rate 
(FDR) was determined (adj p-value). For abbreviations, see legend of Figure 1.

Voll et al. Metabolome analysis of fungus-infected cereals

Frontiers in Plant Science | Plant Physiology  August 2011 | Volume 2 | Article 39 | 8



As already published (Doehlemann et al., 2008a; Horst et al., 
2010a,b), U. maydis-induced tumors exhibit substantial transcrip-
tional changes in almost all displayed metabolic pathways compared 
to mock control leaves (Figure 6; Table 3). While the majority of the 
genes involved in the light reaction, the Calvin cycle, and the pho-
torespiratory C

2
 cycle were transcriptionally repressed in tumors, 

genes of lipid biosynthesis and remodeling, cell wall biosynthesis 
were significantly induced in comparison to mock control leaves 
>4 dpi. More subtle transcriptional differences at early stages of 
the three interactions could be identified. In Bgh infected leaves, 

differences in the transcriptional responses of metabolic pathways 
between the pathosystems. In Figure 6, MapMan representations 
of those pathways were compiled that exhibit most pronounced 
differences between early biotrophy in the barley powdery mildew 
interaction (Bgh 24hpi), biotrophy in the U. maydis-maize interac-
tion (Um 48hpi), necrotrophy (Cg 96hpi), and U. maydis-induced 
tumors (Um > 96hpi), each representing one cluster in the HCA 
of the metabolite data depicted in Figure 2. Please note that the 
transcriptional changes upon Bgh infection were very similar at 24 
and 96hpi (also see Figure 5A).

Table 3 | Percentage of up- and down-regulated genes in MapMan BiNs of central primary metabolism.

MapMan BiN Bgh 24hpi % Bgh 96hpi % Um 48hpi % Um 96hpi % Um 108hpi % Cg 36hpi% Cg 96hpi %

PerceNTAge oF uP-regulATed

Starch BS 8.1 0.0 3.3 23.3 23.3** 0.0 10.0

Starch Deg 14.8 0.0 21.7** 30.4 34.8 0.0 0.0

Sucrose BS 0.0 7.1 16.7 16.7** 0.0 0.0 16.7

Sucrose Deg 19.2 11.5 18.5 18.5 37.0 0.0 18.5**

OPPP 20.5 23.1 6.9 20.7 44.8 6.9 10.3**

Glycolysis 10.1 7.1 25.8 29.0* 38.7 9.7* 17.7*

Fermentation 27.6 13.8 26.3 42.1 52.6 10.5 21.1**

TCA cycle 17.7 11.4 16.7 18.8 35.4** 2.1 22.9***

Calvin cycle 8.2 13.7 10.0*** 13.3*** 16.7*** 3.3** 10.0

Photorespiration 10.0 16.0 11.9** 9.5*** 11.9 0.0 4.8

aa Deg 11.8 9.2 13.3** 16.3 26.7* 2.2 9.6

Glu aa BS 53.3*** 46.7*** 11.8 17.6 41.2 11.8 5.9**

Asp aa BS 17.3*** 13.5*** 22.0 26.8* 24.4 4.9 12.2

bc-aa BS 23.1* 0.0 12.5 37.5 43.8 0.0 12.5

Ser BS 23.1 15.4** 25.0 25.0** 41.7*** 12.5** 25.0***

aro-aa BS 37.7*** 43.4*** 36.4** 38.6 36.4 0.0 31.8**

His BS 12.5 18.8*** 12.5 6.3 6.3 0.0 6.3**

Nucleotides 16.4** 15.1*** 13.2 27.2 41.2** 3.5** 14.0**

PerceNTAge oF dowN-regulATed

Starch BS 10.8** 5.4** 21.7* 43.5** 60.9** 0.0 8.7

Starch Deg 3.7* 3.7 16.7** 16.7 30.0** 3.3** 6.7

Sucrose BS 0.0 14.3** 33.3** 66.7** 66.7** 0.0 16.7**

Sucrose Deg 1.9 7.7** 7.4 18.5 22.2 3.7 3.7**

OPPP 10.3** 2.6 3.4 20.7 24.1 0.0 3.4

Glycolysis 5.1*** 4.0** 8.1** 11.3** 38.7** 0.0 3.2*

Fermentation 3.4 3.4 15.8* 31.6** 26.3** 0.0 5.3

TCA cycle 1.3** 1.3*** 2.1** 2.1** 12.5** 0.0 2.1**

Calvin cycle 11.0*** 6.8** 16.7* 56.7** 66.7*** 3.3** 6.7**

photorespiration 6.0*** 0.0 14.3* 31.0** 45.2** 2.4** 31.0

aa Deg 6.5*** 2.6** 10.4*** 21.5** 22.2** 0.7 6.7

Glu aa BS 0.0 0.0 17.6 17.6 11.8 0.0 5.9*

Asp aa BS 0.0 1.9 9.8 12.2 14.6 0.0 4.9

bc-aa BS 7.7 7.7 12.5 18.8 56.3 0.0 12.5

Ser BS 0.0 0.0 12.5** 16.7* 33.3** 0.0 0.0

aro-aa BS 3.8 1.9 2.3 13.6 15.9 6.8 11.4**

His BS 0.0 0.0 6.3 6.3 12.5 0.0 6.3

Nucleotides 4.8** 2.7** 8.8** 14.0 15.8** 0.0 2.6*

The percentage of up- (upper half) and down-regulated genes (lower half) in the indicated MapMan BINs was calculated based on the mean fold changes from all three 
replicate experiments. Strong differences between the two time points of established biotrophy, Bgh 96hpi and Um 48hpi, are indicated in bold. Significant enrichment 
of MapMan BINs was calculated with a Wilcoxon rank sum test: *p < 0.1 and **p < 0.05. ***indicates p < 0.05 in a Wilcoxon rank sum test after Benjamini–Hochberg 
FDR correction. BS, biosynthesis; Deg, degradation; aro-aa, aromatic amino acids; bc-aa, branched-chain amino acids; OPPP, oxidative pentose phosphate pathway.
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Figure 4 | Hierarchical cluster analysis of MapMan BiN enrichment. The 
percentage of up- and down-regulated genes in each MapMan BIN was calculated 
based on the mean fold changes from all three replicate experiments. After log 
transformation of the data, median centered percentages were normalized and 
hierarchical clustering analysis (HCA) was performed using the complete linkage 
algorithm of the program Cluster v2.11 (Eisen et al., 1998 – www.eisenlab.org) and 
the results were visualized using Maple Tree (http://mapletree.sourceforge.net/). 

Color intensity correlates with degree of increase (yellow) and decrease (blue) 
relative to the BIN mean of all samples, while gray corresponds to 0% regulated 
genes in the MapMan BINs. Bgh, Blumeria graminis f.sp. hordei; Cg, 
Colletotrichum graminicola; Um, Ustilago maydis; hpi, hours post infection. Amino 
acids are abbreviated by three letter code; aro-aa, aromatic amino acids; bc-aa, 
branched-chain amino acids; BS, biosynthesis; Deg, degradation; OPPP, oxidative 
pentose phosphate pathway.
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metabolite changes that could be identified in infected leaf tissue. 
The pool sizes of branched-chain amino acids and aromatic amino 
acids fueling glucosinolate and phenylpropanoid biosynthesis with 
building blocks increased concomitantly (Parker et al., 2009; Sana 
et al., 2010; Ward et al., 2010; this study). Nevertheless, elevated Gln 
and Asn contents in infected leaves represented a major consistent 
change in primary metabolism at any stage during the biotrophic 
interactions in the cereal pathosystems investigated in our study 
(Table 1). Taken together with the reported results from the above 
cited and other studies (reviewed by Bolton, 2009), this indicates 
that a substantial reprogramming of central amino acid metabolism 
takes place already early during infection. It has to be stressed that 
early after the establishment of the three investigated interactions, 
only five metabolites exhibited consistent changes, most of which 
were only moderately significant. Likewise, only few genes cod-
ing for enzymes of primary metabolism were consistently altered 
on the transcriptional level during the early stages of infection. 
Most of these genes were only deregulated in two out of the three 
pathosystems. This indicates that the congruence of the metabolic 
response is rather low in the three examined cereal pathosystems.

Nevertheless, malate dehydrogenase (MDH) was found to be 
consistently induced early in all interactions we investigated and, 
with the exception of U. maydis-infected leaves, various isoforms of 
malic enzyme were also induced swiftly after inoculation (Table 4). 
Likewise, rice leaves challenged with Magnaporthe grisea (Parker 
et al., 2009) and Arabidopsis leaves in defense of the hemibiotroph 
Colletotrichum higginsianum (Voll et al., unpublished) exhibited an 
induction of malic enzyme activity that was shown to support the 
global defense response by providing reducing equivalents (Parker 
et al., 2009), identifying malic enzyme as a conserved player in 
early, i.e., basal plant defense. Like malic enzyme, MDH, would also 
produce reducing equivalents from the oxidation of malate in the 
cytosol, yet producting oxaloacetate instead of pyruvate, thereby 
competing with ME for the substrate malate.

Cell wall bound invertase is known to be involved in the 
defense response of several plant species (e.g., Bonfig et al., 
2006; Swarbrick et al., 2006; Voegele et al., 2006; Essmann et al., 
2008; Horst et al., 2008; Kocal et al., 2008; Siemens et al., 2011). 
Interestingly, we could only observe an induction of cell wall 
invertase (cw-INV) at late interaction stages of the two maize 
pathosystems, indicating that its induction might be slower in 
maize than in other species. As both malic enzyme (Parker et al., 
2009) and invertase (see citations above) have been shown to be 
induced much stronger and faster in incompatible than in com-
patible interactions, we can rule out that their transcriptional 
induction represents a susceptibility factor.

An increase in TCA cycle intermediates Citrate, Malate, 
Succinate, and Fumarate had been observed during the necro-
trophic phase of Magnaporthe grisea infection (Parker et al., 2009). 
Similarly, we have observed an accumulation of these carboxylates 
with isocitrate exhibiting the most pronounced increase in maize 
leaves during necrotrophic colonization with C. graminicola at 
96hpi (Table S1 in Supplementary Material). In addition, TCA 
cycle, glycolysis, and respiration displayed the strongest induction 
on the transcriptional level in C. graminicola infected leaves at 
that time point (Figure 6), suggesting that necrotrophic growth 
in grass species might commonly provoke a strong induction of 

 transcriptional suppression of the light reaction is substantially 
more pronounced, while transcriptional regulation of other meta-
bolic pathways is much weaker compared to Um biotrophy or in Cg 
necrotrophy (also see Table 3). This corroborates that changes in 
metabolic flux during Bgh infection are not predominantly caused 
by transcriptional regulation, but rather by post-translational fine-
tuning. During the biotrophic (pre-tumor) colonization of maize 
by U. maydis, lipid biosynthesis, and cell wall biosynthesis are much 
stronger induced than in the other two interactions, already reflect-
ing initial hypertrophic growth. Finally, necrotrophic colonization 
of maize leaves by C. graminicola results in a significant induc-
tion of glycolysis, TCA cycle, and fermentation, indicating that an 
increase in respiratory flux might occur during the challenge with 
the necrotroph.

dIscussIon
consIstent MotIfs In MetabolIc rePrograMMIng durIng 
Plant–Pathogen InteractIons
Despite the extensive use of metabolomics for the analysis of 
plant metabolism (Bino et al., 2004), metabolomic studies of 
plant–pathogen interactions are rare, most of which rely on 
data acquisition by FIE-MS and NMR-based metabolite profil-
ing and fingerprinting techniques and subsequent  deconvolution 
by supervised or non-supervised multivariate data analysis 
(Widarto et al., 2006; Parker et al., 2009; Sana et al., 2010; Ward 
et al., 2010).

In these approaches, defense-associated metabolites like glu-
cosinolates (Ward et al., 2010), indoles (Ward et al., 2010), and 
phenylpropanoids (Widarto et al., 2006; Parker et al., 2009; Sana 
et al., 2010; Ward et al., 2010) were commonly the most prominent 

Figure 5 | Hierarchical cluster analysis of whole transcriptome data. 
(A) HCA for the timepoints analyzed in this report. (B) HCA for all timepoints 
sampled. Barley and maize Affymetrix data were matched via PlexDB (www.
plexDB.org) as described in the methods section and the mean transcript fold 
changes of infected vs. mock samples were calculated based on all three 
replicate experiments and were subsequently used for HCA. After log 
transformation of the data, median centered data were normalized and 
hierarchical clustering analysis (HCA) was performed using the complete 
linkage algorithm of the program Cluster v2.11 (Eisen et al., 1998 – www.
eisenlab.org) and the results were visualized using Maple Tree (http://
mapletree.sourceforge.net/). Bgh, Blumeria graminis f.sp. hordei; Cg, 
Colletotrichum graminicola; Um, Ustilago maydis; hpi, hours post infection.
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tion of carboxylates was most pronounced during necrotrophic 
colonization of maize by Cg (as just discussed), whereas lipid 
and cell wall biosynthesis were most severely affected in the early 
interaction of maize leaves with Um, reflecting the initiation of 
hypertrophic growth. Genes involved in photosynthesis were most 
quickly suppressed in Bgh infected barley leaves. Given the con-
nection of the Cg and the Um response to particular physiological 
situation described above, we can assume that these specific effects 
on the transcriptome and the metabolome of primary metabolism 
arise from the divergent strategies of the fungal pathogens to 
manipulate host metabolism. It appears likely, that besides specific 
targets in defense signaling (as reviewed by de Wit et al., 2009), 
also different enzymes and metabolic pathways are targeted by 
the fungi to match the metabolic requirements of the individual 
pathogens.

carboxylate metabolism via the TCA cycle. Increased metabolic 
flux into carboxylate  production via the TCA cycle could either 
provide ample supply of reducing equivalents and ATP to the host 
cells or it could indicate increased respiratory flux as a result of 
impaired photoautotrophy during necrotrophic colonization. We 
also observed a strong induction of the TCA cycle in U. maydis-
induced tumors (Figure 6). However, a thorough inspection 
disclosed that in leaf tumors, the TCA cycle will most probably 
provide nitrogen assimilation with carbon skeletons (Horst et al., 
2010a,b).

Apart from only few very conserved responses of primary 
metabolism on the transcriptional and metabolic level between 
all three pathosystems, we could also identify changes that were 
quite specific to only one of the pathosystems investigated here. 
For instance, the induction of the TCA cycle and the accumula-

Table 4 | consistent transcriptional changes among the pathosystems.

gene Probe set Barley1 Bgh Bgh Probe set Maize Affy Cg 96hpi Um 48hpi  classification 

  24hpi 96hpi

TcA cycle/cArBoxylATe MeTABoliSM       

Citrate lyase Contig3815_at 2.1  Zm.1942.1.A1_at 4.4  Early

Aconitase Contig3351_s_at 1.5  Zm.12697.1.S1_at 2.1 2.6 Global

Oxoglutarate dehydrogenase Contig4963_at  1.6 Zm.6807.1.A1_at 5.0 2.0 Global

Cytosolic malate dehydrogenase  Contig3610_s_at 1.9 3.5 Zm.2061.1.A1_at 3.0 4.0 Global

NAD malic enzyme HV_CEb0015P21f_S_at 1.8 1.5 Zm.3666.1.A1_at 1.9  Global

Pyruvate decarboxylase Contig5532_s_at  1.7 Zm.3994.1.S1_at  10.2 Late

NucleoTide MeTABoliSM       

Adenosine/uridine kinase Contig2829_at 1.7 1.9 Zm.247.2.A1_at 5.2 32 Global

UMP synthase Contig16393_at 1.9 2.3 Zm.908.1.A1_at 3.0  Global

Nucleoside diphosphosphate  Contig2124_at 2.3  Zm.19303.1. 27 4.1 Global 

kinases*    S1_at (Zm.17247.1. A1_at)

AMiNo Acid MeTABoliSM       

Serine Contig2168_s_at 1.8 2.6 Zm.3136.1.A1_at  2.4 Global 

hydroxymethyltransferase

Methylene Contig3235_s_at 1.8  Zm.475.1.S1_at 1.9  Early 

tetrahydrofolate reductase

Amino acid transporters Contig26356_at 1.5 1.5 Zm.1788.1.A1_at – 2.6 Global

Aminotransferases** Contig1672_s_at −2.5 −1.8 Zm.13511.1.A1_at 1.5 −4.2 Global biotr

    Zm.2321.1.A1_at   

Glutamine synthetase Contig1646_at −1.7  Zm.3455.3.A1_at −1.6  Early

PRPP synthetase Contig8025_at −5.3 2.3 Zm.1727.1.A1_at −2.0 1.6 Early <  to  > late

SucroSe MeTABoliSM        

PFK2    1.5 Zm.711.1.S1_at  3.0 Late

H+/PPase Contig385_s_at −2.0  Zm.6095.1.A1_at 2.1 4.3 

STArcH MeTABoliSM/cAlviN cycle       

AGPase Contig5267_at 1.6  Zm.312.1.A1_at 1.9  Early

Phosphoribulokinase rbaal2124_s_at −1.8  Zm.2248.1.A1_at  −2.5 

Aldolase Contig4817_at  1.8 Zm.4778.1.A1_at  2.5 Late

Transcriptional changes during biotrophic Bgh colonization (early stage – Bgh 24hpi; late stage Bgh 96hpi), necrotrophic Cg colonization (Cg 96hpi), and biotrophic 
Um colonization (Um 48hpi) is compiled. Fold changes were calculated based on mean values from all three replicate experiments, respectively. Only genes with 
f.c. > 1.5 are displayed that are regulated in more than one pathosystem.
*For Cg 96hpi, data for adenylate kinase (Zm.17247.1.A1_at) are given.
**For Bgh, and Cg (Zm.13511.1.A1_at), the induced aminotransferases are annotated as aspartate glutamate aminotransferases, while the Um induced aminotran-
sferase (Zm.2321.1.A1_at) is supposed to be an alanine oxoglutarate aminotransferase. Both of these aminotransferase activities are associated with central nitrogen 
metabolism.
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consistent changes in some pathways of primary metabolism on 
the transcript and the metabolite level, which is in accordance 
with our results.

Although our metabolome dataset was restricted to quantita-
tive data for only 42 metabolites of central primary metabolism 
obtained via targeted LC and LC-MS-based methods, we could 
separate discrete infection stages of the three interactions by HCA, 
i.e., early biotrophy, established biotrophy, necrotrophy, and tumors 
(Figure 3), indicating that the information in our dataset provided 
sufficient divergence. However, we cannot rule out that metabolic 
flux through certain pathways even differs between those interac-
tion stages that clustered together in the HCA, because our metabo-
lome data comprises of steady state contents that indicate individual 
metabolite accumulation, but do not reflect metabolic flux.

In addition, multivariate analysis of the metabolome data did not 
yield comparable results to any transcriptome based analysis in our 
study. Even if only transcripts coding for proteins involved in the cor-
responding pathways were regarded, no similarity to the metabolome 
data could be attained. This could be due to several reasons. First, 
secreted effectors of Bgh, Cg, and Um are very likely to target different 
molecular processes in their respective hosts, leading to interaction-
specific variation in the observed transcriptional response that could 
mask common motifs in the defense response. From the complemen-
tary point of view, the defense reactions that are not suppressed by 

MetabolIc changes are not caused by a conserved 
transcrIPtIonal rePrograMMIng
Based on the comparison between pathosystems from our study 
and published data, we could resolve some recurring metabolic 
motifs in response to pathogen infection.

In the few references available to date, it remains controversial, 
however, whether the observed changes in metabolism fit to the 
corresponding transcriptome dynamics in infected leaf tissue. 
Sana et al. (2010) only reported a weak accordance of metabo-
lome dynamics and the corresponding transcriptional changes 
in the assessed compatible and incompatible X. oryzae pv. oryzae 
(Xoo)-rice interactions. In contrast, Ward et al. (2010) stated a 
quite substantial congruence when aligning their metabolome 
data with the transcriptome analysis of publically available data 
for Pst infections on Arabidopsis (Truman et al., 2006). A specific 
re-assessment of the data by Ward et al. (2010) and Truman et al. 
(2006) did, however, not reveal a substantial number of regulated 
genes involved in central carbon and nitrogen metabolism, while 
the highest agreement of metabolome and transcriptome data 
was achieved for glucosinolate and phenylpropanoid metabo-
lism (Ward et al., 2010). Similarly, we were also unable to identify 
a strong congruence between the observed changes in primary 
metabolism and the corresponding transcript data. Nevertheless, 
both Sana et al. (2010) and Ward et al. (2010) observed few, but 

Figure 6 | visualization of specific transcriptional changes between 
biotrophy, necrotrophy, and tumors by MapMan analysis. Mean fold 
change of the transcripts in infected vs. mock treated samples was calculated 
based on all three replicate experiments per time point and log-scaled data 
were visualized using MapMan with all filters disabled. Data for established 
biotrophy (Bgh 96hpi and Um 48hpi), necrotrophy (Cg 96hpi), and Um tumors 
(Um > 96hpi) are displayed from left to right. The scale bar represents fold 

change and reaches from −3 (red) to +3 (blue) on the log scale, which 
corresponds to −8-fold (red) to +8-fold (blue) in the linear scale. Photosynthesis 
(Light reactions), Calvin cycle, and photorespiration are depicted in the upper 
panel, glycolysis, TCA cycle, and fermentation are shown in the second tier 
from the top, cell wall metabolism, and minor carbohydrate metabolism (minor 
CHO) are represented in the second panel from the bottom, while lipid 
metabolism is displayed in the bottom panel.
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As suggested by our comparative analyses, there are important 
differences between the interactions. In the early powdery mildew 
(Bgh) infection (Figure 7A), the Calvin cycle genes RubisCO and 
phosphoribulokinase become transcriptionally repressed, which 
is also reflected by diminished 3-PGA contents that commonly 
correlate with activity of the Calvin cycle. Based on steady state 
metabolite contents and the transcriptome data, metabolic flux 
appears to be directed toward the biosynthesis of free amino acids, 
with the major amino acids Gln and Asn representing transient 
stores for organic N. In contrast, the TCA cycle is induced on the 
transcriptional level, but the involved carboxylates did not accu-
mulate. Therefore, the depletion of the PEP pool (including the 
related transcriptional changes) can rather be interpreted due 
to its anaplerotic function of plastid-localized biosynthesis of 
branched-chain and aromatic amino acids (Schulze-Siebert et al., 
1984; Herrmann and Weaver, 1999). As both plastidic and cyto-
solic protein biosynthesis are significantly induced processes in the 
barley–Bgh interaction, it appears likely that elevated production 
of amino acids will serve as building blocks for both PR proteins 
and low-molecular weight compounds like glucosinolates and 
phenylpropanoids. Sucrose breakdown by cw-INV and sucrose 
synthase (SuSy) could lead to an increase in the hexose/sucrose 
ratio. Due to the transcriptional repression of the Calvin cycle and 
the photosynthetic electron transport chain (Figure 6) diminished 
triose phosphate export and increased flux toward PEP could limit 
sucrose biosynthesis in turn. An accumulation of UDPglc further 
indicates diminished formation of sucrose in Bgh infected leaves.

During the biotrophic phase of the C. graminicola infection 
at 36hpi (Figure 7B), almost no transcriptional changes were 
observed, in contrast to numerous changes in steady state metabo-
lite contents. The observed changes in metabolite contents are 
either the result of endogenous post-transcriptional, perhaps of 
allosteric regulation, or are due to altered flux through the respec-
tive pathways determined by substrate availability or substrate 
compartmentation, or it might be effectuated by the action of 
fungal effectors. As indicated by the high similarity to Bgh 24hpi 
in the HCA analysis of metabolite data (Figure 2), the changes 
in the metabolome of Cg 36hpi are almost congruent to those 
of Bgh infected barley leaves at 24hpi, rendering it unlikely that 
secreted effectors of Bgh and Cg exert identical effects on host 
metabolism. Furthermore, the sampled maize leaves perform 
C

3
–C

4
 intermediate photosynthesis, while barley is a C

3
-plant. 

The only substantial difference between the Bgh infected barley 
and the Cg infected maize leaves is an increased accumulation 
of the TCA cycle intermediates and amino acid building blocks 
α-ketoglutarate and isocitrate. At 96hpi, the majority of the genes 
involved in the TCA cycle are strongly induced on the transcrip-
tional level in Cg infected leaves. Besides, an increased Gly/Ser ratio 
indicates increased photorespiration during biotrophic coloniza-
tion of maize leaves with C. graminicola.

Maize leaves infected with U. maydis differ in two important 
aspects from the two previously regarded pathosystems (Figure 7C). 
First, the accumulation of free amino acids resembles the previ-
ously described situation for Bgh and Cg, except for the fact that 
anaplerotic provision of carbon skeletons by the TCA cycle does not 
appear to be substantially induced. Second, the balance of sucrose 
biosynthesis and sucrose degradation seems to be strongly regulated 

the pathogens during the investigated compatible interactions will 
diverge on the molecular level between the pathosystems. Second, 
transcript amounts and steady state contents of metabolites, which 
have been assessed in this study, are not directly correlated with 
metabolic flux. Primary carbon metabolism is strongly regulated 
on both, the post-transcriptional and the post-translational level 
throughout the diurnal cycle (e.g., Gibon et al., 2004), which could 
lead to a discrepancy between the assessed transcript amounts and 
actual in vivo activity of most enzymes in central carbon metabolism 
– which we did not determine. In addition, we have only measured 
steady state contents of the metabolites included in our metabolome 
dataset. As outlined above, despite similar steady state pools of most 
metabolites, flux could be utterly different between two specimen. 
Nevertheless, we have obtained evidence that allosteric regulation 
of key steps in central carbon and nitrogen metabolism is likely to 
account for some of the regulation of metabolic flux during fungal 
biotrophy, as indicated in the models shown below.

Models for the redIrectIon of PrIMary MetabolIsM durIng 
early bIotroPhIc InteractIons
By analyzing steady state contents of 42 metabolites in primary car-
bon and nitrogen metabolism, we were able to reveal similarities and 
differences in the response of host metabolism toward Bgh infection 
in barley leaves, Cg infection in maize leaves, and Um infection in 
maize leaves. Together with the transcriptome data obtained from 
the same samples, we integrated all the information into individual 
models of host metabolism at early time points in the investigated 
biotrophic interactions. We assumed that individual changes on the 
transcriptional and the metabolic level would not necessarily have 
to be comparable in strength. Therefore, we used a low stringent 
evaluation of our data for the generation of the presented models 
of primary metabolism, in order to better allow for comparisons 
between the pathosystems. When taken together, the integrated tran-
scriptional and metabolite data were highly consistent for most of 
the depicted pathways in all three analyzed interactions.

Our survey for consistently regulated genes had already revealed 
that the TCA cycle, nucleotide energy status and amino acid metab-
olism represented strongly regulated pathways at early stages of 
all three interactions (Table 4). A concomitant induction of the 
TCA cycle and nucleotide diphosphate kinases apparently reflects 
an increase requirement for building blocks, reducing power, and 
energy in host leaves during the early interaction stage.

Consequently, a comparison of the models for Bgh, Cg, and 
Um infected leaves during early biotrophic colonization reveals 
quite similar gross tendencies between two or more pathosystems, 
despite all the singular differences discussed earlier (Figure 7): (i) 
the biosynthesis of the major amino acids Gln and Asn as well 
as of the defense-associated branched-chain and aromatic amino 
acids are commonly induced, (ii) the Calvin cycle and/or starch 
biosynthesis are reduced while (iii) glycolysis and the TCA cycle are 
more frequented. Mostly, (iv) photorespiration is elevated, while 
sucrose biosynthesis is hampered. Because these changes in pri-
mary metabolism are not specific to one particular pathosystem, 
it appears likely that they are part of a common response of cereal 
primary metabolism during the early infection phase rather than 
being associated with particular responses of the hosts toward tar-
geted manipulation by individual pathogens.
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in favor of glycolytic utilization of sucrose on the transcriptional 
level. As discussed by Horst et al. (2008) for U. maydis-induced 
tumors, the altered regulation of sucrose metabolism indicates that 
the developing leaves at 48hpi might represent sink characteristics 
and cover part of their carbohydrate budget by import of sugar 
(as indicated in Figure 7C). In this light, increased amino acid 
contents without clearly elevated supply of carbon moieties by the 
TCA cycle might also indicate that part of the free amino acid pool 
is replenished by import from systemic leaves (as discussed for 
tumors in Horst et al., 2010b).

Figure 7 | Models of leaf metabolism during early interaction stages. Based 
on the results of the combined metabolome and transcriptome analysis, models 
illustrating the reprogramming of host metabolism during early biotrophic 
interactions are depicted for Bgh infected barley leaves at 24hpi (A), Cg infected 
maize leaves at 36hpi (B) and Um infected maize leaves at 48hpi (c). Please note 
that for simplicity, C4 metabolism has been omitted from the maize models.  
Yellow – up compared to mock control; blue – down compared to mock control. 
Arrow thickness correlates with the proposed metabolic flux relative to the other 
depicted metabolic pathways. For explanations, please see the discussion text. 
Amino acids are abbreviated according to three letter code, 2PG, 

(2-phosphoglycolate); aKG, (α-ketoglutarate) Hex (hexoses); Icit, (isocitrate); PEP, 
(phosphoenol pyruvate); 3-PGA, (3-phosphoglycerate); Suc, (sucrose); TP (triose 
phosphates); αKG-DH, (α-ketoglutarate dehydrogenase); AK, (aspartate kinase); 
AsnS, (asparagine synthetase); CitS, (citrate synthase); cw-INV, (cell wall 
invertase); DCT2, (dicarboxylate translocator); FBPase2, (fructose-2,6-
bisphosphatase); IDH, (isocitrate dehydrogenase); IPMS, (isopropylmalate 
synthase); MDH, (malate dehydrogenase); PEPC, (PEP carboxylase); PFK2, 
(phosphofructokinase 2); PFP, (pyrophosphate-dependent phosphofructokinase); 
PPT, (phosphoenolpyruvate/phosphate translocator); SHMT, (serine hydroxymethyl 
transferase); SPS, (sucrose phosphate synthase); SuSy, (sucrose synthase).
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