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1 Introduction

1.1 String Theory

At present Theoretical Physics consists of two fundamental theories, the Standard Model
of particle physics and General Relativity. Both theories have proven very successful in
the past and there have been no experimental results that are not in agreement with one
of the two models. A major unsolved problem is how the two theories can be united to
one consistent theory. The most promising candidate for such a unified theory is string
theory. Due to the complexity of string theory, we can only give a brief introduction to
the main concepts in the following. For a more detailed description see [1, 2, 3].

The fundamental objects of string theory are one-dimensional quantized objects -the
strings- which propagate in some d-dimensional background space-time. In other words,
the two-dimensional worldsheet of the string Σ is embedded into space-time Md and
can be described by a map X : Σ → Md, where XM ,M = 0, . . . , (d − 1), are space-
time coordinates. The starting point for considering string theory is the two-dimensional
worldsheet action, where the space-time coordinates are treated as d two-dimensional
bosonic fields XM(τ, σ), with τ, σ being the coordinates on the string worldsheet. As in
the case of point particles, the action equals the area of the worldsheet,

S =
1

2πα′
Vol(Σ) =

1

2πα′

∫
Σ

dσdτ
√

det∂αXM∂βXM , (1.1)

where α = 1, 2 is the worldsheet index. The constant α′ of mass dimension -2 has to be
introduced to make the action dimensionless. The quantity T = 1

2πα′
is the tension of

the string. The limit α′ → 0 is the point particle limit. The above action is called the
Nambu-Goto action. Classically, it is equivalent to the more convenient Polyakov action

S =
1

4πα′

∫
Σ

dσdτ
√
hhαβ∂αX

M∂βXM , (1.2)

where hαβ is the worldsheet metric. The Polyakov action has three symmetries: it is
Poincaré invariant, it is invariant under reparametrizations of the worldsheet and it is
invariant under Weyl rescaling. Reparametrization and Weyl invariance can be used to
set hαβ = ηαβ, where ηαβ is the flat two-dimensional Minkowski metric. In this gauge, the
Polyakov action describes a free two-dimensional conformal field theory and the equation
of motion for XM is simply the free wave equation

(∂2
τ − ∂2

σ)XM = 0. (1.3)

The general solution to the equation of motion is

XM(z, z̄) = XM(z) + X̄M(z̄), (1.4)

where z = τ − σ, z̄ = τ + σ and XM(z), X̄M(z̄) describe the “left-moving” and “right-
moving” part of XM . For closed strings, that means for strings whose worldsheet is a
closed circle for constant τ = τ0, the worldsheet theory factorizes into an independent
left- and right-moving part. For open strings, which are strings whose ends do not meet
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at fixed τ , the left- and right-moving part are not independent. For simplicity we consider
closed strings in the following.

So far, the string theory is purely classical. The quantum theory is obtained via first
quantization, that means the worldsheet scalars XM are considered as operators fulfilling
the commutator relations of two-dimensional quantum mechanics. The quantized bosonic
string describes ordinary quantum mechanics on the worldsheet. As usual in quantum
mechanics, one can construct a vacuum state |0〉 and a Fock space of quantum mechanical
states by applying the raising operator to the vacuum.

The energy-momentum tensor T of the worldsheet theory is given by the variation of
the action with respect to the metric. The energy-momentum tensor splits into a left-
and a right-moving part T (z, z̄) = T (z) + T̄ (z̄) and can be expanded in modes

T (z) =
∑

Lnz
−n−2, Ln =

∮
dz

2πi
zn+1T (z),

T̄ (z̄) =
∑

L̄nz̄
−n−2, L̄n =

∮
dz̄

2πi
z̄n+1T (z̄), (1.5)

where Ln and L̄n are the Virasoro generators. The Virasoro generators fulfill the confor-
mal, or Virasoro, algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n, (1.6)

and the equivalent algebra for the right-moving part. The number c is the central charge
of the conformal algebra. Each boson of the worldsheet theory contributes one to the
central charge, thus the d worldsheet scalars XM lead to c = d. The important point
is that the physical states of the bosonic string theory are in one-to one correspondence
with the primary states of the conformal algebra. Primary states satisfy

Lm|phys〉 = 0, m > 0,

L0|phys〉 = h|phys〉,

(L0 − L̄0)|phys〉 = 0, (1.7)

and the equivalent equations for the right-moving part, where h is the conformal weight
of the physical state. It can be shown that the theory is consistent only if d = 26 and
h = 1. Thus the bosonic string lives in a 26-dimensional space-time and all physical
states have conformal weight h = 1. The space of physical states consists of a vacuum
and a discrete spectrum of infinitely many excitations with increasing mass. The masses
are quantized in units of 1/

√
α′. A fundamental problem of bosonic string theory is

that the vacuum state is a tachyon, that means it has a negative mass square. Another
problem is that the bosonic string does not include fermions in the space-time. Thus,
the theory is not a good candidate for a realistic theory.

The tachyon vanishes from the string spectrum if one considers local supersymmetry
on the worldsheet. String theory with localN = (1, 1) worldsheet supersymmetry is called
superstring theory. Its spectrum is tachyon free and the worldsheet supersymmetry leads
to a spacetime theory that includes fermions. The worldsheet theory is

S = − 1

2π

∫
Σ

dτdσ
(
∂αXM∂αXM − iψ̄Mγα∂αψM

)
, (1.8)
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where ψ are the worldsheet fermions and γα are the two-dimensional Dirac matrices

γ0 =

(
0 −i
i 0

)
, γ1 =

(
0 i
i 0

)
. (1.9)

The above action is in superconformal gauge, that means the local symmetries of the
action are fixed such that the worldsheet metric is flat. Due to different boundary condi-
tions on the worldsheet, the worldsheet fermions give rise to space-time fermions as well
as space-time bosons. The former sector is called the R-sector (Ramond-sector) and the
latter one is called the NS-sector (Neveu-Schwarz-sector) of the theory.

In addition to the energy-momentum tensor (1.5), there is a second conserved current
TF (z, z̄) = TF (z) + T̄F (z̄) generating the N = (1, 1) supersymmetry. The supercurrent
can be expanded as

TF (z) =
∑

Grz
−r−3/2, Gr =

∮
dz

2πi
zr+

1
2TF (z). (1.10)

The conformal algebra (1.7) is replaced by the superconformal algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m

{Gr, Gs} = 2Lr+s +
c

3

(
r2 − 1

4

)
δr+s,

[Ln, Gr] =
(n

2
− r
)
Gn+r. (1.11)

The central charge is c = 3/2d, each worldsheet scalar contributes one and each world-
sheet fermion contributes 1/2. Physical states satisfy

Gr|phys〉 = 0, r > 0,

Lm|phys〉 = 0, m > 0,

L0|phys〉 = h|phys〉 (1.12)

in the NS-sector. In the R-sector the last equation gets modfied to

L0|phys〉 = 0. (1.13)

It can be shown that the theory is consistent for d = 10 and h = 1/2 only. In the
R-sector, the above equation leads to a vacuum |0〉 with mass m2 = 0, in the NS-sector,
one has m2 = −1/2. Thus at first sight the superstring also contains a tachyon. This
inconsistency is removed by making a truncation of the theory, called the GSO-Projection.

The GSO projection does not only remove the tachyon from the spectrum, but also
guarantees an N = 1 space-time supersymmetry of the ten-dimensional theory for each
left- and right-moving part of the worldsheet theory. Also, the ten-dimensional theory
after the GSO projection is anomaly-free. Having N = 1 supersymmetry from both the
left- and the right-moving sector, one ends up with a theory in d = 10 with a total N = 2
supersymmetry. The spectrum of physical states after the GSO projection consists of
massless states plus infinitely many massive excitations. There are several possibilities
to do the GSO projection and obtain a consistent theory.
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A consistent closed superstring theory is type IIA theory. The spectrum of closed
strings is obtained by tensoring the left- and right-moving states of the NS- and the
R-sector. After the GSO projection, the massless spectrum of the theory includes two
spin 1/2 fermions of opposite chirality and two spin 3/2 gravitinos of opposite chirality
originating from the (R,NS) and (NS,R)-sector. From the (NS,NS)-sector there are
one real scalar (the dilaton), an antisymmetric rank two tensor and the graviton. The
(R,R)-sector consists of a vector and an antisymmetric rank three tensor. The N = 2
supersymmetry is split in 16+16’ supercharges of opposite chirality in ten dimensions.

The second consistent N = 2 space-time supersymmetric closed superstring theory is
called type IIB theory. The spectrum includes two spin 1/2 fermions and two spin 3/2
gravitinos of the same chirality from the (R,NS) and (NS,R)-sector. In the (NS,NS)-
sector, the spectrum is identical to the IIA spectrum, there is one real scalar (the dilaton),
an antisymmetric rank two tensor and the graviton. The (R,R)-sector consists of a
scalar, an antisymmetric rank two and an antisymmetric rank four tensor. The ten-
dimensionsional N = 2 supersymmetry has 32 supercharges of the same chirality.

In addition to the type II theories, there is a third closed superstring theory which
leads to a consistent space-time supersymmetric theory in ten dimensions. This is the het-
erotic string theory. The worldsheet theory of the heterotic string is a hybrid construction
of the bosonic string and the superstring. The left-moving part of the worldsheet theory
is the 26-dimensional bosonic string and the right-moving part is the ten-dimensional su-
perstring. To obtain a resulting ten-dimensional theory, one assumes that ten left-moving
bosonic fields XM(z), M = 1, . . . , 10 live in the flat space-time and the remaining sixteen
scalars XI , I = 1, . . . , 16, live on a compact 16-dimensional torus. The spectrum of the
heterotic string is obtained by tensoring the left-moving ten plus sixteen internal scalars
with the right-moving NS- and R-sector of the 10-dimensional superstring. Again, there
is a tachyon in the spectrum, which gets projected out by the GSO projection. Tensoring
the ten-dimensional part of the left-moving bosonic string with the right moving spec-
trum of the NS sector leads to the ten-dimensional dilaton, the antisymmetric two-form
and the graviton. From the right-moving R-sector, there are one spin 3/2 gravitino and
one spin 1/2 fermion. In addition, there are the massless particles obtained from ten-
soring the sixteen internal bosons with the right-moving NS and R-sector. This leads to
additional vectors and spin 1/2 fermions, where the internal indices play the role of the
gauge indices. Anomaly freedom of the theory requires that these vectors and fermions
transform in the adjoint representation of E8×E8 or SO(32). The anomalies of the het-
erotic string are explained in detail in appendix C. From the construction of the heterotic
string it is clear that the theory has ten-dimensional N = 1 space-time supersymmetry
originating in the right-moving part of the worldsheet theory.

So far we have been considering closed strings only. However, it is also possible to
construct a consistent string theory from open strings. For open strings, the left- and
right-moving modes of the spectrum are not independent. Apart from that, one can
construct the spectrum of the open superstring in an equivalent way as described above
for the closed superstring. The open superstring also has a critical dimension d = 10.
Due to the N = 1 worldsheet supersymmetry (which is half of the N = (1, 1) worldsheet
supersymmetry of the closed string), the open superstring theory has ten-dimensional
N = 1 supersymmetry. The massless spectrum of the open string is just the right-moving
(or equivalently the left-moving) part of the fermionic string. For massive excitations the
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spectra are identical up to a scaling factor in the mass. The spectrum contains a tachyon
from the NS-vacuum, which gets projected out by the GSO projection. This leaves a
massless vector from the NS sector and a massless spin 1/2 fermion from the R sector.
Open string theories however naturally contain closed strings, because closed strings are
open strings in the special situation that their ends meet. Thus to obtain a complete
theory, one should also consider the coupling of open strings to closed strings obtained by
open strings with meeting ends. Being constructed of open strings, these closed strings
are unoriented, which means the left- and right-moving worldsheet fermions are identified.
This distinguishes the closed strings of type I theory from the closed strings of type II
theory. The closed strings contribute some additional massles particles to the spectrum.
One has the dilaton and the graviton from the NS-NS sector, one spin 1/2 fermion and
a spin 3/2 gravitino from the NS-R and R-NS sector and one antisymmetric tensor of
rank two from the R-R sector. The spectrum is still N = 1 supersymmetric. This theory
is called type I theory. It can be shown that type I theory is anomaly-free only if the
vector and the fermion of the open string sector transform in the adjoint representation
of the gauge group SO(32).

These five theories, the IIA, type IIB, the heterotic E8 × E8, the heterotic SO(16)
and the type I theory are the five consistent superstring theories.

At this point, we make some remarks about the scattering amplitudes of string theory.
Scattering amplitudes of strings are given by the correlators of the conformal fields χ
corresponding to the primary states |phys〉 defined in eqn. (1.12) of the superconformal
algebra. The correlation functions are derived using the path integral

〈χ1 . . . χn〉 =
∑

topologies

∫
Σ

DXDψ χ1 . . . χne
−S, (1.14)

where one takes into account the summation over all possible topologies of the string
worldsheet, i.e. the contributions of tree and loop diagrams. The action S in the path
integral is the two-dimensional worldsheet action. One can show that the last equation
of (1.12), L0|phys〉 = h|phys〉, leads to the mass-shell condition p2 = −m2 for each
conformal field χi in the scattering amplitude. This means in particular that in string
theory, in contrast to quantum field theory, it is not possible to derive off-shell correlation
functions.

For low energies α′ → 0, the mass gap between the massless modes and the massive
excitation becomes large and the massless modes of the string give a good approximate
descritpion of the theory. From now on, we consider the massless modes of the superstring
theories only. One can construct a field theory whose action reproduces at classical
level the scattering amplitudes of string theory. Such a field theory is called the low
energy effective field theory. For the superstring theories described above, the low energy
effective theories are classical supergravity field theories [1, 3]. The low energy effective
theories of the IIA/IIB string theories with N = 2 supersymmetry are called type IIA
and type IIB supergravity. The low energy effective action of the heterotic string is ten-
dimensional N = 1 supergravity. The low energy effective action of type I theory also
has N = 1 supersymmetry and is called type I supergravity. In all cases, the expectation
value of the dilaton φ is related to the coupling constant g of the low energy effective
action, g ∼ eφ.
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1.2 Calabi-Yau Compactifications

To obtain string theories which can in principle describe realistic scenarios, it is necessary
to compactify the ten-dimensional theories to four dimensions. This means the strings
propagate in a ten-dimensional space-time which is, in the simplest case, a direct prod-
uct of flat four-dimensional Minkowski space and some small six-dimensional compact
manifold, M10 = R

(1,3) × M6
1. Due to the product structure of the space-time, the

ten-dimensional metric decomposes as [1, 3]

gMN =

(
ηµν 0
0 gab

)
, (1.15)

where ηµν , µ = 0, . . . , 3, is the Minkowski metric on R(1,3) and gab, a = 4, . . . , 9, is the
“internal” metric on the six-dimensional Calabi-Yau manifold. One can study compact-
ifications either from the point of view of the conformal worldsheet theory or from the
point of view of the low energy effective action.

From the low energy effective action point of view, preserving four-dimensional su-
persymmetry means that the expectation values of the supersymmetry variations of the
fermions have to vanish. Vanishing of the variation of the spin 3/2 gravitino requires the
existence of a covariantly constant spinor η,

DMη = 0. (1.16)

With the decomposition η = η4η6, this equation splits into a four-dimensional part
Dµη4 = 0, and an internal six-dimensional part, Daη6 = 0. In the four-dimensional
Minkowski space, every constant spinor is covariantly constant. In the internal manifold
however, the above equation is a real constraint. It implies that

[Da, Db]η6 = 0 → RabcdΓ
cdη6 = 0. (1.17)

This restricts the holonomy group of the internal manifold to SU(3) or a subgroup thereof.
As explained in appendix A, six-dimensional manifolds with SU(3) holonomy are Calabi-
Yau manifolds. For the heterotic string and the type I string, there are further conditions
originating from the variation of the spin 1/2 fermions charged under the gauge groups.
The variation of these gauginos, most conveniently expressed in complex coordinates of
the Calabi-Yau manifold, requires the existence of stable holomorphic vector bundles,
that means the potential F of the gauge field has to satisfy

Fab = Fāb̄ = 0, gab̄Fab̄ = 0 (1.18)

in the Calabi-Yau manifold. This is not the only condition for the gauge bundle. As
explained in appendix C, the low energy effective action contains a field H = H0 − w3,
where H0 = dB is the field strength of the antisymmetric tensor of the NS-sector and w3

is the Chern-Simons term. The Chern Simons term fulfills the equation

dw3 ∼ (tr(R ∧R)− Tr(F ∧ F )), (1.19)

1According to recent developments, phenomenological string models might be in accord with large
extra dimensions in so-called brane world scenarios, but we do not consider these models here.
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where the two terms are just the second Chern-classes of the tangent and the gauge
bundle. The second Chern-class of the tangent bundle as well as the background value
of dw3 are generically non-zero in the compactification manifold. Both equations (1.18)
and (1.19) impose non-trivial restrictions on the gauge bundle of the internal manifold.
Any class of solutions to these equations leads to a consistent compactification. The
most obvious one is to set dw3 = 0, this implies that the connection of the tangent and
the gauge bundle have to be identified such that tr(R ∧ R) = Tr(F ∧ F ). This is called
embedding the spin connection into the gauge connection. Thus if the internal manifold
has SU(3) holonomy, the gauge bundle must be an SU(3) bundle. The gauge group that
is preserved in the four-dimensional theory is given by the centralizer of the group of
the gauge bundle of the Calabi-Yau manifold 2. This leads to a gauge group E6 × E8 or
SO(26) in four dimensions. In chapter 3, we consider compactifications of the heterotic
string with several different gauge bundles. They all satisfy eqns. (1.18) and (1.19).

From the point of view of the two-dimensional conformal field theory, the compactifi-
cation implies that the target space of the map X : Σ→ R

(1,3)×M6 is not flat anymore.
The decomposition of the coordinate XM = (Xµ, ua) leads to two conformal field theories
with maps X : Σ→ R

(1,3) and u : Σ→M6. The internal metric gab of eqn. (1.15) is not
flat but depends on the coordinates of the Calabi-Yau manifold. For the conformal field
theory (1.8), this implies that the action contains terms of the form

∂αXM∂αXM → ∂αXµ∂αXµ + gab(u)∂αua∂αu
b. (1.20)

The internal part describes an interacting theory, a non-linear sigma model. For a review
of strings on Calabi-Yau manifolds, see for example [4]. The compactification of the
N = (1, 1) supersymmetric conformal field theory of the type II strings (1.8) on a Calabi-
Yau manifold to four dimensions is explained in detail in appendix B.1. To ensure that
the target space M6 is a Calabi-Yau threefold, one needs to introduce an additional
global N = (2, 2) supersymmetry on the worldsheet. In the case of the heterotic string,
the additional worldsheet supersymmetry is N = (0, 2) and for the type I string it is
N = 2. Considering the compactification from the conformal field theory point of view
can be very instructive. In appendix B.1 we explain in detail that the analysis of the
N = (2, 2) sigma model leads to the conclusion that type IIA theory compactified on
a Calabi-Yau threefold Y is identical to type IIB theory compactified on the so-called
mirror manifold Y ∗. This is called mirror symmetry and was first considered in [5].

1.3 Dualities

String theory as described in the last two sections is a purely perturbative theory. The
construction in terms of a superconformal field theory is sufficient for the derivation of
scattering amplitudes, but it does not allow the construction of non-perturbative objects
which are in general non-polynomial in the coupling constant. A description of non-
perturbative aspects became possible only after the discovery of dualities relating the
strong coupling limit of the five string theories to weakly coupled theories that are well
under control. These dualities are called non-perturbative dualities. In addition, the
strongly coupled theories imply the existence of an underlying eleven-dimensional theory,

2This is also explained in appendix A.4.2.
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called M-theory. There are also dualities relating superstring theories in the perturbative
regime. The mirror symmetry between the type IIA and the type IIB string described at
the end of the last section is an example of a perturbative duality. It can be established at
a purely perturbative level as a symmetry of the conformal field theories. In the following
we summarize the dualities relating the five superstring theories and the low energy limit
of the M-theory. More details about dualities are given for example in [3, 6].

A very important tool for dualities is the existence of higher dimensional objects,
called D-branes, in addition to the fundamental strings. D-branes can be constructed
in terms of open string theory. Instead of moving freely, the open strings obey Dirich-
let boundary conditions, which means that their ends are fixed at points in the ten-
dimensional spacetime. It is possible to have open strings with mixed Dirichlet and free
(Neumann) boundary conditions. This means that the open strings are fixed on subplanes
in the ten-dimensional space-time. Open strings with Neumann boundary conditions in
(p+1) directions and Dirichlet boundary conditions in (9-p) directions have ends which
are fixed on (p+1)-dimensional planes. These planes are called Dp-branes. Similar as
strings, the D-branes have some tension. The particle spectrum of a D-brane is identified
with the spectrum of the open strings that begin and end on the D-brane. Dp-branes
are considered as dynamical objects in their own right. For a more detailed explanation
of D-branes, see [7].

In addition to the mirror symmetry described at the end of the last section, there is
a perturbative duality relating type IIA and type IIB theories called T-duality. Consider
type IIA theory compactified on a circle of radius RIIA in the direction X9. It was
discovered that this theory is equivalent to the type IIB string compactified on a circle
with the inverse radius RIIB = 1/RIIA with Dirichlet boundary conditions in X9. This is
called T-duality. The D9-brane of the type IIB theory obtained in this way has a tension
that is proportional to the inverse of the type IIB string coupling constant. It is possible
to T-dualize more than one direction. If one T-dualizes (d-p), with (d-p) odd, directions
in type IIA theory, one obtains the dual type IIB theory including Dp-branes (with p
odd). T-dualizing (d-p) directions in type IIA theory with (d-p) even leads back to type
IIA theory including Dp-branes, with p even. The antisymmetric tensors of rank (p+1)
of the R-R sector of the type II theories couple magnetically to the Dp-branes. It can
be shown that T-duality can be identified with mirror symmetry in the case of a torus
compactification of type II theories. Reviews of T-duality are given in [7, 8].

Another perturbative T-duality was found between the E8 × E8 and the SO(32)
heterotic string. One can compactify both theories on a circle with so called “Wilson
lines”, which are constant background values for the gauge fields on the circle. Choosing
the background fields such that both the E8 × E8 and the SO(32) gauge groups are
broken to SO(16) × SO(16), one finds that the spectra of the theories coincide if the
radius of the E8 × E8 → SO(16) × SO(16) compactification is the inverse of the radius
the SO(32) → SO(16) × SO(16) compactification. T-duality in the context of toroidal
compactifications of the heterotic string was first considered in [9, 10].

A non-perturbative duality is the relation between the SO(32) heterotic string and
the type I string [11]. Type I string theory contains an antisymmetric tensor of rank
two of the R-R sector which couples to a D1-brane. One can show that the massless
spectrum originating from open strings that begin and end on the D1 brane plus the
massless spectrum of strings that have one end on the D1 brane is identical to that of the

8



weakly coupled SO(32) heterotic string. The tension of the D1 brane is proportional to
the inverse of the string coupling constant. Increasing the coupling constant means that
the tension of the D1-brane decreases from infinity to finite values and finally becomes
smaller than the tension of the fundamental string. Finally, the D1-brane plays the role
of the fundamental object of the theory. Because the spectrum of this theory is identical
to that of the weakly coupled SO(32) heterotic string, one identifies the two theories.
Thus, the strong coupling limit of type I theory is related to the weak coupling limit of
the SO(32) heterotic string. This non-perturbative duality is called S-duality.

So far, we have considered dualities relating the perturbative superstring theories
respectively their strong coupling limits to other superstring theories. Duality however
implies also the existence of a sixth theory which is connected to the string theories
on the level of the low energy effective actions [12, 13, 14]. Consider type IIA string
theory including a D0-brane. One can show that the structure of the spectrum of a
D0 brane corresponds to the spectrum one typically obtains by compactifications on
one periodic dimension, where the radius of the compact dimension corresponds to the
inverse of the D0-brane tension. The D0-brane tension is inverse proportional to the
IIA coupling constant. Thus for a large coupling constant, the radius of the periodic
dimension becomes large and the theory looks like an additional eleventh dimension
appears. The eleven-dimensional theory cleary cannot be a superstring theory, because
these are consistent in ten dimension only. On the level of low energy effective field
theories, one can indeed find a theory which, compactified on a circle, reproduces type
IIA supergravity in ten dimensions. This theory is eleven-dimensional supergravity with
32 supercharges. Being a classical field theory, it is assumed that eleven-dimensional
supergravity is the low energy limit of an underlying eleven-dimensional theory. This
underlying theory is called M-theory. This picture implies that the superstring theories
are not only related by dualtities, but in addition the different limits of a single underlying
fundamental M-theory.

The E8×E8 heterotic string is related to M-theory in a similar way [15]. The eleventh
dimension is not a circle as for the IIA string, but an interval. The length of the interval
is proportional to the heterotic string coupling. Again, one can verify this on the level of
low energy effective field theories. Eleven-dimensional supergravity compactified on an
interval reproduces the heterotic low energy effective action in the limit where the interval
approaches zero length. Anomaly cancellation requires an E8 × E8 gauge group in the
compactification from eleven to ten dimensions. Also, the compactification on an interval
breaks half of the 32 supersymmetries, leaving ten-dimensional N=1 supersymmetry.
This model is the subject of chapter 3, where we give a more detailed explanation.

All in all, the picture is the following. It is assumed that there is an underlying eleven-
dimensional theory, called M-theory, whose fundamental formulation has not been found
yet. The six known limits of M-theory are the five consistent superstring theories and
eleven-dimensional supergravity.

As the last point of the introdution, we explain F-theory [16]. F-theory describes a
non-perturbative compactification of type IIB string theory, for a review see for example
[6]. In IIB string theory one can form the complex scalar

λ = a+ ieφ/2 (1.21)

containing the R-R scalar a and the dilaton φ. In perturbative compactifications one

9



takes λ to be constant. F-theory are compactifications of type IIB theory where λ varies
over the compact manifold. Consider some complex manifold B and the manifold M
obtained by erecting a copy of a torus at every point in B. Such a manifold is called an
elliptically fibered manifold, see appendix A.2.1 for an introduction to elliptically fibred
manifolds. The complex structure of the elliptic fibre is denoted by τ(s), where s are the
coordinates on the base B. F-theory on M is defined as IIB theory compactified on B
with the identification

λ(s) = τ(s). (1.22)

As the coupling constant of the type IIB theory varies over the compactification manifold
B, F-theory cannot be described by some perturbation theory but is by definition a non-
perturbative theory. In contrast to M-theory, F-theory is usually not considered as an
underlying fundamental theory but rather as a tool to formulate non-perturbative aspects
of string theory that originate in M-theory. Because there is no fundamental formulation
of M-theory, F-theory has proven very uselful in the past to gain information abut the
non-perturbative behaviour of string theory.

For the discovery of the above dualities it was essential to consider string theory com-
pactified to other dimensions than four. Although these models cannot describe realistic
scenarios, they are important for gaining insight into the structure of string repectively
M-theory. Following this spirit, we consider type IIA and heterotic compactifications
on Calabi-Yau manifolds to different dimensions than four in the context of dualities in
this thesis. In appendix A, Calabi-Yau manifolds of complex dimensions one to four are
explained.

1.4 Topics and Organization of the Thesis

It is essential for the progress in finding a fundamental formulation of M-theory to ex-
plore the known limits of M-theory, the five superstring theories and eleven-dimensional
supergravity, in the context of the dualities relating the different limits. The thesis is
divided in two parts, both of which deal with different aspects of these dualities.

As mentioned above, of greatest interest are compactifications of string theory to four
dimensions. This implies that the superstring theories have to be compactified on com-
plex three-dimensional Calabi-Yau manifolds. To construct a formulation that includes
non-perturbative aspects, one can consider the dual formulation in terms of F-theory com-
pactified on complex four-dimensional Calabi-Yau manifolds, see for example [17]. Thus
Calabi-Yau fourfolds are important in that context. Calabi-Yau fourfolds have a more
complicated structure than Calabi-Yau threefolds. They do not admit [18, 20] for example
the special geometry explained in appendix A.4, which simplifies threefold compactifi-
cations significantly. In order to gain more information about F-theory on Calabi-Yau
fourfolds, it can be instructive to consider related theories compactified on fourfolds first
that are better under control than F-theory. F-theory compactified on a fourfold times a
circle for example is dual to M-theory compactified on the same Calabi-Yau fourfold [16].
These theories live in three dimensions. Taking the decompactification limit in which the
radius of the F-theory circle becomes large, eleven-dimensional supergravity compactified
on a fourfold can be uselful to gain some information about F-theory in four dimensions.
Compactifying further on another circle, one obtains F-theory on fourfold times a torus.
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This theory is dual to M-theory compactified on a Calabi-Yau fourfold times a circle,
which in turn is dual to type IIA theory compactified on the fourfold. Thus, type IIA
theory in two dimensions is a candidate for gaining some information about F-theory in
four dimensions. Type IIA theory compactified on Calabi-Yau fourfolds is also the topic
of the first part of the thesis, section 2. Type IIA theory compactified on Calabi-Yau
fourfolds has been also considered in [19, 20, 21, 22, 23, 24, 25, 26].

A generic four-fold compactification of the type IIA string requires switching on non-
vanishing background values for certain R-R field strengths in the fourfold [19]. The
R-R fields couple to D-branes as mentioned in the last section. Switching on constant
background values for R-R field strengths corresponds to wrapping the D-branes on
certain cycles in the Calabi-Yau fourfold. Thus consistent type IIA compactifications
on Calabi-Yau fourfolds generically include D-branes wrapped in the compactification
manifold. This is in contrast to type IIA compactifications on Calabi-Yau threefolds,
where it is possible, but not required for consistency to include branes or equivalently
background fluxes. The D-branes wrapped on the cycles in the Calabi-Yau fourfold
generate a potential in the low energy effective action of the theory. This was considered
in [24, 25]. The goal of section 2 is to derive this potential including “stringy corrections”,
which are non-perturbative in the world-sheet coupling constant α′. These corrections
are called worldsheet instantons, and they depend on the geometry of the fourfold.

The central task of the instanton calculation is to consider the special class of fourfolds
which are threefold fibrations. For an explanation of that, see appendix A.5. Taking the
large base limit one can show that the stringy corrections of the potential can be extracted
from the geometry of the threefold fibre alone [18, 20]. Thus the corrections are fixed by
the special geometry of the threefold fibre. This simplifies the calculations significantly
and we are able to give the full potential including all stringy corrections for the class of
fourfolds described above.

A possible application of the calculation can be found in string dualities. First, one can
consider the duality of type IIA theory on a Calabi-Yau fourfold and the heterotic string
on a Calabi-Yau threefold times a torus. If the duality between these theories is valid,
one would expect that the potential including the worldsheet instanton corrections of the
IIA theory should somehow also turn up in the dual heterotic theory. A similar analysis,
without taking into account worldsheet instanton corrections on the IIA side, was done
in four dimensions in [27]. Second, it turns out that, for a specific choice of background
fluxes, the potential coincides with a potential proposed in [28] for compactifications of
type IIB string theory on Calabi-Yau threefolds.

The first part of the thesis, section 2, is organized as follows. In 2.1 we give an
introduction to the compactification of type IIA string theory on Calabi-Yau fourfolds.
We explain the form of the potential generated by the background fluxes. The worldsheet
instanton corrections to the potential are derived in 2.2. The corrections are derived by
using mirror symmetry, which is explained in detail in appendix B. In section 2.3 we
consider the superpotential generated by four-form flux only and rederive the result of
the last section using the methods of topological field theory. We show that the results
are in agreement. Finally, we make some remarks about the potential in the context of
heterotic-type IIA duality in 2.4. The results of section 2 are published in [29].

The second part of the thesis deals with the strong coupling limit of the E8 × E8

11



heterotic string, which is given by M-theory compactified on an interval. To be precise,
the interval is the one-dimensional orbifold S1/Z2, which is obtained by identifying the
coordinate x = −x of the circle, where x ∈ [−π, π]. This model was first considered in
[15]. The identification of the strongly coupled heterotic string with M-theory compact-
ified on S1/Z2 can be shown expicitly on the level of the low energy effective actions.
Anomaly cancellation requires a gauge group E8 × E8 on the M-theory side.

It is interesting to consider further compactifications to lower dimensions. The
strongly coupled heterotic string compactified on some manifold X should be given by
M-theory compactified on S1/Z2×X. This does not lead to any particular difficulties un-
less X is an orbifold. Orbifolds are a generalization of the class of compactification spaces
from manifolds, which are smooth by definition, to spaces which may contain quotient
singularities. One example is the S1/Z2 orbifold with the quotient group Z2, which is
singular at the fixed points x = 0, π.

Recently, two groups [89, 90] have analyzed the case that X is the orbifold limit of a
K3 manifold, that is T 4/ZN . The six-dimensional case is of particular interest, because
anomaly cancellation is particularly restrictive in six dimensions, as is explained in ap-
pendix C. This is of great importance because a formulation of the underlying theory,
M-theory on S1/Z2×T 4/ZN , is not known and one has to extract the information about
the theory purely from consistency conditions such as anomaly cancellation. Anomaly
cancellation has lead the authors of [89, 90] to an interesting set of rules for the spec-
trum and the gauge group of the theory. These rules are highly non-intuitive. Some of
the rules have been justified recently in [91] by considering the compactification of type
IIA theory on S1/Z2, called type I’ theory. The six-dimensional rules of [90, 89] can be
generalized to describe orbifold compactifications to four dimensions [92].

We take another approach towards understanding the rules in six dimensions by con-
sidering the dual F-theory formulation of M-Theory on S1/Z2 × T 4/ZN . To obtain a
six-dimensional theory, F-theory has to be compactified on a Calabi-Yau threefold. The
hope is that the geometry of the correct threefold contains some information about the
non-perturbative sector of the dual M-theory. To switch off corrections which may com-
plicate the problem, we take the limit of a large K3 orbifold on the M-theory side. For
the F-theory threefold, this means that the manifold undergoes the stable degeneration
explained in appendix A.3.3. In this limit, we construct the F-theory threefold. We show
the threefold gives a good description of the dual M-theory locally around each fixed
point. It turns out that the F-theory formulation indeed gives some additional informa-
tion about the gauge group of the theory. Thus we are able to give a new understanding
to some of the rules developped in [89, 90] directly from F-theory.

The second part of the thesis, section 3, is organized as follows. In 3.1, we give an
introduction to M-theory compactified on S1/Z2. We explain the conditions for anomaly
cancellation in some detail. Compactifying the theory consistently further to six dimen-
sions on T 4/Z2 gives rise to some interesting rules arising from six-dimensional anomaly-
cancellation, this is reviewed in 3.2. In 3.3, we concentrate on the compactification with a
perturbative gauge group SO(16)× [E7×SU(2)]. For this gauge group, we construct the
dual F-theory model in 3.4 explicitly. We show that some of the rules can be understood
directly from F-theory. Finally, in 3.5 we extend the results to six-dimensional models
with other gauge groups. The results of section 3 will be published in [93] shortly after
the submission of the thesis.
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2 Type IIA String Theory with Background Fluxes

in d=2

We consider compactifications of type IIA string theory on Calabi-Yau fourfolds. Consis-
tency of a generic compactification requires switching on a four-form flux in the Calabi-
Yau manifold [19]. Switching on background fluxes generates a superpotential in the low
energy effective action. The goal of this chapter is to derive the superpotential generated
by switching on all possible background fluxes [24, 25] including all “stringy corrections”,
i.e. including worldsheet instanton corrections. In 2.1 we review the compactification of
the type IIA string on Calabi-Yau fourfolds. The worldsheet instanton corrections to the
superpotential of the effective theory are derived in 2.2 using mirror symmetry [18, 20].
We consider the superpotential generated by four-form flux in 2.3 and rederive the result
of 2.2 using the topological field theory obtained by twisting the IIA worldsheet theory.
We conclude in 2.4 with a discussion of the impact of the results of 2.2 on the duality
between the IIA string and the heterotic string theory in two dimensions.

2.1 Type IIA String Theory in d=2

We consider the low energy effective action of type IIA string theory compactified on a
Calabi-Yau fourfold. Ten-dimensional type IIA string theory has thirty-two supersym-
metries, sixteen of each chirality, and the bosonic spectrum contains the ten-dimensional
metric, the dilaton, the anti-symmetric NS-NS two-form and a vector and threeform
from the R-R sector of the worldsheet theory. The low-energy effective action is ten-
dimensional N = 2 type IIA supergravity and is to leading order [3]

S =

∫
d10x
√
−g
[
e−2φ

(
1

2
R + 2∂Mφ∂

Mφ− 1

4
|H|2

)
− 1

4

(
|F2|2 + |F̃4|2

)]
−1

4

∫
B ∧ F4 ∧ F4 (2.1)

where g is the determinant of the ten-dimensional metric, φ is the dilaton, H = dB is
the field strength of the NS-NS twoform, F2 = dC1 is the field strength of the RR vector,
F4 = dC3 is the field strength of the RR 3-form and F̃4 = F4 − C1 ∧H3.

Compactifying the ten-dimensional theory on a Calabi-Yau fourfold preserves 1/8 of
the supersymmetry leading to a two-dimensional theory with N = (2, 2) spacetime super-
symmetry. The spectrum depends on the hodge numbers of the compactification mani-
fold. Expanding the ten-dimensional metric in the harmonic forms of the fourfold leads
to h(1,1) real scalars gA, A = 1, . . . , h(1,1) and h(1,3) complex scalars Zα, α = 1, . . . , h(1,3).
Expanding the the NS-NS twoform results in h(1,1) real scalars bA. For simplicity we set
h(1,2) = 0, that means the (1, 2)-forms from the expansion of the R-R threeform do not
contribute to the spectrum. Vectors have no physical degrees of freedom in two dimen-
sions, thus the R-R oneform does not contribute to the spectrum either. All in all the
spectrum contains the two-dimensional Dilaton, h(1,1) complex scalars tA = (bA + igA),
these are the the complex Kählermoduli, and h(1,3) complex scalars Zα, which are the
the complex structure moduli of the fourfold. The two-dimensional action is [29]
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S =

∫
d2x
√
−g(2) e−2φ(2)

(
1

2
R(2) + 2∂µφ

(2)∂µφ(2) − 1

2
GAB̄∂µt

A∂µt̄B̄ − 1

2
Gᾱβ∂µZ̄

ᾱ∂µZβ

)
,(2.2)

where φ2 and g2 are the two-dimensional dilaton and metric. GAB̄(t, t̄) and Gᾱβ(Z, Z̄)
are the metrics on the moduli space of the Kähler- and complex structure moduli

GAB̄(t, t̄) = ∂A∂̄B̄K,

Gαβ̄(Z, Z̄) = ∂α∂̄β̄K, (2.3)

with the Kähler potential

K = − ln (

∫
Y4

Ω ∧ Ω̄)− lnV . (2.4)

V is the volume of the fourfold and can be expressed in terms of the Kähler form J = gAeA,
where eA denotes a basis of the (1,1)-forms, as

V =
1

4!

∫
Y4

J ∧ J ∧ J ∧ J =
1

4!
dABCD(tA − t̄A)(tB − t̄B)(tC − t̄C)(tD − t̄D), (2.5)

where dABCD are the classical intersection numbers dABCD =
∫
Y4
eA ∧ eB ∧ eC ∧ eD.

Of special importance in fourfold compactifications is a ten-dimensional higher order
term not considered in (2.1). This term contains the NS-NS two form and the curvature
[19] 3

S ∼
∫
B ∧X8(R) (2.6)

with X8(R) = 1
4!

(
1
8
trR4 − 1

32
tr(R2)2

)
. Integrating over the eight-dimensional compacti-

fication manifold Y4 leaves a one-point interaction of the two-form B proportional to∫
Y4

X8(R) = − 1

4!
χ, (2.7)

where χ is the Euler number of the fourfold. Onepoint functions violate Lorenz invariance
of the theory and thus to obtain a consistent compactification this interaction has to be
to cancelled. Compactifying the last term in (2.1) leads to a onepoint function of the
two-form B proportional to ∫

Y4

F4 ∧ F4. (2.8)

By giving the four-form field strength F4 a non-vanishing background value in Y4 it is
possible to cancel the above term. For integer χ

4!
cancellation is also possible by filling

the two-dimensional spacetime with N fundamental strings. The cancellation condition
is [19]

χ

4!
= N +

1

8π2

∫
Y4

F4 ∧ F4. (2.9)

3The eleven-dimensional M-theory version of this term also plays an important role in the discussion
of the strongly coupled heterotic string, see chapter 3
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For non-integer χ
4!

consistency requires switching on R-R background fourform fluxes.
This is in contrast to lower-dimensional compactifications such asK3 manifolds or Calabi-
Yau threefolds, where background fluxes can be turned on but are not required for con-
sistency.

In addition to the four-form field strength we turn on zero-, two-, six-, and eight form
fluxes F0, F2, F6 and F8 in Y4. In [24, 25] it was shown that by including the background
fluxes a non-trivial potential is switched on in the low energy effective action. If the
(1, 2)-moduli are frozen, the potential can be expressed in terms of two superpotentials
W and W̃ [26]

V = eK
(
G−1AB̄DAW̃DB̄

¯̃W +G−1αβ̄DαWDβ̄W̄ − |W |2 − |W̃ |2
)
, (2.10)

where W depends on the complex structure moduli Zα and W̃ on the complex Kähler
moduli tA. The Kähler covariant derivatives are defined as

DAW̃ = ∂AW̃ + W̃∂AK , DαW = ∂αW +W∂αK. (2.11)

The purpose of this chapter is to derive the superpotentials.

We are going to consider the background fluxes from the D-brane perspective. A
Dp-brane is a magnetic source of a R-R p+1-form potential located on the worldvolume
of the brane. Thus instead of considering R-R fluxes in the Calabi-Yau fourfold we can
consider the corresponding D-brane wrapped on some submanifold of the fourfold. These
submanifolds are the supersymmetric cycles in Y4 such that the brane configurations are
BPS states preserving half of the supersymmetry on the worldvolume. These brane con-
figurations generate the potential (2.10). There are two different kinds of supersymmetric
cycles. A special Lagrangian cycle S is a cycle in the homology class H4(Y4,Z) (more
generally in Hd(Yd,Z) for a complex d-dimensional compactification manifold) and its
volume is given by

V ol(S) =

∫
S

Ω =

∫
Y4

Ω ∧ S̄. (2.12)

S̄ is an element of the cohomology class H4(Y4,Z) which is dual to the cycle S in
H4(Y4,Z). A holomorphic cycle C(p) is a cycle in the homology class Hp(Y4,Z), p =
0, 2, 4, 6, 8 (in Hp(Yd,Z), p = 0, . . . , 2d for a complex d-dimensional compactification
manifold), and its volume is

V ol(C(p)) =

∫
C(p)

t ∧ . . . ∧ t =

∫
Y4

t ∧ . . . ∧ t ∧ C̄(8−p), (2.13)

where the integrand contains p/2 komplex Kähler forms t = tAeA and C̄(8−p) is an element
of H8−p(Y4,Z) and dual to the cycle C(p). Note that the volume of a special Lagrangian
cycle depends on the complex structure moduli while the volume of a holomorphic cycle
depends on the Kähler moduli only.

A very useful observation in string theory is that brane configurations correspond to
solitons of the low energy effective action. A Dp- brane wrapped on some supersymmetric
cycle of real dimension p has one additional direction in the flat spacetime. As our theory
is 1+1-dimensional this configuration has codimension one in spacetime. In the low
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energy effictive action such a state is a domain wall. It is known from field theory that
the superpotential generated by a BPS domain wall is equal to the mass of the soliton,
see for example [64]. The mass of the soliton translated to the D-brane language is the
volume of the supersymmetric cycle the brane is wrapped on [24, 25]. This relation is only
true for BPS states, that is why we consider BPS branes and wrapped on supersymmetric
cycles only. The superpotentials are

W = V ol(S), W̃ =
∑
p

V ol(C(p)). (2.14)

Note that this formula is valid in any dimension for D-brane configurations with codi-
mension one in spacetime.

Wrapping a D4-brane on a four-dimensional special Lagrangian cycle generates the
superpotential

W =
1

2π

∫
Y4

Ω ∧ F4, (2.15)

where F4 denotes the RR 4-form flux. There is a subtlety here that should be mentioned.
What was really shown in [24] is that the change of the superpotential when crossing the
domain wall in the two-dimensional space-time is equal to the volume of the four-cycle
C(4) ∈ H4(Y4,Z) wrapped by the D4-brane: ∆W =

∫
C(4) Ω = 1

2π

∫
Y4

Ω ∧ ∆F4. It is the

change of the 4-form flux ∆F4

2π
∈ H4(Y4,Z) that is Poincaré dual to the four-cycle C(4)

rather than the flux itself. Note that in general not F4

2π
but F4

2π
− p1

4
does take values in

H4(Y4,Z), where p1 is the first Pontryagin class [31]. There are no such subtleties for the
other fluxes however, but one might keep in mind that we consider only a subspace of
possible fourform fluxes if we assume that F4

2π
is an element of the integral cohomology.

The second superpotential is generated by wrapping Dp-branes, p = 0, 2, 4, 6, 8, on
holomorphic cycles C(p) ∈ Hp(Y4,Z) with the same real dimension p [24, 25]

W̃cl =
1

2π

∫
Y4

(t ∧ t ∧ t ∧ t F0 + t ∧ t ∧ t ∧ F2 + t ∧ t ∧ F4 + t ∧ F6 + F8) , (2.16)

where Fp
2π
∈ Hp(Y4,Z) is the RR p-form flux which is Poincaré dual to the (8 − p)-cycle

C(8−p) ∈ H8−p(Y4,Z) (for p = 4 see the above remark).

The effective theory has a (2, 2) supersymmetric vacuum in a Minkowskian back-
ground if

DAW̃ |min = DαW |min = W̃ |min = W |min = 0 (2.17)

holds. Depending on the background fluxes this puts a severe constraint on the moduli
space and for some fluxes no supersymmetric vacuum exists at all. For example, for the
superpotential eq. (2.15) the supersymmetry condition (2.17) implies [30]

F
(0,4)
4 = 0 = F

(1,3)
4 , (2.18)

where the last equation arises from the fact that ∂αΩ takes values in H4,0 ⊗H3,1. Since
the Hodge decomposition of H4 depends on the complex structure, eq. (2.18) is a strong
constraint on the moduli space of the complex structure. It leaves only the subspace of
complex structure deformations which respect (2.18) as the physical moduli space.

16



The superpotential W̃ depends on the Kählermoduli and receives quantum corrections
on the worldsheet while W is exact. Mirror symmetry demands that once all quantum
corrections are properly taken into account the two superpotentials should obey [69, 23,
25]

W̃ (Y4) = W̃cl(Y4) + quantum corrections = W (Y ∗4 ) , (2.19)

where Y ∗4 is the mirror fourfold of Y4. Mirror symmetry and worldsheet corrections are
explained in the appendix B. The quantum corrections can be derived by computing W
on the mirror manifold and performing the mirror map. This is done in the next section.

2.2 Worldsheet Corrections of the Superpotential

Our goal is to compute W̃ (Y4) including the worldsheet corrections. To do this we have
to find the mirror manifold Y ∗4 , evaluate the potential

W (Y ∗4 ) =
1

2π

∫
Y ∗4

Ω ∧ F ∗4 , (2.20)

and perform the mirror map. We denote the fourform flux by F ∗4 in order to distinguish
it from the fourform flux on Y4. Before we perform the calculation we make a few
simplifications.

The fourfold Y4 is chosen to be a Clalabi-Yau threefold fibered over a base P1 in
the large volume limit Vol(P1) → ∞. This limit simplifies the quantum corrections of
the superpotential significantly. In addition we assume that the background fluxes Fp
and F ∗4 are elements of the primary subspaces of the cohomologies H(p/2,p/2)(Y4) and
H(4−k,k)(Y4) introduced in A.5, that is necessary for using mirror symmetry. The vertical
primary cohomology is the subspace of the vertical cohomology ⊕dk=0H

(k,k)(Yd) obtained
by taking the wedge products of k (1, 1)-forms. The horizontal primary cohomology
is the subspace of the horizontal cohomology ⊕dk=0H

(d−k,k)(Yd) generated by successive
derivatives DkΩ of the holomorphic (d, 0)-form Ω [42, 18].

The elements of the horizontal primary subspace are mapped via mirror symmetry
to the elements the vertical primary subspace of the mirror manifold and vice versa
[18, 20, 98]. The (k, k)-forms in the vertical primary subspace are mapped to the (d−k, k)-
forms in the horizontal primary subspace.

Let us restrict to the class of fourfolds which are Y3-fibred over a base P1 [20]. The
vertical primary subspace can be obtained by taking the wedge product of the elements
of the vertical primary subspace of Y3 with the zero- or (1, 1)-forms on the P1 base. This
leads to the following Hodge numbers of the vertical primary subspace of Y4

h(0,0)(Y4) = 1 = h(4,4)(Y4),

h(1,1)(Y4) = h(1,1)(Y3) + 1 = h(3,3)(Y4) , (2.21)

h(2,2)
vp (Y4) = 2h(1,1)(Y3) ,

where the subscript vp refers to the vertical primary subspace. Except for h
(2,2)
vp the Hodge

numbers of the vertical primary subspace coincide with those of the full vertical cohomol-
ogy. Thus we omit the subscript vp except for the (2, 2)-forms. In the following we also
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use the formulation of the vertical primary subspace in terms of the dual homology. In
the homology the vertical primary subspace is obtained by joining the even-dimensional
cycles M (n), n = 0, 2, 4, 6, of Y3 with the zero- or two-cycles of the base P1.

Mirror symmetry implies the following relations for the Hodge numbers of the hori-
zontal primary subspace of Y ∗4

h(0,4)(Y ∗4 ) = h(4,4)(Y4), h(4,0)(Y ∗4 ) = h(0,0)(Y4), (2.22)

h(3,1)(Y ∗4 ) = h(1,1)(Y4), h
(2,2)
hp (Y ∗4 ) = h(2,2)

vp (Y4),

where the subscript hp refers to the horizontal primary subspace. The members of
the vertical respectively the horizontal primary cohomology are observables in the A-
respectively B-model. The A- and the B-model are two topological sigma-models with the
Calabi-Yau manifold Y4 as a target space, which are obtained by twisting the worldsheet
sigma-model in two different ways [48]. The observables and correlation functions of the
A-model on Y4 are related via mirror symmetry to those of the B-model on Y ∗4 and vice
versa.

The R-R fluxes F (p) are mapped to elements of the horizontal primary subspace on
the mirror manifold Y ∗4 . The dimension h4

hp(Y
∗

4 ) of the horizontal primary subspace can
be expressed in terms of the number of (1, 1)-forms of the fibre of Y4:

h4
hp(Y

∗
4 ) = 2h(4,0)(Y ∗4 ) + 2h(3,1)(Y ∗4 ) + h

(2,2)
hp (Y ∗4 ) = 4(h(1,1)(Y3) + 1). (2.23)

Thus it is possible to introduce a basis for the horizontal primary homology of Y ∗4 by
(AI , ÃI , B

I , B̃I), where I = 0, . . . , h(1,1)(Y3). The (AI , ÃI) are those homology cycles
that correspond via mirror symmetry to the elements of the vertical primary subspace
of Y4 which are obtained by joining the even-dimensional cycles of the threefold-fibre
with the zero-cycle of the base. Analogously, (BI , B̃I) are the cycles which are related
to the elements of the vertical primary subspace which are obtained by joining the even-
dimensional cycles of the threefold with the two-cycle of the base [20]. As noted in [20]
in the large base limit at leading order the cycles (AI , ÃI) all have vanishing intersections
with each other and the same is true for the (BI , B̃I) cycles. The only non-vanishing
intersections are between A-cycles and B-cycles and the intersection form is given by
that of the Y3-fibre. For a certain choice of cycles and in terms of the Poincaré dual
forms (aI , ãI , b

I , b̃I) this amounts to∫
Ỹ4

aI ∧ b̃J = δIJ = −
∫
Ỹ4

ãJ ∧ bI (2.24)

with all other intersection pairings vanishing.

In order to evaluate the superpotential W (Y ∗4 ) using eq. (2.15) we expand the 4-form
flux on Y ∗4 in this basis

F ∗4
2π

= µIa
I − µ̃I ãI + νIb

I − ν̃I b̃I , (µI , µ̃
I , νI , ν̃

I) ∈ Z . (2.25)

The fluxes are not all independent but have to obey the consistency condition (2.9).
This implies

1

4!
χ(Y ∗4 ) = N + (νI µ̃

I − µI ν̃I) . (2.26)
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Inserting (2.25) into (2.15) we arrive at

W = µI

∫
AI

Ω − µ̃I
∫
ÃI

Ω + νI

∫
BI

Ω − ν̃I
∫
B̃I

Ω . (2.27)

In order to evaluate the period integrals
∫

Ω on Y ∗4 one has to note that they are mapped
via mirror symmetry to the periods on Y4, which give to leading order in the large volume
limit and in special coordinates the classical volumes of the corresponding cycles. These
leading terms in general get quantum corrections. In the large base limit the corrections
from the base are suppressed and the quantum corrections only arise from the threefold
fibre. Thus the periods on the fourfold are given by those of the threefold, multiplied by
the classical volume tV of the base for those cycles which contain the base [20]. More
specifically one has 4∫

AI

Ω = (1, ti) + O(eit
V

) ,

∫
BI

Ω = tV (1, ti) + O((tV )0) +O(eit
V

) , (2.28)∫
ÃI

Ω = (Fi,F0) +O(eit
V

) ,

∫
B̃I

Ω = tV (Fi,F0) + O((tV )0) +O(eit
V

) ,

where i = 1, . . . , h(1,1)(Y3). The vector

Π = (1, ti,Fi,F0) (2.29)

corresponds to the periods of the threefold with Fi = ∂tiF and F0 = 2F − tiFi. The
N = 2 prepotential is given by [60]

F = Fpol −
1

(2π)3

∑
{di}

n{di}Li3(e2πi
∑
tidi) , (2.30)

where

Fpol =
1

6
dijkt

itjtk + bit
i +

1

2
c , Li3(x) ≡

∞∑
j=1

xj

j3
. (2.31)

The polynomial part Fpol contains the classical intersection numbers of the threefold dijk
and the coefficients bi, c are given in [60]. The non-polynomial part contains the contri-
bution of the worldsheet instantons. Worldsheet instantons arise if the compactification
manifold contains isolated holomorphic curves C around which fundamental strings are
wrapped. This effect is called worldsheet instanton because the corrections are propor-
tional to the inverse exponential of the worldsheet coupling constant. di is the instanton
number of the i-th (1, 1)-form ei, di =

∫
C ei, and n{di} is the number of isolated holo-

morphic curves C of multi-degree (d1, . . . , dh(1,1)) in the threefold fibre. The sum over j
takes into account multiple coverings of a fundamental string wrapped on a given curve.
Worldsheet instanton corrections are explained in detail in the appendix.

Inserting (2.28) into (2.27) and assuming that the µI and µ̃I are large so that the
O((tV )0) term can be neglected we get

W (Y ∗4 ) = µ0 + µit
i − µ̃iFi − µ̃0F0 + ν0t

V + νit
itV − ν̃iFitV − ν̃0F0t

V . (2.32)

4We thank P. Mayr for a clarifying discussion concerning the period integrals.

19



The period integrals (2.28) have been used in [20] to derive the Kähler potential in the
large base limit

K = − ln[

∫
Y ∗4

Ω ∧ Ω̄] = − ln [(tV − t̄V )(2(F − F̄)− (ti − t̄i)(Fi + F̄i))] . (2.33)

The superpotential can be written in a more suggestive way by expressing it not in
terms of special coordinates ti but rather in terms of the homogeneous coordinates
XI = (X0, X i) [60]. These coordinates are commonly used in N = 2 supergravity and
are holomorphic functions of the special coordinates XI(ti). Furthermore, one has a pre-
potential F (X) which is a homogeneous function of the XI of degree two. The special co-
ordinates are just the particular coordinate choice t0 = X0/X0 = 1, ti = X i/X0,F(ti) =
(X0)−2F (X). In homogeneous coordinates the periods of the threefold are

Π = (XI , FI) = X0(1, ti,Fi,F0) , (2.34)

and the Kähler potential reads

K = − ln [(tV − t̄V )(X̄IFI −XIF̄I)] . (2.35)

This coincides with the Kähler potential given in (2.33) up to a Kähler transformation
that amounts to a different normalization of the (4, 0)-form Ω. Inserting (2.34) into (2.32)
finally yields

W (Ỹ4) = αIX
I − βIFI , (2.36)

where we abbreviated αI = µI + tV νI , β
I = µ̃I + tV ν̃I and discarded an X0-factor by the

same Kähler transformation.

Curiously the superpotential (2.36) coincides with the superpotential derived in ref.
[28]. It arises in type IIB compactifications on a Calabi-Yau threefold with non-vanishing
RR- and NS 3-form fluxes studied in refs. [33, 28, 34]. In this case the type IIB dilaton
plays the role of tV in (2.36). It also is very closely related to the BPS-mass formula
studied in refs. [35, 36] and the entropy formula of N = 2 black holes [37]. This fortunate
coincidence saves us from a detailed analysis of the supersymmetric minima of (2.36) and
we can simply refer the reader to refs. [33, 28, 34, 39, 36]. One finds that for generic
fluxes no supersymmetric vacuum exists. However, if the αI , β

I are appropriately chosen
supersymmetric ground states can exists. This can happen if the fluxes are aligned
with cycles of the threefold which can degenerate at specific points in the moduli space
[32, 33, 28, 34, 39]. These points (or subspaces) then correspond to supersymmetric
ground states. They also coincide with the supersymmetric attractor points studied in
refs. [37]. Note that in ref. [28] the consistency of the compactification required νI µ̃

I −
µI ν̃

I = 0 while in our case this is replaced with the generalized condition given in eq.
(2.26).

Before we evaluate W̃ (Y4) let us briefly discuss the symmetry properties of W (Y ∗4 ) as
obtained in eq. (2.36). In homogeneous coordinates the period vector Π transforms as a
symplectic vector according to(

FI
XI

)
→
(
A B
C D

)(
FI
XI

)
,

(
A B
C D

)
∈ Sp(2h(1,1) + 2,Z) . (2.37)
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This transformation leaves the symplectic product (X̄IFI −XIF̄I) invariant and via eq.
(2.35) also the Kähler potential (in homogeneous coordinates). The fact that (FI , X

I)
transform as a symplectic vector implies that also (ãI , a

I) and (b̃I , b
I) transform according

to (2.37). Indeed one verifies that the intersection matrix given in (2.24) is left invariant
if (ãI , a

I) as well as (b̃I , b
I) transform as symplectic vectors. Since F ∗4 has to be sym-

plectically invariant one infers from (2.25) that in turn the fluxes (µI , µ̃
I) and (νI , ν̃

I)
have to transform as symplectic vectors, i.e. according to (2.37). Since tV is invariant
we conclude that (αI , β

I) form a symplectic vector. Thus W of (2.36) is invariant under
symplectic tranformations.

Having derived the expression (2.32) for W (Y ∗4 ) we can use eq. (2.19) to determine the
quantum corrections of W̃ (Y4). By matching the classical terms of W̃ (Y4) as given in eq.
(2.16) with the classical part of (2.32) using (2.30), (2.31) one is led to the identification

−ν̃0F0t
V =

1

2π

∫
Y4

t ∧ t ∧ t ∧ t F0 + quantum corrections , (2.38)

−µ̃0F0 − ν̃iFitV =
1

2π

∫
Y4

t ∧ t ∧ t ∧ F2 + q.c. , (2.39)

νit
itV − µ̃iFi =

1

2π

∫
Y4

t ∧ t ∧ F4 + q.c. , (2.40)

ν0t
V + µit

i =
1

2π

∫
Y4

t ∧ F6 , (2.41)

µ0 =
1

2π

∫
Y4

F8 = const. . (2.42)

The right hand sides of (2.41), (2.42) are two- and one-point functions in the topological
A-model explained in the appendix and therefore do not receive instanton corrections
[18, 62]. From eq. (2.40) using (2.30), (2.31) we learn that the term including Fi has a
polynomial piece and instanton corrections while the second term νit

itV is purely classical.
This can also be understood by considering the corresponding correlation functions in
the A-model. Let us now go through this computation in more detail.

2.3 The Superpotential Generated by Four-Form Flux

We switch on only fourform flux and rederive the superpotential W̃ (Y4) including quan-
tum corrections by evaluation correlation functions in the topological sigma model. The
topological sigma model is explained in appendix B.2. We denote the observables of the
A-model by O(k)

M ∈ H(k,k)(Y4), where the index takes the values M = 1, . . . , h
(k,k)
vp (Yd).

The observables of the A-model are exactly the elements of the primary vertical subspace
of H(k,k)(Yd). The two-point functions

η
(k)
MN = 〈O(k)

M O
(d−k)
N 〉 =

∫
Yd

O(k)
M ∧ O

(d−k)
N (2.43)

receive no instanton corrections and define a flat metric on the vertical primary coho-
mology [62]. Note that this metric for k = 1 is not the metric on the moduli space of
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(1, 1)-forms, the Zamolodchikov metric GAB̄ = 1/V
∫
Yd
eA ∧∗eB, where ∗eB is the Hodge

dual of eB. Although the Zamolodchikov metric contains also observables of the A-model
(because eA = O(1)

A is an observable of the A-model) and looks similar as the topologi-
cal metric above, it depends on the Kählerpotential as GAB̄ = ∂A∂B̄K and does receive
quantum corrections as can be seen from eq. (2.33). The relation between the metric of
the (1, 1)-moduli and the metric of the A-model was the subject of [63].

The threepoint functions

Y
(k)
KLM = 〈O(1)

K O
(k)
L O

(d−k−1)
M 〉, (2.44)

do receive instanton corrections. Because of their factorization properties all other am-
plitudes can be expressed in terms of the two- and three-point functions η

(k)
MN , Y

(k)
KLM

[18].

Choosing the 4-form flux as

F4

2π
=

h2,2
vp∑

N=1

λNO(2)
N , (2.45)

ref. [23] proposed the following formula

∂tA∂tBW̃ (Y4) =
∑
N

λN〈O(1)
A O

(1)
B O

(2)
N 〉 . (2.46)

In the following we evaluate this three-point function for a threefold-fibred fourfold in
the large base limit and show that (2.46) is consistent with (2.40).

Let us first consider the part of F4 which has one component in the base

F4

2π
=

h1,1(Y3)∑
N=1

λNO(2)
N =

h(1,1)(Y3)∑
i=1

λV ieV ∧ ei, (2.47)

where λV i is large. In the large base limit, there are no instanton corrections from the
base so that according to the classical intersection numbers eV occurs at most once in any
correlation function. The divisor which is dual to eV is the threefold-fibre and projects
the amplitude of the fourfold to the threefold. In particular, for the three-point function
with the 4-form flux as in (2.47), the three-point function on the fourfold is projected to
the three-point function on the threefold [20]

∂ti∂tjW̃ (Y4) =
∑
N

λN〈O(1)
i O

(1)
j O

(2)
N 〉Y4 =

h(1,1)(Y3)∑
k=1

λV k〈O(1)
i O

(1)
j O

(1)
k 〉Y3 =

h(1,1)(Y3)∑
k=1

λV kYijk,

(2.48)
where

O(2)
N = eV ∧ ek , O(1)

k = ek . (2.49)

As explained in appendix A.4, in special coordinates the three-point function Yijk on Y3

is the third derivative of a holomorphic prepotential [60]

Yijk = Fijk, Fijk = ∂ti∂tj∂tkF . (2.50)
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Inserting (2.50) in eq. (2.48) we learn that ∂ti∂tjW̃ (Y4) can be integrated and indeed
coincides with the instanton corrected part of the expression (2.40).

In order to get the full superpotential, we still have to consider the part with the
4-form flux restricted to the threefold fibre, i.e.

F4

2π
=

h1,1(Y3)∑
i=1

λiO(2)
i . (2.51)

We have to distinguish two cases. First we consider the three-point function which
contains one observable O(1) corresponding to the base. In this case the three-point
function of the fourfold is projected to the two-point function of the threefold fibre:

∂tV ∂tjW̃ (Y4) = λi〈O(1)
V O

(1)
j O

(2)
i 〉Y4 = λi〈O(1)

j O
(2)
i 〉Y3 = λiη

(1)
ji . (2.52)

As already mentioned above, two-point functions receive no worldsheet instanton correc-
tions and the classical part of the amplitude is already the exact expression. Integrating
twice we obtain the term in (2.40) which does not contain instanton corrections.

Finally, the contribution to the superpotential which has no component in the base
is subleading in the limit where λV i and tV are large. To summarize, we confirmed
the expression given in eq. (2.40) by considering correlation functions in the topological
A-model, that is without using mirror symmetry. Altogether we thus have

W̃ (Y4) = λkη
(1)
jk t

jtV + λV kFk, (2.53)

with the relations λkη
(1)
jk = νj, λ

V k = −µ̃k.

2.4 The Duality of IIA Theory and the Heterotic String Includ-
ing the Superpotential

In order to mention some applications of the above calculations, we finally make some
remarks about the superpotential in connection with type IIA-heterotic duality. This
chapter is very brief, for a longer discussion see [29, 65]. Type IIA string theory com-
pactified on a Calabi-Yau fourfold Y4 is dual to the heterotic string compactified on
Y3 × T 2. For simplicity, we assume that the fourfold Y4 is a K3 fibration over a large
base Fn. The heterotic compactification manifold Y3 is an elliptic fibration fibration over
a large base Fn. It is interesting to compare the Kähler potentials of the two theories
including the worldsheet corrections on the IIA side.

The Kähler potential of the IIA string on the K3 fibred fourfold in the limit of a large
P

1 base of Fn, that is tV → ∞, is given by eq. (2.33). We denote the Kähler modulus
of the P1 fibre of Fn by tU . In the limit tU → ∞ the worldsheet instanton corrections
∼ e−it

U
are suppressed and the Kählerpotential reads

K = − ln [(tV − t̄V )(2(F − F̄)− (ti − t̄i)(Fi + F̄i))] (2.54)

with
F = tUηı̂̂t

ı̂t̂ + F (1)(tı̂) +O(eit
U

), (2.55)
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where tı̂ denote the moduli of the K3-fibre and η is the intersection matrix of K3

ηı̂̂ =

 0 1/2
1/2 0

−I

 . (2.56)

F (1)(tı̂) contains the world-sheet instanton corrections of the K3 fibre

F (1)(tı̂) = − 1

(2π)3

∑
{dı̂}

n{dı̂}Li3(e2πi
∑
tı̂dı̂). (2.57)

On the heterotic side we denote the complex Kähler moduli of the Fn base of the
threefold by u and v. The Kähler modulus of the torus T 2 of Y3 × T 2 is called τ and
the Kähler modulus of the elliptic fibre of Y3 is called ρ. Finally there are complex
scalars na, a = 1, . . . l charged under the gauge group (U(1))l. They have their origin in
the compactification of the ten-dimensional gauge vectors charged under the E8 ×E8 or
SO(32) gauge group on the torus. We keep the number l of U(1) gauge groups arbitrary.
The Kählerpotential in the large base limit u, v →∞ is

K̂ = − ln[(u− ū)(v − v̄)((τ − τ̄)(ρ− ρ̄)− (na − n̄a)2)]. (2.58)

The duality map relates the moduli of the two theories as{
tı̂
}
↔ {τ, ρ, na} ,{

tU , tV
}
↔ {u, v} . (2.59)

Note that the number of U(1) gauge groups l is related to the number of (1, 1)-forms
of the IIA K3 fibre. The two Kählerpotentials are mapped to each other using these
relations. Switching off the worldsheet instantons in (2.54) this can be verified easily. In
addition the duality suggests that the world-sheet instantons of the IIA Kählerpotential
are mapped to some corrections of the heterotic Kählerpotential that have not been taken
into account above. This is a standard procedure that has been also studied in detail in
four-dimensional compactifications [38], where world-sheet instanton corrections on the
IIA side are mapped to loop-corrections in the heterotic theory.

We can also make a statement about the superpotential. Inserting (2.55) into (2.32)
one obtains the superpotential for K3-fibred fourfolds in the large Fn limit. If one assumes
that the duality map given in (2.59) continues to hold in the presence of background fluxes
one can use it to derive a heterotic superpotential Whet(τ, ρ, n

a, u, v). For a discussion of
this, see [29].

2.5 Summary and Outlook

In contrast to higher dimensional compactifications, type IIA string theory compacti-
fied to two dimensions on a Calabi-Yau fourfold Y4 generically contains non-vanishing
background R-R fourform fluxes in the compactification manifold [19]. R-R background
fluxes generate a potential in the low energy effective action of the theory. We consider
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the potential generated by switching on all possible R-R background fluxes [24, 25]. For
a large worldsheet coupling constant α′, the potential receives quantum corrections of the
worldsheet theory containing worldsheet instantons. The goal of chapter 2 is to derive
these worldsheet corrections. Worldsheet instanton corrections generally can be derived
using mirror symmetry. Mirror symmetry states that a classical potential derived on
the mirror manifold Y ∗4 can be mapped to the potential on Y4 including the worldsheet
quantum corrections. We restrict the Calabi-Yau fourfold Y4 to the special class of three-
fold fibred fourfolds in the large base limit. This implies that the worldsheet instanton
corrections are given completely in terms of the threefold fibre [20]. In particular, it is
possible to use the the special geometry of the threefold fibre, which simplifies the mirror
symmetry calculations significantly. As a result, we are able to give the general form of
the full superpotential including all worldsheet corrections for the class of threefold fibred
fourfolds in the large base limit in section 2.2. In section 2.3, we rederive a part of the
result of section 2.2 in terms of scattering amplitudes of a topological field theory, called
the A-model, obtained by twisting the worldsheet theory. We show that the results of
section 2.2 and section 2.3 agree.

The results of the calculations are interesting in the context of string dualities. Firstly,
the potential including the quantum corrections coincides with the potential obtained in
[28] for compactifications of type IIB string theory on Calabi-Yau threefolds including
threeform fluxes from the R-R and the NS-NS sector. An explanation for this phe-
nomenon has not been given yet as far as we are aware. One possible direction for
finding an explanation might be to examine in detail the T-duality between the type
IIA and the type IIB string 5. This remains to be done in the future. Also, a dual
four-dimensional formulation in terms of type IIB theory could provide a useful link for
constructing a non-perturbative formulation in terms of F-theory.

Another aspect is the duality between IIA theory compactified on a fourfold and the
heterotic string compactified on a Calabi-Yau threefold times a torus. If the duality is
expected to hold including the potential of the IIA theory, one would expect mechanisms
in the heterotic theory which generate the corresponding potential. In particular, the
worldsheet corrections of the IIA theory should have their counterpart in the heterotic
theory. This also remains a task for future investigations.

5We thank P. Mayr for a discussion of that issue.
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3 F-Theory Duals of M-Theory on S1/Z2 × T 4/ZN

We consider the strong coupling limit of the heterotic string [15] compactified on an
orbifold to six dimensions [89, 90]. The strongly coupled heterotic string is described by
M-theory compactified on an interval, where the length of the interval corresponds to
the heterotic dilaton. Compactifying the theory to six dimensions on certain orbifolds,
anomaly cancellation dictates some rules for the gauge group and the massless spectrum
of the theory that are highly non-intuitive. The goal of this chapter is to find explanations
for some of these rules by considering the F-theory formulation of the strongly coupled
heterotic string. In 3.1, we review the strong coupling limit of the heterotic string in ten
dimensions. In 3.2, we consider the compactification to six dimensions on an orbifold.
We review the rules given in [89, 90] for the gauge group and the massless spectrum
that follow from anomaly cancellation. As an instructive example, we consider the gauge
group SO(16)× [E7×SU(2)] in detail in 3.3. The main part of this chapter is 3.4, where
we construct the F-theory formulation of the six-dimensional model. We show that F-
theory contains some additional information about the gauge group of the theory. This
enables us give an explanation of some of the rules that have been established in [89, 90].
In the last section, we generalize the results to other gauge groups.

3.1 M-Theory on S1/Z2

The strong coupling limit of the ten-dimensional E8 × E8 heterotic string is M-theory
compactified on a one-dimensional orbifold R10 × S1/Z2 = R

10 × I [15], where I is
the unit interval. To be precise, it was shown that the low-energy limit of M-theory
eleven-dimensional supergravity compactified on R10 × I describes the low energy limit
of the strongly coupled heterotic E8×E8 string. The bosonic part of eleven-dimensional
supergravity to lowest order in the coupling constant is [73]

S11 =
1

κ2

∫
d11x
√
g

{
−1

2
R− 1

96
GµνρλG

µνρλ

}
+

1

12κ2

∫
M11

C ∧G ∧G, (3.1)

where µ = 0, . . . , 10. The action contains the curvature scalar R, the field strength
G = dC ( the fourform is defined as G = 1/4!∂µCνρλdx

µ∧dxν∧dxρ∧dxλ), the determinant
of the metric g and the eleven-dimensional gravitational coupling constant κ.

The one-dimensional compactification manifold I is given by the identification x11 =
−x11 of the eleventh coordinate x11 ∈ [−π, π] parametrizing the circle S1. The Chern-
Simons term

∫
C ∧G ∧G is invariant under the projection if

Cabc(x
11) = −Cabc(−x11), a, b, c = 1 . . . 10,

Cab,11(x11) = Cab,11(−x11). (3.2)

Thus Cabc is projected out and Cab,11 is kept on the ten-planes. For the field strength
this means that Gabcd is kept and Gabc,11 is projected out. The orbifold breaks half of
the thirty-two supersymmetries of eleven-dimensional supergravity resulting in a ten-
dimensional theory with one chiral supersymmetry.

Consistency requires anomaly-freedom of the compactified theory. A detailed knowl-
edge of M-theory is not necessary for deriving the anomalies, because anomalies arise in
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the infrared sector of the theory. As anomalies occur only in chiral theories there are no
anomalies in the eleven-dimensional bulk. But the inflow of the eleven-dimensional fields
on the boundaries gives rise to ten-dimensional chiral anomalies [15, 74].

The action of the theory is eleven-dimensional supergravity in the bulk plus a ten-
dimensional gauge theory on the ten-dimensional fixed planes. The bulk action is just the
supergravity action (3.1), but anomaly cancellation on the ten-dimensional boundaries
requires including a higher order term

Shigher order
11 = − λ2

(4πκ)2

∫
M11

G ∧X7(R), (3.3)

with a seven-form X7 given by dX7 = X8, X8(R) = 1
((2π)34!)

(
1
8
trR4 − 1

32
(trR2)2

)
and the

gauge coupling λ. The notation as well as the relation between the gauge coupling λ
and the gravitational coupling κ will be explained later. In the early literature such as
[15], the term C ∧X8 was used alternatively for (3.3). A careful analysis in reference [75]
however showed that the terms are not equivalent and that only for the higher order term
G ∧ X7 the anomalies cancel. The necessity of such a term was known before Horava-
Witten theory from string dualities and also from cancellation of the M-theory five-brane
anomaly [76, 77, 78].

The ten-dimensional action on the boundaries is obtained by compactifying the eleven-
dimensional action (3.1)+(3.3) on a circle S1 and projecting onto the modes which are
invariant under Z2. Using equation (3.2), the Chern-Simons and the higher order term
lead to the ten-dimensional action

S ∼
∫
M10

G ∧X6 +B ∧G ∧G, (3.4)

where X6 is a six-form and related to the gauge variation of X7 as dX6 = δX7 and
Bab = Cab,11. This expression will be explained in detail later and it turns out that
it plays the role of a Green-Schwarz term in the anomaly cancellation. For details of
anomaly cancellation see appendix C.

It was shown in [15] that compactifying (3.1)+(3.3) on I to ten dimensions in a gauge
invariant way breaks the ten-dimensional N = 1 supersymmetry. Restoring the super-
symmetry requires a modified Bianchi-identity of the four-form field strength, dG 6= 0.
This leads to a modification of the field strength G = dC + (additional terms) and de-
stroys the gauge invariance of the ten-dimensional action. A violation of gauge invariance
gives rise to anomalies which have to be cancelled in a consistent theory.

To cancel these anomalies it is necessary to include additional ten-dimensional gauge
fields on the two fixed planes. The explicit calculation shows that the theory is anomaly-
free only if the gauge fields transform in the adjoint representation of the gauge group
E8 on each fixed plane. Additional states located at the fixed points in orbifold com-
pactifications are familiar from string theory as twisted states. The E8 gauge fields are
equivalent to the string theory twisted states. Due to a lack of understanding the un-
derlying M-theory, there has been no direct way to explain the existence of these fields.
The ten-dimensional action is

S10 =
1

4λ2

∫
d10x
√
g10

{
TrF 2 − 1

2
trR2

}
, (3.5)
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with the E8 field-strength F . Note that we have two of these actions, one on each fixed
plane.

Let us review the anomalies of the theory in greater detail. In ten dimensions there
are gauge as well as gravitational and mixed anomalies [79, 80]. The one-loop anomalies
on the ten-planes, excluding the inflow of G∧X7(R) and C ∧G∧G, are almost identical
to those of the ten-dimensional E8 × E8 heterotic string. As explained in appendix C.1,
the heterotic one-loop anomaly polynomial is

I12 = − 15

2(2π)56!
Y4Z8 (3.6)

where Y4 and Z8 are four- and eight forms defined in C.1. The factorization of the
anomaly polynomial into a four- and an eight-form is necessary for cancellation of the
anomaly by the Green-Schwarz mechanism, for the details see the appendix.

The anomalies in M-theory compactified on R10×I are localized on the two ten-planes
at the end of the interval with an E8 gauge group each. The ten-planes are separated by
a finite distance. The anomaly polynomial is the sum of two polynomials, one on each
ten-plane as denoted by the indices 1, 2

Î12 = Î1
12 + Î2

12, (3.7)

and takes the form, as explained in appendix C.2,

Î12 =
π

3

(
Ŷ4

1
(R, F1)

)3

+X8(R)Ŷ4
1
(R, F1)

+
π

3

(
Ŷ4

2
(R, F2)

)3

+X8(R)Ŷ4
2
(R, F2), (3.8)

where X8 is the polynomial defined below equation (3.3). The two terms ∼ (Ŷ 1,2
4 )3 are

cancelled by projection of the eleven-dimensional Chern-Simons term
∫
C ∧G∧G to the

ten-planes and the terms ∼ X8(R)Ŷ 1,2
4 are cancelled by the projection of

∫
G ∧X7. The

anomaly calculation is explained in detail in appendix C.2.

Because there are no scalars in the theory, one might wonder how the heterotic dilaton
arises in the M-theory picture. The answer is that the length l of the compact eleventh
dimension is related to the ten-dimensional heterotic dilaton [15]

l = φ
2/3
het . (3.9)

The situation is similar to the duality of type IIA string theory and M-theory compactified
on S1, where the type IIA dilaton is identified with the radius of the circle S1 [88]. As the
heterotic string coupling constant is determined by the dilaton, the length of the interval
is related to the heterotic string coupling. If the two fixed planes are pushed together
by letting the length of the interval approach zero, the heterotic coupling becomes small.
This limit becomes ten-dimensional and describes the weakly coupled heterotic string.
If the planes are far away from each other, which means l and φhet are large, the theory
describes the strong coupling limit of the heterotic string.
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8 8EE

l= 2/3φ

11x ten−plane

Figure 1: R10× I with the length l = φ
2/3
het of the interval and an E8 gauge group on each

ten-plane

3.2 M-Theory on S1/Z2 × T 4/Z2

Consider the strong coupling limit of the heterotic string compactified to six dimensions
on an orbifold T 4/Z2 with gauge group G = G×G′ ⊂ E8×E8. This has been studied in
[89, 90, 94, 95, 96, 97, 100]. The strong coupling limit of the heterotic string compactified
on orbifolds to four dimensions has been considered in [92]. For a review on heterotic
M-theory compactifications see [101]. The starting point is M-theory compactified on
two orbifolds T 4/Z2×S1/Z2 with the gauge group E8 broken to G on one ten-plane and
E8 broken to G′ on the other ten-plane. There are two Z2 projections in that model, one
acts on the coordinate of S1 and one on the four coordinates of T 4. The combined action
of both Z2’s defines the fixed planes of the theory. The theory has eight supercharges
which is N = 1 supersymmetry in six dimensions. The orbifold projection acting on S1

leaves two fixed ten-planes already considered above. The action of the second Z2 leaves
sixteen fixed seven-planes. The combined action of both orbifolds results in thirty-two
fixed six-planes, which are the intersections of the fixed ten-planes and the fixed seven-
planes. Consistency of the theory requires anomaly cancellation on all the fixed ten-,
seven- and six-planes. Anomaly cancellation on the ten-planes was already considered
above, so the requirements of anomaly cancellation on the seven- and six-planes remain
to be examined. Anomaly cancellation can be useful to gain information about the
spectrum and the gauge group of an unknown theory as was done successfully in the
ten-dimensional compactification on R10 × I. There are no chiral anomalies in odd
dimensions though, so the seven-planes are anomaly-free anyway and at first sight there
is no direct way of determining the gauge group on the seven-planes. The anomalies on
the six-planes however are not blind to the spectrum on the seven planes which intersect
them. It is indeed possible to determine the gauge group on the seven-planes and the
twisted spectrum on the six-planes by demanding anomaly cancellation on the six-planes.
Demanding anomaly cancellation in six dimensions is a powerful tool as there are gauge
as well as gravitational and mixed anomalies.

Consider the seven-dimensional compactification of M-theory on T 4/Z2. The theory
has sixteen supercharges and the only multiplets in seven dimensions are supergravity and
vector-multiplets. Compactifying further on S1/Z2 breaks half of the supersymmetry and
decomposes the seven-dimensional vector-multiplet into a six-dimensional hypermultiplet
and a six-dimensional vector multiplet. The six-dimensional multiplets are chiral and
contribute to the anomaly on the six-planes. The vector multiplet contains vectors Cµ,yz,
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µ = 1, . . . , 6, y, z = 7, . . . , 10 arising from the eleven-dimensional three-form C with one
space-time index µ and two internal indices (y, z) of T 4/Z2. There are no vectors with one
index in the eleventh direction. If the internal five-dimensional space is a direct product
T 4/Z2 × S1/Z2, the vector changes sign under the x11 → −x11 projection (see (3.2))
and is projected out. It turns out that this is not consistent with anomaly cancellation
[89, 90]. Instead it is assumed that the compactification manifold is not really a direct
product but a “twisted” product which allows the vector components to survive the
orbifold projection in certain cases. We follow the literature [89, 90] in dealing with this
by using the “twisted” product structure of the geometry without specifying how the
geometry gets distorted. The twisted product is defined by obtaining a spectrum such
that anomaly cancellation works. There has been no direct formulation of this problem
in terms of the proper geometry.

The effect of the twisted product structure can be summarized as follows [89, 90]. It
should be stressed again that there has been no derivation of the following rules from
first principles, it is only possible to show that the anomalies cancel using this receipe.

If the gauge group on the seven-plane does not coincide with the perturbative gauge
group on the ten-plane, the six-dimensional vector multiplet survives the projection while
the six-dimensional hypermultiplet is projected out [90]. In this case the gauginos in the
chiral vector multiplet contribute to the anomaly. But as the fields are localized on
the seven-planes and not on the six-planes the anomaly is half of the standard anomaly
resulting from six-dimensional gauginos charged under the same gauge group.

If the seven-plane gauge group coincides with a factor of the perturbative gauge
group, the six-dimensional hypermultiplet survives the projection and contributes to the
anomaly while the six-dimensional vector multiplet is projected out. The contribution of
the hyperinos in the hypermultiplet to the anomaly is again half the standard anomaly
given by six-dimensional hyperinos charged under the same gauge group.

Another equivalent way of describing the twisting of the internal manifold is to im-
pose different boundary conditions on the six-dimensional N = 1 vector and hypermulti-
plets [89]. Free (Neumann) boundary conditions on one six-plane imply fixed (Dirichlet)
boundary conditions on the six-plane which is connected to the first one by a seven-
plane for the same multiplet. Neumann boundary conditions on the vector component
implies Dirichlet boundary conditions on the hyper components on the same six-plane
and vice versa. Imposing Dirichlet boundary conditions on a six-plane means that the
corresponding multiplet is invisible on that plane and projected out by the Z2 symmetry.

If the seven-plane gauge group does not coincide with the perturbative gauge group
Neumann boundary conditions are imposed on the six-plane on the vector multiplets and
Dirichlet boundary conditions on the hypermultiplets.

If the gauge group on the seven-plane coincides with a factor of the perturbative gauge
group Dirichlet boundary conditions are imposed on the vector multiplets and Neumann
boundary conditions on the hypermultiplets. Again, there has been no derivation of these
boundary conditions from first principles but one has to us the above receipe to obtain
anomaly freedom of the theory.

If the gauge group on the seven-plane is broken to some subgroup by the action of the
orbifold projection T 4/Z2, the seven-dimensional fields decompose into six-dimensional
fields according to representations determined by the breaking of the gauge group. The
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case that has been considered explicitly so far is a gauge group SU(N) broken to its
Cartan subgroup (U(1))N−1. There are (N−1) six-dimensional vector multiplets charged
under (U(1))N−1 surviving the projection. The projection of the (N2−1) six-dimensional
hypermultiplets charged under SU(N) has to be determined by anomaly cancellation
again with the result that 2(N−1) six-dimensional hypermultiplets survive the projection.

3.3 The Gauge Group SO(16)× [E7 × SU(2)]

As an example consider the gauge group G × G′ = SO(16) × [E7 × SU(2)], which was
analyzed in detail both in [89] and [90]. The breaking of the gauge group E8 → SO(16)
leads to a decomposition (248)→ (120)⊕ (128). There are 120 vector multiplets trans-
forming in the adjoint representation and 128 hypermultiplets transforming in the spinor
representation of SO(16). The breaking of the gauge group E8 → [E7 × SU(2)] on the
other ten-plane leads to a decomposition (248) → (133,1) ⊕ (1,3) ⊕ (56,2). The first
factor are 133 vector multiplets in the adjoint representation of E7, the second factor
are three vector multiplets in the adjoint representation of SU(2) and the third one are
112 hypermultiplets in the bifundamental representation. In addition the compactifi-
cation leads to four moduli which are hypermultiplets and gauge singlets and there is
one universal tensor multiplet which includes the dilaton. This spectrum is just the
untwisted massless spectrum of the weakly coupled heterotic theory. For the construc-
tion of heterotic spectra see [102, 103]. Thus the untwisted spectrum can be reproduced
successfully in the M-theory formulation by taking eleven-dimensional supergravity on
R

10 × S1/Z2 including the decomposition of the “twisted” E8 gauge fields and compact-
ifying the flat ten-dimensional space on T 4 to six dimensions projecting onto the modes
which are invariant under Z2 acting on the coordinates of the torus.

The twisted states of the T 4/Z2 orbifold are less straight forward. The twisted states
of the heterotic theory are sixteen half hypermultiplets 6 transforming as (16,1,2) of
SO(16) × [E7 × SU(2)]. The problem is that they transform under the gauge groups
on both ten-planes. It is not clear at first sight how to reproduce these states in M-
theory. The twisted states are located at the fixed points of the theory, either on the
sixteen fixed points on one ten-plane or on the sixteen fixed points on the other ten-
plane. As the ten-planes are separated by the interval of length l, the twisted states
should be charged under only one of the gauge groups of the ten-planes, never under
both. This problem has been resolved in [89],[90]. Both references come to the con-
clusion that it is necessary to include a non-perturbative SU(2) gauge group on each
of the sixteen fixed seven-planes such that the gauge groups on the fixed six-planes are
SO(16)pert×SU(2)non−pert and [E7×SU(2)]pert×SU(2)non−pert. Let us analyze the effect
of the additional sixteen non-perturbative SU(2) gauge groups. On the six-plane with a
perturbative [E7 × SU(2)] gauge group there is a non-perturbative gauge group SU(2)
as well as a perturbative SU(2). According to the above prescription there are SU(2)
hypermultiplets surviving the x11 → −x11 projection on these six-planes. The anomalies
on the six-planes including the contributions of the hypermultiplets indeed cancel. On
the six-planes with the perturbative SO(16) gauge group it is the the vector multiplets
that survive the projection and contribute to the anomalies. To cancel the anomalies one

6A half hypermultiplets contains exactly half the massless spectrum of a hypermultiplet
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indeed has to include additional sixteen half hypermultiplets transforming as (16,2) of
the gauge group SO(16)pert × SU(2)non−pert.

The anomaly calculation was done explicitly in [89],[90], we summarize the calculation
in appendix C.4. There are several contributions to the one-loop anomaly on the six-
planes resulting from the chiral projection of fields which live in the seven-dimensional
bulk and on the fixed ten-, seven- and six-planes. Adding up all contributions on the
six-planes with gauge group [E7 × SU(2)] leads to the resulting anomaly

Iresulting
12, [E7×SU(2)] =

1

(2π)34!
(− 1

32
− g1

8
)trR4 + (

1

128
+
g1

32
+

3g1

16
− 3η

4
)(trR2)2

+ (
3

32
+

3g1

4
+

3η

2
)trR2trF 2

E7
+ (− 21

32
+

3g1

4
+

3ρ

4
+

3η

2
)trR2trF 2

SU(2)

+ (− 3

16
− 3g1

4
)(trF 2

E7
)2 + (

21

16
− 3g1

4
− 3ρ

2
)(trF 2

SU(2))
2

+ (
9

8
− 6g1

4
− 3ρ

2
)trF 2

E7
trF 2

SU(2) (3.10)

on each six-plane and the resulting anomaly on the six-planes with gauge group SO(16)
is

Iresulting
12, SO(16) =

1

(2π)34!
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32
− g2

8
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33
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+
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4
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3
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)(trF 2

SO(16))
2 + (− 1 + 1)trF 4

SO(16) + (− 1 + 1)(trF 2
SU(2))

2

+ (
3

2
− 3ρ

2
)trF 2

SO(16)trF
2
SU(2), (3.11)

where g1 and g2 are the magnetic charges on the six-planes with [E7 × SU(2)] and
SO(16) gauge group and η and ρ parametrize the coupling of the thereeform C to seven-
dimensional fields as explained in appendix C.4. Vanishing of both anomalies fixes

g1 = −1/4, g2 = 1/4, η = 1/16 and ρ = 1. (3.12)

The charges g1, g2 arise in the anomaly via the inflow of the eleven-dimensional Chern-
Simons term

∫
C ∧ G ∧ G and the higher order term

∫
G ∧ X7 on each six-plane, see

eqn. (C.64) of the appendix. To be precise, the four-form field strength G fulfills a
modified Bianchi-identity dG 6= 0 with source terms on the fixed planes of the theory.
The contributions of the S1/Z2 fixed ten-planes are explained in the appendix, see eqn.
(C.35). Embedded into each ten-plane are the 16 fixed six-planes of the T 4/Z2 orbifold,
which give rise to a source term

dG =
32∑
i=1

giδ
(5)
(6−plane)i , (3.13)

where δ
(5)
(6−plane)i is a five-form with support on the i-th fixed six-plane. The charge gi

includes the gauge field F and the curvature term R with indices on T 4/Z2 only,

gi =

∫
T 4/Z2

(
(F ∧ F )i −

1

2
(R ∧R)i

)
(3.14)
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on the i-th fixed six-plane. The sum of the sixteen charges embedded into the same
ten-plane is the second Chern class of the gauge bundle c2 =

∑16
j=1

∫
T 4/Z2

(F ∧ F )j and

the curvature c2 =
∑16

j=1

∫
T 4/Z2

(R∧R)j, where the index j counts the fixed six-planes in

one ten-plane (the index i counts all fixed six-planes).

The curvature term can be determined by using the fact that the Euler number of
a K3 manifold is7 χ =

∫
K3
R ∧ R = 24. The K3-orbifold T 4/Z2 is smooth everywhere

except at the orbifold points. Thus the curvature term is concentrated at the sixteen
fixed-points of T 4/Z2 and we get (R ∧R)i = χ

16
= 3/2 and

gi =

∫
T 4/Z2

(F ∧ F )i −
3

4
. (3.15)

In the case of a gauge group SO(16)× [E7×SU(2)] the charge was determined in the last
section in eqn. (3.12) as gi = ±1/4. From this one can easily determine the instanton
number ci =

∫
(F ∧ F )i,

SO(16)(10−plane) × SU(2)(7−plane) : ci = 1, SU(2)g =1/4i

SO(16)

(3.16)

E7 × SU(2)(10−plane) × SU(2)(7−plane) : ci =
1

2
, SU(2)g =−1/4

i

E xSU(2)7

(3.17)

Pointlike instantons are explained in appendix A.4.2. The point-like instantons located
at the Z2 fixed points of the theory and thus have non-trivial holonomy. This will turn
out to be crucial for the construction of the dual F-theory compactification in the next
chapter.Note that the sum of the magnetic charges of one SO(16) and one E7 vertex
vanishes. This means in particular that in the limit of a weak coupling constant, or
small eleventh direction, the magnetic source vanishes on each fixed point of K3 as
expected from string theory. After glueing together sixteen pairs (3.16) and (3.17) we
have an overall vanishing magnetic charge, which is a necessary condition for anomaly
cancellation.

The main result of the analysis of [90, 89] reviewed above is the existence of additional
SU(2) gauge groups on the seven-planes. It is not clear however how to extract the single
heterotic SU(2)het gauge group from the seventeen SU(2) gauge groups, one perturbative
SU(2) on the ten-plane and sixteen non-perturbative SU(2)’s on the seven-planes, of M-
theory 8. Reference [89] suggests that the heterotic gauge group is the diagonal subgroup

SU(2)het = diag[SU(2)pert × (SU(2)non−pert)16], (3.18)

7The second Chern class of a two-fold is equal to the Euler number of the manifold, see appendix
A.2.2

8The gauge groups on the seven-planes are called non-perturbative because the seven-planes, and
thus the additional gauge groups do not exist in the perturbative weakly coupled heterotic string. The
gauge groups on the ten-planes do exist in the weakly coupled theory, thus they are called perturbative.
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Figure 2: First possibility: The diagonal subgroup of sixteen non-perturbative
SU(2)non−pert gauge groups and the perturbative SU(2) is identified with the heterotic
SU(2)het
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11x

*

E xSU(2)*

Figure 3: Second possibility: The gauge group SU(2)∗ = SU(2)het with non-perturbative
and perturbative contributions

and each of the sixteen twisted states transforms as (16,2) of SO(16) × SU(2)non−pert.
This is sketched in figure 2.

Reference [90] makes another suggestion, which is to identify the perturbative SU(2)
and the sixteen non-perturbative SU(2)non−pert’s to form a single gauge group

SU(2)het = SU(2)∗ (3.19)

as is sketched in figure 3.

The question of the correct identification of the heterotic SU(2) has not been con-
sidered so far and this is the central point of this chapter. To address this problem we
construct the dual F-theory formulation in the following.

3.4 The Dual F-Theory Formulation

As explained in the introduction, F-theory has been a useful tool in the past for gaining
insight into the non-perturbative behaviour of string theories. Following this idea, we
consider the F-theory formulation of the strongly coupled heterotic string and find out
that F-theory indeed resolves the puzzle about the heterotic SU(2) gauge group.
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F-theory compactified on an elliptically fibred manifold M with base B is defined as
IIB theory compactified on B, where the complex structure of the elliptic fibre of M is
identified with the complex dilaton of type IIB theory. From the duality (IIA theory
↔ M-theory on S1), one obtains via compactification on a circle and T-duality in one
direction the duality (IIB on S1 ↔ M-theory on T 2) of type IIB theory on a circle S1

and M-theory on a torus. The non-perturbative formulation of this duality in terms of
F-theory is

F− theory on N ↔ M− theory on T 2, (3.20)

where N is an elliptic fibration over S1. This duality can be used to construct the F-
theory formulation of the strongly coupled heterotic string. In the case that is relevant
in this section, M-theory is compactified on K3 × I in the the orbifold limit of the K3
manifold. Note that the orbifold limit is a singular limit of an elliptically fibered K3
manifold. Thus it is justified to consider an elliptically fibred K3. We have to take the
fibration of (3.20) over a P1 and in addition include the extra dimension of the interval
I of the M-theory side. This duality was studied in [104]. It was found that the dual
F-theory is compactified on an elliptically fibred threefold Y3 which is also a K3 fibration
over P1. This manifold is an elliptic fibration over a Hirzebruch surface, which is a P1

fibred over P1. It was shown in [104] the manifold obtained by squeezing the fibre P1

of the threefold to an interval I can be identified with the M-theory compactification
manifold. Thus one has the duality

F− theory on Y3 ↔ M− theory on K3× I. (3.21)

We use this duality in the orbifold limit T 4/Z2 of the K3. The duality between F-theory
and M-theory in the context of the heterotic string has also been studied for example in
[97, 99, 100].

We consider the F-theory formulation of the strongly coupled heterotic string with
gauge group SO(16)× [E7×SU(2)]. The goal is to find an answer to the question of the
correct identification of the heterotic SU(2) gauge group discussed at the end of section
3.3.

To obtain the six-dimensional theories, we assume that F-theory is compactified on
an elliptically fibered Calabi-Yau threefold with a section (see appendix A.2.2) and the
heterotic string is compactified on an elliptically fibred K3. We will explain at the
end of this section that this assumption is not quite correct. However, it simplifies the
problem significantly and gives a good description of the theory locally around each fixed
point. It turns out that this is enough to understand the SU(2) gauge groups. We keep
the problem as simple as possible and restrict ourselves to the classical geometry of the
heterotic K3 manifold, which means that both the base P1 and the elliptic fibre are large.

To understand the effect of the large volume limit of the base P1 in the dual F-theory,
we consider the dual pair IIA string theory compactified on a threefold and the heterotic
string on K3×T 2. The Kähler modulus of the base of the heterotic K3 is mapped
to the IIA dilaton. Thus in the large area limit of the base of the heterotic K3 the
spacetime instanton corrections in the dual IIA theory are suppressed. Decompactifying
the heterotic T 2 leads to the duality between F-theory on a Calabi-Yau three-fold and
the heterotic string on K3.
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To understand the effect large volume limit of the elliptic fibre, we consider eight-
dimensional F-theory on a K3 manifold and the heterotic string on T 2 in the large volume
limit of the heterotic torus. Below, we are going to fibre both manifolds over a P1 to
regain the six-dimensional theories. The elliptically fibred F-Theory K3 manifold can be
written in Weierstrass form (see appendix A.2.1)

y2 = x3 + a(s)x+ b(s), (3.22)

where s is a coordinate on the projective space P2 describing the elliptic fibre and a(s)
and b(s) are polynomials of degree 8 and 12 in s. As explained in appendix A.3.2 , the
elliptic fibre is singular if δ = 24(b(s))2 + 4(a(s))3 = 0. This is a polynomial of degree
24 and thus δ = 0 has generically 24 solutions. As explained in appendix A.3.2, several
singular fibres located at the same point s lead to non-trivial gauge groups. The singular
fibres can be classified due to the order O(a), O(b) and O(δ) of which the polynomials
a, b and δ vanish at the point s of the singular fibre, see table A.3.2. From table A.3.2
we see that in order to obtain a gauge group SO(16)× [E7×SU(2)], we have to put one
I∗4 fibre at s = 0 and one II∗ plus one I2 fibre at s = ∞. The remaining three singular
fibres are I1 fibres and located at finite points s.

Taking the large volume limit of the heterotic torus means pushing two I1 singularities
to s→ 0 and the other I1 singularity to s→∞. These are the same points at which the
singular fibres generating the gauge groups are located. This results in two singularities
of degree 12 at s = 0 and s =∞. As explained in A.3.2, singularities of degree 12 are not
possible for Calabi-Yau manifolds. Thus the points s = 0 and s =∞ require a blow-up.
This blow up is explained in detail in appendix A.3.3 and leads to the stable degeneration
of the F-theory threefold, as was first shown in [106] and explained in detail in [107]. The
base P1 degenerates into two P1’s intersecting at a point C∗. One P1 has one I∗4 fibre and
two I1 fibres and the other P1 has one III∗, one I2 and one I1 fibre. The important point
for the heterotic/F-theory duality is now that the fibre at the intersection point C∗ has
to be identified with the heterotic torus T 2.

The next step is to compactify further to six dimensions by taking the fibration of
both the heterotic torus and the degenerated F-theory K3 over a base P1. The F-theory
threefold is an elliptic fibration over a Hirzebruch surface Fn, which has degenerated to
two intersecting Fn. The intersection locus is now a curve instead of a point. This curve
together with the fibres along that curve form the K3 manifold which is to be identified
with the heterotic K3 in the large volume limit of the fibre.

In the language of divisors, Fn (before the stable degeneration) is described by the
exceptional section C0 with self intersection number C0 ·C0 = −n and the class of divisors
f of the P1 fibre of Fn with self-intersection number f · f = 0. The section C0 intersects
each fibre once, f · C0 = 1. We denote the divisor associated to the conormal bundle of
the elliptic fibre by L, as explained in appendix A.2.2. L is related to the canonical class
KFn of the base Fn by L = −KFn . This follows from the fact that the canonical class of
the Calabi-Yau threefold X is zero and from the adjunction formula (see appendix A.2.2)

KX = π∗(KFn + L), (3.23)

where π : X → Fn is the elliptic fibration of X. As explained in appendix A.2.2, the
divisor L is given by

L = 2C0 + (n+ 2)f. (3.24)
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We denote by A, B, and ∆ the divisors associated to the polynomials a = 0, b = 0 and
δ = 0 of the Weierstrass form. These divisors are fixed by the above line bundle,

A = 4L, B = 6L, ∆ = 12L. (3.25)

The SO(16) and E7 singularities are put along the sections C0 and C∞ = C0 +nf . They
do not intersect each other. Before we go into the details of our model we take the stable
degeneration limit. Instead of one we have two intersecting Fn,1 and Fn,2, which have a
section C0 and C∗ = C0 + nf each. Fn,1 and Fn,2 intersect along C∗. The line bundle L
of each of the intersecting threefolds is given by (3.24) minus the intersection curve −C∗
(see appendix A.3.3),

L = C0 + 2f. (3.26)

This implies that the divisors defined by the polynomials a = 0, b = 0 and δ = 0 are

A = 4C0 + 8f,

B = 6C0 + 12f,

∆ = 12C0 + 24f (3.27)

in the stable degeneration limit. Note that we consider only one of the two intersecting
manifolds. This tells us that in the stable degeneration limit each of the intersecting
threefolds can be described in Weierstrass form

y2 = x3 + a(s, t)x+ b(s, t), (3.28)

where s, t parametrize the base P1 and the fibre P1, the curve a(s, t) = 0 is the above
divisor A = 4C0 + 8f and the curve b(s, t) = 0 is the divisor B = 6C0 + 12f . Thus we
know for example from (3.27) that a is a polynomial of degree 4 in s and b is a polynomial
of degree 6 in s.

The next step is to find the explicit form of the polynomials a and b of (3.28) which
describe that model. Reproducing the correct gauge group restricts the possible form
of the polynomials. In addition we know from the last section that the dual M-theory
has non-vanishing instanton numbers on each orbifold fixed point. Being located at the
fixed points means that the instantons have a discrete Z2 holonomy. Thus we are looking
for an F-theory compactification manifold which also has instantons with a discrete Z2

holonomy. This class of models, i.e. F-theory compactifications on orbifolds including
instantons with discrete holonomy, were considered in [110]. For the sake of clarity and
compactness, we do not give an explanation of the rather involved calculations done in
[110] but use the results only. The stable degeneration of the F-theory threefold including
instantons with Z2 holonomy has the Weierstrass form

a(s, t) = a4(s, t)− 1

3
a2(s, t)2,

b(s, t) =
1

27
a2(s, t)(2a2(s, t)2 − 9a4(s, t)),

δ(s, t) = a4(s, t)2(4a4(s, t)− a2(s, t)2), (3.29)
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where s, t parametrize the base Fn and the subscripts denote the degree of the polynomials
a, b under rescaling (x, y) → (λ2x, λ3y) of the Weierstrass equation (3.22). As expected
for the manifold after the stable degeneration, a(s, t) is of degree 4 and b(s, t) is of degree
6.

The curves of the SO(16) and E7 singularities after the stable degeneration are located
along C0 of Fn,1 and Fn,2. Let us build the model which includes the fractional instantons
with Z2 holonomy considered in (3.29). SO(16) and E7 × SU(2) are indeed the only
possible gauge groups for models with a discrete Z2 holonomy, because they commute
with the holonomy group of the instantons. This is explained in appendix A.4.2 in greater
detail. Placing the perturbative gauge groups SO(16) and E7 along the curves s = 0 and
s = ∞ fixes the shape of the remaining SU(2) curve as we show in the following. We
denote by c0 the polynomial associated to C0. In other words C0 is defined by the curve
c0 = 0.

Let us first consider the half-plane Fn,1 with gauge group SO(16). The polynomials
a, b and δ vanish to orders 2, 3 and 10 on C0. To reproduce this in the Weierstrass model,
the polynomials a2 and a4 have to be of the form

a2(s, t) = c0(s, t)g(s, t)

a4(s, t) = c0(s, t)4h(s, t), (3.30)

where g = 0 is a divisor in the class C0 + 4f and h = 0 is a curve in the class 8f . As the
curves in the class 8f generically split into eight distinct fibres the polynomial is of the
form h = f1 . . . f8. Thus the Weierstrass model (3.29) is

a(s, t) = c0(s, t)2

(
c0(s, t)2f1(s, t) . . . f8(s, t)− 1

3
g(s, t)2

)
b(s, t) =

1

27
c0(s, t)3g(s, t)

(
2g(s, t)2 − 9c0(s, t)2f1(s, t) . . . f8(s, t)

)
,

δ(s, t) = c0(s, t)10f1(s, t)2 . . . f8(s, t)2
(
4c0(s, t)2f1(s, t) . . . f8(s, t)− g(s, t)2

)
.(3.31)

In addition to the perturbative gauge group SO(16), there are eight curves fi = 0 that
vanish of degree O(a) = 0, O(b) = 0 and O(δ) = 2. Comparison with table A.3.2 tells
us that we have eight I2 fibres which lead to eight additional SU(2) gauge groups. The
remaining discriminant

δ′ = δ(s, t)/
(
c0(s, t)10f1(s, t)2 . . . f8(s, t)2

)
= 4c0(s, t)2f1(s, t) . . . f8(s, t)− g(s, t)2(3.32)

describes a curve of I1 fibres and does not lead to any further gauge symmetry. The
discriminant curve δ′ = 0 is a divisor in the class 2C0 + 8f . Intersection theory tells us
that the discriminant curve intersects C0 exactly (2C0 + 8f) ·C0 = (8− 2n) times. From
(3.32) we see that at c0 = 0 (on C0), f 2

1 . . . f
2
8 =constant the discriminant δ′ vanishes

quadratically. Thus the discriminant curve has really (4 − n) intersections with C0 of
degree 2. Each fibre intersects the discriminant curve (2C0 + 8f) · f = 2 times, but from
(3.32) we see that there is really one intersection of degree 2 at each curve fi = 0, c0 finite.
Finally the discriminant curve has (2C0 + 8f) · (2C0 + nf) = 8 transversal intersections
with C∗. This is illustrated in figure 4.
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Figure 4: Fn,1 with a perturbative gauge group SO(16) and instantons with Z2 holonomy

The half-plane Fn,2 with gauge group E7 has vanishing polynomials O(a) = 3, O(b) =
5 and O(δ) = 9. The polynomials take the form

a2(s, t) = c0(s, t)2g(s, t)

a4(s, t) = c0(s, t)3h(s, t), (3.33)

where g = 0 is a curve in the class 4f and h = 0 is a curve in the class (C0 + 8f). In the
Weierstrass formulation we have

a(s, t) = c0(s, t)3

(
h(s, t)− 1

3
c0(s, t)g(s, t)2

)
b(s, t) =

1

27
c0(s, t)5g(s, t)

(
2c0(s, t)g(s, t)2 − 9h(s, t)

)
,

δ(s, t) = c0(s, t)9h(s, t)2
(
4h(s, t)− c0(s, t)g(s, t)2

)
. (3.34)

In addition to the E7 gauge symmetry on the curve c0 = 0, there are I2 fibres and thus an
SU(2) gauge group along the curve h(s, t) = 0. The curve h = 0 is in the class (C0 +8f).
The remaining discriminant is

δ′ = δ(s, t)/c0(s, t)9h(s, t)2 = 4h(s, t)− c0(s, t)g(s, t)2 (3.35)

and δ′ = 0 describes a curve of I1 fibres in the class (C0 + 8f), see figure 5. The curve
δ′ = 0 has (C0 + 8f) · C0 = (8 − n) transversal intersections with C0. The number of
intersections of C0 with the curve h = 0 with I2 fibres is (C0 + 8f) · C0 = (8 − n). The
curve δ′ = 0 with I1 fibres intersects the curve h = 0 with I2 at (C0 + 8f) · (C0 + 8f) = 8
points. Each intersection point is of degree 2 as for h = 0, c0 =constant the discriminant
δ′ vanishes quadratically. Thus we have really four intersection of degree 4. Both curves
with the I1 and the I2 fibres intersect C∗ eight times transversally.

To regain the complete degenerated threefold, we have to glue the two half planes
together along C∗ such that each intersection of the SU(2) curve on the E7 half-plane
with C∗ is also an intersection point of an SU(2) curve on the SO(16) half-plane with
C∗. The same is true for the I1 curves. C∗ has 24 singular fibres as is necessary for the
P

1 base of a K3 manifold.

Let us first analyze the SU(2) gauge groups. We see that the E7 half-plane has just one
SU(2) gauge group, whereas the SO(16) half-plane has eight separate non-perturbative
SU(2)’s. After glueing together the half-planes as described above the SU(2) curves
are connected and the manifold has only one SU(2) curve with components both in
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Figure 5: Fn,2 with perturbative gauge group E7 and instantons with Z2 holonomy

the fibre and the base direction of (Fn,1 ∨ Fn,2). The same should be true for the dual
M-theory formulation: To take the M-theory limit of the F-theory model we have to
shrink all two-cycles in the fibre P1 to one-cycles to create a one-dimensional interval.
Such a compactification manifold is often called squeezed manifold in the literature [104,
105]. This leaves us with a five-dimensional compactification manifold and the interval
is identified with the M-theory interval S1/Z2. Note that this shrinking process includes
the stable degeneration limit. In the stable degeneration limit a one-cycle in the fibre P1

is shrunk to zero size and we have two intersecting P1’s. If we shrink all one-cycles in
the same class to zero size instead of just one, we squeeze the P1 to the one-dimensional
interval which is identified with the M-theory S1/Z2.

P1 1P P1

degeneration
stable M−theory

limit
S1/Z2

Figure 6: The stable degeneration and M-theory limit of the P1 fibre of Fn

The result we get from considering the dual F-theory is that we really have only
one SU(2) gauge group in M-theory. This seems to be in agreement with the picture
suggested by [90] and the heterotic gauge group is really SU(2)het = SU(2)∗.

Let us analyze the above F-theory model in greater detail. We can count the instanton
numbers at the fixed points in the following way: The half planes have a total instanton
number of c = 12−n each, where n characterizes the base Fn. On the SO(16) half-plane
the I1 curve intersects C0 (4− n) times, these points are (4− n) pointlike instantons of
charge 1. The remaining fractional instantons with discrete holonomy are located at the
fixed points of the dual heterotic theory [110]. Every intersection of the I2 curve with
C∗ is such a Z2 fixed point. There are eight fixed points in our case. Thus to get a
resulting instanton number of c = 12−n we need to have eight fractional instantons with
charge c = 1 each. This is locally consistent with the M-theory model close to a fixed
point as anomaly cancellation requires an instanton number F ∧F = c = 1 at each fixed
point as sketched in (3.16). The counting works equivalently on the other half plane with
gauge group E7. There are (8−n) pointlike instantons of charge one and eight fractional
instantons at the fixed points with charge c = 1/2 each. This is consistent again with
the M-theory formulation in (3.17).

Although the instanton numbers are locally correct, they do not describe the model
we want globally. The total fractional instanton number on the SO(16) plane in the
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M-theory formulation is c = 16, whereas the F-theory model has a total c = 8. The
total fractional instanton number on the E7 plane is c = 8 in M-theory but c = 4 in our
F-theory model.

To put it another way the heterotic theory dual to our F-theory model has only
eight fixed points. As T 4/Z2 has sixteen fixed points, our model is clearly not dual to
the heterotic string compactified on T 4/Z2 or to its strong coupling limit M-theory on
T 4/Z2× I, but describes a different model. To resolve that problem we take the limit in
which two intersection points of curves with I2 fibres with C∗ and two intersection points
of curves with I1 fibres with C∗ are pushed to the same point. We take the same limit
C0, two curves with I2 fibres and two curves with I1 fibres intersect C0 at the same point.
This is possible only if we fix n = 4 on the E7 half-plane and n = −4 on the SO(16) plane.
Before the stable degeneration, this corresponds to choosing the base of the threefold to
be Fn with n = 4. The four intersection points along C∗ now have singularities of type D4

and give an SO(8) gauge group each. Every fixed-point contributes an instanton number
c = 4 on the SO(16) half-plane and c = 2 on the E7 half-plane. Each singularity along
C∗ can now be blown up resulting in four SU(2) singularities. There is no Weierstrass
formulation of that model, but we can see that we end up with four Z2 singularities
at four points in C∗. Thus the heterotic K3 manifold we construct from C∗ after the
blow-up and the fibres along that curve has sixteen Z2 singularities, this is the T 4/Z2

orbifold we wanted. The instanton numbers at the fixed points are correct both locally
and globally, we have c = 1 for each of the sixteen fixed points on the SO(16) half plane
and c = 1/2 for each of the sixteen fixed points on the E7 half plane. We have found the
F-theory formulation of the strong coupling limit of the heterotic string compactified on
T 4/Z2 with gauge group SO(16)× [E7 × SU(2)].

3.5 Other Gauge Groups

In this section we apply the above procedure to models with other gauge groups. M-
theory compactified on T 4/Z2 × S1/ZN with many different gauge groups is considered
in [89],[90].

3.5.1 M-Theory on S1/Z2 × T 4/ZN with other Gauge Groups

To construct a consistent M-Theory compactification on S1/Z2 × T 4/Z2, it is necessary
to fulfill the local anomaly cancellation conditions on each six-plane, as was explained for
gauge group SO(16)×[E7×SU(2)]. The anomaly cancellation conditions fix the magnetic
charge gi and thus the instanton number on each six-plane and one can construct vertices
of the form (3.16) and (3.17). Starting with the perturbative gauge group one can derive
the seven-plane gauge group from six-dimensional anomaly cancellation. To obtain a
model which is also globally consistent, that is with a vanishing overall magnetic charge,
one has to glue together the vertices such that the total magnetic charge vanishes. This
is not always possible in perturbative compactifications and in some cases five-branes
have to be included. Apart from the two consistent vertices (3.16) and (3.17) there are
additional ones with gauge groups Epert

8 × U(1)non−pert and magnetic charge gi = −3/4
and [E7 × SU(2)]pert × U(1)non−pert with gi = 3/4 on each six-plane, where the U(1)
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gauge group in both cases can be either an SU(2) broken to U(1) or a U(1) from the
beginning9.

Consider the compactification with a perturbative gauge group E8×E8 [90, 89]. The
untwisted spectrum includes the vector multiplets transforming as (248,1) and (1,248)
of the unbroken gauge group, four neutral supergravity moduli and the universal tensor
multiplet. Anomaly cancellation determines the gauge group on the seven-planes to
be (U(1))16 which can be either sixteen SU(2) gauge groups broken to U(1) or sixteen
U(1) gauge groups from the start. Both theories are consistent and equivalent from the
point of view of anomaly cancellation. The spectrum consists of sixteen neutral vector
multiplets surviving the projection on the seven-plane and of thirty-two neutral twisted
hypermultiplets on the six-planes. The fixed six-planes have zero instanton number and
thus a magnetic charge of gi = −3/2 each. To cancel this charge it is necessary to
include additional 24 five-branes with magnetic charge g = 1 each. The five-branes are
generically located away from the fixed-planes and lead to additional 24 tensor multiplets
in the spectrum. This model is an example of a non-perturbative compactification due
to the presence of the five-branes.

Another perturbative example is the strong coupling limit of the standard embedding
of the heterotic string with a perturbative gauge group E8 × [E7 × SU(2)] [90, 89]. The
untwisted spectrum consists of vector multiplets transforming as (248,1,1) from the
unbroken E8 and of vector and hypermultiplets transforming as (1,133,1)⊕ (1,1,3)⊕
(1,56,2) from the other ten-plane with gauge group E8 → [E7 × SU(2)]. The non-
perturbative gauge group on the seven-planes can be derived again locally on each fixed
six-plane first. For the [E7 × SU(2)] vertices we get either the picture (3.17) with a
non-perturbative SU(2) gauge group on the seven-plane or a U(1) which can be either
an SU(2) gauge group broken to U(1) or a U(1) from the start. The E8 vertex has either
a U(1) gauge group on the seven-plane or an SU(2) broken to U(1) as mentioned in the
last example with unbroken E8×E8 gauge group. If one E8 and one [E7×SU(2)] vertex
are glued together, there has to be the same gauge group on the seven-plane which
connects the two vertices. This rules out the gauge group U(1) on each seven-plane,
which can possibly be an SU(2) broken to U(1). If one restricts to the case of a U(1)
gauge group on the seven-planes from the start, the spectrum contains in addition sixteen
neutral vector multiplets, sixteen twisted neutral hypermultiplets on the E8 six-plane and
sixteen hypermultiplets transforming as [1

2
(1,56,1)⊕2(1,1,2)] on the [E7×SU(2)] six-

planes. The case where the seven-plane gauge group is SU(2) → U(1) has not been
considered explicitly but has the same spectrum as the case with the U(1) gauge group
on the seven-planes and does lead to the same results.

None of the last two examples has twisted states which are charged under both ten-
plane gauge groups. These states only exist in the first example with gauge group
SO(16) × [E7 × SU(2)]. To be more general, this kind of twisted states only exist if
the non-perturbative gauge group coincides with one factor in the perturbative gauge
groups on the ten-planes, in this case there is a non-perturbative as well as a pertur-
bative SU(2). This can be verified also in compactifications on higher-order orbifolds.
One example is the compactification of M-theory on the orbifold R10 × T 4/Z3 × S1/Z2

9For each vertex mentioned so far there is another one with the same gauge group but a magnetic
charge gi + 1, these are also considered in [90]. These vertices have an additional point-like instanton
with charge one pushed into the six-plane.

42



[89, 90, 110] with gauge group SU(9) × [E6 × SU(3)]. The orbifold T 4/Z3 × S1/Z2

has eighteen fixed six-planes which are the intersections of the nine fixed seven-planes
of the Z3 orbifold and the two fixed ten-planes of the Z2 orbifold. In addition to the
perturbative gauge group there are nine non-perturbative SU(3) gauge groups on the
seven-planes. The untwisted spectrum on the ten-plane with gauge group E8 → SU(9)
has vector multiplets transforming as (80) and hypermultiplets transforming as (84).
On the other ten-plane the vector multiplets transform as (78,1)⊕ (1,8) and the hyper-
multiplets transform as (27,3) of [E7 × SU(2)]. The untwisted spectrum also includes
the universal tensor multiplet and two neutral moduli which are hypermultiplets. The
twisted states are localized on the six-planes with the perturbative SU(9) gauge group
and are charged under SU(9)pert×SU(3)non−pert. The situation is similar to that of the Z2

orbifold with gauge group SO(16)× [E6 × SU(3)]. It is not obvious again to determine
whether there is a single gauge group SU(3) on the five-dimensional compactification
manifold or whether there are seventeen SU(3)’s whose diagonal subgroup is identified
with the heterotic SU(3).

Finally we briefly mention a model which was considered in [94, 95, 96] and in [97]
in the context of the duality between M-theory on R10 × T 4/Z2 × S1/Z2 and F-theory
compactified on T 6/(Z2×Z2). The gauge group is (SO(8))8, four of which are perturba-
tive and four are non-perturbative and put along the seven-planes. We come back to this
model at the end end of the next section and show how this model is connected to the
compactifications with sixteen non-perturbative SU(2) gauge groups considered above.

In the next section we consider F-theory compactifications on Calabi-Yau threefolds
dual M-theory models described above.

3.5.2 The Dual F-Theory Formulation with other Gauge Groups

Let us first consider the the strong coupling limit of the heterotic string on T 4/Z3 with a
gauge group [E6 × SU(3)]× SU(9) mentioned above. In the M-theory picture, anomaly
cancellation requires a non-perturbative SU(3) gauge group on each fixed seven-plane.
Thus the non-perturbative gauge group coincides with a factor of the perturbative gauge
group. The twisted states of the heterotic theory transform as (1,3,9) and are located
at the nine six-planes which are the intersection of the SU(9) ten-plane with the seven-
planes. The i-th fixed six-plane carries a magnetic charge

gi = (F ∧ F − 1

2
R ∧R)i = (F ∧ F )i − 4/3 (3.36)

due to the nine fixed points of T 4/Z3.

Again one can ask the question whether there is one single SU(3) or ten SU(3)’s
whose diagonal subgroup is identified with the heterotic SU(3). The methods used in 3.4
easily extend to this case. We consider F-theory compactified on a threefold including
fractional instantons, this time with a discrete Z3 holonomy. As mentioned in [97], due
to the holonomy group, the only possible perturbative gauge groups are E6×SU(3) and
SU(9). The polynomials a, b and δ are of the form

a = a1(s, t)

(
1

2
a3(s, t)− 1

48
a1(s, t)3

)
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b =
1

4
a3(s, t)2 +

1

864
a1(s, t)6 − 1

24
a1(s, t)3a3(s, t)

δ =
1

16
a3(s, t)3(27a3(s, t)− a1(s, t)3) (3.37)

Again the variables s, t parametrize the base Fn of the threefold and the subscripts
denote the degree of the coefficients under rescaling (x, y)→ (λ2x, λ3y) of the Weierstrass
equation.

On the half-plane with a perturbative gauge group E6 along C0 the polynomials a,
b and δ vanish to order O(a) = 3, O(b) = 4 and O(δ) = 8. The polynomials a1(s, t),
a3(s, t) are of the form

a1(s, t) = c0(s, t)g(s, t)

a3(s, t) = c0(s, t)2h(s, t), (3.38)

where g = 0 is a curve in the class 2f and h = 0 is a curve in the class (C0 + 6f). The
Weierstrass equation (3.37) is 10

a = c0(s, t)3g(s, t)

(
1

2
h(s, t)− 1

48
c0(s, t)g(s, t)3

)
b = c0(s, t)4

(
1

4
h(s, t)2 +

1

864
c0(s, t)2g(s, t)6 − 1

24
c0(s, t)g(s, t)3h(s, t)

)
δ =

1

16
c0(s, t)8h(s, t)3

(
27h(s, t)− c0(s, t)g(s, t)3

)
(3.39)

We have one curve with I3 fibres at h = 0 in the class (C0 + 6f) which leads to an
additional SU(3) gauge group. From the discriminant

δ′ = δ/
1

16
c0(s, t)8h(s, t)3 = 27h(s, t)− c0(s, t)g(s, t)3 (3.40)

we extract that the curves with I1 fibres are in the class (C0 + 6f) and intersect C0

(C0 + 6f) ·C0 = (6− n) times. Also a curve with I3 fibres intersects C0 (C0 + 6f) ·C0 =
(6−n) times. The I1 intersects the I3 curve twice of degree 3 as (C0 +6f) · (C0 +6f) = 6
and the discriminant δ′ vanishes to order 3 at h = 0, c0 constant. Both the I1 and I3

curves intersect C∗ six times. We have (6 − n) pointlike instantons and in order to get
total instanton number c = 12− n the six fractional instantons need to have charge one
each.

Considering the other plane with gauge group SU(9) we have

a1(s, t) = g(s, t)

a3(s, t) = c0(s, t)3h(s, t), (3.41)

where g = 0 is a curve in the class (C0 + 2f) and h = 0 is a curve in the class 6f and
thus splits as h(s, t) = f1(s, t) . . . f6(s, t), where each fi = 0 is a curve in the class f . The

10The polynomial g really splits into two factors g = f1f2 but as this is of no importance in this case
we use the function g
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Weierstrass equation is

a = g(s, t)

(
1

2
c0(s, t)3f1(s, t) . . . f6(s, t)− 1

48
g(s, t)3

)
b =

1

4
c0(s, t)6f1(s, t)2 . . . f6(s, t)2 +

1

864
g(s, t)6 − 1

24
c0(s, t)3g(s, t)3f1(s, t) . . . f6(s, t)

δ =
1

16
c0(s, t)9f1(s, t)3 . . . f6(s, t)3

(
27c0(s, t)3f1(s, t) . . . f6(s, t)− g(s, t)3

)
(3.42)

There are six curves with I3 fibres along fi = 0 and one I1 curve along along δ′ = 0 with

δ′ = δ/
1

16
c0(s, t)9f1(s, t)3 . . . f6(s, t)3 = 27c0(s, t)3f1(s, t) . . . f6(s, t)− g(s, t)3. (3.43)

The I1 curves are in the class (3C0 + 6f). The curve with the I3 fibres intersect curves
in C∗ six times and the I1 curves have (2 − n) intersections with C0. Thus we have six
fractional instantons with charge c = 5/3.

Glueing together the two half-planes along C∗ leads to a vanishing magnetic charge
g =

∑18
i=1 gi as required by anomaly cancellation. Again we have to take the blow-up of

the correct limit of the base-manifold to obtain the model which is dual to the heterotic
theory we started with. The limit is to push two intersections of the I3 curve and two
intersections of the I1 curve with C∗ to the same point. We push the pointlike instantons
to intersection points of I3 with C0 and fix n = 3 on the E6 half-plane and n = −3 on the
SU(9) half-plane. There are three points with E6 singularities along C∗ with instanton
number c = 3 on the E6 plane and c = 5 on the SU(9) plane. The points in C∗ with E6

singularities are blown up to three exceptional divisors with an I3 singularity each. This
leads to the correct manifold T 4/Z3 with nine fixed points in the dual heterotic theory
and instanton number c = 1 and c = 5/3 on the fixed points.

Let us finally apply the same methods to the model with gauge group (SO(8))8 consid-
ered in [97]. Four SO(8)’s are perturbative gauge groups and four are non-perturbative.
The compactification manifold of the F-theory model is the threefold T 6/(Z2 × Z2).
The base of the manifold is T 2/Z2 × T 2/Z2 which is a singular limit of F0 = P

1 × P1

and the base should be invariant under exchanging the two P1’s. This means that the
theory should be invariant under exchanging the perturbative and the non-perturbative
gauge groups, which is indeed the case. This model is dual to M-theory compactified on
T 4/Z2 × S1/Z2 and to the heterotic string compactified on T 4/Z2 with the same gauge
group. Again there are fractional instantons at the fixed points of the theory. Com-
parison with [110] tells us indeed that for F-theory compactified on a manifold including
instanton with a discrete (Z2×Z2) symmetry the only possible perturbative gauge groups
are SO(8)× SO(8) and SO(12)× SO(4). The polynomials a, b and δ are of the form

a =
1

3
(b2(s, t)c2(s, t)− b2(s, t)2 − c2(s, t)2)

b = − 1

27
(b2(s, t) + c2(s, t))(b2(s, t)− 2c2(s, t))(2b2(s, t)− c2(s, t))

δ = −b2(s, t)2c2(s, t)2(b2(s, t)− c2(s, t))2. (3.44)

The instanton-number of each half-plane after the stable degeneration is c = 12 as
the base of the threefold is T 2/Z2 × T 2/Z2 which is a singular limit of Fn with n = 0.
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We consider a perturbative gauge group SO(8)×SO(8) on each half-plane, which means
that a, b and δ vanish as O(a) = 2 · 2, O(b) = 2 · 3 and O(δ) = 2 · 6. This determines

b2(s, t) = c0(s, t)2g(s, t)

c2(s, t) = c0(s, t)2h(s, t), (3.45)

where g(s, t) = 0 is in the class 4f and thus factorizes as g(s, t) = f1(s, t) . . . f4(s, t). The
same is true for h(s, t) and we get h(s, t) = f̃1 . . . f̃4. The Weierstrass equation is

a =
1

3
(c0(s, t)2)2

(
f1(s, t) . . . f4(s, t)f̃1 . . . f̃4 − f1(s, t)2 . . . f4(s, t)2 − f̃ 2

1 . . . f̃
2
4

)
b = − 1

27
(c0(s, t)2)3

(
f1(s, t) . . . f4(s, t) + f̃1 . . . f̃4

)(
f1(s, t) . . . f4(s, t)− 2f̃1 . . . f̃4

)
(

2f1(s, t) . . . f4(s, t)− f̃1 . . . f̃4

)
(3.46)

δ = −(c0(s, t)2)6
(
f1(s, t)2 . . . f4(s, t)2

) (
f̃ 2

1 . . . f̃
2
4

)(
f1(s, t) . . . f4(s, t)− f̃1 . . . f̃4

)2

.

In addition to the perturbative SO(8)× SO(8) gauge group, there are 12 curves with I2

fibres. Taking the limit fi = jf̃i with j = constant leads to

a =
1

3
(c0(s, t)2)2f1(s, t)2 . . . f4(s, t)2(j − 1− j2)

b = − 1

27
(c0(s, t)2)3(1 + j)(1− j)(2− j)

δ = −(c0(s, t)2)6f1(s, t)6 . . . f4(s, t)6j2(1− j) (3.47)

and gives the desired additional four curves fi = 0 with D4 singularities leading to
four SO(8) gauge groups. Glueing together two half-planes leads to the total gauge
group (SO(8))8. As the discriminant after dividing by the perturbative gauge group is
δ′ = f1(s, t)6 . . . f4(s, t)6 there are no pointlike instantons but four fractional instantons
with charge c = 3 each. Again the four intersections of the D4 singularities with C∗ have
to be blown up to get the correct heterotic compactification manifold with sixteen Z2

fixed points. Each fixed point has instanton number c = 3/4 and the magnetic charge
vanishes. Note that [97] does not quite describe the dual F-, M- and heterotic theories
but their Weierstrass formulation which includes the four non-perturbative SO(8) gauge
groups. After the blow-up, the dual heterotic theory has sixteen Z2 singularities as
required by the orbifold compactification. At this point, the theory has a perturbative
gauge group (SO(8))4 and a non-perturbative gauge group (SU(2))16. If we want to keep
invariance under exchanging the perturbative and the non-perturbative gauge groups the
perturbative SO(8) gauge groups have to be broken to SU(2) as well. The model has
a gauge group (SU(2))32 in this case, sixteen of which are perturbative and sixteen are
non-perturbative.

As a last remark note that the methods of this section do not apply to models which
include U(1) gauge groups, for example M-theory on T 4/Z2 × S1/Z2 with gauge group
E8 × E8 × (U(1)16). There is no way in the dual F-theory picture to include geometric
singularities into the compactification manifold which produce U(1) gauge groups as
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can be seen in table A.3.2. Thus we are not able to give a geometric explanation from
the F-theory picture for the sixteen non-perturbative U(1) gauge groups on the fixed
seven-planes of the M-theory compactification. The problem of U(1) gauge groups was
considered in [118] and it was shown that the U(1) gauge groups can be explained in
terms of string junctions.

3.6 Summary and Outlook

The strong coupling limit of the E8×E8 heterotic string is given by M-theory compactified
on the one-dimensional orbifold S1/Z2 [15]. Due to the lack of an underlying formulation
of M-theory, one has to rely on physical consistency conditions in constructing the theory.
In particular, anomaly cancellation has proven essential for fixing the spectrum and the
gauge group of the theory. The spectrum and the gauge group are completely in accord
with ten-dimensional heterotic string theory in the limit of a small compact eleventh
dimension. This limit just provides the weak coupling limit. However, compactifying
M-theory on S1/Z2 further on a four-dimensional orbifold T 4/ZN to six dimensions, one
obtains highly non-intuitive rules for the spectrum and the gauge group of the theory
from anomaly cancellation [89, 90]. A complete understanding of these rules from physical
principles has not been achieved yet. The target of chapter 3 is to investigate the rules
closely in order to contribute to the progress in finding an explanation for them. We
address the problem by considering the dual formulation in terms of F-theory. To build
an explicit model, we consider the example of an orbifold T 4/Z2 and a perturbative
gauge group E7× [SO(16)× SU(2)]. In section 3.4, we explicitly construct the F-theory
compactification manifold which, locally around the fixed points of the orbifold, gives the
correct description of the model. We show that the F-theory formulation indeed contains
new information about the non-perturbative behaviour. This allows to understand some
of the rules developed by anomaly cancellation directly from F-theory. In section 3.5, we
use the methods developed in section 3.4 to generalize the results to models on different
orbifolds and with other gauge groups.

As mentioned above, the F-theory compactification manifold describes the dual M-
theory model correctly locally around each fixed point. Technically spoken, this is the
case because we construct the F-theory manifold as a Weierstrass model, which means
a restriction on the class of possible manifolds. The compactification manifold which
produces the correct picture also globally is more complicated and does not belong to
this class of manifolds. However, one might expect that the precise dual F-theory for-
mulation contains more information than the locally correct one. Thus a task for future
investigations is to extend the dual local F-theory description to a picture which is also
globally valid.

Another aspect for future investigations is to extend the methods developed in chapter
3 to four-dimensional models. We expect that these theories are more complicated than
the six-dimensional ones. Having a four-dimensional space-time however, they are of
great relevance due to their closer link to realistic scenarios. Four-dimensional models of
the strongly coupled heterotic string compactified on orbifolds have been considered in
[92]. It would be interesting to construct the dual non-perturbative F-theory formulation
of these models.
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Appendix

A Calabi-Yau Manifolds

In this appendix we explain some aspects of Calabi-Yau manifolds. Due to the restricted
length of the thesis, the general introduction A.1 is kept very brief and rather a summary
of facts than a self-contained introduction. We mainly concentrate on the aspects that are
relevant for the calculations in the chapters 2 and 3 and explain some important concepts
in greater detail. For a general, non-specialized overview of Calabi-Yau manifolds see for
example [1, 3, 4] and also [65].

A.1 General Introduction

A.1.1 (Co)Homology

The exterior derivative d takes a p-form to a (p+ 1)-form

dAp =
1

p!
∂µAµ1...µpdx

µ ∧ dxµ1 ∧ . . . dxµp . (A.1)

The exterior derivative is nilpotent, that is d2 = 0. A p-form Ap is closed if the exterior
derivative vanishes, dAp = 0, and exact if it is the exterior derivative of some (p−1)-form
Ap = dB(p−1). From d2 = 0 it follows that an exact form is always closed, that means it
fulfills dAp = 0 trivially. The p-forms that provide non-trivial solutions to the equation
dAp = 0 are obtained by taking the quotient of the closed p-forms and the exact p-forms
forms. This defines the pth de Rham cohomology on some manifold M ,

Hp(M) =
{Ap|dAp = 0}

{Bp|Bp = dC(p−1)}
. (A.2)

The dimension of the de Rham Cohomology is called the Betti number,

bp(M) = dimHp(M). (A.3)

The Euler-number of the manifold M is

χ(M) =
d∑
p=0

(−1)pbp(M), (A.4)

where d is the dimension of M .

The Poincare dual of a p-form is defined by

∗(Ap) =
1

p!(d− p)!
εµ1...µp

ν(p+1)...νd
Aµ1...µpdx

ν(p+1) ∧ . . . dxνd , (A.5)

which is a (d − p)-form. The operator ∆ = dd† + d†d is the Laplace operator in M (to
be precise it reduces to the Laplace operator in flat space), with d† = (−1)dp+d+1 ∗ d∗.
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A p-form is called harmonic if ∆Ap = 0. It can be shown that the harmonic forms of M
are in one-to-one correspondence with the de Rham cohomology. Every harmonic form
corresponds to one equivalence class of the cohomology.

The Hodge decomposition theorem states that every p-form can be uniquely written
as

Ap = dB(p−1) + d†C(p+1) + A′p. (A.6)

If Ap is closed, C(p+1) vanishes and the decomposition reads Ap = dB(p−1) + A′p.

It can be shown that the Poincare dual ∗(Ap) is harmonic if and only if Ap is harmonic.
This implies

bp(M) = b(d−p)(M). (A.7)

The integrals over p-dimensional submanifolds Np of M ,
∫
Np

, form a vector space. The

linear combinations of these integrals

np =
∑
l

cl

∫
N l
p

, (A.8)

where cl are constants, are called chains. The boundaries of the submanifolds δNp are
defined by a nilpotent boundary operator δ. Just as for the exterior derivative one can
define closed and and exact chains with respect to δ. The closed chains are called cycles.
From δ2 = 0 it is clear that exact chains are closed trivially, in other words the boundary
δNp of some submanifold Np has no boundaries. The p-dimensional submanifolds of M
which are closed but not the boundary of some other submanifold form the pth simplicial
homology

Hp(M) =
{np =

∑
l cl
∫
N l
p
|δN l

p = 0}
{op =

∑
dl
∫
Olp
|Ol

p = δP l
(p+1)}

. (A.9)

The de Rham cohomology Hp(M) and the simplicial homology Hp(M) are isomorphic,
that is for any p-form Ap there is a (d− p)-cycle N(d−p) such that∫

M

Ap ∧B(d−p) =

∫
N(d−p)

B(d−p) (A.10)

for any closed (d − p)-form B(d−p). Usually, the integrals in (A.9) are omitted and one
refers to the cycles as elements of the homology.

Depending on whether the coefficients cl in (A.8) are real, complex or integer, the ho-
mology is called the real, complex or integer homology Hp(M,R), Hp(M,C) or Hp(M,Z).

For two cycles N ∈ Hp(M), M ∈ Hq(M), with p + q = d, one may define an inner
product given by

N ·M = #(N ∩M), (A.11)

where #(N ∩ M) counts the number of intersections of the cycles N and M in M .
Transverse intersections with positive orientation contribute one and intersections with
negative orientation contribute with minus one to the total intersection number. If the
dimensions p, q of the cycles N,M do not add up to the complex dimension of the
manifold, the intersections define not points but d − p − q-dimensional submanifolds of
M .
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A.1.2 Complex Manifolds

A complex manifold is a manifold of even dimension 2d with local complex coordinates
zi on patches in M and local complex coordinates z′i on different patches in M such that
the transition functions z′i(zj) are holomorphic. A complex manifold admits a complex
structure J . A complex structure is an integrable almost complex structure, that means
it is an integrable tensor field J on M with one covariant and one contravariant index
that obeys J2 = −1. It can be shown that an almost complex structure is integrable if
and only if the Nijenhuis tensor

Nk
ij = J lj(∂lJ

k
j − ∂jJkl)− J lj(∂lJki − ∂iJkl) (A.12)

vanishes. The existence of a complex structure on some manifold M can be used in-
deed to define a complex manifold. The complex structure of a complex manifold does
not necessarily have to be unique. That means two manifolds which are topologically
equivalent can have inequivalent complex structures and thus be inequivalent as complex
manifolds.

On a complex manifold it is always possible to choose local holomorphic coordinates
zi, z̄ ı̄, i, ̄ = 1, . . . d, such that the complex structure takes the form

J i
j = iδ i

j , J ı̄
̄ = −iδ ı̄

̄ , (A.13)

all other components zero. In these coordinates one can define (p, q)-forms as p+q-forms
with p holomorphic and q anti-holomorphic indices,

A(p,q) =
1

p!q!
Ai1...ip ı̄1...̄ıqdz

i1 ∧ . . . dzipdz̄ ı̄1 ∧ dz̄ ı̄q . (A.14)

The exterior derivative in terms of the complex coordinates is d = ∂+∂̄ with ∂2 = ∂̄2 = 0,
such that ∂ = dzi∂i takes a (p, q)-form to a (p + 1, q)-form and ∂̄ = dz̄ ı̄∂ı̄ takes a (p, q)-
form to a (p, q + 1)-form. The de Rham Cohomology (A.2) splits into the cohomology

H
(p,q)
∂ (M) of the ∂-closed (p, q)-forms on M and the cohomology H

(p,q)

∂̄
(M) of the ∂̄-closed

(p, q)-forms on M, they are called the Dolbeaut Cohomology groups. The dimensions of
the Dolbeaut Cohomology groups are the Hodge numbers h(p,q). The ∆∂ = ∂∂† + ∂†∂
resp. ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄ harmonic (p, q)-forms of M are in one-to one correspondence with

H
(p,q)
∂ (M) resp. H

(p,q)

∂̄
(M). Note that one can also define the Laplace operator ∆d with

d = ∂ + ∂̄, thus there are three different Laplace operators on complex manifolds.

Every complex manifold admits a Hermitian metric, that is a metric which satisfies

gij = gı̄̄ = 0, (A.15)

only the components gī are non-vanishing. A Hermitian metric satisfies the equation
gī = J k

i J
l̄
̄ gkl̄ and multiplying with J ̄

m̄ leads to Jim̄ = −Jm̄i, where Jim̄ = J k
i gkm̄ = igim̄

and Jm̄i = J ̄
m̄gī = igm̄i. Thus one naturally gets a (1, 1)-form

J = Jīdz
i ∧ dz ̄ = igīdz

i ∧ dz ̄ (A.16)

on a complex manifold.
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A.1.3 Kähler Manifolds

A Kähler manifold is a complex manifold with a Hermitian metric gī such that the
natural two-form (A.16) is closed,

dJ = 0. (A.17)

An equivalent definition is that the Hermitian metric is locally of the form

gī = ∂i∂̄K(z, z̄), (A.18)

where K(z, z̄) is the Kählerpotential. The metric is invariant under transformations

K ′(z, z̄) = K(z, z̄) + f(z) + f(z̄). (A.19)

For Kähler manifolds the three Laplace operators are related as

∆d = 2∆∂ = 2∆∂̄. (A.20)

This in turn relates the Dolbeaut cohomologies

H
(p,q)
∂ (M) = H

(p,q)

∂̄
(M) (A.21)

and the Betti numbers with the Hodge numbers

br =
∑

(p+q)=r

h(p,q). (A.22)

Furthermore, complex conjugation gives h(p,q) = h(q,p) and Hodge * gives h(d−p,d−q) =
h(p,q).

A.1.4 Holonomy

Upon parallel transport around a closed curve in M , tangent vectors are transformed
by an orthogonal matrix. These matrices form a group, the Holonomy group. For a
Riemannian manifold the Holonomy group is SO(d). For manifolds of even dimension,
one can show that

U(d) Holonomy ↔ M is a Kähler manifold,

this can indeed be used next to (A.17) and (A.18) as a third alternative definition for
Kähler manifolds. Another important statement is that

SU(d) Holonomy ↔ M is a Kähler manifold and Ricci-flat,

where Ricci-flatness means that the Ricci-tensor Rī = Rk
kī obtained from the Rie-

mann tensor Ri
jkl̄

= −∂l̄(gm̄i∂kgjm̄) vanishes. The Ricci-form R = Rīdz
i ∧ dz̄ ̄ is closed,

dR = 0, but in general not exact because it can be written as the derivative of a term
locally but not necessarily globally. Therefore the Ricci-form defines an equivalence class
in H(1,1)(M). This equivalence class is the first Chern class, c1(M) =

[
R
2π

]
. A manifold

that admits an exact Ricci-form has vanishing first Chern class.
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A.1.5 Calabi-Yau Manifolds

Calabi-Yau manifolds are Kähler manifolds with c1 = 0. It was conjectured by Calabi
and proven by Yau that that for a Kähler manifold with vanishing first Chern class
there exists a unique Ricci-flat metric for any given Kähler form and complex structure.
Using the statements of the last section, it is clear that Calabi-Yau manifolds of complex
dimension d have a holonomy group SU(d).

It can be shown that a Kähler manifold has c1 = 0 if and only if there exists a unique
nowhere vanishing holomorphic (d, 0)-form Ω. The holomorphic (d, 0)-form is covariant
constant with respect to the Ricci-flat metric. For the Hodge numbers the existence of a
unique (d, 0)-form implies the relation

h(p,0)(M) = h(p,d−p)(M). (A.23)

For a complex d-dimensional Calabi-Yau manifold with Holonomy SU(d) (not a subgroup
of SU(d)) it can be shown that

h(0,p) = 0, p 6= 0, d. (A.24)

A.1.6 Algebraic Calabi-Yau Manifolds

Of great importance are algebraic Calabi-Yau manifolds, i.e. Calabi-Yau manifolds that
can be expressed as complex hypersurfaces embedded in the complex projective space
P
N for some N . The complex projective space PN is parametrized by complex variables
xk, k = 1, . . . , xN+1, such that for any complex number λ the family {xk} is identified
with the family {λxk} 11. These coordinates are called homogeneous coordinates. The
projective space is a complex, compact manifold. To describe the embedded hypersurface
consider a polynomial f(x1, . . . xN+1) which is homogeneous of degree n, that means
f(λx1, . . . λxN+1) = λnf(x1, . . . , xN+1). The equation f = 0 defines a compact surface of
complex dimension d = N−1 and degree n. In order to construct a Calabi-Yau manifold,
the hypersurface must have vanishing first Chern class. It can be shown that c1 = 0 if
and only if

n = N + 1. (A.25)

An algebraic Calabi-Yau manifold is called singular at some point (y1, . . . , yN+1) ∈ PN+1

if

f(x1, . . . , xN+1)|(y1,...,yN+1) = df(x1, . . . , xN+1)|(y1,...,yN+1) = 0. (A.26)

More generally, algebraic Calabi-Yau manifolds can be expressed as hypersurfaces
in weighted complex projective spaces. Weighted projective spaces PN[w1,...,wN+1] are pro-

jective spaces with λ(x1, . . . , xN+1) = (λw1x1, . . . , λ
wN+1xN+1). A hypersurface in the

weighted projective space is given by the zero locus f = 0 of a quasi-homogeneous poly-
nomial f of some degree n, i.e. a polynomial that satisfies f(λw1x1, . . . , λ

wN+1xN+1) =
λnf(x1, . . . , xN+1). The hypersurface has vanishing first Chern-class if and only if

n =
N+1∑
l=1

wl. (A.27)

11It is assumed that the coordinates {xk} are not all zero.
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For (w1, . . . , wN+1) = (1, . . . , 1) one recovers ordinary projective space and n = N + 1.
Omitting the weights always implies (w1, . . . , wN+1) = (1, . . . , 1).

To construct additional examples one can consider m polynomials f1, . . . , fm, m ≤
N , of degrees k1, . . . , km in PN (or more generally in weighted projective spaces). The
equations f1 = . . . = fm = 0 define a N − m-dimensional complex submanifold of
P
N , these are called complete intersection hypersurfaces. The existence of a nowhere

vanishing holomorphic (N −m, 0)-form, or c1 = 0, is guaranteed if and only if
m∑
a=1

ka = N + 1. (A.28)

A.2 The Torus

The torus is the simplest, and lowest-dimensional, Calabi-Yau manifold. The Hodge
numbers of the torus are

h(0,0) = h(1,1) = h(1,0) = h(0,1) = 1. (A.29)

It follows that the Euler number of a torus is zero, χ(T 2) = 0. For a complex d-
dimensional manifold the integral of the d-th Chern class is equal to the Euler number,
thus for a torus one has χ(T 2) =

∫
c1(TT 2), where TT 2 is the tangent bundle of the torus.

This leads to c1 = 0, as required for Calabi-Yau manifolds.

A torus as an algebraic manifold can be described in terms of the zero locus of a third
order polynomial f = 0 in the projective space P2

f = x3 − y2z + axz2 + bz3 = 0, (A.30)

where x, y, z are the coordinates on P2 and a, b are constant parameters. The above
equation is called Weierstrass equation. Note that for z 6= 0 the coordinates on the
projective space can be rescaled as x→ x/z, y → y/z, z → 1 leading to the Weierstrass
equation

y2 = x3 + ax+ b. (A.31)

The new coordinates are called affine coordinates. It can be shown that the complex
structure of the torus depends only on the modular parameter of the torus, usually
called τ . In terms of the constants a and b of the Weierstrass equation the modular
parameter τ is given by

j(τ) =
4(24a)3

27b2 + 4a3
, (A.32)

where j(τ) is the unique modular invariant function with a pole at τ = i∞ and zeros
at τ = eiπ/3. The normalization is chosen such that j(i) = (24)3. The denominator
δ = 27b2 + 4a3 is called the discriminant of (A.31). For vanishing discriminant δ = 0, the
torus becomes singular. This can be verified easily solving the equations (A.26), i.e. by
solving f = x3 − y2 + ax+ b = 0, df = (3x2 + a)dx− 2ydy = 0.

The complex structure of the torus is invariant under transformations of the modular
parameter τ of the torus

τ ′ =
Aτ − iB
iCτ +D

for

(
A B
C D

)
∈ SL(2,Z). (A.33)
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A.2.1 Elliptic Fibrations

Starting from the torus one can construct higher-dimensional elliptically fibred algebraic
Calabi-Yau manifolds. Consider some complex manifold B. Elliptically fibered Calabi-
Yau manifolds Y are Calabi-Yau manifolds obtained by erecting a torus at every point
in the base B. Elliptic fibrations can be described by a map π : Y → B. We only
consider elliptic fibrations that have in addition a global section σ : B → Y such that
π ◦σ =idB. If a section σ exists at every point in B, the manifold is a direct product of B
and the torus. Elliptically fibered Calabi-Yau manifolds with a section can be described
by the Weierstrass equation (A.31), with the parameters of the torus depending on the
coordinates {s} of the base B, a = a({s}) and b = b({s}). This leads to the equation

y2 = x3 + a({s})x+ b({s}). (A.34)

Such a Calabi-Yau manifold is a hypersurface in some projective space of complex dimen-
sion N = (dim(B)+2) and is parametrized by the coordinates (x, y, {s}). In holomorphic
coordinates (x, y, z), one can see that (0, 1, 0) always lies in the hypersurface. This gives
rise to the global section mentioned above. There are of course elliptic fibrations that do
not admit this global section and thus cannot be written in Weierstrass form.

A.2.2 Some Algebraic Geometry

In this section, we review some useful concepts of algebraic geometry in the context
of elliptically fibred Calabi-Yau manifolds. A mathematical introduction to algebraic
geometry is given in [121], ref. [120] emphasizes the applications in string theory.

Line Bundles
Line bundles are bundles of rank one, their fibre is isomorphic to C. The tensor products
of line bundles of a Calabi-Yau manifold Y form the Picard group Pic(X). The Picard
group of a complex manifold is isomorphic to the space of divisors on Y , Pic(Y ) ↔
Div(Y ). More precisely, a divisor D is the zero-set ρ = 0 of a section ρ of a holomorphic
line bundle L. Taking the tensor product of line bundles L1 ⊗L2 corresponds to adding
divisors, D1 +D2. The fibres of a holomorphic vector bundleM of rank k are isomorphic
to Ck. Given a holomorphic vector bundle M over some complex manifold Y with
a holomorphic sub-bundle N one can always define a quotient bundle M/N which is
spanned by the elements of M that differ by an element of N . Instead of dealing
with vector bundles it is often more convenient to consider the line bundle defined by
the determinant of the vector bundle, detM, with the the relation detM = detN ⊗
det(M/N ) for the holomorphic vector bundle M and a holomorphic sub-bundle N .
Considering the determinant of a vector bundle instead of the vector bundle itself is very
useful because of the correspondence between line bundles and divisors mentioned above.

The (Co)Tangent Bundle
The tangent bundle of a complex manifold Y is the union of the tangent spaces at all
points p ∈ Y , TY = ∪p∈Y Tp(Y ), where the tangent space Tp(Y ) is the vector space
spanned by the tangents to the curves through p. The cotangent bundle T ∗Y is the
holomorphic complex dual of the tangent bundle. Any complex n-dimensional manifold
Y has a canonical line bundle KY which is the determinant of the cotangent bundle of
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Y ,

KY = detT ∗Y . (A.35)

The cotangent bundle is identified with the bundle of holomorphic one-forms on Y and
the canonical line bundle is the bundle of holomorphic n-forms, the volume forms of the
manifold. Associated to the canonical bundle is the canonical divisor KY . The canonical
divisor is given by the first Chern-class of the manifold, KY = −c1(TY ). This relation is
often used as the definition for the canonical class, as for example in [108].

The (Co)Normal Bundle
Consider a Calabi-Yau manifold Y with an elliptic fibration π : Y → B with at least one
global section σ : B → Y which maps the base into Y such that π ◦ σ =id. The normal
bundle of σ is the quotient bundle of the holomorphic tangent bundles over Y restricted
to B and the tangent bundle over B,

Nσ = {TY |B/TB} . (A.36)

The divisor associated with the determinant of the conormal bundle of σ, detN ∗σ , is
denoted by L.

The Conormal Bundle of Elliptically Fibred Manifolds
Let E be a holomorphic bundle over Y and φ a holomorphic section of E such that B
is the zero locus of the section, φ−1(0) = B. A tangent vector Z ∈ TY at some point
in Y can be represented by Zi∇i with the covariant derivative ∇i = ∂i + Γi containing
some connection Γi. The covariant gradient of the section is ∇φ = Zi(∂iφ+ Γiφ). If the
points in Y at which the tangent vectors Z are taken are restricted to B, that means if
we restrict to φ : TY |B → E|B, then φ = 0 and Γiφ = 0. The gradient does not depend on
the connection in this case. Moreover as φ vanishes on B so does the gradient along the
tangent directions of B, in other words ker(∇φ) = TB. This together with the condition
that the gradient ∇φ : TY |B → E|B covers all of E|B defines the short exact sequence of
vector bundles

0→ TB
i→ TY |B

∇φ→ E|B → 0. (A.37)

Using the above definition of the normal bundle of σ, this allows to identify

E|B = Nσ, (A.38)

this is the Adjunction Formula I in [121]. For the line bundles this implies

detTY |B = detTB ⊗ detNσ, (A.39)

this is the Adjunction Formula II of [121]. In terms of the divisors associated to the line
bundles this reads

KY = π∗(KB + L). (A.40)

For Calabi-Yau manifolds the canonical class (or equivalently the first Chern class) van-
ishes, KY = 0. Thus for Calabi-Yau threefolds which are elliptically fibered over the base
B the determinant of conormal bundle of the section σ is given by the canonical class of
the base of the fibration,

KB = −L. (A.41)

This result is needed in 3.4 as well as in the following sections.
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A.3 K3 Manifolds

A K3 manifold is a complex two-dimensional Calabi-Yau manifold. It can be shown
that all K3 manifolds are diffeomorphic, that means they all have the same topological
invariants. K3 manifolds have been considered in detail in [108]. The Hodge numbers of
a K3 manifold are

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(2,1) h(1,2)

h(2,2)

=

1
0 0

1 20 1
0 0

1

. (A.42)

The Euler number of K3 manifolds is

χ(K3) =
2∑
p=0

(−1)pbp = 24. (A.43)

Using χ(K3) =
∫
c2(TK3), where TK3 is the tangent bundle of the manifold, one obtains

for the integral of the second Chern-class
∫
c2(TK3) = 24.

A.3.1 Elliptically Fibred K3 Manifolds

An elliptically fibred K3 manifold can be constructed by taking B = P
1 as the base of

the elliptic fibration described at the end of A.2. For algebraic manifolds, the K3 can be
analyzed in terms of algebraic curves within the manifold, that is curves which are holo-
morphically embedded into the K3 manifold. These curves are elements of H2(K3,Z),
which implies the existence of a dual two-form in H2(K3,Z). Because the curve is holo-
morphically embedded, the dual two-form must also be an element of H(1,1)(K3). This
defines the Picard group of the manifold,

Pic(K3) = H2(K3,Z) ∩H(1,1)(K3), (A.44)

and the Picard number is defined by the dimension of the Picard group. The Picard
number of an elliptically fibred K3 manifold is at least two, one from the generic fibre
and one from the global section. The homology cycles that are dual to the elements of
the Picard group are called divisors.

An elliptically fibred K3 manifold with a global section can be expressed in Weierstrass
form as

y2 = x3 + a(s)x+ b(s), (A.45)

where s parametrizes the base P1. One can show that in order to obtain vanishing first
Chern-class, the polynomials a(s) and b(s) have to be of degree 8 and 12.

A.3.2 Singular Fibres

For an elliptically fibred K3 with base P1, the zero locus of the discriminant of eqn. (A.34),
δ = 27b2(s)+4a3(s) = 0, describes points in the base. Because δ is a polynomial of degree
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24, there are generically 24 of these points. As already mentioned in A.2, the vanishing
locus of the discriminant gives rise to singularities of the torus. These degenerated fibres
are are usually called singular or “bad” fibres. We explain the degeneration of elliptic
fibres in greater detail.

There are only a few different kinds of singular fibres which are compatible with a
vanishing first Chern-class. A classification of singular fibres was first given by Kodaira,
therefore singular fibres are often called Kodaira fibres. For a Calabi-Yau manifold that
can be written in Weierstrass form, the classification was given for example in [122]. We
explain some examples here.

Given some explicit Weierstrass form of a K3, let s = 0 be the location of a singular
fibre, i.e. at s = 0 one has δ = 0 and in general also a = 0 and b = 0. Denote by O(a),
O(b) and O(δ) the leading order of the polynomials at s = 0. The singular fibre can be
classified in terms of the integers O(a), O(b) and O(δ). In general, the higher the orders
are the more singular the fibre gets. If for example O(a) = 0, O(b) = 0 and O(δ) = 1,
the polynomials are of the form

a(s) = a0 + sa1(s),

b(s) = b0 + sb1(s),

δ(s) = 27b2(s) + 4a3(s)
!

= δ0s+ s2δ1(s), (A.46)

with a0, b0, δ0 constant and some polynomials a1, (s), b1(s), δ1(s). The Weierstrass equa-
tion at s = 0 to leading order is simply

y2 = x3 + a0x+ b0. (A.47)

The above form of δ(s) requires that 27b2
0 + a3

0 = 0, and thus

b0 = ∓ 4

3
√

3

√
−a0

3
. (A.48)

The location of the singularity on the torus is given by setting the derivative of the
Weierstrass form to zero, −ydy + (3x2 + a0)dx = 0, leading to y = 0 and x2 = −a0/3.
Let us take small coordinates εy, εx in the neighborhood of this point, i.e. y = 0 + εy and

x = ±
√
−a0/3+εx. Inserting these coordinates and (A.48) into the Weierstrass equation

(A.47), one gets to leading order

εy =

(
±
√
−a0

3

3

± 3

√
−a0

3

3

εx

)
± a0

(√
−a0

3
+ εx

)
∓ 4

√
−a0

3

3

= ±εx

(
3

√
−a0

3

3

+ a0

)
. (A.49)

Thus the manifold locally looks like y2 = x2·constant close to the singularity. Such a
fibre is called an I1 fibre.

Let us consider some more complicated, higher order singularity. If for example
O(a) = 4, O(b) = 5 and O(δ) = 10, the polynomials are of the form

a(s) = s4a0(s),
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O(a) O(b) O(δ) Kodaira fibre singularity gauge algebra
≥ 0 ≥ 0 0 I0 − −
0 0 1 I1 − −
0 0 2n ≥ 2 I2n A2n−1 su(2n) or sp(2n)
0 0 2n+ 1 ≥ 3 I2n+1 A2n su(2n+ 1) or so(2n+ 1)
≥ 1 1 2 II − −
1 ≥ 2 3 III A1 su(2)
≥ 2 2 4 IV A2 su(3) or su(2)
≥ 2 ≥ 3 6 I∗0 D4 so(8) or so(7) or g2

2 3 n+ 6 ≥ 7 I∗n Dn+4 so(2n+ 8) or so(2n+ 7)
≥ 3 1 8 IV ∗ E6 e6 or f4

3 ≥ 5 9 III∗ E7 e7

≥ 4 5 10 II∗ E8 e8

≥ 4 ≥ 6 ≥ 12 non−minimal

Table A.3.2: Orders of vanishing, fibres, singularities and gauge algebra

b(s) = s5b0(s),

δ(s) = 27s10b2
0(s) + 4s12a3

0(s) = s10(27b2
0(s) + 4s2a3

0(s)) = s10δ0(s), (A.50)

where a0(s), b0(s) and δ0(s) are nonzero at s = 0. Thus the Weierstrass form reads

y2 = x3 + s4xa0(s) + s5b0(s). (A.51)

Such a singular fibre is called II∗ fibre. The degenerated torus is of the form of a
connected union of ten P1’s intersecting at several points. The intersection points where
two or more P1’s meet are the singular points on the torus. Drawing a diagram of the
torus, symbolizing the the P1’s as lines that intersect at the singular points, one obtains
a diagram which has exactly the form the root lattice of the gauge group E8 [108]. It can
be shown that a II∗ fibre indeed induces an E8 gauge group in type IIA compactifications
on elliptically fibered K3’s. For a more detailed explanation of this, see [108]. One can
generate several other gauge groups in this way. The generation of gauge groups in
type IIA compactifications by singularites in the compactification manifolds is obviously
of great importance in the construction of dual heterotic-type II string models. It is
possible to construct IIA compactifications with gauge groups E8×E8, SO(32), etc. The
complete classification of singular fibres is given in table A.3.2. It should be stressed
that this classification is valid only if the base of the elliptic fibration is not singular at
the locus of the degenerated fibre. These “exotic” singularities also occur in Calabi-Yau
manifolds, but they cannot be classified as in table A.3.2.

The classification includes singular fibres up to the orders O(a) = 4, O(b) = 5 and
O(δ) = 10 only. It can be shown that all higher order singularities are not compatible
with vanishing first Chern-class (or canonical class) of the manifold, leading to a so-
called non-minimal manifold which is not Calabi-Yau. However, if such higher degree
fibres occur in a manifold, one can preserve the Calabi-Yau conditions by “blowing up”
the singularities. In the next section we explain this and we give an example.
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A.3.3 Blowing Up Singularities

We explain blowing up singularities by considering an example that gives the reader
an idea of the procedure of blowing up singularities as well as explaining a situation
that is important in section 3.4. This example explains the “stable degeneration” of K3
manifolds, which was first considered in [106] and explained in detail in [107].

Consider an elliptically fibred K3 manifold with an E8 × E8 gauge group generated
by two II∗ fibres. In addition to the II∗ fibres, there have to be four more singular fibres
as we explain in the following. The Euler number of a K3 manifold is χ(K3) = 24. The
base of the elliptic fibration is a P1, which has Euler number χ(P1) = 2. If the fibres are
all smooth, the Euler number of each fibre is χ(T 2) = 0, leading to a total Euler number
given by the product of the Euler numbers of base and fibre, χ = 0. This is clearly not
a K3 manifold. Thus there have to be some singular fibres in the K3 manifold. The
difference between the actual Euler number χ(K3) = 24 and the Euler number of the
smooth version of a torus fibred over P1 counts the number of singular fibres one has
to include [120]. Thus for a K3 we need 24 singular fibres in total. Because O(δ) = 10
for II∗ fibres, the E8 × E8 gauge group counts 20 singular fibres. The remaining four
singular fibres should have O(δ) = 1 each and not lead to any further gauge group, thus
one has to include four I1 fibres.

Putting the II∗ fibres along s = 0 and s =∞ leads to the Weierstrass form

y2 = x3 + a4s
4x+ (b5s

5 + b6s
6 + b7s

7), (A.52)

with a4, b5, b6, b7 constant. The discriminant is

δ(s) = s10(4a3
4s

2 + 27(b5 + b6s+ b7s
2)2). (A.53)

For generic coefficients the four I1 fibres are at distinct finite points in the base P1. If
we push two I1 fibres to s = 0 and two to s = ∞, the manifold contains two fibres of
degree 12 at these points. To obtain a consistent Calabi-Yau manifold, the singularities
have to be blown-up. This was done explicitly in [107], in the context of the F-theory
formulation of the heterotic string. This is also what we consider in chapter 3.4. For
simplicity we consider the singularity at s = 0 only. Close to s = 0, the lowest orders in
s are the leading terms in the Weiertrass form, leading to

y2 = x3 + a4s
4x+ b5s

5, (A.54)

and δ = s10(4a3
4s

2 + 27b2
5). The two I2 fibres are located at 4a3

4s
2 + 27b2

5 = 0. To describe
the what happens when two I1 fibres are pushed to s = 0, it is useful to introduce a new
parameter, t, which parametrizes the distance of the I1 fibres to s = 0. For simplicity we
set a4 = b5 = 1. In a neighborhood of s = 0 the model looks like

y2 = x3 + s4x+ s5t, (A.55)

and the discriminant locus is δ = s10(4s2 + 27t2). The I1 fibres are located at

t = ± 2

3
√

3
s. (A.56)
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Thus for t = 0 the I1 fibres are pushed into the II∗ fibre and the point s = 0 requires
a blow-up. Away from t = 0, the distance of the I1 fibres to s = 0 grows linearly
and the manifold is consistent. Formally the manifold parametrized by x, y, s, t can be
considered as an elliptically fibred threefold, which is a K3 fibration over a complex disk
parametrized by t. The point s = t = 0 can be blown up by substituting

s→ st, t→ t. (A.57)

The Weierstrass form (A.55) becomes

y2 = x3 + s4t4x+ s5t6, (A.58)

leading to a = s4t4, b = s5t6 and δ = s10t12(s2 + 1). At t = 0 there is a new singular fibre
with O(a) = 4, O(b) = 6 and O(δ) = 12. The curve t = 0 is called exceptional divisor E.
Changing the coordinates as x→ t2x and y → t3y, one obtains

y2 = x3 + s4x+ s5, (A.59)

and a = s4, b = s5, δ = s10(s2 + 1). This singularity gives rise to a minimal model. The
manifold has undergone an important change though. At the point t = 0, which was the
point of interest from the start, the base of the elliptically fibred manifold consists of two
P

1’s intersecting at a point. The new P
1 is just the exceptional divisor E produced by

the blow up. Note that there are no singular fibres located on E.

The blow up of the manifold does not lead to a modification of the canonical class
of the manifold. The blow up adds the exceptional divisor E to the canonical class of
the base. The change of coordinates however modifies L as L − E, and using KY =
π∗(KP1 +E +L−E) it becomes clear that the canonical class of the blown up manifold
Y does not change.

Remember that we have considered only one half of the whole manifold so far. Per-
forming the same blow-up at the point s = ∞ leads to an elliptically fibred manifold
with a base that is a chain of three P1’s. The middle P1 is produced by the blow ups
and does not have any singular fibres. This implies that δ =const. and nonzero and the
modular invariant function j(τ) of the elliptic fibre is constant. Thus one is free to shrink
the middle P1 of the base manifold to zero size. The base manifold is becomes a product
of two intersecting P1’s, with one II∗ and two I1 fibres each. The new manifold is called
the stable degeneration of the former K3 manifold.

To summarize, pushing the 24 singular fibres of a K3 manifold to two points with 12
singular fibres each leads to a non-minimal model and requires a blow-up of these two
points. After the blow up the K3 manifold degenerates such that the base of the manifold
consists of two intersecting P1’s. This process is called stable degeneration.
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A.4 Calabi-Yau Threefolds

Complex three dimensional Calabi-Yau manifolds have two independent non-trivial hodge
numbers, h(1,1) and h(1,2). The Hodge numbers are

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

=

1
0 0

0 h(1,1) 0
1 h(2,1) h(2,1) 1

0 h(1,1) 0
0 0

1

.

The Euler number of a Calabi-Yau threefold Y is

χ(Y ) = 2(h(1,1) − h(1,2)), (A.60)

where negative values are allowed.

Calabi-Yau threefolds have the very useful property of special geometry, see for ex-
ample [40, 41, 42, 43, 44], which means that the integrals of the holomorphic threeform
can be expressed in terms of a single holomorphic function F . We give a summary of
special geometry in the following.

The threefold has a unique holomorphic (3, 0)-form Ω that depends on the complex
structure of the threefold. The integrals of the holomorphic threeform over the closed
threecycles Sa ∈ H3(Y,Z), a = 1, . . . , 2(h(2,1) + 1), of the threefold are called period
integrals,

Πa =

∫
Sa

Ω. (A.61)

One can expand the periods in terms of a basis AI and BI , I = 0, . . . , h(2,1), of
H3(Y,Z) with intersection numbers AI ·AJ = BI ·BJ = 0, AI ·BJ = δIJ . The dual basis
of the cohomology is aI , b

I with
∫
AI
aJ =

∫
Y
aJ ∧ bI = −

∫
BJ
bI = δIJ . The holomorphic

threeform can be expanded as

Ω = zIaI − FIbI (A.62)

with zI =
∫
AI

Ω and FI =
∫
BI

Ω. The complex coordinates zI are local coordinates on the

moduli space of complex structures [72, 42], they are called local projective coordinates.
The full set of projective coordinates is given by zI and the complex conjugates z̄I , and
the (3, 0)-form Ω depends only on zI and the (0, 3)-form Ω̄ depends only on z̄I . This
implies that FI = FI(z) depends on the coordinates zI only. The periods are

Π(z) = (zI , FI). (A.63)

The derivative of the holomorphic threeform, ∂
∂zI

Ω, has components in H(3,0)⊕H(2,1). It
follows that

∫
Ω ∧ ∂

∂zI
Ω = 0. Inserting (A.62) it follows that FI = ∂

∂zI
F with F = 1

2
zIFI

and F (azI) = a2F (zI). As zI are projective coordinates we are free to change the
coordinates as λI = 1

z0 z
I , F (λ) = 1

(z0)2F (z), in other words we make a transformation

61



Ω → 1
z0 Ω). Expressed in the new coordinates λI = (1, λα), α = 1, . . . , h(1,2)(Y,Z), the

periods are

Π(λ) = (1, λα, Fα, 2F − λαFα) , (A.64)

with Fα = ∂
∂λα

F . The function F is usually called prepotential. As mentioned above,
because the integrals depend on the complex structure of the threefold, the prepotential
describes the moduli space of complex structures. For Calabi-Yau threefolds, the moduli
space of the complex structures is a special Kähler manifold, that means the Kähler
potentials can be given in terms of the prepotential,

K = − ln[2(F − F̄ )− (λα − λ̄α)(Fα + F̄α)]. (A.65)

Special geometry also implies that the moduli space of (1, 1)-forms of a Calabi-
Yau threefold, called the Kähler moduli space, can be expressed in terms of a holo-
morphic prepotential F . The prepotential F depends on the Kähler moduli ti, i =
1, . . . , h(1,1)(Y,Z).The Kähler moduli space is a special Kähler manifold,

K = − ln[2(F − F̄)− (ti − t̄i)(Fi + F̄i)]. (A.66)

The moduli space of Calabi-Yau threefolds is indeed a direct product of the moduli spaces
of complex structures and Kähler moduli. This follows from h(2,0) = 0.

A.4.1 Elliptically Fibred Calabi-Yau Threefolds

An elliptically fibred Calabi-Yau threefold can be constructed by fibering an elliptically
fibered K3 over another P1. This manifold is an elliptic fibration over a Hirzebruch surface
Fn, where Fn are the possible fibrations of P1 over P1. Considering such a manifold, it is
clear that all statements of the last section about singularities etc. in elliptically fibred
K3 manifolds are still valid in this section. The base P1 of the K3 manifold of the last
section is the fibre of the base Fn of the threefold . Thus whenever we considered points
in the P1 base of the fibration in the last section, we now have to consider curves in the
P

1 base Fn.

This manifold has at least Picard number three, one from the elliptic fibre, one from
the P1 fibre and one from the P1 base. The divisors associated with the base and the
fibre of Fn are usually called C and f . The self-intersection within Fn of the the divisor
associated to the base P1 depends on the nature of the fibration, C ·C = −n. For n = 0,
the Hirzebruch surface is just the product of two P1’s. The other intersection numbers
are f · f = 0 and C · f = 1.

For Calabi-Yau threefolds that are elliptically fibered over Fn and that admit a global
section, the line bundle given by the determinant of conormal bundle of the section is
equal to the canonical class of the base of the fibration, see (A.41),

KFn = −L. (A.67)

Because the base Fn itself is a fibration with a section, the canonical class of Fn can be
derived from the adjunction formula II. One has to replace X in (A.39) by Fn and B by
the divisors G = {C0, f} of Fn,

detTFn|G = detTG ⊗ detNσ, (A.68)
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where σ : P1 → Fn is now the section that maps P1 to the Hirzebruch surface. The
divisor associated with the conormal bundle is just G in this case. The canonical class
K = detT ∗ of a complex manifold is equal to the first Chern class K = −c1(T ). The
Euler number of a complex n-dimensional manifold E is related to the n-th Chern class
as χ(E) =

∫
E
cn(TE), thus for the complex one-dimensional submanifold G we have

χ(G) =
∫
G
c1(TG) 12. Integrating the canonical class of G leads to

∫
KG = −χ(G) and

to the adjunction formula [108]

χ(G) = −G · (G+KFn). (A.69)

The curves G = {C0, f} are topologically spheres, thus they both have Euler-number
χ = 2. Using the self-intersection numbers C0 · C0 = −n and f · f = 0 we get

2 = n− C0 ·KFn , for G = C0

2 = −f ·KFn , for G = f. (A.70)

Inserting this into the ansatz KFn = mC0 +nf , with m and n constant, leads to m = −2
and n = −(n+ 2) and thus to the canonical class KFn = −2C0 − (n+ 2)f . Using (A.41)
this gives the divisor associated to the conormal bundle of the section σ of an elliptically
fibred threefold

L = 2C0 + (n+ 2)f. (A.71)

Using the above formulas we are able to give the divisors associated to the zero loci
of the polynomials a(s, t) = 0 and b(s, t) = 0 of the Weierstrass from (A.34). The affine
coordinates y and x are sections of the line bundle (detN ∗σ )3 and (detN ∗σ )2. It follows
that a and b are sections of (detN ∗σ )4 and (detN ∗σ )6. Using eqn. (A.71), the divisors A
and B associated to the zero loci of a(s, t) = 0 and b(s, t) = 0 are ,

A = 4L = 8C0 + 4(n+ 2)f,

B = 6L = 12C0 + 6(n+ 2)f. (A.72)

From δ = 27b2({s}) + 4a3({s}) it follows that

∆ = 12L = 24C0 + 12(n+ 2)f, (A.73)

where ∆ is the divisor associated to the zero locus δ = 0.

A.4.2 Point-like Instantons

In this chapter we consider a special aspect of heterotic string compactifiactions, the
point-like instantons [109]. They play an important role for constructing dual het-
erotic/type IIA pairs with non-trivial gauge groups [99, 100]. For a review, see [108].
In heterotic string compactifications, one needs to specify the compactification manifold
Y and also a gauge bundle F . This gauge bundle is in general not flat but has some

12Note that we use the same notation c1(TG) for the divisor as well as for the dual (1, 1)-form. This
notation common in the physics literature.
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nonzero second Chern-class c2(F ), called instanton number. A point-like instanton is the
limit where all the curvature of the gauge bundle is concentrated at points in the main-
fold Y . These points are the locations of the point-like instantons. If several instantons
coalesce at the same point, the instanton numbers add. Each point-like instanton con-
tributes c2 = 1 if the holonomy around the point-like instanton is trivial, that means if Y
is smooth. Aspects of point-like instantons in ehterotic string theory are also discussed in
[104, 111, 112, 113]. Point-like istantons at orbifold singularities have non-trivial holon-
omy. They have in general fractional instanton numbers. Point-like instantons with
non-trivial holonomy in the context of type II/heterotic duality have been disussed in
[107, 110] 13.

Consider the E8 × E8 string compactified on a K3 manifold, i.e. with c2(F ) = 24
[108]. The gauge group of the compactified theory depends on the holonomy of the
gauge bundle F . The subgroup of E8×E8 that commutes with the holonomy group H is
the observed gauge group G. If all 24 instantons are point-like instantons, the curvature
of the gauge bundle F is zero everywhere else. Thus by shrinking all instantons to zero
size one preserves the full E8×E8 gauge group. If the instantons are large however, F has
some curvature which gives rise to a non-trivial holonomy group H. A holonomy group
H = E8 × E8 for example breaks the gauge group G of the heterotic string completely.

Consider type IIA theory compactified on an elliptically fibred threefold Y . The base
of the threefold is a Hirzebruch surface Fn. The dual heterotic theory is compactified on
K3×T 2, where the K3 is elliptically fibred. If the theories are dual, the type IIA theory
should contain 24 instantons, just as the heterotic theory. Consider the elliptically fibred
threefold of the IIA theory. Using again the letters A, B and ∆ to denote the divisors
associated to the zero loci of the polynomials in the Weierstrass form a = 0, b = 0 and
δ = 0, we have

A = 4L = 8C0 + 4(n+ 2)f,

B = 6L = 12C0 + 6(n+ 2)f,

∆ = 12L = 24C0 + 12(n+ 2)f. (A.74)

The E8 fibres are located on curves in the base Fn, the curves should be disjoint. Thus
one E8 is put along C0 and the other along C∞ = C0 + nf . Substracting the part from
A, B and ∆ which is due to the II∗ fibres one gets

A′ = 8C0 + 4(n+ 2)f − 4C0 − 4(C0 + nf) = 8f,

B′ = 12C0 + 6(n+ 2)f − 5C0 − 5(C0 + nf) = 2C0 + (12 + n)f,

∆′ = 24C0 + 12(n+ 2)f − 10C0 − 10(C0 + nf) = 4C0 + (24 + 2n)f. (A.75)

The remaining discriminant curve ∆′ collides with C0 exactly ∆′ · C0 = 2(12− n) times
and with C∞ there are ∆′ · C∞ = 2(12 + n) collisions. Because of ∆′ = 2B′, each time
that B′ collides with C0 or C∞ the discriminant ∆′ hits C0 or C∞ twice at the same
point. Thus ∆′ has (12−n) intersection of degree two with C0 and (12 +n) intersections
of degree 2 with C∞.

13A discussion of instantons in terms of D-branes on singular spaces can be found in [114, 115, 116, 117].
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These intersection points of the II∗ and the two I1 curves produce singular fibres of
degree O(δ) = 12 and thus should be blown-up to obtain a smooth model. Note that
locally at each intersection point, the singularity looks like the one described in A.3.3.
The blow up introduces a new exceptional divisor E for each intersection point. The
blow-up is explained in A.3.3. Blowing up all intersection points leads to 24 exceptional
divisors in the base. As in the example of the last section, the blow up does not change
the canonical class of the threefold Y . The canonical class of the Hirzebruch surface gets
modified as KFn−E and the line bundle as L+E, which leads to an unaltered canonical
class KX = 0. Thus the blown up manifold is still Calabi-Yau.

After the blow-up one has a smooth Calabi-Yau manifold with singularities that
produce a gauge group E8 × E8. Not blowing up the singularities would imply, in order
to keep the manifold smooth, that the gauge group E8 has to be broken to some subgroup.
This would produce lower order singularities at the intersection points. This reminds of
the situation that occurs in the dual heterotic theory if the point-like instantons become
large, as mentioned at the beginning of the chapter. The above compactification of
the type IIA string theory indeed corresponds to the heterotic string on K3×T 2 with
gauge group E8 × E8, and thus with 24 pointlike instantons. The point-like instantons
correspond to the blown up singularities at the intersection of the II∗ and the I1 curve
in the dual IIA theory. The gauge bundle of the heterotic string F is a sum of two E8

bundles, F = F1⊕F2 such that c1(F1) = 12−n and c1(F2) = 12+n. The dual IIA theory
the 12 + n and 12 − n blow ups along CO and C∞ at the intersections of the II∗ with
the I1 curve. Making some of the instantons of the heterotic theory large corresponds to
the disappearance of some of the blow ups in the Fn of the dual IIA theory.

To obtain a total instanton number 24 there is still the freedom of choosing how
to distribute the instantons between the two E8 bundles. Fixing the integer n on the
heterotic side corresponds to fixing the Hirzebruch surface Fn on the IIA side. Choosing
a symmetric embedding with c1(F1) = c2(F2) = 12 for example implies that the dual IIA
theory is compactified on a threefold with a base F0 = P1 × P1.

A.5 Calabi-Yau Fourfolds

Complex four-dimensional Calabi-Yau manifolds [18, 20] have three independent non-
trivial Hodge numbers. The Hodge numbers are

1
0 0

0 h(1,1) 0
0 h(2,1) h(1,2) 0

1 h(3,1) h(2,2) h(1,3) 1
0 h(3,2) h(2,3) 0

0 h(3,3) 0
0 0

1

, (A.76)

where h(1,1) = h(3,3) and h(1,2) = h(2,1) = h(3,2) = h(2,3). Counting the number of indepen-
dent Hodge numbers one arrives at h(1,1), h(1,2), h(1,3) and h(2,2) and thus four independent
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numbers. There is an additional relation between the Hodge numbers of a fourfold [98],

h(2,2) = 2(22 + 2h(1,1) + 2h(1,3) − h(1,2)). (A.77)

This leaves only three independent Hodge numbers.

The moduli space of a fourfold is a direct product of complex structure moduli and
Kähler moduli only if h(1,2) = 0. Also the moduli spaces do not have the special geometry
structure of Calabi-Yau threefolds and are therefore much more difficult to handle.

The cohomology H(2,2) plays a special role in Calabi-Yau fourfolds. One can make a
decomposition

H(2,2) = H(2,2)
vp ⊕H(2,2)

hp , (A.78)

where the subscripts denote the vertical and horizontal primary subspaces of the (2, 2)
cohomology. The vertical primary cohomology of a Calabi-Yau d-fold is the subspace of
the vertical cohomology ⊕dk=0H

(k,k)(Yd) obtained by taking the wedge products of k (1, 1)-
forms. The horizontal primary cohomology is the subspace of the horizontal homology
⊕dk=0H

(d−k,k)(Yd) generated by successive derivatives DkΩ of the holomorphic (d, 0)-form
Ω [42, 18]. The connection in D = ∂+w is chosen such that the covariant derivative of a
(d− k, k)-form is a (d− k− 1, k+ 1)-form. The ordinary derivative ∂ of a (d− k, k)-form
is an element of H(d−k,k)(Y )⊕H(d−k−1,k+1)(Yd) and the connection is chosen such that it
cancels the part in H(d−h,k)(Yd).

Note that for Calabi-Yau threefolds, each cohomology is either purely vertical (these
are H(0,0), H(1,1), H(2,2), H(3,3)) or horizontal (H(0,3), H(1,2), H(2,1), H(3,0)). The primary
subspaces are equal to the full cohomologies. One can get cohomologies with both hori-
zontal and vertical elements only for Calabi-Yau manifolds of even complex dimensions
d, because otherwise d − k = k is not possible. For K3 manifolds, it is the (1, 1)-forms
that can be elements of either the vertical or the horizontal cohomology.

For Calabi-Yau fourfolds, there are two independent non-trivial members of the pri-
mary vertical cohomology, H(1,1) and H

(2,2)
vp . We omit the subscript vp for the (1, 1)-

forms, because the vertical primary subspace is equal to the full vertical cohomology,
H

(1,1)
vp = H(1,1). The horizontal primary cohomology also has two independent non-trivial

elements.

Finally some remarks about elliptically fibred fourfolds. One can construct an ellip-
tically fibred fourfold by fibering an elliptically fibred threefold over another P1. This
fourfold is at the same time an elliptic fibration over a base consisting of three P1’s, a
K3 fibration over a Hirzebruch surface Fn and a threefold fibration over a base P1. The
Picard number of such a fourfold is at least four.
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B Mirror Symmetry

B.1 Conformal Field Theory

Type II string theory is described in terms of a two-dimensional N = (1, 1) supersym-
metric conformal field theory on the worldsheet Σ of the strings. The scalars XM ,
M = 0, . . . , 9, of the two-dimensional field theory are the coordinates of the target space
R(1,9) and map the string worldsheet to the ten-dimensional target space, X : Σ→ R(1,9)

[1, 2]. In superconformal gauge the action reads

S = − 1

2π

∫
Σ

d2σ
(
∂αXM∂αXM − iψ̄Mγα∂αψM

)
. (B.1)

The conformal field theory contains only kinetic terms.

Compactifying the theory on a complex d-dimensional Calabi-Yau manifold Yd means
that the target space is not flat but a product R(1,9−2d) × Yd. It is in principle possible
to consider more general compactifications such that the target space is not a direct
product of the internal and the flat space, but we consider only the simple case with
the direct product structure. The worldsheet action splits into two parts, one with the
(10− 2d)-dimensional flat space as a target space and another one with the Calabi-Yau
manifold as a target space. The first part has the same action as (B.1), just with a lower
range of the coordinates XM → Xµ, µ = 0, . . . , (9−2d). The worldsheet action has local
N = (1, 1) supersymmetry. The action with the compact target space is more interesting.
The target space is chosen such that the worldsheet theory has some global worldsheet
supersymmetry in addition to the local supersymmetry. In type II compactifications to
four dimensions this is an N = (2, 2) supersymmetry. This is necessary in order to have
N = 2 space-time supersymmetry in four dimensions [45] 14. The internal conformal
field theory is an interacting theory with in general unknown interactions. Strings in
general backgrounds are described in [46, 47]. The assumption of a global N = (2, 2)
supersymmetry makes it possible to handle the conformal field theory to some extent and
make general statements about the interaction terms. The action is a non-linear sigma
model in left- and right-moving worldsheet coordinates z, z̄ is (see for example [48])

S = T

∫
Σ

dzdz̄
(
gmn̄(∂um∂̄un̄ + ∂̄um∂un̄)− ibmn̄(∂um∂̄un̄ − ∂̄um∂un̄)

− igmn̄ρmDχn̄ − igmn̄ρm̄D̄χn −
1

2
Rmm̄nn̄χ

mχm̄ρnρn̄
)
, (B.2)

where um and um̄, m, m̄ = 1, . . . , 3, are complex coordinates on Y3, χm, ρm, χm̄, ρm̄ are
the worldsheet fermions of the N = (2, 2) supersymmetry and the covariant derivative
is D̄χm = ∂̄χm + Γmno∂̄u

nχo. To provide a consistent string background the sigma model
has to be conformally invariant [46, 47].

As the Calabi-Yau manifold is not flat, the metric gmn(u) depends on the coordinates
of the target space. The coupling of the worldsheet bosons um to the metric contains
interaction terms of generically all orders. The metric can be treated as a background

14To be precise, it was shown in [45] that four-dimensional heterotic string compactifications with
N=1 space-time supersymmetry require an additional global N = (2, 0) worldsheet supersymmetry.
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field of the worldsheet theory. In addition to the metric the above action includes the
antisymmetric tensor bmn̄ of the NS-NS sector as a background field. The terms describing
the coupling of the worldsheet fields to the background fields are identical to the vertex
operators of the corresponding background field at vanishing momentum 15

Vg ∼ gmn̄(∂um∂̄un̄ + ∂̄um∂un̄)eik·u +O(k),

Vb ∼ bmn̄(∂um∂̄un̄ − ∂̄um∂un̄)eik·u +O(k). (B.3)

Including background fields from the R-R sector in this way is not possible because the
vertex operators have branch cuts 16. Background fields from the R-R sector are usually
not considered in non-linear sigma models.

The superconformal algebra of the sigma-model has four generators: the energy-
momentum tensor T , two fermionic super-currents T±F and a U(1) current J . We consider
only the left-moving part of the worldsheet algebra, the right-moving part is obtained by
z → z̄. Expanding the generators as

T (z) =
∑

Lnz
−n−2, Ln =

∮
dz

2πi
zn+1T (z)

T±F (z) =
∑

G±r z
−r−3/2, G±r =

∮
dz

2πi
zr+

1
2T±F (z)

J(z) =
∑

Jnz
−n−1, Jn =

∮
dz

2πi
znJ(z), (B.4)

with r ∈ Z in the Ramond sector and r ∈ Z + 1/2 in the Neveu-Schwarz sector, the
algebra is

[Lm, Ln] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0

{G±r , G∓s } = 2Lr+s ± (r − s)Jr+s +
c

3

(
r2 − 1

4

)
δr+s,0, {G±r , G±s } = 0

[
Ln, G

±
r

]
=

(n
2
− r
)
G±n+r, [Ln, Jm] = −mJm+n

[Jn, Jm] =
c

3
nδm+n,0, [Jn, G

±
r ] = ±G±n+r. (B.5)

The number c is the central charge of the algebra. Consistency requires c = 3d
2

for a d−
dimensional conformal field theory, c = 1 for each worldsheet boson and c = 1/2 for each
worldsheet fermion. The conformal fields ψ(z) of the worldsheet theory are in one-to-one
correspondence to the states of the conformal algebra, |ψ〉 = limz→0ψ(z)|0〉.

An isomorphic algebra can be obtained by transforming the above algebra under the
spectral flow [49] generated by UΘ

UΘLnU−1
Θ = Ln + ΘJn +

c

6
Θ2δn,0

15To describe physical couplings the vertex operators must not have any explicit dependence on the
unphysical ghost sector of the conformal field theory, that is they are in the ghost number zero picture
[2].

16In terms of the vertex operators they have half-integer ghost number and cannot be transformed to
vertex operators with ghost number zero via picture changing [2].
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UΘJnU−1
Θ = Jn +

c

3
Θδn,0

UΘG
±
r U−1

Θ = G±r±Θ. (B.6)

From the last equation it is clear that spectral flow with Θ = Z+ 1/2 maps the R sector
to the NS sector and vice versa, while Θ = Z maps the NS to the NS and the R to the
R sector. States transform as |ψ〉 → UΘ|ψ〉.

We denote by |φ〉 a primary state with U(1) charge q, J0|φ〉 = q|φ〉, and with conformal
weight h, L0|φ〉 = h|φ〉. Primary states are annihilated by the positive modes of the
generators, (Ln, G

±
r , Jn)|φ〉 = 0, n, r > 0. Let us consider the ground states of the

Ramond sector |0〉R. Ground states are primary states that fulfill the additional condition

G±0 |0〉R = 0. (B.7)

Using (B.5) we get

R〈0|{G±0 , G∓0 }|0〉R = 2h− c

12
= 0 (B.8)

and thus h = c/24 for R ground states. Via spectral flow with Θ = ∓1/2 the ground
states of the R sector are mapped to the chiral and anti-chiral primary fields of the NS
sector |i〉NS. The chiral and anti-chiral primary fields satisfy

G±−1/2|i〉NS = 0 (B.9)

and using again (B.5)

NS〈i|{G±−1/2, G
∓
1/2}|i〉NS = 2h∓ q = 0. (B.10)

The chiral primary states have h = q/2 and the anti-chiral primary states have h = −q/2
[50].

The conformal fields φi associated to the chiral and anti-chiral states |i〉NS form a
ring under multiplication [50]

φiφj = c k
ij φk, (B.11)

with the structure constants c k
ij . This ring is called the (anti-) chiral primary ring a

respectively c. Considering both the left- and right-moving sector we get the rings (c, c),
(c, a) and their conjugates (a, a) and (a, c).

Let us consider the compactification of type II theories on a Calabi-Yau threefold
Y3. The conformal charge of the interacting conformal field theory is c = c̄ = 9. The
important point is that in the large radius limit of the threefold there is a one-to-one
correspondence between the elements of the cohomology of the threefold and the primary
states of the superconformal algebra [51]. In the R-sector the zero modes of the super-
currents are identified formally with the exterior holomorphic differentials, G±0 ∼ ∂. Via
spectral flow to the NS-sector, the zero modes of the supercurrents are identified with the
exterior differential as G±−1/2 ∼ ∂. It was shown in [50] that each state in the NS sector

has a decomposition |χ〉 = |i〉 + G±−1/2|i1〉 + G∓1/2|i2〉 with |i〉 an (anti-) chiral primary.

For primary states |χ〉 the last term vanishes of course. This decomposition corresponds
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to the hodge decomposition of the differential forms. In the NS-sector (r, s)-forms are
mapped to the (anti-) chiral primary states of the superconformal N = (2, 2) algebra
with (h, h̄) =

(
1
2
r, 1

2
s
)
. Glueing together left- and right-movers, there are obviously two

distinct ways of realizing this map, one can either identify the (c, a) ring with the ele-
ments of the cohomology (G+

−1/2 ∼ ∂, Ḡ−−1/2 ∼ ∂̄) or one can identify the (c, c) rings with

the elements of the cohomology (G+
−1/2 ∼ ∂, Ḡ+

−1/2 ∼ ∂̄ ). 17 The first possibility results
in a type IIA and the second possibility in a type IIB compactification.

φNS ∈ H(r,s)(Y,Z) ↔ (h, h̄) =

(
1

2
r,

1

2
s

)
, (q, q̄) = (r,−s) for type IIA

φNS ∈ H(r,s)(Y,Z) ↔ (h, h̄) =

(
1

2
r,

1

2
s

)
, (q, q̄) = (r, s) for type IIB. (B.12)

It was shown in [52, 70, 71] that the moduli of the superconformal field theory are mapped
to the (anti-) chiral primary states with (h, h̄) =

(
1
2
, 1

2

)
.

Let us consider the NS-NS sector of Type IIA theory on a threefold. The decompo-
sition of the 10-d metric is

gMN =

(
gµν 0
0 gab

)
, (B.13)

where gab is the metric on the threefold. Expanding the metric around the background
expectation value as gab = g0

ab+δgab, one obtains the Laplace equation for the fluctuation,
∆δgab = 0. The solutions to Laplace equation are the massless modes of the spectrum. In
complex coordinates m, m̄ = 1, 2, 3, one obtains decoupled equations for the components
δgmn̄ and δgm,n. The first part, δgmn̄, can be expanded into harmonic (1, 1)-forms and
gives h(1,1) zero modes. The indices of δgm,n are not antisymmetrized, thus it is not
a (2, 0)-form. However, one can construct a (1, 2)-form as g̃mn̄p̄ = δgm,ng

0
mōΩōn̄p̄, thus

the number of zero modes of δgm,n is h(1,2). The equivalent procedure can be done
for the complex conjugate component δgm̄,n̄, leading to another h(2,1) zero modes. The
Laplace equation of the antisymmetric NS-NS two-form bab = b0

ab+δbab leads to decoupled
equations for the components δbmn̄ and δbmn in complex coordinates. The first term δbmn̄
can be expanded in (1, 1)-forms the second one, δbmn, in (2, 0)-forms. The number of
(2, 0)-forms however vanishes on Calabi-Yau threefolds, h(2,0) = 0, thus δbmn does not
contribute any zero-modes. All in all, from the NS-NS sector one obtains 2h(1,1) zero
modes from the metric and the antisymmetric two-form and another 2h(1,2) zero modes
from the antisymmetric two-form.

The 2h(1,1) + 2h(1,2) zero modes correspond to (anti-) chiral primary states with con-
formal charge (h, h̄) =

(
1
2
, 1

2

)
. Thus the (1, 1)-form δbmn̄ corresponds to the conformal

state in the (c, a) ring with (h, h̄) =
(

1
2
, 1

2

)
and (q, q̄) = (1,−1) (one can equivalently start

with the (1, 1)-form δgmn̄). In addition the spectrum contains the (c, c), (a, c) and (a, a)
rings with (q, q̄) = (1, 1), (q, q̄) = (−1, 1) and (q, q̄) = (−1,−1). Which elements of the
cohomology the last three states correspond to can be found out by taking the spectral
flow of the states by Θ = 0,±1 such that the states transformed via spectral flow are in
some (c, a) ring. From (B.6) it is clear that a state in (c) is transformed into a state in

17Taking the conjugate, i.e. the (a, c) and the (a, a) ring is equivalent of course
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(a) by spectral flow Θ = −1 and an (a) state is transformed into a (c) state by spectral
flow with Θ = 1:

hΘ = h+ Θq +
3

2
Θ2, qΘ = q + 3Θ. (B.14)

From the (c, a) states with new conformal weights and charges (hΘ, h̄Θ), (qΘ, q̄Θ) we
read off that the states are (p, k)-forms with p = 2hΘ and k = 2h̄Θ. The state with
(q, q̄) = (1, 1) is mapped via spectral flow with Θ = −1 to the (c, a) state (h0, h̄−1) = (1

2
, 1)

and (q0, q̄−1) = (1,−2), which is a (1, 2) form. For the state (q, q̄) = (−1, 1) taking the
spectral flow leads to (h1, h̄−1) = (1, 1) and (q1, q̄−1) = (2,−2) and thus to a (2, 2)-form.
Finally from the state with (q, q̄) = (−1,−1) we get (h1, h̄0) = (1, 1

2
) and (q1, q̄0) = (2,−1)

which is a (2, 1)-form. Thus the moduli of the type IIA theory are identified with the
conformal fields as

h(1,1) zero−modes with : (h, h̄) = (
1

2
,
1

2
), (q, q̄) = (1,−1)

h(1,2) zero−modes with : (h, h̄) = (
1

2
,
1

2
), (q, q̄) = (1, 1)

h(2,1) zero−modes with : (h, h̄) = (
1

2
,
1

2
), (q, q̄) = (−1,−1)

h(2,2) = h(1,1) zero−modes with : (h, h̄) = (
1

2
,
1

2
), (q, q̄) = (−1, 1). (B.15)

An obvious question to ask is what changes if we do not identify the elements of the
cohomology with the (c, a) rings but with the (c, c) rings. In this case one has 2h(1,1)

moduli with (h, h̄) = (1
2
, 1

2
) and (q, q̄) = (1, 1), (q, q̄) = (−1,−1) and 2h(1,12) moduli with

(h, h̄) = (1
2
, 1

2
) and (q, q̄) = (1,−1), (q, q̄) = (−1, 1). It is obvious that the theory is

invariant if we in addition interchange h(1,1) ↔ h(1,2).

This is just the statement of mirror symmetry [50, 52, 53, 54]: The conformal field
theory is invariant under simultaneously exchanging

(c, a)↔ (c, c)

h(1,1) ↔ h(1,2). (B.16)

For general Calabi-Yau d-folds this reads (c, a) ↔ (c, c), h(p,p) ↔ h(p,d−p). The elements
of the (c, a) rings are (p, p)-forms and the elements of the (c, c) rings are (p, d− p)-forms
that form just the primary subspaces of the vertical cohomology H(p,p)(Yd,Z) and the
horizontal cohomology H(p,d−p)(Yd,Z) introduced in A.5.

For Calabi-Yau threefolds it is sufficient to consider only p = 1 because h(2,2) = h(1,1)

and h(3,3) = h(3,0) = h(0,3) = h(0,0) = 1 and the primary cohomologies coincide with the full
cohomologies H(p,p)(Y3,Z) and H(p,d−p)(Y3,Z). For Calabi-Yau fourfolds the (2, 2)-forms
are independent from the (1, 1)-forms and the vertical and horizontal primary subspaces
of H(2,2)(Y4,Z) do not coincide with the full cohomology.

From the point of view of the conformal field theory mirror symmetry is a very
simple observation, but geometrically it has highly non-trivial implications. For a Calabi-
Yau threefold for example correlation functions of three Kähler moduli, usually called
Yukawa couplings, are of great importance. They are determined by the cohomology
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ring of the compactification manifold only in the large radius limit. Taking into account
stringy corrections the Yukawa couplings are determined by the deformed cohomology,
sometimes also called quantum cohomology. It is really this deformed cohomology that
coincides with the (anti-) chiral rings of the superconformal algebra. The calculation
for determining the Yukawa couplings using mirror symmetry is reviewed in section B.3.
The first application of mirror symmetry was given in [5]. Other examples can be found
for example in [55, 56, 57, 58, 59].

By identifying elements of the cohomology with (c, a)/(c, c)-states we consider type
IIA/type IIB compactifications. This implies that type IIA theory compactified on a
Calabi-Yau threefold Y3 is identical to type IIB theory compactified on the “mirror man-
ifold” Y ∗3 . The hodge numbers of the manifolds are h(p,q)(Y3) = h(p,3−q)(Y ∗3 ). Note that
the mirror manifold of a given Calabi-Yau manifold is not necessarily a Calabi-Yau man-
ifold. A Calabi-Yau threefold with h(1,2)(Y3) = 0 for example has a mirror manifold with
h(1,1)(Y ∗3 ) = 0, this is not a Calabi-Yau manifold because it has no Kähler structure.

B.2 Topological Field Theory

The main application of mirror symmetry in Calabi-Yau threefold compactifications is
to derive the Yukawa couplings 〈φiφjφk〉 of (1, 1)-forms including all stringy corrections.
The correlation functions of the (c, a) and (a, c) primary fields on the threefold Y can be
derived in terms of the simpler correlation functions of the (c, c) and (a, a) fields on the
mirror manifold Y ∗.

Consider the correlation functions

cijk = 〈φiφjφk〉 =

∫
DuDχDρφiφjφke−S(u,χ,ρ), (B.17)

where S(u, χ, ρ) is the sigma-model action with target space Y3 with a field content
consisting of the worldsheet bosons u and the fermions of the N = (2, 2) supersymmetry.
The threepoint functions are fixed by the structure “constants” (B.11), which are not
constant but an infinite series in the Kählermoduli t. The correlation functions are not
evaluated using the above sigma model action but the “twisted” topological sigma model
[48, 62, 63, 67] obtained from the original action by twisting the worldsheet fermions.
The important point is that the threepoint functions containing the (anti-) chiral primary
fields are invariant under the twisting, but can be derived explicitly in the twisted model.

There are two possible ways of twisting the sigma-model to obtain a topological field
theory, these are called the A- and B-model. The observables of the A-model are the
(c, a) rings and the observables of the B-model are the (c, c) rings. Mirror symmetry
can be understood naturally in terms of the topological field theories, the correlation
functions of the A-model with target space Y are mapped to the correlation functions of
the B-model with target space Y ∗ via mirror symmetry.

Let us describe the twisting of the sigma-model. We follow the discussion of [67]. The
starting point is the worldsheet action in complex coordinates of the target manifold Y3

and left- and right-moving coordinates on the worldsheet (z, z̄)

S = T

∫
Σ

dzdz̄
(
gmn̄(u)(∂um∂̄un̄ + ∂̄um∂un̄)− iBmn̄(u)(∂um∂̄un̄ − ∂̄um∂un̄)

)
.(B.18)
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The action can be written in the form

S = 2T

∫
Σ

dzdz̄Gmn̄(u)∂̄um∂un̄ − iT
∫

Σ

(u∗t), (B.19)

where t = B + iG is a complex Kählerform and

(u∗t) = (gmn̄(u) + igmn̄(u))(∂um∂̄un̄ − ∂̄um∂un̄) (B.20)

is the pullback of t from Y3 to the worldsheet Σ. Including the fermions χ and ρ of the
N = 2 supersymmetry the action reads [67]

S = 2T

∫
Σ

dzdz̄

(
gmn̄∂̄u

m∂un̄ − i

2
gmn̄ρ

mDχn̄ − i

2
gmn̄ρ

m̄D̄χn − 1

4
Rmm̄nn̄χ

mχm̄ρnρn̄
)

− iT

∫
Σ

(u∗t). (B.21)

The term in the second line depends only on the cohomology class of t and on the
homology class of u(Σ) in Y3. The other part in the first line contains fermionic as well
as bosonic degrees of freedom. This is the part that undergoes the twisting.

The twisting consists of transforming the world-sheet spinors χm, χm̄, ρm, ρm̄ into
bosonic fields with spin one and spin zero. The twisted theory is not supersymmetric
anymore as it contains no fermions. However, after the transformation, the supersymme-
try is transformed into another symmetry, a BRST symmetry. The BRST symmetry is
generated by the modified supercurrents G±, which are bosonic and have spin 3/2± 1/2
after the twisting. Also, the twisted theory is BRST exact, that means the theory is the
BRST variation of something. Being BRST invariant and exact is just the definition of
a topological theory. Thus the twisting of the worldsheet theory generates a topological
field theory. There are two inequivalent ways of doing the twisting: first, one assumes
that the spinors χm and ρm are transformed to spin zero fields and the conjugates χm̄ and
ρm̄ are transformed to spin one fields on the worldsheet. This is the A-model. Second,
one can do the twisting such that χm and χm̄ are transformed into spin one fields and
ρm, ρm̄ are transformed into spin zero fields. This is the B-model.

Being topological theories, the correlation functions of the A- and B-model are con-
stant. The other part, containing

∫
u∗(t), contributes moduli-dependend terms to the

correlation functions but has no additional degrees of freedom. We denote the action for
the topological A- and B-model by SA and SB in the following.

For the three-point function in the A-model we get

cijk = eiT
∫
φ∗(t)

∫
DuDχDρφiφjφke−SA . (B.22)

The correlation functions are invariant under changing continuous parameters of the
topological A-model. Thus we are free to choose the limit T → ∞, which means that
the A-model action only contributes by leading order SA = 0 to the path integral.

From the equation of motion of the sigma model action (B.21), it follows that ∂̄ui = 0.
This implies that that the maps u are n−fold covers of algebraic curves in Y3. In other
words, the worldsheet instantons are due to fundamental strings wrapped n times on
holomorphic curves in the Calabi-Yau manifold.
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We expand the Kählerform as t = tiei, where ei are a base of the (1, 1)-forms, and
denote the integers of the homology class of u by di =

∫
Σ

(u∗ei) = 1
2π

∫
φ
ei. The numbers

di are also called instanton numbers or the degree of the holomorphic curves. Thus the
second line of action (B.21) is

S = −2πiT
∑
i

tidi. (B.23)

Wrapping a fundamental string n = 0 times on the holomorphic curves means that u(Σ)
is topologically trivial. In this case all di vanish, leaving no instanton contribution.

For evaluating the correlation functions one expands them in classes

cijk =
∑
g

c
(g)
ijk, (B.24)

where the sum over g = (d1, . . . , dn) takes into account all curves of multi-degree (d1, . . . , dn).
Thus the path integral takes the form

c
(g)
ijk = e−S

(g)

∫ (g)

DuDρDχ φiφjφke−SA . (B.25)

Using qi = e2πiti we finally have an expansion

cijk = N
(0,...,0)
ijk +N

(1,0,...,0)
ijk q1 +N

(0,1,0,...,0)
ijk q2 + . . .+N

(2,1,0...,0)
ijk q2

1q2 + . . . , (B.26)

where the numbers Nijk are

N
(g)
ijk =

∫ (g)

DuDρDχ φiφjφke−SA . (B.27)

The correlation functions are an infinite series in qi with integer coefficients given by the
constant threepoint functions of the topological A-model. To lowest order g = (0, . . . , 0)
the correlation function is given by the classical intersection numbers of three (1, 1)-
forms dijk =

∫
Y3
ei ∧ ej ∧ ek. In principle all higher-order terms can be derived explicitly

for any given threefold Y3. But as there are infinitely many terms this is impossible
in practice. Mirror symmetry can solve this problem. We know that the correlation
functions of the A-model on Y3 are identical with those of the B-model on the mirror
manifold Y ∗3 . The correlation functions of the B-model are purely classical and do not
have any instanton corrections. The calculation of the instanton corrections to the A-
model threepoint function is subject of the next section.

Let us first consider other correlation functions of the topological A-model [18, 20,
62, 63], for example the two-point functions

ηij = 〈φiφj〉. (B.28)

For a Calabi-Yau threefold this is the correlator of the i-th (1, 1)-form and the j-th
(2, 2)-form in the (c, a), (a, c) rings. As h(1,1) = h(2,2) it is correct to use the same index
i, j = 1, . . . , h(1,1) for both observables.

For general Calabi-Yau d-folds, the twopoint functions are the correlators of a (p, p)-

form and a (d − p, d − p)-form, p ≤ d, these two-point functions are usually called η
(p)
ij .
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It was shown in [62] that the derivatives of all twopoint functions with respect to all
Kählermoduli ti vanish,

∂

∂tk
ηij = 0. (B.29)

Thus the two-point functions are constant and receive no worldsheet corrections.

For a Calabi-Yau threefold, the two- and three-point functions are the only correlation
functions. A four-point function in the A-model is at least a (4, 4)- form, which exists only
for Calabi-Yau d-folds with d ≥ 4. However, for Calabi-Yau d-folds of any dimension, the
factorization properties of the topological field theory allow to compute all correlation
functions in terms of the two- and the threepoint functions [18].

Let us call O(p)
N , N = 1, . . . , h(p,p)(Yd), a (p, p)-form and observable in the A-model

with target space Yd (for d = 3 we have just the one element O(1)
i = φi considered above).

As explained for example in [18], the observables of the A-model are not all of the (p, p)-
forms of Yd with p ≤ d, but only those that are the wedge product of p (1, 1)-forms. Thus
the observables of the A-model are exactly the elements of the vertical primary subspace
of H(p,p)(Yd) introduced in A.5. The observables of the B-model are the elements of the
horizontal primary subspace of H(d−p,p)(Yd). One can generalize (B.11) and introduce
operator product coefficients c(p,q) for arbitrary dimensions d as

O(p)
N O

(q)
M = c

(p,q) k
MN O(p+q)

O . (B.30)

Thus any three-point function is of the form

c
(p,q)
MNO = 〈O(p)

M O
(q)
N O

(d−p−q)
O 〉 = c

(p,q) P
MN η

(p+q)
PO = c

(q,d−p−q) P
NO η

(p)
MP (B.31)

The case p = q = 1, d = 3 reproduces c
(1,1)
ijk = cijk of (B.22).

Using the above relation, the fourpoint functions on a Calabi-Yau fourfold (d = 4 and
all fields O are (1, 1)-forms) are

〈O(1)
M O

(1)
N O

(1)
O O

(1)
P 〉 = c

(1,1) Q
MN c

(2,1) R
QO η

(3)
QP = c

(1,1) Q
MN η

(2)
QRc

(1,1) R
OP . (B.32)

For the metric we can use η(3) = η(1)T to express the fourpoint function as [18, 20]

c
(1,1) Q
MN c

(2,1) R
QO η

(1)
PR = c

(1,1) Q
NM η

(2)
QRc

(1,1) R
OP . (B.33)

Interesting conditions for correlation functions follow form the associativity of the oper-
ator products, for the fourpoint function we get for example

c
(1,1) Q
MN η

(2)
QRc

(1,1) n
OP = c

(1,1) Q
MO η

(2)
QRc

(1,1) R
NO . (B.34)

From (B.31) we know that c
(1,1) Q
MN η

(2)
QO = c

(1,2) Q
NO η

(1)
MQ, and inserting this in the above

equation leads to the relation

c
(1,1) Q
MN c

(1,2) R
OQ = c

(1,1) Q
MO c

(1,2) R
NQ , (B.35)

which is highly non-trivial if one includes the worldsheet corrections.
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B.3 Worldsheet Instantons

In this section, we review the derivation of the three-point function (B.26) of the topo-
logical A-model by using mirror symmetry. A more detailed review can be found in
[60]. Special geometry, introduced in A.4, implies that the threepoint function cijk is the
derivative of a holomorphic prepotential F

cijk = ∂i∂j∂kF , (B.36)

where ∂i = ∂/∂ti. Mirror symmetry implies that the prepotential F is mapped to the
prepotential F of the B-model on the mirror manifold Y ∗3 . The prepotential F of the
B-model depends on the (1, 2)-forms of Y ∗3 only and thus receives no worldsheet instanton
corrections. Thus F can be derived explicitly. The mirror map gives the prepotential of
the A-model on Y3 including all instanton corrections.

Let us consider the mirror manifold Y ∗3 . The threefold has a unique holomorphic
(3, 0)-form Ω that depends on the complex structure moduli. The derivatives of Ω with
respect to the complex structure moduli have components in H(3,0) ⊕ H(2,1) ⊕ H(1,2) ⊕
H(0,3). More precisely, the first derivative is in H(3,0) ⊕ H(2,1), the second derivative is
in H(3,0) ⊕ H(2,1) ⊕ H(1,2) and the third derivative in H(3,0) ⊕ H(2,1) ⊕ H(1,2) ⊕ H(0,3).
Since the number of 3-forms b3 = 2(h(2,1) + 1) is finite there must be some linear relation
between the derivatives, LΩ = dη where L is some differential operator with moduli
dependent coefficients. Integrating this equation over a closed threecycle Sa ∈ H3(Y ∗3 ,Z),
a = 1, . . . , 2(h(2,1) + 1), we get a differential equation

LΠa = 0, (B.37)

where Πa =
∫
Sa

Ω are the period integrals of Ω. These equations are called the Picard-
Fuchs equations. For a given threefold Y ∗3 one can construct the differential operator L
which fulfills the Picard-Fuchs equation and write down the explicit form of the period
integrals Πa. We do not perform such a calculation here but refer to [60] and to [5, 55,
56, 57, 58, 59].

Given an explicit expression for the periods one can write down the period integrals
in a more convenient form for the mirror map. As explained in A.4, one can express the
periods in terms of the special coordinates λi, i = 1, . . . , h(1,2)(Y ∗,Z), the periods are

Π(λ) =
(
1, λi, Fi, 2F − λiFi

)
, (B.38)

with Fi = ∂
∂λi
F .

Mirror symmetry maps the prepotential F (λ) of the complex structure moduli space
of Y ∗3 to the prepotential F(t) of the Kählermoduli space of Y3. After the mirror map
the above period vector is

Π(t) =
(
1, ti,Fi, 2F − tiF〉

)
, (B.39)

with Fi = ∂
∂ti
F . The index i labels the (1, 1)-forms on Y3, i = 1, . . . , h(1,1)(Y3,Z). The

mirror map is λi = ti for the first two components, they do not contain worldsheet
corrections on Y3. For the last two components the mirror map is log(λi) = 2πiti+O(t2).
To perform the mirror map explicitly one keeps only the linear term in ti. This leads
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to corrections in terms of the variables q = e2πiti defined in (B.27) 18. The coordinates
parametrizing the first two and the last two components of Π are called t-type and q-type
coordinates in [18]. Let us stress again that the prepotential F (z) on Y ∗3 does not have
worldsheet corrections of any kind and can be derived exactly. After the mirror map one
obtains the full prepotential F(t) on Y3 including all worldsheet corrections. F is of the
form [5]19

F =
1

6
dijkt

itjtk + aijt
itj + bit

i +
1

2
c− 1

(2π)3

∑
g

ngLi3(e2πi
∑
tidi), (B.40)

where

Li3(x) ≡
∞∑
j=1

xj

j3
. (B.41)

di is again the instanton number of the i-th (1, 1)-form ei, di =
∫
C ei, and ng is the

number of isolated holomorphic curves C of multi-degree g = (d1, . . . , dh(1,1)). The sum
over j takes into account multiple coverings of a fundamental string wrapped on a given
curve.

The mirror symmetry result contains more information than the correlation function
of the topological sigma model of the last section in the sense that one derives the full
holomorphic prepotential, whereas the correlation functions are the third derivatives of
the prepotential. The complex constants aij, bi and c do not appear in the threepoint
function (B.36).

The constants aij, bi and c are determined in [59, 60]. The real parts of the constants
are considered as being irrelevant because they neither contribute to the correlation
functions cijk nor to the Kählerpotential K = − ln[2(F −F̄)− (ti− t̄i)(Fi+ F̄i)] and thus
have no impact on the theory. The Kählerpotential without the instanton corrections has
a continuous Peccei-Quinn symmetry ti → ti + ni [61]. This implies that the imaginary
parts of aij and bi are zero. Thus the only relevant contribution is the imaginary constant
c,

c =
1

(2πi)3
χ(Y3)ζ(3), (B.42)

where χ(Y3) is the Euler number of Y3 and ζ(3) is a constant. This term can be identified
with a loop correction of the worldsheet theory.

B.4 Mirror Symmetry and D-branes

For completeness we consider type II theories including D-brane configurations on Calabi-
Yau manifolds. D-branes wrapped on curved spaces have been studied first in [68] and in
in the context of mirror symmetry in [69]. We follow the discussion of [69]. The question
is whether mirror symmetry is applicable to D-branes in Calabi-Yau manifolds, or in

18For simplicity, the dependence of α′ or equivalently the tension T is omitted
19In [5] models with h(1,1) = 1 were considered. The generalization to arbitrary h(1,1) can be found

for example in [59]
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other words which kind of cycles the D-branes can be wrapped on. We only consider
BPS states, which means that in the presence of D-branes half of the N = (2, 2) sigma
model supersymmetry is broken. Non-BPS branes break the whole supersymmetry.

The equations of motion from the sigma-model action for the worldsheet bosons and
fermions give rise to Neumann and Dirichlet boundary conditions [3] for the worldsheet
fields

∂ua = Ra
b∂̄u

b, (χ, ρ)aL = ±Ra
b(χ, ρ)bR, a = 1, . . . 2d, (B.43)

where (χ, ρ)L are the two left-moving spinors, (χ, ρ)R are the right-moving spinors of
(B.2) and the matrix Ra

b satisfies gabR
a
cR

b
d = gbd. Note that we use real coordinates on

the Calabi-Yau d-fold. The ± signs for the fermions are due to the NS- and R- sector.
Dirichlet boundary conditions for u are given by the eigenvector of R with eigenvalue
−1 and Neumann boundary conditions are given by eigenvalue +1. Dirichlet boundary
conditions imply that a D-brane is located in the Calabi-Yau manifold perpendicular
to the directions with the Dirichlet boundary conditions. As we want to consider D-
branes wrapped on submanifolds of some Calabi-Yau manifold, we generically have mixed
boundary conditions and the matrix R is not symmetric.

As half of the supersymmetry is broken on the boundaries, the boundary states de-
scribing the D-branes are invariant under a linear combination of the generators of the
N = (2, 2) superconformal algebra. It was shown in [69] that there are two ways of
obtaining consistent boundary conditions breaking half of the supersymmetry, these are
called A-type and B-type boundary conditions:

A− type : T+
F = ±iT̄+

F , T
−
F = ±iT̄−F , J = −J̄

B− type : T+
F = ±iT̄−F , T

−
F = ±iT̄+

F , J = J̄

(B.44)

Both boundary conditions preserve the N = (1, 1) superconformal algebra generated by
the energy momentum tensor T and the supercurrent TF . The N = 1 supercurrent is
related to the N = 2 supercurrents as TF = T+

F + T−F . The generators of the N = (1, 1)
algebra satisfy the relations T = T̄ and TF = ±iT̄F for both a A-and B-type boundary
conditions as well as the boundary conditions (B.43). Note that T̄+

F ↔ T̄−F and J̄ ↔
−J̄ interchanges A- and B-type boundary conditions and also defines the mirror map
(c, c)↔ (c, a) of B.1.

The N = (2, 2) U(1) currents (B.4) (in complex coordinates) are of the form J =
gīχ

iρ̄, J̄ = −gīρiχ̄. Together with (B.43) this implies the following formulas for the
Kählerform gab for B-type boundary conditions:

gabR
a
cR

b
d = −gcd. (B.45)

Denote by xA, A = 1, . . . , p, the coordinates in the directions with Neumann boundary
conditions (tangential to the worldvolume of the brane) and by yα, α = 1, . . . , (2d −
p), the coordinates in the directions with Dirichlet boundary conditions (normal to the
worldvolume of the brane). With only Neumann indices the R is symmetric and has
eigenvalues +1 only, and the above equation implies that

gCDR
C
AR

D
B = gCDδ

C
Aδ

D
B = −gAB → gAB = 0 (B.46)
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With only Dirichlet indices R is symmetric and has eigenvalues −1 only, thus the above
equation implies that also gαβ vanishes

gγδR
γ
αR

δ
β = gγδ(−)δγα(−)δδβ = −gαβ → gαβ = 0. (B.47)

Only the components of the Kählerform with mixed components gAα are non-vanishing.
This implies that the number of directions with Dirichlet boundary conditions (2d − p)
is equal to the number of Neumann boundary conditions p, thus we have p = d. That
means the brane is wrapped on a d-dimensional submanifold of the Calabi-Yau manifold.
It was shown in [69] that this submanifold is a middle-dimensional cycle S ∈ Hd(Yd,Z)
(a 3- cycle for a Calabi-Yau threefold) with volume

V ol(S) =

∫
S

Ω, (B.48)

where Ω is the holomorphic d-form of Yd.

The A-type boundary conditions imply that R satisfies

gabR
a
cR

b
d = gcd. (B.49)

This implies that the Kählerform with one index in the directions with Neumann bound-
ary conditions and one index in the directions with Dirichlet boundary conditions vanishes

kγCR
γ
αR

C
A = kγC(−)δγαδ

C
A = −kαA → kαA = 0. (B.50)

The Kählerform is bock diagonal with non-vanishing components gAB and gαβ. It was
shown in [69] that the p-dimensional submanifold in the Neumann directions is an even-
dimensional holomorphic submanifold of the Calabi-Yau d-fold. This means that the D-
branes are wrapped on holomorphic p-cycles C(p) ∈ Hp(Yd,Z) with p even. The volume
of a holomorphic p-cycle is

V ol(C(p)) =

∫
C(p)

t ∧ . . . ∧ t, (B.51)

where the integral contains p/2 complex Kählerforms t.

It was mentioned above that the boundary states with A- and B-type boundary
conditions (B.44) interchange right-moving (c) and (a) fields. If we denote the boundary
states corresponding to the wrapped D-branes by |D〉, B-type boundary conditions imply

(T+
F ∓ iT̄

−
F )|D〉 = 0, (T−F ∓ iT̄

+
F )|D〉 = 0, (J − J̄)|D〉 = 0, (B.52)

and A-type boundary conditions imply

(T+
F ∓ iT̄

+
F )|D〉 = 0, (T−F ∓ iT̄

−
F )|D〉 = 0, (J + J̄)|D〉 = 0. (B.53)

The boundary states have U(1) charge q = ±q̄. It was shown in [69] that the A-type
boundary states can indeed be expanded in terms of the (c, a) rings of the N = (2, 2)
superconformal algebra,

|D〉A−type =
∑
s

cs|φs〉, φs ∈ (c, a), (B.54)
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where s = 1, . . . , dim(
∑d

p=0 H
(p,p)). The coefficients depend on the Kählermoduli only

and are given by the volumes of the p-cycles the branes are wrapped on,

cs =

∫
Cs
t ∧ . . . ∧ t+ stringy corrections. (B.55)

The cycles {Cs} =
∑

pC
(2p), p ≤ d, are the 2p-dimensional holomorphic cycles of the

Calabi-Yau manifold. The B-type boundary states can be expanded in terms of the (c, c)
rings,

|D〉B−type =
∑
l

dl|φl〉, φl ∈ (c, c), (B.56)

with l = 1, . . . , dim(
∑d

p=0 H
(p,d−p)) and the coefficients depending on the complex struc-

ture moduli only,

dl =

∫
Sl

Ω, (B.57)

where Sl are the middle-dimensional cycles in
∏d

p=0 H
(p,d−p). Mirror symmetry demands

that the coefficients cs evaluated on a Calabi-Yau manifold Yd are mapped to the co-
efficients dl evaluated on the mirror manifold Y ∗d . Thus the volumes of the middle-
dimensional and the holomorphic cycles are related by mirror symmetry. If we denote
by S the sum of the middle-dimensional cycles Sl, we get the formula∑

p

(∫
C(p)

t ∧ . . . ∧ t+ stringy corrections

)
Yd

=

(∫
S

Ω

)
Y ∗d

. (B.58)

This equation is of great importance in chapter 2.
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C Anomalies

Anomalies are the breakdown of classical conservation laws due to quantum corrections
[1]. In the context of symmetry breaking one has to distinguish between local and global
symmetries. A global symmetry broken by anomalies changes the physical content of
a theory, but does not lead to inconsistencies. Local symmetries on the other hand
must not be broken by anomalies because they make the theory inconsistent. Broken
gauge symmetries for example lead to non-unitary theories. The unphysical longitudinal
modes of the gauge fields no longer decouple from the physical states. On the level
of scattering amplitudes, anomalies are caused by one-loop diagrams which cannot be
cancelled by adding local counter terms to the theory. Only diagrams with massless
particles circulating in the loop contribute to anomalies. Thus, it is sufficient in string
or M-theory to derive the anomalies on the level of the low-energy effective theory. The
infinitely many massive excitations of strings do not have to be taken into account. For
a detailed review of anomalies see [1].

Anomalies occur in parity-violating loop diagrams only. Parity conserving amplitudes
can be regularized in a covariant and gauge invariant way and do not lead to inconsisten-
cies. Parity violating amplitudes require the existence of chiral, that means Weyl, spinors.
Weyl spinors do not exist in odd dimensions, which implies that odd dimensional theories
are always anomaly-free.

Anomalies are classified due to the external legs of the loop amplitudes. Anomalies
from loop diagrams with external gauge fields only are called gauge anomalies, they are
due to the breakdown of classical gauge invariance. Anomalies in loop diagrams with
external gravitons are called gravitational anomalies and are due to a breakdown of
general covariance. Parity violating gravitational interactions however are not possible
for any even dimension. Chiral amplitudes exist only if the particles are in a complex
representation of SO(d), which possible for d = 4k + 2 for any integer k. These are the
only dimensions with gravitational anomalies. Anomalies in loop diagrams with both
gauge fields and gravitons as external legs are called mixed anomalies. They also exist in
dimensions d = 4k + 2 only. As we consider theories in ten and six dimensions, we have
to include gauge as well as gravitational and mixed anomalies in our considerations.

Anomalies in d dimensions can be expressed in a compact way in terms of a gauge
invariant (d+2)-form Id+2, which is called the anomaly polynomial. The gauge variation
of the effective action Γ obtained by integrating out all fields except the gauge field and
the graviton is given by the d-form Id,

δΓ =

∫
Id(F,R), (C.1)

where F , R are the gauge field strength and the Riemann curvature two-form. The
anomaly polynomial can be extracted from the variation of Γ via

dId = δId+1, Id+2 = dId+1. (C.2)

Anomaly cancellation means Id+2 = 0.
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C.1 Anomalies in d = 10

In this section, we consider the anomalies of ten-dimensional supergravity [1]. After a few
remarks about N=2 type IIA and IIB supergravity, we concentrate on N=1 supergravity.
This being the low energy effective theory of the heterotic string.

The massless spectrum of type IIA supergravity consists of two spin 1/2 fermions
transforming as 8 and 8′ of SO(8) and of two gravitinos transforming as 56 and 56′

of SO(8). Thus the theory is non-chiral. The anomalies caused by the two spin 1/2
fermions cancel as well as those caused by the two gravitinos. This means that Type IIA
supergravity is anomaly-free.

Type IIB supergravity has a massless chiral spectrum that contains two spin 1/2
spinors transforming as 8′, two gravitinos transforming as 56 and one self-dual five-
form field strength. Each chiral field gives rise to an anomaly. However, the sum of all
anomalies vanishes and the theory is anomaly free.

The theory of interest is the strongly coupled heterotic string, thus we consider the
low energy theory in greater detail. The ten-dimensional supergravity theory has N = 1
supersymmetry and a gauge group G = E8 × E8 or SO(32). The massless spectrum is
chiral and contains a neutral fermion (neutral under the gauge group G) transforming as
8′ of SO(8), one gravitino transforming as 56 of SO(8) and a gaugino transforming as
(8,496) of SO(8)×G.

The gauge anomaly arises in a one-loop diagram with six external gauge fields F and
chiral fermions circulating in the loop, this diagram is called the hexagon diagram. It is
sufficient to use the linearized approximation of the Yang-Mills field strength F = dA,
because we want to keep only the lowest number of external gauge fields for the hexagon
diagram. The theory has a gauge anomaly if the effective action is not gauge invariant,
i.e. δΛΓ 6= 0 for a gauge transformation δΛAM = ∂MΛ for M = 0, . . . , 9. For the hexagon
diagram, the variation of the effective action is

δΛΓ =

∫
d10x[c1Tr(ΛF

5) + c2TrF
4Tr(ΛF ) + c3Tr(ΛF )(TrF 2)2], (C.3)

with wedge products assumed and constants c1,2,3 which depend on the gauge quantum
numbers of the particles circulating in the loop.

The relation between the variation of the effective action and the anomaly polynomial
Id+2 is given in (C.1) and (C.2). Inserting d = 10 leads to

I11 = [c1Tr(AF
5) + c2TrF

4Tr(AF ) + c3Tr(AF (TrF 2)2)], (C.4)

and from this one can extract the anomaly polynomial I12,

I12 = [c1TrF
6 + c2TrF

4TrF 2 + c3Tr(TrF
2)3]. (C.5)

The gauge anomaly of the heterotic string arises from the chiral gaugino circulating in
the loop and the explicit calculation fixes the constants 20 c1 = 1

2
1

(2π)56!
, c2 = 0, c3 = 0

[1]. The first factor 1
2

in c1 is due to the fact that we have chiral Majorana-Weyl fermions

20Chiral fermions contribute to anomalies with a positive sign, anti-chiral fermions contribute with a
negative sign.
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in d = 10 which have half the degrees of freedom of complex chiral Weyl fermions. Thus
the gauge anomaly polynomial of the heterotic string is

I
gauge,1/2
12 =

1

2(2π)56!
TrF 6. (C.6)

The index 1/2 indicates that a spin 1/2 fermion, the gaugino, circulating in the loop
gives rise to the anomaly.

The gravitational anomaly arises from the hexagonal diagram with only gravitons as
external legs and spin 1/2 as well as spin 3/2 fermions in the loop. To emphasize the
similarities with the calculations of the gauge anomaly above, we treat gravitation as a
gauge theory with the tangent space group SO(10) as a gauge group. The curvature
RMNαβ is a two-form with two space-time indices M,M and two tangent space indices
α, β. Just as we restricted our considerations to the linear part of the field strength
F = dA for the gauge anomalies we take the linearized curvature tensor RMN = (dw)MN

for deriving the gravitational anomalies. The spin connection wM plays the role of an
SO(10) gauge vector.

Gravitational anomalies occur if the action is not invariant under general infinitesimal
diffeomorphisms

xM → xM + ηM(xN). (C.7)

The variation of the effective action of the hexagon diagram is

δΓ ∼
∫
d10x[d1tr(ΘR

5) + d2trR
4tr(ΘR) + d3tr(ΘR)(trR2)2], (C.8)

with ΘMN = DMηN−DNηM and three constants d1,2,3 which have to be derived explicitly
for the theory under consideration. Note that the variation of the action is of the same
form as (C.3) with the curvature R interchanged with the gauge field strength F and Θ
interchanged with the gauge parameter Λ.

The anomaly polynomial is

I12 = d1trR
6 + d2trR

4trR2 + d3tr(trR
2)3. (C.9)

Similar as in the case of the gauge anomaly, a part of the gravitational anomaly can
be cancelled by the anomalous Feynman diagram which describes the exchange of the
massless field B between two gravitons on one side and four gravitons on the other side.
The calculations are in principal similar to those of the gauge anomaly. The gravitational
anomaly has three different contributions though. The charged chiral spin 1/2 fermion
(the gaugino), the neutral spin 1/2 fermion (the dilatino) and the chiral spin 3/2 gravitino
all contribute to the anomaly.

Performing the calculation of d1, d2 and d3 for the gravitino, gaugino and dilatino and
adding the contributions leads to the gravitational anomaly of the heterotic string [1],

Igrav.
12 = I

grav.,3/2
12 + (n− 1)I

grav.,1/2
12 , (C.10)

where n is the dimension of the gauge group G and

I
grav.,3/2
12 =

1

2(2π)56!

(
55

56
trR6 − 77

128
trR4trR2 +

35

512
(trR2)3

)
,

I
grav.,1/2
12 =

1

2(2π)56!

(
− 1

504
trR6 − 1

384
trR4trR2 − 5

4608
(trR2)3

)
. (C.11)
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The contribution I
grav.,3/2
12 arises from the spin 3/2 gravitino and (n− 1)I

grav.,1/2
12 are the

contributions of the gaugino and the dilatino. The opposite signs are due to the chirality
of the gaugino and the antichirality of the dilatino. We keep n unspecified for the moment
in order to show later that the total anomaly cancels for n = 496 only.

The mixed anomaly comes from the one-loop hexagon diagram with both gravitons
and gauge fields as external legs and spin 1/2 fermions in the loop. The variation of the
effective action is of the same form as those of the pure gauge and pure gravitational
anomalies. According to the possible distribution of the total six external gauge fields
and gravitons in the hexagon diagram there are four contributions:

δΓ =

∫
d10x

[
e1Tr(ΛF )trR4 + e2TrF

4tr(ΘR) + e3tr(ΘR)(TrF 2)2

+e4Tr(ΛF )(trR2)2
]
. (C.12)

There are additional terms with different combinations of F and R in the hexagon di-
agram, but these terms can be cancelled by adding local counter terms [1] and do not
contribute to the anomaly. The anomaly polynomial is

I12 = e1TrF
2trR4 + e2TrF

4trR2 + e3trR
2(TrF 2)2 + e4TrF

2(trR2)2. (C.13)

The mixed anomaly polynomial of the heterotic string is produced by the gaugino circu-
lating in the loop. This leads to the anomaly polynomial [1]

I
mixed,1/2
12 =

1

2(2π)56!

(
1

16
trR4TrF 2 +

5

64
(trR2)2TrF 2 − 5

8
trR2TrF 4

)
. (C.14)

Adding the contributions of the gauge anomaly (C.6), the gravitational anomaly (C.10)
and the mixed anomaly (C.14) leads to the total anomaly

I12 = I
gauge,1/2
12 + I

grav.,3/2
12 + (n− 1)I

grav.,1/2
12 + I

mixed,1/2
12

=
1

2(2π)56!

(
496− n

504
trR6 − 224 + n

384
trR4trR2 +

5(64− n)

4608
(trR2)3

+
1

16
trR4TrF 2 +

5

64
(trR2)2TrF 2 − 5

8
trR2TrF 4 + TrF 6

)
. (C.15)

This anomaly must be cancelled in order to keep the theory consistent. This can be done
for a gauge group G = E8 × E8 or SO(32) via the Green-Schwarz mechanism [83] as we
explain in the following. For simplicity we concentrate on the gauge anomaly first and
assume an anomaly polynomial of the general form (C.5).

In order to cancel the gauge anomaly, the theory must contain another anomalous
Feynman diagram with six external gauge bosons. Such a diagram indeed exists for the
heterotic string. It consists of two vertices that are glued together. One is a three-point
vertex with two gauge bosons and the antisymmetric NS two-form BMN and the second
one has five legs, four gauge bosons and one two-form BMN . The vertices are glued
together such that BMN is the internal field exchanged between the gauge bosons. The
action which contains both vertices is

S =

∫
d10x
√
g
(
Tr|H|2 +B(Tr|F |4 + (Tr|F |2)2)

)
, (C.16)
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again with wedge products assumed. The three-form field strength H = H0 − ω3 =
dB−Tr(AdA+ 2/3A3) includes the Yang-Mills Chern-Simons term ω3. Only the part of
S of lowest order in the gauge field A contributes to the anomalous Feynman diagram,

S0 =

∫
d10x
√
g
(
H0TrAdA+B(TrF 4 + (TrF 2)2)

)
, (C.17)

where F = dA is now the linearized field strength. This first term describes the coupling
of B to two gauge bosons and the second one to four gauge bosons. The equation of
motion for B is

DMHMNR = εNRP1,...,P8(TrF P1P2F P3P4F P5P6F P7P8 + Tr(F P1P2F P3P4)Tr(F P5P6F P7P8)).

(C.18)

The gauge variation of the interaction term S0 is

δΛS0 = −
∫
d10x
√
gTr(ΛFMN)DRHMNR, (C.19)

where δΛAM = ∂MΛ is again the linearized variation. Inserting the equation of motion
(C.18) in (C.19) in the variation leaves

δΛS0 = −
∫
d10x
√
g
(
Tr(ΛF )(TrF 4 + (TrF 2)2)

)
. (C.20)

This leads to an anomaly polynomial

I12 ∼ −TrF 2TrF 4 − (TrF 2)3, (C.21)

which has exactly the correct form to cancel the second and third term of the anomaly
(C.5).

The first term ∼ trF 6 in (C.5) however, which is relevant in the heterotic gauge
anomaly, cannot be cancelled in this way. The anomaly polynomial (C.5) needs to have
some factorization property I12 = TrF 2TrF 4 + (TrF 2)3 to be cancelled by an additional
interaction of the form

∫
B(TrF 4 + (TrF 2)2). It is exactly for the gauge groups E8×E8

and SO(32) that the gauge field strength has the factorization property21

TrF 6 =
1

48
TrF 4TrF 2 − 1

14400
(TrF 2)2. (C.22)

Using this relation the anomaly polynomial (C.5) factorizes into the product of a four-
form and an eight-form and can be cancelled. This statement is indeed true not only for
the gauge anomaly. Anomalies can be cancelled in general by a Green-Schwarz mechanism
if the anomaly poynomial factorizes into a four-form and an eight-form (for d=10).The
contributions of the mixed and the gravitational anomaly to the total anomaly (C.15),
except the term ∼ R6, have the required factorization and can be cancelled by the Green-
Schwarz mechanism. The term ∼ R6 has to vanish, this fixes n = 496 as expected. Using

21Such a factorization also works for just one E8 of course, but cancellation of the gravitational
anomaly considered in the following determines the dimension n of the representation of the gauge
group as n = 496 and thus leads to E8 × E8 and SO(32).
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equation (C.22), the remaining contributions of the total anomaly can be brought to the
form

I12 = − 15

2(2π)56!
Y4Z8, (C.23)

with

Z8 = −1

8
trR4 +

1

32
(R2)2 − 1

240
trR2TrF 2 +

1

24
TrF 4 − 1

7200
(TrF 2)2,

Y4 = trR2 − 1

30
TrF 2. (C.24)

At this point we make a final remark. The operation trF used in the literature [1, 89, 90]
and also in chapter 3 is defined by TrF 2 = 30trF 2. This notation originates from the
gauge group SO(32) where the trace in the adjoint representation is usually denoted by
TrF and the trace in the fundamental representation by trF with a relation TrF =
30trF . The same relation is used to define the operation tr for the gauge group E8×E8.

C.2 Anomaly Cancellation in M-Theory Compactified on I =
S1/Z2 with Gauge Group E8 × E8

In this section, we consider the anomalies of eleven-dimensional supergravity compactified
on the interval I = S1/Z2 [15] as described in section (3.1). The anomalies are also
explained in detail in the first ref. of [90] and [75]. Being an odd-dimensional theory,
the eleven-dimensional supergravity in the bulk is anomaly-free. The anomalies arise
on the two fixed ten-planes of the S1/Z2 orbifold. They have two origins. First, there
are gravitational anomalies due to the projection of the eleven-dimensional gravitino to
the ten-planes. Second, there are gravitational, gauge and mixed anomalies from the
“twisted” gauge field and gaugino introduced on each ten-plane. We explain this in more
detail in the following and review how the anomalies can be cancelled.

The compactification of the eleven-dimensional gravitino to ten dimensions results
in a ten-dimensional chiral gravitino plus a ten-dimensional antichiral spin 1/2 fermion
on each ten-plane. Both femions give rise to gravitational anomalies. To find out how
these anomalies look like, it is instructive to consider the limit in which the length of the
interval I approaches zero and the two ten-planes are pushed together. In this limit, the
theory describes the weakly coupled heterotic string, or its low energy limit to be precise,
considered in the last section. Thus, the gravitational anomaly in this limit is

I12 = I
grav,3/2
12 − Igrav.,1/2

12 , (C.25)

where I
grav,3/2
12 , I

grav.,1/2
12 are the anomaly polynomials of the dilatino and the gravitino

of the heterotic string given in eqn. (C.11). Increasing the length of the interval and
separating the two ten-planes leads to two separated anomalies, I12 → Î1

12 + Î2
12, where

the subscripts 1,2 label the ten-planes22. It is intuitive to assume that the anomalies are

22We use Î12 for the anomaly polynomials on the ten-planes in order to distinguish them from those
of the weakly coupled heterotic string denoted by I12 in the last section.
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distributed evenly over the two ten-planes. Thus the anomaly on each ten-plane is equal
to that of eqn. (C.25), multiplied by a factor 1/2. This leads to the anomaly

Î1,2
12 =

1

2

(
I

grav.,3/2
12 − Igrav.,1/2

12

)
. (C.26)

As mentioned above, the spectrum contains one gaugino on each ten-plane, which
originates in ten dimensions rather than being the projection of some eleven-dimensional
field. The gaugino couples to the ten-dimensional graviton as well as to the gauge field
strength and thus gives rise to gauge, gravitational and mixed anomalies. Due to the
ten-dimensional origin of the gaugino, the anomalies are identical to those of the heterotic
string described in the last section. These are given by eqn. (C.6), the second equation
of (C.11) and (C.14) and lead to

Î1,2
12 = I

gauge,1/2
12 (F1,2) + n1,2I

grav.,1/2
12 (R) + I

mixed,1/2
12 (R, F1,2), (C.27)

where F1,2 are the gauge field strengths on the two ten-planes and n1,2 are the dimensions
of the gauge groups on the two ten-planes. Adding the two anomalies (C.26) and (C.27)
gives the total anomaly

Î1,2
12 =

1

2

(
I

grav.,3/2
12 (R)− Igrav.,1/2

12 (R)
)

+
(
I

gauge,1/2
12 (F1,2) + n1,2I

grav.,1/2
12 (R) + I

mixed,1/2
12 (R, F1,2)

)
=

1

2(2π)56!

(
248− n1,2

504
trR6 − 112 + n1,2

384
trR4trR2 +

5(32− n1,2)

4608
(R2)3

+
1

16
trR4TrF 2

1,2 +
5

64
(trR2)2TrF 2

1,2 −
5

8
trR2trF 4

1,2 + TrF 6
1,2

)
, (C.28)

The term ∼ R6 has to vanish, which fixes n1 = n2 = 248. Also, to get rid of the term
∼ F 6

1,2, we need some factorization property for the gauge field strengths. Both conditions
are fulfilled by the gauge goup E8. The factorization is

TrF 6
1,2 =

1

24
TrF 2

1,2TrF
4
1,2 −

1

3600
(TrF 2

1,2)3. (C.29)

In addition, E8 has the property TrF 4 = 1
100

(TrF 2)2. Using these equations the anomaly
polynomial factorizes as

Î12 = Î1
12 + Î2

12 =
(
Ŷ 1

4 (R, F1)X̂1
8 (R, F1) + Ŷ 2

4 (R, F2)X̂2
8 (R, F2)

)
. (C.30)

with

X̂1,2
8 =

1

(2π)34!

(
1

8
trR4 +

1

32
(R2)2 − 1

4
trR2trF 2

1,2 +
1

4
(trF 2

1,2)2

)
(C.31)

and

Ŷ4
1,2

=
1

4(2π)2

(
trF 2

1,2 −
1

2
trR2

)
. (C.32)
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Note that we have used trF = 1/30TrF . The anomaly polynomial factorizes into a
four- and an eight-form and can thus can be cancelled by the Green-Schwarz mechanism.
Before we explain the cancellation in detail, we simplify the anomaly polynomial further.
Using the eight-form introduced in (3.3),

X8 =
1

(2π)34!

(
1

8
trR4 − 1

32
(trR2)2

)
, (C.33)

the anomaly reads

Î12 =
π

3

(
Ŷ4

1
(R, F1)

)3

+X8(R)Ŷ4
1
(R, F1)

+
π

3

(
Ŷ4

2
(R, F2)

)3

+X8(R)Ŷ4
2
(R, F2). (C.34)

The two terms ∼ (Ŷ 1,2
4 )3 and ∼ X8Ŷ

1,2
4 can be cancelled seperately. The first term

∼ (Ŷ 1,2
4 )3 gets cancelled by the projection of the eleven-dimensional Chern-Simons term∫

C ∧ G ∧ G on the ten-planes and the second one ∼ X8Ŷ
1,2

4 gets cancelled by the
projection of the higher order term

∫
G∧X7 introduced in chapter 3.1. In the following,

we review the calculation along the line of [75].

We first consider the cancellation of Î12 = π
3
(Ŷ 1

4 )3 + π
3
(Ŷ 2

4 )3 by the projection of the
eleven-dimensional Chern-Simons term. The modified Bianchi-identity of the four-form
field strength G as required by supersymmetry is related to the four-form Ŷ4 as

dG = −(4πκ)2

λ2

(
δ(x11)dx11 ∧ Ŷ4

1
(R, F1) + δ(x11 − π)dx11 ∧ Ŷ4

2
(R, F2)

)
, (C.35)

where the length of the interval is set l = π, or in other words the radius of S1 is equal
to unity. The Bianchi-Identity is fulfilled if G is of the form

G = dC − (4πκ)2

λ2

[
(b− 1)

(
δ(x11)dx11 ∧ w1

3(R, F1) + δ(x11 − π)dx11 ∧ w2
3(R, F2)

)
+
b

2

(
ε(x11)Ŷ4

1
(R, F1) + ε(x11 − π)Ŷ4

2
(R, F2)

)
− b

2π
dx11 ∧

(
w1

3(R, F1) + w2
3(R, F2)

)]
, (C.36)

as can be easily seen by taking the derivative. We have introduced the three-form
dw3 = Ŷ4. The “integration constant” b is not fixed by the Bianchi-identity and will
be determined later. The zero-form ε(x) is defined by ε(x) = sign(x) − x/π and its
derivative is dε(x) = (2δ(x) − π)dx11. The reason for using the function ε(x) instead of
the step function sign(x) only is that the step function alone is not periodic on the circle
parametrized by x11 with x11 ∈ [−π, π]. The additional linear term makes the function
well defined on the circle. This was realized in [75] and the result obtained by including
the linear term in ε differs from those of earlier publications by the last term in (C.36).
The periodicity of ε(x) was also taken into account correctly in [81] in a different context.

The next step is to find out the variation of C under gauge transformations. The
four-form field strength G is invariant under gauge transformations, which means that
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C transforms as. 23

δC =
(4πκ)2

λ2

[
(b− 1)

(
δ(x11)dx11 ∧ w1

2(R, F1) + δ(x11 − π)dx11 ∧ w2
2(R, F2)

)
− b

2π
dx11 ∧

(
w1

2(R, F1) + w2
2(R, F2)

)]
(C.37)

with w2 defined by dw2 = δw3. The third term in (C.36) ∼ Ŷ4 does not contribute
because it is gauge invariant.

The variation of the Chern-Simons term under gauge transformations is

δ

(
− 1

12κ2

∫
C ∧G ∧G

)
= − 1

12κ2

∫
δ(C) ∧G ∧G (C.38)

and inserting (C.37) and (C.36) gives

− 1

12κ2

∫
δ(C) ∧G ∧G = − 1

12κ2

(4πκ)6

λ6

b2

4

∫ [
(b− 1)

(
δ(x11)dx11 ∧ w1

2(R, F1)

+δ(x11 − π)dx11 ∧ w2
2(R, F2)

)
− b

2π
dx11 ∧

(
w1

2(R, F1) + w2
2(R, F2)

)]
∧
[
ε(x11)Ŷ4

1
(R, F1) + ε(x11 − π)Ŷ4

2
(R, F2)

]
∧
[
ε(x11)Ŷ4

1
(R, F1) + ε(x11 − π)Ŷ4

2
(R, F2)

)]
.

Only the terms which to not contain x11 contribute to G as Gabc,11 = 0. To perform the
integral in the compact eleventh direction we use the identities∫

dx11ε(x11)ε(x11 − π) = −π
3
,

∫
dx11ε(x11)ε(x11) = π (C.39)

and after a regularization

δ(x11)ε(x11)ε(x11 − π) ' 1

3
δ(x11). (C.40)

For a detailed explanation of this see [75]. The factor 1/3 differs from earlier publications
in the literature and was also noticed in [82]. Performing the integration in the eleventh
direction we get

− 1

12κ2

∫
δ(C) ∧G ∧G = −b

2(4π)6

144

κ4

λ6

∫
M10

(w1
2(R, F1) + w2

2(R, F2)) (C.41)((
Ŷ4

1
(R, F1)

)2

+
(
Ŷ4

2
(R, F2)

)2

+
(
Ŷ4

1
(R, F1)Ŷ4

2
(R, F2)

))
Using dw2 = δw3, dw3 = Ŷ4 and the formulas (C.2) leads to an anomaly polynomial of
the form

I12 = −π
3

(
b2(4π)5

12

κ4

λ6

)((
Ŷ4

1
(R, F1)

)3

+
(
Ŷ4

2
(R, F2)

)3
)

(C.42)

23By gauge transformation we always mean local Lorentz transformations acting on R and local gauge
transformations acting on F .

89



The anomalies (3.8) and (C.42) cancel if

b2(4π)5

12

κ4

λ6
= 1. (C.43)

We see that anomaly cancellation alone does not fix the constant b but leads to a
quadratic equation. The fact that there is a one-parameter family of solutions to the
Bianchi-identity has also been studied in [82, 84, 85, 86, 87, 90] 24. Requiring the correct
quantization condition of G [31] fixes b = 1 as was shown in [75]. The gauge and the
gravitational coupling are related as κ4

λ6 = 1
12

(4π)5.

The same analysis applies for the higher order term
∫
G ∧ X7, which cancels the

anomaly ∼ X8Ŷ
1

4 + X8Ŷ
2

4 of (C.34). The variation of the interaction
∫
δ(G ∧ X7) =∫

G ∧ δ(X7) is

− λ2

(4πκ)2

∫
G ∧ δ(X7) = − λ2

(4πκ)2

∫
G ∧ dX6 =

λ2

(4πκ)2

∫
dG ∧X6, (C.44)

with δX7 = dX6. Inserting the modified Bianchi-identity (C.35) and performing the
integral over the eleventh dimension we get

λ2

(4πκ)2

∫
dG ∧X6 = −

∫ (
δ(x11)dx11 ∧ Ŷ4

1
(R, F1) + δ(x11 − π)dx11 ∧ Ŷ4

2
(R, F2)

)
∧X6

= −
∫
M10

(
Ŷ4

1
(R, F1) + Ŷ4

2
(R, F2)

)
∧X6. (C.45)

Using again the formulas (C.2) and the relation dX7 = X8 defined below equation (3.3),
the anomaly polynomial is

I12 = −
(
Ŷ4

1
(R, F1) + Ŷ4

2
(R, F2)

)
∧X8 (C.46)

This anomaly cancels exactly the remaining term in (C.34).

C.3 Anomalies in d = 6

We consider the heterotic string compactified on a K3 manifold. For anomaly cancel-
lation in six-dimensions, see [102, 119] and in the context of Horava-Witten theory the
appendices of [89] and the first ref. of [90]. The low-energy effective action of the heterotic
string on K3 is N = 1 supergravity in d = 6. In six dimensions there are gravitational
as well as gauge anomalies and mixed anomalies. The N = 1 supergravity multiplet con-
tains a sechsbein, a self-dual two-form and a chiral spin 3/2 gravitino. In addition there
is a vector multiplet which contains a charged gauge vector and chiral spin 1/2 gaug-
ino, a hypermultiplet which contains four real scalars and an antichiral spin 1/2 fermion
and a tensor multiplet which contains a real scalar, an anti self-dual two-form and an
antichiral spin 1/2 fermion. The spin chiral 3/2 gravitino, the chiral spin 1/2 gaugino
and the antichiral spin 1/2 fermions of the hyper- and tensor multiplet as well as the

24The calculation not taking into account the additional term in (C.36) leads to a cubic equation for
b and to a different result
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anti self-dual two-form contribute to the total anomaly. The anomaly can be expressed
in terms of the eight-form anomaly polynomial I8.

The number nV of vector multiplets, the number nH of hypermultiplets and the num-
ber nT of tensor multiplets depend on the compactification manifold and the choice of
the gauge bundle. Perturbative compactifications have one universal tensor multiplet.
We keep these numbers arbitrary at this point and include non-perturbative compacti-
fications, nT ≥ 1. The vector multiplet transforms in the adjoint representation of the
gauge group and the tensor multiplets are gauge singlets. The representation of the
hypermultiplets is not fixed.

Anomalies in six dimensions arise from one-loop diagrams with external gauge fields
and gravitons, similar as in ten dimensions. In six dimensions the diagrams have only
four external legs while the anomalous diagrams have six external legs in ten dimensions.
To cancel the anomalies by a six-dimensional Green-Schwarz mechanism, the eight-form
anomaly polynomial has to factorize as I8 = I4I

′
4. This leaves some constraints on the

compactification manifold as we shall see below.

Consider the gauge anomaly first. The antichiral spin 1/2 fermion in the hypermul-
tiplet and the chiral spin 1/2 fermion in the vector multiplet contribute to the gauge
anomaly. As the representation of the hypermultiplet is not specified we call TrH the
trace in the corresponding representation of the gauge group. The anomaly polynomial
is

I
gauge,1/2
8 =

−1

4!(2π)3

(
TrF 4 − TrHF 4

)
. (C.47)

The gravitational anomaly of the one-loop diagram with four external gravitons has
contributions from the spin 3/2 gravitino as well as from the chiral and anti-chiral spin
1/2 fermions of the vector, tensor and hypermultiplets. In addition the field strengths
of the self-dual two-form field of the supergravity multiplet and the anti self-dual two-
form of the tensor multiplet give rise to anomalies. As in the ten-dimensionsional case
of the last chapter, the Riemann tensor is regarded as a two-form in spacetime and as
a matrix of the tangent space group, in this case SO(6). The trace in trR is taken over
the tangent space indices. The chiral spin 1/2 fermion of the vector multiplet and the
anti-chiral fermions of the tensor and hypermultiplet give a contribution

I
grav.,1/2
8 =

1

4!(2π)3
(nV − nH − nT )

(
− 1

240
trR4 − 1

192
(trR2)2

)
. (C.48)

The gravitino gives rise to the anomaly polynomial

I
grav.,3/2
8 =

1

4!(2π)3

(
−49

48
trR4 +

43

192
(trR2)2

)
. (C.49)

The contribution of the three-form field strengths of the supergravity and the tensor
multiplets is

Igrav.,3−form
8 =

1

4!(2π)3
(1− nT )

(
− 7

60
trR4 +

1

24
(trR2)2

)
. (C.50)

Finally the mixed anomaly arising from the one-loop diagram with two external gravitons
and two external gauge fields has contributions from the chiral and antichiral spin 1/2
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fermions of the vector- and the hypermultiplets is

I
mixed,1/2
8 =

1

4!(2π)3

(
1

4
trR2TrF 2 − 1

4
trR2TrHF

2

)
. (C.51)

Adding all the contributions gives the resulting anomaly polynomial

I8 =
1

4!(2π)3

(
1

240
(nH − nV + 29nT − 273)trR4 +

1

192
(nH + nV − 7nT + 51)(trR2)2

+
1

4
(trR2TrF 2 − trR2TrHF

2)− TrF 4 + TrHF
4

)
. (C.52)

Cancelling the anomaly by a Green-Schwarz mechanism requires a factorization property
of the anomaly polynomial I8 = I4I

′
4. As the term ∼ R4 cannot possibly factorize in this

way, the factor of that term has to vanish,

nH − nV + 29nT − 273 = 0. (C.53)

This equation has to be satisfied for every consistent heterotic K3 compactification. The
terms ∼ F 4 have to cancel or factorize as TrF 2TrF 2 and TrHF

2TrHF
2.

C.4 Anomaly Cancellation in M-Theory Compactified on T 4/Z2×
S1/Z2 with Gauge Group SO(16)× [E7 × SU(2)]

In this section we review the anomalies of M-theory compactified on T 4/Z2×S1/Z2 with
gauge group SO(16)× [E7 × SU(2)][90, 89]. The field content of the theory is explained
in chapter 3.3. The spectrum contains in total 500 hypermultiplets, 256 vector multiplets
and one tensor multiplet, thus eqn. (C.53) is fulfilled. The anomalies arise on the fixed
six-planes of the compactification manifold. We follow the discussion of [89] and use the
notation

I12 =
1

(2π)34!
A (C.54)

to express the anomalies in terms of A and keep the formulas simple. There are sev-
eral contributions to the one-loop anomaly on the six-planes resulting from the chiral
projection of fields which live in the bulk, on the fixed ten-planes of S1/Z2 and on the
fixed seven-planes of T 4/Z2 and from fields which live on the six-planes. We classify
the contributions according to the planes on which the chiral fields contributing to the
anomaly have their origin.

The supergravity multiplet, the tensor multiplet and the four moduli hypermultiplets
give rise to a gravitational anomaly which is distributed over the thirty-two fixed planes.
The supergravity, tensor and hypermultiplets live in the bulk and thus contribute to the
six-dimensional anomaly via projection on the thirty-two six-planes. Thus the result is
1/32 times the six-dimensional standard anomaly derived by the corresponding anomaly
calculation taking into account the same spectrum. Adding the contributions of the
supergravity, tensor and hypermultiplets of the last chapter leads to the bulk anomaly
Ibulk = I

grav.,3/2
8 − 5I

grav.,1/2
8 and to

Abulk = − 1

32
trR4 +

1

128
(trR2)2 (C.55)
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on each fixed six-plane.

The other multiplets give rise to gravitational as well as mixed and gauge anomalies.
The decomposition of the gauge fields is

trF 2
E8

=
1

30
Tr248F

2
E8

=
1

30

(
Tr133F

2
E7
− 2Tr56F

2
E7

+ Tr3F
2
SU(2) − 56Tr2F

2
SU(2)

)
,(C.56)

where the negative signs of the hypermultiplets are due to the anti-chirality of the hy-
perinos, and

trF 2
E8

=
1

30
Tr248F

2
E8

=
1

30

(
Tr120F

2
SO(16) − Tr128F

2
SO(16)

)
. (C.57)

We follow the notation of [89] by introducing the operation trF 2 =
∑

a F
aF a and

normalizing the long roots to length one25. If TrR denotes the trace in the representation
R the relations are are

Tr2F
2
SU(2) = 1/2trF 2

SU(2), T r2F
4
SU(2) = 1/8tr(F 2

SU(2))
2,

T r3F
2
SU(2) = 2trF 2

SU(2), T r3F
4
SU(2) = 2(trF 2

SU(2))
2,

T r120F
2
SO(16) = 14trF 2

SO(16), T r120F
4
SO(16) = 3(trF 2

SO(16))
2 + 12trF 4,

T r128F
2
SO(16) = 16trF 2

SO(16), T r128F
4
SO(16) = 6(trF 2

SO(16))
2 − 8trF 4,

T r133F
2
E7

= 18trF 2
E7
, T r133F

4
E7

= 6(trF 2
E7

)2

Tr56F
2
E7

= 6trF 2
E7
, T r56F

4
E7

= 3/2(trF 2
E7

)2. (C.58)

The untwisted vector and hypermultiplets on the ten-planes charged under the per-
turbative gauge groups SO(16) and [E7 × SU(2)] contribute 1/16 of the six-dimensional
standard anomaly result on each of the six-planes which are embedded into the same
ten-plane. According to the two different perturbative gauge groups on the ten-planes
we have

A10−plane
[E7×SU(2)] = − 1

160
trR4 − 1

128
(trR2)2 + trR2(

3

32
trF 2

E7
− 13

32
trF 2

SU(2))

− 3

16
(trF 2

E7
)2 +

5

16
(trF 2

SU(2))
2 +

9

8
trF 2

SU(2)trF
2
E7

(C.59)

and

A10−plane
SO(16) =

1

480
trR4 +

1

384
(trR2)2 − 1

32
trR2trF 2

SO(16) +
3

16
(trF 2

SO(16))
2

− trF 4
SO(16) (C.60)

on the six-planes with the corresponding perturbative gauge group.

The fields on the fixed seven-planes charged under the non-perturbative SU(2) con-
tribute to the anomaly by a hypermultiplet on the intersection six-planes with the pertur-
bative [E7×SU(2)] gauge group and by a vector multiplet on each intersection six-plane

25[90] have a different notation and express all traces in terms of the fundamental representation.

93



with a perturbative SO(16). As the fields are localized on the seven-planes the con-
tribution on each of the two six-planes is 1/2 of that of the six-dimensional standard
result.

A7−plane
[E7×SU(2)] =

1

160
trR4 +

1

128
(trR2)2 − 1

4
trR2trF 2

SU(2) + (trF 2
SU(2))

2, (C.61)

A7−plane
SO(16) = − 1

160
trR4 − 1

128
(trR2)2 +

1

4
trR2trF 2

SU(2) − (trF 2
SU(2))

2. (C.62)

Another contribution to the anomaly comes from the twisted states living on the six-
planes. Only the six-planes with the gauge group SO(16) have twisted states. There is
no contribution on the other intersection six-planes.

A6−plane
[SO(16)×SU(2)] =

1

15
trR4 +

1

12
(trR2)2 − trR2(trF 2

SU(2) −
1

4
trF 2

SO(16))

+ trF 4
SO(16) + (trF 2

SU(2))
2 +

3

2
trF 2

SU(2)trF
2
SO(16), (C.63)

where the SU(2) gauge group is the non-perturbative gauge group on the seven-plane
intersecting the six-plane.

All contributions so far are one-loop anomalies. Just as on the ten-plane in the
compactification of M-theory on R10 × I there are additional contributions via inflow of
the Chern-Simons term

∫
C ∧ G ∧ G and the higher order term

∫
G ∧ X7 on the six-

planes. These contributions are referred to as inflow anomalies in [89] and depend on the
perturbative gauge groups on the ten-planes.

Ainflow
[E7×SU(2)] = −g1(

1

8
trR4 − 1

32
(trR2)2) +

3g1

4
(trF 2

E7
+ trF 2

SU(2) −
1

2
trR2)2(C.64)

Ainflow
SO(16) = −g2(

1

8
trR4 − 1

128
(trR2)2) +

3g2

4
(trF 2

SO(16) −
1

2
trR2)2, (C.65)

where the numbers g1 and g2 are the magnetic charges on the six-planes.

The last contributions are called intersection anomalies and have their origin in a
coupling of the seven-plane fields to the three-form C. The coupling has the form of a
Chern Simons term

∫
C∧I4 with I4 = 3/2(ηtrR2−ρtrF 2

SU(2)). The label SU(2) refers the
seven-plane gauge group and ρ and η are free parameters so far and will be determined
by the vanishing of the resulting anomaly. The contribution of the intersection anomaly
is

Aintersection
[E7×SU(2)] = (trF 2

E7
+ trF 2

SU(2) −
1

2
trR2)I4, (C.66)

Aintersection
SO(16) = (trF 2

SO(16) −
1

2
trR2)I4 (C.67)

Adding up all contributions on the planes with perturbative gauge [E7×SU(2)] leads
to

Aresulting
[E7×SU(2)] = (− 1

32
− g1

8
)trR4 + (

1

128
+
g1

32
+

3g1

16
− 3η

4
)(trR2)2

+ (
3

32
+

3g1

4
+

3η

2
)trR2trF 2

E7
+ (− 21

32
+

3g1

4
+

3ρ

4
+

3η

2
)trR2trF 2

SU(2)
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+ (− 3

16
− 3g1

4
)(trF 2

E7
)2 + (

21

16
− 3g1

4
− 3ρ

2
)(trF 2

SU(2))
2

+ (
9

8
− 6g1

4
− 3ρ

2
)trF 2

E7
trF 2

SU(2). (C.68)

The anomalies on the six-planes which are the intersection of seven-planes and the
SO(16) ten-planes are

Aresulting
SO(16) = (

1

32
− g2

8
)trR4 + (

33

384
+
g2

32
− 3g2

16
− 3η

4
)(trR2)2

+ (− 9

32
+

3g2

4
− 3η

2
)trR2trF 2

SO(16) + (− 3

4
+

3ρ

4
)trR2trF 2

SU(2)

+ (
3

16
− 3g2

4
)(trF 2

SO(16))
2 + (− 1 + 1)trF 4

SO(16) + (− 1 + 1)(trF 2
SU(2))

2

+ (
3

2
− 3ρ

2
)trF 2

SO(16)trF
2
SU(2). (C.69)

Vanishing of both anomalies fixes

g1 = −1/4, g2 = 1/4, η = 1/16 and ρ = 1. (C.70)
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