
Vol.:(0123456789)

Swarm Intelligence (2021) 15:83–110
https://doi.org/10.1007/s11721-021-00192-8

1 3

Multi‑featured collective perception with Evidence Theory: 
tackling spatial correlations

Palina Bartashevich1  · Sanaz Mostaghim1

Accepted: 29 April 2021 / Published online: 22 May 2021 
© The Author(s) 2021

Abstract
Collective perception allows sparsely distributed agents to form a global view on a com-
mon spatially distributed problem without any direct access to global knowledge and only 
based on a combination of locally perceived information. However, the evidence gathered 
from the environment is often subject to spatial correlations and depends on the move-
ments of the agents. The latter is not always easy to control and the main question is how to 
share and to combine the estimated information to achieve the most precise global estimate 
in the least possible time. The current article aims at answering this question with the help 
of evidence theory, also known as Dempster–Shafer theory, applied to the collective per-
ception scenario as a collective decision-making problem. We study eight most common 
belief combination operators to address the arising conflict between different sources of 
evidence in a highly dynamic multi-agent setting, driven by modulation of positive feed-
back. In comparison with existing approaches, such as voter models, the presented frame-
work operates on quantitative belief assignments of the agents based on the observation 
time of the options according to the agents’ opinions. The evaluated results on an extended 
benchmark set for multiple options ( n > 2 ) indicate that the proportional conflict redistri-
bution (PCR) principle allows a collective of small size ( N = 20 ), occupying 3.5% of the 
surface, to successfully resolve the conflict between clustered areas of features and reach a 
consensus with almost 100% certainty up to n = 5.

Keywords Collective decision-making · Collective perception · Spatial correlations · 
Dempster–Shafer theory · Fusion operators · Multi-agent systems

1 Introduction

In a collective perception scenario, a group of individuals has to identify a predominant 
feature scattered in an unknown environment. It is considered as a special case of con-
sensus achievement task in distributed collective decision-making. Examples of possible 
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applications include environmental monitoring on the levels of pollutants or other sub-
stances such as carbon dioxide and oxygen, toxins’ spread, the predominance of some 
mineral resources over others (Mousavi 2012) or even cancer cells to normal ones in a 
tissue (Ali et al. 2013). The environment is considered to be much larger than the size of 
a single individual in a swarm. Thereby, a solitary agent can only generate local assump-
tions by estimations based on its current location. However, this information is generally 
not enough and is not reliable to come up with a global conclusion concerning the whole 
landscape (environment). In such situations, having multiple agents is known to be more 
beneficial than having just a single one. Acting together, they can cover larger areas and 
collect more information distributed in a spatial space than operating solo. In this regard, 
the important questions are how the collected information should be (i) shared among the 
agents and (ii) combined in order to get the most precise global estimate in the least pos-
sible time. Both aspects are inseparably related to information pooling, which is one of the 
driving processes in distributed decision-making alongside with exploration (Campo et al. 
2011).

In this paper, a collective perception scenario is studied as a model of the best-of-n prob-
lem, where n are colours scattered in a closed squared environment. Originally, it has been 
introduced by Valentini et al. (2016a) in its binary version with randomly placed black and 
white colours and examined in the context of a voting framework such as the majority rule 
and the voter model. While these approaches are considered as self-organised, the further 
possibility of taking control over the collective outcome was investigated in (Bartashevich 
and Mostaghim 2019b) using the Ising model as the compromise mechanism between 
voter and majority models. The same scenario with randomly distributed black and white 
tiles has also served as a benchmark problem in other contexts. For instance, Strobel et al. 
(2018) addressed the problem of security and the presence of malicious behavior in a 
swarm using blockchain technology, verifying its performance on the binary collective per-
ception. Soorati et al. (2019) have studied a dynamic binary case, where the qualities of 
the two options are changing over time and a swarm needs to constantly revise its outdated 
decision. Independently of the methodology, the results of the aforementioned studies 
indicated that the most challenging environment is the one with almost equal ratios of the 
colours. Later it was shown that the decision-making methods do not perform well if the 
features are forming clusters even in scenarios with a clear difference between the fill ratios 
(Ebert et al. 2018; Bartashevich and Mostaghim 2019a, c). Additionally, it was confirmed 
that their performance also depends on different connectivity levels between the clustered 
areas (Bartashevich and Mostaghim 2019a, c). So far most of these conducted studies are 
performed on the problems with randomly distributed features and predominantly focus 
on the case of n = 2 . In regard to the last issue, only one study by Ebert et al. (2018) has 
examined a randomly generated multi-featured collective perception with three different 
colours. Meanwhile, most real-world phenomena are characterised by certain localised pat-
terns or ordered concentrations more often than by random ones and have more than two 
features to explore. In particular, natural resources (e.g. mineral deposits, water) are not 
sparsed all over the place but tend to cluster at certain locations (Getis 2010). The same 
holds for the toxins’ spread through the surrounding neighbourhoods and tightly packed 
cancer cell clusters (Ali et al. 2013).

Since the distribution of options is unknown, the efficiency of decision-making strat-
egies primarily relies on the exploration, which is highly application-dependent (Khaluf 
et  al. 2019). Nevertheless, taking control over the movements of the group of artificial 
agents (e.g. robots) is already a challenging task on its own and is subject to many unpre-
dictable external factors such as wind, rough surfaces, and cluttered spaces.
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Therefore, in this paper, we aim at drawing attention to the agents’ “brain” inde-
pendently from the exploration phase (i.e. agents’ movements). Specifically, we focus 
on the information pooling and its generalisability to a wide range of environments in 
terms of features’ distributions. There, the opinions of the agents can be highly biased 
dependent on their movement/explored areas and a spatial pattern formed by the fea-
tures, which can lead to highly conflicting pieces of evidence gathered by the agents. In 
such a situation, the voting rules are admitted not to be effective, since they are not suit-
able for the modeling of conflicts between experts (Martin et al. 2008). For this purpose, 
we refer to Dempster–Shafer evidence theory (DST), which is known to be an efficient 
tool for multi-sensor data fusion and handling uncertain and conflicting information. In 
comparison with other statistical methods, e.g. Bayesian inference (Ebert et al. 2020), 
DST allows one to combine evidence from different sources without any prior knowl-
edge of their distributions.

In this paper, we exploit the multi-agent consensus framework based on the DST from 
the previous study (Crosscombe et al. 2019) to solve a collective perception scenario with 
n > 2 . There, the agents were considered as static nodes of a fully connected network and 
were able to directly sample the global quality of the states (features) as it is done in the 
classical site selection scenario (Valentini et al. 2016b). On the contrary, in collective per-
ception, global knowledge (i.e. the information about the ratio of the colours) is inaccessi-
ble to the agents in its direct form and can be assessed only based on the local information. 
Although the possibility of noisy measurements has been also considered in (Crosscombe 
et  al. 2019), they did not represent a subject to a spatial dependency. Besides, different 
from their study, in the current work the individuals form a dynamic random geometric 
graph maintaining only local communications with immediate neighbours, taking col-
lisions between agents into account, such that there is no guarantee that agents’ random 
motion will result in a well-mixed system (Trabattoni et al. 2018).

The objectives of the current study are (1) to extend previously introduced benchmark 
problems for a collective perception scenario (Bartashevich and Mostaghim 2019a) to 
n > 2 possibilities (i.e. multi-featured case) and (2) to examine the fusion of the informa-
tion received from the environment and other agents in regard to the robustness against 
possible spatial correlations in a priory unknown environment. Due to the fact, that our 
DST framework performs on numerical values (i.e. continuous opinion dynamics) and not 
just on opinion counts (i.e. discrete opinion dynamics), we expect to get more precision in 
the agent’s estimates. However, since DST operates with a powerset (i.e. a set of all sub-
sets) of n options and not only with options on its own, we assume that redistribution of 
the beliefs to the unions of options (e.g. either ‘black’ or ‘white’) will lead to a longer con-
sensus time but will also allow to resolve the possible conflict between the clustered areas.

To address our hypotheses, eight fusion operators from the literature on evidence 
theory will be examined using computer simulation on the extended multi-feature col-
lective perception benchmarks for n ∈ {3, 5, 8, 10} . The main difference between con-
sidered operators is how they handle inconsistency between the pieces of information, 
which will be compared and analysed based on the average population belief and transi-
tion dynamics of the individuals from an uncertain state to the one with complete confi-
dence in the correct outcome. In addition, different possibilities of sharing information 
such as social and collective learning will be investigated being coupled with positive 
feedback. Social learning (or imitation, learning by observation or interaction) is a uni-
directional process, where individuals simply pass their personal information to the oth-
ers (Huber 2012), while a collective one refers to sharing a cumulative result of multiple 
social interactions over time (Kao et  al. 2014). The corresponding definitions of the 
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learning types are also given in detail in (Berdahl et al. 2018) and are considered as dif-
ferent ways of information exchange between group members in this paper (Sect. 3.2).

This paper is structured as follows. We first provide the necessary background on 
evidence theory and combination rules. Based on that, we introduce the DST framework 
in the context of multi-featured collective perception considering different knowledge 
sharing mechanisms. Afterwards, a description of the multi-agent simulation and the 
undertaken experiments is provided. Further, the results from the experiments are dis-
cussed and analysed, and finally, the conclusion provides a brief summary of the find-
ings with a general discussion, highlighting further research directions.

2  Mathematical background

Evidence theory is considered as the mathematical theory of uncertainty under partial 
knowledge (Kohlas and Monney 1994), which is described by a set of possible events. 
Probability values are assigned to sets of outcomes, rather than single events. A key 
point is the use of belief intervals and not a classical probability distribution, in order to 
estimate how close the evidence is to the fact that a certain hypothesis can be true.

Let � = {�1,�2,… ,�n} be a finite set of n mutually exhaustive and exclusive events 
(i.e. options in our case) called a frame of discernment. It is assumed that one and only 
one element of � is true (i.e. ‘the best’ one in our case). The powerset 2� represents 
the set of all possible subsets {Ai}

2n−1
i=0

 of � , including an empty set and � itself. For 
instance, if n = 3 , then 2� = {∅,�1,�2,�3, {�1,�2}, {�1,�3}, {�2,�3},�}.

Any subset Ai ∈ 2� is assigned with a non-negative weight called mass, which is 
defined by a basic probability assignment or a mass function m ∶ 2� → [0, 1] , satisfying 
the conditions m(∅) = 0 and 

∑
Ai⊆𝛺

m(Ai) = 1 . Subsets Ai with m(Ai) > 0 are called focal 
elements of m. When ∅ is not a focal element, i.e. m(∅) = 0 , a mass function m is said 
to be normalised.

Mass values are assigned only to those subsets Ai ∈ 2� for which a direct evidence 
is available from the information source. Full certainty corresponds to the case where 
m({�i}) = 1 for some singleton �i ∈ � (i.e. �i ∈ Ai , where |Ai| = 1 ). If it is hard to 
distinguish between two options, e.g. �i and �j , then a mass value is assigned to their 
union {�i,�j} . In this way, union of several options (i.e. |Ai| > 1 ) corresponds to a state 
of partial ignorance, whereas ∅ indicates impossibility of the observed event (i.e. not 
belonging to � ). If ∀Ai ≠ � hold m(Ai) = 0 and m(�) = 1 , then such a mass function is 
defined as vacuous and corresponds to a full ignorance (i.e. nothing is known).

While mass quantity m(Ai) is committed exactly to Ai ∈ 2� without specifying how 
to divide it among the subsets of Ai individually, a belief that a certain event committed 
to Ai , denoted further as Bel(Ai) , is considered as the sum of all probabilities of all its 
subsets Aj ⊆ Ai . As a result, Bel(Ai) represents any evidence that has been provided to 
confirm the trustworthiness of Ai . In turn, a plausibility Pl(Ai) is the sum of beliefs not 
committed to the negation of Ai , i.e. Pl(Ai) = 1 − Bel(¬Ai) . To this extent, it indicates 
the maximal amount of evidence that could potentially support a given event Ai . In a 
nutshell, belief and plausibility functions Bel,Pl ∶ 2� → [0, 1] are defined as follows:
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Both functions Bel and Pl express, respectively, the lower and upper bounds of probability 
that a subset Ai could be the true state of the world, where 0 ≤ Bel(Ai) ≤ Pl(Ai) ≤ 1 . Then, 
the corresponding measure of uncertainty can be calculated as u(Ai) = Pl(Ai) − Bel(Ai) for 
all Ai ⊆ 𝛺 . In general, the use of m,Bel,Pl is a matter of context, since they are all in one-
to-one correspondence.

In the decision process, mass functions are transformed into probabilities using the pignis-
tic transformation as a compromise between the belief and the plausibility (Smets and Kennes 
2008):

where |A| is the cardinality of the subset A ∈ 2� and m(∅) ≠ 1.

2.1  Fusion rules

As soon as new information (i.e. a piece of evidence) arrives, the system should integrate it to 
identify the certainty of the current state of the world. For this, different types of combination 
rules have been proposed in the literature (Smets 2007) to aggregate multiple distinct s sources 
of evidence represented by mass functions m1,m2,… ,ms over one and the same frame of dis-
cernment � . The problems arise when the pieces of evidence are in conflict with each other. 
Generally, a combined belief assigned to the empty set is considered as the degree of conflict. 
In the current work, we operate under a “closed-world” assumption (i.e. static set of options 
is known a priori), which is further constrained by m(∅) = 0 throughout the rest of the paper. 
In order to fulfil this assumption, the mass of the belief assigned to the empty set after the evi-
dence combination of two masses m1,m2 (i.e. the global conflict K =

∑
B∩C=∅ m1(B) ⋅ m2(C) 

given for any A ∈ 2�,A ≠ ∅ ) has to be re-distributed in a specific way between the rest of 
subsets.

In this paper, we consider the following eight fusion operators from the literature on evi-
dence theory. For the description of the operators (1)-(4), namely (1) Dempster’s rule (DR), 
(2) Dubois-Prade’s rule (DP), (3) Yager’s rule (YR) and (4) averaging (Avg), we refer to 
the previous work (Crosscombe et al. 2019), where these operators have been initially studied 
in the context of the best-of-n problem. 

(5) PCR5/6 transfers the conflicting mass only to the elements involved in the conflict and 
proportionally to their individual masses, such that the specificity of the information 
is entirely preserved and defined as follows: 

(1)
Bel(Ai) ∶=

∑

Aj ⊆ Ai,

Aj ≠ ∅

m(Aj), Pl(Ai) ∶=
∑

Aj∩Ai≠∅

m(Aj).

(2)p({�i}) ∶=
∑

A∶�i∈A

1

|A|
m(A)

1 − m(∅)
,
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 If a denominator is zero, the corresponding fraction is discarded. In the case of s = 2 , 
this rule is known as PCR5, and for s > 2 as PCR6 (Smarandache and Dezert 2005). 
Additionally, the following result was provided by Smarandache and Dezert (2013).

Theorem 1 If s ≥ 2 sources of evidences provide binary mass functions (i.e. which con-
tain only two numerical values 0 and 1) on 2� and their total conflicting mass K = 1 , then 
PCR5/6 fusion rule coincides with the averaging fusion rule.

(6) Florea’s Rule (Flo) represents a mixing between disjunctive   and conjunctive  
rules (see the first and the second sum in Eq. 4, respectively) according to the global 
conflict K (Florea et al. 2006; Martin and Osswald 2007), where �K =

K

1−K+K2
 . 

(7) Cautious Florea’s rule (CFlo) is an analogue of Florea’s rule but for dependent 
sources. Conjunctive and disjunctive parts of Flo are substituted for their cautious 
counterparts, namely cautious conjunctive (without normalisation) and bold disjunc-
tive rules (Denæux 2008), respectively. The cautious conjunctive operator of two non-
dogmatic mass functions m1,m2 (i.e. satisfying mi(𝛺) > 0 ) is denoted by  and 
defined as: 

 for all A ⊆ 𝛺 such that w1(A) ∧ w2(A) ≠ 1 , where ∧ denotes the minimum operator, 
i.e. w1(A) ∧ w2(A) = min({w1,w2}) , and wj(A) is a weight function issued from the 
canonical decomposition of mj (see for more details (Ke et al. 2014)). Awj(A) denotes 
a mass function satisfying m(Aj) = 1 − wj(A) if Aj = A , m(�) = wj(A) and m(Aj) = 0 
otherwise.

  The bold disjunctive rule for two subnormal mass functions m1,m2 (i.e. satisfying 
m1(∅) = m2(∅) > 0 ) is denoted by  and defined as follows: 

 where vj(A) is a disjunctive weight function (see for more details (Ke et al. 2014)). 
Avj(A)

 assigns a mass vj(A) > 0 to ∅ , and a mass 1 − vj(A) to A for all A ∈ 2� ⧵ {∅} . 
As above, ∧ denotes a minimum operator.

(3)

m
PCR5∕6

1⊕2
(A) ∶=

∑

X, Y ∈ 2𝛺,

X ∩ Y = A

m1(X) ⋅ m2(Y)+

+
∑

Z ∈ 2𝛺 ⧵ {A},

A ∩ Z = ∅

[
m1(A)

2
⋅ m2(Z)

m1(A) + m2(Z)
+

m2(A)
2
⋅ m1(Z)

m2(A) + m1(Z)

]

(4)

mFlo
1⊕2

(A) ∶= 𝛽K ⋅

∑

B∪C=A

m1(B) ⋅ m2(C)+

+ (1 − 𝛽K) ⋅
∑

B∩C=A

m1(B) ⋅ m2(C),

(5)

(6)
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  Then, the resulting CFlo rule with  and �K , defined the same as in Eq. 4, 
is calculated as follows: 

(8) Modified weighted average approach (MWA) makes use of the weighted sum 
approach mMWA

1,2,…,s
 before applying the classical Dempster’s rule s − 1 times: 

where �i is the corresponding weight degree of each mass mi , such that 
∑s

i=1
�i = 1 . 

To define weights, evidence distance (Jousselme et al. 2001) and uncertainty measure 
(Chen et al. 2018) are used. The evidence distance between two mass functions mi and 
mj is calculated as: 

where D is a 2n × 2n matrix, which elements are D(Ai,Aj) = |Ai ∩ Aj|∕|Ai ∪ Aj| . Con-
sequently, mi and mj are more similar to each other if there is less distance between 
them, that is, Sim(mi,mj) = 1 − d(mi,mj) . As a result, a similarity matrix Sim ∈ ℝ

s×s 
can be constructed between all the available pieces of evidence. Then, the support 
Sup and the credibility Crd degree of the corresponding mass function mi are calcu-
lated as follows: 

where 
∑s

i=1
Crd(mi) = 1 , such that Crd(mi) indicates the relative importance of a par-

ticular piece of evidence in respect to the other collected ones. Further, it is modified 
with the total uncertainty measure Ui =

∑
Aj∈2

� ui(Aj) of the corresponding mass 
function mi as Crd�(mi) = Crd(mi) ⋅ e

Ui . After normalisation of Crd�(mi) , it is used as 
the corresponding weight �i in Eq. 8. Finally, the Dempster’s rule (DM1) is applied to 
combine the obtained mass function from Eq. 8 s − 1 times.

Table 1 shows a summary of the algebraic properties of the aforementioned combina-
tion operators. Associativity is considered as a desirable property since the order in which 

(7)

(8)mMWA
1,2,…,s

∶=

s∑

i=1

�i ⋅ mi,

(9)d(mi,mj) =

√
1

2
(mi − mj)

T
⋅ D ⋅ (mi − mj),

(10)Sup(mi) =

s�

j=1,i≠j

Sim(mi,mj) and Crd(mi) =
Sup(mi)∑s

i=1
Sup(mi)

,

Table 1  Algebraic properties of eight combination operators

DR DP YR Avg PCR5/6 Flo CFlo MWA

Associative quasi

Commutative

Idempotent

Ind/depn

and denote “no” and “yes”, respectively. The last row “ind/depn” states for the assumption of independent
or dependent sources, where the last column indicates that the “MWA” can be applied in both cases
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fusion of evidence is applied does not influence the final outcome, subject to one and the 
same sequence of combinations. Quasi-associativity on general basics means non-associ-
ative rule but which can be modified into associative using a specific algorithm (Smaran-
dache and Dezert 2004b). Commutativity assumes that the order of two pieces of evidence 
has no difference in their resulted combination. In turn, idempotence preserves the same 
piece of evidence as a result no matter how much times it was combined with itself. This 
property is essential in case of dependent sources, i.e. overlapping, non-distinct items of 
evidence (Denæux 2008).

3  Methodology

3.1  Simulation setup

We consider 20 agents in a two-dimensional continuous square space, which is divided 
into 400 square cells of equal size, 1 × 1 squared units (see Fig. 1a). Each cell is painted 
over in one of the n colours. Colours represent the options �i ∈ � available to the agents. 
In the context of the best-of-n task, “the best colour” is the one that most cells are col-
oured in. Therefore, the goal for the agents is to collectively come to a consensus on the 
prevailing colour in the environment. Since the colours are distributed over the cells, the 
quality of each colour is not accessible to the agents in a direct form and can be assessed 
only through multiple sampling from the environment. In Fig. 1a, the agents are shown by 
circles of the same size with heading-sticks pointing the direction of their movements. The 
size (diameter) of an agent is proportional to the size of the cells and is equal to 0.7 units. 
Such proportions are chosen based on the previous experiments with real robots (Valentini 
et al. 2016a), given that a 1 unit is equivalent to 10 cm. The initial positions of the agents 
are taken from a uniform distribution over the size of the arena (x, y) ∈ [1, 21] × [1, 21] , 
which is further modified with time by the mobility model of the agents. The initial head-
ing angle for each agent is also taken from a uniform distribution � ∈ [0, 2�] . The mobil-
ity model is represented by a continuous random motion consisting of two switching one 
after another phases. That is, (i) linear motion with constant speed |�⃗v| = 1.6 units/s and 
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Fig. 1  (a) Multi-agent simulation, (b) Spatial distribution of 20 agents resulting from their movements dur-
ing 400 iterations: result over 100 runs
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(ii) rotation on a spot with a corresponding constant angular velocity � = 7.5 rad/s. Each 
agent has personal inner time, sampled from the normal N(40, 1) and uniform U(0, 4.5) 
distributions, for each new linear and rotational movement phase, respectively. The rota-
tion on a spot is carried out in both clockwise and counter-clockwise directions at random. 
When the agents collide with each other, their respective motion phases are switched to the 
rotation on the spot until they resolve the conflict of the heading directions for an immedi-
ate collision-free linear motion. To speed up a congestion elimination, one of the agents 
at random selects a clockwise rotation and another one counter-clockwise. As soon as the 
agent hits the borders of the arena space, it starts rotating on 180◦ from its current heading 
in a random direction and then moves freely away from the borders. Figure 1b shows the 
density histograms for x- and y-positions of the whole population of agents as the outcome 
of 100 trials with a duration of 400 iterations each, which results in almost uniform distri-
bution. As such, there is an equal probability that within 100 trials each coloured cell will 
be covered by the agents in one or another way.

3.2  Evidence Theory‑based design framework

In this section, we revise and adapt a behavior-based approach from (Valentini et al. 2016a) 
together with DST framework from (Crosscombe et  al. 2019) to tackle a multi-featured 
collective perception scenario. Similar to (Valentini 2017), our proposed framework con-
sists of three key phases: exploration phase (E-phase), dissemination phase (D-phase), and 
decision-making phase (DM-phase). The agents repeatedly alternate between these three 
phases until the whole population converges to one option or a maximum given time T 
is reached. Full convergence is defined by the mass value of the specific single option �i 
equals 1, i.e. mk(�i) = 1 , for any agent k in the population.

3.2.1  Exploration phase

Initially, all agents start with the E-phase, where they perform their motion routine as 
described in Sect.  3.1 and sense the environment. We assume that the possible options 
�i ∈ � (i.e. colours in the environment) are given to the agents and stay the same dur-
ing the whole simulation time T (exhaustive assumption). Thereby, at the start, each agent 
chooses an option �i uniformly at random to explore for a fixed period of time tE . The time 
tE is considered to be the same for all members k of the population and is predefined (i.e. 
tE
k
= const for any agent k, where const ∈ ℝ+ and is defined by a designer). In the center 

of each agent, there is placed a “ground sensor” to identify the colour type which corre-
sponds exclusively to one option �i . In this way, each agent k can measure the amount of 
time � i

k
 during which it has observed the colour corresponding to its currently committed/

chosen option �i . The perception frequency is set to every iteration (1 iteration equals 0.01 
s). The quality of the options {qi}ni=1 ( qi ∈ ℝ ) is measured as the proportion of the cells 
of a specific colour to the total number of cells in the environment. Since it is an a-priori 
unknown parameter, we determine the proportion of the time during which the agent k 
perceived the colour �i to the total amount of given time tE as a quality estimate q̂i of this 
option, i.e. q̂i = 𝜏 i

k
∕tE ( ̂qi ∈ [0, 1] ). Therefore, if during the E-phase the agent has not seen 

the colour �i , then the direct confidence measure that this option is the prevailing one (i.e. 
the best) equals 0 as well as its current quality estimate, i.e. q̂i = 0 . And to the contrary, the 
agent gains a full confidence measure in the option �i , if it has seen nothing else except it, 



92 Swarm Intelligence (2021) 15:83–110

1 3

maintaining the maximum quality estimate, i.e. q̂i = 1 . As a result, a quality estimate q̂i of 
the explored option �i can be grasped as a direct piece of evidence from the environment.

Based on the obtained evidence, the agents’ beliefs and opinions are formed. An agent’s 
belief is represented by a normalised mass function mk (Sect. 2). The normalisation fol-
lows our assumption that any other state out of the defined frame � is impossible (hence, 
mk(∅) always equals 0). Since at the beginning nothing is known, the initial mass function 
for any agent k is considered as vacuous, i.e. mk(�) = 1 . The evidence picked up from the 
environment is recorded in the form of a simple support function (Ke et al. 2014) with a 
focus on the explored option �i and further denoted as evidence mass of the k-th agent, i.e. 
mek

 . That is, the estimate q̂i is assigned as a mass value to the mek
(�i) exactly indicating a 

level of certainty in the explored alternative �i and in nothing else, leaving 1 − q̂i as a level 
of doubt, i.e. mek

(𝛺) = 1 − q̂i.
At the end of the E-phase, each agent combines its current mass function mk with the 

one corresponding to its received evidence q̂i as mek
 . The combination is calculated accord-

ing to one of the fusion rules provided in Sect. 2.1. The resulted mass function mk ⊕ mek
 is 

then immediately set as a new mass function of the agent.

3.2.2  Dissemination phase

After the E-phase, the agents go to the D-phase, where they continue their motion routines 
but do not collect any evidence from the environment. Instead, they gather information 
from their neighbours within the interaction radius (i.e. dmax = 5 units) with communi-
cation frequency of 10 iterations (i.e. 0.1 s). The exchange of information happens only 
between two agents at once and only if they both are in the D-phase and not in a communi-
cation mode with someone else. In order to avoid a possible data incest problem, the agent 
does not record the received information from the same neighbour twice in a row. To do 
this, each agent keeps track of the other agents’ IDs with whom it has been communicat-
ing during its current D-phase. The duration of the D-phase tD

k
 for each individual k is a 

design parameter, which is proportional to the quality estimate q̂i of the agent k obtained 
on its preceding E-phase, that is, tD

k
= q̂i × tE . In this way, more successful individuals in 

terms of high-quality estimates participate in the exchange of information longer periods 
of time than the poorer ones, resulting in a positive feedback loop. This allows reinforcing 
the combinations between the individuals with more fitted beliefs. While every agent in 
the D-phase sends its package of information to the other one if they established a pair-
communication channel, the agent k receives and processes the new information if and only 
if it is currently in its last �tk iterations of its own time tD

k
 . This is assumed to promote better 

mixing of the population and to ensure that the agent gets the most up-to-date information. 
As a result, the exchange between the agents is not always done in a pairwise symmetric 
manner, unlike in previous work (Crosscombe et al. 2019).

Depending on the type of information which is transported between the individuals, 
there are distinguished different types of learning mechanisms. Since collective behaviour 
is purely determined based on the local interactions between the agents, we consider the 
following update models examined during the D-phase:

• Collective learning (CL) implies the exchange of the current internal personal mass 
mk of the agent k with the others. As soon as the agent k receives the vector of mass 
values from another agent l, it immediately combines its current mass with the received 
one, i.e. mk ⊕ ml , assigning the result of the combination as its new mass vector mk . In 
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essence, the internal mass function of each agent represents a cumulative outcome of 
the collected evidence over the other agents coupled together with direct evidence from 
the environment within time.

• Social learning (SL) suggests dissemination of the pure evidence assessed by the 
individuals directly from the environment during their own last E-phase. In this way, 
only the evidence mass from the environment mek

 and not the entire mass vector of the 
agent (i.e. the mk as in CL) is transferred to another individual. The combination of the 
received information by the agent k from the agent l is performed in the time of their 
communication, allocating mk ⊕ mel

 as a new mass vector of agent k. As a result, the 
internal mass function of each individual embodies pure cumulative evidence from the 
environment over time, estimated by the agent either on its own or by the other agents 
during their personal E-phases. To this end, SL resembles individual learning, but with 
an increased frequency of the direct evidence collection from the environment, since 
the other agents provide the same type of evidence but estimated from the other regions 
of the space.

By the end of its current D-phase, each agent k lands with updated personal knowledge mk 
about the global state of the world � , depending on the type of the learning mechanism. 
While the set � is not changed within time and is considered to be fixed for all individuals.

3.2.3  Decision‑making phase

In the DM-phase which occurs after the D-phase, each agent k decides based on its own 
updated personal mass function mk which option to explore next in its subsequent E-phase. 
To do this, the pignistic transformation (see Eq. 2) is used to convert a mass functions mk 
into probabilities of a certain single option �i out of n to be a true state of the world. After-
wards, a roulette wheel selection is applied over the set of obtained probabilities values to 
select the best option. The chosen option is considered as an opinion of the agent. Based on 
the renewed opinion of the agent, the E-phase is restarted again.

4  Experimental study

4.1  Multi‑featured benchmark generator

In this paper, we extend the binary environment generator (Bartashevich and Mostaghim 
2019a) to a multi-featured case with n > 2 colours and study the performance of the 
proposed framework on seven environmental patterns: “Random”, “Stripe”, “Star”, 
“Band”, “Band-Stripe”, “Bandwidth” and “Rectangle”. Figure 2a shows an example for 
n = 3 . In the experiments, we investigate cases with n ∈ {3, 5, 8, 10} different colours and 
� ∈ {0.67, 0.93} , where � defines the quantitative ratio of colours to each other. That is, 
� = 0.67 (distinct dominance of one colour) corresponds to an easier and � = 0.93 (almost 
equal amount of colours) to the most difficult configuration concerning quality. With regard 
to spatial distribution and, respectively, to the cost, “Random” is the easiest and “Stripe” 
is the most difficult scenario (while the others are in-between), independent of the values 
of n and � . We expect the correlation between the collective decision-making outcome and 
the underlying complexity of the patterns.
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(b)

(a)

Fig. 2  The results for collective learning in the population of N = 20 agents for � = 0.67 and n = 3 (sta-
tistics of 100 runs). Shaded areas in (a) indicate standard deviation around the mean, while samples of the 
corresponding patterns are illustrated on the right side of the figure
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4.2  Experiments and results

The goal of our experiments is to provide the proof-of-concept for the handling of highly 
conflicting (inconsistent) measurements in a decentralised collective perception system via 
the Evidence Theory-based framework proposed in Sect. 3.2. In the following, we evaluate 
the fusion rules in Sect. 2.1 on seven benchmark environments under two types of learning 
mechanisms, namely, collective and social learning.

In order to assess and compare the performance of different rules, we use the following 
metrics:

• Average belief. This metric is the average mass value in the target option �n calculated 
among all the agents in the population at the current time step, i.e. 

∑P

k=1
mk(�n)∕P , 

where P is the population size. It indicates the average collective level of confidence 
in the hypothesis that �n is the correct outcome. The full ultimate convergence of the 
swarm corresponds to the average belief value of 1.

• Success rate. This metric shows the proportions of the individuals in the population 
with the mass values mk(�n) belonging to one of the following confidence categories: 
(i) equal to 0, (ii) equal to 1, (iii) in the range of (0, 0.5], (iv) in the (0.5, 1) at the given 
time frame. That is, the category (i) of masses with 0 value states for the complete dis-
belief that the �n is the right option, while values above 0 and below 0.5 (iii) indicate 
some degree of doubt that �n is completely improbable. The opposite holds for the cat-
egory (ii) with masses of 1 indicating the full confidence in the �n , and (iv) with values 
above 0.5 and below 1 as some degree of hesitancy that the �n is the only one possible 
right answer but anyway the most probable one. In comparison with the average belief, 
this metric allows observing the dynamic flow of the mass values mk(�n) within the 
time from the one confidence category to another one out of the four considered.

The experiments are organised as follows. Sect. 4.2.1 gives insights on the performance of 
the fusion operators and the impact of the environment. Sect. 4.2.2 provides a comparison 
between collective and social types of learning within the designed methodology, while 
Sects.  4.2.3 and 4.2.4 concentrate on the study of the effects of the group size and the 
increased number of the options, respectively. The implementation of the presented frame-
work and the computations below are done in Matlab, extending our previous multi-agent 
simulation from (Bartashevich and Mostaghim 2019a).

4.2.1  Convergence analysis

We start with the set of experiments on benchmarks characterised by n = 3 and � = 0.67 
to analyse the convergence within the given time for each learning type separately. In each 
case, we perform 100 simulation runs with maximum time T of 400 simulated seconds (s), 
exploration time tE = 10 s and �tk = 0.3 s, where 1 s equals 100 iterations in the simula-
tion. Although the experiments below contain the results and performance analysis for both 
collective and social learning mechanisms, the primary focus of this section is to identify 
how fusion rules from Sect. 2.1 behave in general on different scenarios and which rules 
are more successful than the others.

Collective learning: Figure 2a shows the mean average belief over time T along with 
standard deviation of seven the most distinguishable in their performance combination 
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rules (by columns, denoted as DM1, DM3–8) on seven patterns (by rows) using the col-
lective learning technique. The maximum possible mean average belief of 1 corresponds 
to the state of the full consensus of the swarm on the best option �n over 100 simulation 
runs, while higher standard deviation values indicate some degree of the polarisation, that 
is, a level of dispersion of the agents’ mass values in the population. The latter is correlated 
with the second metric of the success rate, which shows the exact mean fraction over runs 
and time of the agents’ masses in different confidence categories.

DM1 does not aim to conflict minimisation by its nature, therefore the corresponding 
mass of the agent remains unchanged as soon as the agents become highly conflicting with 
each other, which leads to lacking reliability and convergence towards certainty. It is espe-
cially noticeably in scenarios, which imply clustered patches of options in certain areas of 
the arena that result in the gathering of highly conflicting evidence by the agents such as in 
the cases of “Stripe”, “Band-S” and “Rec”, where DM1 is characterised by stabilised 0.5 
average belief values, indicating an uncertainty.

Similar to previous studies (Crosscombe et al. 2019), the averaging rule (DM4) is char-
acterised by the vast majority of highly uncertain agents with belief levels lower than 0.5 
and lacks convergence towards certainty independent from the environmental characteris-
tics (median average belief values are around 0.3–0.4).

Fusion operators DM2-3 and DM5-8 in comparison with DM1 and DM4 are particu-
larly designed to handle conflicting beliefs, and hence, better results are expected. DM2 
has shown no statistically significant difference in the performance relative to DM3 across 
considered benchmarks and, therefore, is not reported. While the median average belief of 
all aforementioned operators equals 1, DM6 is the one which converges towards complete 
certainty on “Random” with 100% success rate over all 100 runs (Fig. 2b). On “Band” 
and “Band-W”, DM5 and DM7 are characterised by the highest success rates ∼ 99% and 
100% , respectively, among the others, with DM5 being as well the fastest one, while there 
is no statistically significant difference in the other operators’ median average belief values. 
In case of “Band-S”, DM5 is also the fastest in convergence towards certainty and is sta-
tistically significantly the best one in terms of the highest median average belief until the 
200 iterations among the others. It is also the one described by the absence of fully disbe-
lieved agents by the end of the given time T, while DM3,6,8 end up with the quarter of the 
population being of zero confidence in the �n . On “Star”, DM8 is the least reliable one, 
whereas DM5 and DM7 still hold high performance, hitting ∼ 90% success rate at T. On 
“Rec”, the performance of DM5 and DM7 significantly slows down in comparison with 
the above considered scenarios. However, by 300 iterations DM5 is able to reach a median 
average belief of 1 with only 5% of the population with zero confidence. Lastly, in case of 
“Stripe”, DM5 is the best one among the others in the average population belief as well as 
in the success rate. It converges to the median average belief value of 0.917, which is the 
highest and is the statistically significantly different one from the results obtained by other 
rules at the end of the given time T. In addition, DM5 indicates the convergence towards 
complete certainty almost without the presence of unconvinced individuals and with half 
of the agents in the range of (0.5, 1] beliefs at the end of 400 iterations.

Social learning: From Fig. 3, it is apparent that the data resemble the one from Fig. 2. 
The most striking difference holds for DM8, which significantly worsened the performance 
in comparison with its collective counterpart. That is, SL-DM8 mainly consists of the 
agents with beliefs in the range of (0.5, 1), i.e. lacks the ones with complete certainty or 
complete disbelief, which results in median average belief around 0.7–0.8 for any consid-
ered pattern. In the case of DM 3,5-7, the amount of agents with complete disbelief is gen-
erally decreased, while DM1 remains in a highly uncertain state as in the collective case. In 
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particular on “Random” and “Band-W”, by means of social learning, DM3 demonstrates 
the same convergence speed but higher reliability in comparison with the collective learn-
ing along with 100% success rate of DM5 and DM7, while DM6 keeps statistically sig-
nificantly the same performance. On “Band”, DM5-7 converge to complete certainty with 

6 7 8

(a) Average belief over time
6 7 8

(b) Success rate over time

Fig. 3  The results for social learning in the population of N = 20 agents for � = 0.67 and n = 3 (statistics of 
100 runs)
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100% population of trustworthy individuals on average. Also, DM2 and DM3 show more 
reliable results ( ∼ 99% success rate) than in collective case. In case of “Star”, DM3 and 
DM6 on average are almost of 100% success rate, although their median belief values are 
not statistically significantly different from their collective learning counterparts. Similar 
performance holds for other fusion rules in the considered group as well. On the hardest 
scenarios “Band-S”, “Rec” and “Stripe”, DM3,5-6 indicate no statistically significant dif-
ferent performance between each other, keeping similar trends as by means of collective 
learning but with a less amount of not convinced individuals. However, the performance of 
DM5 has significantly dropped in comparison with its collective counterpart.

Increased difficulty (colour ratio): Figures 4a, b and 5a, b show results of the experi-
ments on benchmarks with � = 0.93 and n = 3 for collective and social learning, respec-
tively. This type of scenarios is characterised by almost equal proportions of the colours, 
e.g. for n = 3 proportion of each colour in the environment is (0.295, 0.34, 0.365), respec-
tively. Data from Figs. 2 and 3 can be compared with the corresponding data in Figs. 4 
and 5 which show a significant drop in the reliability of the operators, i.e. higher stand-
ard deviation and larger amount of fully disbelieved agents (see Figs. 4b and 5b). How-
ever, the median belief values still indicate full certainty on average in the population for 
the group of rules consisting of DM3,5-8 in both collective and social learning cases. In 
case of collective learning, DM7 is considered as the most reliable rule on “Random”, 
i.e. 90% of individuals in the population is of full certainty with the rest of completely dis-
believed ones by the end of the time T. While others fastly reach frozen state with around 
50% − −50% agents being of 1 and 0 confidence in the �n . Though, on the rest scenarios, 
except “Star” and “Rec”, DM5 is the most reliable among the others. Interestingly that 
on “Stripe”, the reliability of the aforementioned rules has even improved in comparison 
with the case with � = 0.67 . Here, DM5 stays the best one as when � = 0.67 , however with 
more uncertain individuals in the range of [0, 0.5] (i.e. almost 25% in comparison with 10% 
for � = 0.67 ). Social learning results show more reliability than collective ones, especially 
on “Random”, “Band” and “Star” scenarios. On “Stripe”, DM2,5-6 are non-significant 
statistically different according to the median average belief values and indicate the best 
performance among the others, while DM5 still remains the most reliable rule on all the 
patterns.

Discussion: Considering that the amount of �i-coloured cells defines the quality of the 
corresponding option �i , it is expected that the ratio of the colours in the environment sig-
nificantly affects the performance of decision-maker. However, while the results of the cur-
rent study confirm this, they also indicate that the distribution of the colours, as well as 
their clustering levels, significantly influences the decision-making process regardless of 
colours’ proportions. In accordance with the present results, for n = 3 , PCR5/6 has dem-
onstrated relative robustness on a variety of the considered benchmarks in the context of 
the studied framework, keeping high collective performance despite the pattern type. It is 
the only combination rule in the current study that has shown a convergence trend towards 
certainty on “Stripe” scenario, independent of colour proportions � . The reason for this 
can be that PCR5/6 resolves the conflict better than other rules as redistributes it only over 
the conflicting propositions proportionally to the values of their corresponding masses. 
Additionally, due to the spatial distribution of the features, “Stripe” is mainly character-
ised by the individuals with binary mass functions, as the agents observe mostly only one 
of the options. This leads to the collection of evidence of full certainty in the exactly that 
one option, i.e. mek

(�i) = 1 . As a result, when two agents from different areas of the envi-
ronment meet, their beliefs combination is specified by a high conflicting mass of K = 1 . 
According to Theorem 1 (Sect. 2.1), such case is treated by PCR5/6 as an average operator. 
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In that event, the predominance of conflicting options �i and �j is leveled off (i.e. aver-
aged) and both agents land with uncertain beliefs for both of the options, i.e. mk(�i) = 0.5 
and mk(�j) = 0.5 for agent k and the same for another agent l. Afterwards, those agents 
have equal chances to explore either �i or �j in their succeeding exploration phases. We 

6 87

(a) Average belief over time
6 7 8

(b) Success rate over time

Fig. 4  The results over time for collective learning in the population of N = 20 agents for � = 0.93 and 
n = 3 (statistics of 100 runs)
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hypothesise that this leads to longer periods of convergence time but promotes better 
exploration of the environment, which in turn results in higher collective reliability. To 
confirm our hypothesis, in Sect.  4.2.4 we report the results of the PCR5/6 performance 
with extended simulation time T.

6 7 8

(a) Average belief over time
6 7 8

(b) Success rate over time

Fig. 5  The results over time for social learning in the population of N = 20 agents for � = 0.93 and n = 3 
(statistics of 100 runs)
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4.2.2  Comparison of Collective and Social Learning

In the following, we compare the performance of the fusion rules with respect to 
the learning mechanism by the end of the given simulation time T = 400 s with 
� ∈ {0.67, 0.93} and n = 3 . The results are shown in Figs.  6 and  7. We analyse the 
results by the groups of fusion rules as described in Sect. 4.2.1 .

According to Fig. 6, DM1 has similar distribution of the population beliefs for both 
CL and SL independent of the pattern type. For DM4, in general, SL has a higher median 
population belief than CL, though both indicate high uncertainty. For DM2, DM5 and 
DM7, on “Random” (the easiest scenario), the shape of the SL distribution (wide in the 
middle and skinny on the ends) indicates the beliefs that are highly concentrated around 
the median value corresponding to full certainty, while the case of CL is characterised 
by the same median population belief value but contains some outliers on the opposite 
end. Similar performance is observed on “Band”, whereas on “Band-W”, except for 
DM2, for DM5-7 there is no difference in SL and CL distributions. On “Stripe” (the 
hardest scenario), bimodal distribution for DM2-3, DM6 and DM8 is observed with two 
peaks on the opposite sides, i.e. “full certainty” and “almost no chance”. The “almost no 
chance” peak’s height of SL is smaller than of CL for the aforementioned rules together 
with a higher median for SL. While for DM5 the median population belief of CL is 
higher than of SL, the overall shape and distribution of the beliefs are similar but with 
the outliers in the case of CL. Interestingly, on “Star”, “Band-S” and “Rec”, both CL 

Fig. 6  Split violin plots of the average belief in the population of N = 20 agents after 400 iterations over 
100 runs for � = 0.67 , comparing different types of learning (left-pink vs right-blue)
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and SL distributions for DM2-3 and DM5-7 contain a lot of outliers and are mainly 
described as alike.

In case of the almost equal proportions of the colours ( � = 0.93 ), the difference between 
CL and SL is less noticeable (see Fig. 7). For DM1, the distribution shapes as well as the 
median values of both CL and SL are the same and described as “uncertain” on all the pat-
terns. DM8-CL is characterised by a bimodal distribution with two extreme peaks around 
“full certainty” and “almost no chance”, however with the median belief’s value of 1 
(“full certainty”). Whereas the DM8-SL distribution is uni-modal and concentrates around 
“uncertainty” value on most of the patterns, except the hardest scenarios, i.e. “Stripe”, 
“Band-S” and “Rec”, on which SL is also described by a bimodal distribution similar to 
CL, though with a lower median of population’s belief. In turn, the fusion group of DM2-3 
and DM5-7 is also characterised by bimodality and has similar shapes of distributions for 
SL and CL independent of the pattern. Notably, in the case of “Stripe”, DM5-CL and -SL 
share the same distribution shape and median but the CL version has many outliers in com-
parison with the SL (Fig. 7).

Discussion: The social learning increases the rate at which the agents receive the infor-
mation from the environment. As a result, it promotes better mixing of the population in 
the sense that the agents receive estimated information about locations in the environment 
from the other agents without being there themselves. In view of this, social learning can 
be considered as an advanced form of individual learning. Noteworthy, the experiments 
show that social learning generally results in less amount of outliers (almost none) in 
comparison with the collective learning, though both share relatively high performance. 

Fig. 7  Split violin plots of the average belief in the population of N = 20 agents after 400 iterations over 
100 runs for � = 0.93 , comparing different types of learning (left-pink vs right-blue)
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This can be explained by the fact that collective learning is based on the exchange of the 
agents’ masses, that already imply the accumulated evidence from the environment and 
from other individuals, leading, in turn, to the combinations with potentially higher noise 
levels. Bimodal beliefs’ distribution on “Stripe” indicates that both types of learning end 
up with either fully convinced or fully unconvinced individuals in the �n but not in uncer-
tain ones. The exception holds for the results of PCR5/6 on “Stripe”, which are highly 
concentrated around certainty and considered as outliers-free with the use of social learn-
ing in comparison with its collective counterpart. In case of the less difference between the 
options’ qualities, the amount of outliers produced by PCR5/6 on “Stripe” with collective 
learning is increased, while social learning stays robust, keeping high performance despite 
the increased scenario difficulty (due to � = 0.93 ). Notably, the overall performance for 
� = 0.93 is characterised predominantly by the bimodal distribution, though PCR5/6 with 
social learning mainly keeps belief distribution concentrated around certainty on all the 
patterns.

4.2.3  Influence of the Population Size

In the next experiment, the impact of the increased amount of agents in the population on 
the swarm’s convergence towards certainty is studied. Based on the results and analysis of 
the previous sections, we study the most successful group of fusion rules, i.e. DM2-3 and 
DM5-8, on two scenarios “Random” and “Stripe”, namely the easiest and the hardest, for 
� = 0.67.

Figure 8-top reports the average belief of the population, consisting of N = 60 individu-
als, in the �n over time, averaged over 100 runs and driven by collective (Fig. 8a) and social 
learning mechanisms (Fig. 8b) with respective success rates shown at the bottom of the fig-
ures. Taking into account the size of the agents and the area of the environment (Sect. 3.1), 
the overall coverage by the agents is increased with regard to the previous experiments 
from 3.5% for N = 20–10.5% of the arena in case of N = 60 agents. As Fig. 8 shows, there 
is a significant improvement in the performance on “Random” for all fusion rules in both 
cases of learning types (compared to Figs. 2 and 3, respectively). That is, with the increase 
of the number of agents in the population, the swarm is able to quickly converge to the 

6 7 8

6 7 8

(a) Collective learning

6 7 8

6 87

(b) Social learning

Fig. 8  Average belief (top) and success rate (bottom) over time in the population of N = 60 agents for 
� = 0.67 and n = 3 (statistics of 31 runs)
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consensus with complete certainty in the �n and 100% success rate. It is interesting to note 
that in the case of social learning, DM7 is characterised by slower convergence speed than 
the others and then its collective counterpart, though still converging to the state of full 
certainty. For DM8, social learning results drop to the average population belief of 0.9 and 
no single individual being fully convinced in the �n according to the corresponding success 
rate.

In case of “Stripe” the situation differs. Here, for CL-DM2 and CL-DM3 the amount 
of fully certain individuals is linearly increasing with time and later growth of fully dis-
believed agents in the population is observed with regard to Fig. 2. In turn, this results in 
slower but more stable convergence to certainty than with a lower amount of individuals. 
SL-DM2 and SL-DM3 are more robust in the sense that almost none unbeliever agents 
are observed within time in comparison with their CL versions and Fig. 3. Interestingly, 
the performance of DM5 is significantly diminished with the increasing size of the popu-
lation for its both CL and SL counterparts, while for N = 20 agents it is the best among 
others. Here, the growth of fully convinced individuals in the population is delayed (until 
200 s) and is significantly decreased in comparison with Fig. 2, together with almost none 
convinced agents for SL-DM5 ( N = 60 ). Also, CL-DM7 and SL-DM7 with an increase 
in the number of agents are characterised by a very uncertain population, i.e. in the range 
of (0,  0.5] beliefs, with zero amount of certain individuals in comparison with the case 
with N = 20 . While for DM6 and DM8, the increase of the population size does not sig-
nificantly affect the performance. However, the delay in growth of convinced as well as 
unconvinced individuals in the swarm is observed for both CL and SL versions of DM6 
and DM8 in comparison with Figs.  2 and 3. In particular, for DM8 the later growth of 
unconvinced agents after 200 s and the accelerated linear growth of convinced ones leads 
to a higher average belief for CL counterpart.

4.2.4  PCR5/6 Results with Extended Time and n ≥ 3

Following the results of Sect. 4.2.1, in the next experiments we study the performance of 
PCR5/6 with five-times increased simulation time T, i.e. from 400 to 2000 s, and with 
increased number of options, i.e. n ∈ {3, 5, 8, 10} , on three benchmark scenarios of light 
(“Random”), medium (“Star”) and the high (“Stripe”) difficulties for � ∈ {0.67, 0.93}.

As can be observed in Fig. 9, the performance drastically decreases with the increasing 
number of options on the considered benchmarks independently of the colour ratio � . In 
the case of a clearer colour dominance ( � = 0.67 ), the transition from 3 to 5 options is in 
general accompanied by the drop in 25% of the convinced agents in the population on the 
selected patterns. Specifically, on “Random” and “Star”, the polarisation of the popula-
tion into fully convinced and fully disbelieved opposing sub-groups is observed. There, the 
former sub-group mainly defines the whole population for n = 3 and shrinks to the half-
and-half with the latter one for n = 8 , continuing to diminish on “Random” in the case 
of n = 10 . As a result, the average belief on “Random” and “Star” with n > 3 is charac-
terised by very high standard deviation values. While on “Stripe” up to n = 5 , PCR5/6 
indicates robust convergence without agents turning into full disbelievers, which appear 
for the first time only in the case of n = 8 and reach around 60% of the population together 
with only 25% of fully convinced ones by the end of T = 2000 s. In the case of n = 10 , the 
swarm is totally unable to converge to the correct state on “Stripe” and is represented by 
the whole population of unconvinced individuals in the �n by the end of 2000 s.
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In general, the results for � = 0.93 are worse than for � = 0.67 and decline much more 
rapidly with increasing n. Here, the case of n = 3 is already characterised by a polar-
ised population with around 25% of unconvinced agents on “Random” and “Star”. On 
“Stripe”, though the convergence towards certainty is slower than on the other two consid-
ered scenarios, the swarm contains on average only about 5% of complete disbelievers and 
75% of agents in the range of (0.5, 1] (among which 50% represent fully convinced ones) 
by the end of the time T. However, in comparison with “Stripe” with � = 0.67 , the ratio 
of persuaded individuals drastically drops on n = 5 , landing with half of the population 
being converged to zero confidence in the �n . Whereas for n = 10 , the whole population 
converges to a completely disbelieved state already by 500 s, what is four times faster than 
in the respective case with � = 0.67.

5  Analysis

The findings of the current study have shown that PCR5/6 fusion operator is the most 
effective in achieving consensus with swarms of small size ( N = 20 ) on the variety of con-
sidered benchmarks, i.e. from the low conflicting scenarios to the high conflicting ones, 
without any specific adaptations. On that account, due to its discovered generalisability, 

(a) (b)

Fig. 9  Average belief (top) and success rate (bottom) of DM5 (i.e. PCR5/6) over longer period of time (i.e. 
2000 iterations) in the population of N = 20 agents for a variety of options n ∈ {3, 5, 8, 10} . Statistics of 
100 runs. Learning type: collective
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this operator becomes to be a preferable rule for a designer to choose, before deployment 
of robots into an environment, without any a priori knowledge about the features to be 
investigated. Moreover, its scalability up to n = 5 options was observed, preserving in 
case of n = 5 about 75% of the population converged with 100% confidence to the cor-
rect outcome on the light and middle difficulty scenarios, while keeping on the hardest 
one (i.e. “Stripe”) around 90% of swarm biased towards certainty, among which 62% are 
completely trustworthy individuals. Whilst the drop in the performance for n > 5 is in gen-
eral explained by the lack of efficient task allocation mechanism to explore the features for 
larger option space. This also goes along with the growing ineffectiveness of positive feed-
back due to the smaller features’ coverage areas and, hence, high dependency on the initial 
positions of the agents and lesser probability to enter the dissemination phase, and, there-
fore, reduced frequency of interactions with the others. Though, PCR5/6 fusion rule has 
been already shown to be successful in the literature for resolving any degree of conflict 
appeared during combining quantitative belief masses (Smarandache and Dezert 2004a) 
and proved to be useful in several applications, e.g. multisensor distributed target tracking 
(Kirchner et al. 2007), grid occupancy estimation (Dezert et al. 2015), threat assessment in 
decision support systems (Israel and Blasch 2016), to name a few. To our knowledge, this 
is the first time it was studied in the context of collective perception as a distributed collec-
tive decision-making task.

On the other side, the feasible amount of options for consideration in a collective per-
ception scenario at hand is determined beforehand by a designer. Thus, a large number 
of options can be subdivided into smaller feasible groups to investigate, where the best 
option is found at first within reduced amount of possibilities and later reconsidered 
together within another group. Such an iterative process repeats until the best option out 
of all given n is determined. As in the case of PCR5/6, large option space can be subdi-
vided into smaller groups up to a size of n = 5 (due to its demonstrated effectiveness up 
to five options). In this way, also the computational complexity problem with an increase 
in the number of elements in the frame of discernment can be avoided, which tends to 
limit the real-world applications of PCR5/6 (Scholte and Norden 2009). However, the real-
world applications of collective perception in the proposed interpretation in general can be 
described by relatively small amount of options. For instance, to monitor the air quality is 
enough to consider relative concentrations of n = 4 specific gases between each other, such 
as carbon dioxide ( CO2 ), carbon monoxide (CO), oxygen ( O2 ) and ozone ( O3 ). Also, the 
delineation of polluted areas based on some quantified measurement thresholds is a com-
mon approach in environmental monitoring (Goovaerts 2011), where different levels of the 
threshold can be set up in advance by a designer to consider the measurements in the cor-
responding ranges as possible options.

Overall, the results of this study indicate that fusion rules originally designed for han-
dling conflicting beliefs are very successful in reaching a trustworthy swarm. Neverthe-
less, the results are dependent on the features’ distribution and characterised by a decline 
in the collective performance with an increase of the features’ density describing the 
same option. The later goes also aligned with the previous findings of Bartashevich and 
Mostaghim (2019a) obtained on a binary collective perception set of patterns using voting 
approaches. Additionally, it was also observed that with larger n, specifically on “Stripe”, 
the agents using PCR5/6 mainly tended to converge to the sub-optimal solution such as the 
second-best option. In general, large areas with continuous accumulations of one and the 
same feature take more time to explore as well as more energy costs of the agents. Whilst 
the abundance of each feature is considered as the quality of the option, the time needed 
to sample the best option can be considered as its associative cost. With this regard, even 
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though when there is a high-quality difference between the options, in case of clustered 
features the prevailing one appears harder to be revealed by the agents, and, even if it is the 
case, it requires longer convergence time (see Sect. 4.2.4). In this way, spatial correlations 
in the environment introduce a negative environmental bias on the decision-making pro-
cess, resulting in a cost-quality trade-off problem.

Furthermore, social and collective ways of information exchange between agents have 
been considered and compared in the context of the developed framework. The results of 
the current paper indicate the robustness and effectiveness of social learning over a col-
lective one, what to our knowledge has not been studied so far in previous studies. The 
former passes the estimates sensed by the agents only from the environment to the oth-
ers, whereas the latter implies the exchange of the whole cumulative knowledge possessed 
in mass vectors of the agents. Since the direct evidence mass from the environment can 
be represented by a single estimate value to communicate, the social way of information 
exchange introduces an advantage before a collective one in terms of the less probability of 
possible communication delays in its application to a robotic system. In addition, the mass 
combinations with a simple support functions (Ke et al. 2014), representing the exchanged 
evidence in the case of social learning, are done faster (Barnett 2008) than combinations 
between complete agents’ mass functions as it is done in a collective approach, what makes 
the former also more preferable for real-time distributed robotics systems. While social 
learning promotes an increase in the gathering rate of direct evidence from the environ-
ment, one should still ensure the appropriate mixing of the population to avoid the accu-
mulation of excessively recurring environmental information. As such, the degradation in 
the performance was observed when the ratio of population coverage to the area of interest 
comes to 1:10.

6  Conclusion and future work

Returning to the hypothesis posed at the beginning of this paper, it is now possible to state 
that redistribution of the beliefs to the unions of options (as it is done by PCR5/6) allows a 
collective system to successfully resolve the conflict between the clustered areas of features 
albeit to the detriment of the convergence time. In this respect, we compared the perfor-
mance of eight most common belief fusion operators with regard to their robustness to 
spatial correlations in the collective perception scenario as a distributed consensus achieve-
ment problem. However, while PCR5/6 is shown to be the most robust operator among 
others for small swarms as of N = 20 agents (occupying only 3.5% of the surface area), 
our findings suggest that this does not apply to larger swarms. The present study contrib-
utes evidence suggesting that passing of the pure (though very noisy) information from the 
environment (considered as social learning) leads to the same and even more robust results 
than in case of the exchange of the full cumulative knowledge of the agents (collective 
approach). It was also shown that direct incorporation of agents’ estimates as the qualities 
of the options in the decision-making process, in particular explicitly in the belief fusion, 
alongside modulation of the positive feedback, allows one to make more precise decisions 
within time as the agent’s cumulative belief evolves. Taken together, the current findings 
suggest the viability and generalisability of the proposed Evidence Theory-based design 
framework to tackle spatial correlations in the collective perception without taking special 
care of the agents’ movements.
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A possible direction for future work is to investigate the problem of scalability for 
n > 5 , which can be addressed by studying more sophisticated dynamic task allocation 
mechanisms (as by Ebert et al. 2018), promoting better exploration rules independent of 
the initial agents’ allocations. However, the question of the objective number of options 
in real-world collective perception applications itself requires attention and further user 
studies. For instance, as a viable example of such an application, one can refer to weed 
monitoring (Albani et al. 2017).
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