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Zusammenfassung

Korrelationseigenschaften von ternären Homopolymer / Diblock - Copolymer-
Schmelzen im Rahmen des Zuganges mit mehreren Ordnungsparametern unter

Anwendung der Approximation der zufälligen Phasen. Die kritische Linie, die man im
Rahmen dieses Zuganges erhält, stimmt mit der in der Theorie mit einem Ordnungsparameter
überein. Der gesamte Konzentrationskorrelator (und folglich die Lifshitz-Linie) stimmt in beiden
Theorien überein. Die Betrachtung der Eigenvektoren der Vertex-Matrix zweiter Ordnung zeigt,
dass in der Nähe der kritischen Linie nur ein Eigenwert verschwindend klein (kritisch) wird. Der
letztere ist verantwortlich für das Crossover von der Ising- zur Brazovskii-Universalitätsklasse.
Dieser Umstand rechtfertigt die Benutzung der Theorie mit einem Ordnungsparameter. Der
kritische Eigenvektor unterscheidet sich von dem, der vorher in der Literatur benutzt wurde;
der Unterschied ist wichtig für die Aufstellung der Fluktuationstheorie. In der ungeordneten
Phase weit weg von der kritischen Linie sind zwei Eigenvektoren wichtig für die Aufstellung der
Fluktuationstheorie. Die Aufstellung der Fluktuationstheorie mit mehreren Ordnungsparame-
tern (sogar in der Einschleifen-Näherung) erfordert die Berücksichtigung der mikroskopischen
Fluktuationen auf hohen Wellenvektoren; ein Problem, das in der Literatur nicht ausreichend
untersucht wurde.

Verhaltens der Lifshitz-Linie in ternären Systemen unter Verwendung der Renor-
mierungsgruppenmethode. Es wurde gezeigt, dass in Übereinstimmung mit jüngsten Exper-
imenten von Schwahn et al. die Lifshitz-Linie als Funktion der Temperatur sich nicht monoton
verhält. Es konnte festgestellt werden, dass im Grenzfall hoher und tiefer Temperaturen (der let-
ztere Fall entspricht dem Lifshitz-Punkt) die Lifshitz-Linie sich den Mean-Field-Werten nähert.
Für moderate Temperaturen wird die Lifshitz-Linie zu größeren Konzentrationen verschoben.
Die Verschiebung der Lifshitz-Linie bei großen Temperaturen ist ein Resultat der anwachsenden
Fluktuationen im perturbativen Regime, während die nachfolgende Rückkehr zum Mean-Field-
Wert mit der weiteren Abnahme der Temperatur das Ergebnis der Renormierung des Vertexes
im Regime der starken Fluktuationen ist. Der Höchstwert der Abweichung der Lifshitz-Linie
signalisiert den Übergang vom perturbativen zum Fluktuationsregime. Der Wert der unteren
kritischen Dimension beeinflußt das Verhalten der Lifshitz-Linie. Zwei mögliche Fälle wurden
hierzu untersucht.

Untersuchung der von großen Wellenvektoren herrührenden Fluktuationsbeiträge
in der selbst-konsistenten Fluktuationstheorie der reinen Schmelzen symmetrischer
Homopolymere bzw. symmetrischer Block-Copolymere. Die Berücksichtigung der
Wellenvektor-Abhängigkeit des Vierer-Vertexes hat zur Folge, dass die Einschleifen-Korrektur
für große q divergiert, so dass eine spezielle Betrachtung notwendig ist.Es wurde die Anwend-
barkeit der Störungsentwicklungen zur Betrachtung der Beiträge von großen q im Falle flexi-
bler Polymere demonstriert. Es wurde gezeigt, dass drei Typen von Fluktuationskorrekturen
entstehen: (i) mesoskopische Korrekturen, die von den Skalen, die mit der Größe des Polymers
vergleichbar sind, herrühren; (ii) mikroskopische Korrekturen, die der Skala der statistischen
Segmentlänge entsprechen und von der Architektur der Polymere unabhängig sind. Das let-
ztere heißt, dass die Fluktuationen für alle Polymerketten, die durch die Gausssche Statistik
beschrieben werden, gleich sind; (iii) mikroskopische Korrekturen, die strukturabhängig sind.
Das letztere heißt, dass die Fluktuationen davon abhängen, ob Verknüpfungspunkte oder freie
Enden vorliegen. Die Unzulänglichkeit der herkömlichen Fredrickson-Helfand-Theorie äußert
sich darin, dass in Folge der auf Brazovskii zurückgehenden Approximation zur Berechnung
der Integrale, die gesamte Fluktuationskorrektur nur dem mesoskopischen Beitrag entspricht.
Es wurden verschiedene Möglichkeiten zur Berücksichtigung der spezifischen Abhängigkeit des
Vierer-Vertexes für große q untersucht. Es wurde die selbstkonsistente Dyson-Gleichung unter
Berücksichtigung der vollen q-Abhängigkeit und unter Einführung eines Cutoffs von der Größen-
ordnung der Segmentlänge, um die Integrale konvergent zu machen, gelöst.
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Part I

Introduction
Symmetric mixtures of homopolymers [1, 2] and a diblock copolymer, and in par-
ticular their properties near the Lifshitz point, have recently been the object of
intense theoretical and experimental research. From the experimental point of
view the interest is due to discovery of a special fluctuation regime, which was
named a ”bicontinuous microemulsion phase”. It has important practical appli-
cations as well as provides a high-molecular analogy to the oil/water/amphiphile
mixtures, in which similar phases have been found earlier. A lot of interest has
been devoted to mapping the phase diagram of these low molecular systems [3, 4],
which also stimulated theoretical investigations and computer simulations[5, 6, 7].
When the relative concentration of diblock is varied in the mixture it provides a re-
alization of transition from the Ising to Brazovskii universality classes, exhibiting
an isotropic Lifshitz point (and under certain conditions even a tricritical Lifshitz
point), allowing experimental proof of numerical results available for this point
from the theory of critical phenomena [8]. We consider theoretically two aspects
of these mixtures.
Firstly, although the considered polymer system has four distinct order para-

meters (concentrations of monomeric units belonging to different types of poly-
mers), almost all theoretical works have been using the simplifying assumption
that there is only one relevant order parameter. The same assumption has been
used for theoretical and computer modelling of multicomponent oil/water/amphi-
phile mixtures. We check the validity of this assumption by considering all the
order parameters, investigating correlation properties within the Random Phase
Approximation and comparing the results with those of a one order-parameter
approach.
Secondly, recent scattering experiments on the ternary mixtures discovered the

deviation of the behaviour of the Lifshitz line from the mean-field prediction, in
particular a non-monotonic behaviour was observed [9, 10, 11, 12]. This phenom-
enon is all the more interesting because the experiments indicate that the critical
line and the disorder line mirror the behavior of the Lifshitz line [13]. No theory
was available explaining these new features, which was the motivation behind our
developing a RG theory.
We relate a polymer system to parameters of a model phenomenological Hamil-

tonian. Results obtained for this model have a broad range of applications, as
the Lifshitz line appears in a number of systems with competing tendencies for
phase separation into bulk or spatially modulated phases. If the appropriate pa-
rameter controlling the relative strength of the two tendencies is varied the char-
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acter of phase separation undergoes a change from bulk phase separation to the
phase separation into a spatially modulated phase. The Lifshitz point is known
to exist in magnetic systems [14]-[16], liquid crystals,[17] polyelectrolytes,[18]-[19]
oil/water/surfactant mixtures,[20] random block-copoly-mers,[21]-[22] mixtures of
homopolymers and diblock copolymers [23, 24]. Starting from the pioneering work
of Hornreich et al.,[15] who introduced the Lifshitz point and calculated the criti-
cal exponents for this class of universality, most of the theoretical effort since has
been concentrated on calculating the values of the exponents via application of
various renormalization group techniques.[16, 25].
The aim of our consideration is the theoretical description of the behavior of

the Lifshitz line with varying temperature. We show that the wavevector depen-
dence of the fluctuation corrections is responsible for the experimentally observ-
able shift of the Lifshitz line. The fluctuation effects will be taken into account
within the one-loop renormalization group method. We put special emphasis on
the comparison between the theoretically predicted behavior of the Lifshitz line
and current experimental results.[9, 10, 11, 12] As we will demonstrate a major
factor determining the character of this behavior is the value of the lower critical
dimension dl, a fact which has been little discussed in the literature. It is impor-
tant to stress that the actual renormalized value of dl is not known at present.
Therefore, since the mean field value dmfl = 4 is close to d = 3 – dimension
of space of the considered polymer blends, we will theoretically analyze different
types of behavior of the Lifshitz line resulting from different possible values of dl
and compare them with the experiment.
While elaborating a multiple order parameter fluctuational theory with full

treatment of wavevector dependence of the fourth order vertex we have encoun-
tered the problem of divergence of high wavevector contributions in the correc-
tion. The pioneering work of Brazovskii [26] simply neglected this divergence
taking into account only critical (around q∗) fluctuations, assuming that high-q
contributions result in renormalization of transition temperature. The currently
standard fluctuational theories of diblock copolymers [27, 28] follow Brazovskii
and neglect these contributions; incorrectly, as we argue below. As it turns out
the problem of high-q contributions has been little addressed in the literature. To
our knowledge it was mentioned only twice.
Holyst and Vilgis [29] considered the self-consistent one-loop corrections in

the case of a homopolymer melt and observed the divergence. However, they
do not make distinction between renormalization of χ and proper fluctuational
contribution and thus introduce a cutoff at a lengthscale of the radius of gyration
and count this term as the fluctuational correction. Their idea that the term
represents proper fluctuational correction indeed inevitably leads to the choice of
the cutoff at the radius of gyration. We argue that this correction is due to small
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scale renormalization as it is a property of Gaussian statistics (it is the same for
all chains) and thus obviously represents renormalization of χ. Hence it is clear
that if the cutoff is to be introduced, it must be a microscopic length, the obvious
choice being the persistence length, since at this lengthscale the chain loses its
Gaussian statistics.
Olmsted and Milner [30] considered fluctuational corrections arising from the

effects of different architectures. To that end they perform calculations for two
systems: blend of homopolymers, and a multiblock copolymer melt and compare
the one-loop corrections. They also report that the correction depends as Λ3 on the
cutoff length and correctly identify the corrections as resulting from microscopic-
scale renormalization. They are interested in macrophase separation only and
for this case rightly claim that the correction is architecture independent and
thus is on the one hand experimentally irrelevant and on the other hand can
easily be canceled theoretically by taking the difference for two systems. However
all of this is true only for the case when the correction is taken at q = 0. It
was precisely their case, and they interpret the input of architecture dependent
fluctuations as a correction to χ. However as we will show below for final q the
microscopic contribution is also architecture dependent, and thus requires special
consideration. Furthermore it is clear that for a diblock copolymer melt the
correction should be taken at a final q.
From the experimental side the need to modify the classic Fredrickson-Helfand

theory [27] is also tangible. Earlier experiments [31, 32] serving to check the pre-
dictions of the Fredricskon-Helfand theory [27] claimed good agreement, but actu-
ally used some fit parameters as a result of difficulties with relating experimental
and theoretical χ. However, quite recent studies [33] directly comparing the val-
ues of χ obtained in melts of pure homopolymer and pure diblock copolymer have
highlighted the discrepancies between FH theory and experiment. The experi-
ments show that χ obtained by interpreting experimental results from copolymer
melt within Leibler theory [34] better fit the values of χ (obtained from homopoly-
mer blends) than analogous interpretation within the fluctuational FH theory. In
fact the sign of the fluctuational correction seems to be wrong as is suggested by
the measurement of the phase diagram of the ternary system [35]. When using
χ determined from the homopolymer blend the transition point for a copolymer
melt lies above (in temperature) the mean-field result, while the current fluctua-
tion theories [27, 28] predict that fluctuations stabilise the disorder phase and thus
actual transition should lie below the mean-field prediction. Correcting the theory
is extremely important as it serves as a basis for taking into account effects of
fluctuations in a vast array of industrially important polymer systems containing
block copolymers and thus belonging to Brazovskii universality class.
In view of the above indications we consider a pure diblock copolymer melt
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and make an attempt to develop a self-consistent one-loop theory with the full
wavevector dependence of the fourth vertex with correct handling of the high-q
contributions.
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Part II

Ternary A/B/A-B blends of
homopolymers and a copolymer

1. Theoretical background

Our subsequent results are especially closely related to the works [23, 24] which
also initiated both theoretical and experimental studies of the ternary systems
therefore we first discuss them in some detail and then give overview of other
works.
The work [23] has essentially two parts. The first part is based on considering

the Flory-Huggins expression for the mixture (in their notations):

F

T
=
ψA
N
lnψA +

ψB
N
lnψB +

ψAB
NAB

lnψAB + χψaψb (1.1)

and subsequent analysis of the phase diagram of this incompressible melt with the
use of two order parameters: ψ = ψA+ψB and η = ψA−ψB. This multicomponent
system is properly analysed but with respect to stability to macrophase separation
only (that is why the authors stress that the analysis is applicable for both random
and diblock copolymer). Phase diagrams are constructed and a its peculiarities
are discussed. In the second part the RPA theory of the blend is presented.
However in this analysis the authors employ only a single order parameter, viz.
the concentration of all monomers of type a, which may belong to homopolymer
or copolymer: ψa = −ψb and calculate the correlation function

S−1(q) =
Saa + 2Sab + Sbb
SaaSbb − S2ab

− 2χ (1.2)

The structure factors are well-known [34]

Saa = ψANg(1, x) + ψABNABg(1/2, xAB) (1.3)

Sbb = ψBNg(1, x) + ψABNABg(1/2, xAB) (1.4)

Sab =
1

2
ψABNAB [gD(1, xAB)− 2gD(1/2, xAB)] (1.5)

By taking the expansion of S−1(x) (1.2) and demanding that the first derivative
equals zero the concentration ψ of the Lifshitz point is obtained which separates
the sections of the critical line where the transition has micro- or macrophase
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character. It is established that the case α = 1 presents a tricritical Lifshitz
point.
The theory presented in [24] is properly many order parameter in both calcu-

lation of the correlation properties (using the RPA) and in finding the expansion
of the free energy (staring from the Flory-Huggins expression (1.1)). Using in-
compressibility condition they introduce three order parameters and calculate the
all the correlation functions between the order parameters. Rather surprisingly
the expression for the full correlator of one of the component S(q) coincides with
that found by Broseta-Fredrickson, which means that the critical line (and of
course the Lifshitz line) are also the same. The authors however go further and
analyse two more special lines: equimaxima line (which they introduce) and a
disorder line (much used in low molecular weight mixtures). They calculate the
disorder line from the requirement that the full correlator S(x) lose its oscillating
character. Actually it is not exactly the experimentally determined line [3]. It
was introduced in the experiments on oil/water/amphiphile mixtures based on
the so-called Teubner-Strey fit [36] for the scattering function:

I(q) ∼ (a2 + c1q2 + c2q4)−1 (1.6)

which is just an expansion of the correlator up to the fourth order. The correlation
function resulting from (1.6) can be easily calculated as

G(r) ∼ sin(r/λ)

r/λ
exp(−r/ξ) (1.7)

the disorder line is defined by the condition λ = 0 (note that the Lifshitz line
corresponds to λ = ξ). Having completed fluctuation analysis the authors use the
Flory-Huggins free energy they obtain an expansion of it in order to show that
the Lifshitz point at α = 1 is also a tricritical point as was indeed found in [23].
It is worthwhile to say that the work of Holyst-Schick represents the only

multiple order parameter treatment available in literature. In particular all cal-
culations of the phase diagrams have been conducted with the use of one order
parameter ψa. The phase diagram of the considered system was first calculated
in Ref [37]. They employed the weak-segregation approach with the expansion
of the free energy up to the fourth order (ie constructed the theory analogous
to Leibler’s) and calculated resulting phase diagrams, for different values of rel-
atives lengths of the homopolymers (not necessarily symmetric) and copolymer.
However their they considered ordering into a lamellar phase only. All standard
phases (bcc, hex, lam) have been considered in Ref [38] using a self-consistent field
theory. Dependence of phase diagrams on practically all parameters of the sys-
tem was investigated. Another approach to understanding the phase behaviour
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and in particular the nature of the fluctuational ”bicontinuous microemulsion”
is to look at the modification of the interface between two homopolymer phase
upon introduction of a copolymer in the system. Such calculation also within a
self-consistent theory was conducted in [39]. Results of Monte-Carlo computer
simulations to that effect are reported in [40].

2. Experimental background

Motivated by the theoretical construction of the phase diagrams and in partic-
ular prediction of the Lifshitz point [23, 24] in symmetric isoplethic mixtures of
homopolymers A and B (NA = NB,φA = φB) and a symmetric diblock copolymer
(f = 1/2) experiments realising this system have been started. Of special interest
was the region of the Lifshitz point, since the current theoretical idea [35, 10] is
that the Lifshitz point exists only in mean-field theory, while in physical reality it
must be destroyed by fluctuations due to the fact that mixtures of homopolymers
and diblock copolymer melts have different classes of universality (Brazovskii class
of universality and Ising one, respectively).The ratio α = NA/NA−B, must be of
the order of 2, so that the transition temperature for the whole system as a func-
tion of varying concentration of diblock φ lie in the same experimental window
(as is indeed clear from the mean field equations for homopolymers: χN = 2
and diblock: χN = 10.495); in this case α = 0.208. Note that within the RPA
theory the location (ie φ) of the Lifshitz line is determined only by this ratio:
φLL = 2α

2/(1 + 2α2).
The first experimental work [35] looked at the properties of a mixture of poly-

ethylene (PE )and poly(ethylenepropylene) (PEP) homopolymers and a corre-
sponding PE-PEP copolymer (NPE = 392, NPEP = 409, NPE−PEP = 1925). The
system was studied with Small Angle Neutron Scattering (SANS) and rheological
measurements (to determine the phase transition in the diblock-like part of the
phase diagram). Surprisingly in this study the authors found no deviations from
the mean-field behavior near the Lifshitz point and by looking at the scattering
also found the mean-filed value of the critical exponents of the Lifshitz universal-
ity class: γ = 1 and ν = 1/4. (Probably the most important result of the work
however (yet which the authors do not appreciate) is the discrepancy between the
experimental results and fluctuational theory of purely diblock melt which we will
discuss in more detail in Section 9.)
By looking more carefully at the region delineating Ising and Brazovskii classes

of universality [11] for the same system a strong deviation from the prediction of
the mean-field theory was found. Namely, approximately in the region of φLL no
phase transition at all with lowering temperature has been established (by looking
at the SANS results). With the use of the transmission electron microscopy on
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cryoultrimcirotomed section obtained from melts quenched in liquid nitrogen the
authors visualised the structure of the melts at different φ (Figure 3 of Ref. [11]).
In the region of the mean-field Lifshitz Point the structure of the solution was
claimed to be that of a bicontinuous microemulsion phase (looking similar to that
found low-weight amphiphilic mixtures[41]). Although here and in the following
they call it a phase no grounds for that actually exist. So far it has not been
rigorously shown that there exists a bicontinuous microemulsion phase, so that
it would be better to call it a fluctuation regime. Existence of the channel of
microemulsion has been shown to be a generic feature of the ternary mixtures
under consideration as it was discovered [12] for various types of monomeric units
involved as well as for a wide region of molecular weight (even down to actually
oligomeric system NA ≈ 7 and NA−B = 32).
The most detailed investigation to date of the correlation properties of the

ternary mixtures has been conducted by Schwahn et al. [9, 10], also by employing
SANS. They conducted detailed study of the phase separation lines, Lifshitz line,
critical exponents, behaviour of the maximum of scattering q∗. They confirm
results of previous investigation in that they find no phase transition in the vicinity
of φLL thus also dub this special fluctuation regime a bicontinuous microemulsion.
However they go a little further and also present some suggestions how this regime
can be located: they find a jump (or at least an abrupt change) of the value of the
maximum of scattering q∗ with change of φ at constant T (both already at q∗ 6= 0),
which can serve as a border of the ”microemulsion phase”. Furthermore, when in
the behaviour of χ with temperature at constant φ certain deviation have been
discovered which the authors also attribute to the onset of the ”microemulsion
phase”. The behaviour of q∗ as a function of varying T or φ has been probed
and considerable discrepancies between the experiment and mean-field theoretical
predictions discovered. Also these two works investigate the critical exponents
γ and ν in the Lifshitz universality class and find deviations from the mean-
field values. Interestingly they find even two fluctuational values for each of
the exponent, the result validity of which is unclear. However these results are
important as provide a rare experimental check of predictions for the isotropic
d = 3 Lifshitz universality class.
The most important for our subsequent consideration result obtained in [9,

10] is the behaviour of the Lifshitz line. The Lifshitz line is determined the
volume fraction φ at which the peak in the SANS profiles shifts off the zero
value and is thus directly experimentally accessible. It has been found that is
contrast to the prediction of the RPA theory that the Lifshitz line is independent of
temperature (is simply given by φLL = 2α

2/(1+2α2)) experimentally the line was
found to exhibit non-monotonic behaviour: deviating to larger φ for intermediate
temperatures. This feature was the motivation for our studying theoretically the
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behaviour of the Lifshitz line with temperature in Section III. Further study [13]
indicates that this non-monotonic behaviour may be quite a general feature: it is
observed not only for LL, but also for the Disorder Line and even for the critical
line (which implies re-entrant phase behavior in a small region of φ).
Another important feature of the behaviour of the Lifshitz line which is over-

looked in the literature is its shift from the mean-field value as a whole to larger
φ. For example for the Schwahn system the prediction is φLL ≈ 0.06 while ex-
perimental value is φLL ≈ 0.09. The same difference of 20− 40% between the ex-
perimental and theoretical results is present in other works ([13] and other). This
feature seems to be a physical one and was the motivation behind considering the
ternary mixture as a proper many order parameter system; such consideration is
presented immediately below, however we were not able to progress beyond the
RPA theory and therein this shift of the LL as a whole is absent (in fact results
coincide with those of the single order parameter treatment).

3. Multiple order-parameter theory of ternary blends: Ran-
dom Phase Approximation

The system we consider in this part is exactly that considered in the experimental
work of Schwahn et al. and theoretical of Broseta-Fredrickson and Holyst-Schick.
That is we have a ternary blend: two homopolymers A and B: with degrees
of polymerization NA = NB, and volume fractions of monomers belonging to
either of the homopolymers φA = φB; and a symmetric (f = 1/2) diblock with
the degree of polymerization N and volume fraction of diblock monomeric units
φAB = 1 − φA − φB (due to assumed incompressibility). The system is fully
characterized by the following three parameters: φ ≡ φAB, N and α = NA/N =
NB/N .
In contrast to the Holyst-Schick theory we will first consider the system with

some free vacancies (which can be understood as solvent) and then will obtain the
limit of incompressible blend by taking the limit of zero concentration of vacancies.
Therefore we consider all four densities of monomeric units:

φA(r) = φA + ψA(r)

φB(r) = φB + ψB(r) (3.1)

φa(r) =
φAB
2
+ ψa(r)

φb(r) =
φAB
2
+ ψb(r)

Within the RPA theory the correlation matrix is simply inverse of the matrix of
vertices of the second order, ie coefficients in the expansion of the free energy

11



in terms of the concentrations (3.1) (ie coarse-grained free energy). The free
energy of the system consists of three types of terms: macromolecular entropic
term (we call structural), and two Flory-Huggins lattice-theory terms: short range
attraction described interaction via a χ parameter; and hard-core repulsion (or
the free energy of solvent).
As is well-known the structural term of the free energy is given by the inverse

of the matrix of molecular correlator describing the structure of polymer, which
for our system has a block form:

Γ
str(2)
ij =

h
G
str(2)
ij

i−1
(3.2)

Gstr(2) =


SAA 0 0 0
0 SAA 0 0
0 0 Saa Sab
0 0 Sab Saa

 (3.3)

Here we have already made use of the symmetry of the system. The expressions
for the correlators are well-known:

SAA =
1− φ
2

N

α
g(α, x)

Saa = φNg(
1

2
, x)

Sab = φNh2(
1

2
, x) (3.4)

g(f, x) ≡ 2

x2
{fx+ exp(−fx)− 1} , x ≡ q2a2N

6

h(f, x) =
1

x
{1− exp(−fx)}

Taking into account the Flory Huggins free energy [2]

FFH =
1

2

Z
χijφi(r1)φj(r2) dr1dr2 +

Z
(1−X

i

φi(r)) ln(1−
X
i

φi(r)) dr (3.5)

we obtain the following matrix of the second vertices

Γ(2) =


S−1AA + w χ+ w w χ+ w
χ+ w S−1AA + V χ+ w w
w χ+ w Γaa + w Γab + χ+ w

χ+ w w Γab + χ+ w Γaa + w

 (3.6)

where w ≡ (1−P
i φi)

−1 and in order to obtain the incompressible melt we will
put in the following w → ∞, and we have introduced obvious notations for the
inverse diblock matrix: Γaa ≡ Saa/(S2aa − S2ab) and Γab ≡ −Sab/(S2aa − S2ab).
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Our goal is to investigate the correlational properties and spinodal stability
of the system, therefore to proceed we reduce the quadratic in φi(r) term of the
free energy to diagonal form by finding the eigenvalues λi and eigenvectors of the
matrix Γ(2):

λi =


1
2

³
S−1AA + Γd − 2χ−R

´
1
2

³
S−1AA + Γd − 2χ+R

´
1
2

³
S−1AA + (Saa + Sab)

−1´
4w

 (3.7)


−1 −1 1 1
1 1 1 1
− 1
2χ
(S−1AA − Γd +R) − 1

2χ
(S−1AA − Γd −R) −1 1

1
2χ
(S−1AA − Γd +R) 1

2χ
(S−1AA − Γd −R) −1 1

 (3.8)

R =
q
4χ2 + (S−1AA − Γd)2 (3.9)

Here the last matrix is composed of the columns of (yet non-renormalized) eigen-
vectors: ith column corresponding to ith eigenvalue λi. In the eigenvectors the
number of the line corresponds to the component: 1–A; 2 – B; 3 – a; 4 – b.
We have also introduced the notation Γd ≡ Γaa − Γab = (Saa − Sab)−1.

4. Results and Discussion

Let us note that from formulae (3.7) and (3.8) we indeed obtain the incompress-
ibility condition, namely we obtain that the vector

P
i ψi does not fluctuate as the

eigenvalue w → ∞. Therefore in the following the fourth eigenvalue and -vector
are of no interest to us.
As a first step of the analysis of course we look at the spinodal. As is well known

it is given by the equality to zero of an eigenvector. By considering expressions
(3.7) and (3.8) we see that only λ1 can become negative and is thus a spinodal
value. Taking into account expression for R it is easy to show that the equation
for the spinodal λ1 = 0 can be rewritten as

1

χ
= SAA + Saa − Sab (4.1)

which is the result obtained by Broseta-Fredrickson within one order-parameter
approach and by Holyst-Schick by multiple order parameter treatment.
Another important property is the correlation function of chemically identical

monomeric units, which may belong either to homopolymer or to copolymer:

13
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Figure 4.1: Eigenvalues of the vertex matrix for the ternary system of homopoly-
mers and a copolymer. In plot (a) the system is close to the spinodal: χN = 10;
in plot (b) the system is atherma:l χN = 0. For both plots α = 0.2, φ = 0.2.

G(q) = h(φa(q) + φA(q)) (φa(−q) + φA(−q))i = Gaa(q)+GAA(q)+2GaA(q) (4.2)
We can obtain the correlation functions by inverting the matrix Γ(2). Rather
surprisingly the result (given also by Holyst and Schick)

G =
1

2

SAA + Saa − Sab
1− χ(SAA + Saa − Sab) (4.3)

again coincides with that found by the one order parameter theory of BF. The
conclusion is that on the level of RPA theories we have not found any difference
between the results obtained within the one or multiple order parameter theories.
Let us now analyse the eigenvalues (3.7) in more detail. For illustrative pur-

poses we plot them in Figure 4.1. We take α = 0.2, φ = 0.2 and illustrate two
important situations: in plot (a) χN = 10, ie the system is near spinodal; whereas
plot (b) presents the athermal case of χN = 0.
In order to understand the general behaviour of the eigenvectors with x let

us note that Γd = (Saa − Sab)−1 is the vertex of a symmetric diblock blend and
therefore has a ”correlation hole” behaviour: it is +∞ at x = 0 and x = ∞ and
in-between has a minimum. Γ determines the qualitative behaviour of R as can
be seen from (3.9). As is well-known S−1AA, S

−1
aa and S

−1
ab are all monotonously
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increasing functions of x. Taking all this into account we obtain the following
classification of λ’s: λ1 can be either monotonously increasing or have a minimum
at a final x (the change between the two is the Lifshitz line); λ2 always has a
minimum at a final x, whereas λ3 always monotonously increases with x. As we
have mentioned only λ1 can be negative, while λ2 and λ3 always stay positive.
Furthermore, the following relations between them exist: λ1 < λ2 and λ3 < λ2.
Importantly there is no inequality for λ1 and λ2; they can have various relative
magnitudes. All of which leads us to the following conclusions.
Although the system has many order parameters there is only one relevant

eigenvalue at the spinodal, viz. λ1. The minimum of this eigenvalue deter-
mines the type of separation: whether it is micro- or macrophase. (Note that
this situation is actually not the only in principle possible. Indeed it could be
envisaged that two eigenvalues (one always with q∗ final and the other always
with q∗ = 0) could be relevant to the stability..) This result justifies using
only one order parameter for consideration of the system near the phase tran-
sition. This order parameter however must be the eigenvector associated with
λ1. It can be easily found from (3.8): on the spinodal the critical wavevector isn
−1, 1,− 1

χ
(S−1AA − χ), 1χ(S−1AA − χ)

o
. It is important to note that the usually em-

ployed assumption [23, 42] that the order parameter is given by the sum of chem-
ically same monomers, eg φ(r) = φA(r)+φa(r), leads to the vector {−1, 1,−1, 1},
which is different from the actual critical vector. Thus although there is indeed
only one critical eigenvalue and therefore we can consider one order parameter,
that parameter should be found from theory. The right choice of the order para-
meter should be made for the calculation of the fluctuation corrections. Until now
in the literature [42] the {−1, 1,−1, 1} vector has always been used (although see
[43]).
As we can see directly from Figure 4.1(b) for small values of χ two eigenvalues

are relevant for fluctuational properties of the system. Although as we have men-
tioned above the result for the Lifshitz line obtained within the one-parameter
Broseta-Fredrickson theory (unexpectedly) coincides with our result, multiple or-
der parameter treatment is essential for correct calculation of the fluctuational
effects. We have attempted to conduct a calculation of one-loop fluctuational cor-
rection within a proper multiple order parameter approach, however our progress
has been checked by the problem of high-q divergency of resulting integrals. We
will consider this problem in detail in Part V for the case of a pure diblock melt.
Before going to that, however, we consider the behaviour of the Lifshitz Line with
changing temperature within the one order-parameter RG approach.
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Part III

Lifshitz Line in Ternary Blends

5. Perturbative calculation of the shift of the Lifshitz line

We start from the conventional expansion of the Landau free energy functional

H[ψ(q)] =
1

2

Z
q
ψ(−q)G−10 (q)ψ(q)+

λ

4!

Z
q1

Z
q2

Z
q3

ψ(q1)ψ(q2)ψ(q3)ψ(−q1−q2−q3)
(5.1)

in powers of the Fourier transform of the order parameter. In particular, for the
ternary mixtures under consideration the natural order parameter is the deviation
(from the volume averaged) of the concentration of a (or b, since the system is
symmetric) monomers. The parameters of the Hamiltonian (5.1) for the polymer
system can be obtained from coarse-graining of the corresponding microscopic
Hamiltonian.[42] In particular, near the Lifshitz line (to be defined later) the bare
correlation function G−10 (q) can be written as follows:

G−10 (q) = τ + c1(φ)q
2 + c2q

4 (5.2)

with τ ∼ (T − Tc)/T being the reduced temperature. For the considered ternary
mixtures the coefficient c1(φ) depends on the concentration of diblock-copolymer
φ [23, 24, 42] and changes the sign with the variation of φ. At sufficiently small
values of φ the coefficient c1(φ) > 0 and the system belongs the Ising universality
class; at larger concentrations of diblock c1(φ) < 0 and the system attains the
Brazovskii universality class.[26] Within the mean-field theory the Lifshitz point
is defined by the two conditions: τ = 0 and c1(φMFLP ) = 0. More generally, we
can introduce the mean-field Lifshitz line as the locus of points in parameter space
(φ, τ) at which the quadratic term vanishes: c1(φMFLL(τ)) = 0. The Lifshitz line
(LL) is easily determined experimentally by considering the position of the peak of
the static scattering curve.[11, 12, 9, 10] If we begin increasing the concentration
of diblock at constant temperature the LL is determined by the diblock concentra-
tion at which the peak in the scattering curve first shifts off the zero wave vector.
A noteworthy feature of the considered polymeric system is that the temperature
T enters the Hamiltonian (5.1) only via the Flory-Huggins parameter, hence the
coefficient c1(φ) turns out to be independent of temperature,[23, 24, 42] so that
the mean-field position of the LL φMFLL is also temperature independent and is
determined solely by the ratio of the molecular weights of the polymers compris-
ing the mixture. This mean-field prediction was not confirmed experimentally.
Instead of being constant, the position of the LL was found to vary with temper-
ature, more precisely, it exhibited a non-monotonous behavior, which shows that
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fluctuations should be taken into account. This is hardly surprising because at
the LL, when c1(φ) vanishes, the fluctuation corrections in fact become the only
input into the renormalized counterpart of c1 and thus always play a role.
Let us consider the renormalized correlation function. Note, that since our goal

is to calculate the deviation of the LL, the renormalized quadratic term vanishes:

G−1(q) = τr + l1(φ, τ )q
2 + c2q

4 (5.3)

l1(φ, τ ) = c1(φ) +∆c1(τ) = 0 (5.4)

The shift of the LL (which is temperature dependent due to fluctuation correc-
tions) is denoted by∆c1(τ). Within the approximation we use in this paper c2 will
not be renormalized. The renormalized parameter l1 can be found by considering
the Dyson equation:

G−1(q) = G−10 (q)−Σ(q), (5.5)

Σ(q) = D1(q) +D2(q). (5.6)

We consider in the self-energy Σ(q) only the one and two-loop diagrams:

D1 = −n+ 2
6
λ
Z

q

1

τ + c2q4
(5.7)

D2(q) =
λ2

6

Z
q1

Z
q2

1

[τ + c2q41][τ + c2q
4
2][τ + c2(q1 + q2 + q)4]

(5.8)

For generality and ease of comparison with known results we have introduced n
– the number of components of the order parameter. Note, that for the polymer
blends,[9, 10] whose description is the goal of our work, due to the incompressibil-
ity condition the order parameter is a scalar, i.e. n = 1, as is indeed clear from
the Hamiltonian (5.1). The D1 diagram is q-independent and is therefore of no
relevance to the renormalization of c1. The first correction to it is given by D2(q).
Calculation of D2(q) is performed easier in the real space. For the experimentally
relevant case d = 3 we use the r-space representation of the correlation function

G(r) =
Z d3q

(2π)3
exp(iqr)

τ + c2q4
=

ξ

4πc2

1

r/ξ
exp(−r/(ξ

√
2)) sin

³
r/(ξ

√
2)
´

(5.9)

to rewrite the expression for D2(q) in terms of G(r) as follows:

D2(q) =
λ2

6

Z
eiqrG3(r)d3r (5.10)

where ξ = (c2/τ)
1/4 is the mean-field correlation length. In fact we need only the

quadratic term of the diagram in powers of q, which is readily calculated:

D
(2)
2 (q) = −b

λ2ξ8

c32
q2 (5.11)
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where b ≈ 0.109 10−4 is a constant. As it is clear from the Dyson equation (5.5)
this result gives in fact the shift of the LL:

∆c1(τ) = B
λ2ξ8

c32
(5.12)

Note, that we have obtained the expression (5.12) within the perturbation theory
and therefore it is not valid in the regime of strong fluctuations. However, the scal-
ing behavior of ∆c1(τ ) in the regime of strong fluctuations can be obtained from
(5.12) by replacing λ with the effective coupling constant λr, and understanding
under ξ the true correlation length, thus

∆c1(τ ) ' Bλ
2
r(τ)ξ

8(τ )

c32
. (5.13)

This formula immediately allows some conclusions about the qualitative behavior
of the LL.
First of all, we observe that the correction is positive, which means that on

the LL c1(φ) < 0, i.e. fluctuations shift the LL into the q∗ 6= 0 region of the
mean-field theory. For the homopolymer/diblock copolymer blend that means
that LL shifts to greater concentration of diblock, which is in agrement with
experiments.[11, 12, 9, 10] Next consider the dependence on temperature. We
have two regimes here: perturbative (small correlation lengths, at high tempera-
tures) and scaling (low temperatures, large ξ). In the perturbative regime where
the input of fluctuations is small, λ remains practically non-renormalized, so that
with lowering temperature ∆c1(τ) should increase simply due to the increase of
ξ. In the scaling regime the main effect (as will be shown below) comes from
the renormalization of the coupling constant λr. In fact in this regime we can
obtain the scaling dependence of the correction from the considerations of dimen-
sionality: demanding that the ∆c1(τ )q

2 term of the Hamiltonian (5.3) have the
same dimensionality in ξ as the c2q

4 term of the correlation function. If c2 is not
renormalized (as is our case), then

∆c1(τ ) ∼ ξ−2 (5.14)

As we can see, in the scaling regime the correction decreases with increasing ξ (i.e.
decreasing temperature). Combined with the conclusion made above about the
increase of ∆c1(τ ) in the perturbative regime we come to conclusion that ∆c1(τ )
exhibits a non-monotonous behavior as a function of τ . This behavior is a mani-
festation of the crossover between the regimes of small and strong fluctuations.
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6. Renormalization group study of the Lifshitz line

To describe ∆c1(τ ) quantitatively we have to obtain expressions for λr(τ) and ξ(τ )
in both the perturbative and scaling regimes. For this purpose we shall employ a
renormalization group technique to the first order in ε (one-loop RG). Note, that
within this method the parameter c2 does not renormalize. The renormalization
of temperature is described by the one-loop diagram (5.7):

D1 = D
a
1 +D

0
1 = −

n+ 2

6
λ
Z

q

1

c2(q2)2
+
n+ 2

6
τλ

Z
q

1

c2(q2)2(τ + c2(q2)2)
, (6.1)

The above expression is conventionally split into two parts responsible for additive
and multiplicative renormalization of temperature. For dimensions d > 4 a cutoff
at the upper limit in integration over q in the first term is assumed. These two
terms give the critical dimensions of the Lifshitz class of universality. The lower
critical dimension dl is defined as the dimension when the first term logarithmi-
cally diverges at small q. The upper critical dimension du is the dimension at
which the second term logarithmically diverges at small q for zero temperature.
A cutoff at the lower limit of integration over q is implied in Equation (6.1). For
the isotropic Lifshitz class of universality we obtain: dmfl = 4 and dmfu = 8. The
real experimental system corresponds to d = 3 so that we come to conclusion that
we are situated below dmfl . This means that the Da

1 term diverges at small q, i.e.
for large correlation lengths and thus no phase transition of the second order is
possible at a finite temperature. However, this value for the lower critical dimen-
sion is only the mean-field one. Fluctuations renormalize the value of the lower
critical dimension. The calculation of the renormalized lower critical dimension
is a formidable task, so that the true renormalized value of dl for the experi-
mental system is actually unknown. Therefore, we will consider below several
possibilities.
Going back to renormalization of τ by substituting (6.1) into the Dyson equa-

tion we obtain:

τr = τaZ2(Λmin) (6.2)

τa = τ −Da
1Z2(Λmin)

−1, (6.3)

where for purposes of clarity we introduced the temperature with additive term τa
as well as renormalized temperature τr. The quantity Λmin in Equation (6.2-6.3)
is the lower cutoff imposed in Equation (6.1) in integration over the momentum
q. The RG treatment is based on the following perturbative expression:

τr = τa

Ã
1− n+ 2

6
λ
Z

q

1

c2(q2)2(τ + c2(q2)2)
+ ...

!
(6.4)
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Likewise considering the fluctuation correction to λ for its renormalized counter-
part λr we obtain:

λr = λ

Ã
1− n+ 8

6
λ
Z

q

1

(τ + c2(q2)2)2
+ ...

!
(6.5)

These two equations are the starting point to derive the differential equations of
the renormalization group for τr and λr. To do this we introduce a running cutoff
Λ at the lower limit of the integrals in (6.4)-(6.5), differentiate both parts of these
equations with respect to Λ and replace in the rhs the bare quantities τ and λ
through the effective ones. Thus we obtain:

Λ
∂ ln τr
∂Λ

=
n+ 2

6
g (6.6)

Λ
∂

∂Λ
g = −εg + n+ 8

6
g2 (6.7)

where the effective dimensionless coupling constant is defined as follows g = λ̄rΛ
−ε

with ε = 8 − d, and λ̄ = λKd/c
2
2, Kd = Sd/(2π)

d, Sd being the surface of a unit
d-dimensional sphere. As can be seen from (6.7) the fixed point of the effective
coupling constant, g = λrΛ

−ε
min, is g

∗ = 6
n+8
ε.

Notice that the second equation is independent of τ , therefore we solve it first
and then substitute the result g(Λ) into the first one. Thus we obtain the solution
of the differential equations (6.6)-(6.7):

τr
τa

= Z2(Λmin) =

Ã
1 +

n+ 8

6

λ

ε
Λ−εmin

!−n+2
n+8

(6.8)

λr
λ

=

Ã
1 +

n+ 8

6

λ

ε
Λ−εmin

!−1
(6.9)

Equation (6.8) for τr allows us to obtain the critical exponent of the correlation

length: ν = 1
4

³
1 + n+2

n+8
ε
´
, which is a well-known result.[15, 16] Note, that in this

system τr is expressed via the temperature with additive shift (RG generalization
of Equation (6.3)):

τa = τ +
n+ 2

6

Z
q

λr(q)

Z2(q)c2q4
(6.10)

Taking into account the renormalization of the coupling constant λr and the prop-
agator in the expression of the shift of the critical temperature can be found by
considering the higher-order corrections to the self-energy Σ(q). It is clear that
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the infrared behavior of these corrections is controlled by the momentum q, which
is the argument of the self-energy Σ(q). This demands to write λr(q) and Z2(q)
under the integral in (6.10) as functions of the external momentum q. The relation
(6.10) makes the one-loop RG scheme for renormalization of τr and λr complete.
Now, using the relation between Λmin and ξ (see below) we can obtain from Equa-
tion (6.8) ξ(τ ), which substituted into (6.9) will give λr(τ ). The two dependences
substituted in turn into the formula for ∆c1 (5.13) will give our final result –
the deviation of the LL from the mean-field value as a function of temperature.
In order to find relation between the cutoff wave vector Λmin and the correlation
length ξ, one should find the perturbative limit of the RG formulae (6.8) or (6.9)
and demand it to be equal to the corresponding diagrams (6.4) or (6.5). Thus
it is straightforward to obtain: Λmin = ξ

−1. Using this relation and introducing
reduced variables we can rewrite Equation (6.8)—(6.10) as follows:

eτreτa ≡ Z2(ξ) =
³
1 + eλξε´−n+2

n+8 , eτa = eτ + a Z ∞

ξ−1

eλr(q)
Z2(q)q4

qd−1dq (6.11)

eλreλ =
³
1 + eλξε´−1 (6.12)

where the reduced variables are: eλ ≡ n+8
6

λ
ε
, eτ ≡ τ

c2
, and the constant a ≡ n+2

n+8
ε.

However the relation Λmin = ξ−1 is asymptotically correct only in the vicinity
of the upper critical dimension du = 8 and we do not expect it to hold for the
considered experimental situation d = 3. Therefore, we only know that Λmin ∼ ξ−1
with the prefactor being unknown. In this situation the constants a and a new
constant f (defined via eλ ≡ fλ/c22) become essentially fit parameters of the theory.
The expression for ∆c1(τ ) in reduced variables reads:

∆c1(τ )

c2bf−2
= eλ2r(eτ)ξ8(eτ ) (6.13)

Before solving the system let us make some further comments on the Equa-
tion (6.8)-(6.10), in particular discuss the issue of the lower critical dimension.
To that end we should consider the scaling of the term responsible for additive
renormalization:

∆τ ≡ a
Z ∞

ξ−1

λr(q)

Z2(q)l2(q)q4
qd−1dq ∼ ξ−1/ν (6.14)

If d > dl then this integral converges on small q and this addition to temperature
can be neglected in the RG calculations as it is does not depend on the correlation
length. Note, however that experimentally this correction is still relevant. Since
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the values of the fluctuation shift of temperature are different in the Ising and
Lifshitz classes of universality the temperature of the LP is shifted to lower values
then the transition temperature of the Ising class of universality. The situation
of the lower critical dimension corresponds to logarithmic divergence of ∆τ , i.e.
1/ν = 0. If d < dl then the correction diverges at ξ → ∞, which precludes
the phase transition at finite temperatures, the transition temperature goes to
zero. According to Equation (6.14) we can consider the exponent ν in this case
to be formally negative. As we have mentioned above the renormalized value of
dl is not presently known, so we will consider the two possibilities: d > dl and
d < dl. Therefore, it does not make sense to use the exponent ν obtained to
order ε, since we do not expect it to be correct for d = 3. On the contrary, using
the scaling relations (supposed to be correct even for negative ν) we will express
the exponents in the equation for ξ(eτ ) (6.11) via the exponent ν (generally the
exponent η is also necessary, however it is zero in the one-loop approximation).
Thus, we arrive at the equationÃeτ + aeλ Z ∞

ξ−1

³
1 + eλq−ε´−1+(4−1/ν)/ε qd−1dq

q4

!−1
= ξ4

³
1 + eλξε´−(4−1/ν)/ε (6.15)

Its solution ξ(eτ) substituted into (6.12) gives eλr(eτ ) and thus we can obtain the
shift of the LL ∆c1(eτ) according to (6.13).
The results of numerical evaluation of ∆c1(eτ ) according to Equation (6.13-

6.15) are plotted in Figure 6.1. We have considered two cases: d > dl, ν = 1 –

solid line (eλ = 1, a = 2); d < dl, ν = −1 – two dashed curves (eλ = 1 for both
curves; a = 0.5, a = 2).
If d > dl then for all values of parameters a and eλ the LL has the qualita-

tive form as the curve plotted in Figure 6.1: with decreasing temperature ∆c1(eτ )
initially increases (due to increase of ξ as explained above), then for large fluctua-
tions decreases (due to decrease of the renormalized coupling constant λr) and the
LL ends at a Lifshitz point. Note that the LP occurs at the negative temperatureseτ due to the finite shift of transition temperature discussed above.
For d < dl the situation is more complex. At large values of a (a = 2 curve

of Figure 6.1) the LL goes to eτ → −∞, so that no Lifshitz point exists (we may
say it is shifted to eτ = −∞). As can be seen from Figure 6.1 in other respects
the LL of this case is qualitatively the same as in the case d > dl. At small values
of a (a = 0.5 curve of Figure 6.1) two solutions of Equation (6.15) exist at large
temperatures (the one corresponding to greater ξ is plotted with the dot curve in
Figure 6.1) and no solution at small temperatures. Thus in this case the LL ends
in a point at which the correlation length is finite, which indicates that this is a
point of the phase transition of the first order. It is not clear however, whether
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Figure 6.1: Reduced shift of the Lifshitz line ∆c1f
2/(bc2) as a function of reduced

temperature eτ = τ/c2. (Here τ and c2 are parameters of the Hamiltonian (5.1);
b is a numerical constant defined in the text; and f is some numerical constant.)
The figure illustrates two possible situations: d > dl (ν = 1) – solid curve (fit
parameter a = 2); d < dl (ν = −1) – dash curves (a = 2, a = 0.5). For all curveseλ = 1.
this case represents physical features or is an artifact of approximations of the
theory.
Comparing obtained results with the experimental data of Schwahn et al.[9, 10]

we observe that the experimental LL has the same qualitative shape. We would
like to stress that the present study predicts that the Lifshitz line approaches its
mean-field counterpart for high and deep temperatures, the prediction which is
also in agreement with experimental behavior of the Lifshitz line.[9, 10] However,
on the basis of the current data of Refs. [9, 10] it is not clear which of three cases
concerning the value of the lower critical dimension of the system which we have
discussed above, actually takes place.

Summarizing, we have calculated the deviation of the LL from the mean-
field behavior by taking into account the first fluctuational correction to the c1
coefficient. The renormalized properties are calculated within the one-loop renor-
malization group. Our calculations are carried out in the immediate vicinity of the
Lifshitz line, so that no crossover to either Ising or Brazovskii universality class
is considered. The obtained behavior of the LL qualitatively agrees with that ob-
served in the scattering experiments on ternary homopolymer/diblock-copolymer
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systems.
The approach we have presented here is based on the Landau-Ginzburg ex-

pansion of the free energy with phenomenological parameters λ, c1, c2. Of course,
this fact restricts a complete quantitative comparison with experiment. However,
we point out that despite this the agreement of the behavior of the computed
Lifshitz line at high and low temperatures with experimental one is a strong sup-
port of the validity of our approach. The major reason for the uncertainty in
the complete quantitative comparison with the experiment is due to unknown
values of the critical exponents of the Lifshitz universality class. Depending on
the value of the lower critical dimension in the renormalized theory the LP exists
or it is shifted to infinitely small temperatures. More experiments are needed to
determine which of the possibilities actually takes place, which would amount to
experimental determination of the lower critical dimension of the system.
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Part IV

Fluctuational effects in diblock
melts: theoretical and
experimental background

7. Fredrickson-Helfand-Brazovskii theory

In this section we will view the constituent elements of the application of the
Brazovskii theory [26] to the case of fluctuations in diblock copolymer melt in
the weak segregation regime conducted by Fredrickson and Helfand [27]. Special
attention will be paid to the approximations used in these theories, since in the
following we will try to remove them.
Fredrickson and Helfand considered a diblock copolymer melt under the usual

theoretical assumptions: the diblock is monodisperse (and is thus characterized by
the number of monomeric units in the diblock N , and the fraction of A monomers
f , our work in the following will be concerned with the symmetric case f = 1/2),
the melt is incompressible (so that can be described by a single order parameter:
ψ(r) = ρA(r)/ρ−f), the values of statistical segments of the A and B monomeric
units are the same and are identified with the volume of the monomers entering
the Flory-Huggins lattice theory: v = ρ−1 = a3. Under these conditions the
expression for the coarse-grained Hamiltonian has been obtained by Ohta and
Kawasaki [44] and Leibler [34]

H(ψ) =
1

2

Z
q
γ2(q,−q)ψ(q)ψ(−q) + 1

3!

Z
q1,q2

γ3(q1, q2,−q1 − q2)ψ(q1)ψ(q2)ψ(−q1 − q2) +

+
1

4!

Z
q1

Z
q2

Z
q3

γ4(q1, q2, q3,−q1 − q2 − q3)ψ(q1)ψ(q2)ψ(q3)ψ(−q1 − q2 − q3) (7.1)

As has been noticed already by Leibler [34] melts of diblock copolymers belong
to the Brazovskii universality class. Therefore in order to proceed with the de-
scription of the fluctuational effects Fredrickson and Helfand simply reduce this
Hamiltonian to the model Hamiltonian employed by Brazovskii. Accordingly,
since the second vertex

γ2(q,−q) = [F (x, f)− 2χN ] /N (7.2)

is known to have a minimum at q∗ and in the vicinity of the spinodal (thus we
restrict ourselves to this condition in the weak segregation theory) the peak of

25



the correlation function is very pronounced we may expansion around it instead
of the exact expression (7.2):

γ2(q,−q) = τ + c2(q − q∗)2 (7.3)

as it is indeed done in the Brazovskii theory. The next approximation concerns
the wavevector dependence of the higher order vertices in (7.1). Generally speak-
ing they depend on the values and orientations of all the vectors. Since in the
following, however, due to further approximations only wavevectors equal to q∗
will be of interest and the angle dependence is known to be rather small the ver-
tices are taken at q = q∗ (for γ3 there is the single configuration, while for γ4, they
the lamellar symmetry is assumed):

γ3(q1, q2,−q1 − q2) ≡ Γ3 (7.4)

γ4(q1, q2, q3,−q1 − q2 − q3) ≡ Γ4(0, 0) (7.5)

With these two approximations Fredrickson and Helfand have reduced the coarse-
grained Hamiltonian of diblock melt to exactly the Brazovskii one:

H(ψ) =
1

2

Z
q

h
τ + (q − q∗)2

i
ψ(q)ψ(−q) + µ

3!

Z
q1

Z
q2

ψ(q1)ψ(q2)ψ(−q1 − q2) +

+
λ

4!

Z
q1

Z
q2

Z
q3

ψ(q1)ψ(q2)ψ(q3)ψ(−q1 − q2 − q3) (7.6)

As has been shown by Brazovskii in order to obtain the free energy it is necessary
consider the equation of state:

h(q) =
δH(ψ)

δψ(−q) (7.7)

In the weak approximation regime the usual approximation for the order parame-
ter is to limit consideration to the first harmonics

ψ(x) = an
nX
k=1

h
expiQkx+exp−iQkx

i
(7.8)

with the value |Qk = q∗| while considering different symmetries with the emerging
phases by proper choice of the sets {±Qk}. This approximation was shown by
Brazovskii to lead to the following equation of state:

h = ran − θnan + ηna3n (7.9)

and renormalized inverse susceptibility r

r = τ +
dλ

(rN)1/2
+ nλa3n (7.10)
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where we have introduced d = 3x∗/2π, with the reduced critical wavevector x∗ =
q2∗N/6. The coefficient θna nd ηn in (7.9) incorporate dependence on µ and λ,
respectively, as well as symmetric coefficients. In the process of calculating the
inverse susceptibility (7.10) however a very important approximation is made.
Indeed the one-loop correction is calculated in the following way

λ

2

Z
q

1

r/N + (q − q∗)2 =
λ

4π2

Z ∞

0

q2dq

r/N + (q − q∗)2 = (7.11)

=
λ

4π2
q2∗
Z ∞

−∞
dq

r/N + q2
=

λ

4π2
q2∗
π

r1/2
N1/2 =

dλ

(rN)1/2

As we can see we some approximation had to be made since the original exact
integral diverges at q →∞. The argument for this ”Brazovskii way” of calculating
the integral is obviously that we are interested only in the critical fluctuations
as only they depend on temperature.. The value of the integral at high q is
not influenced by τ , is physically connected with properties of the system at
microscopic scales which cannot be described by a coarse-grained theory, and
thus amounts to an unimportant (and experimentally irrelevant) renormalization
of the transition temperature.
Having obtained the equation of state we can obtain the thermodynamic po-

tential using the following identity:

∂H[ψ]

∂an
=
Z
q

∂H[ψ]

∂ψ(q)

∂ψ(q)

∂an
= 2nh (7.12)

Within the Brazovskii approach the difference of the free energies of ordered and
disordered states (ie an 6= 0 and an = 0) can be calculated exactly:

H[ψ] =
Z an

0
dan 2nh =

= 2n
Z an

0
da ra− 2

3
nθna

3
n +

1

2
nηna

4
n (7.13)

=
1

2λ
(r2 − r20) +

d

N1/2
(r1/2 − r1/20 )− 2

3
nθna

3
n +

1

2
nηna

4
n

It is made possible by the availability of an algebraic equation (7.10) connecting
r and an. This expression as well as equations (7.9) and (7.10) constitute the
closed system of equation of the Brazovskii theory used by Fredrickson Helfand
for determination of the phase diagram of a diblock melt. Their mains results
are 1). fluctuations leads to a decrease of the transition temperature; 2). the
phase diagram changes the topology as compared with the mean-field Leibler
diagram. Direct transitions from the disordered to hexagonal and lamellar (even
for f 6= 1/2) phases are possible.
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Figure 8.1: (a) Inverse susceptibility for a blend of symmetric copolymer with
N = 1000. Dashed line is the Leibler’s mean-field line Dot is the transition point
to the lamellar phase. (b) Peak position of the scattering profile as a function of
χN .

Taking an overview of all approximations involved we see that the Fredrickson-
Helfand-Bravoskii description is a one-loop self-consistent (Hartree) theory in
which the second vertex is approximated at the minimum by eq. (7.3), wavevec-
tor dependence of the third and fourth vertices is not taken into account (eqs.
(7.4)and (7.5)), and the one-loop integral is calculated by means of a special
approximation (7.11) neglecting all fluctuations except the critical ones.

8. Barrat-Fredrickson theory

8.1. Disordered phase

Further refinement of the fluctuational theory was motivated by experiments
[45] and computer simulations [46] studying the behaviour of the critical wavevec-
tor in the vicinity of the transition point. It was found that q∗ deviates from the
Leibler values and in particular has other scaling behaviour as a function of N .
The mean- field prediction is q∗ ∼ N−1/2, while the exponent found experimen-
tally was considerably larger. In order bring these peculiarities into theoretical
description Barrat and Fredrickson [28] considered wavevector dependence of the
vertices. That means that in comparison with the FH theory they did not make
approximations (7.4) and (7.5) for the vertices, rather considered the original
Hamiltonian 7.1 with full vertices. We will follow their work and consider the
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case of symmetric blend (f = 1/2) for which the third vertex is zero and the
ordered phase has the lamellar symmetry.
The Brazovksii approach can easily be generalized for the case of wavevec-

tor dependent vertex. In the disordered phase the most important property is
the concentration-concentration correlating function, which is proportional to the
experimentally measurable scattering intensity. In the one-loop self consistent
approach the correlator is given by the following Dyson equation

S−1cc (q) = Γ2(q) +
1

2

Z
p
γ4(q, p)Scc(p) (8.1)

where γ4(q, p) is the spatially averaged vertex:

γ4(q, p) ≡
Z

n
dn γ4(q,−q, pn,−pn) (8.2)

here n is a unitary vector and integration is conducted over all orientations of
n. Let us emphasize that introduction of γ4(q, p) (instead of taking γ4(q∗, q∗)) is
the only enhancement of the BF theory, all other approximations are identical
with the previous FH one. Accordingly, in order to obtain the fluctuationally
renormalised correlator Scc(p) BF use the expansion about the minimum

Scc(q) = r + α(q − q∗)2 (8.3)

thus parameterizing the curve. This expression is then substituted into (8.1);
with the use of the Brazovskii way the integral in it can be calculated and finally
demanding that the right and the left sides of eq. (8.1) coincide in the vicinity of q∗
Barrat and Fredrickson obtain three algebraic equations for the three parameters
r, α, and q∗.
Results of the solution of these equations are presented in Figure 8.1 (see Figs

2 and 3 of Ref. [28], our results are slightly numerically different from them
however; for an unknown reason). In plot (a) we present the dependence of r as a
function of χN (the Leibler result is also given for reference). In comparison with
the FH theory we observe no qualitative changes; the only difference is a slight
shift of the curve to the left of the corresponding FH curve. The qualitative change
comes however in the plot (b) of the Figure which illustrates the behaviour of the
position of the maximum of the scattering curve with changing χN . Whereas in
the FH theory, simply by its construction, the position of the maximum coincides
with the Leibler mean-field value q∗ = 1.945, inclusion of the vertex wavevector
dependence leads to considerable decrease of q with increasing χN . An interesting
feature of both plots of Figure 8.1 is that r and q∗ do not tend to their mean-
field values even for χN = 0. Barrat and Fredrickson claim this to be due to
”correlation hole” effect, however as we will show below it is an artifact of the
Brazovskii way of integration.
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8.2. Transition point

Since we consider a symmetric system the ordered phase can only be a lamellar
one. As is conventional in the theories of weak segregation [34, 27] (that is when
the system is in a state not far from the critical point) the concentration profile
in the ordered phase is assumed to be well-approximated by a single harmonic:

ψ(r) = 2A cos(ql r) (8.4)

where ql is the wavevector of the lamellar structure, which may be in general
different from the position of the maximum of the scattering function q∗. Since
we used representation (8.4) the free energy is now a function of two parameters
A and ql. Consideration of the derivative of the free energy within the one-loop
approximation [26, 47] leads to the following equation of state:

dfm
d(A2)

= ∆(ql, A)− 1
2
A2γ4(ql, ql) (8.5)

where the inverse susceptibility ∆(q, A) is determined by the analog of the equa-
tion (8.1) for the case of ordered state:

∆(q, A) = Γ2(q) +A
2γ4(q, ql) +

c

2

Z
p
γ4(q, p)∆

−1(p, A) (8.6)

Note that ∆(q,A = 0) = S−1cc (q). (Here, following Barrat and Fredrickson [28]
we neglected the angle dependence of the fourth vertex in the second term and
replaced it by the orientationally averaged γ4(q, ql).) Now using equations (8.5)
and (8.6) we can obtain coefficients of the expansion of the free anergy in orders
of the amplitude of the lamellar phase

fm(A) = τ (ql)A
2 +

u(ql)

4
A4 +

w(ql)

36
A6 (8.7)

Let us for example show how the calculation of the second coefficient

u(ql) = 2
d2fm(A)

d(A2)2

¯̄̄̄
¯
A=0

(8.8)

is conducted. Straightforwardly, we obtain from (8.5) the derivative of the free
energy

d2fm
d(A2)2

¯̄̄̄
¯
A=0

= ∆0A2(ql, A = 0)− 1
2
γ4(ql, ql) (8.9)
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Now we need the derivative of the susceptibility, which is also straightforwardly
obtained from (8.6):

∆0A2(q, A = 0) = γ4(q, ql)− c

2

Z
p
γ4(ql, p)∆

−2(p, A = 0)∆0A2(p, A = 0) (8.10)

The equation should be evaluated at A = 0, so we use ∆(q, A = 0) = S−1cc (q) and
as in the use preceding section use for S−1cc (q) the approximation (8.3). Again (as
indeed throughout all the previous approaches) the evaluation of the integral is
carried out by means of the ”Brazovskii way of integration”:

c

2

Z
p
γ4(q, p)∆

−2(p, A = 0)∆0(p, A = 0) =
c

2
γ4(q, q∗)∆0(q∗, A)

q2∗
2π2

Z +∞

−∞
dp

(r + αp2)
=

=
c

2
γ4(q, q∗)∆0(q∗, A = 0)

q2∗
2π2

π

2r(rα)1/2
= (8.11)

= Bγ4(q, q∗)∆0(q∗, A = 0)

B =
61/23q2∗

4πr(rαN)1/2
v

a3
(8.12)

This result substituted into the equation (8.10) taken at q = q∗ allows us
first to obtain ∆0A2(q∗, A = 0) and thus obtain the value of the integral; then we
take the equation at q = ql and obtain the expression for

d2fm

d(A2)2

¯̄̄
A=0

and thus the

coefficient u(ql). Thus we obtain the following values of the coefficients

τ (ql) = r + α(ql − q∗)2 (8.13)

u(ql) =
γ4(ql, ql) +Bγ4(ql, ql)Bγ4(q∗, q∗)−Bγ4(ql, q∗)2

1 +Bγ4(q∗, q∗)
(8.14)

w(ql) =
9B

r

"
γ4(ql, q∗)

1 +Bγ4(q∗, q∗)

#3
(8.15)

(Note that the expression for B given in the paper of Barrat and Fredrickson
[28] contains a misprint). By considering the free energy expansion (8.7) it is
clear that the first ordered transition to the lamellar phase takes place when the
following two conditions are met

u(ql) < 0 (8.16)

u2(ql) =
16

9
τ(ql)w(ql) (8.17)

Note that the value of ql is generally not the same as q∗ and it should be in-
dependently determined from minimisation of the free energy (8.7). However,
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calculations show that ql is in fact very close to q∗ [28]. This in fact could be
expected since the transition to the lamellar phase is known [26, 27] of only weak
first order character, ie the properties of the system do not experience considerable
changes upon the transition.
In Figure 8.1 the transition point is indicated by a dot. As we can see the tran-

sition takes place at smaller value of χN than that predicted by the Fredrickson-
Helfand theory (but of course larger than the mean-field Leibler value), which is
consistent with the shift of the whole curve in the Figure to smaller χN values.
For small enough degrees of polymerisation (N ∼ 104) the transition point was
found [28] to lie about halfway between the FH and Leibler values (see Figure 4
of Ref. [28]); for larger N the values lie closer to FH, both however tend to the
mean-field result.
Summarizing the BF theory, we have seen that introduction of wavevector

dependence (or rather removing this approximation from the Hartree approach)
enables one to obtain new features in the behaviour of q∗ (all other changes to the
FH theory being qualitative and rather small). The two remaining approximations
are representation (8.3) of the correlator (which is rather harmless) and (more
importantly) the Brazovskii way of integration. We will demonstrate below that
by retaining this feature the wavevector dependence of γ4 has not been completely
taken into account.

9. New experimental findings

In this section we draw attention to two recent experimental papers that put into
question the currently accepted theories of melts of diblock copolymer. They were
a motivation for our developing the new framework presented in the next part of
the dissertation.
The focus of the first work [35] was on investigating the Lifshitz properties in

the ternary A/B/A-B melts of two homopolymers and a diblock copolymer. The
system was taken to be fully symmetric. Polyethylene (PE) and polyethylene-
propylene (PEP) homopolymers with NPE = 392 and NPEP = 409 and a PE-
PEP diblock copolymer with NPE−PEP = 1925 were used. The phase diagram
of the ternary system was constructed by measuring the transition points for a
number of melts with different content of homopolymer fraction, thus the whole
range between a pure homopolymer blend and a pure melt of diblock has been
scanned. For system with high content of diblock rheological measurements were
used for determining the transition point, while for system with high content of
homopolymers the Small Angle Neutron Scattering data were used. The obtained
results were then compared with the theoretical prediction for the critical line in
the whole range of homopolymer concentration.. Results of such a comparison
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are presented in Figure 2 of Ref. [35]. The theoretical prediction here is obtained
within the RPA method as we discussed above. In order to match the theoretical
line to experimental phase diagram a dependence χ(T ) is needed. Such a depen-
dence was determined for the corresponding symmetric homopolymer blend using
SANS data. The results of a comparison of the RPA result and experimental
points in Figure 2 are quite remarkable in that the experimental points lie above
(in terms of temperature) the RPA prediction for diblock-like systems. This con-
tradicts the prediction of FH and BF theories that fluctuations should stabilize
the disordered phase thus that experimental points should lie in any case below
the RPA one. In this connection the authors cautiously note that ”the absolute
deviation in TODT between theory and experiment may reflect quantitative failure
of the former, although the disparity is barely outside the experimental errors
associated with NA−B and N”.
However apparently this discrepancy was the motivation behind a comparative

study of functions χ(T ) obtained from blends of homopolymers and melts of
symmetric copolymers [33]. As the authors note themselves quite remarkably
this study is in fact the first of its kind. Previous investigation have focused
either on the properties of homopolymers or diblocks, avoiding direct comparison
between them. The study again uses PE and PEP polymers. The first step was
to obtain χmfPE/PEP (T ) from the blend of homopolymers by using SANS curves
obtained in the disordered state for different temperatures and analysing these
data within the RPA theory. The χmfPE/PEP (T ) obtained in this way was found to

be independent of the polymer concentration and linear in T−1. When used to
calculate the spinodal and binodal curves of the melt within the Flory-Huggins
theory it led to the results consistent with those found experimentally (divergence
of susceptibility in SANS). Therefore the Flory-Huggins theory is concluded to be
adequate for description of homopolymers.
For interpretation of results obtained from diblock four methods are used.

Two of them are based on fitting the experimentally obtained I−1(q∗) against T−1

curves with the RPA (taken far from the transition point) or the FH predictions.
Functions obtained in this way are denoted as χmfPE−PEP (T ) and χ

bare
PE−PEP (T ),

respectively. The other two methods are based on measuring transition tempera-
tures for diblocks with different N ’s and then using the Leibler and FH expressions
to obtain:

χODT,mfPE−PEPN = 10.495 (9.1)

χODT,flucPE−PEPN = 10.495 + 41.0N
−1/3

(9.2)

All four expressions for diblock χPE−PEP as well the homopolymer χ
mf
PE/PEP (T )

are plotted in Figure 8 of Ref. [33]. As the authors correctly note it is reasonable to
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believe that the homopolymer data present the basis (are closest to the definition
of χ) against which results for the diblock should be viewed.
First of all we observe that none of the four diblock dependences actually

satisfactorily reproduce the homopolymer results. Another important conclusion
is that determination by means of matching the scattering curve gives considerably
different results as that by means of changing N : the two sets have different
slopes. The better slope have date obtained by changing N ’s. Probably the
most important conclusion though is that for both of these sets results obtained
within the RPA lie closer to the homopolymer data (which we suppose to be
”true” χ) than those obtained within the FH theory, in complete contrast to
expectations. The authors conclude that ”a common χ(T ) cannot account for
both homopolymer blend and a block copolymer phase behavior based on current
theory”. In the next section we show that a modification of the existent diblock
theory is indeed required.
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Part V

Revised theory of fluctuational
effects in melts of monodisperse
diblock copolymer

10. Preliminary remarks

As is clear from the discussion of the experimental literature there indeed exist a
number of indications that the predictions of the original Fredrickson-Helfand the-
ory [27] as well as its modification carried out by Barrat and Fredrickson [28] are
in stark disagreement with the experimental results when the χ-parameter used
for comparison of the experiment and the theory is determined in an independent
way. Indeed, according to the considered experiments the transition temperature
lies above the mean-field value of Leibler [34], whereas the both theories predict
that the temperature should lower as a result of the presence of fluctuations. These
circumstances alone already justify an attempt to improve on the existing theories
of the fluctuational effects in the melts of the diblock copolymer. On the other
hand, from the theoretical point of view the extension of the previous work, which
would eliminate the last approximation of the one-loop self-consistent treatment,
is simply straightforward, consisting in full treatment of the p and q-dependence
of the fourth vertex γ(q, p) appearing in the one-loop integral:

S−1(q) = Γ2(q) +
1

2

Z
p
γ4(q, p)Γ

−1
2 (p) (10.1)

that is eliminating the approximation of the Brazovskii way of calculating the
one-loop integral. In a way the proposed extension may be considered as the
next step in the direction taken by Barrat and Fredrickson which improved on the
original Fredrickson-Helfand theory by taking into account the q-dependence of
the integral. However such a view proves to be more formal than substantial, since
as was discussed above taking into account only the q-dependence brought only
slight quantitative changes while taking into account of the full dependence will
be seen to bring qualitatively new features in the theory. In order to understand
their origin let us consider the behaviour of the of the vertex γ4(q, p) as the
function of p and q (the function is of course symmetric with respect to their
transposition) as well as the plots of the integrand of the Dyson equation (10.1),
ie p2γ4(q, p)Γ

−1
2 (p) for different values of the external impulse q. The behaviour

of the vertex γ(p, q) is clear from the Figure 10.1. As expected, the vertex diverges
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Figure 10.1: The behaviour of the fourth vertex γ4(p, q).

at both small and large impulses: the divergence at small ones being due to the
effect of connectivity of blocks in a diblock, while divergence at large ones is a
feature of the Gaussian chain. Interestingly, two possible types of the curves are
possible: at sufficiently large q the curve tends to +∞ as p→ 0, while for smaller
q it tends to −∞. This is the situation relevant for our consequent consideration
as the Leibler’s q∗ = 1.945 (and considerable vicinity thereof) belongs to this case.
(For q = q∗ the vertex changes sign at p ≈ 0.63.) The other important feature of
γ(p, q) is that it diverges as p2 for any q. Indeed, as follows from the expression
for the Lifshitz entropy of the Gaussian chain [48, 49], γ(p, q) has the following
asymptotic behaviour [50]: γ(p, q) ∼ p2 + q2. Such a behaviour has strong effect
on the integral of the one-loop correction as is clear from the Figure 10.2. We see
that even for χN = 10, which is relatively close to the Leibler’s mean-field critical
point (χN = 10.45), the ”Brazovskii peak” does not dominate the curve, so that
calculating the integral in the Brazovskii way seems to be hardly justifiable. Note,
that in the Figure we plot Γ−1(q), ie, the RPA correlator, which means that for
the actual fluctuationally renormalized correlator the picture is even more drastic
(as the fluctuations are known to increase the stability of the disordered phase).
The difference between the full integrand of the one-loop correction (10.1)

and the integrand used in the Brazovskii way is further illustrated in Figure
10.3(a) where we plot both of them (for the same value of χN = 10). Under
the Brazovskii- way curve we understand the following function: q2∗γ(q∗, q∗)/(τ +
α(p− q∗)2), with the necessary parameters found from Γ(q) (note again that this
is the RPA value). We would like to note three points in connection with the
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Figures 10.3 (a) and (b):
– 1. Brazovskii way overestimates input of the contributions at momenta

smaller than the peak as it neglects the strong decrease of the vertex at these
values. However, this overestimation seems to be rather small, so that it seems to
lead only to small quantitative correction to the previous theories. Furthermore,
the plots suggest that this overestimation at small q may be compensated by the
underestimation visible at q > q∗ so that they practically cancel each other. On
the other hand the Figure 10.3(b) suggests the effect of fluctuations at smaller
than q∗ momenta may be to decrease the value of the correction. We will discuss
this point further in the section devoted to comparing the fluctuational corrections
of homopolymers and diblocks.
However, the q > q∗ region of the plots, where the full integrand diverges as

∼ q2, but the Brazovskii expression (simply by its construction) converges as∼ q−2
poses more fundamental questions, viz. what is the meaning of the fluctuational
correction here, ie whether we should distinguish between different types of the
corrections when we take the full integral. A remarkable feature of the Brazovskii
way (employed in both Fredrickson-Helfand and Barrat-Fredrickson theories) is
that it accounts for the critical fluctuations only, so that the whole one-loop
correction is considered as a fluctuational correction due to critical (relatively
large-scale) fluctuations. Thus by construction we have only one χ which is the
same for the RPA and fluctuational treatment. As we can se from the plots of
Figure 10.3 in the full calculation of the integral the situation is more complicated.
It is intuitively clear that we have two types of fluctuations: relatively large scale
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Figure 10.3: (a) Brazovskii (dashed curve) and full integrands of the one-loop cor-
rection. (b) Illustration of the idea that the fluctuations at small q give negative
input into the integral.

”correlation-hole” fluctuations leading to the appearance of the peak in the curve;
and small-scale (microscopic) fluctuations manifesting itself as the divergence of
the integral, which correspond to the renormalization of the properties of the chain
on microscopic scales and which thus should results in some renormalization of
χ. The broad features which this distinguishing brings to the comparison of the
Brazovskii and full treatment can be formulated thus (two further points):
– 2. If we naively draw an imaginative line (Figure 10.3(b)) serving to de-

lineate the fluctuational contributions to the renormalization of χ (below the
dash line) and regular ”correlational-hole” fluctuations, then we can see that the
Brazovskii way (in which all fluctuations are ”correlation-hole”) seriously over-
estimates the value of these ”correlation-hole” fluctuations. Note, however, that
this observation alone can lead only to quantitative corrections to the previous
theories, and, of course, it cannot change the sign of the correction as seems to
be suggested by the experiments.
– 3. If we want to treat the integral completely we are forced to consider

the large q area of the integral and thus renormalization of χ. As we will see
when trivial renormalization of χ is taken care of, the non-trivial fluctuational
corrections are different for homopolymer and diblock. Indeed relating corrections
for a homopolymer blend and a diblock copolymer melt obtained within the one-
loop (self-consistent) theory is one of the main topics of this work.
So far we have presented the reasons justifying the attempt to consider the
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full integral. Now we outline the ideas how we tried (and in most cases failed) to
carry out this consideration. The immediate problem is this: the one-loop integral
is diverging, so that we should contrive a means of calculating it. Four ways will
be discussed in detail in the following sections:
–1. Referent system. Departing from the idea of extracting microscopic and

macroscopic fluctuational corrections we try to find a referent system for which
the microscopic input would be the same as for the considered system of diblock.
If such a system was found this would let us subtract the input the one-loop of
the referent system from the one-loop correction for he diblock and thus treat the
converging remaining part as purely due to ”correlation hole” (however the whole
treatment would be referent-system dependent, of course). This way, apart from
being physically lucid, would provide the possibility of direct experimental check
of the theory. Motivated by experiments we look at the blends of symmetric
homopolymers in the next section. However, no suitable referent system was
found, the findings nevertheless being instructive.
–2. Substraction of the asymptotics. We can calculate the asymptotic behav-

iour of the integral (analytically or numerically) and then subtract the necessary
terms making the integral convergent. The asymptotic terms are then calculated
by means of introducing a cutoff at a microscopic scale. This method is discussed
in Section 12. Its flaw lies in the fact that such calculation cannot be employed in
the self-consistent solution of the Dyson equation, as the self-consistisation proce-
dure couples large and small momenta and this method is suitable only for small
external momenta of the integral where the asymptotics make sense. The failure
of the method indeed can be traced to the fact that we supply no physical way to
distinguish (even approximately) microscopic and macroscopic contributions to
the integral.
– 3. Quadratic cutoff. In this way we introduce a quadratic cutoff for the

vertex function

γcut(q, p) =

(
γ(q, p), for q, p < Λ
0, for q, p > Λ

(10.2)

and simply solve the integral equation (10.1) for S(q). The results are presented
in Section 12. We encounter here no problems in the solution, but instead (as
we provide here no idea of separating the two fluctuational contributions) face
problems of the interpretation of the obtained results, in particular relating the
bare χbare used in this calculation with the experimentally measurable χ, for
example that measured for a homopolymer blend.
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Figure 11.1: (a) Integrands of the one-loop corrections for the diblock (solid line)
and the homopolymer (dash line). (b) Difference of these integrands for different
lengths of the homopolymer.

11. Large−p behaviour of the one-loop integrands
11.1. Direct comparison of diblock and homopolymer

As was mentioned in the previous section the easiest and most physically
desirable way of getting rid of the divergence of the one-loop correction (10.1) is
to find a suitable reference system, which would have the same high-q behaviour
as the diblock system. The natural selection for such a reference system is a
symmetric blend of homopolymers of equal length (φA = φB, NA = NB) as this
system on the one hand is the simplest from the theoretical point of view and
on the other hand has been the focus of recent experimental efforts [33]. We will
take the diblock length as the reference length and express homopolymer’s length
through it: NA = αN , as well as reduce momenta by it for both systems, so that
we have the same variables.
So we have the following Dyson equations for the two systems. For the diblock

system:

S−1(q) = Γ2(p) +
1

2

63/2

N1/2

v

a3

Z
p
γ4(q, p)Γ

−1
2 (p) (11.1)

Γ2(p) = F (p)− 2χN (11.2)

Here v is the volume of the monomeric unit (volume of the cell in the Flory
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lattice theory) and a is the statistical segment length of the diblock copolymer.
The prefactor 63/2/N1/2 is the consequence of reducing the momenta by the radius
of gyration of the diblock:q ≡ eqaN1/2/61/2. The whole expression is understood
to have been already multiplied by N as is in particular clear the expression for
Γ2(p) and the prefactor of the fluctuational correction. Analytical expressions
for functions F (p) (which is of course the conventional Leibler [34] function) and
γ4(q, p) can be found in Appendix B.
For the homopolymer system analogously (the equation already multiplied by

N and the wavevector reduced also by Rg of the diblock):

S−1h (q) = Γh(p) +
1

2

63/2

N1/2

v

a3

Z
p
4α2γh(q, p)

Ã
g−1(xp,α)− χN/α

2

!−1
(11.3)

Γh(p) = 4αg−1(xp,α)− 2χN (11.4)

Analytical expressions for calculation of γh(q, p) are found in Appendices A and
B. Note that the prefactor v/a3 is the same provided we consider diblock and
homopolymer synthesized from chemically the same monomers.
In Figure 11.1(a) we plot the integrands (up to unimportant numerical coeffi-

cients, which is however the same for the two systems) of the one-loop fluctuational
corrections for the systems of diblocks and homopolymers. Note that the fluctua-
tional corrections depend on the external momentum q, so that we have to make
a choice of their values. We choose the critical momenta for the relative systems
(which also represent experimentally relevant values), ie for homopolymers we
take q = 0, while for diblock it is the Leibler’s q∗ = 1.945. Two important points
in connection with the plot are worth mentioning.
Firstly, we observe that the large-p behaviour of the integrands is different, so

that the homopolymer (at least of this length, ie α) cannot be taken as the referent
system, ie the difference of the two corrections will still be a divergent integral.
This means that we cannot consider the renormalization (by which we mean fluc-
tuational corrections resulting from large-q (ie microscopic) fluctuations) of the
parameter χ to be the same for homopolymers and diblocks and thus irrelevant
for experiments (as is usually done in the current theoretical literature where the
large-p corrections are simply neglected on the strength of similar arguments),
rather that the renormalization is different and should be somehow taken into
account. The fact that despite the polymers being chemically the same (ie the
ratio v/a3 is the same), the renormalization is still different, unequivocally indi-
cates that it is architecture (structure) dependent. The other way to view it is to
attribute the difference to the end-effects and/or the effects of junction points in
the case of diblock copolymer.
Secondly, let’s consider the p < p∗ region of the plot. By comparing the curves

for χN = 10 we see that the effect of fluctuations of diblock at p ≤ 1.5 is to
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decrease the fluctuation correction relative to the correction of the homopolymer.
Therefore if we somehow succeed in establishing a referent system based on a
homopolymer one than the fluctuational input of the diblock-specific fluctuations
measured relative to the referent system (let’s say a line similar to the homopoly-
mer one, but lying a little higher so that it has the same large-p asymptotic as the
diblock curve) seems to consist of two parts. One is the usually considered critical
input of momenta around q∗ and it is positive. The other is due to smaller p’s (in
our picture p ≤ 1.5) and it is negative. Numerically the two inputs seem to be of
comparable values (the more so, when we take into account that we have to make
the Dyson equation self-consistent, which will further decrease the height of the
peak). The interplay of the two inputs may result in a negative sign of the overall
effect. This would provide explanation for the experimental findings discussed in
the previous part.
The unsuitability of the homopolymer for the role of a referent system for the

diblocks is further illustrated in Figure 11.1(b). Here we plot the difference of the
integrands for the same external q = q∗; and present curves for different α’s. Again
we clearly see that the asymptotics of the diblock and homopolymer integrands
are different. Interestingly, despite the fact that α = 1/2 represents ”a system of
broken blocks” (all the blocks have been disconnected) and α = 1 may also be
expected to be a special referent system (α = 1 represents a singular point for the
ternary systems of diblock/homopolymers [38]) here these values are obviously
not special. Indeed the behaviour for all values of α is qualitatively the same.
Again we observe that for relatively small p the difference of the integrands is
negative: relative to homopolymer fluctuations specific for diblock lead to negative
contributions.

11.2. Homopolymers

In this subsection we will consider the large-p behaviour of the homopolymer
system which was used as a would-be reference system in preceding subsection,
ie the symmetric blend of homopolymer chains of equal lengths NA = NB = αN .
We will focus our attention on the diverging terms of the one-loop integral and will
clarify their origin. Particularly simple results are obtained for the important case
of external momentum q = 0. Note this special case is the most important one
also from the experimental point of view since q = 0 is the critical wavevector for
the blend of homopolymers. Therefore determination of χ from the measurements
of the transition temperature (as it was done e.g. in [33]) also in effect relies on
measuring the value of the correlation function (scattering intensity) at q = 0.
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11.2.1. External momentum q = 0

In this case as is shown in the Appendix A the one-loop correction takes the
following form

c

2

Z
p
8 g−1(xp,α)

µ
g−1(xp,α)− χN

2α

¶−1
≡ c

2

Z
p
Ih(q = 0, p) (11.5)

where g(x,α) is the conventional Debye function and we introduced a notation
for the prefactor of the integral connected with the reduction of the variables:
c = v

a3
63/2

N3/2 and introduced notation Ih(q = 0, p). We can immediately extract
diverging terms of the integral by taking the series (although it does not strictly
speaking exist because of the exp functions) at p→∞

Ih(q = 0, p) = 8 + 8
χN

p2
+O(p−4) (11.6)

Using this result we can extract the infinite terms from the integral and attribute
them to the renormalization of χ. If we write the Dyson equation for the ho-
mopolymer

S−1h (0) = Γh2(0) +
1

2

v

a3

Z
ep Γh4(q,−q, p,−p)

h
Γh2(p)

i−1
(11.7)

S−1h (0) =
³
2S−1A (0)− 2eχ´+ c2

Z
p
Ih(q = 0, p) (11.8)

then we can obtain a converging integral, while the two diverging integrals incor-
porating into the definition of the renormalized χ-parameter χ introduced instead
of the bare parameter eχ:

S−1h (0) = 2S−1A (0)− 2χ+
c

2

Z
p

(
Ih(q = 0, p)− 8− 8χN

p2

)
(11.9)

2χ = 2eχ− c

2

Z
p
8− c

2

Z
p
8
χN

p2
(11.10)

Here we are immediately faced with the question whether we should write the
bare or renormalized χ in the converging integral in the Dyson equation (11.9)
and indeed in the definition of χ itself (11.10). Let us write here and in the
following the renormalized one, as the physical intuition suggests and postpone
the discussion why we do so.
The conducted renormalization of χ requires some comments. We are able to

say that it is indeed renormalization (rather than fluctuational correction) since
the two integrals in (11.10), as can be easily checked, do not depend on N and
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Figure 11.2: (a) Integrand of the one-loop correction for a homopolymer blend.
(b) The integrand minus the asymptotics giving the diverging part of the inte-
grand.

thus only on microscopic parameters v/a3 (contained in c) and χ, and other details
of microscopic structure of the chain, which guide the choice of the cutoff length
making the integrals converging. These two integrals are the same for any chain
having Gaussian statistics regardless of macroscopic architecture (diblock, star-
copolymer, ...) of the chains and thus can indeed be considered a renormalization.

11.2.2. External momentum q arbitrary

In this case we should take the full expression for the fourth vertex of the ho-
mopolymer which is given in Appendices A and B. The one-loop correction in
this case reads

c

2

Z
p
4α2γh(q, p;α)

Ã
g−1(xp,α)− χN/α

2

!−1
≡ c

2

Z
p
Ih(q, p) (11.11)

With a little computational effort it is also not impossible to obtain the expansion
(although strictly speaking it does not exist (again due to exp’s)) of this function
in powers of p at p→∞, this time for an arbitrary value of the external impulse
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q:

Ih(q, p) = 8 +
8χN

p2
+
8f(q,α)

p2
+O(p−4) (11.12)

f(q,α) = 4q2/3 + 2/α− 2g−1(q,α)h(q,α)− 2αq2g−2(q,α)γ3(q,α)/3 (11.13)

where the new functions are

h(x,α) ≡ 1− exp(−αx)
x

, x ≡ q2 (11.14)

γ3(x,α) ≡ 2

x
(g(x,α)− αh(x,α)) (11.15)

In fact, the most important features of the function f(q,α) are captured by its
asymptotics:

f(q,α)→
(

13
9
q2, q → 0

q2, q →∞ (11.16)

so that actually we can think of it simply as q2 for all q’s.
Using the formula (11.12) we can rewrite the one-loop correction in the fol-

lowing way:

S−1h (q) =
h
2S−1A (q)− 2χ

i
+
c

2

Z
p

(
Ih(q = 0, p)− 8− 8χN

p2
− 8f(q,α)

p2

)
+
c

2

Z
p

8f(q,α)

p2

(11.17)
Note that the renormalization of χ is exactly the same as before. The novelty
is the q-dependent integral which obviously represents fluctuational corrections
(rather than renormalization of χ) due to end effects. The calculation of the term
requires introduction of a cutoff length. The correction is absent for q = 0, but
then monotonically increases with the increase of q. Note that this term is also
N -independent and thus (in this simplest system there are no other parameters
describing the chain as a whole) depends only on microscopics:

c

2

Z
p

8f(q,α)

p2
∼ v

a3
1

N3/2
q2
Z N1/2

p=0
1 ∼ v

a3
eq2 (11.18)

where we used the natural choice of the cutoff as the statistical segment length a,
i.e. ep ∼ 1, p ≡ epRg ∼ N1/2. We cannot call this correction a renormalization of
χ because it depends on q, while by its very physical sense χ should be the same
for all systems with the same chemical composition, that is why the last term
of in (11.17) represents a proper fluctuational correction, resulting however from
microscopic details of the chain, rather than from the mesoscopic fluctuation of
chains, described by the second term (11.17).
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Figure 11.3: The integrand of the one-loop correction of diblock melt minus its
divergent terms.

Finally, let us consider the mesoscopic fluctuations term in more details. To
that end in Figure 11.2(a) we have plotted the integrand of the fluctuational
correction for different χN and in plot (b) the corresponding converging part of
it. Looking at the plot of the integrand we observe that it equals zero at p = 0 and
as expected diverges as p2 (it is a feature of the Gaussian statistics of the chain)
at large p. The integrand after the substraction of the diverging terms indeed
converges at large p. However we observe that this integral, which we thought
to represent a ”mesoscopic fluctuational correction” has considerable input at
small p; in fact most of the input comes from the vicinity of p = 0. Yet this
contribution is spurious as it comes from the terms 8χN and 8f(q,α) which are
only asymptotics at large p, and are absolutely irrelevant at small p. Since the
value of the integral as we can see directly from Figure 11.2(b) is determined by
the values at small p, we conclude that this substraction of divergencies does not
make sense as it leads to wrong account of fluctuational corrections at small p.

11.3. Diblocks

We take the one-loop integral for diblock

1

2

v

a3
63/2

N3/2

Z
p
γ4(q, p) [F (q)− 2χN ]−1 ≡ c

2

Z
p
Id(q, p) (11.19)
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and extract diverging terms from it. Since the analytical formulae seem to be
formidable in the case of diblock we do everything numerically. Thus we arrive
at the following expansion

Id(q, p) = 8 +
8χN

p2
+
8A(q)

p2
+O(p−4) (11.20)

where the newly introduced function A(q) has been numerically found to have the
following asymptotics:

A(q) =

(
1 + 4

q2 , q → 0

3 + q2, q →∞ (11.21)

First of all we see that the first two terms in the expansion (11.20) are exactly
the same as in the case of homopolymer. As we mentioned before they are a
property of a Gaussian statistics of the chain and that is why we treat them
as a renormalization of χ. The diblock specific fluctuational renormalization is
described by the last term:8A(q)/p2. As in the case of homopolymers this terms
does not depend on N and thus describes effects of microscopic structure of the
chain.
The essential difference lies in the behaviour of the term as described by the

asymptotics of A(q) (11.21). Whereas the homopolymer function f(q) = 0 the
diblock function A(q) diverges for both q = 0 and q = ∞. Obviously the new
singularity at q = 0 is due to the effect of connectivity of blocks in a copolymer;
put otherwise due to the junction points of the blocks. The singular behaviour
of A(q) should have been expected since the second and fourth vertex are also
singular at q = 0. The familiar divergence at q = ∞ obviously describes the
end effects just as in the case of homopolymer. (Note that the asymptotic of the
function at q →∞ is the same, viz. q2).
It is also worthwhile to consider the mesoscopic fluctuational correction for

the case of diblock. In Figure 11.3 we plot the integrand of this correction, ie
original one-loop integral minus all diverging terms (the corresponding curves of
Id(q = 1.945, p) can be observed in Figure 10.2). Again we see that for the values
of χN not very close to the critical value the most part of the input into the
integral comes from the area of small p where the original correction is actually
almost zero. Again this contribution is due to the first two terms in (11.20) and
again the result is spurious, since they do not make sense at small p. Therefore
substraction of the diverging terms from the integral to make it convergent is an
unsatisfactory way since leads to a wrong value of the mesoscopic fluctuational
correction.
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12. Solution of the Dyson equation

We return to the problem of the diblock melt. Drawing on the results of the
preceding section we can now discuss the various ways the evaluation of the Dyson
equation (10.1) with full integration should be conducted. The immediate problem
is how to make a physical approximation for the apparently diverging integral of
the first correction. First we explain why the various variants of the calculation
through the substraction of the asymptotics fail, and then give account of the
results and arising problems of the self-consistent solution of the Dyson equation
with a cutoff.

12.1. Substraction of the asymptotics

Non-existence of a reference system.
As we have mentioned before the most physically desirable way of solving the

problem would be to find a reference system having the same high−q behaviour
as the considered diblock system. However now it is clear that no such system
can exist, because, as we have shown above, the high−q behaviour of the one-loop
correction for diblocks and homopolymers is essentially different and is determined
be the details of microscopic structure such as end-effects and the effects connected
with existence of juncture points in diblocks (although large parts of the correction
are the same for all chains with Gaussian statistics and thus can be considered
to be an experimentally irrelevant renormalization of a purely theoretical bare
χ-parameter to an experimentally measurable χ).
Substraction of the high−p asymptotic.
We can suggest another way of getting rid of the divergence: we calculate

(analytically or numerically) the asymptotics of the integrand and simply subtract
the diverging part from it. Thus we obtain a converging integral which can be
used in making the equation self-consistent and a diverging part, which is then
made finite with the help of the introduction of a physical cutoff. Apart from the
problem of giving a physical sense (ie relating to experiment) of the subtracted
portion, this method is unacceptable due to two physical reasons.
First, as we have seen above for both the cases of homopolymer and diblock,

it would lead to an emergence of considerable spurious contributions at relatively
small wavevectors, while this region is actually the most important for homopoly-
mers and for diblocks it is important in view of the comparison with homopoly-
mers. Note that this reason is due to the fact that among diverging terms there
are terms independent of the impulse of integration, rather than terms of the kind
e.g. p2.
Secondly, it is simply physically inconsistent since there is no physical sense to
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intensity) function. (Dash line is the corresponding curve for the Leibler’s mean-
field case) (b) Position of the maximum of scattering function. Square dots in
the both plots (smaller χN) indicates transition to the lamellar phase calculated
according to the integral formulae; diamond point (at larger χN) – according to
the Barrat-Fredrickson formulae.

calculate a high-p asymptotic at the values of external impulse q which are already
sufficiently large. Practically this means that if we try to obtain an asymptotic of
the integrand at external impulse q ∼ Λ, (where Λ is the cutoff wavelength) we
have to go to p À q, however it does not make physical sense to go beyond the
cutoff length since we will al the same conduct integration only up to Λ, where
this asymptotic works poorly.
Ultimately, both reasons are due to the fact that we use the notion of dis-

tinguishing contributions from low and high momenta (when we find asymptotic
we find value at large momenta) yet do not provide a mechanism responsible for
implementing it, so that in the first case the terms from large p show up at small
p quite uninvited, while in the second case the small and large values are coupled
simply through the vertex γ4(q, p).

12.2. Cutoff

In view of the above arguments, the best way to estimate the integral in the
Dyson equation seems to be to introduce a cutoff and do not make any other
approximations after that just solving the integral equation. For simplicity we
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take the square cutoff

γcut(q, p) =

(
γ4(q, p), for q, p < Λ
0, for q, p > Λ

(12.1)

Other forms of the cutoff are of course possible (for example

γcut(q, p) = γ4(q, p) exp(−(q2 + p2)/Λ2) (12.2)

looks especially graceful) however the difference between them is only quantitative
and thus immaterial for the following discussion. The cutoff length should be
chosen as the length where the chain statistics begin to show essential deviation
from Gaussian one. The natural choice is thus the persistence length. However,
for simplicity we will estimate it as lp/a ∼ (v/a3)−1, so that we arrive at (all
variables reduced by Rg):

Λ =
v

a3

µ
N

6

¶1/2
(12.3)

In the following we always use v/a3 = 0.5.
In accordance with the Brazovskii approach we write the equation (10.1) self-

consistently, which involves writing the renormalized (rather than RPA) correlator
S(q) in the integral. Thus in reduced variables we obtain the following integral
equation for the function S(q):

S−1(q) = [F (q)− 2χN ] + 1
2

v

a3
63/2

N1/2

Z
p
γcut(q, p)S(p) (12.4)

Let us note, that due to introduction of cutoff we have now two independent
variables: N and v/a3 (or even three, if we keep the persistence length as the
cutoff), whereas in the previous theories [27, 28] there is only one combination of
parameters: N ≡ N(v/a3)−2.
Equation (12.4) is not a Fredholm integral equation and therefore the best way

to solve seems to be via iterations. Indeed we used this way and found that the
simple iterational scheme nicely converges to a single solution for small enough
χN (in fact when S−1(qmax) is not very small) but ceases to converge for larger
χN (ie when S−1(qmax) ≈ 0). The problem is not physical and lies of course
in the value of the step of numerical integration of the integral, which must be
made sufficiently small, however here we are limited by time. Application of the
Seidel iteration technique (when we use the newest available values of S(q) all the
time) broadens the region of χN where the scheme converges and was found to
be the best among a number other techniques tried. We employ it with the use of
changing integration step whose value is defined by S−1(q). Results of numerical
solution are presented in Figure 12.1.
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First we consider the behaviour of the position of the maximum scattering
intensity as a function of χN , which is plotted In Figure 12.1(b). As we can see
the qualitative behaviour of qmax is the same as is found in the theory of Barrat
and Fredrickson [28], ie the wavevector is always smaller than the Leibler’s critical
value q∗ = 1.945 (even for χN = 0) and monotonously decreases with the increase
of χN . However, on a quantitative level, our values of qmax are somewhat larger.
In Figure 12.1(a) we present results for the inverse value of the scattering

function S(q) at maximum for two values of the degree of polymerisation: N =
1000 and N = 10000. We see that the slope of the curves is about the same as
that of the Leibler’s curve and that (as expected) they lie above the mean-field
Leibler’s curve. However the main conclusion from the Figure is clear: the values
of χN used in the Figure are not experimentally relevant (crystal clear is this from
the N = 10000 curve). Just by solving the equation (12.4) iteratively we took into
account fluctuations at all momenta (even considerably large) but did not separate
contributions leading to renormalization of χ from the genuinely diblock-specific
contributions. Therefore by not making any approximations (except introduction
of cutoff) at the beginning we ended up with the problem of relating χ entering
the Dyson equation (12.4) to some experimentally relevant χ (for example that
measured in the homopolymer system). How to carry out such a relating however
turns out to be a tricky business (if at all possible), therefore before turning to it
we consider in the next subsection the determination of the transition point.

13. Transition point

We will consider two ways of determining the point of the first order transition
to the lamellar phase. The first is direct application of the results of the Barrat-
Fredrickson theory considered in Section 8. Once we determine the correlation
function S−1(q) from our theory (full treatment of γ4(q, p)) we can use then for
it approximation (8.3) and thus their formulae (8.13)—(8.17) for determination
of the transition point. Based on their result that the lamellar wavevector ql is
very close to the position of the maximum of scattering q∗ immediately before the
transition here and below we will work in the approximation ql = q∗.
However, as we have discussed in Section 8 the formulae of Barrat-Fredrickson

theory are based on the calculation of the derivatives of the correlation function
using the Brazovskii way of calculating the one-loop integral and are not applicable
if we want to keep full treatment of momenta in γ4(q, p). However their approach is
quite suitable for such a treatment. Indeed the expressions for the the equation of
state (8.5) and the susceptibility in the ordered phase (8.6) use no approximations
regarding dependence on p and q. We will follow their theory and determine the
transition through obtain the expansion of the free energy (8.7) in powers of A.
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In order to obtain the coefficients of the expansion:

τ(ql) =
dfm(A)

d(A2)

¯̄̄̄
¯
A=0

= ∆(ql, A = 0) = S
−1(q∗) (13.1)

u(ql) = 2
d2fm(A)

d(A2)2

¯̄̄̄
¯
A=0

= 2
·
∆0(ql)− 1

2
γ4(ql, ql)

¸
(13.2)

w(ql) = 6
d3fm(A)

d(A2)3

¯̄̄̄
¯
A=0

= 6∆00A2(ql) (13.3)

we have to know the correlation function given by the usual Dyson equation (we
write it here for completeness)

S.−1(q) = Γ2(q) +
c

2

Z
p
γ4(q, p)S(p) (13.4)

as well as the first and second derivative of the susceptibility at A = 0, which are
given by the following integral equations:

∆0(q) = γ4(q, ql)− c

2

Z
p
Nγ4(q, p)S

2(p)∆0(p) (13.5)

∆00A2(q) = c
Z
p
γ4(q, p)S

3(p) [∆0A2(p)]
2 − c

2

Z
p
Nγ4(ql, p)S

2(p)∆00A2(p) (13.6)

As we can see in order to obtain the transition point without neglecting at any
point the q-dependence of the vertex we have to solve subsequently three integral
equations (13.4),(13.5) and (13.6), then taking the obtained functions at ql = q∗
(our approximation) we obtain the coefficients (13.1)—(13.2) and thus with the
use of the formulae (8.16)—(8.17)are able to determine the first order transition
point. Note that solving the three integral equations is simplified by the fact that
they all are of exactly the same type and as it turns out are nicely solved by the
iteration scheme used for determination of S(q) (the first equation), which was
discussed above.
Transition points determined according to the described two methods are pre-

sented in Figure 12.1. We indicate the BF-like transition point by a diamond (it
lies at larger χN) and the point calculated within the full treatment of γ4(q, p)
by the square (smaller χN).
We can see that taking into account full dependence of γ4(q, p) leads to a

slightly lower (in terms of χN , ie higher in terms of temperature) value of the
transition point. However the difference between the values obtained within the
two treatments (approach is in fact the same) is rather small. If we take into ac-
count that the BF approach based on the expansion of the free energy (rather than
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complete determination of the free energy as it was done in [27]) is approximate
(yet the only possible if we want to consider all momenta) and that the reported
difference between the two methods if we work within the FH assumptions is 8%
[47], than the 2% difference between the values of the transition point found here
can obviously be neglected; Barrat-Fredrickson method can always be safely used.
This insensitivity to the method can be understood as a consequence of two

circumstances: the phase transition is controlled by the behaviour of the correla-
tion function around q∗; the transition is of weakly first order character, so that
the correlation function does not considerably change upon the transition and
thus coupling of different momenta is here unimportant. Which means that once
we have found S(q) (and we use the same in both methods) we can safely de-
termine the transition point by looking at the properties of it around the critical
wavevector q∗. Precisely because of this determination of the transition point is
not specifically affected by taking into account the high-q behaviour of γ4(q, p).
That is, the transition point of course lies on the curve S−1(q∗), so in this sense
just as in the disordered phase we face the problem of relating theoretical and bare
χ, however the value of S−1(q∗) at the transition point is insensitive to whether
we take into account full dependence of γ4(q, p) or not.

14. Relating the theory to experiment: going over from χ
to χexp.

We consider now again disordered phase. As we could immediately see from
Figure 12.1 the results obtained so far are not directly comparable with experi-
ment, ie the χ-parameter used in the Figure is some theoretical and not experi-
mentally measurable property. The reason for this is of course that in the process
of solving the Dyson integral equation we considered the whole one-loop integral
to give fluctuational correction, while in fact, as we have discussed for the cases
of diblocks and homopolymers, it makes physical sense to distinguish in this inte-
gral three separate contributions, viz., trivial renormalization of Gaussian chain
statistics (it is the same for homopolymers and diblock, ie is independent the ar-
chitecture); high-q (microscopic) fluctuational corrections due to end effects and
effects connected with junction points in diblock; and low-q (mesoscopic) fluctu-
ational effects, ie the usually considered effects defined by the behaviour of the
chains on the scales of the radius of gyration of the chains (Brazovskii fluctua-
tions). We will consider in this section two seemingly possible ways of relating
the developed theory to experiment.
Simple subtraction of trivial Gaussian renormalization.
In order to be able to compare results with experiment we have to subtract the
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Figure 14.1: Inverse of the scattering function peak intensity as a function of
renormalized χexpN obtained from the analytical asymptotics of the correction
for the homopolymer blend. (Dash line is the mean-field Leibler’s result.)

trivial Gaussian renormalization of χ. This claim rests on the above shown fact
that for q = 0 for the blend of (symmetric) homopolymers the only large-q correc-
tion is the trivial Gaussian renormalization; some mesoscopic corrections are also
present (which are to be treated by the Renormalization Group method in this
case), they are known to be small however, and we oversee them. Since measure-
ments of χ are usually conducted by observing the properties of homopolymers at
q = 0 (by measuring the scattering or measuring the transition point) we come to
the claim that if we subtract the trivial renormalization we will obtain the results
in terms of χexp as measured in the experiments on homopolymers.
The expression for the trivial renormalization has been found in Section 11.2,

formula (11.10):

2χexp = 2χ− c

2

Z
p
8− c

2

Z
p
8
χN

p2
(14.1)

where everything is written in reduced variables, accordingly c = v
a3

63/2

N3/2 . Taking
the expression for the cutoff we arrive at the following results:

c1 ≡ c

2

Z
p
8 =

2

3π2

µ
v

a3

¶4
(14.2)

c2 ≡ c

2

Z
p

8N

p2
=
12

π2

µ
v

a3

¶2
(14.3)
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2χexp = 2χ− c1 − c2χ (14.4)

Note that in this formula in the r.h.s. of the equation we use the bare value
χ, whereas the spirit of the self-consistent Brazovskii approach suggests that we
should use fluctuationally renormalized values when calculating the correction.
By doing so we arrive at the final expression:

2χexp =
2χ− c1
1 + c2/2

≡ 2χ− ec2χ− ec1 (14.5)

For example for v/a3 = 0.5 and N = 1000 we obtain the following numerical
values:

c1 ≈ 0.00422, ec1 = c1
1 + c2/2

≈ 0.00366 (14.6)

c2 ≈ 0.304, ec2 = c2
1 + c2/2

≈ 0.264 (14.7)

The most representative curves of replotting inverse scattering at the peak
S−1(q∗) with the use of χexp calculated according to (14.5) are presented in Figure
14.1. As we mentioned before due to the existence of cutoff we have now two
independent parameters (even three if we take into consideration the persistence
length): N and v/a3 and we vary them independently in the plots of Figure 14.1.
The most striking result is that some curves lie to the left of the Leibler’s mean-
field line (shown by dash line); the result absolutely impossible in the previous
theories.
The dependence of the curves on v/a3 (at a fixed N) turns out to be not

monotonous as is illustrated by plot (a) of Figure 14.1. In contrast, the depen-
dence of the curves on N (at a fixed v/a3 = 0.5) as illustrated by plot (b) turns
out to be monotonous. For smaller values of N the curve lies very close to the
mean-field curve (practically indistinguishable for smaller χN). Note that the
Fredrickson-Helfand curve is considerably shifted to the right for any value of
χN (which is obviously a spurious result of not making a distinction between
the renormalization of χ and mesoscopic fluctuational correction), while in the
more sophisticated theory of Barrat and Fredrickson the curve lies closer to the
Leibler line. It seems that our result, that the fluctuational curve is practically
indistinguishable from the Leibler line at smaller χ makes even more physical
sense.
With the increase of N the curve monotonously shifts to the left of the Leibler

curve. As we have already mentioned this is a qualitatively new result, peculiar
to our approach. However its value is undermined by the fact that (as we checked
numerically) this shift is indeed monotonous for all values of N , ie this shift has
no limit and the curve shifts to infinitely small χN with the increase of N . This
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result seems to be unphysical and by itself casts a shadow of doubt on the results
obtained within this approach. Moreover, we can question the validity of the
presented way of relating the theoretical results to experiments on the following
grounds.
We solved the self consistent Dyson equation just by introducing the cutoff

in the vertex and solving the integral equation for all values of wavevectors. By
doing this we subjected to the self-consistisation procedure also the high-q be-
haviour of the correlator for the system of diblock. However when relating to
the system of homopolymers immediately above we used the RPA asymptotics of
the homopolymer (in fact trivial Gaussian renormalization) correlator at high-q.
Therefore it seems physical that in relating we should use also the asymptotic
behaviour obtain from the solution of the self-consistent Dyson equation with
one-loop diagram, ie analogously as it was done for homopolymers. It may be
argued that the blends of homopolymers belong to the Ising class of universality
and the proper way to account for fluctuation is application of the renormalization
group method. However, we are interested here in the modification of the high-q
behaviour of the correlator which has nothing to do with the RG, but is important
for relating the homopolymer and diblock systems, as this modification has been
conducted for the diblock system. (As we mentioned above we do not pay any
attention to the RG fluctuations at small values of q.) Therefore we suggest the
second way of relating the results to experiments.
Obtaining the renormalization of χ via solution of self-consistent

one-loop integral equation for homopolymers.
In this method we solve the integral equation (12.4) with the vertex also cut

off according to the formula (12.1) but for homopolymers. Then we make an
assumption that all the fluctuations contained in the one-loop correction can be
considered to be due to high-q (microscopic) corrections, ie contributing to renor-
malization of χ. In order to extract the coefficients of the renormalization (14.4)
we plot the value of the correction against χN and approximate the plot by a
line (it turns out to be quite a good approximation). As we know renormalization
of χ must indeed be independent of N , so that carrying out the procedure for
different N we obtain the estimate of the accuracy of our approach. For example
for v/a3 = 0.5 we obtain:
N = 1000 : c1 = 2, 75897 10

−3, c2 = 0, 05886 (1, 3548410−7; 1, 2191410−4)
N = 5000 : c1 = 2.70535 10

−3, c2 = 0, 05545
N = 10000: c1 = 2.69928 10

−3, c2 = 0, 05507
(In brackets we indicated the errors of the coefficients; the linear fits have been

obtained using the least squares method.) We see that the coefficients indeed
display a rather weak dependence on N , which lends support to our approach.
This dependence is caused by the inaccurate description of the small-q region of

56



0 5 10 15
0

5

10

15

20

N=5000

N=10000
N=1000

v/a3=0.5

S
-1
(q

*)

χexpN
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renormalized χexpN obtained from the self-consistent one-loop approximation for
the homopolymer blend.

the correlator by the high-q asymptotic; and by the coupling of different momenta
in the process of solving the integral equation self-consistent.
We use the obtained coefficients c1 and c2 for obtaining the renormalised χexp

according to formula (14.4) and replot the inverse of the scattering at peak us-
ing this χexp. Results for different N are presented in Figure 14.2. Interestingly
curves for all N lie sufficiently far from the Leibler mean-field curve. Moreover,
in contrast to the expectation that they should approach it as N increases, they
in fact monotonously shift to the right of the curve with the increase of N . This
behaviour also seems to be quite unphysical and thus the approach is also inade-
quate.
Summarising, having solved the integral solution with the sole assumption of

the cutoff, but without any physical ideas about isolating the input of renormal-
ization of χ right from the start, we find that the two proposed ways of relating
the obtained results to experiment do not seem to be satisfactory as is indicated
by the results for large enough values of N .

15. Discussion and Outlook

The parameter of the perturbation theory expansion.
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Figure 15.1: Diagrammatic representation of the one- and two-loop integrals

Let us see the high-q behaviour of the higher order diagrams, ie let us obtain
the parameter of the perturbation theory associated with the divergence of the in-
tegrals at high q. For simplicity let us obtain estimates for homopolymers for zero
external impulse. As we know the vertex has the following asymptotic behaviour
at large momenta:

γh(q, p) ∼ q2 + p2 (15.1)

The asymptotic of the binary correlator is known to be ∼ q2. Thus we obtain
the following estimates of the one- and two-loop diagrams (their diagrammatic
representations are given in Figure 15.1).
One-loop:

I1(q = 0) ∼ 1

N
1/2

Z
p

γh(q = 0, p)

p2
∼ 1

N
1/2

Z Λ

p=0
p2 dp

p2

p2
∼ 1

N
1/2

Z Λ

p=0
p2 dp ∼ 1

N
1/2
Λ3

(15.2)
Two-loop:

I2(q = 0) ∼ 1

N

Z
p1

Z
p2

γh(q = 0, p1)γh(p1, p2)

(p21)
2 p22

∼ 1

N

Z Λ

p1=0

Z Λ

p2=0
p21 dp1 p

2
2 dp2

p21(p
2
1 + p

2
2)

(p21)
2 p22

∼

∼ 1

N

Z Λ

p1=0

Z Λ

p2=0
(p21 + p

2
2) dp1dp2 ∼

1

N
Λ4 (15.3)

Comparing the expressions we see that the perturbation series parameter is (we
use expression (12.3) for the cutoff Λ) reads:"

1

N
1/2

#
Λ ∼

·
1

N1/2

v

a3

¸
v

a3
N1/2 ∼

µ
v

a3

¶2
(15.4)

(Although we conducted the calculation for q = 0 the result can be shown in
fact to hold for arbitrary value of q.) Naturally this parameter is independent
of N , as it describes renormalization of the chain on microscopic scales. On the
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Figure 15.2: Integrands of the one-loop correction for the two cases: 1). when the
correlator is the RPA one; 2). the correlator is found from one-loop self-consistent
Dyson equation.

other hand the only microscopic parameter describing the chain is indeed v/a3.
Since the parameter v/a3 is known to be at least < 0.5 for real polymer chains we
can claim that our theory, based on the application of the perturbation approach
makes sense even for the description of high-q fluctuations.
Let us analyse the obtained result closer. The important consequence is that

we can indeed consider the high-q contributions due to junction points and end-
effects in diblocks only on the level of the one-loop diagram and can calculate the
corresponding additional inputs relative to the homopolymer case. However all
this discussion actually concerns only high-q behavior, whereas we are interested
in obtaining the whole range of q, while solving the equation.
Coupling of low- and large-q contributions.
In order to gain intuitive understanding of the problem let us view the plots

of the one-loop integrand with the RPA correlator and its fluctuationally renor-
malized counterpart (ie with the correlator found from the solution of the Dyson
equation); such plots are presented in Figure 15.2. We see that since in the process
of solution we do not make any distinction between the origin of the fluctuational
correction the largest contribution is the trivial renormalization of Gaussian chain
and as a result the whole self-consistent curve lies considerably lower than the
RPA one. Intuitively it is clear that it is wrong. Following physical intuition one
would expect that the trivial renormalization should be taken care of separately,
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ie somehow while solving the equation we should self-consist χ separately. In the
Figure, accordingly we would expect the high-q regions to remain practically the
same while the critical fluctuations to be affected considerably, and primarily by
the critical fluctuations. However how to formalize this idea is currently unclear.
Overview of obtained results.
We have put forward the problem of considering full q-dependence in the fluc-

tuational theories of homopolymers and diblocks and discussed in depth issues
related to such theories. One of the most important results obtained by con-
sidering the asymptotics of homopolymers and diblocks is demonstration that
the fluctuational correction (one-loop or higher order diagrams) consists of three
inputs which theoretically should be treated separately: low-q mesoscopic correc-
tion; and two types of high-q fluctuational corrections: trivial Gaussian (which is
the same for all polymer chains having Gaussian statistics) and microscopic cor-
rection due to architecture (end-effects, junctions points, etc). As has been shown
such a distinction should be made to relate the theoretical results to experiments
and we suggested that it may lead to the inversion of the sign of the mesoscopic
correction relative to the previous fluctuational theories which did not make such
a distinction, treating the whole one loop integral as a mesoscopic fluctuational
input. By considering the parameter of the perturbation theory we proved the
validity of the perturbation approach for not extremely flexible polymer chains,
as is the case experimentally.
Consistent formal implementation of this new ideological framework, however,

turned out to be tricky. We have considered several apparent possibilities..
– 1). The simplest solution would have been to find a system having the

same high-q asymptotic behaviour as the considered diblock system; then having
subtracted the fluctuational correction of that system we would have obtained a
Fredrickson-Helfand-like correction which could then be treated self-consistently.
However we have demonstrated that there exists no such auxiliary system, which
is of course due to existence of architecture-dependent input in the one-loop.
– 2). We subtract the asymptotics of the one-loop integrand and obtain

converging expression. Then we treat this converging expression self-consistently
in a FH fashion while use a cutoff (or simply some phenomenological constants to
be experimentally found) to evaluate the diverging part. However this way also
proves wrong since substraction of asymptotics leads to appearance of spurious
(and at the same time relatively large) contributions at q ≈ 0, correct description
of this region being crucial to the theory. Without introducing any mechanism
separating high and low momenta we cannot subtract the high-q asymptotic of
the integrand, since the asymptotic contains independent terms of p, which are
large at small p.
– 3). Another variant of the previous approach is not to try to isolate an
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FH like contribution to be treated self-consistently, but to solve the equation self-
consistently simply using this subtraction for estimation of the integral. This is
also impossible since for large enough wavevectors there is no asymptotic behav-
iour on the scale of the cutoff length. The cause of this is exactly as above the
absence of mechanism separating high- and low-q regions.
Having been unable to separate the contributions before self-consistisation

(essential for description of mesoscopic fluctuations) we proceeded further by not
making any assumptions except cutting off the vertex on a microscopic scale and
solved the integral equation. Thus we did not solve the problem, rather put off
the solution, since obtained results are obviously not directly applicable to exper-
iments, as they contain the renormalization of χ. The two suggested methods of
relating the results to experiments (one based on the RPA expression for the ho-
mopolymer and the other on its self-consistent version obtained analogously to the
diblock) seem to be yield unphysical results. We obtain unphysical monotonous
shift (to the left or to the right (depending on the method) of the mean-field Leibler
curve) of the inverse scattering at peak with the increasing N . As importantly (as
discussed immediately above in relation with Figure 15.2), the whole procedure
of solving the integral equation without preliminary isolation of different fluctu-
ational inputs seems to be erroneous. It seems that trivial renormalization (and
possibly microscopic architecture-dependent too) should be given special treat-
ment, while only mesoscopic input should be found from self-consistent solution
of the Dyson equation.
Outlook.
The only missing (and seemingly sine qua non) ingredient seems to be the

frequently mentioned mechanism (and physical understanding thereof) allowing
us to treat high- and low-q contributions to the one-loop integral separately. If that
mechanism is available we could easily solve the problem by applying for example
the method 2 described above. In all other respects the new theoretical framework
is well defined and indeed capable of delivering the newly experimentally observed
result of fluctuational corrections destabilising the disordered phase.
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Part VI

Conclusions
In the present work we considered a number of fluctuational effects in the ternary
mixtures of homopolymers/copolymer as well as addressed the problem of a cor-
rect description of microscopic scale fluctuational contributions in diblock copoly-
mer melts.
In Part II the correlation properties of ternary homopolymer/diblock

copolymer melts are considered within the Random Phase Approximation in
which all densities of monomeric units are treated as independent order parame-
ters. Surprisingly the critical line obtained within this approach coincides with
that of a one-order parameter theory. The expressions for the full concentration
correlator (and consequently the Lifshitz line) are also equivalent. Consideration
of the eigenvectors of the second order vertex matrices shows that near the critical
line only one critical eigenvalue exists which is alone responsible for the change
from the Ising to Brazovskii universality class. This also justifies use of only one
order parameter near the critical line. However the critical eigenvector was found
to be different from that previously assumed in the literature; this difference is
important for construction of the fluctuation theory. Far from the critical line in
the disordered phase two eigenvalues were found to be of physical relevance, their
separate treatment being important for the fluctuation theory. However construc-
tion of a proper multiple order parameter fluctuation theory (even the simplest
one-loop one) requires taking into account high wavevector (microscopic) fluctu-
ations, the problem which has been little addressed in the literature.
In Part III the behaviour of the Lifshitz line with changing tempera-

ture in the ternary systems is investigated within the one-loop Renormalisa-
tion Group method. We employ the standard φ4 Landau Hamiltonian with the use
of only one order parameter and obtain expressions for renormalizes parameters
of the Hamiltonian which are valid in both perturbation and RG regimes. The
Lifshitz line has been shown to exhibit the non-monotonic behaviour with chang-
ing temperature, which agrees with recent experimental observations of Schwahn
et al. The Lifshitz line has been found to have the mean-field value at very large
and very small (or at the Lifshitz point) temperatures and deviate from it to
larger concentrations of diblock at intermediate temperatures. The deviation at
large temperatures has been shown to be a result of growing fluctuations in the
perturbation regime, while the subsequent return to the mean-field value with
lowering temperature is due to the onset of an RG fluctuational regime in which
the vertex strongly renormalizes. Thus the peak deviation of the Lifshitz line
signals a change from the perturbative to a fluctuation regime. The value of the
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lower critical dimension was found to be important for the behaviour and two
possible cases have been investigated.
In Part V treatment of large wavevector contributions in the self-

consistent one-loop fluctuational theory for the pure melts of symmetric
homopolymers or symmetric diblock copolymer was considered. It was shown
that when the wavevector dependence of the fourth vertex is taken into account
the one-loop correction integral diverges at large q so that special treatment of
this divergence is required. Applicability of the perturbation expansion for the
treatment of large-q contributions has been shown for flexible polymer chains.
The necessity to distinguish three types of contributions in the correction: meso-
scopic (arising from fluctuations at large (ie of the order of the radius of chains)
scales); microscopic Gaussian (arising from microscopic (of the order of the sta-
tistical segment of the chain) scale fluctuations, but the architecture independent,
ie the same for all chains having Gaussian statistics), and microscopic structure
dependent (microscopic scale fluctuations, but structure specific to such features
as end-point or junction points) has been established. Based on this classification
inadequacy of the standard Fredrickson-Helfand theory has been demonstrated,
since as a result of Brazovskii way of integration, it treats the whole fluctuational
contribution as due to mesoscopic fluctuations. Several ways to take into account
the specific large wavevector dependence of the vertex have been explored. In
particular the self-consistent Dyson equation was solved with full treatment of
the dependence and with the cutoff at the segment length to make the integral di-
vergent. However this approach seems to be unsatisfactory as the results obtained
within it are unphysical and objections to self-consistent treatment of the large-q
contributions conducted in this approach may be raised. Correct treatment of
large-q contribution in the fluctuational correction remains yet to be elaborated.
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Appendix A

A. The one-loop fluctuational correction of the symmetric
homopolymer blend

In this Appendix we present formulae for the calculation of one-loop correction of
the symmetric blend of homopolymers A and B of the same length NA(= NB). As
we are interested in comparing our results with the calculations for the diblock
case we measure the length relative to the length of the diblock: NA = αN ,
where N is the relative length (in our case of the diblock). The blend is fully
symmetric, ie the volume fractions φA = φB = 1/2. We will give results for
the general case of arbitrary external momenta p and q and for the important
special case of the external momentum q = 0, for which the expressions turn out
to be particularly simple. We will not provide here expressions for the so-called
molecular correlators, since the corresponding expressions coincide with that of
the diblock and can be found in Appendix B.
The Dyson equation with the one-loop correction reads

Sh(q) = Γh2(q) +
1

2
v
Z
p
Γh4(q,−q, p,−p)

h
Γh2(p)

i−1
1

2

Z
p
Γh4(q,−q, p,−p)

h
Γh2(p)

i−1
=
1

2

Z
p
[2ΓAAAA(p,−p, q,−q)]

³
2S−1A (p)− 2χ

´−1

SA(q) =
φA
NA
N2
Ag(xA) =

φA
NA
N2g(x,α) =

1

2

N

α
g(x,α)

where xA ≡ q2a2NA
6

and x ≡ q2a2N

6

g(x,α) =
2

x2
(αx+ exp(−αx)− 1)

ΓAAAA(p,−p, q,−q) = eγAAAA(p,−p, q,−q)S−1A (p)S−1A (p)S−1A (q)S−1A (q)
γAAAA(p,−p, q,−q) = −GAAAA(p,−p, q,−q) +

GAAA(p,−p, 0)S−1A (0)GAAA(0, q,−q) +
GAAA(p, q,−p− q)S−1A (p+ q)GAAA(p+ q,−p,−q) +
GAAA(p,−q,−p+ q)S−1A (p− q)GAAA(p− q,−p, q)

Now we want to extract from the expressions eγAAAA(p,−p, q,−q) and S−1A (p)
dependence on N and φA = 1/2 and obtain dimensionless expressions in terms of
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reduced wavevectors and α = NA/N .

GAAAA(p,−p, q,−q) =
φA
NA

egAAAA(ep,−ep, eq,−eq) = 1

2

N3

α
gAAAA(p,−p, q,−q;α)

GAAA(p, q,−p− q) =
φA
NA

egAAA(ep, eq,−ep− eq) = 1

2

N2

α
gAAA(p, q,−p− q;α)

Here under ep (and eq) we understand original momenta and under ep ≡ pRg =
p(aN1/2/61/2) their reduced counterparts. Expressions for gAAAA(p,−p, q,−q;α)
and gAAA(p, q,−p− q;α) are presented in Appendix B.

γAAAA(p,−p, q,−q) =
1

2

N3

α
γAAAA(p,−p, q,−q;α)

ΓAAAA(p,−p, q,−q) = eγAAAA(p,−p, q,−q)S−1A (p)S−1A (p)S−1A (q)S−1A (q) =
=

8α3

N
γAAAA(p,−p, q,−q;α)g−2(p,α)g−2(q,α)

Thus we finally obtain for the one-loop correction

=
1

2

Z
p
[2ΓAAAA(p,−p, q,−q)]

³
2S−1A (p)− 2χ

´−1
=

1

2

Z
p
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N
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·
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=
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i4¸Ã
g−1(xp,α)− χN/α

2

!−1
=

=
1

2

Z
p
4α2γh(q, p;α)

Ã
g−1(xp,α)− χN/α

2

!−1

where we have introduced the following notation:

γh(q, p;α) ≡ γAAAA(p,−p, q,−q;α)g−2(p,α)g−2(q,α)

A.1. The case of external momentum q = 0

In this case all expression simplify considerably:

ΓAAAA(0, 0, q,−q) = eγAAAA(0, 0, q,−q)S−1A (0)S−1A (0)S−1A (q)S−1A (q)eγAAAA(0, 0, q,−q) = −GAAAA(0, 0, q,−q) +GAAA(0, 0, 0)S−1A (0)GAAA(0, q,−q) +
GAAA(0, q,−q)S−1A (q)GAAA(q, 0,−q) +
GAAA(0,−q, q)S−1A (q)GAAA(−q, 0, q)
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= −GAAAA(0, 0, q,−q) +GAAA(0, 0, 0)S−1A (0)GAAA(0, q,−q) +
2GAAA(0, q,−q)S−1A (q)GAAA(q, 0,−q)

= 2GAAA(0, q,−q)S−1A (q)GAAA(q, 0,−q) = 2N2
ASA(q)

ΓAAAA(0, 0, q,−q) = 2N2
ASA(q)S

−2
A (0)S

−2
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A (0)S

−1
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2

φ2A
S−1A (q)

SA(0) = φANA, GAAAA(0, 0, q,−q) = N2
ASA(q), GAAA(0, 0, 0) = φAN

2
A

So that the one-loop correction takes the final form
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Appendix B

B. The fourth vertex function of the diblock melt

In this Appendix we list the program (in Pascal language) which was used to
calculate the value of the fourth vertex of the diblock melt numerically. The
expressions mainly follow the work [51]

function vsq(p1,p2:vector):extended; {Vector Sum sQuared}
begin

vsq:=sqr(p1[1]+p2[1])+sqr(p1[2]+p2[2])+sqr(p1[3]+p2[3]);

end;

function vsq3(p1,p2,p3:vector):extended;{Vector Sum sQuared 3 vecs}
begin

vsq3:=sqr(p1[1]+p2[1]+p3[1])+sqr(p1[2]+p2[2]+p3[2])+sqr(p1[3]+p2[3]+p3[3]);

end;

function vmq(p:vector):extended; {vector’s module squared}
begin

vmq:=sqr(p[1])+sqr(p[2])+sqr(p[3]);
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end;

function g(x,f:extended):extended;

begin

if abs(f*x)>1e-7 then

if x*f<1e3 then g:=2*(x*f+exp(-x*f)-1)/(x*x)

else g:=2*(x*f-1)/(x*x)

else g:=f*f*(1-f*x/3+sqr(f*x)/12-sqr(f*x)*f*x/60);

end;

function h(x,f:extended):extended;

begin

if abs(f*x)>1e-7 then

if f*x<1e3 then h:=(1-exp(-x*f))/x

else h:=1/x

else h:=f*(1-f*x/2+sqr(f*x)/6-sqr(f*x)*f*x/24);

end;

function gam3(x,f:extended):extended;

begin

if abs(f*x)>1e-7 then gam3:=2*(g(x,f)-f*h(x,f))/x

else gam3:=f*f*f*(1/3-f*x/6+sqr(f*x)/20-sqr(f*x)*f*x/90);

end;

function gam4(x,f:extended):extended;

begin

if abs(f*x)>1e-7 then

if f*x<1e3 then gam4:=(3*gam3(x,f)-f*exp(-x*f)*g(-x,f))/(2*x)

else gam4:=(3*gam3(x,f)-2*f/(x*x))/(2*x)

else gam4:=f*f*f*f*(1/12-f*x/20+sqr(f*x)/60-sqr(f*x)*f*x/252);

end;

function del3(x,f:extended):extended;

begin

if abs(f*x)>1e-7 then

if f*x<1e3 then del3:=(1-(1+f*x)*exp(-x*f))/(x*x)

else del3:=1/(x*x)

else del3:=f*f*(1/2-f*x/3+sqr(f*x)/8-sqr(f*x)*f*x/30);

end;

function del4(x,f:extended):extended;
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begin

if abs(f*x)>1e-7 then

if f*x<1e3 then del4:=(h(x,f)-f*(1+f*x/2)*exp(-x*f))/(x*x)

else del4:=h(x,f)/(x*x)

else del4:=f*f*f*(1/6-f*x/8+sqr(f*x)/20-sqr(f*x)*f*x/72);

end;

function J3(x1,x2,f:extended):extended;

begin

if abs(x1-x2)>1e-7 then J3:=(g(x1,f)-g(x2,f))/(x2-x1)

else J3:=gam3((x1+x2)/2,f);

end;

function G3aaa(q1,q2,q3:vector; f:extended):extended;

var

z,x1,x2,x3: extended;

begin

x1:=vmq(q1);

x2:=vmq(q2);

x3:=vmq(q3);

z:=J3(x1,x2,f);

z:=z+J3(x1,x3,f);

G3aaa:=z+J3(x2,x3,f);

end;

function K3(x1,x2,f:extended):extended;

begin

if abs(x1-x2)>1e-7 then K3:=(h(x1,f)-h(x2,f))/(x2-x1)

else K3:=del3((x1+x2)/2,f);

end;

function ksi2(q1,q2:vector; f:extended):extended;

var x1,x2,x12:extended;

begin

x1:=vmq(q1);

x2:=vmq(q2);

x12:=vsq(q1,q2);

ksi2:=K3(x1,x12,f)+K3(x2,x12,f)

end;

function G3abb(q1,q2,q3:vector; f:extended):extended;
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var x1:extended;

begin

x1:=vmq(q1);

G3abb:=h(x1,f)*ksi2(q2,q3,1-f);

end;

function J4(x1,x2,y,f:extended):extended;

begin

if abs(x1-x2)>1e-7

then J4:=(J3(x1,y,f)-J3(x2,y,f))/(x2-x1)

else if abs((x1+x2)/2-y)>1e-7

then J4:=( J3((x1+x2)/2,y,f)-J3((x1+x2)/2,(x1+x2)/2,f)

)/((x1+x2 )/2-y)

else J4:=gam4((x1+x2+y)/3,f);

end;

function G4aaaa(q1,q2,q3,q4:vector; f:extended):extended;

var z,x1,x2,x3,x4,x12,x13,x23: extended;

begin

x1:=vmq(q1);

x2:=vmq(q2);

x3:=vmq(q3);

x4:=vmq(q4);

x12:=vsq(q1,q2);

x13:=vsq(q1,q3);

x23:=vsq(q2,q3);

z:=J4(x1,x12,x4,f);

z:=z+J4(x1,x23,x2,f);

z:=z+J4(x1,x13,x2,f);

z:=z+J4(x3,x23,x4,f);

z:=z+J4(x3,x13,x4,f);

z:=z+J4(x1,x23,x3,f);

z:=z+J4(x1,x12,x3,f);

z:=z+J4(x2,x23,x4,f);

z:=z+J4(x2,x12,x4,f);

z:=z+J4(x2,x13,x3,f);

z:=z+J4(x2,x12,x3,f);

G4aaaa:=z+J4(x1,x13,x4,f);
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end;

function G4aabb(q1,q2,q3,q4:vector; f:extended):extended;

begin

G4aabb:=ksi2(q1,q2,f)*ksi2(q3,q4,1-f);

end;

function K4(x1,x2,y,f:extended):extended;

begin

if abs(x1-x2)>1e-7

then K4:=(K3(x1,y,f)-K3(x2,y,f))/(x2-x1)

else if abs((x1+x2)/2-y)>1e-7

then K4:=( K3((x1+x2)/2,y,f)-K3((x1+x2)/2,(x1+x2)/2,f)

)/( (x1+x2)/2-y )

else K4:=del4((x1+x2+y)/3,f);

end;

function ksi3(q1,q2,q3:vector; f:extended):extended;

var z,x1,x2,x3,x12,x23,x13,x123:extended;

begin

x1:=vmq(q1);

x2:=vmq(q2);

x3:=vmq(q3);

x12:=vsq(q1,q2);

x13:=vsq(q1,q3);

x23:=vsq(q2,q3);

x123:=vsq3(q1,q2,q3);

z:=K4(x1,x12,x123,f)+K4(x2,x12,x123,f);

z:=z+K4(x2,x23,x123,f)+K4(x3,x23,x123,f);

ksi3:=z+K4(x1,x13,x123,f)+K4(x3,x13,x123,f);

end;

function G4aaab(q1,q2,q3,q4:vector; f:extended):extended;

var x4:extended;

begin

x4:=vmq(q4);

G4aaab:=ksi3(q1,q2,q3,f)*h(x4,1-f);

end;
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function G3(i1,i2,i3:byte; q1,q2,q3:vector; f:extended):extended;

begin

if (i1=1) and (i2=1) and (i3=1) then G3:=G3aaa(q1,q2,q3,f);

if (i1=2) and (i2=2) and (i3=2) then G3:=G3aaa(q1,q2,q3,1-f);

if (i1=1) and (i2=1) and (i3=2) then G3:=G3abb(q3,q2,q1,1-f);

if (i1=1) and (i2=2) and (i3=1) then G3:=G3abb(q2,q1,q3,1-f);

if (i1=1) and (i2=2) and (i3=2) then G3:=G3abb(q1,q2,q3,f);

if (i1=2) and (i2=1) and (i3=1) then G3:=G3abb(q1,q2,q3,1-f);

if (i1=2) and (i2=2) and (i3=1) then G3:=G3abb(q3,q2,q1,f);

if (i1=2) and (i2=1) and (i3=2) then G3:=G3abb(q2,q1,q3,f);

end;

function Gamma(q1,q2,q3,q4:vector; f:extended):extended;

var i,j,k,l:byte;

y,z:extended;

psi:array[1..4,1..2] of extended;

G4:array[1..2,1..2,1..2,1..2] of extended;

function det(x:extended):extended;

var z,f2,f3,f4:extended;

begin

f2:=f*f;

f3:=f2*f;

f4:=f3*f;

if x>1e-7 then det:=g(x,f)*g(x,1-f)-sqr(h(x,f)*h(x,1-f))

else

begin

z:=(-13*f3/30+2*f2/3-11*f/18+7/30+13*f4/90)*f2*x*x*x;

z:=z+(-1/2+10*f/9-5*f2/6+f3/3-f4/9)*f2*x*x;

z:=z+2*(1-2*f+f2)*f2*x/3;

det:=z;

end;

end;

function S(i1,i2:byte; x:extended):extended;

begin

if i1=i2 then

if i1=1 then S:=g(x,f)

else S:=g(x,1-f)

else S:=h(x,f)*h(x,1-f)

end;
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function T4(i1,i2,i3,i4:byte; q1,q2,q3,q4:vector):extended;

var x12,detv,zt:extended;

m,n:byte;

q12,mq12:vector;

si:array[1..2,1..2] of extended;

begin

x12:=vsq(q1,q2);

if x12>1e-8 then

begin

q12[1]:=q1[1]+q2[1];

q12[2]:=q1[2]+q2[2];

q12[3]:=q1[3]+q2[3];

mq12[1]:=-q12[1];

mq12[2]:=-q12[2];

mq12[3]:=-q12[3];

detv:=det(x12);

si[1,1]:=g(x12,1-f)/detv;

si[2,2]:=g(x12,f)/detv;

si[1,2]:=-h(x12,f)*h(x12,1-f)/detv;

si[2,1]:=si[1,2];

zt:=0;

for m:=1 to 2 do

for n:=1 to 2 do

zt:=zt+G3(i1,i2,m,q1,q2,mq12,f)*si[m,n]*G3(n,i3,i4,q12,q3,q4,f);

T4:=zt;

end

else

begin

T4:=S(i1,i2,vmq(q1))*S(i3,i4,vmq(q3));

end;

end;

procedure um(x:extended; var p1,p2:extended);

begin

p1:=( g(x,1-f)+h(x,f)*h(x,1-f) )/det(x);

p2:=-( g(x,f)+h(x,f)*h(x,1-f) )/det(x);

end;

begin

G4[1,1,1,1]:=G4aaaa(q1,q2,q3,q4,f);
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G4[2,2,2,2]:=G4aaaa(q1,q2,q3,q4,1-f);

G4[1,1,2,2]:=G4aabb(q1,q2,q3,q4,f);

G4[2,2,1,1]:=G4aabb(q1,q2,q3,q4,1-f);

G4[1,2,1,2]:=G4aabb(q1,q3,q2,q4,f);

G4[2,1,2,1]:=G4aabb(q1,q3,q2,q4,1-f);

G4[1,2,2,1]:=G4aabb(q1,q4,q3,q2,f);

G4[2,1,1,2]:=G4aabb(q1,q4,q3,q2,1-f);

G4[1,1,1,2]:=G4aaab(q1,q2,q3,q4,f);

G4[1,1,2,1]:=G4aaab(q1,q2,q4,q3,f);

G4[1,2,1,1]:=G4aaab(q1,q4,q3,q2,f);

G4[2,1,1,1]:=G4aaab(q4,q2,q3,q1,f);

G4[2,2,2,1]:=G4aaab(q1,q2,q3,q4,1-f);

G4[2,2,1,2]:=G4aaab(q1,q2,q4,q3,1-f);

G4[2,1,2,2]:=G4aaab(q1,q4,q3,q2,1-f);

G4[1,2,2,2]:=G4aaab(q4,q2,q3,q1,1-f);

um(vmq(q1),psi[1,1],psi[1,2]);

um(vmq(q2),psi[2,1],psi[2,2]);

um(vmq(q3),psi[3,1],psi[3,2]);

um(vmq(q4),psi[4,1],psi[4,2]);

z:=0;

for i:=1 to 2 do

for j:=1 to 2 do

for k:=1 to 2 do

for l:=1 to 2 do

begin

y:=-G4[i,j,k,l];

y:=y+T4(i,j,k,l,q1,q2,q3,q4);

y:=y+T4(i,k,j,l,q1,q3,q2,q4);

y:=y+T4(i,l,k,j,q1,q4,q3,q2);

z:=z+y*psi[1,i]*psi[2,j]*psi[3,k]*psi[4,l]

end;

Gamma:=z;

end;
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