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Summary

Small molecules play a critical role within living beings and their environment. On
the one hand they are important for biological processes and on the other hand they
can cause damage to living organisms. Only if we know which molecules are present in
biological samples we are able to put them into a functional context. The elucidation of
their structures from these samples is necessary for their identification. Besides nuclear
magnetic resonance spectroscopy, tandem mass spectrometry (MS/MS) is the analytical
tool of choice when small molecules need to be identified. The manual interpretation
of resulting datasets requires expert knowledge but is impossible for many MS/MS
spectra. This led to the development of computational tools performing an automated
interpretation. Examples are rule-based methods, combinatorial fragmentation and
statistical approaches that emerged for a large-scale assessment of candidate structures
retrieved from small molecule databases. Few existing computational approaches
integrate additional information from empirical, statistical and experimental methods.
Besides improving the candidate evaluation, the integration of information from different
sources also adds more confidence in the identification process. An approach that
combines strategies for the identification of small molecules would represent a vital
contribution to the research community.

The main goal of my work is to improve the existing combinatorial fragmentation
pipline, MetFrag, and to develop a solution that enables the integration of data from
different sources and acquired by different analytical methods. I have extended the
scope of application by a novel approach that exploits the idea of the existing MetFrag
methodology and provide solutions beyond combinatorial fragmentation. To integrate
data from additional analytical methods and to combine different data sources, it is
necessary to reconsider and reengineer the existing MetFrag approach. On the one hand
I want to improve the performance of identification compared to the existing pipeline
and on the other hand to add more confidence to suggested and scored molecular
candidates. I will also show how statistical methods combined with combinatorial
fragmentation can be used to achieve an improvement in perfomance and confidence.
The enhanced approach will also be compared with other available computational
methods to demonstrate the potential of combinatorial fragmentation when combined
with additional data sources and statistical models developed in this cumulative thesis.

My solutions and enhancements invented in this work proved to be of importance
in the research community and showed to even outperform existing state-of-the-art
automated identification methods. The ideas that I combined in a flexible way are a
major improvement in the process of the mass spectrometry based identification of small
molecules.





Zusammenfassung

Niedermolekulare Verbindungen spielen eine entscheidende Rolle innerhalb und in
der Umwelt von Lebewesen. Zum einen regulieren sie biologische Prozesse und zum an-
deren können sie lebenden Organismen schaden. Nur mit dem Wissen welche Moleküle
in biologischen Proben auftreten, sind wir in der Lage, diese in einen funktionalen
Zusammenhang zu setzen. Die Aufklärung ihrer Strukturen aus diesen Proben ist
für deren Identifikation unerlässlich. Neben der Kernspinresonanzspektroskopie, ist
die Massen- (MS) bzw. Tandem-Massenspektrometrie (MS/MS) das Werkzeug der
Wahl, um die Struktur kleiner Moleküle aufzuklären. Die manuelle Interpretation
der resultierenden Datensätze erfordert Expertenwissen und ist für eine Vielzahl an
MS/MS-Spektren unmöglich. Dies führte zur Entwicklung computergestützer Meth-
oden, die eine automatisierte Interpretation ermöglichen. Beispiele sind regelbasierte
Verfahren, kombinatorische Fragmentierung und statistische Ansätze, die Kandidaten
aus Moleküldatenbanken bewerten. Obwohl diese Methoden bereits effektiv arbeiten,
integrieren nur wenige der bestehenden Ansätze zusätzliche Informationen, die man
aus empirischen, statistischen und experimentellen Verfahren gewinnen kann. Neben
der Verbesserung der Kandidatenbewertung, kann diese Integration zur Erhöhung der
Zuversicht im Identifizierungsprozess beitragen. Ein Ansatz, der verschiedene Strate-
gien für die Identifizierung niedermolekularen Verbindungen kombiniert, kann einen
entscheidenden Beitrag für die Forschungsgemeinschaft leisten.

In meiner Dissertation mache ich mir die kombinatorische Fragmentierung zu nutze,
um die computergestützte Identifizierung von Molekülen auf der Grundlage von MS/MS-
Daten zu verbessern. Die Bündelung verschiedener Methoden und Informationsquellen
ist das Hauptziel meiner Arbeit. Ich werde zeigen, wie man dabei von der Integration
struktureller Informationen aus zusätzlichen experimentellen Methoden profitiert. Zu-
dem werde ich durch die Verwendung von Metadaten aus verschiedenen Datenbanken
zeigen, wie man am Beispiel der Anzahl an Patenten und Literaturreferenzen die Be-
wertung der Kandidatenmoleküle optimieren kann. Meine Erweiterungen beinhalten
ebenfalls die Zusammenführung kombinatorischer Fragmentierung und statistischer
Methoden, deren Leistungsfähigkeit im Vergleich mit bestehenden Ansätzen verdeutlicht
wird.

Mit meinen Beiträgen konnte ich das Anwendungsfeld kombinatorischer Fragmen-
tierung bedeutend erweitern. Die in meiner Arbeit entwickelten Lösungen und Er-
weiterungen erweisen sich noch heute als ein wichtiger Beitrag zur Forschung und zeigten
ebenfalls, dass sie bestehende computergestützte Identifizierungsmethoden übertreffen
konnten. Die Ideen, die ich in meiner Arbeit auf eine flexible Art und Weise umgesetzt
und kombiniert habe, sind ein wichtiger Fortschritt im Prozess der Identifizierung von
niedermolekularen Verbindungen mithilfe von MS-Daten.
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1 Introduction

Understanding nature with all its facets is a challenge humanity has been devoting itself
for a long time. Growing crops, breeding animals and fighting diseases are examples of
achievements that emerged out of the inner pursuit of understanding how life works and
improving living conditions (Hayden et al., 1981; Lev-Yadun et al., 2000). These and
other research topics, even in their simplest and earliest forms, arose from the current
problems and interests of humans and were dependent on available technologies and
measurement techniques. The modern human was able to develop tools to extend its
borders of perception preset with its equipped senses. For example, with the invention
of the light microscope a groundbraking instrumentation was conceived. Enabled by
the enhancement of this technology over the years, Robert Koch was able to detect
living microorganisms in 1876 and thus the cause of many diseases (Masters, 2008).
However, the invention of the microscope marked just the beginning of the research
of the “tiny things” and a more detailed understanding of life. Undetectable for
microscopes, tinier entities humans are exposed to are a thousand times smaller than
the bacillus Mycobacterium tuberculosis discovered by Koch (Brock, 1999). Molecular
compounds, including small molecules, influence all biological organisms (Keunen et al.,
2016; Massalha et al., 2017). These small molecules might be of biological or industrial
origin, such as secondary metabolites and chemicals, respectively. The investigation of
the effect they have on biological organisms supports the development of effective natural
products and pharmaceuticals (Tian et al., 2019; Schmieder et al., 2014). There are a
variaty of measurement techniques developed to identify and monitor small molecules
in complex samples. The growth of data sets and the speed of acquisition, requires
automated methods which can be used for their annotation.

In the next sections, I introduce the basic concepts to describe small molecules and
the role they play for biological organisms. Furthermore, I describe the principles of
different measurement techniques, namely mass spectrometry, tandem mass spectrometry
and chromatography. Following this, an introduction of related computational methods
used for computational structure elucidation of small molecules and the challenges
in this field is given. The contributions I developed are explained in the in Section
2, “Enhancing the MetFrag pipeline for small molecule annotation”, followed by the
Discussion (Section 3) and Conclusion (Section 4) sections. In Section 5 the published
manuscripts as part of this cumulative thesis are attached.
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1 INTRODUCTION

1.1 Small molecules with big impact

Small molecules are organic molecules of usually below 900 Da. Despite their relatively
small size with upto several dozen atoms, small molecules show a high structural variabil-
ity caused by the high number of atom types and combinations thereof. Small molecules
are regarded as key players that can regulate the activity of different macromolecules in
biological systems or have an effect on DNA (genomics), RNA (transcriptomics) and
proteins (proteomics) (Schreiber, 2005).

1.1.1 Metabolites and further examples of small molecules

Small molecules that are directly involved in metabolism and transformed within various
processes in an organism are called metabolites. They are usually formed by enzymatic
reactions and located within cells, biofluids and tissues of biological organisms. The
set of metabolites that are synthetized by such a biological system is regarded as its
metabolome. The scientific field investigating these molecules is known as metabolomics
(German et al., 2005).

While research in the fields of proteomics and also genomics is an ongoing process
since several decades, research on small molecules, especially on those connected to
the metabolism of biological organisms, is still relatively young (Dettmer et al., 2007).
Metabolites are considerred as “the end products of cellular regulatory processes, and
their levels can be regarded as the ultimate response of biological systems to genetic
or environmental changes” (Fiehn, 2002) and can directly be linked to the phenotype
of an organism (Nobeli and Thornton, 2006). Thus, there is a growing interest in
the investigation of metabolites in scientific research. The number of publications in
PubMed Central increased by more than a tenfold in the last decade (2010: 1 105, 2020:
13 212)1.

Figure 1.1 shows examples of small molecules including several metabolites. Hor-
mones, as one representative group, act in very low concentrations such as the plant-
related indole-3-acetic acid (Figure 1.1(a)), also known as auxin. It has a direct influence
on plant growth and development (Benjamins and Scheres, 2008). The gonadal steroids,
such as testosterone (Figure 1.1(b)), have a pivotal role in the sex development of
vertebrates and are directly involved in the reproduction phase of animals. Caffeine
(Figure 1.1(c)), predominantly consumed via coffee and related drinks, is famous for
the inhibiting effect on receptors of adenosin, reducing its sleep-inducing function. Pro-
duced by plants, it may act as a natural occuring pesticide to defend against predators
(Nathanson, 1984). Moreover, caffeine is a typical example of a metabolite that is not
directly involved in the energy metabolism or growth of plants, but provides significant

1Publication numbers retrieved on https://www.ncbi.nlm.nih.gov with search term “metabolomics”
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1.1 Small molecules with big impact

advantages as they serve survival and defense functions, thus they are called secondary
metabolites. These metabolites can for example help the plant to protect against com-
petitors and pathogens like bacteria, fungi or insects. There is a high interest in scientific
secondary metabolites as they can act as active substances in human medicine, such as
antibiotics (Demain and Fang, 2000).

(a) auxin (b) testosterone (c) caffeine

(d) BTSA (e) aspirin (f) chloroquine

Figure 1.1: Examples of small molecules. The six examples of small molecules shown
here are (a) indole-3-acetic acid (auxin), (b) testosterone, (c) caffeine, (d) benzothiazole-
2-sulfonic acid (BTSA), (e) acetylsalicylic acid (aspirin) and (f) chloroquine.

Further groups of small molecules are chemicals including pharmaceuticals, synthetic
drugs, food additives or contaminants formed by e.g. industrial processes. Many of them
are also metabolized by organisms and can be found directly or as biotransformation
products in the environment. Even in low concentrations they can have wanted or
unwanted effects on metabolism. The chemical benzothiazole-2-sulfonic acid (BTSA)
(Figure 1.1(d)) is a derivative of benzotriazole. It is widely used, e.g. as vulcanisation
accelerator in rubber and tyre production, thus reaching the environment and being
regulary detected as pollutant in industrial wastewater. The European Chemicals
Agency2 has classified BTSA as a toxic chemical that is harmful to biological organisms
(Reemtsma, 2000; Kloepfer et al., 2004). Acetylsalicylic acid (Figure 1.1(e)), also known
as aspirin, is a famous pain killing drug. It is indirectly reducing the formation of
prostaglandins known to be involved in the modulation of inflammation and pain.
Chloroquine (Figure 1.1(f)) was initially developed for the treatment of malaria. Its
antiviral properties also resulted in a successful treatmeant of patients infected by the
human immunodeficiency virus (HIV) (Plantone and Koudriavtseva, 2018) and lead to

2https://echa.europa.eu
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1 INTRODUCTION

further investigations for an effect on Covid-19 desease during the pandemic. So far no
hard evidence on the effective role of chloroquine in the treatment for COVID-19 exists
(Gasmi et al., 2021). These six small molecules already show highly diverse activities
and indicate their huge influence on biological organisms.

Metabolites can be grouped by their structural characteristics. Carbohydrates, pep-
tides or lipids are typical examples of structural metabolite categories. Representatives
of the latter group are involved in important cellular functions like signalling, storage of
energy and the formation of building blocks of membranes. They can be further classified
into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol
lipids, saccharolipids and polyketides, each having several subclasses (Fahy et al., 2005).
Although showing a high diversity, many lipid classes are characterized by consisting
of fatty acids, esterified to alcohol groups, e.g. glycerides, and to amino groups, e.g.
sphingolipids (Sargent et al., 2003).

1.1.2 Structural diversity and analytical complexity

Small molecules, including metabolites, show a broad variability in their chemical struc-
ture and properties. Whereas DNA, RNA and proteins are macromolecules composed of
well-defined building blocks with four different nucleotides (genome and transcriptome)
or the 20 proteinogenic amino acids (proteome), the metabolome shows a variety of
extremely diverse chemical compound classes that cannot simply be elucidated by a
single experimental method as it is the case for sequencing (DNA). Their diversity
ranges from ionic inorganic species to hydrophilic carbohydrates, volatile alcohols and
ketones, amino and non-amino organic acids, hydrophobic lipids, to complex natural
products (Villas-Bôas et al., 2005). The variability in structure also causes a variability
of their physicochemical and geometrical properties, namely polarity, hydrophobicity,
weight, confirmation and size. Thus, it is impossible to simultaneously determine the
complete metabolome with a single analytical method. To obtain as much information
as possible for the analysis of small molecules, combinations of different analytical
techniques have been used.

The structural diversity of small molecules is extremely huge. Already the plant
metabolome, as a small subset of the entire small molecule universe, is expected to consist
of already 200,000 different metabolite structures of which only a part is already known.
Enumerations of organic molecules with upto 166 billion generated compounds with less
than 17 atoms (Ruddigkeit et al., 2012) still seem to underestimate the expected number
of small molecules of the whole chemical space. Thus, scientists enter highly complex
spheres when working in this field of research (Fiehn, 2002; Reymond and Awale, 2012).
The analysis, discovery and the monitoring of small molecules is important in science,
but also for industrial processes and to preserve public health. The latter relates, e.g., to

4



1.1 Small molecules with big impact

the monitoring of food or drinking water quality. It is common for samples of complex
mixtures to contain thousands of different organic molecules (Vermeulen et al., 2020).

1.1.3 Isotopes and mass definitions

In general, a molecule is built of atoms of one or different elements that are connected
via bonds. The connectivity and arrangement of all atoms of a molecule is regarded
as its molecular structure which uniquely represents the single molecule. A molecule
or atom that carries a non-zero net electric charge is called ion, specifically an anion
carries a positive and a cation a negativ charge.

The complete elemental composition of a molecule including the numbers of each
element is given by its molecular formula (e.g. C2H5Cl). Molecules with the same
molecular formula but different (molecular) structures are called isomers.

Each element is uniquely identified by its atomic number, which represents its number
of protons and position in the periodic table. The element carbon (C) for example has
an atomic number of six, thus six protons. Two atoms of the same element (same atomic
number) and different number of neutrons are called isotopes. For some elements only
one isotope exists in nature (e.g. Natrium), whereas most elements occur as isotope
mixtures with a defined natural distribution. Stable and naturally occuring isotopes
of carbon are carbon-12 (12C) (six neutrons) and carbon-13 (13C) (seven neutrons).
Their natural distribution is approximately 98.93 % to 1.07 %, making 12C the most
abundant isotope of carbon. Due to their almost identical chemical properties, isotopes
are usually indistinguishable and not separated in nature. However, due to the different
numbers of neutrons, isotopes have different atomic masses. The atomic mass is the
mass of an atom, which is often expressed in the atomic mass unit (u) or in dalton (Da),
where 1 u is defined as 1/12 of the mass of a 12C atom (Mortimer et al., 2015):

1 u = 1 Da = m(12C)
12 = 1.660540 · 10−24 g

The molecular mass of a molecule is calculated from the atomic masses of all atoms
in that molecule. The IUPAC3 defines further mass values related to the isotopic
composition of a molecule. The exact mass of an ion or molecule is its calculated mass
with specified isotopic composition. The monoisotopic mass is the exact mass of an ion
or molecule using the mass of the most abundant isotope of each element. The average
mass is the mass of an ion or molecule weighted for its isotopic composition (Murray
et al., 2013).

Table 1.1 shows the calculation of the monoisotopic and average mass exemplified
by a molecule with a molecular formula of C2H5Cl. Chlorine (Cl) occurs as chlorine-

3International Union of Pure and Applied Chemistry
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Element Average mass Isotopic composition Atomic mass
H 1.008 Da 1H → 0.9999 1.008 Da

2H → 0.0001 2.014 Da
C 12.011 Da 12C → 0.9893 12.000 Da

13C → 0.0107 13.003 Da
Cl 35.453 Da 35Cl → 0.7577 34.969 Da

37Cl → 0.2424 36.966 Da

Average mass Monoisotopic mass
2 x 12.011 Da 2 x 12.000 Da

+ 5 x 1.008 Da + 5 x 1.008 Da
+ 1 x 35.453 Da + 1 x 34.969 Da
= 64.515 Da = 64.009 Da

Table 1.1: Calculation of average and monoisotopic mass at the example of C2H5Cl.
The first part (top) of the table shows the three present elements, their average masses,
their isotopes with the natural abundances and their atomic masses. The second part
(bottom) shows the calculation of the average and monoisotopic mass of the molecular
formula. Mass values are rounded to three decimal places.

35 (35Cl) with 75.77 % and chlorine-37 (37Cl) with 24.24 % in nature. The atomic
masses of these isotopes are approximately 34.969 Da and 36.966 Da (average mass:
34.969 Da · 0.7577 + 36.966 Da · 0.2424 ≈ 35.453 Da). The average masses of carbon
and hydrogen are approximately 12.011 Da and 1.008 Da which results in an average
mass of 64.515 Da for C2H5Cl. The monoisotopic mass amounts to 64.009 Da using the
atomic masses of the most abundant isotopes (m(1H) = 1.008 Da, m(12C) = 12.000 Da,
m(35Cl) = 34.969 Da). The used atomic masses and isotopic compositions can be found
in Berglund and Wieser (2011) and Wieser and Berglund (2009).

1.2 Mass spectrometry for small molecule research

Technology advancements enabled and accelerated small molecule research, e.g. in mass
spectrometry (MS). In 1922, Francis Aston won the Noble Prize, as he was able to
measure masses of charged atoms and to detect their isotopes by MS. Aston was a
protegé of the well-known physicist J.J Thomson who discovered the electron in 1897.
By the 1940s, when MS instruments were commercially available, industry could use
them to control production processes by measuring concentrations of known substances
in mixtures. From the 1950s, the contributions of F. McLafferty, K. Biemann and C.
Djerassi showed that MS could also be used to elucidate the structures of unknown
molecules (Griffiths, 2008). The investigation of commonly occurring fragmentation and
rearrangement processes of molecules within the mass spectrometer played an important

6



1.2 Mass spectrometry for small molecule research

role. Further noble prizes were awarded (Tabet and Rebuffat, 2003) for the development
of soft ionization techniques in the 1980s which enabled the reduction of unwanted
fragmentation. Thus, researchers could also investigate larger macromolecules that
remained mostly intact within the MS instrument (Fenn et al., 1989; Karas et al., 1985).
This was the beginning of a new era marked with the characterization of proteins using
MS. The ability to investigate single molecules in complex mixtures with high accuracy,
even in low concentrations has made it the tool of choice in proteomics until today
(Aebersold and Mann, 2003).

1.2.1 Structure and functionality of a mass spectrometer

Today, MS is an established technique used for the quantification, structural elucidation
and identification of molecules. The general concept is the generation of gas-phase ions
(ionized molecules) that are separated by their mass to charge ratio (m/z) (Murray
et al., 2013). Figure 1.2 shows the general principle of an MS instrument. It usually
performs three steps: ionization, separation and detection. The ionization takes place in
the ion source of the instrument for which different ionization methods are available. In
metabolomics, electron impact (EI), electrospray ionization (ESI), atmospheric pressure
chemical ionization (APCI) and atmospheric pressure photoionisation (APPI) are widely
used (Williams et al., 2006). ESI and APCI can be considered as soft ionization
techniques, as they reduce unintentional fragmentation of ions, which supports the
identification process through knowledge of the exact mass of the intact precursor ion.
Depending on their properties, the ionization quality differs under specific conditions.
Each ionization technique has its preferred scope of application defined by different
mass ranges, volatility and polarity of a molecule. Many ionization techniques can
be operated in positive or negative mode, resulting in either positively or negatively
charged ions. Besides their protonated ([M+H]+) and deprotonated ([M-H]−) form,
resulting ions can arise in different cationized or anionized adducts. Typical examples
in positive ion mode are [M+Na]+ and [M+NH4]+ and in negative ion mode [M+Cl]−,
where M is the neutral precursor molecule which has been ionized.

From the ion source the ionized molecules are guided by magnetic or electrical
fields through the mass spectrometer. Their movement is affected by their m/z ratio,
which underlies the main principle of MS-based separation (Ho et al., 2003). Different
methodologies exist for the separation performed by the mass analyzer. With the
application of an electrical field the quadrupole mass analyzer is able to filter ions with
a specific m/z. The quadrupole can scan larger m/z ranges within milliseconds. The
time-of-flight (TOF) mass analyzer uses a different principle: it measures the time ions
need to traverse through a field-free flight tube until they hit the detector. One of the
recent developments are the fourier transform ion cyclotron resonance (FT-ICR) and

7



1 INTRODUCTION

Figure 1.2: Illustration of the MS principle. Molecules of the sample are ionized in the
ion source during the ionization step before they enter the mass spectrometer. The
charged molecules are guided through the mass analyzer which separates these ions by
their m/z values in the separation step. The separated ions with a specific m/z value
are detected by the detector. The recording of these ion signals in the detection step
results in an m/z peak with a defined intensity.

orbitrap mass analyzers. They have ion storage capabilities where ions are trapped and
rotate in a cell using a magentic field. The acquired frequencies of rotating ions are
used to determine their m/z values (Shimadzu, 2019). For small molecule identification,
especially in metabolomics, these mass analyzers are frequently used (Sussulini, 2017).
Finally, separated ions need to be recorded by detectors that report a signal intensity
corresponding to the amount of ionized molecules detected for a specific m/z value.

1.2.2 Mass accuracy and resolution in mass spectrometry

Each MS instrument measures m/z values with a certain error, so the experimentally
acquired mass differs from the theoretical mass of the underlying ion (Balogh, 2004).
This mass deviation depends on the used instrumentation type, where usually the mass
analyzer makes the difference. The mass error of an acquired peak can be expressed
as the absolute (in Da) and the relative mass deviation (usually given in ppm, parts
per million). In general, the relative mass deviation is used to specify the accuracy of
an MS instrument. Instruments with a TOF mass analyzer have a mass deviation of
usually 10-20 ppm. Instruments with ultra high mass accuracy such as the FT-ICR
mass spectrometer can achieve mass errors of 1 ppm and below. In that case an ion
with a theoretical mass of 400 Da would be acquired with a mass deviation of less than
0.0004 Da.

The resolution is another important parameter for the evaluation of a mass spectrom-
eter. As already illustrated in Figure 1.2, the separation of an ion by the mass analyzer
and the recording of its signal by the detector results in a peak with a distribution
around the real m/z value of the ion. The width of that distribution is determined by
the resolving power of the instrument: the smaller the width the higher the resolution

8



1.2 Mass spectrometry for small molecule research

of the mass spectrometer. The resolution is determined using the full-width half-height
maximum (FWHM) method where the width (in Da) of a peak’s distribution is de-
termined at its half height (i.e. 50 % of its intensity). The m/z value of the apex of
the peak’s distribution is then divided by the determined width which results in the
peak’s resolution. A mass spectrometer with a peak measured at m/z 400 with a width
(at 50 % intensity) of 0.1 Da has a resolution of 4 000. TOF instruments show mass
resolutions of around 10 000 to 30 000 while high resolution instruments, such as the
FT-ICR mass spectrometer, have a resolution of more than 1 million.

The identification of small molecules is highly dependent on the mass accuracy
and resolution of the acquired mass spectral data. Low accuracy and poor resolution
reduce the chances to identify sample molecules, as assignment of their masses becomes
ambigious (Kind and Fiehn, 2007).

1.2.3 Mass spectrum explained with a simulated example

An acquired mass spectrum consists of ion signals recorded with their m/z values and
intensities. Intensities are often expressed as normalized values (relative intensities) as
ratios of the resolved peak and the resolved peak with the highest recorded signal in
the spectrum (base peak) (Ho et al., 2003). Figure 1.3 shows a simulated spectrum in
positive mode of the molecule zeatin. Zeatin belongs to the class of the phytohormons
cytokinins, which are known to regulate plant growth and development and play an
important role in plant immunity (Schäfer et al., 2015; Großkinsky et al., 2013).

The first peak at around m/z 220.1193 represents the [M+H]+ adduct ion. An
additional signal is present at around m/z 221.1218. Both signals correspond to the
same ionized molecule of zeatin and are considered as isotopologue ions. They differ
only in the isotopic composition of one or more of the constituent atoms (Murray et al.,
2013). In the shown example the first peak (at m/z 220.1193) is also considered as the
monoisotopic peak: its underlying ion contains only elements with their most abundant
isotopes. Typical isotopes with an additional neutron observed in a mass spectrum
in metabolomics are carbon-13, nitrogen-15 and hydrogen-2 (deuterium). Carbon-12
occurs in nature with an abundance of around 98.93 %, while its heavier form (13C)
occurs by only 1.07 %. As exemplified by the relative intensities of both isotopologue
ions in Figure 1.3 this distribution is also reflected in the mass spectrum. The second
peak (at m/z 221.1218) has an intensity of about 12 % and represents isotopologue ions
of the protonated zeatin containing one isotope with one additional neutron, e.g. either
13C or 15N. For the separation of these isotopologue ions high resolution mass analyzers,
such as the FT-ICR, are needed. For lower resolution instruments these isotopologue
ions are accumulated in one single peak as it is the case for this simulated spectrum. The
contribution to the intensity of these isotopes depends on the abundance-weighted sum
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Figure 1.3: Simulated mass spectrum of zeatin. Spectral data was generated using the
enviPat Web 2.4 (Loos et al., 2015) and the molecular formula of zeatin (C10H13N5O).
(Settings: Adducts - ’positive, M+H’; Resolution - ’10 000’; Output - ’Profile’). Noise
was simulated by adding a random absolute number drawn from a normal distribution
(µ = 0, σ = 0.5) to each intensity value.

of each element present (Carr and Burlingame, 1996). In a metabolomics experiment,
the 13C isotope typically contributes most to the abundance of the second peak in an
isotope cluster due to its relatively high probability. Algorithms have been developed
to exploit isotope ratios of an MS measurement to determine the molecular formula of
the underlying ion (Kind and Fiehn, 2007). The molecular formula can be a first filter
criterium to restrict the number of possible molecular candidate structures.

In MS, isotopic labelling experiments are an adequate method to shift the natural
abundances of specific elements. Results from such experiments provide additional
information that can be used to analyze e.g. metabolic fluxes in biological organisms
(Weindl et al., 2015) or assist the identification process of molecular structures contained
in the sample (Neumann et al., 2014).

1.2.4 Tandem mass spectrometry

While unintended fragmentation was reduced by softer ionization techniques, intended
and controlled fragmentation is helpful to obtain additional information about a single
precursor ion of interest. Thus, tandem mass spectrometry (MS/MS) was introduced
as a further development of MS to induce an intended fragmentation to a previously
selected ion. The resulting fragments support the elucidation of their precursor ion
structure. Specialized mass spectrometers are able to perform this intended fragmention
of the precursor ion. Typically, these instruments use two or more connected mass
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analyzers (de Hoffmann, 1996). This principle is illustrated in Figure 1.4 which is also
called tandem in space.

Figure 1.4: Illustration of MS/MS principles. This illustration complements Figure 1.2 to
explain the principle of MS/MS with the example of multiple connected mass analyzers
(tandem in space). (a) The precursor ion is separated and selected for fragmentation
by the first mass analyzer. (b) By applying e.g. higher energies and collision with an
inert gas (collision-induced dissociation, CID) in the collision cell the the selected ion is
fragmented. (c) The formed fragments are separated by a further mass analyzer and
(d) ion signals are recorded by the detector. The result is a tandem mass spectrum
(MS/MS spectrum) consisting of ion signals retrieved due to the formed fragments.

The first mass analyzer selects an ion of a molecular precursor based on its m/z
value. The ion is guided into a collision cell where its fragmentation is induced. The
collision with an inert gas is one example to induce the fragmentation, also known
as collision-induced dissociation (CID). The resulting fragments are separated by an
additional mass analyzer and recorded by the detector. Due to its successive ion
separation steps connected with an induced fragmentation of a selected precursor ion
this principle is called MS/MS. Examples of mass spectrometers that are able to perform
MS/MS are instrumentations with triple quadrupole (QqQ) (Yost and Enke, 1978) or
quadrupole-time-of-flight (QqTOF) (Chernushevich et al., 2001) mass analyzers. Besides
connecting multiple mass analyzers where separation and fragmention takes place in
different spaces, specific mass spectrometers have mass analyzers, such as the orbitrap,
that perform these steps sequentially in a single cell (tandem in time).
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1.2.5 Identification of small molecules based on tandemmass spec-
trometry

Characteristic m/z fragment peaks of an MS/MS spectrum support the identification of
the underlying precursor molecule. Manual annotation of fragment structures requires
expert knowledge. Analysts annotate m/z peaks in the spectrum with matching
fragment structures by comparing the experimental with theoretical masses. The lookup
in spectral databases is also an effective method to find putative fragment structures or
even precursor molecules with the match of the entire spectrum. Annotated fragment
structures and the information retrieved by the MS measurement (mass and/or molecular
formula) support the elucidation of the underlying molecular structure.
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Figure 1.5: Example of a MS/MS spectrum retrieved from MassBank spectral database
(ACCESSION ID: PB000123) manually annotated with putative fragment structures,
acquired in positive ion mode by an LC-ESI-QTOF instrument. The m/z peak marked
with an asterisk represents the protonated monoisotopic precursor ion of naringenin.

Figure 1.5 shows an example of a manually annotated MS/MS spectrum acquired
from naringenin in positive ion mode. The m/z peak marked with an asterisk represents
the precursor ion of naringenin with an m/z value of approximately 273.076. From
annotated fragment peaks, substructures of the precursor can be deduced. Thus, this
strategy supports the determination of the entire molecular structure.
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For few spectra this approach is feasible. The manual analysis of larger data sets with
thousands of spectra obtained from high-throughput experiments such as LC-MS/MS
studies is impossible. Thus, computer-assisted methods need to be applied for an
automated processing of the generated spectra.

1.2.6 Coupling of chromatography and mass spectrometry

The term chromatography was introduced by Mikhail Tswett who is considered the
inventor of this pioneering technique in 1906, which separates components of a sample
within a column (Ettre and Sakodynskii, 1993). Almost 50 years later, Archer Martin
and Richard Synge received the Noble Prize for the development of the partition
chromatography (Martin, 1953). Their separation is based on the partitioning of the
sample molecules by the use of a mobile and a stationary phase. The separation of the
molecules is possible due to different grades of solubility in the stationary phase. The
higher the solubility and its interaction with this phase, the higher is the molecule’s
retention time in the column. The mobile phase transports sample molecules through
the column and can either be a liquid (LC) or a gas (GC). Different chromatographic
techniques were developed and have been improved toward faster and more efficient
separation. GC and high-performance liquid chromatography (HPLC) have become the
dominating separation techniques today (Lundanes et al., 2013).

A molecule’s retention time indicates its degree of interaction with the stationary
and the mobile phase. Depending on the separation technique, the retention time of a
molecule can be used to make conclusions about different physicochemical or geometrical
properties including its hydrophobicity, polarity, shape and size (Issaq, 2001). Due to
the relation of retention time and structural properties, chromatography is another
important source of information for the identification of an investigated molecule.

Chromatography can be coupled with MS intruments to combine two orthogonal
separation methods. The investigation of samples retrieved from biological or industrial
processes, medical studies or criminal investigations produce mixtures with unknown
components that are too complex to be directly analyzed with MS (Karasek and Clement,
2012; Gohlke and McLafferty, 1993). In the 1950s, GC-MS became the first application
of coupling chromatography and MS. This enabled the detection of a huge number of
different components in complex samples (Gohlke, 1959). Further enhancements were
used in the Viking Space Probe mission, where a GC-MS instrument was sent to Mars
to search for organic molecular structures (Biemann, 1979). Due to its chromatographic
properties GC-MS is an excellent tool for the analysis of volatile polar and nonpolar
sample components, however is not directly applicable for nonvolatile and semipolar
components (Lee et al., 2013).
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To enhance separation and the capability of compound identification derivatization
of the sample to be analyzed is used in GC (and GC-MS). Types of derivatization include
alkylation (e.g. methylation), silylation (e.g. formation of trimethylsilyl derivatives) and
several others. Besides decreasing the boiling point of molecules, there are several other
intended effects of derivatization in GC-MS. Derivatized sample molecules may have
significantly different properties from each other and their underivatized precursors,
allowing separations that are difficult to achieve otherwise (Moldoveanu and David,
2018).

Besides GC-, LC-MS is another method of choice when complex mixtures need to be
investigated. Especially for the analysis of metabolic components innumerable studies
proove that the coupling of chromatography and MS is indispensable as described in
Fiehn (2002).

The permenant acquisition by MS of continuously eluting components from chro-
matographic partitioning results in a three-dimensional data set. These data sets may
consist of several thousands of mass spectra separated by the additional retention time
dimension usually given in seconds or minutes.

1.3 Computational mass spectrometry for the identi-
fication of small molecules

A variety of computational (pre-)processing steps for acquired raw data are required
before computational methods for the identification of small molecules can be applied.
Computational scientists especially from the field of metabolomics made significant
contributions by developing methods for processing and pre-processing of mass spectral
data. An overview about pre-processing steps for retrieving MS/MS peak lists from raw
data can be found in (Katajamaa and Orešič, 2007) and (Sumner et al., 2005).

In the following, I will describe computational identification of small molecules with
a focus on databases designed for small molecule research and their necessity in the
process of structure elucidation. I will introduce different computational approaches
that perform identification of small molecules on the basis of MS/MS data with the
focus on combinatorial fragmentation at the example of MetFrag (Wolf et al., 2010) as
the major basis of my work.

1.3.1 Databases for small molecules

Small molecule databases are a valuable resource of information used in computational
MS. There are many databases available for different purposes, ranging from small
molecule and pathway databases (Frolkis et al., 2010) via metabolomics experiment data-
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bases (Haug et al., 2013) to mass spectral library databases and databases containing
structural information about small molecules linked to different resources including
meta data.

Database Description
KEGG - small molecule related content focused on metabolites

- links metabolites via pathways to genes and proteins
PubChem - largest open resource for small molecular structures

- contains information from many resources (including patents
- & literature)
- includes a large amount of bioactivity data

ChemSpider - large resource for small molecular structures
- links to information from different resources

LipidMaps - resource for lipid molecular structures
- provides a hierarchical lipid classification system

HMDB - contains information about metabolites found in human
- metabolites are linked to human related data sets

CompTox - dashboard that integrates data on chemicals from different
- platforms for environmental sciences
- includes physicochemical properties and data on exposure,
- toxicity, bioassays and more

Databases with focus on mass spectral data content
MassBank - public sharing of reference mass spectra

- MS/MS spectra measured from different setups and conditions
- shared over servers around the world
- MassBank of North America (MoNA) was introduced in 2015

GNPS - spectral networks created from uploaded spectra
- contains annotated reference MS/MS spectra

GMD - focused on GC-MS spectra of biologically active plant metabolites
LipidBlast - computer-generated MS/MS database for lipid annotation

Table 1.2: Overview of selected databases related to small molecule research

There are two types of databases for small molecules that are relevant to my work:
(1) databases providing structural information (also known as compound databases)
and (2) databases containing reference mass spectra of known molecules (also known as
mass spectral libraries). Table 1.2 gives an overview of available compound databases
and spectral libraries used in this thesis. A more general overview about compound
and mass spectral databases is given in Vinaixa et al. (2016).

Besides structural information, compound databases contain information about
chemical and physical properties, biological functions and different identifiers usually
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linked to other available resources (Kim et al., 2016; Pence and Williams, 2010). The
number of molecular structures contained in these databases varies significantly depend-
ing on their scope. The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000; Kanehisa et al., 2006) and the Human Metabolome Database (HMDB)
(Wishart et al., 2007) with around 18 500 and 114 200 molecular structures are mainly
focused on metabolites. LipidMaps (Sud et al., 2007) with around 43 700 structures
contains only lipids. PubChem (NCBI, 2020) and ChemSpider (RSC, 2020) are the
largest databases with around 103 and 81 million compounds. They both integrate
hundreds of different data sources linked to the structures. Both databases serve as
an important source of molecular candidates for the annotation and identification in
computational MS. However, due to the limited biological relevance of the majority of
contained chemicals, both compound databases play a limited role in metabolomics. The
CompTox Chemicals Dashboard (Williams et al., 2017) provides data about chemicals
for environmental scientists and computational toxicologists. Initiated and maintained
by the U.S. Environmental Protection Agency’s (EPA), this public dashboard links
various data sources and contains over 800 000 compounds (numbers accessed 03/2020).

Mass spectral libraries contain mass spectrometric reference data sets including
MS/MS spectra of known precursor molecules. They are important for the development
of data-driven approaches for the identification of small molecules (Scheubert et al.,
2013). Examples are the Global Natural Products Social Molecular Networking (GNPS)
(Wang et al., 2016b), MassBank (Horai et al., 2008, 2010), MassBank of North America
(MoNA) and Golm Metabolome Database (GMD) (Kopka et al., 2005). Their content
is usually much smaller compared to available compound databases caused by the cost-
intensive and time-consuming collection and acquisition of the experimental spectra, as
well as the limited number of reference standards available. With 161,100 experimental
spectra (accessed 03/2020) MoNA is one of the larger open mass spectral libraries.
Most MS/MS spectral libraries contain multiple spectra of one molecule acquired
under different conditions and with different instruments reducing the number of
unique molecules covered. It is common that compound databases also integrate mass
spectral data sets connected to their compounds, such as LipidMaps, HMDB, PubChem,
CompTox and ChemSpider.

To overcome the lack of available reference spectra, there is a rising trend of
generating computationally predicted libraries of MS/MS spectra. Different approaches
have emerged to perform spectra prediction on the basis of an input molecular structure.
There are quantum chemistry-based methods that excel in prediction accuracy, which are
however very time-consuming especially for larger molecules (Bauer and Grimme, 2016;
Cautereels et al., 2016). LipidBlast uses a heuristic and rule-based approach to create
MS/MS spectra of lipid molecular structures (Kind et al., 2013). In addition, statistical
methods have been developed that use reference spectra to learn fragmentation processes
for the prediction of fragments and intensities. Competitive fragmentation modeling
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implemented in the tool CFM-ID (Allen et al., 2014) uses a probabilistic generative
model to estimate the likelihood of a specific fragmentation processes. The different
approaches have several limitiations including their application domain. LipidBlast is
only applicable to molecules with well-defined patterns of fragmentation, which is true
for many lipid molecular structures. They usually show a similar fragmentation pattern
within one lipid class. CFM-ID is more flexible as it learns the patterns directly from
the training data. However, the application domain is still limited by the used training
data (usually only several thousand compounds). The validation of computational
approaches used for spectra prediction in terms of accuracy and precision is extremely
important as this goes along with the quality of the generated spectral library (Kind
et al., 2018).

1.3.2 Computational annotation and identification of small mole-
cules based on tandem mass spectrometry

Given an MS/MS spectrum of an unknown precursor ion, spectral library search is one
method to support the identification. The library is typically screened for spectra that
are similar to the acquired MS/MS spectrum. Precursor molecules of matching library
spectra are putative candidates for the identification. Different measures are used to
compare MS/MS spectra and to find matches in larger spectral libraries. An overview
about available strategies is given in Kind et al. (2018). If similar spectra are present in
the database there is a high probability for the identification of the unknown molecule.
However, the coverage of molecules with MS/MS spectra is rather small (Vinaixa et al.,
2016) which makes alternative strategies for structure elucidation even more important.

In the following, computational strategies will be described. Several approaches
try to model or reconstruct the fragmentation process of candidate molecules. The
generated fragments are used to annotate peaks in the query MS/MS spectrum. Some
of these approaches are rule-based, such as MassFrontier (Thermo Scientific, 2020) or
MS-Finder (Tsugawa et al., 2016). Others use a greedy combinatorial fragmentation
procedure to generate many putative fragments that are evaluated by different scoring
mechanisms. MetFrag (Wolf et al., 2010), as one of the first tools, MAGMa (Ridder
et al., 2014) and MIDAS (Wang et al., 2014) are examples for combinatorial fragmenters.
Further methods use quantum chemistry-based (Mayer and Gömöry, 1993, 1994) or
statistical methods for fragment prediction (Allen et al., 2014). Besides fragmentation
process modelling, different approaches emerged that predict molecular feature (or
substructure) vectors, such as molecular fingerprints, for a given query MS/MS spectrum.
The predicted fingerprint is used to query compound databases to retrieve putative
candidates (Heinonen et al., 2012; Dührkop et al., 2015; Brouard et al., 2016). Recently,
several approaches have been published that also make use of neuronal networks and
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deep learning methods for the interpretation of MS/MS spectra (Shrivastava et al., 2021;
Stravs et al., 2021). In the following, I will highlight the three strategies: combinatorial
fragmentation, spectrum and fingerprint prediction.
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Figure 1.6: Selected methods for computational identification of small molecules based on
MS/MS spectra. (1) For a given candidate molecule combinatorial approaches generate
putative fragments that are assigned to m/z peaks in a query MS/MS spectrum. Based
on the number of annotated peaks candidate scores are calculated and used for candidate
ranking. (2) MS/MS spectrum prediction is used to generate spectra for candidate
molecules in silico. These spectra are compared to the query MS/MS spectrum which is
the basis for the ranking of the underlying candidate molecules. (3) Given an MS/MS
spectrum, predicted molecular features are matched against a list of putative candidate
molecules used for ranking.

In Figure 1.6 the principles of combinatorial fragmentation, spectrum and finger-
print prediction for the identification of small molecules are illustrated. As shown in
Figure 1.6 (1), combinatorial fragmentation is directly used to annotate the in silico
generated fragments of a candidate molecule to the given m/z peaks in the MS/MS
spectrum. By evaluating the assigned fragment structures and the annotated peaks, the
candidates are scored and sorted to create a ranked candidate list. The bottleneck is
the enumeration of all possible fragments which is oftentimes restricted to reduce the
number of generated fragments and the runtime of these approaches. Depending on
the candidate’s molecular structure, thousands of possible fragments can be generated
using combinatorial approaches.
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As already mentioned in Section 1.3.1, computational methods exist that predict
MS/MS spectra for given candidate molecules. These methods are also used for the
identification of small molecules. The principle is illustrated in Figure 1.6 (2). Besides
the tool CFM-ID (Allen et al., 2014), quantum chemistry-based methods like quantum
molecular dynamics or density functional theory are also in use to predict fragment peaks.
These methods are known to be very accurate but usually have high computational costs
making them unsuitable for the processing of many molecular candidates (Borges et al.,
2021). CFM-ID uses reference MS/MS spectra to train a Markov chain model for the
evaluation of transitions for different fragments. This approach is used to reconstruct
the whole fragmentation process of a single molecule. Compared to combinatorial
fragmenters, the fragment prediction is more specific. Given the statistical prediction
model, only fragments with high probabilities are predicted. As also predictions for
intensities can be made together with the m/z values, this method is used to simulate
MS/MS spectra for molecular candidates. Due to their reasonable computational time,
statistical approaches represent a good compromise for fragmentation modelling as for
each putative candidate a MS/MS spectrum needs to be predicted. Each predicted
spectrum is compared to the experimental query MS/MS spectrum. The candidates are
then ranked by the scores calculated on the basis of the spectral similarities.

The third main methodology illustrated in Figure 1.6 (3) makes use of an entirely
different approach, as it does not try to reconstruct the fragmentation process of a given
molecule. First, it makes use of molecular feature vectors that encode molecular charac-
teristics. Calculated for a molecule, each position represents a defined characteristic that
is set if it is found in the molecule. Heinonen et al. (Heinonen et al., 2012) introduced
a machine learning method based on support-vector machines that predicts molecular
fingerprints for MS/MS spectra. The training of the model requires MS/MS reference
spectra and molecular fingerprints calculated for the precursor molecules. Given a query
MS/MS spectrum, the trained model predicts a fingerprint, which is used to query
compound databases for the retrieval of candidates. These candidates are ranked by the
similarity of their calculated fingerprints to the one predicted. This approach is further
enhanced by using fragmentation trees in CSI:FingerID (Dührkop et al., 2015) or by
using an input output kernel regression learning method (Brouard et al., 2016).

The majority of the mentioned methods produce a ranked molecular candidate list
for a given query spectrum. The better the method, the higher the chance to identify
the correct molecule. Different computational methods are typically evaluated by the
comparison of the ranking positions of the correct candidate for a set of reference MS/MS
spectra. Dührkop et al. (Dührkop et al., 2015) and Schymanski et al. (Schymanski
et al., 2017b) evaluated different computational tools on a large set of reference MS/MS
spectra. They showed that statistical models, in particular fingerprint prediction models,
are the most powerful approaches for the identification of small molecules.
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1.3.3 Combinatorial in silico fragmentation for the identification
of small molecules exemplified by MetFrag

The software MetFrag was published in Wolf et al. (2010) and is a typical example
that makes use of combinatorial fragmentation. It was one of the first open source
approaches used for the annotation of MS/MS spectra to identify small molecules.
Figure 1.7 shows the five major steps performed by the MetFrag pipeline: candidate
selection, (combinatorial) fragmentation, fragment annotation, candidate scoring and
ranking. In step (1), the given information about the precursor molecule is used to
retrieve molecular candidates. Compound databases such as KEGG, PubChem or
ChemSpider are queried using either the exact mass of the precursor with a mass
deviation or, if provided, its molecular formula.

The main goal of the fragmentation step (2) is the enumeration of fragments for
each selected candidate. The molecular structure of each candidate is represented as
a graph with nodes representing the atoms and edges representing the bonds. The
enumeration problem is solved by creating a fragmentation tree. The root of this tree
consists of the intact candidate molecule and each of the inner nodes represents a
fragment. In the ideal case, the removal of a bond from the molecular graph results
in two subgraphs representing two fragments. If the initial bond removed is located
in a ring, then at least one additional bond needs to be removed. With an iterative
breadth-first algorithm, each bond of the intact molecule is removed to create possible
fragments. With this procedure, the first layer of the fragmentation tree is built. The
expansion of the fragmenation tree is realized by successively removing bonds from the
fragment subgraphs. Due to its combinatorial nature, the fragmentation step is the
speed-limiting step of the whole MetFrag pipeline. Thus, the enumeration of fragments
is restricted by a specified maximum tree depth of the fragmentation tree, although it
can lead to the possible loss of a chemically meaningful fragment structure. In Wolf
et al. (2010) the maximum tree depth was set to a value of 2.

During the fragment annotation step (3), the generated fragments are assigned to
m/z peaks of the given MS/MS spectrum. By comparing the theoretical mass of the
created fragments with the masses of the acquired m/z peaks, fragment peak pairs
can be assigned. Due to mass errors in the measurement, a specified mass deviation is
considered in this comparison.

After a candidate’s fragments have been assigned to the m/z peaks, a score is
calculated in step (4). The score calculation involves the intensities and m/z values of
the peaks annotated with a generated fragment. Moreover, the weights of bonds being
removed to form the assigned fragments are also considered for the score calculation. In
Wolf et al. (2010), bond dissociation energies (BDE) are used as bond weights that are
defined for each bond type. This energy, usually given in kJ/mol, defines the enthalpy
(per mole) required to break a specific bond (Muller, 1994). Equation 1.1 shows the
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The score calculation con-
siders the m/z and intensity 
values of peaks assigned.
Moreover, the sum of bond 
dissociation energies of the 
removed bonds is considered.
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Figure 1.7: Workflow describing the MetFrag pipeline initially published by Wolf et al.
(2010). The pipeline consists of five major steps: Candidate selection, Fragmentation,
Fragment annotation, Candidate scoring and Candidate ranking. The major inputs are
also included: Precursor information and MS/MS peak list.
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calculation of a score of candidate i as it was used by Wolf et al. (2010):

Si = 1
maxi=1..n(wi)

· wi −
1

2 maxi=1..n(ei)
· ei (1.1)

where

wi =
∑

f∈Fi

(intf )0.6 · (massf )3

ei = 1
|Fi|

∑
f∈Fi

∑
b∈Bf

BDEb

The number of retrieved candidates is given by n. The score of candidate i consists of
two main terms, wi and ei. The term wi evaluates each peak annotated with a fragment
f ∈ Fi, which is the set of fragments of candidate i annotated to a peak in the spectrum.
The term wi, also known as the weighted peak count, sums up the products of intensity
(intf ) and m/z (massf ) of the peaks annotated with a fragment f . The intensity and
mass of the annotated peak are weighted by different exponents taken from the literature
with m = 0.6 for intensity and n = 3 for the m/z value. Thus, explained peaks with
higher m/z and intensity values have a higher impact on the candidate score Si as they
are presumed to be more characteristic than peaks with lower m/z and intensity values.
The second term of the candidate score (ei) evaluates the annotated fragments as it
sums up the BDEs of all bonds b ∈ Bf that were removed to generate these fragments.
Higher BDEs contribute to a decrease of the candidate score Si. The two main terms
are normalized by the factors 1/max(w) and 1/(2 max(e)).

The fragmentation (2), fragment annotation (3) and candidate scoring (4) steps
are performed separately for each of the selected candidates. The calculated candidate
scores are used in the final candidate ranking step (5) to create a ranked candidate list
with the goal to rank the correct candidate at the top of this list.

As described in (Wolf et al., 2010), the complete MetFrag pipeline incorporates
further steps. These include (i) the integration of neutral loss rules to account for
molecular rearrangements during the fragmentation process, (ii) the elimination of
redundant fragments during the fragmentation step and (iii) the clustering of the
candiate molecules based on their structural similarity.

1.3.4 Open contest for critical assessment of small molecule iden-
tification

The open contest “Critical Assessment of Small Molecule Identification” (CASMI) was
founded to assess the performance of state-of-the-art approaches for structure elucidation
on the basis of mass spectral data. This contest represents an excellent opportunity
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1.3 Computational mass spectrometry for the identification of small molecules

for experts in the field of computational mass spectrometry to test and compare their
approaches. This comparison reveals the current status of computational tools and their
performance in structure elucidation.

The contest initially was held in 2012 (Schymanski and Neumann, 2013) and aimed
for the exchange of ideas and to compare different identification approaches of the
participants. MS data sets mainly including MS/MS spectra connected with the
precursor information were provided. Participants were invited to submit a scored
candidate list for each challenge (i.e. MS/MS spectrum). After the deadline, submitted
candidate lists were automatically evaluated based on different evaluation criteria (e.g.
number of correct highest scored candidates) to rank the submissions of the different
participants. The contest was subdivided into different categories, providing data
sets for different tasks to be solved by the participants. These tasks ranged from the
identification of the correct molecular formula to the correct molecular structure. Over
the years 2012 and 2013 it attracted either participants submitting results retrieved by
computational methods or using manual identification approaches. For these earlier
contests, manual approaches often outperformed the in silico methods. The increasing
number of challenges over the years 2014, 2016 and 2017 was one reason why the
submissions based on automated methods increased from contest to contest. From 16
in 2012 the number of challenges raised to up to 243 challenges in 2017.

The CASMI contest represented a valuable resource to evaluate, compare and
enhance state-of-the-art methods used for the identification of small molecules. In
addition, it showed how computational methods improved by comparing the submission
results over the different years, thus was an excellent way for the generation of knowledge
to the community in the field of computational mass spectrometry.
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2 Enhancing the MetFrag pipeline
for small molecule annotation

Among the different strategies, combinatorial fragmentation has already proven to be
an excellent tool for MS/MS-based elucidation of molecular structures (Wolf et al.,
2010; Ridder et al., 2014; Wang et al., 2014). However, the potential that lies in this
methodology has not been fully exploited so far, although combinatorial fragmentation
is well suited to be enhanced and combined with different strategies. Computational
approaches are mainly restricted to the use of MS/MS data only. Databases related
to small molecules contain valuable information about selected molecular candidates
that is hardly used in this automated annotation process. This data could support
computational approaches to further corroborate and narrow down the number of
candidates to those most relevant for the current investigation. Moreover, structure
elucidation that predominantly uses the limited information available from the MS/MS
spectrum, might not be sufficient to identify the underlying molecule unequivocally.
The lack of evidence for all possible structural features and the sometimes sparse
information contained in the spectrum might be reasons (Stein, 2012). Thus, there is a
huge potential to include further information such as polarity or the isotopic pattern
as obtained by chromatography or isotopic labelling. The main goal of my thesis is
to improve the existing MetFrag pipline and to develop a solution that enables the
integration of data from different sources and acquired by different analytical methods.
The solutions developed to achieve this goal are described in the following sections and
more extensively in the related peer-reviewed publications.

I have extended the scope of application by a novel approach that exploits the
idea of the existing MetFrag methodology and provide solutions beyond combinatorial
fragmentation. To integrate data from additional analytical methods and to combine
different data sources, it is necessary to reconsider and reengineer the existing MetFrag
approach. On the one hand I want to improve the performance of identification compared
to the existing pipeline and on the other hand to add more confidence to suggested
and scored molecular candidates. I will also show how statistical methods combined
with combinatorial fragmentation can be used to achive an improvement in perfomance
and confidence. The enhanced approach will also be compared with other available
computational methods to demonstrate the potential of combinatorial fragmentation
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when combined with additional data sources and statistical models developed in this
cumulative thesis.

5.2  
Ruttkies et al.
Journal of Cheminformatics, 2016

2. Fragmentation1. Candidate selection 3. Fragment annotation

5.3  
Ruttkies et al.
Anal. Bioanal. Chem., 2019

5.4  
Ruttkies et al.
BMC Bioinformatics, 2019

5.5  
Witting, Ruttkies et al.
PLOS ONE, 2017

5.6  
Schymanski, Gerlich, Ruttkies et al.
Mass Spectrom (Tokyo), 2014

5.7  
Ruttkies et al.
Metabolites, 2013

5.8  
Schymanski, Ruttkies et al.
Journal of Cheminformatics, 2017

5.3 
Ruttkies et al.
Anal. Bioanal. Chem., 2019

5.2  
Ruttkies et al.
Journal of Cheminformatics, 2016

5. Candidate ranking4. Candidate scoring 6. Method evaluation

5.1  
Ruttkies et al.
Rapid Comm. Mass Spectrom., 2015

5.3 
Ruttkies et al.
Anal. Bioanal. Chem., 2019

Figure 2.1: Peer-reviewed and published manuscripts contributing to my cumulative
thesis. They are classified by their contribution to the different topics of the MetFrag
pipeline aligned with Figure 1.7. The additional topic “Method evaluation” has been
added. For each publication the section number is included where the original manuscript
can be found in this thesis.

Figure 2.1 is adapted from Figure 1.7 and illustrates the contribution of each
manuscript to the enhanced MetFrag pipeline. The section number attached to each
publication listed in Figure 2.1 indicates where the manuscript can be found in my
thesis. The classification of the manuscripts are chosen by their main contribution to
the MetFrag pipeline entitled with “Candidate selection”, “Fragmentation”, “Candidate
scoring”, “Candidate ranking” and “Method evaluation”. Note that a single manuscript
may have contributed to several aspects and in this case occurs more than once (Sections
5.2 & 5.3). In the following, the listed manuscripts are put in the context of the objectives.

2.1 Candidate selection

The enhancement of the MetFrag pipeline goes along with the enlargement of the
applicability to different available analytical methods. Compound databases provide
candidates to be processed in the pipeline, thus are a limiting factor when MetFrag is
applied to an analytical method of choice. There are two crucial drawbacks of compound
databases. First, they are not complete, hence if the correct candidate is missing
there is no chance to annotate the correct compound to the query MS/MS spectrum.
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2.2 Fragmentation

Unless there is a similar compound present in the database, the chance of a successful
elucidation of the correct structure is quite low. Second, compound databases are
rarely specific for a certain analytical method such as derivatization (e.g. methylation,
silylation) or isotopic labelling. This results in the accumulation of many false positive
candidates making the candidate list unnecessarily complex.

In Ruttkies et al. (2015) (Section 5.1) I developed a combinatorial workflow to
generate in silico derivatized compounds by well-defined rules. The heuristic uses
existing compound databases, such as KEGG, as input and creates databases with
altered structures that were applied to data acquired in GC/APCI-MS/MS experiments.
The experimental design required an alteration of the sample to be analyzed through
its derivatization prior to data acquisition. At first, the created in silico derivatization
approach was validated against the GMD as reference database. To demonstrate the
workflow, in silico generated databases were applied together with MetFrag to MS/MS
spectra acquired from GC/APCI-MS/MS profiles of Arabidopsis thaliana and Solanum
tuberosum. The comparison with the GMD revealed a true positive rate of 94 %. In
silico annotation using MetFrag showed good results with 57 % of the correct candidates
ranked at first position when a derivatized KEGG database served as candidate source.

The developed approach was adapted in Ruttkies et al. (2019b) (Section 5.3) to
be used for the processing of MS/MS data acquired in hydrogen-deuterium exchange
experiments. Here, candidate molecules were deuterated in silico by incorporating
assumptions about easily and partially exchangeable hydrogens.

2.2 Fragmentation

Due to its combinatorial nature the in silico fragmentation is the most time-consuming
step in the MetFrag pipeline. Limiting the tree depth of the breadth-first algorithm is
one way to reduce the runtime and memory consumption. Further methods implemented
in the original MetFrag approach are redundancy checks of generated fragments based
on the molecular formula. Fragments in one tree depth cycle are regarded as duplicates
and are discarded if they have the same molecular formula even if the have a different
connectivity. This weak redundancy check can cause many false fragment removals and
a possible loss of reliable fragment annotations.

While relying on the combinatorial breadth-first algorithm in the new MetFrag
version developed in Ruttkies et al. (2016) (Section 5.2) as a powerful method for
small molecule annotation, algorithmic and data structure improvements have been
implemented to reduce runtime and make former redundancy checks unnecessary.
Generated fragments are now stored as bit vectors referencing atoms in the original
precursor molecule. This allows a fast mass calculation and a reduction of memory
consumption. The omission of redundancy checks and allowing for higher tree depths
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can lead to more reliable fragment annotations.
The refinements contributed to an improved annotation performance indicated by

the median rankings of the correct candidates which decreased from 8 to 4 compared to
the original MetFrag approach using ChemSpider database. The 473 MS/MS spectra
used in this comparison were processed with an average runtime of 54 s per spectrum.
Moreover, the number of correct candidates ranked among the first ten hits increased
from 258 to 320 compared to the original MetFrag version as shown in Ruttkies et al.
(2016) (Section 5.2).

2.3 Fragment annotation

The annotation of in silico generated fragments to m/z peaks in the query MS/MS
spectrum is based on the comparison of the theoretical with the experimental mass.
Rules have been implemented in the original MetFrag approach to account for rearrang-
ments during neutral loss fragmentation processes as additional mass shifts need to
be considered due to the loss of additional hydrogens. To integrate data acquired in
isotopic labelling experiments such as hydrogen-deuterium exchange additional rules
need to be applied. These need to account for additional mass shifts in the MS/MS
spectrum due to the presence of heavier isotopes.

In Ruttkies et al. (2019b) (Section 5.3) the fragment annotation approach is enhanced
by the incorporation of additional rules considering data acquired in hydrogen-deuterium
exchange experiments. This setup consists of two independent LC-MS/MS runs of one
sample, where in the first run the acquisition is performed normally with undeuterated
solvents (e.g., MeOH/H2O) and during the second acquisition at least one of the mobile
phases is replaced with a deuterated equivalent (e.g., MeOD/D2O, ACN/D2O). For
each molecule in the sample two MS/MS spectra are acquired, one normal and one
deuterated. Thus, a substantial further development is the processing of several query
MS/MS spectra in a single MetFrag run which includes the annotation of fragments
to m/z peaks of more than one spectra. Furthermore, additional rules are applied to
correct theoretical masses of generated fragments by a variable number of exchanged
hydrogens.

2.4 Candidate scoring

Retrieved candidates are assigned to the query MS/MS spectrum and prioritized by
calculated scores. The higher the candidate score the better the fit to the spectrum. The
original MetFrag approach uses information of assigned MS/MS peaks and annotated
fragments such as intensities and BDEs of removed bonds. To integrate information
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from additional analytical methods and data sources, the scoring function needs to be
extended to allow additional scoring terms. Furthermore, it needs to be flexible and
applicable irrespective of whether a high amount of additional information is available
for a specific query MS/MS spectrum or not. Additionally, information included in the
score calculation needs to be weighted depending on its importance and confidence.

Ruttkies et al. (2016) (Section 5.2) introduced a consensus scoring that includes
additional weighted scoring terms. These scoring terms are calculated based on the
additional information available. In the study the number of references and patents for a
candidate, and the retention time retrieved from LC/MS have been used to exemplify the
novel candidate scoring. To further enhance flexibility, extra terms, called “user-defined
scores”, were tested by the incoporation of candidate scores calculated by CFM-ID.
By using scores calculated on MS/MS information only, MetFrag and CFM-ID had
30 and 43 correct candidates ranked in first position, respectively, using PubChem
as a candidated database. Including reference and retention information in MetFrag
improved this to 420 and 336 correct candidates ranked first with ChemSpider and
PubChem (89 and 71 %), respectively, and even up to 343 (PubChem) when combining
with CFM-ID.

In Ruttkies et al. (2019b) (Section 5.3) the novel scoring function has been exploited to
include additional information retrieved from hydrogen-deuterium exchange experiments.
The three additional scoring terms developed in this study evaluated (1) the match of
a candidate to the deuterated MS/MS spectrum, (2) the number of matching normal
and deuterated fragment pairs and (3) the expected number of easily exchangeable
hydrogens. On a set of 765 MS/MS spectral pairs (normal and deuterated) MetFrag
could rank 104 instead of 72 of the correct candidates at first position when using the
additional scoring terms. The number of correct candidates ranked among the top ten
positions could even be increased from 345 to 481.

In Ruttkies et al. (2019a) (Section 5.4) the consensus scoring was complemented
by using statistical approaches where annotations of m/z fragment peaks to fragment-
structures were learned in a training step. Based on a Bayesian model, two additional
scoring terms have been integrated and were evaluated on a test data set from CASMI
2016 contest consisting of 87 MS/MS spectra. The number of correct candidates ranked
in first position increased from 5 to 21 and among the first ten from 39 to 55 both
showing higher values than retrieved by CSI:IOKR the winner of this contest.

2.5 Candidate ranking

The scoring of molecular candidates results in a ranked candidate list for a query MS/MS
spectrum where in the ideal case top ranked candidates give hints for the structure
of the underlying precusor molecule. In high-throughput analysis the generation of
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several thousand lists of ranked candidates is possible for which manual investigation is
impractical. Typically, the quality of the candidate lists differs due to various reasons
and thus the confidence of their meaningfulness. (1) Structural characteristics of
the candidate molecules influence the number of generated fragments. So, there are
candidates that produce more or less fragments in the in silico fragmentation step.
(2) The quality of MS/MS spectra and their number of characteristic peaks can be
different. Both factors (1) and (2) influence the number of fragments that can be
annotated to the MS/MS spectrum which results in different ranges of calculated scores.
Thus, distributions of candidate scores vary between different MS/MS spectra and
candidate lists making it difficult to decide which ranges for which type of candidates
are reliable. There is a huge scientific interest in approaches that assign confidence
values to candidate lists, as they are known from MS/MS based peptide identification
in proteomics Käll et al. (2008).

In Witting et al. (2017) (Section 5.5) a method is suggested to improve the ranking
of candidates, which is also used to evaluate the reliability and confidence of candidate
lists produced by MetFrag. In this case study, the approach is tested on MS/MS spectra
from lipid molecular structures as they are categorized via a well-defined classification
system. Moreover, investigations in this study revealed a characteristic distribution
of calculated MetFrag scores for the investigated lipid main and sub classes. These
score distributions have been used to develop classifiers for seven different lipid sub
and main classes to differentiate ranked candidate lists of good and bad quality. With
this approach, named LipidFrag, the number of false positive assignments could be
reduced from 91 % to 57 % for positive ion mode and from 93 % to 27 % for negative
mode on a reference data set of 960 MS/MS spectra originating from lipid molecular
structures. Furthermore, comparison with LipidBlast, one of the most utilized tool for
lipid spectra prediction, showed comparable results for both approaches where LipidFrag
could annotate 819 and LipidBlast 716 of the MS/MS spectra.

2.6 Method evaluation

In order to evaluate their performance, developments presented in this section have been
evaluated on experimental data in the related publications. Performances were also
compared with state-of-the-art computational approaches. Besides these examinations,
a more general comparison of available identification approaches is even more meaningful
especially when performed on completely independent data and under standardized
conditions. Ideally, each approach participating is optimized by its experts to guarantee
a fair comparison and evaluation of the tools.

For this reason MetFrag participated in the open CASMI contests in the years 2012,
2013 and 2016 resulting in three peer-reviewed publications. The first two contests
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took place in the early stages of my work. Thus, results submitted were dominated
by the methods of the original MetFrag approach. Ruttkies et al. (2013) (Section 5.6)
describes the results of MetFrag applied on the MS/MS data set of 15 spectra published
in Category 2 of CASMI 2012, where the correct candidate of the first six challenges
were known to be a natural product and the remaining from an environmental source.
At this initial stage of my work, MetFrag reached a median rank of 280 for the natural
product and 32 for the environtmental spectra and a relative ranking position (RRP:
calculated regarding the number of candidates where a value of 1 marks the best and a
value of 0 the worst possible result) of 0.874 and 0.939. Moreover, MetFrag was teamed
with an additional scoring term to improve ranks of candidates from biological origin
in the natural product challenges 1-6. This improved the median rank to 145 and the
RRP to 0.921.

In Schymanski et al. (2014a) (Section 5.7) MetFrag was combined with MetFusion
(Gerlich and Neumann, 2013) and its usage of information from MassBank spectral
library. The tools were applied on the 16 challenge MS/MS spectra published in
Category 2 of CASMI 2013. Results were obtained by joining candidate lists retrieved
from the three small molecule databases ChemSpider, PubChem and KEGG. Thus, the
correct candidate was found in each candidate list for all 16 challenge MS/MS spectra,
respectively. The aim of improving top rankings of the correct candidates compared
with the previous CASMI contest was reached by ranking the correct candidate in first
position in seven of the 16 challenges.

The CASMI 2016 contest was special as it provided 208 challenge MS/MS spectra,
an amount perfectly suited for the evaluation of computational approaches. Schymanski
et al. (2017a) (Section 5.8) was a joined publication by all participants to provide
a general comparison of all participating computational approaches. MetFrag was
used to produce results submitted in Category 2 (in silico fragmentation only) and
Category 3 where also additional information beyond in silico fragmentation was allowed.
In Category 2 the best performing methods used statistical approaches such as machine
learning, which at that time was not yet part of MetFrag. In the post-contest evaluation
of Category 3 MetFrag could benefit from the use of additional information such as
retention time and the number of references to outperform all other participating
approaches.
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3 Discussion

3.1 Developed combined scoring principle is major
enhancement for MetFrag

The scoring mechanism developed in my work, enables an easy integration of different
information and data sources to assign better measures of quality to molecular candidates
for a given query MS/MS spectrum. As an exemplary study, Ruttkies et al. (2015)
(Section 5.1) integrates an additional scoring term to privilege potential metabolites
(Peironcely et al., 2011) among the candidate structures from PubChem which includes
both biological and non-biological compounds. This leads to improvements in the
analysis for metabolomics experiments, which were confirmed with the results achieved
in CASMI 2012 published in Ruttkies et al. (2013) (Section 5.6). While Ruttkies
et al. (2015) (Section 5.1) represented a special case with the usage of a metabolite-
likeness score, in Ruttkies et al. (2016) (Section 5.2) I was able to incorporated several
scoring terms in a general approach used for various datasets and compound databases.
With these scoring terms additional information such as retention time, literature and
patent citations were integrated. I could successfully test the developed approach in
CASMI 2016, which was published in Schymanski et al. (2017a) (Section 5.8). The
general scoring approach I developed in Ruttkies et al. (2016) (5.2) was enhanced and
utilized in Ruttkies et al. (2019b) (Section 5.3) on data obtained by isotopic labelling
using hydrogen-deuterium exchange. This is the first study exploiting such data in a
computational method such as MetFrag for the identification of small molecules in a
high-throughput manner.

This flexible scoring mechanism can be regarded as major outcome of my work as it
was the basis for several further enhancements. Even for future applications, MetFrag’s
scoring approach can be easily extended by the use of “user-defined scores” allowing
any kind of information to be included in case it can be represented numerically.

However, the question of which scoring terms contributed most to the improvement
in the identifiaction of small molecules could not be solved entirely. A partial analysis is
provided in Ruttkies et al. (2016) (5.2), Schymanski et al. (2017a) (Section 5.8), Ruttkies
et al. (2019b) (Section 5.3) and Ruttkies et al. (2019a) (Section 5.4). A study combining
all scoring terms has not been performed yet which was due to the complexity and the
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number of terms, as well as the different experimental contexts in the presented studies.
To also integrate the information from isotopic labelling, MS/MS spectra retrieved by
hydrogen-deuterium exchange experiments would be required for an assessment of the
full set of scoring terms. The dataset analyzed in Ruttkies et al. (2019b) (Section 5.3)
for which hydrogen-deuterium exchange information is already available could be used
to combine the developed statistical scoring terms, additional experimental information,
such as retention time and spectral libraries, and meta information.

The usage of meta information such as the number of citations and patents of a
molecular candidate is highly dependent on the experimental context and question.
Usually, meta information has no causative link to the experimental data, but in some
contexts such as environmental screening, can provide valuable information on the
relevance of certain candidates. For this reason, it should always be combined with
methods relying on experimental data such as the query MS/MS spectrum and its usage
should always be considered as a supporting (and not the only) method in the process
of small molecule identification.

The integration of information obtained from additional experiments or analytical
methods, such retention time or isotopic labelling can be included in the structure
elucidation process in most cases. That being said, isotopic labelling experiments, such as
hydrogen-deuterium exchange, have considerable additional experimental requirements,
which are not always practical and feasible. However, if available and of good quality,
this data can not only improve the ranking of the correct candidate but also provide
more confidence.

An advantage of the statistical scoring implemented in Ruttkies et al. (2019a) (Section
5.4) is that it can be integrated independently of the availability of any additional
data. As it only relies on the statistical model trained a priori and the mandatory
query MS/MS spectrum, these scoring terms can be added in most applications. The
integration of additional training spectra from different origin, such as electron impact,
could even enlarge the application domain of the this approach.

3.2 Confidence scoring on lipid samples illustrates po-
tential for broader application

In Witting et al. (2017) (Section 5.5) I took advantage of the hierarchical classification
system of lipid molecular structures that categorizes lipids in different main and sub
classes. Initially, we wanted to demonstrate the applicability of combinatorial fragmen-
tation for the elucidation of molecular structures in the field of lipidomics. Interestingly,
the fragmenter score implemented in Ruttkies et al. (2016) (Section 5.2), calculated on
MS/MS spectra from representatives of different lipid classes, showed a characteristic
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distribution for the investigated lipid main and sub classes. It can be expected that
lipids from the same main or sub class show a similar fragmenation pattern. Thus,
these distributions award a certain chemical meaning to the fragmenter score as it
reflected these expected similarites. In addition, these distributions were the basis for
the training of lipid class-dependent bayesian models. Given a query MS/MS spectrum,
these models could assign probabilities to fragmenter scores, which were used to filter
false positive assignments of candidates to improve the ranking of the correct candidate.
Moreover, in high-throughput analysis with many MS/MS spectra, these probabilities
were used to filter out unreliable lists of candidates that could be caused by insufficient
spectral quality.

Due to the limited range of lipid classes this study was applied to, no reliable
statements can be made whether the approach can be expanded to more diverse
classes of compounds. However, this study can be treated as a showcase for a broader
application in future. The well-defined classification system of lipids played a significant
role in this study. A similar and more general classification system would be required
for small molecules prior to further application. Chemical ontologies could be used
for a broader classification such as Chemical Entities of Biological Interest (ChEBI),
which was mainly built for metabolites (Hastings et al., 2016). ClassyFire (Feunang
et al., 2016) or SODIAC (Bobach et al., 2012) are examples for tools developed for
the automated classification of molecules. However, these approaches are inherently
limited by integrated rules and the training set Sha et al. (2019). Moreover, it needs to
be determined whether molecules grouped together by these approaches share similar
fragmentation patterns. Another possibility might be to group molecules by their
fragmentation patterns themselves. Clusters of MS/MS spectra as created by GNPS
Wang et al. (2016a) could also show specific score distributions that could be used for
statistical modelling.

3.3 Combinatorial structure generation as basis for
enlargement of the MetFrag application

With the workflow I developed in Ruttkies et al. (2015) (Section 5.1) the integration
of MS/MS data from GC/APCI-MS/MS experiments was possible. This workflow
contained a rule-based and combinatorial method to create structures of molecular
candidates that are only scantily covered by existing compound databases. My workflow
for the generation of molecular structures was also applied in Allen et al. (2016) to
enhance CFM-ID for the analysis of GC electron impact spectra. It could be reused in
Ruttkies et al. (2019b) (Section 5.3) to alter structures of candidates to simulate the
exchange of hydrogens with deuterium in hydrogen-deuterium exchange experiments.
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The successful application of my strategies for this type of experiments encourages the
integration of further labelling methods such as 13C in future studies. However, the
combinatorial nature of the algorithm induces an overgeneration of molecules resulting in
many false positive candidate structures. A more sophisticated method that makes use
of more chemical knowledge could help to reduce this overgeneration. Even statistical
models could be considered, although training data might be difficult to find. The
advantage of the rule-based approach is that if rules used for the combinatorial generation
of candidate structures are choosen well, the chance of undergeneration is very low.
Compared to overgeneration, the absence of a correct structure (false negative) would
clearly reduce or even eliminate the chance for the correct annotation of the query
MS/MS spectrum. The high amount of false positive structures as they occur when
overgenerating could be discarded by appropriate scoring as applied by MetFrag in the
presented applications.

3.4 Structural elucidation of small molecules remains
a topic of interest

The community has made huge progress the last decade in developing computational
methods for structural elucidation of small molecules based on MS/MS spectra. The
progression of the evaluation performed in the CASMI contests over the years illustrates
the improvements achieved until today. Broad evaluation measures like the median rank
or the relative ranking position as they have been used in the early CASMI contests
have been replaced by measures like the number of correctly ranked candidates. These
metrics are more relevant especially for analytical scientists. Also the growth of available
training data and its increasing quality has contributed to this positive development.

Despite this positive trend computational methods can still only be used as supporting
methods as in most cases reference standards need to be used for confirmation of a
putative identification (Schymanski et al., 2014b). Although this support already reduces
the burden and costs for analysts a lot, the final goal of assigning a single compound to
the spectrum with high confidence seems still far away. Most computational methods
perform a “soft” assignment of putative candidates by using calculated scores. A hard
filter even with high confidence might cause a loss of the correct structure. So, the last
decade the community followed the goal to bring as many correct hits among the top
positions as possible because scarcely anybody investigates the entire candidate list. As
we have learned from Google search results, most people never visit the second page
and even expect the best hit to be in first position.

The usage of spectral libraries and small molecule databases also remains an im-
portant factor that limits computational approaches. Although, the usage of spectral
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reference data for structure elucidation is powerful (independent whether used directly
or in machine learning approaches), the coverage compared to the size of the entire
chemical space is rather small. Although this problem becomes smaller when relying on
structure databases there is still a relevant chance of missing the correct candidate due
to an unknown compound. This is why de novo methods that are independent of the
content available in small molecule databases are of interest Stravs et al. (2021).

3.5 Controlled evaluation studies for computational
methods are insightful

An important driver and benchmark for the developments of computational methods
in the last decade were the CASMI contests. These contests can be considered for
being an excellent assessment of the current state of progress made during my work.
The independent comparison of results submitted by research groups all over the world
additionally showed the current state among the entire community. Moreover, the
discussions and the exchange of expertise during and after a contest was an important
driving force for further improvements. Thus, CASMI provided important data for the
testing and comparison of the developed approaches.

CASMI 2016 played a particular role for the comparison of computational approaches
among all CASMI contests. This can not only be attributed to the relatively high amount
of available high quality MS/MS spectra. Additionally, for the first time training data
was provided to be used for optimization of parameters required by statistical methods.
Moreover, retention time data was given to be included in the identification process. The
preparation and provision of fixed candidate lists for each challenge provided common
ground for a valid comparison of participating computational approaches. Although a
lot has been done to achieve this fair and valid comparison, the use of different training
data sets by the participating statistical methods could not be avoided in the end. To
overcome this problem, organizers encouraged a post contest resubmission of results
by participants who used statistical methods trained on a joint training data set. The
analysis obtained by this resubmission was an important outcome of Schymanski et al.
(2017a) (Section 5.8) as the method comparison is of paramount importance. Even until
today spectral data provided in CASMI 2016 is still used for the development and the
evaluation of current computational methods (Li et al., 2020; Fan et al., 2020).

In CASMI 2016, the methods that have been developed in Ruttkies et al. (2016)
(Section 5.2) were successfully tested in Category 3 (additional results) where it could
outperform all other participants. In an extra study, I could enhance MetFrag by the
integration of a statistical model published in Ruttkies et al. (2019a) (Section 5.4),
combining combinatorial fragmentation and statistical methods and could outperform

37



3 DISCUSSION

post contest submitted results of other statistical approaches for Category 2. The
combination showed the best performance for the negative mode test data among all
participants and thus can overcome the unpleasant but usual situation when only few
training data is available. Thus, I consider the combination of statistical models and
combinatorial fragmentation as an important outcome of my work.
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4 Conclusion

During my doctoral studies, I developed a novel and flexible approach that exploits
combinatorial fragmentation and combined additional analytical data, statistical method-
ologies and different information sources to improve annotation of molecular structures
on the basis of MS/MS data. This resulted in a completely refactored and extended
version of the MetFrag software (Wolf et al., 2010) that now is able to exploit the full
potential of combinatorial fragmentation. The achievements of my studies have been
published in several peer-reviewed publications that represent the essence of my work.

My developed strategies outperformed not only combinatorial fragmentation im-
plemented in existing software tools but also competing state-of-the-art approaches.
The work I published together with Schymanski et al. (Ruttkies et al., 2016) formed
the basis for further developments and applications presented in this thesis and for the
MetFrag approach. With 546 citations1 this work has a large impact in the community
working on or using MS/MS-based computational methods for the identification of small
molecules. Initially published in 2010, MetFrag has now celebrated its tenth anniversary
and this milestone marks a time of fundamental enhancements and an appreciation of
its role as a key playing tool in the field of metabolomics and beyond. However, this
is not only indicated by the high citation rate of Ruttkies et al. (2016), but also by
the many and increasing application papers using MetFrag beyond close collaborators,
and continuing developments beyond the work of my studies. During this decade, the
performance of computational small molecule identification has been optimized in a
way that evaluation metrics like the median rank or the relative ranking position as
predominantly reported for CASMI 2012, has receded into background. Measures like
the number of correctly top ranked candidates, previously too small to be usable, have
been proven to be more relevant as performance improved. These achievements can be
regarded as a milestone in computational small molecule identification. Furthermore,
the size of spectral datasets used for evaluation has increased drastically. This shows
how practical tools have become so that they can be used for real world data. In this
regard, I was able to enlarge MetFrag’s application domain during my studies from
metabolomics to data sets originating from environmental science experiments. The
success in combining different information and data sources in the process of small
molecule identification made MetFrag a solution used by US EPA’s Chemistry Dash-

1https://scholar.google.com (accessed on 04/2020)

39



4 CONCLUSION

board (McEachran et al., 2018) and Bruker’s MetaboScape software (Bruker, 2020).
My work has successfully illustrated how to integrate additional experimental data
from different analytical methods such as isotopic labelling and statistical methods with
computer assisted combinatorial fragmentation. Developed approaches are in common
use by the community and are incentives to further integrate different data sources and
analytical methods to accelerate computer assisted identification of small molecules.
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MetFrag relaunched: incorporating 
strategies beyond in silico fragmentation
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Abstract 

Background: The in silico fragmenter MetFrag, launched in 2010, was one of the first approaches combining 
compound database searching and fragmentation prediction for small molecule identification from tandem mass 
spectrometry data. Since then many new approaches have evolved, as has MetFrag itself. This article details the latest 
developments to MetFrag and its use in small molecule identification since the original publication.

Results: MetFrag has gone through algorithmic and scoring refinements. New features include the retrieval of refer-
ence, data source and patent information via ChemSpider and PubChem web services, as well as InChIKey filtering 
to reduce candidate redundancy due to stereoisomerism. Candidates can be filtered or scored differently based 
on criteria like occurence of certain elements and/or substructures prior to fragmentation, or presence in so-called 
“suspect lists”. Retention time information can now be calculated either within MetFrag with a sufficient amount of 
user-provided retention times, or incorporated separately as “user-defined scores” to be included in candidate rank-
ing. The changes to MetFrag were evaluated on the original dataset as well as a dataset of 473 merged high resolu-
tion tandem mass spectra (HR-MS/MS) and compared with another open source in silico fragmenter, CFM-ID. Using 
HR-MS/MS information only, MetFrag2.2 and CFM-ID had 30 and 43 Top 1 ranks, respectively, using PubChem as a 
database. Including reference and retention information in MetFrag2.2 improved this to 420 and 336 Top 1 ranks with 
ChemSpider and PubChem (89 and 71 %), respectively, and even up to 343 Top 1 ranks (PubChem) when combin-
ing with CFM-ID. The optimal parameters and weights were verified using three additional datasets of 824 merged 
HR-MS/MS spectra in total. Further examples are given to demonstrate flexibility of the enhanced features.

Conclusions: In many cases additional information is available from the experimental context to add to small mol-
ecule identification, which is especially useful where the mass spectrum alone is not sufficient for candidate selection 
from a large number of candidates. The results achieved with MetFrag2.2 clearly show the benefit of considering this 
additional information. The new functions greatly enhance the chance of identification success and have been incor-
porated into a command line interface in a flexible way designed to be integrated into high throughput workflows. 
Feedback on the command line version of MetFrag2.2 available at http://c-ruttkies.github.io/MetFrag/ is welcome.

Keywords: Compound identification, In silico fragmentation, High resolution mass spectrometry, Metabolomics, 
Structure elucidation
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Background
The identification of unknown small molecules from 
mass spectral data is one of the most commonly-men-
tioned bottlenecks in several scientific fields, including 

metabolomic, forensic, environmental, pharmaceutical 
and medical sciences. Recent developments to high reso-
lution, accurate mass spectrometry coupled with chroma-
tographic separation has revolutionized high-throughput 
analysis and opened up whole new ranges of substances 
that can be detected at ever decreasing detection limits. 
However, where “peak inventories” are reported, the vast 
majority of the substances or peaks detected in samples 
typically remain unidentified  [1–3]. Although targeted 
analysis, where a reference standard is available, remains 
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the best way to confirm the identification of a compound, 
it is no longer possible to have access to reference stand-
ards for the 100s–1000s of substances of interest in com-
plex samples. While mass spectral libraries are growing 
for high accuracy tandem and MSn spectra, the cover-
age is still relatively small compared with the number of 
compounds that could potentially be present in typical 
samples  [4, 5]. Thus, for substances without reference 
standards or not present in the spectral libraries, the 
challenge of identification still remains. This has spurred 
activities in computational mass spectrometry, aimed at 
proposing tentative identifications for the cases where 
the mass spectrum is not (yet) in a mass spectral library.

The in silico fragmenter MetFrag, launched in 2010, 
was one of the first approaches to address this niche 
for accurate tandem mass spectra in a fast, combinato-
rial manner [6]. The MetFrag workflow starts by retriev-
ing candidate structures from the compound databases 
PubChem  [7], ChemSpider  [8] or KEGG  [9, 10], or 
accepting the upload of a structure data file (SDF) con-
taining candidates. Candidates are then fragmented using 
a bond dissociation approach and these fragments are 
compared with the product ions in the measured mass 
spectrum to determine which candidates best explain 
the measured data. The candidate scoring is a function of 
the mass to charge ratio (m/z),   intensity and bond dis-
sociation energy (BDE) of the matched peaks, while a 
limited number of neutral loss rules (5 in total) account 
for rearrangements  [6]. Searching PubChem, the origi-
nal MetFrag (hereafter termed “MetFrag2010” for read-
ability) achieved a median rank of 8 (with an average of 
338 candidates per compound) when restricted to a Feb. 
2006 version of PubChem, and 31.5 querying PubChem 
in 2009 (average of 2508 candidates per compound) on a 
102 compound dataset from Hill et al. [11]. As PubChem 
is now double the size of the 2009 version, the candidate 
ranking becomes more challenging over time due to the 
increase in numbers of candidates. Thus, innovations are 
required to improve performance and efficiency.

Other methods for in silico fragmentation are also 
available. The commercial software Mass Frontier  [12] 
uses rule–based fragmentation prediction based on 
standard reactions, a comprehensive library of over 
100,000 fragmentation rules, or both. The approaches 
of MetFrag and Mass Frontier are complementary and 
have been used in combination to support structure elu-
cidation  [13, 14], but Mass Frontier does not perform 
candidate retrieval or scoring by itself. With increasing 
amounts of data available, machine learning approaches 
have been used to train models of the fragmentation pro-
cess. Heinonen et  al.  [15] introduced FingerID, which 
uses a support vector machine to learn the mapping 
between the mass spectra and molecular fingerprints of 

the candidates. Allen et al. [16] use a stochastic, genera-
tive Markov model for the fragmentation. Implemented 
in CFM-ID (competitive fragment modelling), this can 
be used to assign fragments to spectra to rank the can-
didates, but also to predict spectra from structures alone. 
The MAGMa algorithm  [17] includes information from 
MSn fragmentation data, but also uses the number of 
references as an additional scoring term. The latest frag-
menter, CSI:FingerID combines fragmentation trees and 
molecular fingerprinting to achieve up to 39  % Top  1 
ranks, outperforming all other fragmenters  [18]. The 
MetFusion  [19] approach takes advantage of the availa-
bility of spectral data for some compounds and performs 
a combined query of both MetFrag and MassBank  [20], 
such that the scores of candidates with high chemical 
similarity to high-scoring reference spectra are increased.

Lessons from recent critical assessment of small mol-
ecule identification contests (CASMI)  [21, 22], which 
included many of the above-mentioned algorithms, 
show that the use of smaller, specific databases greatly 
improves the chance of obtaining the correct answer 
ranked highly and that the winners gathered information 
from many different sources, rather than relying on the 
in silico fragmentation alone. Furthermore, performing 
candidate selection by molecular formula can risk losing 
the correct candidate if the formula prediction is not cer-
tain, such that an exact mass search can be more appro-
priate in cases where more than one formula is possible. 
Despite the progress achieved for in silico fragmentation 
approaches, there are still some fundamental limitations 
to mass spectrometry that mean that candidate rank-
ing cannot be solved by fragment prediction alone. For 
example, mass spectra that are dominated by one or only 
a few fragments (e.g. a water loss) that can be explained 
by most of the candidates simply do not contain enough 
information to distinguish candidates. Further examples 
and limitations are discussed extensively in [4].

The aim of MetFrag2.2 was to incorporate many addi-
tional features into the original MetFrag in silico frag-
menter, considering all the information presented above. 
Features to explicitly include or exclude combinations of 
elements and substructures by either filtering or scor-
ing were added. Suspect screening approaches, growing 
in popularity in environmental analysis [1], were also 
incorporated to allow users to screen large databases (i.e. 
PubChem and ChemSpider) while being able to check 
for candidates present in smaller, more specific databases 
(e.g. KEGG [9], HMDB [23], STOFF-IDENT [24], Mass-
Bank  [20] or NORMAN suspects  [25]), enabling users 
to “flag” potential structures of interest. The number of 
references, data sources and/or patents for a substance 
are now accessible via PubChem and/or ChemSpider 
web services, and a PubChem reference score has already 
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been included in the MAGMa web interface  [26]. A 
high number of literature references or patent listings 
may indicate that the substance is of high use and thus 
more likely to be found in the environment. Similarly, a 
higher number of scientific articles for a metabolite could 
indicate that this has been observed in biological sam-
ples before. Reference information has been shown to 
increase identification “success” in many cases, for exam-
ple [17, 27, 28], by providing additional information com-
pletely independent of the analytical evidence. However, 
as this information can introduce a bias towards known 
compounds, this information should be incorporated 
with caution, depending on the experimental context.

Retention time information is often used for candi-
date selection in LC/MS. Unlike the retention index (RI) 
in GC, where the Kovats RI [29] is quite widely applied, 
there is not yet an established RI per se for LC/MS 
despite a high interest. Instead, where a reverse phase 
column is used for the LC method, the octanol–water 
partitioning coefficient (log P) and retention times (RT) 
of substances can be correlated due to the column prop-
erties [30]. The log P of the measured standards can be 
predicted with various software approaches and corre-
lated with the retention times (see e.g.  [31] for an over-
view on different methods). This has already been used 
in candidate selection (e.g. [13, 32–34]), with various log 
P predictions. The orthogonal information proved useful 
despite the large errors associated with the predictions 
(e.g. over 1 log unit or up to several minutes retention 
time window depending on the LC run length). These are 
due to uncertainties in log P prediction that are common 
among different prediction implementations when con-
sidering a broad range of substances with different (and 
many) functional groups and ionization behaviour. As the 
Chemical Development Kit (CDK  [35, 36]) offers log P 
calculations, this can be incorporated within MetFrag2.2. 
Alternative approaches with log D, accounting for ioni-
zation, or those requiring more extensive calculations 
(e.g.  [37–39]) can be included via a user-defined score, 
described further below.

This article details the developments and improve-
ments that have been made to MetFrag since the origi-
nal publication, including a detailed evaluation on several 
datasets and specific examples to demonstrate the use of 
MetFrag2.2 in small molecule identification.

Implementation
MetFrag architecture
MetFrag2.2 is written in Java and uses the CDK  [35] to 
read, write and process chemical structures. To start, 
candidates are selected from a compound database 
based on the neutral monoisotopic precursor mass and 
a given relative mass deviation (e.g. 229.1089 ± 5 ppm), 

the neutral molecular formula of the precursor or a set 
of database-dependent compound accession numbers. 
Currently, the online databases KEGG [9, 10], PubChem 
[7] or ChemSpider [8] can be used with MetFrag2.2, as 
well as offline databases in the form of a structure data 
file (SDF) or, new to MetFrag2.2, a CSV file that con-
tains structures in the form of InChIs [40] together with 
their identifiers and other properties. Furthermore, Met-
Frag2.2 is able to query local compound database systems 
in MySQL or PostgreSQL, as performed in [41].

MetFrag2010 considered the ion species [M  +  H]+, 
[M]+, [M]− and [M − H]− during candidate retrieval and 
fragment generation. While the web interface contained 
an adduct mass adjustment feature, the presence of 
adducts was not considered in the fragments. MetFrag2.2 
can also handle adducts also appearing in the product 
ions associated with [M + Na]+, [M + K]+, [M + NH4]+  
for positive ionization and [M +  Cl]−, [M +  HCOO]− 
and [M  +  CH3COO]− for negative ionization. As the 
candidate retrieval is performed on neutral molecules, 
the precursor adduct type must still be known before-
hand; for high-throughput workflows this information is 
intended to come from the workflow output.

Additive relative and absolute mass deviation values are 
used to perform the MS/MS peak matching and can be 
adjusted according to the instrument type used for MS/
MS spectra acquisition. The number of fragmentation 
steps performed by MetFrag2.2 can be limited by setting 
the tree depth (default is 2).

The overall score of a given candidate is calculated as 
shown in Eq. 1.

The final candidate score SCFinal
 is the weighted sum of 

all single scoring terms used, where the weights given 
by ωi specify the contribution of each term. All SC scor-
ing terms used to calculate SCFinal

 are normalized to the 
maximum value within the candidate result list for a 
given MS/MS input. The calculation of individual scor-
ing terms are detailed in the subsections below; all terms 
besides SCFrag are new to MetFrag2.2.

A variety of output options are available. Output SDFs 
contain all compounds with a structure connection table 
and all additional information stored in property fields. 
For the CSV and XLS format, the structures are encoded 
by SMILES [42] and InChI codes, while an extended XLS 
option is available that includes images of the compounds 
and/or fragments. In all cases the compounds are sorted 
by the calculated score by default.

(1)

SCFinal
= ωFrag · SCFrag + ωRT · SCRT + ωRefs · SCRefs

+ ωIncl · SCIncl

+ ωExcl · SCExcl
+ ωSuspects · SCSuspects

+ · · · + ωn · SCn
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In silico fragmentation refinements
The in silico fragmentation part of MetFrag2.2 has under-
gone extensive algorithmic and scoring refinements. The 
fragmentation algorithm still uses a top-down approach, 
starting with an entire molecular graph and removing 
each bond successively. However, the generated frag-
ments are now stored more efficiently by using only 
the indexes of removed bonds and atoms, similar to the 
MAGMa approach [43]. This not only increases process-
ing speed and decreases memory usage, but still allows 
the fast calculation of the masses and molecular formulas 
of each fragment. This makes it possible to process MS/
MS spectra with higher tree depths to generate reliable 
fragments for molecules with complex ring structures 
with lower CPU and memory requirements. As a result, 
fragment filters such as the molecular formula dupli-
cate filter used in MetFrag2010 to decrease the number 
of generated structures were no longer required, their 
removal reduces the risk of missing a potentially correct 
fragment. The calculation of the fragmentation score, 
SCFrag, modified from the score given in [6], is shown in 
Eq. 2 for a given candidate C:

For each peak p matching a generated fragment, the 
relative mass RelMassp and intensity RelIntp as well as the 
sum of all cleaved bonds b of the fragment f assigned to 
p are considered. Where more than one fragment could 
be assigned to p, the fragment with the lowest denomi-
nator value is considered. In contrast to Eq. 2, the Met-
Frag2010 scoring used the difference between 1/max(wc) 
and 1/max(e) · ec, which could lead to negative scores if 
the BDE penalty was large. The weights α, β and γ were 
optimized on a smaller subset of spectra from Gerlich 
and Neumann [19] that was not used further in this work 
including merged MassBank IPB (PB) and RIKEN (PR) 
MS/MS spectra and were set to α = 1.84, β = 0.59 and 
γ = 0.47. Once SCFrag has been calculated for all candi-
dates within a candidate list, it is normalised so that the 
highest score is one.

Compound filters, element and substructure options
The unconnected compound filter was already imple-
mented in MetFrag2010 to remove salts and other 
unconnected substances that could not possibly have the 
correct neutral mass from the candidate list. InChIKey 
filtering has now been added to reduce candidate redun-
dancy due to stereoisomerism, as stereoisomers inflate 
candidate numbers but cannot (usually) be distinguished 
with MS/MS. The InChIKey filtering is performed using 
the first block, which encodes the molecular skeleton (or 

(2)SCFrag =
∑

p∈P

RelMassp
α · RelIntpβ

(

∑

b∈Bf BDEb

)γ

connectivity), but not the stereochemistry. While this is 
generally reasonable, some tautomers may have differing 
InChIKey first blocks (see e.g. [40]), such that not all tau-
tomers will be filtered out. The highest-scoring stereoiso-
mers overall with a matching first block are retained.

Element restrictions have been added to enhance the 
specificity of the exact mass search. Three options are 
available to restrict the elements considered: (a) include 
only the given elements, (b) the given elements have to be 
present, but other elements can also be present (as long 
as they are not explicitly excluded) and (c) exclude certain 
elements. Options (b) and (c) can be used in combina-
tion. These filters can be used for example to incorporate 
isotope information (e.g. Cl, S) that has been detected in 
the full scan (MS1) data.

Substructure restrictions allow the inclusion and exclu-
sion of certain molecular substructures, encoded in 
SMARTS [44]. Each substructure is searched indepen-
dently, thus overlapping substructures can also be con-
sidered. This option is particularly useful for cases where 
detailed information about a parent substance is known 
(e.g. transformation product, metabolite elucidation), 
or complementary substructure information is available 
from elsewhere (e.g. MS2Analyzer [45] or other MS clas-
sifiers [13]). Candidates containing certain substructures 
can either be included and/or excluded prior to frag-
mentation, or scored differently. To calculate a score, the 
number of matches in the inclusion or exclusion list con-
taining n substructures are added per candidate as given 
in Eq. 3 (where Mi = 1, if substructure i matches candi-
date C from the given candidate list L or 0 otherwise):

The inclusion (SCIncl
) and/or exclusion (SCExcl

) score(s) per 
candidate are then calcualted as shown in Eq. 4:

where maxC ′∈L(NC ′
Match

) is the maximal value of 
NCMatch

 within the candidate list and the scores SCIncl
 

or SCExcl
 are set to 0 when maxC ′∈L(NC ′

Match
) = 0 or 

maxC ′∈L(n− NC ′
Match

) = 0, respectively.

Additional substance information
Reference and patent information
While the reference and patent information is repre-
sented by the placeholder term ωRefs · SCRefs

 in Eq. 1, the 
score can either be composed of several terms or added 
as a combined term, as described below.

(3)NCMatch
=

∑

M1 +M2 + · · · +Mn; Mi ∈ {0, 1}

(4)

SCIncl
=

NCMatch

maxC ′∈L
(

NC ′
Match

) ;

SCExcl
=

n− NCMatch

maxC ′∈L
(

n− NC ′
Match

)
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If the query databases is PubChem, the number of pat-
ents (PubChemNumberPatents, PNP) and PubMed ref-
erences (PubChemPubMedCount, PPC) are retrieved 
for each candidate via the PubChem PUG REST API 
[46]. These values result in the scoring terms SCPNP and 
SCPPC, which can be weighted individually, or a combined 
term with either or both parameters. For the latter, first, a 
cumulative reference term is calculated as shown in Eq. 5, 
before the PubChem combined reference score (SCPCR) is 
calculated for candidate C in candidate list L as shown in 
Eq. 6 for PubChem:

For ChemSpider, five values with reference infor-
mation can be retrieved using the ChemSpider web 
services  [47]), including the number of data sources 
(ChemSpiderDataSourceCount, CDC), references 
(ChemspiderReferenceCount, CRC), PubMed references 
(ChemSpiderPubMedCount, CPC), Royal Society for 
Chemistry (RSC) references (ChemSpiderRSCCount, 
CRSC) and external references (ChemSpiderExternal-
ReferenceCount, CERC). Any combination of these ref-
erence sources can be used and weighted individually, 
yielding the score terms SCCDC, SCCRC, SCCPC, SCCRSC and 
SCCERC. Alternatively, the ChemSpider Combined Refer-
ence Scoring term (SCCCR) can be calculated, as shown 
below in Eqs. 7 and 8:

The corresponding command line terms are given in the 
additional information (see Additional files 1, 2, 3).

Suspect lists
Additional lists of substances (so-called “suspect lists”) 
can be used to screen for the presence of retrieved candi-
dates in alternative databases. The suspect lists are input 
as a text file containing InChIKeys (one key per line) for 
fast screening. The first block of the InChIKey is used to 
determine matches. Example files are available from [25]. 
This “suspect screening” can be used as an inclusion fil-
ter (include only those substances that are in the suspect 
list) or as an additional scoring term for the ranking of 
the candidates, yielding the term ωSuspects · SCSuspects given 
in Eq. 1.

(5)NCPCR = a1 · PNPC + a2 · PPCC , a1, a2 ∈ {0, 1}

(6)
SCPCR =

NCPCR

maxC ′∈LNC ′
PCR

(7)

NCCCR
= b1 · CRCC + b2 · CERCC + b3 · CRSCC

+ b4 · CPCC + b5 · CDCC

b1, b2, b3, b4, b5 ∈ {0, 1}

(8)SCCCR =
NCCCR

maxC ′∈L NC ′
CCR

Retention time score via log P
The retention time (RT) scores offered within MetFrag2.2 
are based on the correlation of log P and user-provided 
RT information. The RTs must be associated with suf-
ficient analytical standards measured under the same 
conditions as the unknown spectrum (a minimum of 
ten data points are recommended, depending on the 
distribution over the chromatographic run). By default, 
the log P is calculated using the XlogP algorithm in the 
CDK library [36, 48, 49]. Alternatively, if PubChem is 
used as a candidate source, the XLOGP3 value retrieved 
from PubChem can also be used [50]. The user-provided 
RTs and their associated log P values comprise a train-
ing dataset to generate a linear model between RT and 
the log P, shown in Eq. 9, where a and b are determined 
using least squares regression:

This equation is then used to estimate log PUnknown, given 
the measured RT associated with the unknown spec-
trum, and compared with log PC calculated for each can-
didate. It is imperative that the log P calculated for each 
candidate arises from the same source as the log P used 
to build the model in Eq. 9. Lower log P deviations result 
in a higher score for a candidate; the score is calculated 
using density functions assuming a normal distribution 
with σ = 1.5 (chosen arbitrarily), as shown in Eq. 10:

Alternative log P values that are not available within 
MetFrag2.2 can also be used to establish a model and 
calculate a different SCRT in a two-step approach. First, 
MetFrag2.2 can be run either with or without one of the 
built-in models, so that candidates and all other scores 
can be obtained. The InChIs or SMILES in the output 
CSV, or structures in the output SDF can then be used by 
the user to calculate their own log P values. These should 
be included in the output CSV or SDF using the “User-
LogP” tag (or a self-defined alternative) and used as input 
for MetFrag2.2 with the Local Database option and a RT 
training file containing retention times and the user log 
Ps with the column header matching the tag in the results 
file. The values a and b in Eq. 9 are then determined and 
used to calculate SCRT for the final scoring. Alternative 
RT models that do not use log P should be included as a 
“user-defined score”, as described below.

User‑defined scoring functions
The final term in Eq.  1, ωn · SCn, represents the “user-
defined scoring function”, which allows users to incorpo-
rate any additional information into the final candidate 
scoring. The MetFrag2.2 output (InChIs, SMILES, SDF) 

(9)log PUnknown = a · RTUnknown + b

(10)SCRT =
1

σ
√
2π

e−(|log PUnknown−log PC|)2/2σ 2
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can be used to calculate additional “scores” for the can-
didates using external methods and these scores can be 
reimported with the candidates and all other MetFrag2.2 
scores in the pipe-separated (|) format for final scoring. 
The scores and weights are matched from the column 
headers in the input file and the parameter names added 
to the score list. The commands are given in a additional 
table (see Additional files 1, 2, 3), with an example (“ter-
butylazine and isomers”) below.

Results and discussion
The changes to MetFrag2.2 were evaluated on several 
datasets, described in the following. Further examples 
are given to demonstrate the use of different new fea-
tures. Unless mentioned otherwise, candidate structures 
were retrieved from the compound databases PubChem 
and ChemSpider in June, 2015. If not stated explicitly, 
the datasets were processed with a relative and absolute 
fragment mass deviation of 5 ppm and 0.001 Da, respec-
tively. The resulting ranks, if not specified explicitly, cor-
respond to pessimistic ranks, where the worst rank is 
reported in the case where the correct candidate has the 
same score as other candidates. Stereoisomers were fil-
tered to keep only the best scored candidate based on the 
comparison of the first part of the candidates’ InChIKeys. 
The expected top ranks calculated as in Allen et al. [16], 
which handles ties of equally scored candidates in a uni-
formly random manner, are also given when compar-
ing the two in silico fragmenters. This demonstrates the 
effect of equally scored candidates on ranking results.

The datasets from Eawag and UFZ used in this publi-
cation arose from the measurement of reference stand-
ard collections at Eawag and UFZ, which comprise small 
molecules of environmental relevance such as pharma-
ceuticals and pesticides with a wide range of physico-
chemical properties and functional groups, and also 
include several transformation products which typically 
have lower reference counts. All spectra are publicly 
available in MassBank.

In Silico fragmentation performance
Comparison with MetFrag2010
The merged spectra from 102 compounds published 
in Hill et  al.  [11], also used in [6, 19], formed the first 
evaluation set. The candidate sets from Gerlich and 
Neumann  [19] were used as input for MetFrag2.2 and 
processed with consistent settings: relative mass devia-
tion of 10 ppm and absolute mass deviation of 0 Da, i.e. 
no absolute error, for a direct comparison with Met-
Frag2010. With MetFrag2.2, the median rank improved 
from 18.5 to 14.5, while the number of correct ranked 
candidates in the top 1, 3 and 5 improved from 8 to 9, 20 
to 24 and 28 to 34, respectively.

Baseline performance on Orbitrap XL Dataset
A set of 473 LTQ Orbitrap XL spectra resulting from 
359 reference standards formed the second dataset. The 
spectra were measured at several collision energies with 
both collision-induced ionization (CID) 35 and higher-
energy CID (HCD) 15, 30, 45, 60, 75 and 90 normalized 
units (see [51] for more details) coupled with liquid chro-
matography (LC) with a 25 min program on an Xbridge 
C18 column. The raw files were processed with RMass-
Bank [51, 52], yielding the “EA” records in MassBank. 
These spectra were merged using the mzClust_hclust 
function in xcms [53] (parameters eppm  =  5× 10−6 
and eabs = 0.001 Da) to create peaks with the mean m/z 
value and highest (relative) intensity and retained where 
they contained at least one fragment peak other than 
the precursor. In total 473 spectra (319 [M  +  H]+and 
154 [M − H]−) were evaluated with MetFrag2010 using 
ChemSpider, as well as MetFrag2.2 using either PubChem 
or ChemSpider. The correct molecular formula was used 
to retrieve candidates. The results, given in Table 1, show 
the clear improvement between MetFrag2010 (73 Top 1 
ranks with ChemSpider) and MetFrag2.2 (105 top 1 ranks 
with ChemSpider). This is also indicated by the higher 
relative ranking positions (RRP)  [19] retrieved by Met-
Frag2.2 where a value of 1 marks the best possible result 
and 0 the worst possible result. Note that the version 
used here is 1-RRP as defined in Kerber et  al.  [54] and 
Schymanski et al. [55]. The results show that the algorith-
mic refinements improved the baseline in silico fragmen-
tation performance, although it is difficult to tell which of 
the changes had the greatest influence.

Comparison with CFM‑ID using Orbitrap XL Dataset
The same dataset of 473 merged spectra and the corre-
sponding PubChem candidate sets were used as input 
for CFM-ID [16] version 2.0 (“Jaccard”, RDKit 2015.03.1, 
lpsolve 5.5.2.0, Boost 1.55.0), to form a baseline compari-
son with an alternative in silico fragmenter. The results, 
given in Table 1, show that CFM-ID generally performed 
better, indicated by the higher number of correct first 
ranked candidates (43 vs. 30), top 5 (170 vs. 145), top 10 
(232 vs. 226) and a lower median and mean rank of 11 
versus 12 and 127 versus 141. The expected ranks, includ-
ing equal ranked candidates, also implied a better perfor-
mance of CFM-ID (top  1: 43 vs. 57, top  5: 163 vs. 193, 
top  10: 245 vs. 261). This was not entirely unexpected 
as CFM-ID uses a more sophisticated fragmentation 
approach, but also requires a much longer computa-
tion time. For run time analysis, 84 of the 473 queries, 
selected at random, were processed (single-threaded) 
with MetFrag2.2 and CFM-ID in parallel on a computer 
cluster with a maximum of 28 (virtual) computer nodes 
with 12 CPU cores each. The total run times (system + 
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user runtime, retrieved by linux bash command time) 
were 75  min for MetFrag2.2 and 12,570  min (209.5  h) 
for CFM-ID. These values represent the runtime on a 
single CPU core for all 84 queries in series. The average 
run time per query amounts to 54 s for MetFrag2.2 and 
8979 s (150 min) for CFM-ID.

As CFM-ID and MetFrag2.2 use independent in silico 
fragmentation approaches, one can hypothesize that 
the combination of the approaches should improve 
the results further. To demonstrate this, the CFM-ID 
results were incorporated into MetFrag2.2 by introduc-
ing an additional scoring term ωCFM-ID · SCCFM-ID, where 
SCCFM-ID defines the normalized CFM-ID probability of 
candidate C. Different contributions of each fragmenter 
relative to another was determined by randomly draw-
ing 100 combinations of ωFrag and ωCFM-ID such that 
(ωFrag + ωCFM-ID = 1). The best results, shown in Table 1, 
were obtained with ωFrag = 0.67 and ωCFM-ID = 0.33 , 
where the change in number 1 ranks with weight is 
shown in Additional file  4. With this best combination, 
the number of Top 1 ranks improved from 30 to 61, while 
the median rank improved to 8. This shows that the com-
bination of independent fragmentation methods can 
indeed yield valuable improvements to the results, shown 
again in the next paragraph after including the additional 
information. Further validation was beyond the scope 
of the current article, as further improvements could be 
made by retraining CFM-ID on Orbitrap data, but would 
be of interest in the future.

Adding retention time and reference information
Parameter selection on Orbitrap XL Dataset
The next stage was to assess the effect of references 
and retention time information on the MetFrag results. 

Firstly, each score term (i.e. fragmenter, retention time 
and/or reference information) was either included or 
excluded by setting the weight (ωFrag,ωRT,ωRefs) to 1 or 
0, to assess the impact of the various combinations on 
the number of correctly-ranked number 1 substances. 
The results are shown in Table  2. The best result was 
obtained when all three “score terms” (fragmenter, 
RT and references) were included in candidate rank-
ing. For PubChem, both RT/log P models (CDK XlogP 
and XLOGP3 from PubChem directly) were assessed 
and thus two sets of results are reported. The reference 
information was included using the combined reference 
scores introduced in Eqs.  6 and  8, where all combina-
tions of the reference values described above (1–2 for 
PubChem, 1–5 for ChemSpider, i.e. 3 and 31 combina-
tions in total, respectively), were used to form a cumu-
lative total reference term, shown in Eq. 5 for PubChem 
and Eq. 7 for ChemSpider. The best results were achieved 
with PubChem when using both patents and PubMed 
references (SCPNP+PPC; a1 = 1, a2 = 1), while for Chem-
Spider using the ReferenceCount, ExternalReference-
Count and the DataSourceCount (SCCRC+CERC+CDC) proved 
best, i.e. b1 = 1, b2 = 1, b3 = 0, b4 = 0, b5 = 1. Table  2 
contains the number of Top  1 ranks for each combina-
tion of ωFrag,ωRT,ωRefs ∈ {0, 1}. The results show clearly 
that, while references alone result in over 311 top 1 ranks 
(65 % for PubChem), the addition of both fragmentation 
and retention time information improves the results fur-
ther, to 69  % of candidates ranked first (PubChem) and 
even 87  % of candidates ranked first (ChemSpider). For 
PubChem the distribution of the number of Combine-
dReferences (including patents and PubMed references) 
for the 359 queries of the (unique) correct candidates is 
shown in Additional file 5.

Table 1 Comparison of in silico fragmentation results for 473 Eawag Orbitrap spectra (formula search)

MetFrag2010 and MetFrag2.2 were compared with the same ChemSpider candidate sets; MetFrag2.2 and CFM-ID with the same PubChem candidate sets. Far right: 
Best top 1 pessimistic ranks obtained by combining MetFrag2.2 and CFM-ID 2.0 with the weights ωFrag = 0.67 and ωCFM-ID = 0.33. The expected ranks, which partially 
account for equally scored candidates as calculated in [16], are shown in the lower part of the table

MetFrag2010 MetFrag2.2 CFM‑ID MetFrag2.2 + CFM‑ID

ChemSpider ChemSpider PubChem PubChem PubChem

Pessimistic ranks

 Median rank 8 4 12 11 8

 Mean rank 74 38 141 127 85

 Mean RRP 0.859 0.894 0.880 0.881 0.901

 Top 1 ranks 73 (15 %) 105 (22 %) 30 (6 %) 43 (9 %) 62 (13 %)

 Top 5 ranks 202 267 145 170 202

 Top 10 ranks 258 320 226 232 276

Expected top ranks

 Top 1 ranks 90 (19 %) 124 (26 %) 43 (9 %) 57 (12 %) 70 (15 %)

 Top 5 ranks 218 280 163 193 213

 Top 10 ranks 274 329 245 261 288
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Following this, the combination of each scoring term 
was assessed by randomly drawing 1000 different weight 
combinations such that (ωFrag + ωRT + ωRefs = 1 ) to 
determine the optimal relative contributions of each 
term for the best results. This was performed for all 
combinations of reference sources (3 for PubChem, 31 
for ChemSpider). The best result was obtained again 
when using both patents and PubMed references for 
PubChem (SCPNP+PPC; a1 = 1, a2 = 1), but using only the 
ReferenceCount (SCCRC; b1 = 1, b2 = 0, b3 = 0, b4 = 0 , 
b5 = 0) for ChemSpider. The results are summarized 
in Table  3 (including the weight terms) and shown in 
Figs. 1 and 2 for PubChem and ChemSpider respectively. 
These triangle plots show the top 1 candidates for all ωi 
combinations, colour-coded (black—0  % of the correct 
candidates ranked first, yellow—10  0  % of the correct 
candidates ranked first) with the ωi per category increas-
ing in the direction of the arrow. Each corner is ωi = 1. 
The 25th and 75th percentiles are shown to give an idea 
of the distribution of the ranks. The equivalent plots 
for the number of top  5 and top  10 ranks are given in 
Additional files 6, 7, 8 and 9. Although the results from 
(ωFrag, ωRT, ωRefs ∈ {0, 1}) above indicated that the term 
SCCRC+CERC+CDC yielded the best result for ChemSpider 
with 411 top  1 ranks, SCCRC yielded 410 top  1 ranks for 
the same calculations, indicating that there is little dif-
ference between the two combinations. Using the ran-
domly-drawn weights, the top  1 ranks improved to 420 
(ChemSpider) and 336 (PubChem). This proves without 
a doubt that the addition of reference and retention time 
information drastically improves the performance, going 
from 22 to 89  % top  1 ranks (ChemSpider) and 6.3 to 
71 % (PubChem).

As above, it was interesting to investigate whether the 
addition of a complementary fragmentation technique, 
i.e. CFM-ID, would improve the results even further. 
MetFrag2.2 and CFM-ID were combined with retention 
time and reference information using 1000 randomly 

drawn combinations of ωFrag, ωCFM-ID, ωRT and ωPNP+PPC 
such that (ωFrag + ωCFM-ID + ωRT + ωPNP+PPC = 1). The 
results, shown in Table  3, indicate that the PubChem 
results can be improved further, to 343 top  1 ranks 
(73  %). This is a drastic improvement from the perfor-
mance of both original fragmenters alone, with CFM-ID 
alone yielding between 10 and 12 % top 1 hits (expected 
rank) in their original publication  [16] with an older 
PubChem, the combination of both fragmenters alone 
yielding 15  % (expected rank) here. These combined 
results are also drastically better than the latest in silico 
fragmentation results just published for CSI:FingerID. 
Dührkop et  al.  [18] investigated each individual frag-
menter currently available and compared the results with 

Table 2 PubChem and ChemSpider results (number of pessimistic top 1 ranks) for 473 Eawag Orbitrap spectra

The weights indicate where the score term was included (1) or excluded (0) from the candidate ranking. For PubChem ωRefs · SCRefs = ωRefs · (SCPNP+PPC
); for ChemSpider 

SCRefs = SCCRC+CERC+CDC
 only. See text for explanations

Weight term Score term Weights

ωFrag SCFrag 1 1 1 0 1 0 0

ωRT SCRT 1 1 0 1 0 1 0

ωRefs SCRefs 1 0 1 1 0 0 1

 Database RT source Top 1 ranks

PubChem XLOGP3 325 (69 %) 53 322 315 30 10 311

PubChem CDK XlogP 326 (69 %) 43 322 316 30 8 311

ChemSpider CDK XlogP 411 (87 %) 113 411 376 105 41 376

Table 3 PubChem and  ChemSpider results for  473 Eawag 
orbitrap spectra with  formula retrieval, including  in silico 
fragmentation, RT and  reference information as  shown, 
with the given ωi for the highest number of Top 1 ranks

For PubChem ωRefs · SCRefs = ωRefs · (SCPNP+PPC
); for ChemSpider SCRefs = SCCRC 

only. See text for explanations. Far right: combining CFM-ID results to 
incorporate complementary fragmentation information

MetFrag2.2 MetFrag2.2 + 
CFM‑ID

Database ChemSpider PubChem PubChem PubChem

RT/log P  
Model

CDK XlogP CDK XlogP XLOGP3 CDK XlogP

ωFrag (SCFrag) 0.49 0.57 0.50 0.33

ωRT (SCRT) 0.19 0.02 0.16 0.03

ωRefs (SCRefs) 0.32 0.41 0.34 0.35

ωCFMID (SCCFMID
) – – –  0.29

Median rank 1 1 1 1

Mean rank 6.5 35 41 18

Mean RRP 0.990 0.977 0.977  0.978

Top 1 ranks 420 (89 %) 336 (71 %) 336 (71 %)  343 (73 %)

Top 5 ranks 447 396 398  411

Top 10 ranks 454 422 414  429
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the CSI:FingerID. Despite using different data and set-
tings to those here, their results on the Agilent dataset 
indicated that MetFrag2010 and CFM-ID achieved 9 and 
12 % top 1 (expected) ranks, which are reasonably com-
parable with the results presented above. FingerID  [15] 
achieved 19.6 %, while CSI:FingerID achieved 39 % top 1 
results, which is a dramatic improvement over the other 
fragmenters. Since the external information boosted the 
top  1 ranks to 73  % for MetFrag2.2 plus CFM-ID, one 
could speculate that the combination of CSI:FingerID, 
MetFrag2.2 and CFM-ID would result in an even greater 
performance.

Cross‑evaluation on additional datasets
As the RT and reference scores are very subjective to 
experimental context, MetFrag2.2 now contains so many 
tuneable parameters that it will be beneficial to users 
when a few default cases are suggested. Thus, once the 
optimal reference source combinations were determined 
as described above, alternative datasets were used to re-
determine the optimal weights ωFrag, ωRT and ωRefs to 

investigate the variation over different datasets. Three 
sufficiently large datasets available on MassBank con-
tained good quality MS/MS and RT data, all processed 
with RMassBank [51].

UF dataset: A susbset of the 2758 UFZ Orbitrap XL 
records were acquired on an Kinetex Core-Shell C18 col-
umn from Phenomenex with a 40 min chromatographic 
program (all others were direct infusion experiments). 
These MS/MS spectra, arising from [M  +  H]+  and 
[M  −  H]−  precursors, were recorded at four collision 
energies: CID 35 and 55 as well as HCD 50 and 80. 
These spectra were merged and processed as described 
above for the Orbitrap XL dataset, resulting in 225 
merged spectra (“UF” dataset) from 195 substances (184 
[M + H]+ and 41 [M − H]−).

EQex and EQxPlus datasets: Two additional Eawag 
datasets were also available. The “EQex” dataset, meas-
ured on a Q Exactive Orbitrap, contained MS/MS spec-
tra associated with [M + H]+ and [M − H]− precursors 
recorded at six different collision energies (HCD 15, 30, 
45, 60, 75 and 90). The “EQExPlus” dataset, measured 

10
0

80

60

40

20

100

80 60 40 20

100

80

60

40

20

336
320

312

249

61

RT

MetFrag Refs

RT

MetFrag

Refs

0

100

200

300

400

Fig. 1 Top 1 ranks with PubChem (XlogP3) on the Orbitrap XL Dataset. The results were obtained with MetFrag formula query and the inclusion of 
references and retention time. The reference score was calculated with the number of patents (PNP) and PubMed references (PPC). The larger dots 
show the best result (336 number 1 ranks), 75th percentile (320), median (312), 25th percentile (249) and worst result (61). For the best result, the 
weights were ωFrag = 0.50,ωRT = 0.16 and ωRefs = 0.34
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on a Q Exactive Plus Orbitrap, contained MS/MS spec-
tra associated with [M + H]+ and [M − H]− precursors 
recorded at nine different collision energies (HCD 15, 30, 
45, 60, 75, 90, 120, 150, 180).

Both datasets were acquired using the same LC set-
up as the other Eawag dataset. The MS/MS from these 
two datasets were merged as above to yield 294 merged 
spectra from 204 compounds (195 [M  +  H]+  and 94 
[M  −  H]− ) for the “EQEx” dataset and 314 merged 
spectra from 232 compounds (219 [M  +  H]+  and 91 
[M − H]−) for the “EQExPlus” dataset. There was a very 
small overlap between the different Eawag datasets (5, 2 
and 2 substance overlap between EA and EQEx, EA and 
EQExPlus and EQEx and EQExPlus, respectively).

The overlap between the UFZ and Eawag datasets was 
larger, with 97, 16 and 21 substances in common between 
the UFZ and EA, EQEx and EQExPlus datasets, respec-
tively. The overlap was determined using the first block of 
the InChIKey. As the spectral and retention time data for 
the substances in the individual datasets were processed 

independently with different collision energies and ioni-
zation modes, none of the overlapping substances were 
removed from the datasets. The retention times extracted 
from the MassBank records per substance were used to 
establish the RT–log P model (see Eq. 9) for each dataset 
independently based on a tenfold cross-validation.

The influence of the different parameters was assessed 
for each dataset by setting ωFrag,ωRT and ωRefs to either 
0 or 1 again; these results are presented in Table  4. As 
above, the performance improved from between 2 and 
9  % of the candidates ranked first using fragmentation 
alone, through to 64–82 % ranked first when all ωx were 
weighted equally, although the results varied quite dra-
matically between the datasets. The 473 spectrum dataset 
used above thus fell within this range.

Similarly, the optimization of ωFrag,ωRT and ωRefs was 
performed again for each dataset independently using the 
1000 randomly-drawn weights. The results are presented 
in Table  5 and show that the percentage of top  1 ranks 
varies widely between the datasets, from 63 to 82 %; the 
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Fig. 2 Top 1 ranks with ChemSpider on the Orbitrap XL Dataset. The results were obtained with MetFrag formula query and the inclusion of refer-
ences and retention time. The reference score was calculated with the ChemSpider reference count (CRC). The larger dots show the best result (420), 
75th percentile (399), median (388), 25th percentile (311) and worst result (104). The weights for the best result were ωFrag = 0.49,ωRT = 0.19 and 
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original dataset falls in the middle with 71 %. The results 
in Table 5 also show that the suggested relative weights to 
one another remain consistent enough to enable default 
parameter suggestion, with ωFrag ≈ 0.5,ωRT ≈ 0.2 and 
ωRefs ≈ 0.3. All results for the number of top 1 ranks for 
the three additional datasets are shown in Additional 
files 10, 11 and 12.

Specific examples
As the additional features are more difficult to evaluate 
using large datasets, individual examples are presented 
below to demonstrate the flexibility of MetFrag2.2 com-
mand line (CL), with the corresponding commands give 
in a different font. Lists of the available parameters are 
given in Additional files 1, 2 and 3. These examples serve 
to show how MetFrag2.2 can also be adjusted by the user 
to explore individual cases in greater detail than during 
e.g. a high-throughput screening.

Gathering evidence for unknown 199.0428
During the NORMAN Collaborative Non-target Screen-
ing Trial [1], a tentatively identified non-target substance 
of m/z [M − H]− 199.0431 was reported by one partici-
pant as mesitylenesulfonic acid (ChemSpider ID (CSID) 
69438, formula C9H12O3S, neutral monoisotopic mass 
200.0507) or isomer. The same unknown was detected in 
the same sample measured at a second institute, where 
the standard of mesitylenesulfonic acid was available. 
Although the retention time was plausible (5.96  min), 
comparing the MS/MS spectra clearly disproved the 
proposed identification, with many fragments from the 

unknown absent in the standard spectrum. Thus, Met-
Frag2.2 was used to investigate other possibilities.

Firstly, the following parameter combination was 
used, taking the unknown MS/MS peak list from the 
second participant: ChemSpider exact mass search, 
fragment error 0.001 Da + 5 ppm, tree depth 2, uncon-
nected compound and InChIKey filter, filter included 
elements = C, S (as isotope signals were detected in the 
full scan), experimental RT =  6.20  min, an RT training 
set of 355 InChIs and RTs measured on the same sys-
tem and score weights of 1 (fragmenter and RT score) 

Table 4 Results (Top 1, 5 and 10 ranks) using PubChem formula queries on three additional datasets

The weights indicate where ranking parameters were included (1) or excluded (0) from the candidate ranking. Retention time score calculation was performed using 
the XLOGP3 values of PubChem. ωRefs · SCRefs = ωRefs · SCPNP+PPC

. See text for explanations

Weight term Score Term Weights

ωFrag SCFrag 1 1 1 0 1 0 0

ωRTs SCRT 1 1 0 1 0 1 0

ωRefs SCRefs 1 0 1 1 0 0 1

 Dataset Metric Ranks

UF (n = 225) Top 1 ranks 164 (73 %) 9 163 159 3 2 157

UF (n = 225) Top 5 ranks 186 (83 %) 48 189 189 36 13 199

UF (n = 225) Top 10 ranks 191 (53 %) 77 196 192 61 25 204

EQex (n = 289) Top 1 ranks 235 (81 %) 33 232 230 26 11 223

EQex (n = 289) Top 5 ranks 263 (91 %) 87 260 258 88 38 276

EQex (n = 289) Top 10 ranks 270 (93 %) 132 269 263 139 55 280

EQexPlus (n = 310) Top 1 ranks 190 (61 %) 32 183 182 21 8 181

EQexPlus (n = 310) Top 5 ranks 238 (77 %) 84 246 238 83 28 243

EQexPlus (n = 310) Top 10 ranks 254 (82 %) 115 258 247 121 37 256

Table 5 Best Top  1 rank results on  three additional data-
sets using PubChem formula queries including  in silico 
fragmentation, RT and  reference information as  shown, 
with the given ωi

Retention time score calculation was performed using the XLOGP3 values of 
PubChem. ωRefs · SCRefs = ωRefs · SCPNP+PPC

. See text for explanations

 Dataset MetFrag2.2

UFZ (n = 225) EQex (n = 289) EQexPlus (n = 310)

ωFrag (SCFrag) 0.40 0.38 0.61

ωRT (SCRT) 0.23 0.27 0.11

ωRefs (SCRefs) 0.37 0.35 0.28

Median rank 1 1 1

Mean rank 58.0 14.6 46.2

Mean RRP 0.972 0.981 0.976

Top 1 ranks 165 (73 %) 236 (82 %) 196 (63 %)

Top 5 ranks 188 261 233

Top 10 ranks 191 268 247
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and 0.25 each for four ChemSpider reference sources. 
This yielded 134 candidates with four different formulas 
(C9H12O3S, C8H16SSi2, C7H13BO2SSi, C7H10N3O2S), all 
fulfiling the element filter (C, S). SCFinal

 ranged from 0.70 
to 2.12, where several candidates had high numbers of 
references and similar number of peaks explained. Three 
candidates are shown in Table 6, along with a summary 
of the information retrieved. The clear top match, ethyl 
p-toluenesulfonate (CSID 6386, shown to the left) was 
unlikely to be correct, as the MS/MS contained no evi-
dence of an ethyl loss and also had a clear fragment peak 
at m/z 79.9556, corresponding with an SO3H group (thus 
eliminating alkyl sulfonates from consideration).

MetFrag2.2 was run again with the SMARTS substruc-
ture inclusion filter, which resulted in 31 candidates but 
with the same top matching structure. However, adding 
the SMARTS S(=O)(=O)OC to the exclusion list elimi-
nates the alkyl sulfonate species and resulted in 18 can-
didates, where the top candidate was now the originally 
proposed (and rejected) identification mesitylenesulfonic 
acid, shown in the middle of Table 6. The next matches 
were substitution isomers. Referring to the MS/MS 
again, another large peak was present at m/z 183.0115, 
which is often observed in surfactant spectra corre-
sponding with a p-ethyl benzenesulfonic acid moiety. 
Running MetFrag2.2 again with a substructure inclusion 
of CCc1ccc(cc1)S(=O)(=O)O yielded only two candi-
dates, 4-isopropylbenzenesulfonic acid (SCFinal

= 2.5, 
CSID 6388), shown to the right in Table 6 and 4-propylb-
enzenesulfonic acid (SCFinal

= 2.0, CSID 5506213).
To check the relevance of the proposed candidates in 

an environmental sample, a “suspect screening” was per-
formed. The STOFF-IDENT database [24] contains over 

8000 substances including those in high volume pro-
duction and use in Europe registered under the Euro-
pean REACH (Registration, Evaluation, Authorisation 
and Restriction of CHemicals) Legislation. The STOFF-
IDENT contents were downloaded (February 2015) and 
the SMILES were converted to InChIKeys using OpenBa-
bel and given as input to MetFrag as a suspect list. Of the 
134 original candidates, only one, 4-isopropylbenzene-
sulfonic acid, was tagged as being present in the STOFF-
IDENT database. This gives additional evidence that 
indeed 4-isopropylbenzenesulfonic acid is the substance 
behind the unknown spectrum, however it has not been 
possible to confirm this identification at this stage due to 
the lack of a sufficiently pure reference standard.

Terbutylazine and isobars
The example of terbutylazine (CSID 20848, see Table 7) 
shows how MetFrag2.2 can help in gathering the evi-
dence supporting the identification of isobaric sub-
stances. Terbutylazine and secbutylazine (CSID 22172) 
often co-elute in generic non-target chromatographic 
methods and have very similar fragmentation pat-
terns, but can usually be distinguished from the other 
common triazine isobars propazine (CSID 4768) and 
triethazine (CSID 15157) via MS/MS information. 
However, during the NORMAN non-target screen-
ing collaborative trial  [1], all four substances were 
reported as potential matches for the same mass, show-
ing clearly the danger of suspect screening based only 
on exact mass. For this example, the merged [M + H]+
MS/MS spectrum of terbutylazine from the EA dataset 
above (EA02840X) was used as a peak list to run Met-
Frag2.2, as the correct answer is clear with a reference 

Table 6 Top MetFrag2.2 candidates for unknown at m/z 199.0428 with different settings

Structures overlaid with the included substructure were generated with AMBIT [57]. See text for details

CSID 6386 69438 6388

Original results (134 candidates)

 Rank (n = 134) 1 6 90

 #Peaks explained 5 5 5

 CDK log P/SCRT 1.44/0.167 1.50/0.161 2.02/0.107

 
∑

SCRefs 94+ 15+ 7+ 70 = 186 179+ 1+ 0+ 40 = 220 32+ 0+ 0+ 21 = 53

Substructure interpretation

 Included S(=O)(=O)O S(=O)(=O)O CCc1ccc(cc1)S(=O)(=O)O

 Excluded – S(=O)(=O)OC –

 Comment No ethyl loss in MS/MS Disproven via standard Present in suspect list
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spectrum. Table  7 shows the data for the four sub-
stances mentioned above plus the top match based 
on fragmentation data alone, N-butyl-6-chloro-N ′

-ethyl-1,3,5-triazine-2,4-diamine (CSID 4954587, given 
the synonym “nButylazine” hereafter to save space). 
ChemSpider was used to perform an exact mass search, 
resulting in a total of 112 structures (data from only 
five are shown). Five scores were used, all with weight 
1: FragmenterScore, ChemSpiderReferenceCount, 
RetentionTimeScore, SuspectListsScore and Smart-
sSubstructureInclusionScore. To show the inclusion 
of external log  P calculations, ChemAxon JChem for 
Excel [56] was used to predict log  P and log  D at pH 
6.8 (the pH of the chromatographic program used) for 
a training dataset of the 810 substances in the Eawag 
database on MassBank. The log P and log D predictions 
were then performed externally for all MetFrag candi-
dates on the dominant tautomeric species and added 
to the MetFrag CSV file for final scoring. The scores, 
shown in Table  7, showed that different candidates 
were the best match for different categories, indicated 
in italics. The candidates are ordered by the number of 
references. As above, STOFF-IDENT was used as a sus-
pect list and all four of the substances reported by trial 

participants were indeed in STOFF-IDENT. However, 
Table 7 clearly shows that two can be eliminated using 
SCFrag and substructure matches (as the MS/MS clearly 
displays the loss of a C2H5 and C4H9 group, indicating 
these are likey attached to a heteroatom, in this case 
N). Although secbutylazine is scored lower than terbu-
tylazine, the reference count is the main influence here 
and both substances could be present in an environ-
mental sample—depending on the context.

The large dataset evaluations show that MetFrag2.2 is 
suitable for high-throughput workflows, with a relatively 
quick runtime. On the other hand, the detailed examples 
shows how the various features of MetFrag2.2 can be 
used to investigate the top candidates in more detail and 
enhance the interpretation of the results, including the 
inclusion of external RT/log P and/or log D information 
that cannot be calculated within MetFrag2.2 (e.g. due to 
license restrictions, as in the case of ChemAxon).

Conclusions
In many cases additional information is available and 
needed from the experimental context to comple-
ment small molecule identification, especially where 
the mass spectrum alone is not sufficient for candidate 

Table 7 Summary of MetFrag2.2 results for terbutylazine and four isobars

The predicted log P and log D from the retention time was 3.17 and 2.18 using a training set of 810 substances calculated externally with ChemAxon and added to 
MetFrag2.2 via the UserLogP option. Included substructure SMARTS were N[CH2][CH3], NCCCC, NC(C)CC, NC(C)(C)C
aName synonym assigned for space reasons. The values in italics indicates the best result per category. Structures overlaid with the included substructure were 
generated with AMBIT [57]. See text for details and weights

Name Terbutylazine Propazine Secbutylazine Triethazine nButylazinea

CSID 20848 4768 22172 15157 4954587

SCFrag 0.958 0.765 0.997 0.653 1.0

#Peaks explained 11/15 10/15 12/15 8/15 12/15

SCCSRefs 286 204 56 45 4

ChemAxon log P 1.65 2.75 2.28 1.11 2.31

SCRT log P 0.159 0.256 0.223 0.103 0.225

ChemAxon log D 1.63 2.75 2.19 0.97 2.23

SCRT log D 0.249 0.247 0.266 0.192 0.266

Suspect hit 1 1 1 1 0

Substructure hits 2 0 2 1 2

Matches NC(C)(C)C – NC(C)CC N[CH2][CH3] NCCCC

N[CH2][CH3] N[CH2][CH3] N[CH2][CH3]

SCFinal (log P) 4.22 3.43 3.69 2.53 2.52

SCFinal (log D) 4.56 3.41 3.85 2.87 2.68

Comment Correct substance No longer in use Can co-elute with 20848

5.2 MetFrag relaunched: incorporating strategies beyond in silico fragmentation
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selection from a large number of candidates. The results 
for MetFrag2.2 clearly show the benefit of considering 
this additional information, with a tenfold improvement 
compared with MetFrag2.2 fragmentation information 
alone. The flexibility of the new features in addition to 
the ability to add user-defined scores means that Met-
Frag2.2 is ideally suited to high-throughput workflows, 
but can also be used to perform individual elucidation 
efforts in greater detail. The ability to incorporate CFM-
ID as an additional scoring function shows the potential 
to improve these results further using complementary 
in silico fragmentation approaches. The parameter files 
including the spectral data, the candidate, result and 
ranking files of the used EA, UF, EQEx, EQExPlus and 
HILL datasets are available at http://msbi.ipb-halle.de/
download/CHIN-D-15-00088/ and can be downloaded 
as ZIP archives. Feedback on the command line version 
available at http://c-ruttkies.github.io/MetFrag/ is wel-
come. The new functions greatly reduce the burden on 
users to collect and merge ever increasing amounts of 
information available for substances present in different 
compound databases, thus enabling them to consider 
much more evidence during their screening efforts.

Availability and requirements
  • Project name: MetFrag2.2;
  • Project home page: http://c-ruttkies.github.io/Met-

Frag/;
  • Operating system(s): Platform independent;
  • Programming language: Java;
  • Other requirements: Java ≥1.6, Apache Maven 
≥3.0.4 (for developers);

  • License: GNU LGPL version 2.1 or later;
  • Any restrictions to use by non-academics: none.
  •
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Additional files

Additional file 1. MetFrag2.2 Command Line (CL) general parameters. 

Additional file 2. MetFrag2.2 CL local database parameters (MySQL, 
PostgresSQL)  

Additional file 3. MetFrag2.2 CL - Different Scoring terms (MetFragScore-
Types) available for online databases used by MetFrag All or a subset of 
these values can also be used as a total with CombinedReferenceScore 
(Table in Additional file 1).

Additional file 4. Top 1 ranks of MetFrag2.2. combined with CFM--ID This 
figure shows the distribution of the number of top 1 ranks with different 
weights (100 drawn randomly between 0 and 1) for MetFrag2.2 and CFM-
-ID. Lightestyellow dot marks the maximum, 62 top 1 ranks at MetFrag = 
0.67 and CFM-ID = 0.33. The red dot at the right marks the minimum, 36 top 
1 ranks at MetFrag = 0.997 and CFM-ID = 0.003. The most left dot marks 49 
top 1 ranks at MetFrag = 0.02 and CFM-ID = 0.98.

Additional file 5. Number of patents and PubMed references shown 
as CombinedReferences retrieved from PubChem for the Orbitrap XL 
dataset This figure shows the distribution of the number of references and 

patents for all candidates (marked by black dots) retrieved from PubChem 
for the 359 (unqiue) correct candidates (marked with green line) and the 
additional (wrong) candidates retrieved for each query. The queries are 
sorted by the number of CombinedReferences for the correct candidate, 
respectively. The intensity of the black dots indicate the number of candi-
dates which overlap at that position. 

Additional file 6. Top 5 ranks with PubChem (XlogP3) on the Orbitrap XL 
Dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (402 in the top 5), 90th percentile (386), median 
(375), 10th percentile (325) and worst result (145). 

Additional file 7. Top 5 ranks with ChemSpider on the Orbitrap XL 
Dataset The results were obtained with MetFrag2.2 formula query and 
the inclusion of references and retention time. Each small dot shows the 
number of first ranks with a given combination of weights. The larger dots 
show the best result (463 in the top 5), 90th percentile (452), median (440), 
10th percentile (385) and worst result (195). 

Additional file 8. Top 10 ranks with PubChem (XlogP3) on the Orbitrap 
XL Dataset The results were obtained with MetFrag2.2 formula query and 
the inclusion of patents, references and retention time. Each small dot 
shows the number of first ranks with a given combination of weights. 
Each small dot shows the number of first ranks with a given combination 
of weights. The larger dots show the best result (422 in the top 10), 90th 
percentile (406), median (391), 10th percentile (351) and worst result (187). 

Additional file 9. Top 10 ranks with ChemSpider on the Orbitrap XL 
Dataset The results were obtained with MetFrag2.2 formula query and 
the inclusion of references and retention time. Each small dot shows the 
number of first ranks with a given combination of weights. The larger dots 
show the best result (471 in the top 10), 90th percentile (460), median 
(450), 10th percentile (404) and worst result (223). 

Additional file 10. Top 1 ranks with PubChem (XlogP3) on the UFZ 
dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (165 in the top 1), 90th percentile (159), median 
(156), 10th percentile (112) and worst result (11). 

Additional file 11. Top 1 ranks with PubChem (XlogP3) on the EQex 
dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (236 in the top 1), 90th percentile (230), median 
(225), 10th percentile (162) and worst result (29). 

Additional file 12. Top 1 ranks with PubChem (XlogP3) on the EQexPlus 
dataset The results were obtained with MetFrag2.2 formula query and the 
inclusion of patents, references and retention time. Each small dot shows 
the number of first ranks with a given combination of weights. The larger 
dots show the best result (196 in the top 1), 90th percentile (184), median 
(181), 10th percentile (142) and worst result (28). 
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Abstract
Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is increasingly popular for the non-targeted
exploration of complex samples, where tandem mass spectrometry (MS/MS) is used to characterize the structure of unknown
compounds. However, mass spectra do not always contain sufficient information to unequivocally identify the correct structure.
This study investigated how much additional information can be gained using hydrogen deuterium exchange (HDX) experiments.
The exchange of Beasily exchangeable^ hydrogen atoms (connected to heteroatoms), with predominantly [M+D]+ ions in positive
mode and [M-D]− in negative mode was observed. To enable high-throughput processing, new scoring terms were incorporated
into the in silico fragmenter MetFrag. These were initially developed on small datasets and then tested on 762 compounds of
environmental interest. Pairs of spectra (normal and deuterated) were found for 593 of these substances (506 positive mode, 155
negative mode spectra). The new scoring terms resulted in 29 additional correct identifications (78 vs 49) for positive mode and an
increase in top 10 rankings from 80 to 106 in negative mode. Compounds with dual functionality (polar head group, long apolar
tail) exhibited dramatic retention time (RT) shifts of up to several minutes, compared with an average 0.04 min RT shift. For a
smaller dataset of 80 metabolites, top 10 rankings improved from 13 to 24 (positive mode, 57 spectra) and from 14 to 31 (negative
mode, 63 spectra) when including HDX information. The results of standard measurements were confirmed using targets and
tentatively identified surfactant species in an environmental sample collected from the river Danube near Novi Sad (Serbia). The
changes to MetFrag have been integrated into the command line version available at http://c-ruttkies.github.io/MetFrag and all
resulting spectra and compounds are available in online resources and in the Electronic Supplementary Material (ESM).
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Introduction

The identification of unknown chemicals in complex samples
via non-target screening with liquid chromatographic (LC)
separation followed by high-resolution(HR) mass spectromet-
ric (MS) analysis remains challenging due to the vast chemical
space and still relatively limited coverage of spectra in refer-
ence libraries [1, 2]. While techniques such as nuclear mag-
netic resonance (NMR) spectroscopy yield rich structural in-
formation and are well-suited for structure elucidation, NMR
is often unachievable with the low concentrations available in
complex samples. In LC-HRMS, information about structural
properties is obtained by fragmenting detected substances to
yield MS/MS spectra. The resulting spectra can then be com-
pared to spectral libraries, or interpreted by software using in
silico fragmentation approaches. Unlike NMR, however, the
MS/MS spectra typical in LC-HRMS/MS are often informa-
tion-poor. Thus, alternative ways of obtaining additional struc-
tural information are needed for non-target identification
methods reliant on LC-HRMS. While techniques such as di-
rect labelling experiments can be used in metabolomics exper-
iments to gain additional information [3, 4], this is impractical
in the context of most complex real-world samples, such as
environmental samples.

Recently, the inclusion of additional metadata within the in
silico fragmenter MetFrag was shown to greatly improve the
identification success in the environmental context [5]. While
6% of structures were correctly ranked initially using in silico
fragmentation alone with PubChem as a database in this study,
this increased to 71% when including metadata such as the
retention time, reference, and patent information. Similar re-
sults were observed for other in silico fragmenters in the 2016
CASMI contest [6, 7]. However, most metadata scoring terms
themselves do not explicitly include the use of structural in-
formation to limit candidates, beyond the fragmentation score.
While metadata terms such as patent and reference counts
provide useful information in some contexts, these could po-
tentially bias the results towards well-known substances and
are not useful where no external information is available for
the sample or candidate, such as for unknown metabolites or
transformation products. Including the retention time alone
(without reference information) did not improve candidate
ranking greatly [5]. Further approaches for identification, es-
pecially in metabolomics, are reviewed elsewhere (e.g., [2]).
However, additional ways of obtaining structural information
are needed for non-target identification methods reliant on
LC-HRMS. One such method of obtaining additional infor-
mation can be achieved by modifying the analytes prior to
performing HRMS, e.g., using hydrogen-deuterium exchange

(HDX). This approach is used in proteomics for probing con-
formation and structural dynamics (with different experimen-
tal setups) and has been used occasionally for structure eluci-
dation of small molecules over the last decades (e.g., [8–12]).
HDX experiments can be used to provide information about
which functional groups may be present in the compound of
interest. When the chromatographic system is flooded with
deuterated solvents (e.g., D2O instead of H2O, MeOD instead
of MeOH), the Bexchangeable hydrogens^ can be replaced
(i.e., exchanged) with deuteriums. When combined with rou-
tine (undeuterated—hereafter termed Bnormal^) measure-
ments, the changes in the fragmentation pattern can yield in-
formation about the substructures in the molecule. While this
experimental setup is quite expensive due to the relatively
large amounts of deuterated solvents required, cheaper
methods such as post-column deuteration tend to yield very
complex deuteration patterns due to changing fractions of
undeuterated and deuterated solvents along an LC gradient
elution that require rigorous statistical analysis [8, 13]. This
approach is therefore less useful for the identification of un-
known substances at this stage.

There are essentially three classes of Bexchangeable^
hydrogens, shown conceptually in Fig. 1, although the
borders between the classes are blurred. The Beasily
exchangeable^ hydrogens attached to the heteroatom
groups (OH, NH, SH) would generally be completely ex-
changed in experiments with a deuterium-flooded chro-
matographic system [14]; typically, the exchange reac-
tions take place in the microsecond to millisecond time
range. Those that are sterically hindered or stabilized by
hydrogen bonding may take longer to exchange (starting
from several millisecond to minutes), but this is still an-
ticipated to occur in most cases within the contact time in
the LC system. Partially exchangeable hydrogens, includ-
ing some conjugated and aromatic hydrogens (e.g., those
on pyrrole rings [15] or affected by keto-enol tautomerism
[16]), may also exchange in the liquid phase (during LC
separation) and/or the gas phase (during ionization and in
the MS), with exchange rates depending strongly on ex-
perimental conditions [15–17]. However, as shown in Fig.
1, the Bunexchangeable^ hydrogens, i.e., aliphatic and
most aromatic carbons (CH) would not be expected to
exchange during an LC-MS run. Thus, a first hypothesis
is formed for structure elucidation of small molecules:

All Beasily exchangeable^ hydrogens should be re-
placed with deuterium; some conjugated or aromatic hy-
drogens may be replaced with deuteriums, whereas any
aliphatic and most aromatic CH hydrogens would be ex-
pected to remain intact.
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The influence of deuterium exchange in MS experi-
ments is relevant in both MS1 (full scan) and MS/MS ex-
periments. As deuterium (atomic mass 2.014102 Da) has a
different mass to hydrogen (atomic mass 1.007825 Da), the
number of deuteriums can be readily determined by the
mass difference between the normal and deuterated ion in
the full scan (MS1). As the system is flooded with deute-
rium, the typical ions expected in positive electrospray
ionization are no longer [M+H]+, but rather [M+D]+; thus,
the presence of two D in the detected ion indicates one
exchangeable hydrogen and one D+ adduct, and so on. In
negative ESI, the absence of a mass difference indicates
one exchangeable hydrogen, which is abstracted by the
ionization process to form an [M-D]−, with an m/z identical
to the [M-H]− ion in the undeuterated eluents (note that
without an exchangeable H, ionization in negative mode
is difficult). From this information, it is possible to deter-
mine the maximum number of easily exchangeable hydro-
gens available on the molecule. The readiness of partially
exchangeable hydrogens to be exchanged within the
timeframe of the LC method requires further investigation
and this was considered throughout this study. Beyond the
full scan, the deuterium mass shift will also be reflected in
the MS/MS fragments, and the existence of a deuterated
fragment in the MS/MS of the deuterated compound can
give valuable information about the molecular structure of
the compound.

Thus, the aim of this study was to investigate how
hydrogen-deuterium exchange experiments could assist struc-
tural elucidation in non-targeted HR-MS experiments using
high-throughput, automated in silico fragmentation tech-
niques. The in silico fragmenter MetFrag was modified to
include additional scoring terms to account for the HDX
starting with the theory discussed above and tested on small
datasets. Once the method was established, it was evaluated
on a set of several mixtures of environmental chemicals con-
taining 762 unique compounds and analyzed in both positive
and negative mode, as well as a smaller dataset of 80 metab-
olites. HDX experiments were then performed on a water

sample from the river Danube near Novi Sad (Serbia) to assess
the feasibility of applying HDX experiments in the context of
a complex real-world water sample.

Materials and methods

Experimental data sets

Set 1: Deuterated standards and Orbitrap

To ensure that MetFrag accounted for deuterium exchange
substitution correctly during the in silico fragmentation, the
initial development was performed on stably labeled deuter-
ated substances (typically used as internal standards) where
the location of the deuterium atoms (in the precursor) was
known. This also served to diagnose any unexpected phenom-
ena in the fragmentation. A mix of internal standards (1 μg/L)
was measured on an LTQ Orbitrap XL (Thermo Scientific)
with electrospray ionization in positive mode. LC separation
was performed in advance on a Kinetex Core-Shell C18 col-
umn (3.0 × 100 mm, 2.6 μM particle size) from Phenomenex
with H2O/MeOH (both with 0.1% formic acid) at a flow rate
of 200 μL/min and a gradient of 90/10 at 0 min, 80/20 at
3.2 min, 5/95 at 17.8 min, 5/95 at 37.8 min, 90/10 at
37.9 min, and 90/10 at 47 min. MS/MS scans were obtained
using both higher energy collision-induced dissociation
(HCD) at nominal collision energy (NCE) of 100 and
collision-induced dissociation (CID) at 35 NCE, an MS/MS
isolation width of 1.3 m/z, and resolution of 15,000. Spectra
were extracted for DEET-d7, metolachlor-d6, and carbamaz-
epine-d10, summarized in ESM Table S1.

Set 2: HDX and QToF-MS

Individual compounds were dissolved in MeOH/H2O 80/20
(v/v) at a concentration of 10 mM. Then, ten compounds were
combined to one synthetic mixture to give 1 mM and the final
concentration of each mixture adjusted to 100 μM using

Fig. 1 Conceptual view of the degree of exchangeability of hydrogens relative to the timescale of LC-MS analysis
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MeOH/H2O 50/50 (v/v). Following this, 100 μL was dried
down and the residue redissolved in 100 μL acetonitrile/
deuterium oxide 50/50 (v/v), ultrasonicated for 5 min at room
temperature, centrifuged at 16,000×g for 2 min, and the su-
pernatant injected onto an UPLC-QTOFMS system (Waters,
Eschborn, Germany; Bruker Daltonics, Bremen, Germany)
with ESI ionization. For the normal (native, undeuterated)
samples, water/formic acid, 99.9/0.1 (v/v), was used as eluent
A and acetonitrile/formic acid, 99.9/0.1 (v/v), as eluent B. In
contrast, for the deuterium-exchanged samples, deuterium
oxide/formic acid, 99.9/0.1 (v/v), was applied as eluent A
and acetonitrile/formic acid, 99.9/0.1 (v/v), as eluent B.

Each mixture was measured in both positive and negative
ion modes according to [18]. CID mass spectra were acquired
using the respective [M+H]+, [M-H]−, or their deuterated
equivalent masses, isolated inside the quadrupole using an
isolation width of 3 m/z and fragmented inside the collision
cell after applying two collision energies (10 eV and 20 eV).
All instrument parameters were maintained as previously de-
scribed in [18]. The resolution was 10,835 (m/z 922) in posi-
tive mode and 9632 (m/z 1034) in negative mode, with a mass
accuracy of 5 ppm. The MS and MS/MS data were processed
with DataAnalysis 4.2 (Bruker Daltonics, Bremen, Germany)
prior to use with MetFrag as previously described [19].
Spectra from kinetin, N-(3-indolylacetyl)-L-valine, o-anisic
acid, and phlorizin were used in the results presented further
below (see ESM Table S2 for more information).

Set 3: Large standard set for HDX and Orbitrap

A total of 22 mixes with 850 substances, already in use at UFZ,
were used to measure the large standard set (762 unique sub-
stances, i.e., 677, 82, and 3 substances were present once,
twice, or three times, respectively, due to the use of the various
mixes in the laboratory—see ESM Table S3a). Each mix
contained between 10 (mix 15) and 94 (mix 13) substances.
Each substance in each mix was assigned a unique identifier,
starting at 8000 (a 4-digit number is necessary for RMassBank
processing)—such that standards present in more than one mix
had two or three identifiers. Each mix was checked for isobars
and Bnear isobars^ (substances that would potentially fall with-
in the same MS/MS isolation window of 1.3 m/z); the corre-
sponding identifiers were logged for quality control (see ESM
Table S3b). For instance, if the presence of an isobar or near
isobar could not be excluded, the substance was eliminated
from the test set as the spectral quality could not be guaranteed.

The reference standards were purchased from various sup-
pliers at a minimum purity of 97% and spiked in the mixes at a
concentration of 1 μg/mL. These mixes were then measured
on an LC system coupled to a HR-MS/MS (Q Exactive Plus,
Thermo). The Ultimate 3000 LC system (Thermo) used a
Kinetex C18 EVO column (2.1 × 50 mm, 2.6 μM particle
size), with a 2.1 × 5 mm pre-column from Phenomenex and

an injection volume of 5 μL. The gradient was 95/5 at 0 min,
95/5 at 1 min, 0/100 at 13 min, and 0/100 at 24 min at 300 μL/
min. For normal measurements, solvents A and B were H2O
and MeOH, both with 0.1% formic acid. For the deuterated
measurements, the solvents were deuterated water (D2O, 99.9
atom-% D, Sigma-Aldrich) and deuterated methanol (MeOD,
i.e., CH3OD, 99.5 atom-% D, Sigma-Aldrich), both contain-
ing 0.1% (v/v) undeuterated formic acid. Electrospray ioniza-
tion (ESI) in positive and negative mode was used. MS1 was
acquired at a nominal resolving power of 70,000 (referenced
to m/z 200); MS/MS were acquired at R = 35,000 using data-
dependent acquisition with 5 MS/MS scans following each
full scan MS1 and an inclusion list adjusted to each mix.
The pesticide mix (mix 13, containing 94 substances) was
run three times in positive mode with different inclusion lists
to ensure that MS/MS of all compounds were obtained.
Higher energy collision dissociation (HCD) was used with
stepped 20/35/50 nominal collision energy units (NCE) and
an isolation window of 1.3m/z. All runs were obtained using a
range of m/z = 100–1000, except for low mass range runs
done on the polar compound mix (mix 19), which was be-
tween m/z = 60 and 600. An overview of the mixes and the
original acquisition data are given in ESM Table S3a and b,
respectively. In addition to this, the polar compound mix (mix
19) was also re-measured on a Synergi Polar RP column
(100 × 3.0 mm, 2.5 μM particle size, Phenomenex). The
dataset for CASMI 2016 [6] was formed from the initial nor-
mal measurements of these mixes. A full list of substances and
further details (structure, predicted ion masses, etc.) are given
in ESM Table S3c.

Environmental water sample

A well-studied sample from the SOLUTIONS project [20]
was used to scope the potential to apply HDX to complex
environmental samples. The sample was collected from the
river Danube near Novi Sad (Serbia) in the plume of an un-
treated wastewater inlet using on-site large volume solid-
phase extraction and enriched 500-fold for analysis as detailed
in [21, 22]. The sample was measured under normal and HDX
conditions with a data-dependent top 6 experiment (without
an inclusion list) and the same collision energies and other
conditions as for the large standard set described above, using
the Kinetex column. The target analysis results from [22] were
used to direct the data evaluation presented in this manuscript,
along with a list of suspect surfactants [23–25].

Data processing (set 3)

HDX prediction and registration

The base hypothesis to test was that Beasily exchangeable^
hydrogens would be exchanged in these experiments; thus,
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for all 762 substances, a prediction was made to exchange
each heteroatom hydrogen with a deuterium (i.e., SH to SD,
OH to OD, NH2 to ND2). The predicted deuterated formula
was then used as a basis to search for deuterated spectra. In
terms of the expected mass for each ionization mode, it was
assumed that [M+D]+ ions would be formed in positive mode
and [M-D]− in negative mode (see BIntroduction^). An exam-
ple is given in Fig. 2 and further details are given in the
BImplementation^ section below. Note that while deuterium
is commonly represented as BD,^ a convention that we use in
the text in this article for readability and consistency, the
chemical representation used in the depictions is the isotopic
form 2H, which allows for proper interpretation in the
cheminformatics toolkits. The predicted deuterated SMILES
for all substances are given in ESM Table S3d (note this is the
prediction and not all species were observed). These predicted
SMILES were used to perform the HDX data extraction (see
next section). All observed (and manually verified) HDX fea-
tures, given in ESM Table S3e-f, were registered in DSSTox,
the database behind the CompTox Chemicals Dashboard [26],
based on the predicted SMILES and mappings to the original
standards. DSSTox was used to generate the remaining struc-
tural information presented in ESM Table S3f. The corre-
sponding DSSTox substance identifiers (DTXSIDs) were
used to create the HDXNOEX and HDXEXCH lists of
undeuterated and deuterated species.

MS data processing

The raw data files from Thermo were converted to mzML
using a front-end for MSConvert (from ProteoWizard [28])

written by U. Schmitt (SIS, ETHZ), using vendor centroiding,
zero value removal, and zlib compression. The MS/MS of the
standards were extracted using RMassBank [29]. The
Bnormal^ runs were processed in the typical RMassBank
workflow, using the SMILES code for each chemical. As
RMassBank could not (initially) handle deuterium when the
data was extracted (due to issues with the Chemistry
Development Kit that have subsequently been resolved
[30]), the HDX data were extracted using the exact mass only,
which meant that recalibration and noise removal was not
performed on these data. Retention times (RTs) from the nor-
mal data were used initially, with a window of 0.4 min.
Substances with RTs that were unknown were extracted using
the RT at maximum EIC intensity for the precursor mass; for
multiple peaks, these were determinedmanually. All RTs were
checked manually and refined where necessary for those sub-
stances with missing results. For the normal runs, peak anno-
tation and reanalyzed peaks options were both Btrue.^ The
recalibration was performed using loess fitting (see [29]) on
assigned fragments and the MS1 data, using dppm. The MS1
andMS/MSwere recalibrated together, with an initial window
of 15 ppm. The multiplicity filter was set to 1 (as only one
spectrum was recorded). All additional settings were the de-
fault ones (see file online). The extraction of the MSMS data
was checked both visually and using a summary of the data
(see Figures and Tables in the ESM). InChIKeys were used to
check for duplicate chemical structures, while the spectral
hash (SPLASH) [31] was used to detect identical extracted
spectra for different substances. Data processing was all per-
formed in the R programming language unless explicitly men-
tioned elsewhere.

Fig. 2 Example of expected HDX behavior of gallic acid
(DTXSID0020650) in the experiment performed here in a positive ESI
mode to produce [M+D]+ and b negative ESI mode to produce [M-D]−,
along with the calculated ion masses that were subsequently observed in
the experimental measurements. The quadruply deuterated species of
gallic acid is available here (DTXSID60892625). Images created using

CDK Depict [27] with SMARTS highlighting to indicate the deuterium.
Note that while we refer to deuterium as BD^ throughout the manuscript
for simplicity, the depiction with 2H here is consistent with the standard
representation of isotopes and enables the SMARTS-based highlighting
shown
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Implementation of HDX in MetFrag

MetFrag is a Java-based in silico fragmenter that uses the
Chemistry Development Kit (CDK) [30, 32, 33] to read, write,
and process chemical structures. The candidates are generally
retrieved from compound databases using the neutral mono-
isotopic mass (calculated from the precursor) and a given rel-
ative mass deviation, the neutral molecular formula of the
precursor or a set of database-dependent compound identi-
fiers. Further details on MetFrag are given elsewhere [5, 34].

The starting point for performing MetFrag on HDX data is
the acquisition of two independent LC-MS/MS runs of one
sample, where the first sample is acquired normally with
undeuterated solvents (e.g., MeOH/H2O) and where at least
one of the mobile phases is replaced with a deuterated equiv-
alent during the second acquisition (e.g., MeOD/D2O, ACN/
D2O). This yields two data sets and corresponding MS/MS
spectra pairs (SH, SD) have to be collected where the precursor
is in its normal form (BH^) and in its deuterated form (BD^),
where SH = {P1,...PN} contains N and SD = {dP1,...dPM} M
MS/MS peaks (middle part of Fig. 3). Each peak is defined
by am/z (mass to charge ratio) value m(PN) (for simplicity, we
do not take into account intensities here). As reference stan-
dards were used in this manuscript, the expected deuterated
species were predicted (based on the number of easily ex-
changeable Hs, as described above). These predicted masses

were then used to extract the HDX MS/MS data, which was
verified as described above. The undeuterated candidates were
then deuterated in silico and matched to the experimental data,
then combined using various scoring terms to yield the overall
candidate rankings. Details on the generation and combination
of these results are given below.

In silico deuteration of candidate structures

To use MetFrag’s in silico fragment generation for deuterated
compounds, the algorithm was adapted to handle deuteriums
as well as hydrogens. Furthermore, the MetFrag algorithm
was extended to generate an in silico deuterated candidate list
for a given MS/MS spectrum SD. First, MetFrag determines
the number of experimentally exchanged hydrogens (X),
which is calculated by the mass differences of the precursors
of SH and SD as mentioned earlier. Given the candidate list C
derived from a database search (e.g., PubChem [35],
ChemSpider [36], or CompTox [26]), based on the precursor
information (calculated monoisotopic mass, molecular formu-
la) of the normal spectrum SH, MetFrag generates an in silico
deuterated candidate list dC. For a candidate Ci ∈ C, the num-
ber of easily exchangeable hydrogens (eH(Ci)) are determined
by counting the number of hydrogens attached to oxygens,
sulfurs, and nitrogens, namely hydroxyl/carboxyl, thiol, and
amino groups. A graph-based approach is used to perform a

Fig. 3 Workflow for MetFrag to analyze deuterated MS/MS spectra
using the example of 4-methylumbelliferyl sulfate (a, green border) of
the large standard set. The mass difference of the determined neutral
precursor masses of the normal (256.0042 Da) and the deuterated
(257.0104 Da) spectrum indicated X = 1, i.e., one exchanged hydrogen
as shown for (a).Two additional selected candidates (b, c) illustrate dif-
ferent in silico deuteration cases where the retrieved candidate can result
in two deuterated candidates (b) or one candidate of variable deuterium
location as no easily exchangeable H is present (c). Processing normal
and deuterated candidates with MetFrag-HDX results in four scoring

terms for each candidate, which are combined in a consensus score using
weight parameters retrieved during the cross-validation (~ 0.109, ~ 0.004,
0.497, ~ 0.39; see Methods; note, scores are normalized to range [0, 1]).
This resulted in a top 1 ranking of the correct candidate
4-methylumbelliferyl sulfate. Green and red arrows mark scores that are
higher or lower compared to those of the correct candidate. Candidate b is
the top scoring candidate using SMetFrag alone (without HDX informa-
tion). This example illustrates both the workflow and the benefit of the
additional scoring terms
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simple search for the easily exchangeable Hs. During the
method establishment, hydrogen/deuterium exchange was
predicted assuming that all easily exchangeable hydrogens
were 100% replaced with deuterium. This formed the Bbase
case^ for in silico deuteration and could be used to reject Ci as
potential correct candidate in case (eH ≠ X). However, there
are reasons why eH(Ci) and X can differ, even when Ci is the
correct candidate:

(a) Hydrogens attached to conjugated and/or aromatic car-
bons could be exchanged due to keto-enol tautomerism
or by gas-phase reactions in the ESI source and thus the
number of easily exchangeable hydrogens during mea-
surement changes;

(b) easily exchangeable hydrogens might be stabilized by
intramolecular hydrogen-bonding or sterically hindered;
and

(c) the wrong isotopic peak was selected during data-
dependent acquisition, leading to the wrong number of
experimentally exchanged hydrogens (X).

Thus, different cases need to be handled for the in silico
deuteration. Exactly one deuterated candidate is generated by
exchanging all easily exchangeable hydrogens in case (eH=
X). Exactly one candidate is also generated in case (eH< X)
by exchanging all easily exchangeable hydrogens of Ci and
exchanging (X - eH(Ci)) variable hydrogens (vH(Ci)) of Ci

assuming that also aliphatic and/or aromatic hydrogens are
replaced without knowing the exact position (as the exact
position of the Hs is not necessarily required explicitly during
the fragmentation). Where (eH(Ci) >X), MetFrag generates
every combination of deuterated candidates where X out of
eH(Ci) easily exchangeable hydrogens are exchanged by deu-
terium, which results in (X choose eH(Ci)) deuterated candi-
dates for Ci. Figure 3 shows example candidates for all three
cases. This approach uses a modified version of the method
used for in silico derivatization in [19]. The in silico deutera-
tion method is available as a jar file and included as ESM. The
predicted candidates are given in ESM Table S3d.

Scoring terms

To incorporate the information gained by additional deuterat-
ed experimental MS/MS spectra, different scores are calculat-
ed by MetFrag. Altogether, MetFrag calculates four scoring
terms for a candidate Ci that are combined into a final
(consensus) score. The regular FragmenterScore
(SMetFrag(Ci)), already introduced in [5], calculates the match
of in silico–generated fragments Fragi,n of a candidate Ci to
the experimental MS/MS peaks Pn of SH, taking into account
the relative intensity of a matchedMS/MS peak, them/z value,
and the sum of the bond dissociation energies (BDEs) of the

candidate bonds that were cleaved to generate the matching
fragment.

The HDFragmenterScore (SMetFragHD(Ci)) uses the same
calculation rule as the regular FragmenterScorewith the same
generated fragments but incorporates the information of ex-
changed hydrogens from the precursor candidate Ci. This in-
formation is used to adapt calculated fragment masses to
match against m/z peaks dPm from the deuterated MS/MS
spectrum SD as illustrated in Fig. 4. The mass of a deuterated
fragment dFragi,n is then calculated as

m dFragi;n
� � ¼ m Fragi;n

� �þ eH Fragi;n
� �

� m Dð Þ−m Hð Þð Þ; ð1Þ

where m(Fragi,n), m(H), and m(D) are the masses of the nor-
mal fragment, a hydrogen, and a deuterium, respectively.

Equation 1 simulates the exchange of a number eH(Fragi,n)
of easily exchangeable hydrogens with deuterium for the re-
lated fragment. Where vH(Ci) ≠ 0, MetFrag also tries to find a
match based on a variable number of exchanged hydrogens by
adapting fragment masses with

m dFragi;n
� � ¼ m dFragi;n

� �þ k � m Dð Þ−m Hð Þð Þ; ð2Þ

where 1 ≤ k ≤ vH(dFragi,n) to simulate an additional exchange
of non-easily exchangeable hydrogens. As for the mass of the
normal fragment Fragi,n, the adduct mass value c is added/
subtracted also for dFragi,n, which is usually the mass of a
proton in the undeuterated case and thus the mass of D+ for
the deuterated case.

The HDFragmentPairScore (SPairHD(Ci)) counts matching
fragment pairs (Fragi,n, dFragi,n) between the normal and deu-
terated MS/MS spectrum. If a fragment Fragi,nmatches a peak
in the normal MS/MS spectrum SH and the corresponding
deuterated fragment dFragi,n matches a peak in the deuterated
MS/MS spectrum SD, it will be counted as a valid pair. For the
matched MS/MS peaks Pn ∈ SH and dPm ∈ SD, the number of
exchanged hydrogens k can be calculated by

jm Pnð Þ þ k⋅ m Dð Þ−m Hð Þð Þ−m dPmð Þj≤∈ ð3Þ

where є is a predefined mass deviation and k ≤ X. A fragment
pair is only counted if the number of deuteriums of dFragi,n are
equal to k, so

eH dFragi;n
� �þ vH dFragi;n

� � ¼ k; ð4Þ

with 0 ≤ k, where a pair is also counted, if k = 0 and
eH(dFragi,n) + vH(dFragi,n) = 0 meaning dFragij carries no
deuterium.

The HDExchangedHydrogensScore (SOSN(Ci)) shown in
Eq. 5 boosts candidates whose predicted number of easily
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exchangeable hydrogens eH(Ci) matches the number of ex-
perimentally exchanged hydrogens X and discriminates those
the more the higher the two values deviate from each other
assuming that all and only easily exchangeable hydrogens are
exchanged in most of the cases.

SCi OSNð Þ ¼ 1= jX−eH Cið Þj þ 1ð Þ
�

ð5Þ

The four scoring terms are calculated for all candidates Ci

in the candidate list C and are normalized by the maximum
value within C. The final score, which is used to rank the
candidates Ci, is calculated by the weighted sum (represented
by the respective weighting terms ω), as shown in Eq. 6.

SCi ¼ ωMetFrag � SMetFrag Cið Þ þ ωMetFragHD � SMetFragHD Cið Þ

þ ωPairHD � SPairHD Cið Þ þ ωOSN � SOSN Cið Þ

In case more than one deuterated candidate exists for
a given candidate Ci, the maxima of SMetFragHD(Ci) and
SPairHD(Ci) over the generated deuterated candidates are
used for Eq. 6.

Evaluation and optimization

To test the workflow, the adaptedMetFrag algorithmwas used to
process all spectra pairs from sets 2 and 3. Candidates were
retrieved by querying the ChemSpider database (June, 2017)
with the formula of the correct precursor molecule. Candidates
consisting of non-covalently bound substructures (e.g., salts) and
containing non-standard isotopes (like 13C) were filtered out and
not considered for the final scoring. For the processing of the
normal and deuterated MS/MS peak lists, a relative and absolute
mass deviation of 5 ppm and 0.001 Da was used for set 3 and
10 ppm and 0.01 Da for set 2 to match in silico–generated frag-
ments to experimental MS/MS peaks. MetFrag calculated the
four scoring terms SMetFrag(Ci), SMetFragHD(Ci), SPairHD(Ci), and
SOSN(Ci) for each of the candidates. The weights ωMetFrag,
ωMetFragHD, ωPairHD, and ωOSN were optimized by a randomized
grid search for which 1000 weight combinations were drawn
uniformly from the simplex. The optimal weight combination
was determined by maximizing the number of correctly top 1
ranked candidates among theMS/MS spectra pairs in the training
set. In case several candidates shared the same final score as the
correct one, the average rank was reported. Prior to the ranking,

Fig. 4 Modified in silico
fragmentation workflow,
demonstrated on isophorone
diamine (DTXSID6027503). In
silico–generated fragments from
normal mode (left) are modified
by exchanging and adding deute-
riums at predicted positions (right,
green shading) from the precursor
molecule. The normal precursor is
used to determine possible posi-
tions of hydrogen/deuterium ex-
change (here the amino groups).
This information is used during
the in silico fragmentation to per-
form mass calculation of deuter-
ated fragments (left)

(6)
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duplicate entries within the candidate list were filtered based on
the first part of the candidates’ InChIKey. The optimization was
performed by a tenfold cross-validation for the large standard set
(set 3) with a randomized fold assignment of the spectra pairs.
Due to a lower number of spectrum pairs, a leave-one-outcross-
validation was used for set 2. To determine the influence of the
scoring terms on the ranking results for set 3, the same cross-
validation (same fold assignment) was repeated by considering
different sets of scoring terms used to calculate the final score SCi.
The term combinations considered were {SMetFrag(Ci),
SMetFragHD(Ci), SPairHD(Ci)}, {SMetFrag(Ci), SMetFragHD(Ci),
SOSN(Ci)}, and {SMetFrag(Ci), SMetFragHD(Ci)}.

Results

Set 1: Fragmentation of deuterated standards

To extend MetFrag to deal with deuterium, MS/MS spectra of
three deuterated (internal) standards (where the location of
deuterium is known and not expected to undergo any form
of exchange during the experiment) were extracted using
RMassBank and compared with QExactive spectra of the cor-
responding undeuterated substances available in MassBank.
The three standards (DEET and DEET-d7, metolachlor and
metolachlor-d6, carbamazepine and carbamazepine-d10) are
shown in ESM Table S1, along with database identifiers and
the corresponding best-matching MassBank spectrum.
Table S4 (see ESM) shows the two main example fragment
pairs from DEET and DEET-d7, with formulas as annotated
by MetFrag and proposed fragment structures. The corre-
sponding MS/MS spectra are given in ESM Fig. S1.

The spectrum of metolachlor-d6(see ESM Fig. S2) re-
vealed more interesting fragmentation information than
DEET for the MetFrag results, as the deuteration was for only
6 of the total 22 hydrogens. As expected, the undeuterated
fragment C4H9O

+ at m/z 73.0648, lost from the nitrogen,
was observed as C4H3D6O

+ at m/z 79.1022 for metolachlor-
d6(see ESM Table S1). Corresponding m/z fragments prior to
the loss of this group were also seen, e.g., C12H18N

+ (m/z
176.1434) in the undeuterated molecule and C12H12D6N

+

(m/z 182.1815) in the deuterated molecule. However, many
fragments associated with the aromatic group (originally
undeuterated) were also observed incorporating one or more
deuteriums. This indicates that the replacement of Hs with Ds
can also occur at the aromatic ring in the collision cell, either
due to rearrangement reactions involving a movement of Ds in
activated gas-phase ions (scrambling) or an exchange with
other species present in the cell [37, 38]. Examples observed
at high intensities in the MS/MS spectra included C7H7

+ (m/z
91.0542) to C7H6D

+ (m/z 92.0603); C6H7N
+ (m/z 93.0573) to

C6H6DN
+ (m/z 94.0632) and C6H5D2N

+ (m/z 95.0698);
C7H10N

+ (m/z 108.0807) to C7H9DN
+ (m/z 109.0872) and

C7H8D2N
+ (m/z 110.0933). The most important conclusion

from this exercise for MetFrag, apart from the successful
method development, that this mobile deuterium in the colli-
sion cell should be considered dynamically, similar to hydro-
gen [5], i.e., fragments can be explained with up to one or two
additional hydrogens or deuteriums.

Set 2: QToF HDX experiments

The spectra from this test set, although a minor contribution in
comparison to the larger standard set described below, were
invaluable in establishing and testing the scoring strategy im-
plemented in MetFrag before the complete large standard set
was available. However, the results do illustrate the impact of
lower mass accuracy in HDX as obtained by the used QToF
instrument. The results retrieved for selected compounds are
given in ESM Table S2 along with the structures and the
weights of the scoring function and the resulting ranks. The
candidates were retrieved with a ChemSpider query as de-
scribed above. The top row per compound contains the results
considering onlyMetFrag without the deuterated scoring terms,
while the lower two rows show results with different
weightings (given in ESM Table S2) of all terms. The table
shows clearly for each example that the candidate ranking and
thus the results are improved when considering the information
from the deuterated experiments. Drastic improvements are ob-
tained for the examples N-(3-indolylacetyl)-L-valine and
phlorizin where the rankings improved from 97 to 25 and from
14 to 3.5, respectively. While the original results for this test set
actually eliminated candidates that exchanged fewer H atoms,
subsequent testing revealed that this could potentially result in
the elimination of correct candidates. As a result, the methods
were adjusted to the final strategy presented in this publication,
where all candidates are scored and the scores are used to pro-
vide relative rankings, rather than performing a hard elimination
of any candidates not exactly matching the theory. All further
validation was performed on the large standard set, described
below, as this was a much more comprehensive dataset and the
greater substance numbers were required for a more compre-
hensive evaluation of the method.

Set 3: Evaluation on large standard set

Experimental results on large standard set

As described in the methods, several mixtures were measured
to obtain the experimental data for the HDX method develop-
ment and validation. Several re-measurements were undertak-
en to confirm observations and obtain the highest quality MS/
MS spectra possible. In total, pairs of spectra (i.e., valid MS/
MS spectra in both normal and HDX measurements) were
found for 592 of the 762 unique substances measured. As
described in the methods, these were quality controlled with
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automated curation, control checks, and automated plotting of
extracted spectra and spectral pairs. All spectra were verified
manually by at least two of the authorship team, including
cross-checks in the vendor software. The results generally
matched very well with the theory explained above, and were
overall better than anticipated given the large structural diver-
sity and myriad of functional groups and properties in this
large standard set. An overview of all observed retention times
plus respective columns and measurement is given in ESM
Table S3e. The chemical information associated with all of
these observed species, including number of deuteriums ex-
changed and deuterated structures (where applicable), is given
in ESM Table S3f. These observed structures are available for
readers to download (https://comptox.epa.gov/dashboard/
chemical_lists/hdxexch). The full substance listing is also
available at https://comptox.epa.gov/dashboard/chemical_
lists/hdxnoex (reference standards only, not including the
deuterated species).

Example chromatograms (one normal, one HDX, ESI pos-
itive mode) for the pesticide mix are given in the ESM (Fig.
S3). This shows that overall, the chromatograms look similar
in many places, although peaks are clearly shifted slightly
(sometimes lower, sometimes higher retention times—for in-
stance, 5.51 to 5.80 min and 13.46 to 13.36 min in normal and
HDX conditions, respectively). In the isocratic region (after
approx. 15 min), peaks appear at much higher intensity in the
HDX chromatogram than in the normal chromatogram for the
Kinetex column—a phenomenon that was reproducible in
both the standard mixes and environmental samples
(discussed further below). The normal vs HDX retention times

over all mixes for the final compiled dataset are plotted in
Fig. 5 for the Kinetex column. The retention times are gener-
ally on the 1:1 line (with some small deviations at very early
retention times) until approximately 13 min, where the elution
regime changes from gradient to isocratic with 100%
MeOH/MeOD, respectively. Several compounds are still on
the 1:1 lineup to 16 min, while others deviate markedly from
this trend, eluting up to 25 min in normal mode but by 16 min
in HDX. The latter structures were all surfactants with a polar
head group and a long, apolar tail. Two of the most extreme
e x am p l e s a r e d o d e c y l b e n z e n e s u l f o n i c a c i d
(DTXSID8050443) and perfluorotetradecanoic acid
(DTXSID3059921), as shown in Fig. 5. Despite these few
extreme examples, the average retention time shift over all
standards was 0.04 min. A figure showing the retention time
vs change in retention time between the columns is included in
the ESM (Fig. S4), including additional example structures for
standout data points. While the change in physicochemical
properties from the normal to the deuterated eluents hardly
affects the compound retention during the relatively steep gra-
dient elution, these differences have a much larger effect on
surfactants during the isocratic elution. For the Synergi col-
umn, the average retention time shift was 0.35 min, but note
this was only for 45 substances measured with a long chro-
matographic gradient to enable better separation.

The majority of MS/MS spectra, 505 pairs, were found in
positive ion mode, while 155 pairs of spectra were found in
negative ion mode (68 substances had pairs in both modes). A
summary of the MS/MS information is given in ESM
Table S3g. While fewer substances ionize in negative mode,

Fig. 5 Retention time (in minutes) of all (unique) substances detected in
normal (x axis) and HDX (y axis) conditions for the substances measured
on the Kinetex column (both ESI positive and negative modes). The
gradient and percentage of methanol (normal) are marked with yellow

highlighting and dashed lines. Examples for the extreme retention time
shifts observed are given in the box and in ESMFig. S4; for explanations,
see text
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there was also a significant loss of intensity in the negative
mode HDX spectra (reproducible across several measure-
ments) that contributed to the significantly lower proportion
of negative mode pairs. While intensity losses were also ob-
served in positive mode, the generally higher intensity values
in positive ESI resulted in manymore spectral pairs in positive
mode. The average maximum intensities across the MS/MS
acquired from the major three chromatographic runs (first
measurements and bulk re-measurements on the Kinetex col-
umn plus the Synergi runs) were 2.21 × 108 for positive nor-
mal, 1.03 × 108 for positive HDX (both over 499 observa-
tions), 1.75 × 107 for negative normal, and 9.57 × 106 for neg-
ative HDX (over 153 observations). The highest maximum
intensities observed in the MS/MS (in the same order) were
4.7 × 109, 2.1 × 109, 2.4 × 108, and 1.3 × 108, while the lowest
maximum intensity was 1.7 × 105, 5.6 × 104, 3.8 × 104, and
2 × 104. Based on experience, a maximum intensity above
1 × 105 in the MS/MS is required (for this instrument) for a
sufficiently informative spectrum; thus, part of the manual
checks performed was to judge whether the extracted MS/
MS were of sufficient intensity, and thus quality, for the pur-
poses of this study. A further overall factor to consider was the
number of fragments observed. The average number of frag-
ments (same order as previously) was 30, 50, 11, and 28 frag-
ments (see ESM Table S3g for a full listing). Note that while
more fragments were observed for HDX (50 vs 30, 28 vs 11),
this is both due to the potential for more fragments on account
of the exchange behavior but also because a less rigorous
cleanup was performed (see BMethods^ section and Fig. 6

below). Furthermore, the presence of more fragments reduces
the intensity of single fragments and this could partially ex-
plain the intensity losses observed in the HDX spectra. The
maximum number of fragments observed was 267, 383, 104,
and 112, respectively, with minimum 1 for all categories ex-
cept negative HDX (5). Visual checks were performed to
eliminate the presence of spectra that may just be noise or
where the pairs appeared to completely mismatch, or where
only peaks resulting from the precursor (or higher) were pres-
ent, as these are not accounted for duringMetFrag processing.
Following all manual checks, 499 spectral pairs remained for
positive mode and 148 for negative mode (see ESM
Table S3g). This dataset formed the basis for the MetFrag
Score validation (see next section).

In the end, matching pairs were observed as one or both of
[M+H]+/[M+D]+ and [M-H]−/[M-H/D]− for 592 of the origi-
nal 762 substances (78%) and 579 (76%) of these were used
further for method development followingmanual checks. For
170 substances, no valid pairs were observed for a number of
reasons, which are clarified in the following examples. It is
possible that some Bpairs^ have been falsely eliminated in the
quest for optimal data quality. For instance, in positive mode,
retention times were determined for 656 of 850 (non-unique)
[M+H]+ species over the two major runs of all mixes, whereas
only 631 RTs could be determined for the equivalent [M+
D]+species—in the vast majority of cases due to lack of inten-
sity, poor peak shape or evidence of interfering co-elution.
Overall, very little evidence of partial or incomplete exchange
was observed. For negative mode, retention times could be

Fig. 6 Observed normal (black) and HDX (red dashed) MS/MS frag-
ments for isophorone diamine (DTXSID6027503) showing the [M+D]+

ion (shifted by 5 mass units, as expected when 4D are exchanged plus an
additional D is gained in ionization), then a NH3/ND3 loss to yield a

fragment pair with a 2 mass unit shift, then a subsequent NH2/ND2 loss
to yield the identical C10H17

+ fragment with no more deuterium present.
Images created using CDK Depict; the highlighting indicates the remain-
ing Bbackbone^ of the structure, as represented in MetFrag
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determined for 206 [M-H]− species and 195 [M-H/D]− species
according to the theory described in the methods; no sub-
stances exhibiting partial exchange were noted, but as stated
above, the intensity losses in negative mode made it difficult
to find valid pairs in some cases. A few substances were not
extracted due to incorrect structural information in the original
compound lists used to perform the data extraction (i.e.,
SMILES and name mismatch, which only became obvious
during quality control)—while the tables presented in ESM
Table S3 have been extensively curated and present the correct
structural information to the best of our knowledge, the spec-
tra were not re-extracted from the raw data for the cases where
these errors were discovered too late and resulted in the wrong
masses and wrong predicted structures, etc. A further case
resulting in the most Bnon detects^ for positive mode was
the formation of adducts other than [M+H]+, resulting in the
loss of 13 substances expected as [M]+ and another
(Abamectin) observed almost exclusively as [M+Na]+ and
[M+NH4]

+. Although MetFrag can handle different adduct
settings, for the purpose of simplicity for the method estab-
lishment here (and due to the low number of adducts observed
resulting in very small datasets), it was decided to evaluate the
[M+H]+/[M+D]+ and [M-H]−/[M-D]− cases only in the mate-
rial presented here. Alternative adducts were not investigated
in negative mode due to the intensity issues, which made it
difficult to draw any form of conclusion. As measurements
were performed on several mixes rather than individual com-
pounds, it is also worth noting that these mixtures were chosen

partially for analytical convenience andmany substances pres-
ent in some mixes would require a more specialized chroma-
tography for optimal measurement (e.g., many steroids and
amines) and it was not expected that all substances would be
observed in these experiments. This compromise was neces-
sary to obtain the data presented here, as flooding a complete
chromatographic system with deuterated solvents leads to an
approximately 50 times cost increase per run above regular
solvents (see discussion below).

The results achieved exceeded expectations in many ways
and many high-quality normal and HDX spectra were obtain-
ed. As an example, the observed spectra (normal and HDX
mode) for isophorone diamine, DTXSID6027503, are shown
in Fig. 6 (a small compound has been chosen for clarity). The
fragmentation is explained in the figure and caption.

MetFragHDX score validation

As described in the BMethods^ section, four scoring terms
were considered to account for the additional information aris-
ing from HDX experiments in MetFrag (see Eq. 6). The final
selection ofMS/MS pairs (as described above) was used in the
evaluation of the scoring terms (note that a total of 498 spectra
were used in positive mode as one compound was measured
on both columns). The results are given in Table 1. The im-
provement in rank was much clearer for set 3, where the Top 1
ranks increased from 49 (10%) using the original MetFrag
scoring alone to 78 (16%) by incorporating HDX information

Table 1 Absolute number (%) of top 1, 3, 5, and 10 ranks for
MetFragHDX Score combinations for set 2 (57 and 63 MS/MS spectra)
and set 3 (498 and 147 spectra) in positive and negative modes respec-
tively. Results for all score terms and MetFrag only are shown for set 2;

various combinations for set 3. Although some of the individual scores do
not have good ranking performance, the combination of all 4 terms results
in a clear improvement. The combination of all four terms outperformed
the tested combinations of 2–3 terms

Set 2 (QTOF) Positive (n = 57) Negative (n = 63)

Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10

MetFrag,PairHD,OSN,MetFragHD 4 (7%) 9 (16%) 15 (26%) 24 (42%) 2 (3%) 13 (21%) 19 (30%) 31 (49%)

MetFrag 4 (7%) 8 (14%) 11 (19%) 13 (23%) 1 (2%) 4 (6%) 5 (8%) 14 (22%)

Set 3 (Orbitrap) Positive (n = 498) Negative (n = 147)

Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10

MetFrag,PairHD,OSN,MetFragHD 78 (16%) 189 (38%) 251 (50%) 320 (64%) 20 (14%) 64 (44%) 90 (61%) 106 (72%)

MetFrag,PairHD,OSN 74 (15%) 192 (39%) 254 (51%) 321 (64%) 20 (14%) 61 (41%) 86 (59%) 106 (72%)

MetFrag,MetFragHD,PairHD 56 (11%) 145 (29%) 197 (40%) 255 (51%) 15 (10%) 48 (33%) 74 (50%) 86 (59%)

MetFrag,MetFragHD,OSN 76 (15%) 191 (38%) 255 (51%) 322 (65%) 21 (14%) 67 (46%) 89 (61%) 107 (73%)

MetFrag,MetFragHD 59 (12%) 152 (31%) 202 (41%) 258 (52%) 18 (12%) 49 (33%) 68 (46%) 82 (56%)

MetFrag,PairHD 51 (10%) 146 (29%) 200 (40%) 250 (50%) 16 (11%) 49 (33%) 69 (47%) 84 (57%)

MetFrag,OSN 74 (15%) 193 (39%) 253 (51%) 320 (64%) 21 (14%) 62 (42%) 86 (59%) 107 (73%)

PairHD,OSN 30 (6%) 109 (22%) 154 (31%) 224 (45%) 12 (8%) 46 (31%) 68 (46%) 90 (61%)

MetFragHD,PairHD 56 (11%) 133 (27%) 189 (38%) 238 (48%) 13 (9%) 42 (29%) 61 (41%) 78 (53%)

MetFrag 49 (10%) 130 (26%) 177 (36%) 238 (48%) 18 (12%) 47 (32%) 61 (41%) 80 (54%)

PairHD 26 (5%) 82 (16%) 121 (24%) 165 (33%) 8 (5%) 33 (22%) 54 (37%) 68 (46%)

OSN 12 (2%) 52 (10%) 87 (17%) 137 (28%) 8 (5%) 28 (19%) 50 (34%) 71 (48%)

MetFragHD 55 (11%) 130 (26%) 180 (36%) 235 (47%) 13 (9%) 40 (27%) 60 (41%) 72 (49%)
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for the positive mode spectra. The results in Table 1 were also
visualized to gain an overall view of the candidate ranking
improvement. While in some cases using only three of the
four terms yielded similar ranking results, in the end, all four
terms were retained as each contributes valuable information
for the interpretation of the results. Furthermore, the MetFrag
output is designed in such a way that users can access all
individual scoring terms in the results export and are thus able
to re-score the results (or exclude specific terms) at any stage
using their own weighting scheme.

Observations on environmental sample

The same chromatographic methods (normal and HDX) were
applied to an environmental sample to investigate how trans-
ferable these methods would be to Breal world^ samples. A
well-characterized sample that was the focus of the joint EU
project SOLUTIONS (https://www.solutions-project.eu/) was
chosen (see BMethods^). Screenshots of the full scan
chromatograms are given in the ESM (ESM Figs. S5 and
S6, in positive and negative modes, respectively). The
targeted analytical results performed on this sample [22] were
used to confirm the results observed for the mixes (see ESM
Table S5a). As an example, the MS/MS spectra for metformin
are shown in Fig. 7 below, with the expected reaction and
corresponding chromatographic peaks in ESM Fig. S7. For
comparison, the corresponding normal and HDX spectra for
metformin from the standardmixes (as opposed to the sample)
are given in ESM Fig. S8; the spectral similarity between the
HDX spectrum from the sample and the mix (without

performing any form of additional spectral processing or
cleanup) was 0.87, mainly due to the presence of additional
peaks in the sample spectra.

In total, 107 target compounds that were reported were
deemed to be detectable with the non-target Orbitrap method
used here (many at low concentrations, see ESMTable S5). Of
these 107, 90 pairs of normal and HDX peaks were found (68
in positive mode, 22 in negative mode), excluding messy or
unclear peaks. MS/MS pairs existed for 28 of these (21 posi-
tive, 7 negative). For the remaining pairs, either no MS/MS
was observed in normal conditions (6), under HDX conditions
(27), or both (46). This is partially influenced by the data-
dependent acquisition used (i.e., no inclusion list was used
to try to record MS/MS spectra for these compounds, which
would be a realistic scenario for performing non-target analy-
sis on a sample with unknown compounds). These results are
summarized in ESM Table S5a. The average intensities (for
peaks where pairs were observed) were 3.5 × 107, 2.4 × 107,
3.3 × 106, and 1.3 × 106 for positive normal, positive HDX,
negative normal, and negative HDX, respectively. The aver-
age retention time shift over both modes was 0.20 min.

As for the standardmixes, a significant loss in intensity was
again observed for the negative mode HDX measurements
(see ESM Fig. S6), except for substances occurring after the
isocratic gradient at 13 min, which once again sharpened dra-
matically and substances eluted much earlier in HDX condi-
tions. While the positive mode data appears visually similar
(ESM Fig. S5), this is not the case for negative mode (ESM
Fig. S6), where most of the visible peaks between 0.4 and
14 min in the normal chromatogram are no longer (or only

Fig. 7 Metformin (DTXSID2023270) in the Novi Sad sample; black in
normal conditions and red dashed as observed under HDX conditions.
The shift of the major fragments clearly shows the origins of the

fragments (see red line indicating the major Bsplit^ in the inset). Green
highlighting in the fragments indicates the remaining backbone as repre-
sented in MetFrag
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very slightly) visible in the HDX chromatogram, while the
unresolved lump towards the end, due to dialkyl tetralin sul-
fonate (DATS, DTXSID70891725) surfactants, among others,
has sharpened to a family of peaks between 14.5 and 16 min.
The chromatography associated with individual masses in this
homologous series is demonstrated in ESM Fig. S9. The cor-
responding fragmentation spectra in normal and HDX mode
for C11-DATS (C17H26O3S, precursor m/z 309.1530, identifi-
cation level 3 [39]) is given as a head to tail plot in Fig. 8.

This retention time shift was also observed for the target
compound perfluorooctanoic acid (DTXSID8031865), which
was observed at RT = 15.5 min in normal mode and 13.7 min
in HDX conditions. To investigate whether this is a phenom-
enon driven by the properties of these type of substances (a
long apolar part followed by a polar head group), the
sulfophenyl alkyl carboxylate (SPACs, DTXSID90891722)
surfactants were also investigated, as these have polar func-
tional groups on both ends of the molecule, due to the pres-
ence of the carboxyl group at the end of the alkyl chain. While
these surfactants also suffered from the intensity loss in neg-
ative mode, they elute much earlier and did not appear to
display large retention time shifts under HDX conditions
(see ESM Fig. S10), although no MS/MS was obtained.
Subsequently, surfactant series detected in wastewater [23],
available here: https://comptox.epa.gov/dashboard/chemical_
lists/eawagsurf, were screened by formula using RChemMass
(https://github.com/schymane/RChemMass). Significant

shifts were observed for tentatively identified (level 3)
groups of AS surfactants (RT 22–25 min to 14–15 min),
DATS (RTs 21–24 min to 12–15 min), LAS (> 24 min to
14–16 min). Less conclusive shifts, but clear sharpening of
the elution profile in HDX mode, was observed for the AES
and SAS classes, see ESM Table S5b.

Discussion

This article describes the integration of hydrogen-deuterium
exchange (HDX) experiments into MetFrag to assist in the
identification of unknown compounds in non-target high-res-
olution mass spectrometry experiments. The initial algorithms
were implemented and tested on a small subset of stably la-
beled deuterated substances to ensure correct handling of deu-
terium. The full method was then applied to small test sets of
hydrogen-deuterium exchange experiments before being eval-
uated extensively on a large set of environmental standards
and finally applied to an environmental sample. Thus, the
methods presented here have been validated on two separate
LC-MS systems, one Orbitrap-based, and another QTOF-
based. The experimental results were, in many ways, better
than anticipated. For the standard mixes, very little deviation
from the expected exchange behavior was observed and, de-
spite intensity losses in negative mode observed for the
Orbitrap data, generally very comparable MS/MS were

Fig. 8 Head to tail plot of MS/MS fragments from C11-DATS (where
m + n = 5) in the Novi Sad sample. Blue: normal; red: HDX fragmenta-
tion. As only 1 D can be exchanged, which is lost during ionization, no D
is observed in the structure of the ion. Shifts in the peaks in the lower
masses are still observed due to the presence of D in the collision cell
interacting with the aromatic structure, likely arising from other
(deuterated) precursor ions included within the isolation window. Note

that the high-intensity precursor peaks (m/z 309.1530) have been exclud-
ed from both spectra to allow for better visualization of the fragmentation
patterns. A lower intensity (~ 10%) precursor mass of m/z 308.6758 was
observed in the full scan data for the HDX measurements, which would
have been included in the isolation window for the HDX MS/MS data
and could have been the source of deuterium. This mass was only visible
at 2% in the MS/MS spectrum
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obtained. However, despite this, the ranking improvements
were not as great as hoped on the large set of ChemSpider
candidates, with an increase from 10 to 16% of the candidates
ranked correctly in first place. This contrasts with the influ-
ence of metadata on candidate ranking inMetFrag observed in
the CASMI2016 results, which was run on a subset of 208
spectra from this same dataset, also using ChemSpider candi-
dates [6]. In CASMI2016, MetFrag alone ranked 11% (24 of
208) correct in first place, compared with 78% (162 of 208)
using MetFrag, retention time, and reference information [6]
(where reference information was the largest contributor to the
improvement in ranking [5]). This shows that metadata is still
very much needed for rapid prioritization in high-throughput
tentative identification for well-known substances. However,
as discussed above, reference information is not always appli-
cable, and in these cases, HDX experiments can provide ad-
ditional information for candidate selection and has the clear
advantage of being based on experimental information.

As demonstrated in this study (and also by previous studies
utilizing this approach), HDX improves compound identifica-
tion by narrowing down the number of potential candidates
based on both MS1 and MS/MS data. The application with an
LC system fully flushed with deuterated solvent is consider-
ably more expensive than normal LC-HRMS, in our case
about 15 vs 0.30 Euros per run for the solvent. Considering
the overall cost of running non-target screening and the asso-
ciated data evaluation, which may amount to many 100s of
Euros, this extra cost can be considered acceptable for the
additional information gained, as long as the instrument time
and sample volume is available for the additional runs. In
many cases, it is complementary to the MS/MS or retention
time information typically used. With the integration into
MetFrag, a semi-automated evaluation of data from HDX ex-
periments is possible, while in previous studies, the data had
to be evaluated and interpreted manually.

The way the data processing was performed in this study
took advantage of the fact that the substance identity was
Bknown,^ which was critical for the method development.
The expected HDX species were predicted and the corre-
sponding data could thus be extracted easily. In true
untargeted experiments, the Bundeuterated^ precursor masses
inMS1must be matched to the Bdeuterated^ precursor masses
without knowledge of the correct structure up front. This can
be achieved by looking for a mass difference ofX×(2.014102–
1.007825) = 1.006277(X) units within a given retention time
window, which could be determined using experiments on
known standards. The number of deuteriums, X, can then be
deduced from the mass difference and used inMetFrag to rank
the candidates. As demonstrated in Fig. 5, the deuterated sub-
stance retention times can shift slightly and—in some cases—
quite dramatically. The results presented here indicate that
large retention time shifts will not be expected for rather fast
gradient separations typically used in screening methods.

However, compounds eluting under isocratic conditions at
low aqueous eluent fractions might be severely affected.
Observations so far have occurred in a reproducible fashion
over standard and sample measurements, such that some sim-
ple rules will help define appropriate retention time windows
for these cases. Additional verification on different sample
matrices and with further dual functionality standards would
be needed to see exactly when the large retention time shifts
are expected, for which substance classes and whether this
effect varies in different sample matrices.

For a broader application to non-target screening, care must
be taken that isotope peaks are not incorrectly assigned as
potential deuterated masses in full scan data processing, as
the mass difference between the 13C isotope peak of the
undeuterated species and a potential monodeuterated species
is 0.00292 Da, which is, e.g., 7 ppm difference at m/z 400. In
terms of MS/MS acquisition, a narrow isolation window (~
1 Da) is essential, such that isotope peaks are not present in the
fragmentation spectrum to confuse interpretation. In terms of
full scan data processing, this will require high-quality peak
grouping to correctly assign isotope peaks to features
(componentization), in both the normal and deuterated exper-
iments. For cases that behave as expected (e.g., 100% of H
exchanged for D as expected), this should be relatively
straightforward, as the isotope peaks will also be shifted by
100%. However, for cases of incomplete exchange, things can
rapidly become more complicated. If only partial exchange
occurs (e.g., 30%), then the M+1 peaks will be a mixture of
[M+D]+ and 13C-[M+H]+, which requires a resolution R =
35,000 at m/z = 100, R = 70,000 at m/z = 200, etc. to resolve
the isotopologues. It would be possible to resolve these peaks
up to approximately m/z = 400 (R = 140,000) using the
Orbitrap instrument applied in these experiments, but not gen-
erally with a QTOF. For molecules with a large number of
exchangeable hydrogens and high mass (e.g., glycosides with
several sugars), complex spectra will be obtained, and a low
level of Bnormal^ hydrogen in the deuterium-flooded LC sys-
tems becomes relevant (e.g., at 99% deuterium purity and 40
labile hydrogens, the probability that all these 40 hydrogens
are exchanged is only 66%). Similar issues would be observed
using post-column HDX, as these also yield mixed spectra,
rather than the very clean spectra observed here. It is possible
to do back-calculations to account for this (as is routinely done
in proteomics experiments, for instance), but adds complica-
tions to the data interpretation and is beyond the scope of the
current article. Additionally, future studies will need to inves-
tigate additional adducts, the combination of positive and neg-
ative ionization results to extract the molecular ion, as well as
incomplete exchange.

In this manuscript, we have made use of the CompTox
Chemicals Dashboard as a host for lists of chemical struc-
tures, both undeuterated and HDX versions. Each of these
lists required manual registration of the chemical structures
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(deuterated and undeuterated) into the underlying DSSTox
database in order to be exposed via the Dashboard [26]. If
the HDX approach proves to be of general value in analysis,
the development of BHDX versions^ of chemicals at regis-
tration may be possible, requiring the generation of
deuterium-labeled forms of the chemicals to save as Brelated
substances^ by default. In many ways, this is similar to the
generation of BMS-Ready^ forms of the chemicals [40] that
utilizes transformations of input chemicals to provide
desalted, non-stereospecific forms to support mass spectrom-
etry analyses. The generation of HDX forms of the
chemicals could be done via the jar provided in the ESM
or via the implementation of a set of transformation rules
(e.g., D-exchange of OH, SH, NH, NH2, etc.) to provide the
HDX-related substance to support this type of analysis.
Alternatively, a BHDX download file^ could be provided
of the predicted HDX forms of the entire CompTox data-
base, if external users would find this useful.

Due to the methodological and experimental efforts, it is
considered unlikely that HDX experiments will be applied to
NTS of environmental samples on a regular basis (in contrast
to stable isotope labelling in certain metabolomics experi-
ments); however, in special cases, it may offer crucial help
in identification. These cases include the screening for toxico-
logically relevant compounds such as amines or phenols
where HDX can be expected to provide detailed structural
information, as demonstrated in this study.
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Improving MetFrag with statistical
learning of fragment annotations
Christoph Ruttkies1* , Steffen Neumann1,2 and Stefan Posch3

Abstract

Background: Molecule identification is a crucial step in metabolomics and environmental sciences. Besides in silico
fragmentation, as performed by MetFrag, also machine learning and statistical methods evolved, showing an
improvement in molecule annotation based on MS/MS data. In this work we present a new statistical scoring method
where annotations ofm/z fragment peaks to fragment-structures are learned in a training step. Based on a Bayesian
model, two additional scoring terms are integrated into the new MetFrag2.4.5 and evaluated on the test data set of
the CASMI 2016 contest.

Results: The results on the 87 MS/MS spectra from positive and negative mode show a substantial improvement of
the results compared to submissions made by the former MetFrag approach. Top1 rankings increased from 5 to 21
and Top10 rankings from 39 to 55 both showing higher values than for CSI:IOKR, the winner of the CASMI 2016
contest. For the negative mode spectra, MetFrag’s statistical scoring outperforms all other participants which
submitted results for this type of spectra.

Conclusions: This study shows how statistical learning can improve molecular structure identification based on
MS/MS data compared on the same method using combinatorial in silico fragmentation only. MetFrag2.4.5 shows
especially in negative mode a better performance compared to the other participating approaches.

Keywords: Mass spectrometry, Statistical modeling, Identification

Background
The identification of small molecules such as metabolites
is a crucial step in metabolomics and environmental sci-
ences. The analytical tool of choice to achieve this goal
is mass spectrometry (MS) where ionized molecules can
be differentiated by their mass-to-charge (m/z) ratio. As
a single m/z value is not sufficient for the unequivocal
determination of the molecular structure, tandem mass
spectrometry (MS/MS) is applied, which results in the
formation of fragment ions of the entire molecule. These
fragments result in fragment peaks that are characterized
by their m/z and intensity value. The intensity correlates
with the amount of ions detected with that particularm/z
value. These m/z fragment peaks can be used to infer
additional hints about the underlying molecular structure.

*Correspondence: christoph.ruttkies@ipb-halle.de
1Department Biochemistry of Plant Interactions, Leibniz Institute of Plant
Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
Full list of author information is available at the end of the article

The interpretation of the generated data is complex
and usually requires expert knowledge. Over the past
years, several software tools have been developed to over-
come the time-consuming manual analysis of the growing
amount of MS/MS spectra in an automated way. The first
approaches tried to reconstruct observed fragment spec-
tra by performing in silico fragmentation in either a rule
based (e.g. MassFrontier [1]) or combinatorial manner
such as MetFrag [2, 3], MIDAS [4], MS-Finder [5] and
MAGMa [6].
MetFrag was one of the first combinatorial approaches

developed and performs in silico fragmentation of molec-
ular structures. Given a single MS/MS spectrum of an
unknownmolecule,MetFrag first selects molecular candi-
dates from databases given the neutral mass of the parent
ion. In the next step, each of the retrieved candidates
is treated individually and fragmented in silico using a
bond-disconnection approach. The generated fragment-
structures are assigned to the m/z fragment peaks of the

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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MS/MS spectrum, based on the comparison of the theo-
retical mass of the generated structure and the m/z value
of the acquired fragment peak. Given a set of assignments
ofm/z fragment peaks to fragment-structures for one can-
didate, MetFrag calculates a score that indicates how well
the candidate matches the given MS/MS spectrum. These
scores are used to rank all retrieved candidates. Ideally, the
correct one is ranked in first place.
Statistical approaches have evolved, which are learn-

ing fragmentation processes on the basis of annotated
experimental MS/MS data. CFM-ID [7] is using Markov-
chains to model transitions of fragment-structures for
the prediction of MS/MS spectra. Generated spectra can
be aligned with the spectrum of interest and report the
candidates with the best matching spectral prediction.
FingerID [8] usesMS/MS spectra to predictmolecular fin-
gerprints. These Fingerprints are bit-wise representations
of molecular structures where each position in the fin-
gerprint encodes a structural property of the underlying
molecule. FingerID uses support vector machines (SVM)
and is enhanced by CSI:FingerID (CSI:FID) [9], integrat-
ing fragmentation trees which are calculated by SIRIUS
[10]. CSI:IOKR [11] replaces the SVM prediction by an
input-output kernel regression approach. Recent analysis
in one of the latest CASMI (Critical Assessment of Small
Molecule Identification) contests (2016) [12] reveal that
techniques supported by statistical learning (i.e. CSI:FID
and CSI:IOKR) are the most promising and powerful
methods used to perform structure elucidation if only the
MS/MS data is considered.
In this work we introduce a new statistical approach

to evaluate candidates for MS/MS spectra. Using training
data, probabilities of the predicted fragment-structures
given the observed m/z peaks are estimated with a
Bayesian approach. These probabilities are integrated as
new scoring terms for MetFrag to rank candidates. The
new scoring schema is tested on the challenge data sets
of the CASMI contest 2016. The method shown here
complements the different machine learning and statis-
tical approches that perform MS/MS spectra prediction
(CFM-ID), prediction of molecular fingerprints (CSI:FID,
CSI:IOKR) and now combining in silico fragmentation
and statistical scoring for the evaluation of retrieved
molecular candidates. The new scoring functions are
available with the new MetFrag version 2.4.5.

Methods
This section introduces the notation and the Bayesian
model approach used to evaluate how likely a fragment-
structure is in the presence of an m/z fragment peak.
The resulting probabilities are defined across the domain
of all possible fragment-structures and all m/z fragment
peaks, but can be reduced to become tractable. The result-
ing probability distribution will be used in the candidate

score ScRawPeak indicating whether a candidate can explain
the m/z fragment peaks with fragment-structures seen in
the training spectra. In analogy, neutral losses will also be
considered. The parameter estimation to model the prob-
ability distribution is at the heart of our approach. We
describe how they are estimated from training data, taking
care to clearly separate training data from evaluation data.
Finally we describe the evaluation using the CASMI 2016
challenge data and comparison to the results obtained
by other approaches and state-of-the art small molecule
identification programs.
First, we introduce notations required for our approach.

A summary of the notation used in the following and
their description can be found in Additional files 4
and 5: Tables S1 and S2. Consider a set of N centroided
MS/MS spectra m = {mn|n = 1, . . .N} where mn =
(mn1, . . .mnKn) consists of Kn m/z fragment peaks mnk .
Furthermore, for each spectrummn a set of candidates cn
of length Cn is given, typically retrieved from a database.
For a given candidate cnc ∈ cn, MetFrag performs an
in silico fragmentation and assigns each observed m/z
fragment peak mnk to one of the generated fragment-
structures, denoted fnck in the following. This can be
interpreted as explaining them/z fragment peakmnk with
the fragment-structure fnkc. On the basis of the in sil-
ico fragmentation, assignments of m/z fragment peaks
to fragment-structures (mn, f nc), c = 1, . . .Cn, are deter-
mined. As there is not necessarily a matching fragment-
structure for every m/z fragment peak mnk , we introduce
⊥ in case anm/z fragment peakmnk cannot be annotated,
and denote fnck =⊥ in this case.
As stated in the introduction, we want to evaluate

candidates for an MS/MS spectrum by a statistical scor-
ing approach to be integrated into MetFrag. There-
fore, we apply a scoring term based on the probability
P(f nc|mn). The distribution P(f |m) models the occurence
of fragment-structures in f in the correct candidate for
a given list m of m/z fragment peaks in an observed
spectrum. In the following we assume the independence
of the assignments of m/z fragment peaks to fragment-
structures yielding

P(f |m) =
K∏

k=1
P(fk|mk),

with m = (m1, , . . . ,mK ) and f = (f1, . . . fK ). From a
chemical point of view, we know that certain m/z frag-
ment peaks occur concurrently with other m/z fragment
peaks (or at least with a higher certainty) due to multi-
stage fragmentation pathways that lead to a further frag-
mentation of a generated fragment-structure. However,
for the sake of model simplification we do not consider
this information when assuming independence of assign-
ments ofm/z fragment peaks to fragment-structures.
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A fragment-structure can be regarded as a connected
charged molecular structure consisting of atoms con-
nected via bonds. A graph can be used as data structure
to represent a fragment-structure, as atoms and bonds
can be represented by graph nodes and edges, respec-
tively. However, to reduce the computational costs for
comparing graphs by determining graph isomorphisms,
especially whenworking with thousands or even hundreds
of thousands of fragment-structures, we use molecular
fingerprints as a bit-string representation of a molecu-
lar structure. Each bit of the fingerprint describes the
presence or absence of a molecular feature within the
structure. As different fragment-structures may share the
same fingerprint, this approach reduces the the domain
size and also generalizes very similar fragment-structures
that would explain the same m/z fragment peak. There
are different molecular fingerprint functions available,
e.g., the MACCSFingerPrint [13] and the LingoFinger-
print [14]. A fragment-structure fingerprint is defined as
f̃k = MolFing(fk), calculated by the fingerprint function
MolFing.
We regard two fragment-structures f and f ′ to be equal,

if f̃ and f̃ ′ are equal, although f and f ′ might be struc-
turally different. This reduces the comparison to constant
time as the fingerprint length is independent of the size
of the fragment-structure. The distribution can now be
re-defined as

P(̃f |m) =
K∏

k=1
P(̃fk|mk).

The comparison of twom/z fragment peaksm andm′ can
not be performed as a simple test for equality by m = m′.
This is impractical for MS measurements as they show a
certain degree of deviation depending on the mass accu-
racy of the instrument. For this reason, the m/z range
covered by training and test spectra is discretized into
non-equidistant bins [ bi, bi+1]. The boundaries are calcu-
lated as bi+1 = bi + 2 · (mzppm(bi) + mzabs) with b0
set to the minimum mass value of this range. The values
mzabs andmzppm(bi) represent the absolute (inm/z) and
relative mass (in ppm) deviation given by the MS setup.
Twom/z fragment peaksm andm′ are considered to be

equal if they fall into the same bin. In the following each
m/z fragment peakm is discretized to the central value of
its bin.

Domains and Parameters
As a next step, the two domains M of m/z values m and F
of all fragment-structure fingerprints f̃ need to be defined.
For M one could consider all bins resulting from dis-
cretization. However, this is impractical as the major part

of this domain is not observed for a given data set. Like-
wise, the domain F can be defined to contain all possible
fragment-structure fingerprints. Using the MACCSFin-
gerprint with 166 bits would result in 2166 ≈ 9.35 · 1049
different fingerprints. In practice this space needs to be
reduced to be tractable, and again only a fraction will be
observed for a given problem. For a spectral training data
set ofN MS/MS spectra andCn candidates each, we define
a reduced peak domain M̃tr and a reduced fingerprint
domain F̃tr as

M̃tr = {mnk|n ∈ 1, . . .N , k = 1, . . .Kn} ⊆ M

F̃tr =
{
f̃nck|n∈1, . . .N , c=1, . . .Cn, k=1, . . .Kn

}
⊆ F ,

which are them/z fragment peaks and fragment-structure
fingerprints observed in this data set.
Furthermore, we define Dtrain as a list of all assign-

ments of m/z fragment peaks to fragment-structures in
the training data, i.e.

Dtrain=(
(mnk , fnck)|n=1, . . .N , c=1, . . .Cn, k=1, . . .Kn

)
.

Besides the MS/MS spectra given in this training data
set we also need to address observations of an additional
centroided MS/MS query spectrum mq that is not part of
the training data set. The processing of mq is illustrated
in Fig. 1. The domains are extended by the observa-
tions retrieved from this single query spectrum with Cq
candidates and Kq m/z fragment peaks, i.e.

M̃ = M̃tr ∪ {mqk|k = 1, . . .Kq}
F̃ = F̃tr ∪ {̃fqck|c = 1, . . .Cq, k = 1, . . .Kq}.

To define the distribution P(̃f |m) with m ∈ M̃ and
f̃ ∈ M̃, we introduce the notation θm̃f := P(̃f |m), which
is the probability of fragment-structure fingerprint f̃ given
an observed mass m. The complete set of parameters is
given as

θ = (θm̃f ), for m ∈ M̃, f̃ ∈ F̃ .

Parameter estimation
The parameters are initially not known and need to be
estimated from the training data. In the process of param-
eter estimation cn is set to only contain the known cor-
rect candidate (Cn = 1) for the generation of Dtrain
as this results in mainly correct predicted fragment-
structure assignments as ground truth. The generation
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Fig. 1MetFrag processing of a single query spectrum (mq). The input for a MetFrag processing run is a query MS/MS spectrum and the candidate
list. Fragments are generated in silico for each candidate and mapped tom/z fragment peaks in the given spectrum. The output is a list of
assignments ofm/z fragment peaks to fragment-structures for each candidate

of Dtrain is illustrated in Fig. 2 where only the correct
candidate for each spectrum is processed. One paradigm
for parameter estimation is the maximum likelihood
principle

θ̂
ML = argmax

θ

P(Dtrain|θ),

which results in

θ̂ML
m̃f =

Nm̃f∑
f̃ ′∈F̃ Nm̃f ′

,

with Nm̃f =
∑

(mt ,̃ft)∈Dtrain

δ(̃ft , f̃ )δ(mt ,m)

Nm̃f is the absolute frequency of the assignments of m/z
fragment peaks to fragment-structures (m, f̃ ) in the train-
ing data setDtrain.
If such an assignment (m, f̃ ) resulting from the query

spectrum is not contained in the training data, a probabil-
ity θ̂ML

m̃f
= 0 is estimated. As a consequence the probability

P(̃f |m) for the query will be zero.

Due to the limitation of the available training data,
this situation will arise quite often. To avoid this prob-
lem, we use the Bayes paradigm including a priori dis-
tribution for the parameters to be estimated. In addi-
tion, as we only consider the correct candidate for each
spectrum in Dtrain it is not possible to reliably esti-
mate parameters in case f̃ =⊥, which is the proba-
bility for an m/z fragment peak without an assigned
fragment-structure. Within the Bayesian approach we
model this probability with the prior distribution and set
Nm⊥ = 0.
In the following we will use the mean posterior (MP)

principle

θ̂MP
m̃f = EP(θ |Dtrain,π)[ θ ]

where

P(θ |Dtrain,π) = P(θ |π)P(Dtrain|θ)

P(Dtrain|π)

is the a posteriori distribution of parameters θ . As a prior
distribution P(θ |π) on the parameters we use a prod-
uct Dirichlet distribution with hyper parameters πm̃f ,
m ∈ M̃, f̃ ∈ F̃ defined as

πm̃f =
{

α, f̃ �=⊥
β , f̃ =⊥

}
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Fig. 2 The training phase. The training consists of two major phases. For each phase a subset of the known reference MS/MS spectra is used. In the
first phase MetFrag generates a list of assignments ofm/z fragment peaks to fragment-structures for the given MS/MS spectra and their correct
candidates. These assignments are generated by the in silico fragmentation of the correct candidate and the mapping of the generated
fragment-structures to them/z fragment peaks in the training spectrum. This assignments list (Dtrain) is used in the second training phase along
with the second subset of the reference spectra. Here, for each MS/MS spectrum the correct candidate is ranked with a candidate list using the
consensus candidate score integrating besides the fragmenter (ScMetFrag) the two new statistical scoring terms (ScPeak , S

c
Loss). The number of correct

Top1 rankings is used to optimize pseudo count and scoring weight parameters. The first training phase is used in analogy for the generation of the
list containing assignments ofm/z fragment losses to fragment-structures (DL

train)

where α and β are also called pseudo counts.
The parameter estimation is given by

θ̂MP
m̃f =

Nm̃f + πm̃f
∑

f̃ ′∈F̃
(
Nm̃f ′ + πm̃f ′

) .

Fragment losses
Fragment losses can provide additional evidence for a
molecular structure as the difference between two m/z
fragment peaks provides hints about a substructure that
was lost but not observed directly by an m/z fragment
peak (neutral loss). However, we want to include this
information in the evaluation of candidates for a given
MS/MS spectrum. We define lnkh to be the m/z fragment

loss between two different m/z fragment peaks mnk and
mnh from the spectrummn, where

lnkh = mnk − mnh, mnk > mnh.

For each pair of assignments of m/z fragment peaks to
fragment-structures (mnk , fnck) and (mnh, fnch) with fnch
being a genuine substructure of fnck (fnck �= fnch), we intro-
duce fnckh as a loss fragment-structure. This fragment-
structure is a substructure of fnck , that is generated if all
bonds and atoms present in fnch are removed (fnckh =
fnck \ fnch). If fnckh is connected, we define (lnkh, fnckh) to
be an assignment of an m/z fragment loss to a fragment-
structure.
In analogy to the pairs of m/z fragment peaks and

fragment-structures (mnk , fnck), we define the domains for
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the m/z fragment losses and loss fragment-structures for
the N MS/MS training spectra as

L̃tr = {lnkh|n ∈ 1, . . .N , k = 1, . . .Kn, h = 1, . . .Kn}
F̃L
tr =

{
f̃nckh|n ∈ 1, . . .N , c = 1, . . .Cn,

k = 1, . . .Kn, h = 1, . . .Kn
}

for a given training data set

DL
train = (

(lnkh, fnckh)|n = 1, . . .N , c = 1, . . .Cn,
k = 1, . . .Kn, h = 1, . . .Kn)

of assignments of m/z fragment losses to fragment-
structures.
In addition, both domains need to be extended for the

additional query MS/MS spectrummq

L̃ = L̃tr ∪ {lqkh|k = 1, . . .Kq, h = 1, . . .Kq},
F̃L = F̃L

tr ∪
{
f̃qckh|c= 1, . . .Cq, k= 1, . . .Kq, h = 1, . . .Kq

}
.

We consider the distribution P(̃f |l) for assignments of
fragment-structures tom/z fragment losses with l ∈ L̃ and
f̃ ∈ F̃L, and denote φL

l̃f
:= P(̃f |l). In analogy to the esti-

mation of the parameters θm̃f , we can now formulate the
estimation of φL

l̃f
including a Dirichlet a priori distribution

with the additional hyper parameters ψl̃f :

ψl f̃ =
{

αL, f̃ �=⊥
βL, f̃ =⊥

}

This yields the mean posterior estimates

φ̂MP
l f̃ =

NL
l̃f

+ ψl̃f
∑

f ′∈F̃L
(
NL
l̃f ′ + ψl̃f ′

) ,

with NL
l̃f =

∑

(lt ,̃ft)∈DL
train

δ(̃ft , f̃ )δ(lt , l)

analogous to the parameter estimation for the assign-
ments of m/z fragment peaks to fragment-structures,
where NL

l̃f
is the absolute frequency of the m/z fragment

loss and fragment-structure pair (l, f̃ ) observed in the
training data setDL

train.

Evaluation of the assignments of fragment-structures to
m/z fragment peaks and losses in MetFrag candidate
scoring
To evaluate a given candidate c retrieved from a com-
pound database for an MS/MS query spectrum mq based
on the statistical models, we define a score for both the
models of the assignments of m/z fragment peaks/losses
to fragment-structures. In addition, the MetFrag frag-
menter score ScMetFrag as defined in [3] is also integrated
in this candidate evaluation. We define the score ScFin as

the final or consensus score for a candidate c to be the
weighted sum of these three scoring terms

ScFin = ω1 · ScMetFrag + ω2 · ScPeak + ω3 · ScLoss
ωi ≥ 0,

∑

i=1,2,3
ωi = 1.

To define ScPeak and ScLoss, we first introduce the raw score
of a candidate as

ScRawPeak = 1

− logP
(
f̃ nc|mn, θ̂

MP)

using the log likelihood based on the estimated param-
eters θMP for the assignment of an m/z fragment peak
to a fragment-structure (mn, f nc) for candidate c. With
f̃ nc = (̃fnc1, . . . , f̃ncKn) and mn = (mn1, . . . ,mnKn) the log
likelihood decomposes as

logP
(
f̃ nc|mn, θ̂

MP) =
Kn∑

k=1
logP

(
f̃nck |mnk , θ̂

MP) .

Furthermore, the raw score is normalized to the interval
[ 0, 1] by

ScPeak = ScRawPeak
maxc′∈Cq Sc

′
RawPeak

.

Using identical ranges for the different scoring terms as
for the MetFrag fragmenter score simplifies their integra-
tion into the weighted sum of the final score. The score
for including the assignments of m/z fragment losses to
fragment-structures ScLoss is defined in analogy.

Method evaluation
For the evaluation of the presented approach we used
the challenge data set and evaluation procedures of the
CASMI 2016 contest. In this contest candidate lists were
provided by the organizers along with the spectra to be
used by all participants. After the contest, several par-
ticipants which used statistical learning (e.g. CSI:FID,
CSI:IOKR, CFM-ID) coordinated which compounds were
used in the training steps to improve the comparabil-
ity between methods. They exchanged the InChIKeys
(InChI: International Chemical Identifier) [15] of the spec-
tra used in training their approaches, although it was not
guaranteed that two participants used exactly the same
MS/MS spectrum for a compound identified by a com-
mon InChIKey if they used different spectral databases.
This evaluation is based on 87 of the 208 spectra provided
originally in the challenge, as the remaining 121 spectra
were removed as they were included in the training data of
at least one participant. The results for this subset of the
challenge spectra were published in [12] and used here in
Table 2 for comparison against MetFrag2.4.5. We used the
same set of InChIKeys to obtain the training spectra for
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this paper. The training data is available from the github
repository accompanying the paper.

Preparation of the training data set
The training data set includes MS/MS spectra provided
by the contest organizers consisting of 312 CASMI train-
ing spectra. Participants were allowed to use additional
training spectra retrieved from spectral databases e.g.
the MassBank of North America (MoNA) [16] and the
Global Natural Products Social Molecular Networking
(GNPS) [17] spectral library. The InChIKeys of the
molecules of these additional spectra were provided by the
participants.
We used the provided InChIKeys to retrieve the addi-

tional training spectra by querying the MoNA and GNPS
spectral databases. For MoNA, retrieved MS/MS spec-
tra from one institution were merged in case more than
one spectrum was present for a molecule based on the
first block the InChIKey. Thus for one InChIKey several
merged spectra can be present in case they originate from
different sources. Spectra originating from GNPS spectral
database were merged independently of their source. The
spectra merging was performed by averaging m/z frag-
ment peaks within a specified mass range (given by MS
setup of the MS/MS spectra) and retaining the peak of
maximum intensity. This resulted in 5 622 spectra (4728
positive and 884 negative) which were used for train-
ing. To reduce the spectral complexity only the 40 most
abundant (based on intensity) m/z peaks in each spec-
trum were used. The same applies to test spectra used for
evaluation.

Training of parameters
In the training phase the optimal parameters used to
calculate the candidates’ consensus score need to be deter-
mined. This parameter set consists of the absolute fre-
quencies Nm̃f and NL

l̃f
of the assignments ofm/z fragment

peaks and losses to fragment-structures, the hyper param-
eters α, β , αL and βL, and the score weights ω1, ω2 and
ω3. The whole training phase described in this paragraph
is illustrated in Fig. 2.
Training was separated into two phases where in the

first phase the Nm̃f and NL
l̃f
parameters were determined

using only the correct candidate for each training spec-
trum. Based on these absolute frequencies the optimal
hyper parameters and weight scores are determined in the
second phase.
If we had used the same data set for the estimation

of all parameters, Dtrain and DL
train would have con-

tained the same pairs of m/z fragment peaks/losses and
fragment-structures for the correct candidate to be ranked
in the second phase. The correct candidate would then
be favoured during candidate ranking. This is not rep-
resenting a realistic case when a query spectrum of an

unobserved molecule is processed where we expect also
m/z fragment peak and loss assignments not previously
observed in the optimization phase.
For this reason the complete training data set was

split randomly into two disjunct groups of spectra. The
splitting was performed by dividing the unique list of
InChIKeys (first block) with a ratio of 70:30 and collect-
ing each corresponding spectrum to a group based on the
InChIKey of the underlying molecule. The larger group is
used in the first phase to calculate the Nm̃f and NL

l̃f
.

In the first phase the correct candidate of each spectrum
was processed by MetFrag’s in silico fragmentation. The
m/z fragment peaks explained by a fragment-structure
were corrected to the mass of the molecular formula of
the assigned fragment-structure. This is required to be
independent of the different mass accuracies of MS/MS
spectra acquired under different instrument conditions.
Thus the list of assignments ofm/z fragment peaks/losses
to fragment-structuresDtrain andDL

train contained assign-
ments with the corrected m/z values used for the calcula-
tion of Nm̃f and NL

l̃f
.

In the second training phase candidates were retrieved
from a local PubChem [18] mirror (June 2016) using the
monoisotopic mass of the correct candidate of each spec-
trum and a relative mass deviation dependent on the
experimental conditions of the underlying MS measure-
ment. To reduce runtime the correct and at most 500
randomly sampled candidates were processed from the
retrieved list of candidates. The rank of the correct can-
didate was determined and the overall number of Top1
ranks was used as optimization criterion.
For the hyper parameters the optimization was per-

formed by a grid search over an initial domain including
a set of all combinations of the values 0.0025, 0.0005
and 0.0001 resulting in a total of 34 = 81 sets of hyper
parameters. If the optimal number of Top1 ranks was
located at the border of this hyper parameter domain the
search space was extended by increasing or decreasing the
parameter by a factor of 5 or 1/5 respectively. This pro-
cedure was continued until an optimum was found with
an improvement of less than 1% compared to the previous
optimumof Top1 ranks. For the score weights a set of 1000
parameter combinations was sampled equally distributed
on the simplex. Consensus scores and the rankings of the
correct candidates were calculated for all combinations of
hyper parameters and weights resulting in initially 81.000
combinations.
Subsequent to this training procedure, the absolute fre-

quencies Nm̃f and NL
l̃f
were recalculated using the entire

training data set to increase the observation domain of
assignments of m/z fragment peaks/losses to fragment-
structures used for the processing of the challenge
data set.

5.4 Improving MetFrag with statistical learning of fragment annotations

113



Ruttkies et al. BMC Bioinformatics          (2019) 20:376 Page 8 of 14

Fingerprint function
To investigate the effect of the fingerprint function MolF-
ing on the results, the complete training phase was per-
formed four times with different fingerprint functions for
the same training spectra. For comparison the Lingo- [14],
the MACCS- [13], the Circular- [19], and the GraphOn-
lyFingerprint were used. For calculation of the different
fingerprints CDK (version 2.1) [20] implementations were
used. The fingerprint with the best training result was
selected for the processing of the challenge data set.

Processing of the CASMI challenge data set
After the training phase and the selection of the finger-
print function, the in silico fragmentation and scoring was
performed for the 87 challenge spectra using the provided
candidate lists. Candidates that included non-connected
substructures or non-natural isotopes (like deuterium)
were discarded from the candidate lists. The candidate
ranking was performed after the removal of multiple
stereoisomers in compliance with the contest rules and
evaluation. Stereoisomers were detected based on the first
block of the candidates’ InChIKey representing themolec-
ular skeleton and only the best scoring stereoisomer was
regarded for candidate ranking. The results were evalu-
ated and compared on the basis of the average Top1, Top3,
and Top10 rankings and the median and mean average
rankings of the correct candidate as in [12].

Stability of parameter optima and ranking results
Splitting of the training data set for the two phases was
performed randomly. As the resulting parameters depend

on the splitting, we performed ten independent trials with
different splits of the training data. The resulting parame-
ters and their performance on the challenge data set were
reported to investigate the effect of randomization.

Results
Comparison of different fingerprint functions
The ranking results obtained in the training phase on
the basis of the different fingerprint functions (MolF-
ing) are shown in Fig. 3. The fingerprints used are the
Lingo-, MACCS-, Circular-, and GraphOnlyFingerprint.
The training results are based on the spectra processed
in the second phase during training consisting of 1389
to 1471 spectra in positive and 255 to 279 spectra in
negative mode depending on the run and the spectra
splitting.
Comparable results are obtained with the Circular- and

LingoFingerprint across both ion modes and across the
different rankings as shown in Fig. 3 by the similar curve
for the Top1, Top3 and Top10 rankings. Similar means
of the rankings across the ten runs confirm this obser-
vation with 402.3, 639.8, and 881.2 for the mean Top1,
Top3 and Top10 rankings using the Circular- and 398.4,
640.0 and 881.9 using the LingoFingerprint. These two
fingerprint functions show superior results for the Top1
rankings compared toMACCS with 371.0 and GraphOnly
328.6. For Top3 and Top10 rankings and positivemode the
MACCSFingerprint gives comparable results. Top3 and
Top10 rankings in negative mode are comparable for all
fingerprint functions.

Fig. 3 Top rankings of training results. The Top rankings (Top1, Top3, Top10) of the ten training runs are shown for the different fingerprint function.
The results are based on the rankings of the correct candidates of the training data used in the second training phase consisting of 1389 to 1471
spectra in positive mode (top) and 255 to 279 spectra in negative mode (bottom)
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The CircularFingerprint shows with the runs R07 in
positive and R09 in negative mode the overall highest
number of Top1 rankings with 518 of the 1686 training
spectra. Due to this performance the CircularFingerprint
is used for subsequent investigations and the evaluation of
the challenge data set.

Randomization of training data sets
In this section we evaluate the impact of the random-
ization of the training data on parameter optimization.
Table 1 shows the optimal parameter sets and the per-
formance achieved on the training data using the Circu-
larFingerprint. The overall ranking results vary across the
ten runs for the Top1, Top3 and Top10 numbers in both
positive and negative ion mode as expected. Boxplots of
the parameter sets are shown in Fig. 4. The variation of
optimal hyper parameters as well as weights shows a simi-
lar pattern for both positive and negative ion mode where
a larger variation can be observed in negative mode. Par-
ticularly the pseudo counts for annotated m/z fragment
peaks show a broader variation with 5e-04 to 2e-05 (α)

and 1e-03 to 2e-05 (αL) compared to positive mode with
1e-04 as optimum for α and an interval of 2e-03 to 1e-04
for αL.
The largest of the weights combining the three scores is

ω2 which gives the score ScPeak the largest influence in the
overall assessment. The median of ω2 is 0.4855 in positive
and 0.4935 in negative mode. The impact of the original
MetFrag score ScMetFrag and ScLoss are distinctively lower
and comparable to each other. The weight ω1 for the Met-
Frag score has a median of 0.2875 in positive and 0.2840 in
negative mode. The weights for ω3 are 0.2355 respectively
0.2045.
In the following we analyze the robustness and the

homogeneity of the results on the challenge data set with
regard to varying parameters across the parameter space
evaluted during optimization. This also helped to obtain a
better explanation on the deviation of optimized param-
eters. Specifically we compare the distribution of the
Top1 rankings considering (i) the ten optimal parameter
sets from the ten randomizations, (ii) the parameter sets
within the convex hull constituted by these ten optimal

Table 1 Ranking results in the training phase based on the CircularFingerprint

Top1 Top3 Top10 Top1 (%) α β αL βL ω1 ω2 ω3 # Spectra

Negative Mode

55 93 151 20.8 0.00002 0.00250 0.00050 0.00050 0.268 0.460 0.272 265

51 89 155 19.5 0.00002 0.06250 0.01250 0.00050 0.434 0.380 0.186 261

62 101 165 22.9 0.00050 0.01250 0.00010 0.01250 0.309 0.508 0.184 271

70 106 170 25.8 0.00050 0.00250 0.00002 0.01250 0.317 0.494 0.189 271

62 103 161 23.8 0.00010 0.00010 0.00010 0.00250 0.170 0.616 0.214 260

67 110 153 24.0 0.00010 0.00250 0.00250 0.00010 0.300 0.493 0.207 279

63 98 157 22.9 0.00010 0.00050 0.00010 0.00050 0.054 0.512 0.434 275

68 102 158 25.0 0.00002 0.00250 0.00250 0.00250 0.240 0.558 0.202 272

86 114 171 31.2* 0.00010 0.00250 0.00250 0.00010 0.413 0.398 0.189 276

74 106 161 29.0 0.00010 0.00010 0.00002 0.00010 0.189 0.465 0.346 255

Positive Mode

412 664 925 28.0 0.00010 0.00250 0.00010 0.00250 0.333 0.438 0.229 1471

402 622 866 28.2 0.00010 0.00050 0.00010 0.00250 0.208 0.483 0.309 1426

406 665 913 29.0 0.00010 0.01250 0.00250 0.00250 0.333 0.438 0.229 1399

395 651 894 27.6 0.00010 0.00250 0.00250 0.00250 0.309 0.503 0.188 1432

387 618 839 27.4 0.00010 0.00250 0.00050 0.00050 0.413 0.398 0.189 1413

408 630 870 28.6 0.00010 0.00050 0.00050 0.00050 0.165 0.584 0.251 1428

432 655 910 30.6* 0.00010 0.01250 0.00250 0.00050 0.378 0.488 0.134 1410

400 642 874 28.2 0.00010 0.00250 0.00250 0.00050 0.210 0.488 0.302 1420

385 613 830 27.7 0.00010 0.00250 0.00010 0.00010 0.266 0.388 0.346 1389

396 638 891 27.7 0.00010 0.00050 0.00050 0.00010 0.165 0.593 0.242 1428

The optimization of the parameters was performed on the training data set with ten different random splits of the MS/MS training spectra to be used for first and second
training phase. Optimizationwas performed separately for positive and negative mode. *Runs with the best results based on the relative correct Top1 rankings (neg: R09, pos:
R07)
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Fig. 4 Boxplots of optimal weight and hyper parameters retrieved in the training phase. The parameters were obtained from the ten training runs
with randomized splits of the training set and the CircularFingerprint. The rankings results show the optimal weight and hyper parameters for
positive and negative mode

parameter sets in the six dimensional parameter space,
and (iii) the complete parameter space evaluated during
training of the parameters. The convex hull over the
ten optimal parameter sets was calculated using the six
degrees of freedom (α, β , αL, βL, ω1, ω2) from the seven
parameters with the Python Numpy package.
Figure 5 shows in yellow the distribution of the Top1

rankings of the CASMI challenge data set for the com-
plete parameter space. Top1 ranking vary from 1 to 12
for the positive and from 4 to 14 for the negative chal-
lenge spectra, where the maximum of the distributions
are six and ten for positive and negative mode, respec-
tively. If parameter sets are restricted to the convex hull
the distribution is clearly shifted to better performance,

where Top1 rankings vary between 8 to 11 for positive
and 10 to 13 for negative mode. This range of Top1 rank-
ings is almost identical to the one resulting from the ten
optimal parameter sets. The only exception are nine Top1
rankings for parameter sets within the convex hull in
negative mode. In positive mode about 76% of the inves-
tigated parameters show worse results than achieved by
the parameters contained in the convex hull. For nega-
tive mode this proportion is reduced to around 15% which
can again be explained by the smaller number of available
training data.
For the subsequent comparison to other methods on the

challenge data set we use the parameter sets resulting in
the best relative Top1 ranking performance in the training

(a) (b)

Fig. 5 Distribution of Top1 rankings on the challenge data set. The collection of barcharts show the Top1 rankings retrieved using the
CircularFingerprint for selected parameter sets. Yellow bars show the normalized Top1 counts for all parameter sets used in the training phase. The
green bars show the normalized rankings for all parameter sets within the convex hull spanned by the ten optimal parameter sets retrieved from the
ten randomized training runs. The violet bars show the normalized counts from these optimal parameter sets. a Positive mode b Negative mode
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phase. The corresponding runs are highlighted in Table 1
and are R07 for positive and R09 in negative mode.

Comparison with MetFrag2.3
Themain goal of the integration of the proposed approach
into MetFrag was to improve the candidate ranking aug-
menting the fragmenter score with statistical scores. The
MetFrag versions 2.3 and 2.4.5 use exactly the same in
silico fragmentation approach. MetFrag2.4.5 scoring was
extendedwith the statistical scoring termswhichmake the
difference in the comparison of both version. The results
of MetFrag version 2.4.5 show a drastic improvement of
the rankings for the CASMI challenge data compared to
its older version 2.3 with regard to all performance mea-
sures as given in the first two columns of Table 2. The
correct Top1 rankings show amore than four fold increase
from 5 to 21 Top1 rankings. The improvement is espe-
cially distinct for positive mode with 9 Top1 rankings
where MetFrag2.3 resulted in one single query correctly
ranked at first position. The number of Top1 hits in neg-
ative mode is also increased three fold from 4 to 12. The
improvement is also illustrated by the reduced mean and
median ranks. Where the mean rank halved to 34.6 the
median rank was even reduced by two third to 5. All three
scores contribute substantially to these improvements and
Top1 rankings vary smoothly with the weight scores (see
Additional file 1: Figure S1).

Comparison with other CASMI participants
The MetFrag2.4.5 results were compared to the results
obtained by all other participants of CASMI 2016,
i.e., CFM_retrain, CSI_IOKR_AR, and CSI:FID_leaveout
(abbreviated by CFM-ID, CSI:IOKR, and CSI:FID), MS-
Finder and MAGMa. Table 2 shows the original data
from Table 7 of [12] with the ranking results for the 87
Challenge MS/MS spectra. The additional MetFrag2.4.5
column summarizes the results achieved using the new
MetFrag statistical scoring terms.
In positive mode, MetFrag2.4.5 obtains nine Top1 rank-

ings and shows a similar performace as CFM-ID (9)

and CSI:IOKR (10). CSI:FID (13) outperforms all other
approaches with regard to Top1 rankings in positive
mode, however did not submit results for negative mode
spectra. Figure 6b shows the overlap of the Top1 ranked
challenges in positive mode forMetFrag2.4.5 and CSI:FID.
There are only five challenges ranked first by both tools
and thus a large degree of divergence between the correct
predictions.
For the negative mode spectra MetFrag2.4.5 consider-

ably outperformed all participants with 12 Top1 rankings.
These are five more queries than MS–Finder could rank
in first position and even twice as many than the other
statistical approaches CFM-ID and CSI:IOKR.
Considering the complete test data set MetFrag2.4.5

outperforms all participants with regard to Top1, Top3,
and Top10 rankings including the declared winner of the
contest CSI:IOKR (Top1: 21, Top3: 38, Top10: 55 vs. Top1:
16, Top3: 26, Top10: 46). The improved results are also
confirmed by the smaller median and mean rankings of 5
and 34.6 compared to 10 and 97.9. We note that consider-
ing the median, CSI:FID shows a better performance than
MetFrag2.4.5, however did only submit results for positive
mode.
Figure 6a shows the overlap of correctly identified

Top1 challenges of the participants which use statistical
approaches. Interestingly, there is a relatively large num-
ber of challenges that are identified by only one of the
approaches. With 10 challenges MetFrag2.4.5 shows the
highest amount of unique queries ranked correctly in first
place, which is predominantly caused by the eight Top1
negative mode challenges.

Discussion
The results obtained by the combination of MetFrag’s
in silico fragmentation approach and statistical fragment
annotation learning have shown an overall improvement
of the ranking results of the relevant CASMI 2016 test set.
Different fingerprint functions have been tested to avoid
the expensive graph isomorphism problem to find match-
ing fragments. The training phase revealed a dependency

Table 2 Results for the 87 MS/MS test spectra from the CASMI 2016 Challenge taken from Table 7 in [12] augmented with the results
of the proposed approach (MetFrag 2.4.5). For the participants of the challenge the best result is given

MetFrag 2.4.5 MetFrag 2.3 CFM-ID CSI:IOKR CSI:FID MS-Finder MAGMa

Top 1 Pos. 9 1 9 10 13 3 2

Top 1 Neg. 12 4 6 6 −∗ 7 4

Top 1 21 5 15 16 13∗ 10 6

Top 3 38 16 24 26 23∗ 25 16

Top 10 55 39 40 46 32∗ 38 35

Mean rank 34.6 68.4 64.1 97.9 41.5∗ 28.7 76.8

Med. rank 5 14.5 12.5 10 3∗ 17.5 23.5

*CSI:FID did not submit results for negative mode spectra
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(a)

(b)

Fig. 6 Overlap of the correctly identified Top1 spectra of the challenge data set for selected participants. The Venn diagram (a) includes the four
tools using statistical approaches (MetFrag2.4.5, CFM-ID, CSI:IOKR, CSI:FID) and shows the overlap of correcly identified challenges out of the 87
spectra (positive and negative mode). The diagram (b) shows the overlap of CSI:FID and MetFrag2.4.5 for the positive mode challenges. The large
numbers indicate the amount of common challenges and the numbers listed underneath their challenge IDs

between the number of correct top hits and the finger-
print used. While MACCS- and especially Lingo- and the
CircularFingerprint showed the best and also comparable
results, the GraphOnlyFingerprint showed a significantly
lower number of correct top rankings on the training set.
We attribute the inferior performance of the GraphOn-
lyFingerprint primarily to the lack of representing bond
orders and hence encoding less chemical information
than all other fingerprint types evaluated. Due to the
best performance in the training phase the CircularFin-
gerprint was selected for further investigation on the
test set.
Ten different hyper and weight parameter sets result-

ing from optimization with ten randomized splits of
the training data were used to investigate the robust-
ness and the distribution of these parameters accross the
different training sets. While the optima of the seven
parameters varied slightly between the different splits, the
parameter sets still showed a clear trend across all ten
runs. Especially the effect of the ScPeak score weight ω2
was predominantly higher compared to ω1 and ω3 for
both positive and negative ion mode. The assumption

that the observed parameter variation is an indication
for a relatively broad and homogenious parameter opti-
mum was confirmed by the investigation of the ranking
results retrieved using parameters located in the con-
vex hull spanned by the ten optima. These distribu-
tions also indicate a high robustness of the performance
with varying parameter sets across these parameter
optima.
An important outcome of this study is the signifi-

cant improvement of the ranking results retrieved adding
the presented Bayesian approach to MetFrag’s native
in silico fragment annotation. While the improvement
gain for the Top3 and Top10 rankings are less pro-
nounced, this comparison impressively demonstrates the
benefit including statistical approaches for MS based
compound identification. This corresponds to the out-
come of CASMI 2016 where a comparison of dif-
ferent statistical and non-statistical approaches was
made [12].
The proposed Bayesian approach follows a different

mechanism than the existing statistical compound iden-
tification methods predicting molecular fingerprints
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(CSI:FingerID, CSI:IOKR) or MS/MS spectra (CFM-ID).
The comparison of the different approaches on the
CASMI 2016 test set used in this study shows on the
one hand that the presented approach compares well to
the existing ones and on the other hand that a rela-
tively large number of challenges are identified by only
one of the approaches (Fig. 6a). From the latter finding
it may be concluded that there are different preferences
for certain types of spectra of the CASMI 2016 contest.
The comparison also revealed that for MetFrag2.4.5 the
performance is comparable between positive and nega-
tive mode (9 vs. 12). CSI:IOKR shows lower performance
ranking result for the negative mode spectra compared
to positive mode (6 vs. 10). We assume the combina-
tion of in silico fragmentation and statistical scoring has
a positive effect in case only limited training data is
available. Only a small fraction of negative mode train-
ing data was available for this contest and resulted in
generally worse results of the statistical approaches in
negative mode.

Conclusions
In this work new statistical scoring terms are intro-
duced to MetFrag. This model assesses the assignments
of m/z fragment peaks/losses to fragment-structures
derived from in silico fragmentation of a candidate and
assumes independence of the individual assignments. The
model parameters are estimated using the mean poste-
rior approach. Hyper parameters of the statistical model
as well as score weights are optimized by a grid search.
The performance is evalutated on a subset of the CASMI
2016 contest challenge spectra for which the spectrum
was not among the training data set of any participant.
The results show that with the integration of the two new
statistical scoring terms MetFrag could be improved four
fold regarding the number of Top1 rankings. In addition
it showed a better performance than the declared win-
ner of the contest CSI:IOKR regarding the number of
correctly ranked Top1, Top3 and Top10 candidates. The
new scoring terms are now available in the command line
tool (version 2.4.5) as AutomatedPeakFingerprintAnno-
tationScore and AutomatedLossFingerprintAnnotation-
Score and also in the web interface (https://msbi.ipb-halle.
de/MetFrag) as “Statistical Scoring” trained on extended
data set than used in this work. The additional scoring
terms complement current scoring terms based on exper-
imental data and can also be combined with additional
meta information if available as described in [3].
We also want to stress that once the method is trained

on spectra in the training phase, it can be applied and
used for annotation on any data set. The data set can vary
whereas the training data set is fixed once the method was
trained, which is similar to all other machine learning and
statistical methods mentioned in this work.
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Abstract

Lipid identification is a major bottleneck in high-throughput lipidomics studies. However,

tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison

against spectra in reference libraries is one of the preferred methods, these libraries are far

from being complete. In order to improve identification rates, the in silico fragmentation tool

MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate

probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and

evaluated on different commercially available lipid standard materials, measured with data

dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared

against manual MS/MS spectra interpretation. With the lipid class specific models, identifi-

cation of the true positives was improved especially for cases where candidate lipids from

different lipid classes had similar MetFrag scores by removing up to 56% of false positive

results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the

nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known frag-

mentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain frag-

ments. Based on prediction models trained on standard lipid materials, high probabilities for

correct annotations were achieved, which makes LipidFrag a good choice for automated

lipid data analysis and reliability testing of lipid identifications.

Introduction

Metabolite and lipid identification represents the current bottleneck in metabolomics and lipi-

domics. The diversity of the lipidome is huge, with estimates of up to 100,000 different possible

lipid structures. This is based on the combinatorial composition of different defined building

blocks, which include fatty acids, long-chain bases, glycerol-phosphate, various head groups
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and many more [1]. Lipids fulfill several cellular functions, including storage of energy, build-

ing blocks of membranes, and signaling.

Several efforts have been made to catalog lipid diversity. Lipidat was one of the first elec-

tronic lipid databases [2], and contained 11,000 records, LIPIDBANK (initiated in 1989) con-

tains just over 7,000 records as of 2013, and can still be browsed on the (http://lipidbank.jp/)

[3].

The Lipid Maps database and classification system structure database (LMSD) [4] is a

widely used resource for a systematic classification of lipids. It divides lipids into the eight

major classes: fatty acyls (FA), glycerolipids (GL), glycerophospholipids (GP), sphingolipids

(SP), sterol lipids (ST), prenol lipids (PR) saccharolipids (SL) and polyketides (PK), each with

several subclasses. Lipid Maps contains currently 40,360 structures (accession date 4/2/15) and

is accessible via the web (www.lipidmaps.org). LipidHome was developed at the European Bio-

informatics Institute (EBI) and is a database of theoretical lipids with 20,297 species and 36

million theoretical sub species [5]. SwissLipids as another resource contains 244,000 known

and theoretically lipids [6].

Multiple lipids have similar physicochemical properties which complicates their analysis.

Nowadays, two different types of lipid analyses are commonly performed: Liquid chromatog-

raphy-mass spectrometry (LC-MS) based lipidomics, or shotgun lipidomics. The latter uses

direct infusion of the raw lipid extract into a mass spectrometer (MS) and acquisition of multi-

stage mass spectra for precise quantification of lipid species using low and high resolution MS

[7–10]. High resolution MS, MS/MS and ITMS3 have been employed for structural characteri-

zation and quantification of lipids from mouse cerebellum and hippocampus [10]. In contrast

to shotgun lipidomics, LC-MS based lipidomics uses chromatographic separation of lipid spe-

cies followed by mass spectrometric detection, which allows differentiation of isomeric lipid

species. Common lipid profiling methods use C8 or C18 reversed phase columns and an aceto-

nitrile/isopropyl alcohol (ACN/iPrOH) gradient. This method allows detection of phospho-

and glycerolipids as well as other lipids in a single run [11, 12] and is typically coupled to high-

resolution accurate mass Q-ToF or Orbitrap instruments for non-targeted profiling of as

many lipids as possible. The high mass resolution and accuracy helps to annotate MS features

with known lipids from different databases or to calculate molecular formulas of possible lipids

species. However, several lipids, even from different lipid classes, can have identical molecular

formulas, e.g. phosphatidylcholine (PC) and/or phosphatidylethanolamine (PE) species, such

that a definite identification is impossible from the mass and even molecular formula alone.

Searching LipidMaps for molecules having the same molecular formula or exact mass can

result in up to 115 candidates with one single molecular formula. Taking into account possible

adducts during the ionization process the number increases further. For example the sodium

adduct ([M+Na]+) of PC(18:0/20:1) and the [M+H]+ adduct of PC(18:0/22:4) have a mass dif-

ference of 0.0024, which reflects a deviation of 2 ppm. A more extreme example is the formic

acid adduct of PC(16:0/20:1) [M+HCOO]- and the [M-H]- of PS(17:0/22:0) having exactly the

same molecular formula. Today’s ultrahigh resolution mass spectrometer, like Orbitrap or

FT-ICR-MS instruments can reach mass errors below 1 ppm, but even with these ultrahigh

resolution MS instruments it is only possible to accurately calculate a molecular formula,

whereas no information about the lipid class, structure or fatty acid side chain composition is

available [13]. Thus, tandem mass spectrometry (MS/MS) is needed to provide further infor-

mation for a more reliable annotation. Fragmentation in positive ion mode can help to reveal

the lipid class by neutral losses of lipid head groups, whereas negative ion mode resolves the

fatty acid composition and position [14]. Data dependent acquisition (DDA) offers the possi-

bility to collect several hundred MS/MS spectra for identification of metabolites or lipids dur-

ing chromatographic runs [15].

LipidFrag: Improving reliability of in silico fragmentation of lipids
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Interpretation of the resulting MS/MS spectra, especially in high-throughput studies, is

rather limited and manual analysis of several hundreds to thousands of MS/MS spectra is not

feasible. To speed up identification, comparison against reference spectral databases is possi-

ble, but the lipid coverage in these databases is sparse. Lipid Maps currently contains only few

hundreds low resolution MS/MS spectra, while MassBank has 3,158 records on both low and

high resolution instruments covering 707 unique lipids [16].

In silico fragmentation has been suggested as a possible solution to analyze MS/MS spectra

without the need of reference spectral databases [17]. LipidBlast is a spectral library that

includes a 212,516 in silico generated tandem mass spectra covering 119,200 compounds from

26 lipid classes [18]. More recently, Greazy, an approach for identification of phospholipids

from MS/MS data was presented which includes the estimation of false discovery rates (FDR).

The modul LipidLama, integrated in Greazy, uses kernel density estimation to fit non-parame-

trized models to distinguish false and true lipid assignments. The cutoff score for a putative

correct lipid assignment can then be defined by using a pre-defined FDR of e.g. 5% [19].

In this study we present a workflow to improve the reliability of in silico MS/MS annota-

tions of lipids. To achieve this, we introduce bayesian classifiers based on parametrised distri-

butions and maximum-likelihood estimation to calculate a reliability score for a result to be a

correct annotation among its lipid class, which is based on training data obtained from lipid

standard materials and true positive manual identifications. This workflow consists of the

annotation of precursor masses with possible lipid structures using MassTRIX [20–22], fol-

lowed by MetFrag batch processing of candidates retrieved via the putative neutral masses

derived from ion species annotation results. The performance was evaluated using MS/MS

spectra obtained previously with UPLC-Q-ToF-MS/MS and data dependent acquisition

(DDA) [23]. The lipid classes relevant for this paper are depicted in Fig 1, which included cer-

amides, different glycerophospholipids classes and glycolipids. Results from this training

allowed the development of the central new feature in LipidFrag, the classifiers to predict the

probability of a reliable MetFrag annotation for an unknown lipid class (Fig 2A). This is used

to differentiate between good and poor identification results and to predict the underlying

lipid main class of the precursor in high-throughput MS/MS experiments like in this case

study performed with the lipid extract of C. elegans.

Methods

Chemicals

HPLC-grade methyl-tert-butyl ether (MTBE) and LC-MS-grade methanol (MeOH), iso-pro-

panol (iPrOH), acetonitrile (ACN), ammonium formate and formic acid were obtained from

Sigma-Aldrich. Water was purified using a Merck Millipore Integral water purification system

with a resistance of 18 MΩ and TOC< 5 ppb.

Lipid standard material preparation

Phosphatidylcholine preparation from chicken egg (840051P, Avanti Polar Lipids), Escheri-

chia coli polar lipid extract (100600P, Avanti Polar Lipids), phosphatidyl serines from porcine

brain (840032P, Avanti Polar Lipids), ceramide from porcine brain (860052P, Avanti Polar

Lipids) and ceramide from chicken egg (860051P, Avanti Polar Lipids) were obtained from

Avanti Polar Lipids (Otto Nordwald GmbH, Germany) and dissolved in MeOH at a concen-

tration of 1 mg/mL. Additionally, L-alpha-Phosphatidylinositol sodium salt from Glycine max

(P0639), Triglyceride mix (17811-AMP), 1,3-Dioleoyl-2-palmitioyl-glycerol (D1657), Glyceryl

tritricosanoate (T1412), Glyceryl trioleate (T7140) and 1,2-Dilinoleoy-3-palmitoyl-rac-glycerol

(D0301) were obtained from Sigma-Aldrich (Taufkirchen, Germany) and dissolved in either

LipidFrag: Improving reliability of in silico fragmentation of lipids
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Fig 1. LipidFrag workflow and related lipid sub-classes. (A) Schematic drawing of LipidFrag workflow. MS/MS spectra from known lipids derived from

lipid standard materials and from unknown lipids are subjected to MetFrag in silico fragmentation, whereby all possible precursor structures are taken into

consideration. During training phase true positive identity and decoy candidates are used to calculate a 2-class classifier by which reliable results from

unknown lipids can be identified. (B) Structures of detected phospholipid classes, phosphatidylethanolamines (PE, LMGP0201), phosphatidylcholines (PC,

LMGP0101), phosphatidylglycerols (PG, LMGP0401), phosphatidylserines (PS, LMGP0301) and phosphatidylinositols (PI, LMGP0601) (C) Structure of

triacylglycerols (TG, LMGL0301) (D) Structure of ceramides (Cer, LMSP0201) and dihydroceramides (Cer, LMSP0202).

doi:10.1371/journal.pone.0172311.g001
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MeOH, MTBE, CHCl3 or solvent mixtures, depending on solubility. Different samples for

analysis were prepared and diluted in ACN/iPrOH/water (65/30/5, v/v/v) to 10 μg/mL for

analysis. The following lipid classes and standard samples were analysed and are named

throughout the paper as indicated in brackets: Phophatidylcholines (PC, LMGP0101), phos-

phatidylethanolamines (PE, LMGP0201), phosphatidylglycerols (PG, LMGP04011),

Fig 2. Visualization of input data and results obtained by LipidFrag. (A) Examples of histograms showing distribution of raw MetFrag score for the back-

and foreground training dataset. (B) Receiver-Operator characteristics (ROC) derived from 10-fold cross-validation of MS/MS spectra from lipid standard

materials detected negative ion mode. (C) Receiver-Operator characteristics (ROC) derived from 10-fold cross-validation of MS/MS spectra from lipid

standard materials detected positive ion mode. In both panels, plots having no AUC value indicate that this lipid class was not detected in this ion mode

concluding that there was not training data for classifiers available. All axes have the same scale.

doi:10.1371/journal.pone.0172311.g002
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phosphatidylserines (PS, LMGP0301), phosphatidylinositols (PI, LMGP0601), ceramides (Cer,

LMSP0201/ LMSP0202), and triacylglycerols (TG, LMGL0301).

Lipid extraction from C. elegans

Lipids were extracted from young adult C. elegans using a modified method from Matyash

et al. [24], described in [23]. The worms were washed off the plates and their metabolism was

quenched with 500 μL -20˚C MeOH. Samples were flash frozen in liquid nitrogen and stored

at -80˚C prior to extraction. Samples were then thawed on ice and 1.7 ml MTBE was added

and samples were vortexed vigorously. C. elegans were lysed for 30 minutes in an ice cold ultra-

sonic bath, after which 420 μl of water was added and samples were sonicated for further 15

minutes. Phases were separated by centrifugation at 4˚C and 14,000 rpm for 15 minutes. The

upper organic phase was transferred to a 4 ml glass vial and the remaining lower phase was re-

extracted with additional 650 μl MTBE for 15 minutes. After centrifugation the organic layers

were combined and evaporated in a SpeedVac vacuum concentrator at 30˚C for 0.5-1h. The

residue was redissolved in 500 μl ACN/iPrOH/water (65/30/5, v/v/v).

UPLC-Q-ToF-MS lipid profiling

Lipid profiling was performed as previously described [23]. Briefly, separation was achieved

on a Waters Cortecs C18 column, 150mm x 2.1 mm ID, 1.6μm using a Waters Acquity UPLC

(Waters, Eschborn, Germany) coupled to a Bruker maXis UHR-Q-ToF-MS (Bruker Daltonic,

Bremen, Germany). Flow rate was 0.25 ml/min and column temperature was set to 50˚C. Elu-

ent A consisted of 60% ACN and 40% water, eluent B of 90% iPrOH and 10% ACN, both with

10 mM ammonium formate and 0.1% formic acid. Detection was carried out in positive and

negative ion mode with data dependent acquisition with a scan rate of 5 Hz and selection of 2

precursors. Masses were excluded from DDA after 3 spectra and released from exclusion after

0.15 min. An absolute threshold of 1500 was used for selection.

MS data processing

MS data was imported to Genedata Expressionist for Mass Spectrometry 8.2 (Genedata, Basel,

Switzerland) for internal re-calibration, retention time alignment and peak picking. Files were

exported to.xlsx format and further data handling was carried out in MS Excel. Lipids were

annotated with a new in-house version of MassTRIX to also cover the adducts [M+NH4]+ and

[M+HCOO]-, as well as [M+H]+, [M+Na]+ and [M-H]- and an absolute error of 0.005 Da

[22].

MS/MS spectra were exported from the calibrated and aligned chromatograms from Genedata

Expressionist for MS 8.2 as.mgf file. Only spectra associated with a detected feature were kept

and converted to MetFrag batch files (available at http://msbi.ipb-halle.de/msbi/lipidfrag) using a

custom Perl script. The neutral mass and formula for the batch file were obtained by annotation

with MassTRIX, for all possible annotation results. Finally, spectra in batch files were de-isotoped

using the CAMERA package with a custom R script [23]. The raw data in the open.mzML format

and abundance matrix are available from the MetaboLights repository as MTBLS291 (http://

www.ebi.ac.uk/metabolights/reviewerfec5e44e-fae6-46de-b55d-d2f22d425286).

Manual lipid identification

Manual lipid identification was performed using known lipid fragmentation pathways. Infor-

mation from both ionization modes was combined and matched via identical retention times,

where available. For phospholipids, fragments used for identification included head group

LipidFrag: Improving reliability of in silico fragmentation of lipids
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fragments and their respective neutral loss, loss fatty acid side chains and their carboxylate

fragment. Position of fatty acids was inferred from intensity distributions of the respective [M-

sn1], [M-sn2], sn1-fatty acid and sn2-fatty acid fragments. In the case of triacylglycerols neu-

tral losses of fatty acid side chain as ammonium salt and the respective fragments were used.

Ceramide species were identified based on typical sphingolipid fragments, e.g. loss of N-

bound fatty acid and sphingoid base fragments.

Since exact position and stereochemistry of double bonds cannot be deduced from these

experiments, all possible isomers were reported as potential identification for further process-

ing with LipidFrag.

LipidFrag identification

Batch query files were processed with the MetFrag command line tool (version 2.4 available at

https://c-ruttkies.github.io/MetFrag/). Lipid Maps (LMSDFDownload18Mar14) was used as

structure database. Candidates were considered within 20 ppm of the theoretical mass, and

measured MS/MS peaks were matched against in silico fragments, generated with tree depth 3,

with an error window of 0.01 Da + 15 ppm. The ion mode for the generated fragments were

set according to the acquisition of the processed MS/MS peak list and the minimum peak

intensity was set to 1000 arbitrary units. The resulting ranked candidate lists were filtered by

the first part of the molecules’ InChIKey to eliminate stereo isomers and stored as CSV files,

with the calculated MetFrag scores stored in the CSV columns. CSV files for MS/MS peak lists

containing less than two informative MS/MS peaks were excluded from the evaluation. The

score calculated by MetFrag was used to rank the known candidates of the standard spectra.

Here, we always used the pessimistic (worst case) ranking result when candidates, including

the correct one, shared equal MetFrag scores. Hence all potential isomers, e.g. double bond

positional isomers, which usually have identical MetFrag scores, are covered and reported.

The original MetFrag scoring function considers the bond dissociation energy (BDE) of

bonds which are cleaved during the in silico fragmentation. As the cleavage of C-C bonds of

the fatty acid chains is unlikely to occur under the given conditions in the mass spectrometer,

the BDE of this bond type was set to the arbitrarily high value of 10e9, which effectively elimi-

nates fragments generated by a C-C cleavage.

Lipid class specific classifiers for reliability calculation

A new feature of LipidFrag is the use of classifiers for reliability calculation of the MetFrag

result. The distribution of the MetFrag raw scores depends on both the query spectra and the

compound classes of the candidates, as shown in S1 Fig, S2 Fig and S3 Fig. Generally, in meta-

bolomics this structural compound class classification is neither always obvious nor easy to

obtain for small molecules, but for lipids there is the structural categorization initiated by the

International Lipid Classification and Nomenclature Committee (ILCNC), available on the

Lipid Maps website [4]. With this nomenclature, the structures are hierarchically ordered and

encoded as positions in the Lipid Maps ID. This classification was used here to obtain well-

defined ranges of MetFrag raw scores for particular lipid classes. Therefore, a training step was

implemented to predict the reliability of MetFrag results based on the training of classifiers

with MS/MS spectra of the lipids standard material for different lipid sub classes (S2–S6

Tables). For this task one classifier was created for each lipid subclass, where raw scores of cor-

rectly identified structures from the lipid standard materials served as foreground data. The

same spectra were queried with deliberately wrong precursor candidates in the same mass

range (up to 150 ppm), originating from the other lipid sub classes respectively, to obtain a

decoy database and subsequently the MetFrag scores for the background data set. This
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approach was inspired from proteomics, where foreground and background training data are

used to assign significance values to peptide identifications [25].

Gamma distributions were used to model the scores for the foreground and background

data. The model parameters for the distributions were calculated by maximum-likelihood esti-

mation on the fore- and background dataset. For each lipid class a separate classifier was trained,

because the MetFrag scores exhibit large differences between the classes.

Eq (1) shows the calculation of the foreground class probabilities (FCP) of a MetFrag result

with the bayesian approach, where P (score | Foreground, Θ) is the likelihood of the fore-

ground model represented by a gamma distribution of the lipid sub class for the present score

and P (score | Background, Θ) is the corresponding likelihood of the present score in the back-

ground model which is also represented by a gamma distribution. The estimated parameters

of the distributions are represented byΘ.

For testing, a 10-fold cross-validation was applied. FCPs of the lipid classes were used to

calculate the true positive and false negative rates on the test dataset to determine a Receiver

Operating Characteristic curve (ROC) and the Area under Curve (AUC) as quality measure of

the different classifiers.

FCP ¼
pðscorejForeground; yÞ

pðscorejForeground; yÞ þ pðscorejBackground; yÞ
ð1Þ

Reliability of MetFrag results

After training, the classifiers were used to predict the reliability of MetFrag candidate identifi-

cations for the C. elegans MS/MS spectra, where the correct candidate is unknown. Given a

candidate list processed by MetFrag as SDF or CSV file, LipidFrag calculates the FCP for each

candidate lipid in this result list by first selecting the appropriate classifier based on the candi-

date’s Lipid Maps ID. The selected classifier together with the calculated MetFrag raw score is

used to calculate the FCP value. Those results, where no candidate exceeds a defined FCP

threshold (of e.g. 0.95) have to be treated as unreliable or not identified.

LipidBlast identification

For comparison lipid annotations were performed using the LipidBlast in silico tandem MS

library [18]. The provided LipidBlast fork (v2 Hiroshi Tsugawa fork) was downloaded and con-

verted by Lib2NIST tool (v1.0.4.38 (beta), options: “Include Synonyms”: Yes, “MW from chem.

formula”: Yes, “MS/MS spectra only”: Yes, “2008 MS Search compatible”: Yes) to NIST format

and used as spectral library for LipidBlast annotation of all standards used for LipidFrag available

in MGF format obtained from Genedata Expressionist for MS 8.2. The NIST MSPepSearchGUI

(v0.91, options: defaults except for “Q-TOF”: Yes, “Min. match factor”: 100, “Presearch mode”:

Standard, “Load libraries in memory”: No, “Max. number of output hits”: 10, “Presearch mode”:

Standard, “Precursor ion tolerance”: 0.02, “Fragment peak m/z tolerance”: 0.02) was used to pro-

cess input spectra in batch mode. LipidMaps identifiers provided for the correct identifications

were mapped to common names annotated by LipidBlast for comparison with the LipidFrag

annotations. The pessimistic rankings (among the top 10 reported candidates) were calculated

based on the Rev-Dot (reverse dot) scores and compared with the LipidFrag results.

Availability of LipidFrag

LipidFrag comes with several R scripts available at https://github.com/c-ruttkies/LipidFrag

together with the used data for training and an example for lipid class prediction. After
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prediction and model parameter training LipidFrag uses a MetFrag result CSV file retrieved by

using MetFrag and the Lipid Maps database for candidate retrieval and predicts the underlying

lipid class. The calculated FCP value is an indication of the reliability of the lipid identification.

The newest version of the MetFrag commandline tool is available at http://c-ruttkies.github.io/

MetFrag.

Results

LipidFrag uses the result scores of a lipid candidate list retrieved from MetFrag, which performs

in silico fragmentation of lipids. Then the matching classifier is selected based on the lipid sub

class of a currently considered lipid candidate in the candidate list. Using the bayesian equation,

LipidFrag calculates the posterior probability of the MetFrag score under the assumption to

come from the foreground distribution of the selected bayesian classifier. This probability value

can then be used as prediction of the lipid class of the regarded MS/MS spectrum, and secondly,

as a measure of reliability of the current MetFrag lipid annotation to filter out false positive lipid

assignments.

Analysis of lipid standard materials

For the positive ion mode spectra, classifiers were built for the following lipid sub classes: PC

(LMGP0101), PE (LMGP0201), PS (LMGP0301), PI (LMGP0601), Cer (LMSP0201/ LMSP0202)

and TG (LMGL0301). As the scores for the Cer species (LMSP02) show a bimodal distribution

in positive ion mode, two separate classifiers were trained for the available ceramide sub classes

(LMSP0201 and LMSP0202) for the foreground data. Compared to a single classifier for the

whole Ceramide main class, this captures the multimodal score ranges of the lipid sub classes in

a better way (S1 Fig). For the negative ion mode spectra, the lipid sub classes: PC (LMGP0101),

PE (LMGP0201), PS (LMGP0301), PG (LMGP0401), PI (LMGP0601) and Cer (LMSP0201/

LMSP0202) were used for training. As candidates for the LMGP0101 sub class show similar Met-

Frag scores on LMGP0201 sub class MS7MS spectra a combined classifier was trained. This

resulted in six different classifiers for positive and five for negative ion mode. With these classifi-

ers, used for positive and negative ion mode, LipidFrag is able to cover already over one third of

the lipid species in the Lipid Maps database.

The classifiers were extensively cross-validated on the lipid standards spectra to generate

receiver operating characteristic (ROC) curves and the corresponding area under curve

(AUC) values as measure of identification performance. These values are partly shown in

Table 1, for the full results see S1 Fig. For clarity, results are grouped into three lipid types: cer-

amides, glycerophospholipids and glycerolipids, and presented separately in the following par-

agraphs. Mean ranks shown in Table 1 are calculated with and without a FCP threshold to

highlight the performance using the LipidFrag classifiers. To reduce the false negative rate a

FCP threshold of 0.6 was set within LipidFrag. With this value the number of false positive

assignments could be reduced from 91% to 57% for positive ion mode and from 93% to 27%

for negative mode.

Ceramides

Ceramides have quite distinct molecular formulas compared to other lipid classes (i.e. glycero-

phospholipids); therefore, the overlap with other classes and the number of potential candidates

is low. Major differences between different ceramide species are the length of the sphingoid

base, the number of hydroxyl groups in the sphingoid base, the length of the N-linked fatty acid

and total number of double bonds. The fragmentation of ceramides has been studied extensively

by Hsu et al. [26], focusing mainly on the [M-H]- ions, whereas here ceramides were observed
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predominatly as [M+HCOO]- adducts in negative ion mode. Both positive and negative ion

modes were used to characterize the ceramides. In total, 17 ceramides were identified manually

from obtained MS/MS, with 11 found in both ion modes, 2 in negative and 4 in positive ion

mode only.

LipidFrag shows the best results for ceramides in positive ion mode, indicated by the AUCs

of 0.935 for the sphingenine and sphinagine lipids (LMSP0201 /LMSP0202). In negative ion

mode the AUC is also good with a value of 0.931. The mean rank of the correct solution is 1.17

in positive and 1.3 in negative ion mode, which is also due to the low number of candidates

(see Table 1).

Glycerophospholipids

Different classes of glycerophospholipids were subjected to fragmentation, including PC

(LMGP0101), PE (LMGP0201), PS (LMGP0301), PG (LMGP0401) and PI (LMGP0601). The

molecular formulas of PCs and PEs overlap considerably, which can lead to ambiguous results

if only the accurate mass of the precursor is used for the annotation with potential structures.

Ekroos et al. studied the use of fragmentation and fatty acid scanning using an ion trap MS for

elucidation of the fatty acid composition of PCs [14]. Fragmentation is very class and ion

mode specific, e.g. PCs yield mainly m/z 184.07 as the head group fragment in positive ion

mode, whereas in negative ion mode fragments originating from [M+HCOO]- adducts pro-

vide information about fatty acid composition and their positions. Diagnostic fragments indi-

cating fatty acid composition were only detected for very high abundant species in positive ion

mode. Several studies have shown that the carboxylate anion from the sn2 fatty acid is up to

Table 1. Results of the MetFrag identification and the classifier testing.

Negative ion mode

Metric LMGL0301

(TG)

LMGP0101,

LMGP0201 (PC, PE)

LMGP0201

(PE)

LMGP0301

(PS)

LMGP0401

(PG)

LMGP0601

(PI)

LMSP0201,

LMSP0202 (Cer)

FCP+ — 0.871 — 0.979 0.888 0.834 0.817

FCP- — 0.098 — 0.009 0.164 0.154 0.236

AUC — 0.979 — 1.0 0.901 0.961 0.931

Mean Rank — 2.2 — 1.8 1.8 2.6 1.3

Mean Rank (FCP > =

0.6)

— 2.3 (68%) — 1.8 (55%) 1.8 (94%) 2.4 (78%) 1.2 (63%)

Cand — 31.3 — 15.8 15.3 14.6 2.3

positive ion mode

Metric LMGL0301

(TG)

LMGP0101 (PC) LMGP0201

(PE)

LMGP0301

(PS)

LMGP0401

(PG)

LMGP0601

(PI)

LMSP0201,

LMSP0202 (Cer)

FCP+ 1.000 0.551 0.994 0.969 — 1.000 0.908

FCP- 0.000 0.442 0.000 0.000 — 0.000 0.095

AUC 1.0 0.799 1.0 1.0 — 1.0 0.935

Mean Rank 3.1 5.8 1.7 1.9 — 1.0 1.17

Mean Rank (FCP > =

0.6) (FP-Rate)

1.7 (16%) 3.0 (45%) 1.7 (49%) 1.9 (9%) — 1.0 (100%) 1.0 (68%)

Cand 33.9 26.5 26.5 14.9 — 15.3 2.2

The mean values of the FCPs retrieved from the cross-validation for the foreground (FCP+, higher is better) and the background (FCP-, lower is better)

scores are shown. An AUC of 1.0 represents the best possible classification result for the corresponding lipid main/sub class. Additionally, the mean rank of

the correct candidate (Rank) using MetFrag and LipidFrag with a FCP threshold of 0.6 together with the discarded proportion of false positives (FP-Rate)

and the mean number of candidates retrieved (Cand) are given.

doi:10.1371/journal.pone.0172311.t001
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three times higher compared to sn1 [27]. PEs in contrast show mainly the diacylglycerol frag-

ment derived from the neutral loss of the head group in positive mode and side chain frag-

ments of very low intensity (usually below 2%). Therefore, MS3 of the diacylglycerol fragment

is needed for side chain identification in positive ion mode. In negative ion mode, fragmenta-

tion of PE species yields carboxylate anions from sn1 and sn2 fatty acids similar to PCs.

Most of the glycerophospholipids show very good identification results with LipidFrag.

This is indicated with the mean rank values 2.24, 1.8, 1.8 and 2.6 for the available PC/PE

(LMGP0101 /LMGP0201), PS (LMGP0301), PG (LMGP0401) and PI (LMGP0601) species in

negative ion mode. The AUCs of 0.979, 1.0, 0.901 and 0.961 also show excellent classification

results (Table 1 and Fig 2).

In positive ion mode the PE (LMGP0201), PS (LMGP0301) and PI (LMGP0601) species

show similar results with mean ranks of 1.7, 1.9 and 1.0 and the AUCs of 1.0. Though, the PC

(LMGP0101) species show a similar performance with a mean rank of 1.69 when using a FCP

filter with threshold 0.6 (see S8 Table) the filter sorted out 58 of the 71 spectra caused by the

limited fragmentation which also indicated by a lower AUC of 0.799 (Table 1).

Glycerolipids

Glycerolipids (LMGL0301) were detected in positive ion mode mainly as [M+NH4]+ adducts.

From this adduct, typical fragmentation is the neutral loss of fatty acid side chains plus ammo-

nia yielding a diacylglycerol-like fragment [28]. This loss can occur for all side chains and lead

to a pattern that allows the identification of composition, but rarely provides sufficient infor-

mation to determine the position of fatty acids in the intact lipid.

Five different TG standards were employed as training data, showing previously known

fragmentation pathways. These five compounds had different fatty acid compositions and

therefore different retention times. However, in C. elegans samples many possible isomers and

isobars are co-eluting with many different fatty acid combinations that can be deduced from

fragmentation data (Fig 3). The TG species are observable in positive ion mode and the relat-

ing classifier shows a good result with an AUC of 1.0. However, the mean rank indicates a

lower performance for the identification results with 3.1, as the typical loss of a fatty acid side

chain during fragmentation is not only explained by the correct candidate, but also by struc-

turally very similar TG species. The fragment peaks of these types of losses seem to be very spe-

cific for the lipid main class, indicated by the high AUC, but this does not help to distinguish

between different TG lipids sharing the same molecular formula.

Handling of mixed spectra

One problem not only for LipidFrag are non-pure spectra arising from co-isolation of co-elut-

ing isomeric/isobaric lipids during the MS measurement. In order to test how well LipidFrag

can deal with this, we created such spectra in silico using measured spectra as template. Over-

lap especially occurs for glycerolipids in the later elution range of the chromatogram, but

might also occur for other lipids. Although the used UPLC method can separate major isobars

of the glycerophospholipids [23], overlap might also occur with major interference most likely

coming from isomers/isobars within same lipid class. Interference from different lipid classes

having the same molecular formula can be neglected because polarity, and hence retention

time is very different (e.g. PE(18:0/20:2) has a logP of 13.12, whereas the isobaric PC(18:0/

17:0) has a logP of 11.47).

We used one measured lipid MS/MS as target and added interfering MS/MS peaks at the

intensity ratios of 10:1, 2:1 and 1:1 and evaluated the MetFrag raw score of the true candidate.

Mixtures included binary, ternary and even quaternary mixes of isobaric lipids (S1 Table).
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Results indicate that mixtures with an equal amount of target and interference cause a drop in

the score and rank of the true candidate (S4 Fig) as expected.

The target substances still rank in the upper quarter. Results from one particular example in

C. elegans samples having two isomeric PC species in on MS/MS spectrum are discussed in a

later section (see Analysis of C. elegans samples).

Analysis of publicly available MSMS spectra

To test the performance of the LipidFrag approach on an independent second dataset we used

415 negative ion mode lipid MS/MS spectra retrieved from Bio-MassBank [29] where a Lipid

Maps ID was available for the correct candidate. Although these spectra were measured on a

different instrument with higher mass error than the data used for classifier training, they

served as an additional validation of the workflow. Altogether, the spectra were annotated by

the submitters to be from ten different sub classes (LMGL0301, LMGP0101, LMGP0102,

LMGP0103, LMGP0105, LMGP0201, LMGP0202, LMGP0203, LMGP0601 and LMSP0301).

Table 2 shows the ranking results obtained from LipidFrag. The mean ranks within the lipid

sub classes were 4.4, 6.0, 2.9, 3.9, 2.3, 2.8, 1.0, 1.0, 2.0, 1.8, respectively. Only two classifiers

were available for the spectra originating from PC/PE (LMGP0101 /LMGP0201) and PI

Fig 3. Example of co-elution and overlapping of different TG species in C. elegans. Analysis of spectra derived from TGs is complicated in real

samples due to overlap of several isomeric and isobaric species. The upper panel shows the MS/MS spectrum of TG(18:1/18:1/16:0) standard and the lower

of the same chromatographic peak in a C. elegans lipid extract.

doi:10.1371/journal.pone.0172311.g003
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(LMGP0601) species. For the 180 MS/MS spectra 157 have been identified with the correct

lipid sub class based on the foreground class probability (FCP) which is a true positive rate of

~87% for the low resolution spectra where a classifier was available. The LMGP0601 classifier

calculated a sub class FCP which reached this threshold for all cases (9) and the LMGP0101/

LMGP0201 classifier for 148 out of the 171 cases.

Comparison with LipidBlast annotations

The results of LipidBlast compared with the mean ranks of LipidFrag are shown in Table 3.

The values indicate that results are comparable between both software tools. Nevertheless,

there are slight deviations for some lipid classes and LipidFrag usually annotates more spectra

(FCP threshold 0.6) for both ion modes.

In positive ion mode on average LipidFrag could annotate 69 and LipidBlast 49.7 spectra

across all lipid classes. Considering the mean ranks, LipidBlast showed better results for TG

(LMGL0301) (1.0 to 3.1) species. No results were annotated for PI spectra as the predictions

are missing in the current spectral database mirror of LipidBlast. Developers of LipidBlast indi-

cated that predictions are in progress for several missing lipid classes and will be added to the

library in the near future. LipidFrag showed better mean ranks for PE (LMGP0201) (1.7 to 1.8)

Table 2. LipidFrag rankings on the 415 Bio-MassBank spectra.

Lipid sub class Mean rank Median rank Mean candidates Median candidates Number MS/MS

LMGL0301 (TG) 4.4 2.0 15.0 15.0 7

LMGP0101 (PC) 6.0 3.5 22.0 23.0 118

LMGP0102 (PC) 2.9 3.0 9,2 8.0 36

LMGP0103 (PC) 3.9 2.5 15.7 14.0 18

LMGP0105 (PC) 2.3 2.0 4.2 4.0 30

LMGP0201 (PE) 2.8 2.0 17.2 19.0 53

LMGP0202 (PE) 1.0 1.0 7.0 7.0 12

LMGP0203 (PE) 1.0 1.0 12.5 14.5 24

LMGP0601 (PI) 2.0 2.0 11.3 11.0 9

LMSP0301 (SM) 1.8 1.0 18.9 14.0 108

All 3.3 2.0 16.6 16.0 415

For each lipid sub class the number of MS/MS spectra available and the retrieved mean and median rank as well as the mean and median number of

candidates are given.

doi:10.1371/journal.pone.0172311.t002

Table 3. Comparison of LipidFrag with LipidBlast results.

Negative ion mode

Mean

Rank

TG

(LMGL0301)

PC/PE (LMGP0101/

LMGP0201)

PC

(LMGP0101)

PE

(LMGP0201)

PS

(LMGP0301)

PG

(LMGP0401)

PI

(LMGP0601)

Cer (LMSP02/

LMSP0202)

LipidFrag — 2.3 (112) — — 1.8 (35) 1.8 (41) 2.4 (62) 1.2 (155)

LipidBlast — 1.2 (116) — — 1.0 (34) 1.0 (40) 2.3 (70) 1.0 (158)

positive ion mode

Mean

Rank

TG (LMGL03) PC/PE (LMGP0101/

LMGP0201)

PC

(LMGP01)

PE (LMGP02) PS

(LMGP03)

PG (LMGP04) PI (LMGP06) Cer (LMSP0201/

LMSP0202)

LipidFrag 3.1 (25) — 1.7 (13) 1.7 (88) 1.9 (50) — 1.0 (82) 1.0 (156)

LipidBlast 1.0 (13) — 1.0 (9) 1.8 (75) 7.8 (43) — NA (0) 1.0 (158)

The table shows the mean ranks of the used lipid main/sub classes in the standard data set. The LipidFrag results are calculated by using a FCP threshold

of 0.6 (as in Table 1). Besides the mean rankings also the number of annotated spectra are given.

doi:10.1371/journal.pone.0172311.t003
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and PS (LMGP0301) (1.9 to 7.8) species. Equal mean ranks for both software tool could be

assigned to the Ceramide classes (LMSP0201 and LMSP0202) with a value of 1.0. Both soft-

ware tools filtered out a large proportion of the PC spectra (LipidFrag: 58 spectra, LipidBlast:

62 spectra) as this lipid class shows sparse fragmentation in positive ion mode resulting in less

informative MS/MS spectra.

For negative ion mode LipidFrag and LipidBlast could annotate an almost equal number of

MS/MS spectra with mean values of 81 and 83.6 across all lipid classes. LipidBlast performed

slightly better the Ceramide (LMSP0201) (1.0 to 1.6) and the PI (LMGP0601) species, whereas

LipidFrag showed better mean ranks for PC/PE (LMGP0101 /LMGP0201) (2 to 2.3) and PG

(LMGP0401) (1.0 to 1.8) species.

Analysis of C. elegans samples

To demonstrate the applicability to biological data, lipids extracted from C. elegans were used,

representing a realistic challenge for LipidFrag. The composition of the worm lipidome has

been extensively reviewed [30]. Several lipid classes are present in the worm and different fatty

acid combinations, including odd-numbered side chains, are possible in glycerol- and glycero-

phospholipids. Shotgun lipidomics was applied for analysis of a novel class of lipids only pres-

ent in dauer larvae [31].

Coverage of lipids with MS/MS spectra

The total number of lipid features and those with at least one associated MS/MS spectrum are

depicted in Fig 4. The green histogram shows all features, while the red one shows features

with MS/MS spectra. Due to technical limitations of DDA, only a small fraction of the detected

lipids is subjected to fragmentation, a problem well known from proteomics [32].

The DDA method used was able to fragment approximately a quarter (28%) of detected lip-

ids. This number remains surprisingly constant, across different sample sets that have been

analyzed with the same analytical method (data not shown). Different parameter settings for

inclusion/exclusion lists and exclusion time have been tested. If the exclusion window is set

too big, one or several features will be missed due to close elution of different isomeric and iso-

baric species, if too small, the same peak will be fragmented too often. Fig 4B and 4D show

how often each peak with at least one MS/MS spectrum was fragmented across 5 technical rep-

licates. Optimizing the analytical method for a better the coverage of peaks with MS/MS spec-

tra is beyond the scope of this publication. However, 28% coverage corresponds to several

thousand spectra (>3000), making the need for an automated analysis tool obvious.

Application of LipidFrag workflow to C. elegans MS/MS spectra

LipidFrag then was applied to MS/MS spectra obtained from C. elegans lipid extracts. Table 3

gives an overview on detected lipid features in positive and negative ion mode runs. Altogether

1,518 MS/MS spectra acquired in negative and 2,355 MS/MS spectra in positive ion mode

were processed. Results with a foreground class probability (FCP) of� 0.95 can be found

across the whole intensity range, although higher intensities seem to lead to better results in

positive ion mode (Fig 4A). More important than precursor intensity is to detect diagnostic

fragments, which especially is the case in negative ion mode, where fatty acyl side chains can

be directly detected. Good results in this mode were also obtained for most of the middle

intensity range (Fig 4C). Table 4 gives an overview on the number of detected lipid features

and their corresponding MS/MS information and LipidFrag results.

For the 3,873 (1,518 + 2,355) C. elegans spectra used, the MetFrag in silico fragmentation

and scoring took altogether ~31 hours (user+system time) on a single core CPU, i.e. 30
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seconds per spectrum. Using the calculated classifiers, which are based on the standard lipid

spectra, the FCP calculation for all 3,873 C. elegans spectra took less than 10 minutes, or 0.15

seconds per spectrum.

For the positive ion mode, LipidFrag detected 452 spectra as TG (LMGL0301), 69 as PE

(LMGP0201). Additional 3 PE and 1 PC (LMGP0101) species were added by decreasing the

FCP threshold to 0.9. In negative ion mode, LipidFrag found 206 spectra with PC/PE

(LMGP0101/LMGP0201lipid sub class annotations having a FCP� 0.95. With a lower FCP

threshold of 0.9, additional 47 PC/ PE species were annotated. Irrespective of the ion mode

over 22% of the LipidFrag results have a FCP� 0.75 (S5 Fig).

Fig 4. Histogram of intensities of features detected in positive ion mode. (A) The green histogram represents all features, in red are features with one

or more associated MS/MS spectra and the white features having a FCP > 0.95 in LipidFrag. (B) Histogram of MS/MS spectra per feature in positive ion

mode across all 5 technical replicates. (C) and (D) show the same for negative ion mode.

doi:10.1371/journal.pone.0172311.g004

Table 4. Overview on lipid MS1 features detected in C. elegans samples in the two respective ion modes with reliable LipidFrag results.

Ion mode No. of cluster With accurate mass annotation With MS/MS Manually identified in standards Reliable LipidFrag (FCP cut-off)

Pos 1655 1297 685 65 • 108 (0.7)

• 106 (0.8)

• 100 (0.9)

• 98 (0.95)

Neg 505 358 228 52 • 45 (0.7)

• 43 (0.8)

• 43 (0.9)

• 40 (0.95)

doi:10.1371/journal.pone.0172311.t004
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Fig 5 shows the spectrum of PE(18:0/20:5). The most prominent peaks show the corre-

sponding fatty acids, with higher intensities for C20:5 bound at the sn2 position. A further

diagnostic fragment [M-sn2-H]- at m/z 480 is detected, and with lower intensities also the

[M-sn1-H]- at m/z 462 ion. Precursor mass together with these four peaks and their respective

Fig 5. Example of a LipidFrag identification in C. elegans data. (A) MS/MS spectrum of m/z 764.5045 at 13.1 minutes detected in C. elegans with

fragment structures annotated. (B) Close up of lower mass region (m/z 100–250). (C) Structures of the best three candidates obtained from MetFrag with

result filtering using foreground class probabilities. Name, formula, MetFrag score and probability are indicated below each structure.

doi:10.1371/journal.pone.0172311.g005
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ratios allow manual identification as PE(18:0/20:5). Furthermore, the head group was detected

as fragment together with a fragment containing the head group and the glycerol backbone.

MetFrag was able to explain 8 of 9 fragments for identification. Additionally, small fragments

derived from C20:5 were found. LipidFrag calculated a FCP of 0.91 for the result being a PE.

The fatty acid positional isomer showed a similar score and probability. Because the scoring

does not take any intensity ratios into account, both isomers obtain the same score. At this

point, manual interpretation of intensities is required to determine which annotation is correct.

The isobaric PC(15:0/20:5) was ranked third, with a similar MetFrag raw score (103.49998 for

the correct PE and 96.64367 for the PC) but a lower FCP of 0.86 and only 7 of 9 peaks correctly

explained. Number of explained peaks was used as additional metric for correct identification,

in case scores and probabilities are similar. A second sample is depicted in S6 Fig and in the S6

and S7 Tables. At the respective retention time two PC isomers are coeluting, leading to a super-

position of different MS/MS spectra. For the precursor ion two different possible annotations

were found by MassTRIX, [M+HCOO]- or [M-H]-. LipidFrag was able to correctly annotate

both isomers using [M+HCOO]- as precursor with high scores and FCPs (� 0.99), where 4 dif-

ferent isomers (two fatty acids and two positional isomers) were found on the first four ranks.

Manual identification confirmed the automated results. In addition to the correct PC species,

other PC and PE species were annotated due to several possibilities that arise from the merging

of two lipids and other minor fatty acid fragments with very low intensities (e.g. C20:2) (S6

Table). On the other hand, results for the [M-H]- annotation yielded only low scores and FCPs

(< 0.1) (S7 Table). At the current stage no further details, e.g. on position of double bonds can

be given without using specialized analytical approaches [33].

Both demonstrated that using MetFrag scores alone results can be ambiguous where the

addition of the LipidFrag classifiers into the workflow improved automatic annotation results,

by removing many false positive results (S8 and S9 Tables). Remaining spectra were either of

low quality, low MetFrag scores or no training data was available due to missing standard

materials for respective lipid class (e.g. glycosphingolipids, LMSP05). No classification could

be made in the latter case.

Lipids in the used biological samples subjected to fragmentation by DDA were almost

exclusively from the class of glycerophospholipids, di- and triacylglycerols. Lower concentra-

tion lipids, e.g. ceramides, were masked by these highly abundant classes. Using C. elegans
lipid extracts it was shown that the developed approach can be applied to biological samples.

Coverage of features with one or more associated MS/MS spectra has to be improved, e.g.

using pseudo-targeted methods [34], data independent approaches and spectra reconstruction

[35] or improved DDA [36]. Lastly, in order to achieve full lipidome coverage, several more

classifiers for different lipid classes are needed, but not for all classes lipid standards (e.g. mara-

dolipids detected in dauer larvae) are currently available.

Discussion

Although the number of tools for automatic identification of lipids is increasing, most research

still performs manual inspection of MS/MS spectra or automated comparison against rather

small reference libraries. In silico fragmentation offers an elegant, automatic way to tentatively

identify metabolites and lipids if no standard is available, by reducing the number of possible

candidates or even propose just a single reliable match. A workflow was developed and vali-

dated for analysis of lipid MS/MS spectra derived from data dependent acquisition on a

UPLC-Q-ToF-MS system. This workflow is based on annotation of potential lipids to the pre-

cursor mass, isotope clean-up of MS/MS spectra and identification using the in silico fragmen-

tation tool MetFrag in combination with a novel reliability calculation based on bayesian
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classifiers. Lipid standard materials were used for validation purposes and the in silico analysis

was compared against manual identification.

Cross-validation of the obtained results showed that the true correct identification can be

easily separated from background spectra for most cases. Scores of correctly identified lipids

and deliberately wrong candidates as decoys were used to generate fore- and background data-

sets to calculate the FCP giving a reliability of a result of an unknown to be correct. Using lipid

standard materials, good performance of LipidFrag was shown, with high relative rankings of

the correct candidate, high probabilities and high AUC values obtained from the cross-valida-

tion. Furthermore, comparison with LipidBlast, one of the most utilized tool for lipid spectra

prediction, showed comparable results for both tools, with the main difference that the Lipid-

Frag approach needs an initial training step for its classifiers but no ab initio information on

fragmentation compared to LipidBlast. The workflow was applied to a lipid extract of C. ele-
gans. From the obtained spectra, about 20% had high foreground class probabilities of� 0.9.

Higher identification rates could be achieved in future investigations by measuring more lipid

standards from different classes to train more classifiers. However even with only 11 classifiers,

the application of LipidFrag to MS/MS spectra derived from lipid extracts from C. elegans was

successful and showed the advantage of this workflow.

An advantage here is that MetFrag does not rely on previously known fragmentation path-

ways and is therefore also applicable to novel lipid classes, currently not present in databases.

In this case, candidate structures can be scored by generating potential structures, e.g. using

theoretical lipids from LipidHome or even structures from a molecular structure generator

like MOLGEN as input database [37].

For the results retrieved from the C. elegans data, comparison of the LipidFrag annotation

with high probabilities and the manual identification for randomly-selected spectra showed

excellent agreement with most of the peaks correctly explained by the in silico fragmentation.

For application to complete lipidomics studies, the results from LipidFrag can serve as a first

filtering and interpretation for further manual investigation, especially for potential marker

peaks. A major limitation is co-elution of isomeric species leading to mixed MS/MS spectra.

Although the chromatographic method is able to resolve several isomeric lipids as shown previ-

ously [23], not all of them can be resolved, especially for lipids like TGs where several isomers

exist. Where identified spectra as training data are available, e.g. through authentic standards,

LipidFrag can help in high-throughput identification. With the standard MS setups, as employed

in this study, lipid class and fatty acid composition can be deduced. Our selected example with

the PE(18:0/20:5) species from the biological dataset showed that the MetFrag score alone cannot

distinguish ambiguous results. Here, the wrong candidate had a similar score to the correct one,

but their FCPs were significantly different and enhanced the annotation confidence. Manual

interpretation of obtained data often allows to additionally identify fatty acid position based on

intensity ratios of fatty acid fragments, which is not possible with MetFrag.

Result output could be simplified by the lipid annotation scheme proposed by Liebisch

et al. [38], which combines different lipid isomers under a common identifier. For mass spec-

trometry using UHR-Q-ToF-MS, the fatty acid scan level and fatty acid positional isomer are

relevant. The former represents lipid identification of the fatty acid composition, but their

position is not determined. This level is well suited for LipidFrag identification. For example,

all isomeric results can be collapsed under a common identifier, which would be easier to

interpret. Unfortunately, the Liebisch annotation is currently not widespread in structural

databases. LipidHome is an in silico database [5], using this nomenclature, whereas no struc-

tural representation of the chemical structure is available, which would be needed for MetFrag.

Currently, no chemoinformatics representation exists to encode ambiguity in the position of

double bonds [13].
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The use of data dependent fragmentation in conjunction with non-targeted studies can fur-

ther benefit from improved chromatographic methods with increased chromatographic resolu-

tion, especially in regions where several lipids co-elute. Different column chemistry, e.g. C30

stationary phase, helps with isomer separation. In the end, a trade-off between resolution, analy-

sis time and throughput has to be found. Here, only one particular extract was used to test the

workflow, but in a more extensive study it is likely that more MS/MS spectra from different lipid

features would be obtained, based on natural sample inhomogeneity and differences between

sample groups. The new approach of all ion fragmentation or data independent acquisition

(DIA) offered by most MS vendors can increase the coverage, but tools for deconvolution and

reconstruction of MS/MS spectra from this type of acquisition are still very limited today [39,

40]. Additionally, positively identified lipids can be uploaded to general repositories, e.g. Mass-

Bank, to improve data distribution.

Here, this method is applied to different C. elegans studies and allows comprehensive analy-

sis of the nematodes’ lipidome, but is also applicable datasets from different experiments.

Conclusion

Our newly developed workflow LipidFrag improves lipid identification from simple annota-

tion to higher levels of accuracy. It utilizes in silico fragmentation of lipid candidate structures.

Fragments explained by LipidFrag match known fragmentation pathways, e.g. neutral losses of

lipid headgroups and fatty acid side chain fragments. These in silico fragmentation results are

used to determine reliability scores calculated by bayesian classifiers, which helps to distin-

guish between true and false annotation results. For training of the classifiers authentic chemi-

cal standards from known lipid classes were used. This novel, additional filter step decreases

interference from isomeric or isobaric results from different lipid classes having similar Met-

Frag scores. Extensive cross-validation and application to lipids from C. elegans showed its

applicability. With inclusion of more and more future available lipid standards identification

rates using LipidFrag will increase.

Supporting information

S1 Information. A website http://msbi.ipb-halle.de/msbi/lipidfrag has been created to pro-

vide additional material for this manuscript. All files are provided for both positive and neg-

ative ion mode. The peaklist archives contain the actual MetFrag query files of the standard

and C. elegans MS/MS spectra. Furthermore, the result files are attached containing the Met-

Frag identifications and LipidFrag’s calculated foreground class probabilities for the C. elegans
peaklists.

(DOCX)

S1 Fig. Histograms of MetFrag score distributions for positive ion mode. Histograms of

back- (red) and foreground (green) datasets with their respective modeled distributions from

specific lipid sub-classes.

(TIF)

S2 Fig. Histograms of MetFrag score distributions for negative ion mode. Histograms show

back- (red) and foreground (green) datasets with their modeled distributions from specific

lipid sub-classes.

(TIF)

S3 Fig. Scatterplots of raw MetFrag scores from lipid standard material MS/MS spectra.

The score are shown for negative (A) and positive (B) ion mode.

(TIF)
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S4 Fig. MetFrag results from overlapping experiment. Rank as function of different mixtures

is shown.

(TIF)

S5 Fig. LipidFrag results on C. elegans data. The maximal foreground class probabilities

(FCPs) and their histogramms calculated by LipidFrag are plotted in descending order for

2,355 MS/MS spectra in positive (A) and 1,518 MS/MS spectra in negative (B) ion mode origi-

nating from the C. elegans lipid extract.

(TIF)

S6 Fig. LipidFrag annotation example from C. elegans dataset. (A) Extracted ion chromato-

gram of an example lipid and one MS/MS spectrum acquired at 13.11 minutes. Under this

peak two isomeric PC species are co-eluting. LipidFrag identified all four isomer (fatty acid

isomers and positional isomers) with high scores and probabilities (S6 Table). (B) MS/MS

spectrum at 13.11 showing a mixed spectrum of two isomeric PC species.

(TIF)

S1 Table. Target lipids and used interfering species for overlapping experiments.

(PDF)

S2 Table. Statistics on training MS/MS spectra from positive ion mode.

(PDF)

S3 Table. Statistics on training MS/MS spectra from negative ion mode.

(PDF)

S4 Table. Number of used MS/MS spectra for training in positive ion mode.

(PDF)

S5 Table. Number of used MS/MS spectra for training in negative ion mode.

(PDF)

S6 Table. LipidFrag results for C. elegans MS/MS spectrum shown in S6 Fig derived from

[M+HCOO]- annotation.

(PDF)

S7 Table. LipidFrag results for C. elegans MS/MS spectrum shown in S6 Fig derived from

[M-H]- annotation.

(PDF)

S8 Table. LipidFrag’s improvement of ranks for training MS/MS spectra in positive ion

mode.

(PDF)

S9 Table. LipidFrag’s improvement of ranks for training MS/MS spectra in negative ion

mode.

(PDF)
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(Eawag, Dübendorf, Switzerland) for fruitful and intensive discussions and comments on

the manuscript.

LipidFrag: Improving reliability of in silico fragmentation of lipids

PLOS ONE | DOI:10.1371/journal.pone.0172311 March 9, 2017 20 / 23

5 PEER-REVIEWED PUBLICATIONS

142



Author Contributions

Conceptualization: MW SN PS.

Data curation: MW CR.

Formal analysis: MW CR.

Investigation: MW.

Methodology: MW CR SN.

Project administration: SN PS.

Software: MW CR.

Validation: MW CR.

Visualization: MW CR.

Writing – original draft: MW CR SN PS.

Writing – review & editing: MW CR SN PS.

References
1. van Meer G. Cellular lipidomics. EMBO J. 2005; 24(18):3159–65. doi: 10.1038/sj.emboj.7600798

PMID: 16138081

2. Caffrey M, Hogan J. LIPIDAT: A database of lipid phase transition temperatures and enthalpy changes.

DMPC data subset analysis. Chemistry and Physics of Lipids. 1992; 61(1):1–109. PMID: 1315624

3. Watanabe K, Yasugi E, Oshima M. How to Search the Glycolipid data in &ldquo;LIPIDBANK for

Web&rdquo;, the Newly Developed Lipid Database in Japan. Trends in Glycoscience and Glycotechnol-

ogy. 2000; 12(65):175–84.

4. Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, et al. LMSD: LIPID MAPS structure database.

Nucleic Acids Research. 2007; 35(suppl 1):D527–D32.

5. Foster JM, Moreno P, Fabregat A, Hermjakob H, Steinbeck C, Apweiler R, et al. LipidHome: A Data-

base of Theoretical Lipids Optimized for High Throughput Mass Spectrometry Lipidomics. PLoS ONE.

2013; 8(5):e61951. doi: 10.1371/journal.pone.0061951 PMID: 23667450

6. Aimo L, Liechti R, Hyka-Nouspikel N, Niknejad A, Gleizes A, Götz L, et al. The SwissLipids knowledge-
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Abstract: The task in the critical assessment of small molecule identification (CASMI)
contest category 2 was to determine the identification of (initially) unknown compounds
for which high-resolution tandem mass spectra were published. We focused on computer-
assisted methods that tried to correctly identify the compound automatically and entered
the contest with MetFrag and MetFusion to score candidate structures retrieved from the
PubChem structure database. MetFrag was combined with the metabolite-likeness score,
which helped to improve the performance for the natural product challenges. We present
the results, discuss the performance, and give details of how to interpret the MetFrag and
MetFusion output.

Keywords: mass spectrometry; metabolite identification; MetFrag; MetFusion; metabolite
likeness; molecular formula

1. Introduction

The critical assessment of small molecule identification contest (CASMI) was organised in 2012 by
Emma Schymanski and Steffen Neumann, to call upon the computational mass spectrometry community
and demonstrate the performance of compound identification from mass spectrometry data.

At the Leibniz Institute of Plant Biochemistry (IPB), we are developing several tools for metabolite
identification. The MetFrag system [1] is able to perform in silico fragmentation of candidate structures,
which can be retrieved from compound databases or obtained through structure generation [2]. The
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IPB is also part of the MassBank consortium [4], which collects a large number of reference spectra,
particularly of soft electrospray ionisation (ESI) spectra. Our MetFusion system [5] integrates these two
strategies to obtain a more reliable identification compared to each individual approach taken alone.

In the CASMI contest, our tools did not officially take part because one author was in the organisation
team and some of the challenge spectra were obtained at the IPB. Nevertheless, we tried to approach
the challenges in as unbiased a manner as possible, and did not use our inside knowledge to tune any
parameters in order to obtain better results. We also restricted the participation to category 2 (“best
structure identification for high resolution liquid chromatography/mass spectrometry (LC/MS) data”)
and did not submit the molecular formulas to category 1 (“best molecular formula for high resolution
LC/MS data”).

2. Methods

The spectra preprocessing steps and the elimination of redundant candidate structures are the same
for both MetFrag and MetFusion.

2.1. Spectra Processing and Neutral Mass Heuristics

All of the challenges were measured in a single ionization mode, but with multiple ionization energies.
If a challenge provided two or more spectra, the spectra were merged to create a corresponding composite
spectrum. This processing step was recommended by the MassBank consortium [4] for a more reliable
identification. Challenges 2, 10 and 12 each consisted of only one spectrum, so the spectra merging
was not applied to them. We used the mzClust grouping algorithm in xcms (version 1.37.0) [6,7].
The composite spectrum contains the unique peaks where m/z values are averaged and the maximum
intensity across all spectra is used. The R-code for the merging is shown in Appendix B.

To determine the neutral mass of a compound, we used a simple heuristic which located the lowest m/z
in the isotope pattern as a monoisotopic peak and then removed the adduct, taking the polarity of the
measurement into account to automatically deduce the neutral exact mass of the compounds for the
candidate search.

2.2. Eliminating Redundant Candidates

Both MetFrag and MetFusion obtain candidate structures from chemical databases. They often
contain redundant structures which increase the candidate lists without adding chemical diversity. In
addition, mass spectrometry can, in general, not distinguish between the stereoisomers of a compound
and the identification methods we use assign identical scores to isomers. Therefore, we eliminate
redundant candidate structures with an InChIKey-based filtering.

The InChIKey is a string that is characteristic of the molecular structure, where the first block of
14 characters is determined by the molecular skeleton (or connectivity). More information regarding
both InChI and InChIKey can be found elsewhere [8]. We calculate the InChIKey for each candidate
and keep only candidates with a unique first InChIKey block.
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2.3. In silico Fragmentation with MetFrag

We used MetFrag as described in Wolf et al. [1], with the composite spectra as explained in
Section 2.1 to submit candidates for all challenges in CASMI category 2. We queried a local
PubChem [3] mirror (created September 2010) for the candidate retrieval and filtered as explained in
Section 2.2. For the candidate selection we used the putative neutral exact mass and a mass window of
5 ppm and 0.001 Da mass deviation for the fragment matching. For later resubmissions for Challenge 5,
we adapted the mass window to 10 ppm and 0.002 Da for, due to the higher mass error. For this paper,
we additionally used a molecular formula candidate search using the correct formulas which were not
known during the contest but given in the solutions. This allows estimation of the MetFrag performance
the correct molecular formulas are used as input.

The score calculated by MetFrag evaluates the match of in silico-generated fragments of the candidate
molecules to the given challenge tandem mass spectra The mass as well as the intensity of the peak
matched by a fragment are considered in the score.

Compounds for challenges 1 to 6 were known to be natural products, as explained on the CASMI
website. Because large compound databases, such as PubChem [9], contain many non-natural
compounds, several filtering strategies have been developed for metabolomics data. While Kind and
Fiehn [10] proposed filter criteria based on the molecular formula, Peironcely et al. [11] used machine
learning to train a random forest model [12] on metabolite structures from the Human Metabolome
Database (HMDB) [13] and structures from the ZINC database [14] to predict a metabolite-likeness
score (MLS) based on structural fingerprints.

We used the MLS to prefer biological compounds for challenges 1–6. For those challenges, we used
the adapted version of the final score:

Scorefinal = ScoreMetFrag + ω ·MLS

to obtain the ranking, where ω represents the weight of the MLS which we arbitrarily set to 0.5 to give
it a lower influence in the final score than the MetFrag score. In the future we plan to optimise ω by
learning from given data. The influence of the metabolite-likeness score on the rankings of candidates
was investigated by comparing the rankings of results with ω = 0 and ω = 0.5.

2.4. MetFusion: Integration of MetFrag with Spectral Libraries

We also applied MetFusion [5] to generate submissions for all Category 2 challenges. We used the
MassBank spectral library and PubChem compound database, which in this case was queried online in
January and March 2013. For the candidate selection we used the putative neutral mass and a mass
window of 10 ppm. A mass window of 10 ppm is sufficient as all Category 2 challenges promise an
accuracy of <10 ppm. For the fragment matching, we applied a window of 0.002 Da and 10 ppm. As
explained above, we used composite query spectra and the InChIKey-based candidate filtering.

MassBank provides separate search forms for either a precursor mass search or peak list search.
The combination of both types of information is currently not available, although it would be possible
to search MassBank with both an MS/MS spectrum and explicitly apply the precursor neutral mass
as filter afterwards. This search strategy is used by, e.g., the Metlin database. Instead, MetFusion
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invokes the peak list search, so MassBank will also return compounds with similar MS/MS spectra in
order to possibly return also structurally similar compounds. MetFusion then implicitly combines the
fragmentation similarity from MassBank with the exact mass hit from PubChem.

All challenges were queried against all available ESI spectra in MassBank [4]. For the resubmissions,
we also included instruments with ion sources at atmospheric-pressure levels, namely chemical ion-
ization (APCI) and photoionization (APPI). This instrument selection covers triple quadrupole (QqQ),
quadrupole time-of-flight (QTOF) and Orbitrap devices i.e., both nominal and accurate mass spectra
were queried.

Besides the peak list and instrument selection, the number of result hits and the intensity cut-off
are the only parameters for the MassBank peak search. The result limit was set to 100 hits and the
intensity cut-off was set to 5. The intensity cut-off determines which peaks are ignored due to having
a lower intensity than the specified cut-off. MassBank internally applies a fixed 0.3 Da mass window
when matching peaks. MassBank also utilizes the intensity information for spectra comparison, i.e., low
intensity peaks have less weight in the resulting scores.

For the MassBank query results, we also performed an InChIKey-based filtering where among the
duplicates only the entry with the best MassBank score, i.e., the highest spectral similarity, was kept.
The MetFusion workflow and the scoring have been described earlier [5].

In the next section we also discuss the chemical similarity, e.g., between the correct solution and
the most similar MassBank record. We used the Tanimoto similarity based on the fingerprints of the
structures as implemented in the CDK [15]. A Tanimoto score of 0 indicates that no structural features
are shared in both structures. Conversely, a Tanimoto score of 1 indicates that all investigated structural
features (determined by the fingerprint) are present in both structures. A Tanimoto score ≥0.8 indicates
reasonable structural similarity, whereas scores ≥0.95 indicate very high structural similarity.

The whole set of challenges was processed with the command line version of MetFusion. Results
were stored in a structure data file (SDF), which is better known by the *.sdf file extension. This file
keeps the molecular structure and associated information, like compound name, score, and additional
properties, for each candidate. In addition to the integrated result list as an SD file, we also keep the
individual intermediate result lists and create a spreadsheet file containing the result lists and the coloured
similarity matrices which can be used to examine the results in more detail.

3. Results and Discussion

In this section we discuss the results of our resubmissions and note where and why they differ from
the original submissions. The challenges 2, 4, 5 and 6 from category 2 were not calibrated when
initially offered to the participants, resulting in higher than stated ppm deviations. This was recognised
after the contest closed, and the data of these challenges was recalibrated and made available to the
participants online for the articles in the proceedings. Each participant was allowed to resubmit their
findings. Additionally, our hypotheses for the neutral mass of challenges 11 and 12 were wrong in
the first submission. The correct neutral mass for challenge 12 could be extracted from the available
meta-data that all participants had access to. Challenge 11 did not provide [M+H]+ ions, instead the
[M-H2O]+ fragment was the major ion suitable for back-tracking the neutral mass by an experienced
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mass spectrometrist. We used the correct neutral mass from the published CASMI solution for
challenge 11.

For both MetFrag and MetFusion we report the number of candidates and the absolute rank for each
challenge, and the median rank broken down to the natural compound and environmental challenges.
The median is used because the distribution of ranks is heavily tailed and a few challenges with very
poor ranking severely skew the mean values. In addition to the absolute rank, we also report the relative
ranking position (RRPCASMI), defined as RRPCASMI = 1

2

(
1− BC−WC

TC−1
)

where BC and WC are the
number of candidates ranked better and worse than the correct solution, and TC is the number of total
candidates, respectively. See [16] for more details.

3.1. MetFrag

In the initial submission, the correct solution was missing for Challenges 2, 4 and 6 because the
measured mass was outside the 5 ppm margin. In addition, the simple precursor heuristics described
in Section 2.1 missed the neutral mass of challenges 11 and 12. These cases were corrected with the
updated information for the resubmissions.

Table 1 shows the number of candidates obtained from the PubChem snapshot with a search for the
neutral mass and the absolute rank of the correct solution. For Challenges 1 to 6 we also show the ranks
with the MLS score included.

Table 1. MetFrag results with neutral exact mass filter after resubmission. Shown are
the number of candidates per challenge(#Cand.), the InChiKey filtered MetFrag rank and
the relative ranking position (RRP). Additionally, for challenges 1–6 the InChiKey filtered
MetFrag rank with the metabolite-likeness score (MLS) included is shown.

Natural Product Challenges Environmental Challenges
Chall. #Cand. Rank RRP MLS RRP Chall. #Cand. Rank RRP

10 447 260 0.441
1 994 5 0.996 4 0.997 11 465 23 0.976
2 248 3 0.992 3 0.992 12 1531 36 0.978
3 1094 12 0.990 9 0.993 13 1031 5 0.998
4 2234 547 0.757 454 0.797 14 125 27 0.810
5 2891 988 0.679 1238 0.573 15 1825 173 0.907
6 1860 1860 0.439 281 0.850 16 1948 1948 0.453

17 475 15 0.970

Median 1477 280 0.874 145 0.921 753 32 0.939

The results achieved with the molecular formula database query are shown in Table A1. For every
challenge MetFrag found the correct hit among the candidates with both types of queries, where the mass
window result sets contain twice as many candidates. The absolute ranks obtained with the formula query
decrease the median rank (Challenges 1–6: 280⇒270; Challenges 10–17: 32⇒22.5) compared to the
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ranks of the mass query, but on the other hand the median RRP is lower (Challenges 1–6: 0.874⇒0.607;
Challenges 10–17: 0.939⇒0.917) with the use of the molecular formula filter, because compounds
within the mass search window but with the wrong molecular formula often obtain a lower MetFrag
score compared to the correct solution. The molecular formula filter eliminates these worse candidates
(WC) from the outset, which reduces the RRP.

Next, we describe the outcome if the metabolite-likeness score is considered together with the
MetFrag score for the Challenges 1–6. The number of candidates remains unchanged, but natural
compounds (including the correct solution) should obtain better scores and improve both the absolute
rank and the RRP.

Indeed, except for Challenge 5 all ranks are better or equal with the MLS contribution in the score
as shown in Table 1. The median absolute rank decreases from 280⇒145 (RRP: 0.874⇒0.921) and
even more for the molecular formula candidate search, where the median rank improves from 270⇒119
(RRP:0.607⇒0.797).

Reticuline (the correct candidate of Challenge 5) has the lowest metabolite-likeness score of 0.296
among all challenge compounds and therewith the worst rank (1209) related solely to the MLS (see
Table 2), which explains why the final result for Reticuline was even worse with MLS.

Table 2. The metabolite-likeness score (MLS) of the compounds of Challenges 1 – 6 and
their rankings among the retrieved candidates based on the MLS alone, while Table 1 uses
the combined score.

Challenge Trivial name InChIKey (first block) MLS MLS rank

1 Kanamycin A SBUJHOSQTJFQJX 0.508 47
2 1,2-Bis-O-sinapoyl-beta-D-glucoside KQDOTXAUJBODDM 0.716 35
3 Glucolesquerellin ZAKICGFSIJSCSF 0.474 3
4 Escholtzine PGINMPJZCWDQNT 0.436 439
5 Reticuline BHLYRWXGMIUIHG 0.296 1209
6 Rhoeadine XRBIHOLQAKITPP 0.374 132

Challenges 6 and 16 were very problematic for MetFrag, which could only assign to the given
spectrum a single fragment of the correct molecule for the first case and no fragments of the correct
molecule for the second case. Although the MLS improved the final rank for challenge 6, this is only
based on the (second lowest among all challenges) MLS of 0.374. Figure A1 shows the rankings related
the the calculated scores of all candidates of challenges 1 to 6.

The results show that MetFrag is able to rank four molecules of the total 14 challenges among the top
ten hits when applying mass filtering. The number can be increased to five by including knowledge of
the molecular formula of the correct compound.

The external participants Dunn et al. [17] and the internal participant Meringer et al. [19] both used
MetFrag in conjunction with other methods for the identification. The combined MetFrag and manual
interpretation method of Dunn et al. had better ranks than MetFrag alone, but missed a lot more
challenges because the Kyoto Encyclopedia of Genes and Genomes (KEGG) [18] was used for candidate
retrieval, which only contains a subset of the challenge compounds.
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3.2. MetFusion

The overall results for MetFusion are shown in Table 3. PubChem has grown considerably over
the past two years and consequently the online query against PubChem yields more candidates: for
the first six challenges, MetFrag retrieved 1477 candidates (median) from our PubChem snapshot
(September 2010), whereas the corresponding online query against PubChem from January 2013 yields
3582 candidates (median)— more than twice as many, and more than three times for the environmental
challenges. The same observation can be made for the remaining challenges 10–17. The rapid growth
of PubChem over even short time periods becomes obvious; e.g., for Kanamycin A. In January 2013, 37
isomers with an identical first block of their InChIKey were retrieved, whereas only eight weeks later
three additional isomers were found.

Table 3. MetFusion results per challenge after resubmission. Shown are number of
candidates per challenge (#Cand.), the InChIKey filtered MetFusion rank as well as the
maximum Tanimoto similarity (Max. TS) between the candidates and the MassBank results
and finally the relative ranking position (RRP).

Natural Product Challenges Environmental Challenges
Chall. #Cand. Rank Max. TS RRP Chall. #Cand. Rank Max. TS RRP

10 1085 981 0.40 0.096
1 2229 1 1.0 1.0 11 1444 170 0.28 0.883
2 625 4 0.93 0.995 12 3772 136 0.28 0.964
3 2945 14 0.99 0.995 13 3344 1 1.0 1.0
4 4219 74 0.84 0.983 14 507 3 1.0 0.996
5 4280 1426 0.42 0.667 15 3394 1 1.0 1.0
6 6175 25 0.79 0.996 16 4427 1351 0.33 0.695

17 1848 88 0.35 0.953
Median 3582 20 0.89 0.995 2596 112 0.38 0.959

The results for challenges 1 to 6 and challenges 10 to 17 show that more similar spectra are present in
MassBank for the biological compounds than for the environmental challenges. The median Tanimoto
similarity between the challenges and the most similar compound in MassBank is 0.89 for the natural
compounds, compared to 0.38 for the environmental challenges where the reference spectra did not
contribute significantly to the integrated MetFusion score in five cases. This can be attributed to a
much larger chemical diversity of natural products in MassBank. This is also evident by the low
maximum spectral similarity. The lack of reference spectra for diverse non-biological compounds is
the major reason for the mediocre performance of MetFusion in these cases. We expect a considerable
improvement in this area as contributions to MassBank from the environmental community have
recently increased.

In addition to the ranked list of candidates, MetFusion also creates a ranked similarity matrix, where
the columns correspond to the result list from MassBank (best hits on the left, ordered by the MassBank
score) and the rows correspond to the MetFrag results. Each cell contains the Tanimoto similarity (TS)
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of the corresponding structures from MassBank and MetFrag. Examples are shown in Figures 1 and 2.
Tanimoto similarities are also visualised through a colour code ranging from red via yellow to green with
increasing TS.

Figure 1. The top-left part of the reranked similarity matrix from MetFusion for Challenge 6.
The correct compound rhoeadine is ranked 25th (CID 5318652) and is highlighted with a
green border. The maximum Tanimoto similarity (TS) for rhoeadine has bicuculline with
a similarity of 0.79, but a MassBank score of only 0.3 (data not shown). There are other
alkaloids with better similarity that are thus ranked higher. Six columns were removed for
better readability, altogether with a low maximum TS of 0.4.
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44483244 0.388 0.636 0.427 0.391 0.924 0.577 0.410 0.310 0.327 1.000

11717916 0.401 0.640 0.424 0.390 0.973 0.564 0.408 0.311 0.327 0.898

5316069 0.390 0.625 0.420 0.386 0.904 0.577 0.407 0.311 0.333 0.972

68331626 0.394 0.624 0.420 0.388 0.920 0.571 0.402 0.307 0.331 0.919

7348779 0.385 0.643 0.432 0.398 0.882 0.569 0.415 0.300 0.322 0.954

11731734 0.386 0.643 0.430 0.397 0.879 0.567 0.414 0.301 0.323 0.950

18728255 0.413 0.613 0.447 0.381 0.876 0.576 0.405 0.317 0.330 0.901

59991416 0.417 0.595 0.435 0.377 0.900 0.559 0.400 0.313 0.332 0.831

371260 0.389 0.873 0.318 0.431 0.674 0.551 0.430 0.301 0.303 0.617

21763791 0.397 0.617 0.415 0.391 0.840 0.560 0.410 0.309 0.339 0.903

68152375 0.393 0.563 0.415 0.385 0.788 0.575 0.406 0.319 0.350 0.842

68131382 0.403 0.640 0.372 0.394 0.805 0.570 0.415 0.311 0.328 0.853

10905079 0.372 0.728 0.368 0.414 0.724 0.593 0.426 0.307 0.317 0.777

21589025 0.372 0.653 0.352 0.397 0.680 0.561 0.413 0.331 0.334 0.684

601054 0.384 0.693 0.352 0.381 0.651 0.538 0.395 0.319 0.329 0.623

605862 0.386 0.774 0.319 0.406 0.700 0.576 0.404 0.295 0.302 0.656

21768980 0.398 0.598 0.317 0.366 0.582 0.514 0.380 0.335 0.326 0.588

131593 0.402 0.674 0.324 0.393 0.663 0.549 0.392 0.326 0.309 0.607

68152387 0.396 0.576 0.375 0.353 0.738 0.534 0.379 0.323 0.345 0.756

44559282 0.378 0.636 0.342 0.386 0.662 0.554 0.407 0.329 0.348 0.661

57581018 0.386 0.742 0.321 0.383 0.619 0.553 0.388 0.301 0.300 0.627

11058079 0.385 0.627 0.345 0.382 0.662 0.561 0.403 0.334 0.348 0.667

5315436 0.390 0.669 0.328 0.393 0.667 0.551 0.392 0.323 0.304 0.625

13875892 0.376 0.618 0.347 0.396 0.653 0.540 0.416 0.340 0.340 0.656

5318652 0.415 0.587 0.377 0.369 0.732 0.537 0.392 0.307 0.335 0.772

337868 0.392 0.657 0.360 0.372 0.682 0.518 0.399 0.333 0.332 0.654

Overall, MetFusion was able to rank the correct candidate in the top position for the three challenges 1,
13 and 15. Challenges 2 and 14 had the correct compound ranked at position 4 and 3, respectively.

For Challenge 6, using MetFrag alone have a very poor result because 3812 candidates had an
identical score of 0.0. MassBank does not contain spectra for the correct compound rhoeadine, and
the most similar spectrum returned is palmatine (KOX00837), with a low 0.42 TS to the correct structure
(as shown in Figure 1), while the structurally most similar entry (bicuculline, TS = 0.79) in MassBank
has a poor spectral score of only 0.3. The main contribution from the MassBank results are three spectra
from other alkaloids (allocryptopine, noscapine, and hydrastine) with a similarity between 0.59 and 0.77.

For Challenge 14, shown in Figure 2, MassBank returned a spectrum of carbazole ranked first, an
isomer of the correct 1H-Benz[g]indole, followed by three spectra of compounds with both a different
molecular formula and lower TS than the MetFrag candidates. During the contest, spectra of the correct
1H-Benz[g]indole measured on the same instrument as the challenge data were submitted to MassBank
by one of the MassBank consortium members. The UF011410 hit in MassBank was only ranked fifth,
with an unexpectedly low MassBank score of only 0.70, most likely because we used a merged query
spectrum and MassBank applies a 5% intensity cut-off. These two factors led to a greater difference
between the merged spectrum and the deposited reference spectrum. The available Orbitrap spectra
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would benefit from a lower cut-off threshold of 2 rather than 5, but we relied on the default cut-off. With
this low spectral similarity, the MassBank contribution was unable to lift the correct compound to the
first rank, but only to rank 25.

Figure 2. Excerpt of reranked similarity matrix from MetFusion for Challenge 14. The
correct compound is ranked 3rd (CID 98617) and highlighted with a green border. The two
better ranking candidates have slightly higher MetFrag scores that add to their corresponding
MetFusion scores. Compound 6854 is carbazole, a structurally highly similar compound
towards the correct 1H-Benz[g]indole. The presence of Tanimoto similarities with value of
1.0 indicate perfect structural matches according to corresponding reference spectra available
in MassBank for both 1H-Benz[g]indole (UF011410) and carbazole (UF026313).

UF026313 UF024612 UF015113 WA002682 UF011410 WA000556 UF026913 UF011312 WA001663
59832560 0.875 0.135 0.141 0.063 0.969 0.098 0.495 0.101 0.067

59832555 0.845 0.135 0.142 0.059 0.979 0.093 0.497 0.102 0.067

98617 0.863 0.137 0.144 0.059 1.000 0.094 0.495 0.098 0.068

11344211 0.854 0.136 0.143 0.059 0.968 0.089 0.484 0.102 0.062

12450009 0.844 0.137 0.144 0.059 0.958 0.090 0.478 0.102 0.062

6854 1.000 0.146 0.152 0.057 0.863 0.089 0.454 0.102 0.065

13908560 0.760 0.145 0.151 0.057 0.894 0.097 0.451 0.101 0.071

13287594 0.750 0.146 0.152 0.062 0.863 0.098 0.446 0.102 0.065

12867691 0.747 0.140 0.146 0.058 0.823 0.089 0.427 0.098 0.073

10877507 0.747 0.140 0.146 0.058 0.823 0.089 0.427 0.098 0.073

14399831 0.740 0.139 0.146 0.057 0.814 0.089 0.432 0.098 0.072

11171191 0.740 0.139 0.146 0.057 0.814 0.089 0.432 0.098 0.072

21163914 0.740 0.139 0.146 0.057 0.814 0.089 0.432 0.098 0.072

22349125 0.138 0.481 0.667 0.122 0.132 0.122 0.158 0.190 0.100

22641511 0.118 0.604 0.536 0.115 0.113 0.116 0.145 0.173 0.080

12667390 0.435 0.255 0.291 0.084 0.489 0.120 0.436 0.155 0.080

12667393 0.430 0.252 0.289 0.080 0.477 0.119 0.433 0.164 0.079

For challenges 1 to 6 MetFusion performed significantly better than MetFrag, and the median rank of
the correct compound was 20, compared to 280 with MetFrag and 145 with MLS. This is even more
remarkable because we used the online PubChem query, which returned 3145 candidates (median),
whereas the PubChem snapshot only provided 1063 candidates (median) over all challenges.

MetFusion results for challenges 10 to 12 were significantly worse when compared to MetFrag alone.
This can be attributed to the low Tanimoto similarity of the correct candidate to any of the spectral hits.
For each of these challenges, the MassBank scores are between 0.31 and 0.68 for the top hit, indicating
a lack of reference spectra for these compound classes. The missing spectral coverage is expressed in
both mediocre spectral scores and almost no Tanimoto similarity, visualised by the red-orange coloured
matrix cells with maximum Tanimoto similarity of 0.4. This indicates the case where the spectral library
cannot confirm any of the in silico candidates, thus leaving the user with no additional information.

4. Conclusions

The IPB entered the CASMI contest unofficially, because as part of the organising team and challenge
data providers we could not be considered independent. However, we entered CASMI as internal
participants with MetFrag and MetFusion and did not tune the parameters to obtain optimal results for
the initial submission.

5.6 Tackling CASMI 2012: Solutions from MetFrag and MetFusion

157



Metabolites 2013, 3 632

The use of small, domain-specific compound databases like KEGG, focussing on natural compounds
increases the risk that the correct compound is missed. While such a compound may be more likely to be
found in PubChem or ChemSpider, the number of false positives will increase due to the large number
of synthetic compounds. We used the metabolite-likeness score [11] as an additional term in the scoring
function of MetFrag. The metabolite-likeness score penalizes synthetic compounds and improved the
rankings for the natural product challenges 1–6 in all but one case. Moreover, we see potential for further
improvement of these preliminary results by optimisation of the weight factor ω and the evaluation on a
larger dataset than available in the CASMI contest.

MetFusion was used without additional scoring terms, such as the metabolite-likeness score. The
similarity matrices provide a deeper insight into the integrated MetFusion score to (manually) assess the
reliability of the MassBank spectral summary.

Both approaches were applied fully automatically to the challenge data, but the selection of the neutral
mass for the candidate failed in two cases, and the scoring did not always rank the correct solution in the
top positions. Although expert knowledge is still required for a reliable interpretation, our approaches
can reduce the manual effort for small compound identification.

We are looking forward to participating in the next CASMI contest as external participants.
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Appendix

A. Additional MetFrag Results

Table A1. MetFrag results with molecular formula filter after resubmission. Shown are the
number of candidates per challenge, the InChIKey filtered MetFrag rank and the relative
ranking position (RRP). Additionally, for challenges 1-6 the InChIKey filtered MetFrag rank
with the metabolite-likeness score (MLS) included is shown.

Natural Product Challenges Environmental Challenges
Chall. #Cand. Rank RRP MLS RRP Chall. #Cand. Rank RRP

10 257 170 0.377
1 9 5 0.500 4 0.625 11 104 9 0.961
2 43 1 1.000 1 1.000 12 950 26 0.975
3 2 2 0.500 1 1.000 13 22 4 0.929
4 2005 534 0.735 444 0.779 14 111 19 0.859
5 2429 754 0.714 920 0.623 15 1789 172 0.905
6 1250 1250 0.416 234 0.814 16 1397 1397 0.438

17 415 15 0.966
Median 646 270 0.607 119 0.797 336 22.5 0.917
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Figure A1. Scores plot of challenges 1–6. The MetFrag and metabolite-likeness score
(MLS) as well as the final scores of the candidates are shown for the challenges, respectively.
The green line marks the position of the correct candidate and the given score. The width of
each line correlates with the represented value of the score, respectively.

5.6 Tackling CASMI 2012: Solutions from MetFrag and MetFusion

161



Metabolites 2013, 3 636

B. Spectral Merging

l i b r a r y ( xcms )

## Read s p e c t r a i n t o a l i s t
tandemms <− l a p p l y ( c ( "MSMSneg10_ Cha l l enge3−A, 1 _01_ 2186−243. t x t " ,

"MSMSneg20_ Cha l l enge3−A, 1 _01_ 2184−244. t x t " ,
"MSMSneg30_ Cha l l enge3−A, 1 _01_ 2185−244. t x t " ,
"MSMSneg40_ Cha l l enge3−A, 1 _01_ 2187−243. t x t " ) ,

f u n c t i o n ( x ) { read . t a b l e ( x ,
as . i s =TRUE,
sep =" \ t " ,
h e a d e r =FALSE ,
c o l . names=c ( "mz" , " i n t e n s i t y " ) ) } )

## j o i n i n t o ( r e d u n d a n t ) p e a k l i s t
peaks <− do . c a l l ( rbind , tandemms )

## per fo rm g r o u p i n g o f peaks based on m / z
g <− xcms : : : mzClus t _ h c l u s t ( peaks [ , "mz" ] ,

eppm=5∗10e−6, e ab s = 0 . 0 0 1 )

## c r e a t e c o m p o s i t e s p e c t r u m
mz <− t a pp l y ( peaks [ , "mz" ] , as . f a c t o r ( g ) , mean )
i n t e n s i t y <− t a p p l y ( peaks [ , " i n t e n s i t y " ] , as . f a c t o r ( g ) , max )
co m po s i t eSp ec t r u m <− cbind ( mz , i n t e n s i t y )

c© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).
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Critical Assessment of Small Molecule 
Identification 2016: automated methods
Emma L. Schymanski1* , Christoph Ruttkies2, Martin Krauss3, Céline Brouard4,5, Tobias Kind6, Kai Dührkop7, 
Felicity Allen8, Arpana Vaniya6,9, Dries Verdegem10, Sebastian Böcker7, Juho Rousu4,5, Huibin Shen4,5, 
Hiroshi Tsugawa11, Tanvir Sajed8, Oliver Fiehn6,12, Bart Ghesquière10 and Steffen Neumann2

Abstract 

Background: The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest (www.
casmi-contest.org) was held in 2016, with two new categories for automated methods. This article covers the 208 
challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-
contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/
identification.

Results: The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in “Category 
2: Best Automatic Structural Identification—In Silico Fragmentation Only”, won by Team Brouard with 41% challenge 
wins. The winner of “Category 3: Best Automatic Structural Identification—Full Information” was Team Kind (MS-
FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with 
all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% 
Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and 
chemistry-based approaches are shown to perform in complementary ways.

Conclusions: The improvement in (semi-)automated fragmentation methods for small molecule identification has 
been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate 
numbers, open up great possibilities for high-throughput annotation of untargeted analysis for “known unknowns”. 
As more high quality training data becomes available, the improvements in machine learning methods will likely 
continue, but the alternative approaches still provide valuable complementary information. Improved integration 
of experimental context will also improve identification success further for “real life” annotations. The true “unknown 
unknowns” remain to be evaluated in future CASMI contests.

Keywords: Compound identification, In silico fragmentation, High resolution mass spectrometry, Metabolomics, 
Structure elucidation

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The Critical Assessment of Small Molecule Identification 
(CASMI) Contest  [1] was founded in 2012 as an open 
contest for the experimental and computational mass 
spectrometry communities  [2, 3]. Since then, CASMI 
contests have been held in 2013 [4], 2014 [5] and now in 
2016, which is summarized in this article. The focus of 

CASMI has changed slightly with each contest, reflect-
ing differences in focus of the organizers as well as the 
perceived interest and challenges in structure elucida-
tion with mass spectrometry. CASMI is purely a research 
activity—there is no fee for participation but likewise 
also no prize money for the winners.

In 2016, Category  1 was “Best Structural Identifica-
tion on Natural Products”, with 18 challenges available, a 
number achievable for both manual and automatic meth-
ods. Any methods could be used to submit entries and 
seven groups participated in this category. The outcomes 
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of this category are presented separately [6] and reported 
here briefly for comparison purposes.

In contrast, Categories 2 and 3 were defined with 208 
challenges in total. Candidate lists containing the cor-
rect solution were provided, along with training data for 
parameter optimization. These categories were specifically 
designed for automated methods, as no participant with 
a manual approach could be expected to invest so much 
time in solving all challenges. Category  2 was defined as 
“Best Automatic Structural Identification—In Silico Frag-
mentation Only”. The aim was to compare the different 
fragmentation approaches, ranging from combinatorial, to 
rule-based, to simulations; the use of mass spectral library 
searching or additional information was not allowed. In 
contrast, Category 3 was “Best Automatic Structural Iden-
tification—Full Information”. The same data files and can-
didate lists were provided as for Category 2, but any form 
of additional information could be used (retention time 
information, mass spectral libraries, patents, reference 
count, etc.). This was to assess the influence of additional 
information (hereafter termed metadata) on the results 
of the contest. Participants were required to detail their 
submissions in an abstract submitted with the results. The 
rules and submission formats were communicated on the 
CASMI rules website  [7] prior to the release of the chal-
lenge data; the evaluation was automated provided the 
submission format passes all checks. In contrast to previ-
ous years, participants were allowed to submit up to three 
entries each, to evaluate the performance of different 
approaches. More details are given below.

This article summarizes Categories 2 and 3 of CASMI 
2016, including organization, participation and addi-
tional post-contest analysis. Six external groups partici-
pated in these categories (see Graphical Abstract); 10 in 
total combined with the Category 1 participants, which is 
more than ever before.

Methods
Contest data for CASMI 2016
Mass spectra
All MS/MS spectra were obtained on a Q Exactive Plus 
Orbitrap (Thermo Scientific), with <5 ppm mass accu-
racy and nominal MS/MS resolving power of 35,000 
at m/z = 200 using electrospray ionization (ESI) and 
stepped 20/35/50 nominal higher-energy collisional dis-
sociation (HCD) energies. The spectra were obtained 
by measuring 22 mixes of authentic standards with the 
same liquid chromatography–mass spectrometry (LC–
MS) method, in data-dependent acquisition mode using 
inclusion lists containing the [M+H]+ (positive) and 
[M−H]− ion masses. Positive and negative mode data 
were acquired separately. Each mix contained between 
10 and 94 compounds. A reversed phase column was 

used (Kinetex C18 EVO, 2.6  μm, 2.1× 50  mm with a 
2.1× 5 mm precolumn from Phenomenex). The gradient 
was (A/B): 95/5 at 0 min, 95/5 at 1 min, 0/100 at 13 min, 
0/100 at 24  min (A =  water, B =  methanol, both with 
0.1% formic acid) at a flow rate of 300 μL/min.

The MS/MS peak lists were extracted with RMass-
Bank  [8] using the ion mass and a retention time win-
dow of 0.4 min around the expected retention time and 
reported as absolute ion intensities. To obtain high-
quality spectra, the data was cleaned and recalibrated to 
within 5 ppm using known subformula annotation [8], all 
other peaks without a valid subformula within 5 ppm of 
the recalibrated data were removed. All substances with 
double chromatographic peaks, different substances 
with identical spectra (detected via the SPectraL hASH 
(SPLASH) [9, 10]), MS/MS containing only one peak or 
with a maximum intensity below 1× 105 were excluded 
from the datasets. Substances that were measured mul-
tiple times (because they were present in more than one 
mix) in the same ionization mode were only included 
once, selected by higher intensity. MS/MS from positive 
and negative mode were included if the substance ion-
ized in both modes. The final peak lists were saved in 
plain text format and Mascot Generic Format (MGF). All 
MS/MS spectra are now available on MassBank [11].

Candidates
The candidates were retrieved from ChemSpider via 
MetFrag2.3  [12] using the monoisotopic exact mass 
±5 ppm of the correct candidate on February 14th, 2016. 
The SMILES from the MetFrag output were converted to 
standard InChIs and InChIKeys with OpenBabel  (ver-
sion 2.3.2) [13]. Candidates were removed if the SMILES 
to InChI conversion failed, all other candidates were 
retained without any additional filtering. The presence of 
the correct solution in the candidate list was verified and 
the lists were saved as CSV files.

Training and challenge datasets
The MS/MS spectra and corresponding candidates 
were split into training and challenge datasets, accord-
ing to the spectral similarity to MassBank spectra (as 
many substances were already in MassBank). Challenge 
spectra were those where no MassBank spectrum was 
above 0.85 similarity (calculated with MetFusion  [14]); 
all spectra where there was a match in MassBank above 
0.85 were included in the CASMI training set. There 
were two exceptions: Alizarin, similarity 0.88 to laxapur 
(FIO00294), and anthrone, similarity 0.86 to phosphocre-
atine (KO003849), to ensure a sufficient number of natu-
ral products remained as challenges for Category 1 (see 
below). Many of the natural products in the mixes did 
not ionize well with the experimental setup used.
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The challenge dataset consisted of 208 peak lists from 
188 substances, 127 obtained in positive mode (all 
[M+H]+) and 81 in negative mode (all [M−H]−). The 
retention times for each substance was provided in a 
summary CSV file. The training dataset consisted of 312 
MS/MS peak lists (from 285 substances), of which 254 
were obtained in positive mode (all [M+H]+) and 58 
negative mode (all [M−H]−). The identities and retention 
times of the substances in the training dataset were pro-
vided in a summary CSV file. All files were uploaded to 
the CASMI website [15]. Participants were asked to con-
tact the organizers if they required additional formats.

To allow a comparison with manual approaches, Chal-
lenges 10–19 in Category  1 were a (re-named) subset 
of the dataset in Categories 2 and 3. The corresponding 
challenge numbers are given in Table 1.

Information about the full scan (MS1) data was not 
originally provided for CASMI 2016, but was provided 
retrospectively for Challenges 10–19 in Category  1 
upon request and post-contest for Categories 2 and 3 for 
another publication [16]. All data is now available on the 
CASMI website [15].

Rules and evaluation
The goal of the CASMI contest was for participants to 
determine the correct molecular structure for each chal-
lenge spectrum amongst the corresponding candidate 
set, based on the data provided by the contest organiz-
ers. A set of rules were fixed in advance to clarify how the 
submissions were to be evaluated and ranked, to ensure 
that the evaluation criteria were transparent and objec-
tive. All participants were encouraged to follow the prin-
ciples of reproducible research and accurately describe 
how their results were achieved in an abstract submit-
ted with the results. Submission formats were defined in 
advance (described below) to satisfy the R scripts used to 

perform the automatic evaluation, results and web page 
generation. Test submissions could be submitted pre-
deadline to check for issues; any post-deadline problems 
were resolved prior to the release of the solutions.

Participants could enter a maximum of three submis-
sions per approach and category, provided they used 
these submissions to assess the influence of different 
strategies on the outcomes. The rationale and differences 
had to be detailed in the abstract. The best overall per-
forming submission per participant was considered in 
declaring the winner(s). The submission requirements 
were an abstract file (per submission, see website for 
details) plus results files for each challenge to be consid-
ered in the contest. There was no explicit requirement 
to submit entries for all challenges. Valid challenge sub-
missions were plain text, tab separated files with two col-
umns containing the representation of the structure as 
the standard InChI or the SMILES code (column 1) and 
the score (column 2). To be evaluated properly, the score 
was to be non-negative with a higher score representing a 
better candidate.

For each challenge, the absolute rank of the correct 
solution (ordered by score) was determined. The aver-
age rank over all equal candidates was taken where two 
or more candidates had the same score. Due to incon-
sistencies with how participants dealt with multiple 
stereoisomers (and since stereoisomers amongst the can-
didates could not be separated with the analytical meth-
ods used), submissions were filtered post-submission to 
remove duplicate stereoisomers using the first block of 
the InChIKey. The highest scoring isomer was retained. 
The ranks were then compared across all eligible entries 
to declare the gold (winner), silver and bronze positions 
for each challenge. Gold was awarded to the contestant(s) 
with the lowest rank among all contestants for that chal-
lenge. This way, a winner could be declared even if no 
method ranked the correct candidate in the Top 1. Joint 
positions were possible in case of ties. The overall winner 
was determined using an Olympic medal tally scheme, 
i.e. the participants with the most gold medals per cat-
egory won. The winners were declared on the basis of this 
automatic evaluation.

Additional scores
Further scores that were used to interpret the results 
included the mean and median ranks, Top X rank counts, 
relative ranking positions (RRPs, defined in [2]) and 
quantiles. The Formula  1 Score, based on the method 
used in Formula 1 racing  [17] since 2010, is the sum of 
the Top 1 to 10 ranks of the correct candidates weighted 
by the scores 25, 18, 15, 12, 10, 8, 6, 4, 2 and 1. The Medal 
Score (as opposed to the per-challenge Gold Medal count 
used in CASMI to declare the winner) is the sum of 

Table 1 Overlapping challenges between  Category 1 
and Categories 2 and 3

Name Category 1 Categories 2 and 3 Mode

Creatinine Challenge-010 Challenge-084 Positive

Anthrone Challenge-011 Challenge-162 Positive

Flavone Challenge-012 Challenge-166 Positive

Medroxyprogesterone Challenge-013 Challenge-184 Positive

Abietic acid Challenge-014 Challenge-207 Positive

Estrone-3-(β-d-glucu-
ronide)

Challenge-015 Challenge-034 Negative

Alizarin Challenge-016 Challenge-045 Negative

Thyroxine Challenge-017 Challenge-048 Negative

Purpurin Challenge-018 Challenge-054 Negative

Monensin Challenge-019 Challenge-079 Negative
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weighted Top 1 ranks with 5 points (gold medal), Top 2 
ranks with 3 points (silver) and Top  3 ranks (bronze) 
with 1. Non-integer ranks (due to equally-scoring candi-
dates) were rounded up to the higher rank for calculat-
ing Top X, Formula 1 and medal scores (e.g. rank 1.5 was 
counted as 2).

Participant methods
Team Allen (Felicity Allen, Tanvir Sajed, Russ Greiner 
and David Wishart) processed the provided candidates 
for Category 2 using CFM-ID [18]. CFM-ID uses a proba-
bilistic generative model to produce an in silico predicted 
spectrum for each candidate compound. It then uses 
standard spectral similarity measures to rank those can-
didates according to how well their predicted spectrum 
matches the challenge spectrum. The original Competi-
tive Fragmentation Model (CFM) positive and negative 
models were used, which were trained on data from 
the METLIN database  [19]. Mass tolerances of 10  ppm 
were used, the Jaccard score was applied for spectral 
comparisons and the input spectrum was repeated for 
low, medium and high energies to form the CFM_orig 
entry. The CFM_retrain entry consisted of a CFM 
model trained on data from METLIN and the NIST MS/
MS library  [20] for the positive mode spectra. This new 
model also incorporated altered chemical features and 
a neural network within the transition function. Mass 
tolerances of 10  ppm were used, and the DotProduct 
score was applied for spectral comparisons. This model 
combined the spectra across energies before training, so 
only one energy exists in the output. The negative mode 
entries were the same as for CFM_orig.

CFM-ID was also used to submit entries for Category 3, 
by combining the above CFM-based score with a data-
base score (DB_SCORE). For each hit in the databases 
HMDB  [21], ChEBI  [22], FooDB  [23], DrugBank  [24] 
and a local database of plant-derived compounds, 10 
was added to DB_SCORE. The CFM_retrain+DB and 
CFM_orig+DB submissions were formed by adding the 
DB_SCORE for each candidate to the CFM_retrain 
and CFM_orig entries from Category 2, respectively.

Team Brouard (Céline Brouard, Huibin Shen, Kai Düh-
rkop, Sebastian Böcker and Juho Rousu) participated in 
Category 2 using CSI:FingerID [25] with an Input Output 
Kernel Regression (IOKR) machine learning approach to 
predict the candidate scores [26]. Fragmentation trees 
were computed with SIRIUS version 3.1.4 [27] for all the 
molecular formulas present in the candidate set. Only 
the tree associated with the best score was considered. 
SIRIUS uses fragment intensities to distinguish noise and 
signal peaks, while the intensities were weighted lowly 
during learning (see [25, 26]). Different kernel functions 
were computed for measuring the similarities between 

either MS/MS spectra or fragmentation trees. Multiple 
kernel learning (MKL, see  [28]) was used to combine 
the kernels as input for IOKR. In the CSI:IOKR_U sub-
mission, the same weight was associated with each ker-
nel (uniform multiple kernel learning or “Uni-MKL”). In 
the CSI:IOKR_A submission the kernel weights were 
learned with the Alignf algorithm [29] so that the com-
bined input kernel was maximally aligned to an ideal 
target kernel between molecules. In both submissions, 
IOKR was then used for learning a kernel function meas-
uring the similarity between pairs of molecules. The val-
ues of this kernel on the training set were defined based 
on molecular fingerprints, using approximately 6000 
molecular fingerprints from CDK  [30, 31]. Separate 
models were trained for the MS/MS spectra in positive 
and negative mode. The method was trained using the 
CASMI training spectra, along with additional merged 
spectra from GNPS  [32] and MassBank  [33]. For the 
negative ion mode spectra, 102 spectra from GNPS and 
714 spectra from MassBank were used. For the positive 
ion mode spectra, 3868 training spectra from GNPS were 
used. These training sets were prepared following a pro-
cedure similar to that described in [25].

The additional post-competition submission CSI:IOKR_
AR used the same approach as CSI:IOKR_A, but the posi-
tive model was learned using a larger training set containing 
7352 positive mode spectra from GNPS and MassBank. 
This training set was effectively the same as that used by 
Team Dührkop, with minor differences due to the pre-selec-
tion criteria of the spectra. The negative mode training set 
was not modified.

Team Dührkop (Kai Dührkop, Huibin Shen, Marvin 
Meusel, Juho Rousu and Sebastian Böcker) entered Cat-
egory  2 with a command line version of CSI:FingerID 
version 1.0.1  [25], based on the original support vector 
machine (SVM) machine learning method. The peaklists 
were processed in MGF format and fragmentation trees 
were computed with SIRIUS version 3.1.4 [27] using the 
Q-TOF instrument settings. Trees were computed for 
all candidate formulas in the given structure candidate 
list; trees with a score <80% of the optimal tree score 
were discarded. The remaining trees were processed 
with CSI:FingerID. SIRIUS uses fragment intensities to 
distinguish noise and signal peaks, while the intensities 
are weighted lowly in CSI:FingerID (see  [25]). Molecu-
lar fingerprints were predicted for each tree (with Platt 
probability estimates [34]) and compared against the 
fingerprints of all structure candidates (computed with 
CDK  [30, 31]) with the same molecular formula. The 
resulting hits were merged together in one list and were 
sorted by score. A constant value of 10,000 was added 
to all scores to make them positive (as required in the 
CASMI rules). Ties of compounds with same score (and 
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sometimes also with same 2D structure) were ordered 
randomly. The machine learning method was trained 
on 7352 spectra (4564 compounds) downloaded from 
GNPS  [32] and MassBank [33]. All negative ion mode 
challenges were omitted due to a lack of training data; i.e. 
entries were only submitted for positive challenges. This 
formed the CSI:FID entry.

Team Dührkop submitted a second “leave out” entry, 
CSI:FID_leaveout, during the contest. Before the 
correct answer was known, the team observed that the 
top-scoring candidate matched a compound from the 
CSI:FID training set in 67 challenges, which could 
indicate that the method had memorized the training 
spectra. To assess the generalization of their method, 
the classifiers were retrained on the same training set, 
plus CASMI training spectra, but with these top scor-
ing candidates removed. As this entry was “guesswork” 
and did not affect the contest outcomes, upon request 
Team Dührkop resubmitted a true “leave out” entry post-
contest where all CASMI challenge compounds were 
removed from their training set (not just their “guess” 
based on top scoring candidates) prior to retraining and 
calculating the CSI:FID_leaveout results. For the 
sake of interpretation, only these updated “leave out” 
results are presented in this manuscript.

Team Kind (Tobias Kind, Hiroshi Tsugawa, Masanori 
Arita and Oliver Fiehn) submitted entries to Category 3 
using a developer version (1.60) of the freely available 
MS-FINDER software  [35, 36] combined with MS/MS 
searching and structure database lookup for confirmation 
(entry MS-FINDER+MD). MS-FINDER was originally 
developed to theoretically assign fragment substruc-
tures to MS/MS spectra using hydrogen rearrangement 
(HR) rules, and was subsequently developed into a struc-
ture elucidation program consisting of formula predic-
tion, structure searching and structure ranking methods. 
For CASMI, an internal database was used to prioritize 
existing formulas from large chemical databases over 
less common formulas and the top 5 molecular formu-
las were regarded for structure queries. Each formula was 
then queried in the CASMI candidate lists as well as an 
internal MS-FINDER structure database. A tree-depth 
of 2 and relative abundance cutoff of 1% as well as up to 
100 possible structures were reported with MS-FINDER. 
The final score was calculated by the integration of mass 
accuracy, isotopic ratio, product ion assignment, neu-
tral loss assignment, bond dissociation energy, penalty 
of fragment linkage, penalty of hydrogen rearrangement 
rules, and existence of the compound in the internal MS-
FINDER structure databases (see Additional file 1 for full 
details). MS-FINDER uses ion intensities in the relative 
abundance cutoff and isotopic ratio calculations, but not 
in candidate scoring.

Secondly, MS/MS search was used for further confir-
mation via the NIST MS Search GUI [37] together with 
major MS/MS databases such as NIST  [20], MassBank 
of North America (MoNA) [38], ReSpect [39] and Mass-
Bank [33]. The precursor was set to 5 ppm and product 
ion search tolerance to 200 ppm. Around 100 out of the 
208 candidates had no MS/MS information. For these 
searches, a simple similarity search without precur-
sor information was also used, or the precursor window 
was extended to 100 ppm. Finally, those results that gave 
overall low hit scores were also cross-referenced with the 
STOFF-IDENT database of environmentally-relevant 
substances  [40, 41] to obtain information on potential 
hit candidates. This step was taken because the train-
ing set consisted of mostly environmentally relevant 
compounds.

Team Vaniya (Arpana Vaniya, Stephanie N. Samra, Saj-
jan S. Mehta, Diego Pedrosa, Hiroshi Tsugawa and Oliver 
Fiehn) participated in Category 2 using MS-FINDER [35, 
36] version 1.62 (entry MS-FINDER). MS-FINDER uses 
hydrogen rearrangement rules for structure elucidation 
using MS and MS/MS spectra of unknown compounds. 
The default settings were used; precursor m/z, ion mode, 
mass accuracy of instrument, and precursor type (given 
in CASMI) were used to populate the respective fields 
in MS-FINDER. Further parameter settings were: tree 
depth of 2, relative abundance cutoff of 1, and maximum 
report number of 100. Although relative abundance cut-
offs were used to filter out noisy data, ion abundances 
were not used by MS-FINDER for calculation of either 
the score or rank of candidate structures. The default 
formula finder settings were used, except the mass toler-
ance, which was set to ±5 ppm mass accuracy as given by 
the CASMI organizers.

MS-FINDER typically retrieves candidates from an 
Existing Structure Database (ESD) file compiled from 
13 databases, but this was disabled as candidates were 
provided. Instead, one ESD was created for each of the 
208 challenges, containing the information from the can-
didate lists provided by the CASMI organizers. A batch 
search of the challenge MS/MS against the challenge 
candidate list (in the ESD) was performed on the top 500 
candidates, to avoid long computational run times. Up 
to 500 top candidates structures were exported as a text 
file from MS-FINDER. Scores for automatically match-
ing experimental to virtual spectra were ranked based on 
mass error, bond dissociation energy, penalties for link-
age discrepancies, or violating hydrogen rearrangement 
rules. Final scores and multiple candidate SMILES were 
reported for 199 challenges for submission to CASMI 
2016. Nine challenges could not be processed due to 
time constraints (Challenges 13, 61, 72, 78, 80, 106, 120, 
133, 203). Full details on this entry, MS-FINDER and file 

5.8 Critical Assessment of Small Molecule Identification 2016: automated methods

181



Page 6 of 21Schymanski et al. J Cheminform  (2017) 9:22 

modifications required are given in Additional files 1 and 
2.

Team Verdegem (Dries Verdegem and Bart Ghes-
quière) participated in Category 2 with MAGMa+  [42], 
which is a wrapper script for the identification engine 
MAGMa  [43]. For any given challenge, MAGMa+ runs 
MAGMa twice with two different parameter sets. A total 
of four optimized parameter sets exist (two for positive 
and two for negative ionization mode), which all differ 
from the original MAGMa parameters. Within one ioni-
zation mode, both corresponding parameter sets were 
each optimized for a unique latent molecular class. Fol-
lowing the outcome of both MAGMa runs, MAGMa+ 
determines the molecular class of the top ranked can-
didates returned by each run using a trained two-class 
random forest classifier. Depending on the most preva-
lent molecular class, one outcome (the one from the run 
with the parameters corresponding to the most preva-
lent class) is returned to the user. The candidate lists 
provided were used as a structure database without any 
prefiltering. MAGMa determines the score by adding 
an intensity-weighted term for each experimental peak. 
If a peak is explained by the in silico fragmentation pro-
cess, the added term reflects the difficulty with which 
the corresponding fragment was generated. Otherwise, 
an “unexplained peak penalty” is added. Consequently, 
MAGMa returns smaller scores for better matches, and 
therefore the reciprocal of the scoring values was submit-
ted to the contest. MAGMa was run with a relative m / z 
precision of 10  ppm and an absolute m  /  z precision of 
0.002 Da. Default values were taken for all other options. 
MAGMa+ is available from [44].

To enable a comparison between MAGMa+ (entry 
MAGMa+) and MAGMa, entries based on MAGMa were 
submitted post-contest (entry MAGMa). MAGMa was run 
as is, without customization of its working parameters 
(bond break or missing substructure penalties). Identical 
mass window values as for MAGMa+ were applied (see 
above). Default values were used for all other settings. 
Again, the reciprocal of the scoring values was submitted 
to obtain higher scores for better matches.

Additional results
Additional results were calculated using MetFrag2.3 [12] 
to compare these results with the other methods out-
side the actual contest and to investigate the influence 
of metadata on the competition results. MetFrag com-
mand line version 2.3 (available from  [45]) was used to 
process the challenges, using the MS/MS peak lists and 
the ChemSpider IDs (CSIDs) of the candidates provided. 
MetFrag assigns fragment structures generated in silico 
to experimental MS/MS spectra using a defined mass 
difference. The candidate score considers the mass and 

intensity of the explained peaks, as well as the energy 
required to break the bond(s) to generate the fragment. 
Higher masses and intensities will increase the score, 
while higher bond energies will decrease the score. The 
MetFrag submission consisted of the MetFrag frag-
mentation approach only. In the MetFrag+CFM entry 
the MetFrag and CFM-ID (version  2)  [18] scores were 
combined. The CFM scores were calculated indepen-
dently from Team Allen. Additionally, a Combined_MS/
MS entry was prepared, combining six different frag-
menters with equal weighting: CFM_orig, CSI:FID, 
CSI:IOKR_A, MAGMa+, MetFrag and MS-FINDER.

Several individual metadata scores were also prepared. 
A retention time prediction score was based on a corre-
lation formed from the CASMI training set (submission 
Retention_time; +RT, see Additional file  1: Fig-
ure  S1. The reference score (submission Refs) was the 
ChemSpiderReferenceCount, retrieved from ChemSpi-
der  [46] using the CSIDs given in the CASMI data. The 
MoNA submission ranked the candidates with the Met-
Fusion-like  [14] score built into MetFrag2.3, using the 
MoNA LC–MS/MS spectral library downloaded Janu-
ary 2016 [38]. The Lowest_CSID entry had candidates 
scored according to their identifier, where the lowest 
ChemSpider ID was considered the best entry.

The combined submissions to test the influence 
of different metadata on the results were as follows: 
MetFrag+RT+Refs, MetFrag+CFM+RT+Refs, 
MetFrag+CFM+RT+Refs +MoNA, Combined_
MS/MS+RT+Refs and finally Combined_MS/
MS+RT+Refs+MoNA. Full details of how all these sub-
mission were prepared are given in Additional file 1.

Results
CASMI 2016 overall results
The sections below are broken up into the official results 
of the two categories during the contest, shown in 
Table  2, followed by the post-contest evaluation and a 
comparison with all approaches from Category 1.

Category 2: In silico fragmentation only
The results from Category 2 are summarized in Table 2. 
The participant with the highest number of wins over 
all challenges (i.e. gold medals) was Team Brouard with 
86 wins over 208 challenges (41%) for CSI:IOKR_A. 
Team Dührkop with CSI:FID (82 gold, 39%) and 
Team Vaniya with MS-FINDER (70 gold, 34%) were in 
second and third place, respectively. This clearly shows 
that the recent machine-learning developments have 
greatly improved the performance relative to the bond-
breaking approaches and even CFM. The third place for 
MS-FINDER shows that it performs in quite a comple-
mentary way to the CSI methods. The performance of 
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Team Dührkop is especially surprising considering that 
they did not submit any challenges in negative mode (due 
to a lack of training data).

Table  2 also includes the Top  1 (correct candidate 
ranked in first place), Top 3 (correct candidate amongst 
the top 3 scoring entries) and Top  10 entries per par-
ticipant as well as the Formula 1 and Medal scores. The 
CSI:FID entry from Team Dührkop had the best Top 1 
result (70, or 34%), followed by Team Brouard and Team 
Vaniya with 62 and 46 Top 1 candidates. This is an amaz-
ing improvement on previous contests and consistent 
with recent results  [25], despite their use of larger can-
didate sets (PubChem instead of ChemSpider) and a 
slightly different ranking system. Very interesting to 
note is that all methods have the correct candidate in 
the Top 10 in ≥49% of cases, which is likewise a dramatic 
improvement for automatic annotation. CFM_orig had 
the most the correct candidates in the Top  10 (123 or 
59%) and this is reflected in the Formula 1 Score, which 
weighted the CFM_orig performance ahead of MS-
FINDER, despite their lower Top 1 ranks.

Separating the challenges into positive and negative 
modes revealed that Team Dührkop clearly led the posi-
tive mode predictions (82 wins/gold medals and 70 Top 
1 candidates, versus 66 wins and 53 Top 1 candidates 
for Team Brouard). Both MS-FINDER (14 Top 1) and 
CFM_orig (12 Top 1) outperformed Team Brouard for 
negative mode (9 Top 1), showing that a greater amount 
of training data for negative spectra would likely improve 
the CSI methods in the future. The training set used by 

Team Brouard contained 7300 spectra for positive mode 
and only 816 negative mode spectra. The difference 
between positive and negative mode was less dramatic 
for the other approaches.

The results of Category 2 were dominated by the meth-
ods that use machine learning on large spectral data-
bases (GNPS  [32], MassBank  [33], METLIN  [19] and 
NIST  [20]), namely Teams Brouard and Dührkop (CSI) 
and Allen (CFM). The great increase in data available for 
training these methods has led to the dramatic improve-
ments in in silico methods seen in this contest—increas-
ing the availability of open data will only improve this 
situation further! The performance of MS-FINDER, 
which does not use machine learning but instead chemi-
cal interpretation, is also particularly encouraging and 
below is shown to perform quite complementary to the 
machine learning methods. The influence of the train-
ing data was investigated during the contest by Teams 
Dührkop (CSI:FID_leaveout) and Allen (CFM_
retrain); see Table  3. This was investigated for all 
approaches post-contest, discussed in “Machine learning 
approaches and training data” section.

Category 3: Full information
The results of Category 3, also summarized in Table  2, 
were extremely close considering the freedom given to 
the use of metadata in this Category. Team Kind was the 
winner with 159 gold (64 positive, 95 negative), closely 
followed by Team Allen on 156 gold (61 positive, 95 
negative). Interestingly, the number of Top 1 ranks were 

Table 2 Results summary for Categories 2 and 3: medal tally and other statistics
Category 2 Category 3

Allen Brouard Dührkop Vaniya Verdegem Allen Kind
CFM CSI: CSI:FID MS– MAGMa+ CFM MS–
orig IOKR A FINDER retrain FINDER

+DB +MD
Gold 63 86 82 70 44 156 159
Silver 71 50 21 26 53 52 38
Bronze 40 31 11 35 65 0 0
Gold (neg) 26 20 0 33 24 61 64
Gold (pos) 37 66 82 37 20 95 95
Top 1 (neg) 12 9 0 14 8 47 59
Top 1 (pos) 27 53 70 32 16 73 47
Top 1 39 62 70 46 24 120 146
Top 3 77 93 90 79 59 160 162
Top 10 123 118 100 101 105 182 174
Mean rank 47.98 127.34 25.17 19.75 70.79 13.72 6.4
Median rank 6 5.2 1 3 9.8 1 1
Mean RRP 0.906 0.874 0.945 0.804 0.88 0.971 0.904
Median RRP 0.987 0.988 1 0.922 0.972 1 1
Formula 1 1957 2276 2156 1867 1524 3861 4011
Medal Score 275 375 396 305 195 700 766

The first, second and third place by “Gold medals” (used to declare CASMI winners) are highlighted in red, orange and yellow, respectively. The best value per statistic 
is marked in bold
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very different, 146 (Team Kind) versus 120 (Team Allen); 
consistent with Category 2 CFM_orig had more Top 10 
entries but fewer Top 1 and 3 entries than MS-FINDER. 
In this category the CFM_retrained model from Team 
Allen outperformed CFM_orig, which performed better 
in Category 2.

While very different approaches were used to obtain 
the “metadata”, the results of Category 3 clearly dem-
onstrate the value of using metadata when identifying 
“known unknowns” as was the case in this contest where 
candidates were provided. This decision to provide can-
didates was taken deliberately to remove the influence 
of the candidate source on the CASMI results. The role 
of this “metadata” is discussed further below (Category 
3: Additional Results). For true unknown identification 
the benefit of this style of metadata could be consider-
ably reduced depending on the context, however this 
would have to be the subject of an alternative category in 
a future contest.

Post‑contest evaluation
While the best overall results per participant were used 
to declare the winners, each participant was able to sub-
mit up to three entries to the contest if they chose to 
assess the influence of different strategies on their out-
come. This has revealed many interesting aspects that 
would otherwise have gone undetected with only one 
entry per participant, as in previous contests. To explore 
these further and take advantage of the automatic evalu-
ation procedure offered in CASMI, several internal and 

post-contest entries were also evaluated, as described 
in the Methods section. The results of all these entries, 
including those run in the contest, are given in Table  3 
for Category 2 and in Table 4 for Category 3.

Category 2: Additional results
The additional results for Category 2 (see Table 3) show 
that the retrained CSI:IOKR_AR entry from Team 
Brouard (using the more extensive CSI:FID training 
data plus negative mode results) would have outper-
formed their winning CSI:IOKR_A entry as well as the 
CSI:FID entry from Team Dührkop. The improvement 
with additional training data was dramatic for some chal-
lenges, e.g. Challenge 178 went from Rank 3101 with 
CSI:IOKR_A to rank 1 with CSI:IOKR_AR. Sepa-
rating the Top 1 ranks into positive and negative mode 
(see Table  3) shows indeed that the performance for 
CSI:IOKR_AR and CSI:FID in positive mode was 
quite similar (69 vs. 70 wins, respectively), whereas all 
CSI methods are outperformed by MS-FINDER and 
CFM_orig in negative mode.

The MetFrag entry performed quite similarly to 
Team Verdegem (MAGMa+); as both are combinatorial 
fragmentation approaches this is not surprising. While 
the MetFrag+CFM entry improved these results dra-
matically, it was only slightly improved compared with 
the individual CFM entries of Team Allen. However, the 
improvement by combining the two fragmenters in nega-
tive mode was marked, increasing the Top 1 ranks from 
9 (MetFrag) and 12 (CFM) to 20 (MetFrag+CFM). 

Table 4 Results summary for additional Category 3 entries

The column header of entries used in Table 2 are given in italics. The best value per statistic is marked in bold. * Indicates internal and post-competition submissions. 
Q_X indicates Xth quantile

Allen Kind Ruttkies

CFM orig +DB CFMretrain+DB MS-FINDER+MD MetFrag+ 
RT+Refs*

MetFrag+CFM 
+RT+Refs*

MetFrag+CFM+RT 
+Refs+MoNA*

Top 1 117 120 146 162 163 155

Top 3 159 160 162 183 180 182

Top 10 182 182 174 191 199 194

Mean rank 14 13.62 6.4 7.04 5.39 4.25
Median rank 1 1 1 1 1 1
Mean RRP 0.969 0.971 0.904 0.987 0.989 0.990
Median RRP 1 1 1 1 1 1
Gold 124 128 148 168 174 167

Formula 1 3798 3861 4011 4469 4509 4437

Medal score 687 700 766 855 856 840

Q_10 1 1 1 1 1 1

Q_25 1 1 1 1 1 1

Q_50 1 1 1 1 1 1

Q_75 3 3 2 1 1 2

Q_90 13.7 14.0 15.0 5.0 5.0 4.3
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MS-FINDER still performed the best in negative mode of 
all the individual entries. MAGMa+ outperformed MAGMa 
in Top 1 and Top 3 entries.

Category 3: Additional results
The additional results for Category 3 (see Table 4) show 
that MetFrag+CFM+RT+Refs outperformed the 
other approaches both in terms of wins and the num-
ber of Top 1 ranks. Although adding MoNA to the mix 
resulted in a poorer performance, this was because 
spectral similarity was used to separate the training and 
challenge sets and the resulting MoNA weight was too 
optimistic for the challenges.

As these results are driven more by the metadata used 
than the fragmenter behind, a variety of entries were cre-
ated to assess the contribution of the individual metadata 
aspects, as well as a “Combined Fragmenter” entry (Com-
bined MS/MS) to remove the influence of the fragmen-
tation method (see “Methods” for details). These results 
are given in Table 5. The Combined MS/MS entry out-
performed all of the individual Category 2 entries, show-
ing the complementarity of the different approaches. 
These also outperformed the MS library (MoNA) entry. 
The retention time prediction alone performed poorly, 
because this does not contain sufficient structural infor-
mation to distinguish candidates, as demonstrated in 
Additional file 1: Figure S2. The lowest identifier strategy, 
which was used as a “gut feeling” decision criteria com-
monly in environmental studies before retrieval of refer-
ence information could be automated, takes advantage 
of the fact that well known substances were added to 
ChemSpider earlier and thus have lower identifiers. Sur-
prisingly this still outperformed the combined fragment-
ers—but again this is highly dependent on the dataset. 
The references outperformed all individual metadata cat-
egories and even the combined fragmenters clearly. The 
influence of the metadata is discussed further in “Meta-
data and consensus identification” section. 

Comparison with results from Category 1
Challenges 10–19 in Category 1 were also present among 
the Category  2 and 3 challenges, as given in Table  1. 
The results for these challenges, separated by category, 
are summarized in Table  6 and visualized in Figure  S3 
and S4 in Additional file 1. Interestingly, this shows that 
the results of Categories 1 and 3 were remarkably com-
parable, while the ranks of Category  2, using only MS/
MS data, were generally worse. Again, this shows that 
the incorporation of metadata in automated methods is 
essential to guide users to the identification for known 
substances—but misleading when assessing the perfor-
mance of computational methods. As metadata cannot 
assist in the identification of true unknowns for which 
no data exists, more work is still needed to bring the 
performance of the in silico MS/MS identification meth-
ods (Category  2) closer to that of Categories  1 and 3. 
However, it is clear from this 2016 contest that much 
progress has been made with the new machine learn-
ing methods and—as observed above—continuing to 
improve the availability of training data will improve 
these further.

Interestingly, Challenge  14 (Abietic acid) was chal-
lenging for all participants in all categories; this was the 
only challenge in Category 1 where no participant had 
the correct answer in first place despite the fact that the 
challenge spectrum was very informative and the candi-
date numbers were relatively low (see Additional file  1: 
Figure S7).

Discussion
Visualization of CASMI results: clustering
To visualize the CASMI 2016 results together, a hierarchi-
cal clustering was performed. The heat map of the nega-
tive mode challenges (1–81, excluding Team Dührkop) 
can be seen in Fig. 1, while the heat map of the positive 
mode challenges (82–208) is given in Fig. 2. These are dis-
cussed below; in addition interactive plots are provided 

Table 5 Contribution of Metadata to the results

The first four columns contain submissions formed using just one type of metadata, the “Combined MS/MS” column was formed by equally weighting all Category 2 
entries from Table 2, while the last two columns combined this with retention time and references without and with MoNA, respectively
The best value per statistic is marked in bold

RT MoNA Lowest CSID Refs Combined MS/MS Combined MS/MS+RT+Refs Combined MS/MS+RT+Refs+MoNA

Top 1 1 70 113 143 82 164 164
Top 3 5 87 158 177 126 183 187

Top 10 20 104 177 196 166 194 195

Mean rank 504.5 238.3 37.7 3.0 13.4 3.9 3.7

Median rank 135 10.25 1 1 2 1 1
Mean RRP 0.576 0.780 0.959 0.995 0.955 0.990 0.991

Median RRP 0.630 0.977 1 1 0.998 1 1
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(see reference links provided in the captions) for readers 
to investigate these clusters in more detail. Corresponding 
clusters excluding challenges in the training sets are avail-
able in Additional file 1: Figures S5 and S6.

The dark blue areas in Fig. 1 indicate very good ranking 
results. It is clear for the negative spectra that the meta-
data (Category 3) really improved performance, with very 
few yellow or red entries for the Category 3 participants, 
which all grouped together in the cyan cluster (middle 

left), indicated by the dark blue participant names (mid-
dle right). What is also clear is that all methods were 
very good for most of the compounds in the red chal-
lenge cluster (shown at the top, right-most cluster). The 
combinatorial fragmenters and CFM also performed 
well on the dark blue challenge cluster (second clus-
ter from right)—in contrast both MS-FINDER and the 
CSI:IOKR methods struggled for these challenges, 
shown with the yellow to red coloring in the heat map. 

Table 6 Comparison of Categories 1, 2 and 3 results for the overlapping challenges in Category 1

Chal.
Median rank of
correct candidate
per Category

Number of
valid entries
per category

Minimum and maximum
rank of correct candidate
per category (min, max)

All 1 2 3 1 2 3 1 2 3
10 1 1 19.5 1 14 12 6 (1, 15) (11, 63) (1, 1)
11 9 2 21 2 11 12 6 (1, 175) (2, 208) (1, 9)
12 1.5 1 16 1.5 15 11 6 (1, 88) (1, 299.5) (1, 8)
13 3 2 20 3.5 8 12 6 (1, 146) (1, 270) (1, 87)
14 25 23 26.5 20 11 12 6 (2, 292) (17, 164.5) (12, 144)
15 1 1 1.25 1 12 10 6 (1, 4) (1, 6) (1, 3)
16 2.5 2 25 2 12 9 6 (1, 25) (14, 288) (1, 14)
17 1 1 2.5 1 10 10 6 (1, 3) (2, 5) (1, 1)
18 11 4 19.5 2 9 10 6 (1, 34.5) (3, 50) (1, 11)
19 1 1 4.5 1 12 10 6 (1, 3) (1, 7.5) (1, 1)

The median ranks of Categories 1 and 3 (highlighted) are remarkably similar
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Color Key

Fig. 1 Heat Map of CASMI Challenges 1–81 (negative mode). Both Category 2 (green labels on the right) and 3 (blue labels) participants are included. 
Missing values (correct solution missed, or no submission for a challenge) were replaced with the number of candidates for that challenge. Ranks 
are log-scaled from good (blue) to poor (red). Team Dührkop was omitted as they did not submit for any challenge, while CSI:IOKR_AR and 
CFM_retrain were omitted as these were identical with their original submissions. An interactive version of this plot with legible challenge 
numbers is available from [47]
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MS-FINDER outperformed other Category 2 approaches 
in the green challenge cluster (second from left)—show-
ing the complementarity of the different approaches. This 
is reinforced by the fact that MS-FINDER was split into a 
participant cluster on its own and also explains partially 
why the Combined MS/MS entry performed better than 
all individual participant entries. For the clusters of chal-
lenges (top), the mean candidate numbers per cluster 
were (left to right): black (611), green (1603), blue (1019) 
and red (380), compared with a mean overall of 816. Both 
the red (“good” overall performance) and black (“poor”) 
clusters have mean candidates below the overall mean, 
whereas the poorly performing green cluster had mean 
candidates well above the overall mean. Thus, candidate 
numbers are not the only driver of performance.

Looking at individual challenges, all machine learning 
approaches performed poorly for Challenge 36, which 
was a 3 peak spectrum of a substance typically measured 
in positive mode (see Additional file  1: Figure  S8). The 
combinatorial approaches performed poorly for Chal-
lenge 41 (see Additional file  1: Figure  S9), monobenzyl 
phthalate, where the main peak is a well-known rear-
rangement that is not covered by these approaches. For 
this challenge, both CSI:IOKR and MS-FINDER per-
formed well, indicating that this substance is in the train-
ing data domain (many phthalate spectra are in the open 
domain) and that MS-FINDER interprets the spectrum 
beyond combinatorial methods. The compounds in the 

dark blue and green challenge clusters are likely not to 
be covered too well in the training data for CSI:IOKR. 
While it appears that MS-FINDER performs very poorly 
for some challenges, this is in fact an artifact of their sub-
missions; for all the red entries in the heatmap, either the 
correct answer was absent from their submission (as they 
took only the top 500 candidates—this applied for 15 
challenges) or no answer was submitted (5 challenges). In 
these cases the total number of candidates was used for 
the clustering. Removing the challenges where no sub-
mission was made from the clustering did not drastically 
alter any of the outcomes discussed above.

The positive mode cluster (Fig.  2) revealed an even 
darker blue picture (and thus generally very good results) 
than the negative mode cluster. The large dark blue 
patch in the middle of the heat map indicates that for the 
majority of challenges, largely those in the black chal-
lenge cluster (top, middle), both the metadata but also 
the more extensive training data in positive mode for the 
machine learning approaches ensured that many Top  1 
ranks were achieved. This is also shown well in the green 
challenge cluster, where the improvements that the meta-
data and machine learning add beyond the combinatorial 
approaches can be seen moving down and getting darker 
from the generally yellow top right corner. As for nega-
tive mode, the mean candidate numbers per challenge 
cluster were calculated (left to right): magenta (5297), 
cyan (1029), red (886), black (1534), blue (978), green 
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Fig. 2 Heat Map of CASMI Challenges 82–208 (positive mode) both Category 2 (green labels on the right) and 3 (blue labels) participants are 
included. Missing values (correct solution missed, or no submission for a challenge) were replaced with the number of candidates for that chal-
lenge. Ranks are log-scaled from good (blue) to poor (red). Interactive version with legible challenge numbers available from [48]

5 PEER-REVIEWED PUBLICATIONS

188



Page 13 of 21Schymanski et al. J Cheminform  (2017) 9:22 

(722), with an overall mean of 1281. The performance 
for the magenta, cyan and blue clusters were all relatively 
“poor”, yet only the magenta cluster contained mean can-
didate numbers far above the overall mean. The combina-
torial fragmenters performed poorly for the green cluster, 
which had mean candidate numbers below the overall 
mean. As mentioned above, candidate numbers are again 
not the only driver of performance. Investigations into 
other parameters that may influence the challenge clus-
ters, such as number of peaks in the spectra, revealed 
similarly inconclusive results.

In contrast to negative mode, several participant clus-
ters were formed in positive mode. The top two clus-
ters contained the combinatorial fragmenters MAGMa, 
MAGMa+ and MetFrag, which clustered apart from the 
CFM-ID entries, either alone or in combination with 
MetFrag. Below this was one very large cluster with all 
Category 3 entries (metadata, yellow). This is followed 
by three smaller clusters, one in green with the two best 
CSI entries (CSI:FID and CSI:IOKR_AR), one blue 
cluster with the remaining CSI entries, followed by MS-
FINDER by itself. Note that MS-FINDER still clustered 
by itself in both positive and negative mode, even when 
compensating for the challenges with no submission, as 
mentioned above. This is due in part to their strategy to 
only select the top 500—again for the vast majority of the 
red MS-FINDER entries in the heat map either the cor-
rect candidate was missing in the submission (29 chal-
lenges in positive mode), or no submission was made (4 
challenges). However, their location in a separate cluster 
is also possibly due to the fact that MS-FINDER does 
indeed use a different approach to fragmentation than 
either the combinatorial fragmenters or the machine 
learning approaches.

The challenge clusters revealed some interesting pat-
terns: four small clusters contained challenges that were 
problematic for different approaches. Most metadata-
free methods performed poorly for the pink cluster (chal-
lenges 152, 202, 178); all approaches performed relatively 
poorly for the cyan cluster adjacent (challenges 131, 126, 
207 and 119). The challenges in the red cluster were 
likely reasonably dissimilar to the other substances in 
the machine learning training sets, as the combinatorial 
fragmenters outperformed the CSI approaches clearly 
in this cluster. The machine learners performed well on 
the dark blue cluster (challenges 184, 168, 199, 92, 197), 
where surprisingly the metadata even failed the combi-
natorial fragmenters. Three of these (92, 168, 199) involve 
breaking an amide bond, which may be something for 
these approaches to investigate further. Challenge 197 
is a fused N heterocycle with one fragment. Spectra of 
these challenges, with additional comments, are available 
in Additional file 1: Figures S7–S20.

Visualization of CASMI results: candidate numbers and raw 
scores
Additional plots have been included in Additional file 1 
to provide further visualization of the results. Addi-
tional file 1: Figure S21 shows the number of candidates 
for each challenge, ordered by the number of candidates 
versus the results for all CASMI entries (during and 
post-contest). Interestingly, fewer Top 1 entries and 
higher median/mean ranks were observed for the chal-
lenges with moderate candidate numbers (200–1000 
candidates); lower median ranks and more Top 1 entries 
were observed for lower and higher candidate numbers. 
Additional file  1: Figures S22–S30 show the raw scores 
for selected submissions per participant and category, in 
order: MAGMa+, CSI:IOKR_A, CSI:FID, CFM_orig, 
CFM_retrain+DB, MS-FINDER, MS-FINDER+MD, 
MetFrag and MetFrag+CFM+RT+Refs+MoNA. 
These reveal interesting differences in the raw data 
behind each submission, including for instance the influ-
ence of training data availability on the positive and nega-
tive challenge results for CSI:IOKR_A, the metadata 
step function in CFM_retrain+DB as well as the effect 
of score scaling on MetFrag.

Machine learning approaches and training data
The CASMI2016 results show very clearly how the 
training data influences the performance of differ-
ent approaches. The difference in Top  1 positive mode 
ranks between CSI:IOKR_A, 62 and CSI:FID, 70 
(see Table  2) were due to the different training sets 
used, the CSI:IOKR_AR results (retrained on the same 
data as CSI:FID) had 69 Top  1 ranks. The results for 
CSI:IOKR in negative mode were also generally worse 
than all other approaches, which shows that the decision 
of Team Dührkop not to submit entries due to a lack of 
training data was quite well justified (even though it likely 
cost them the overall contest “win” for Category 2).

Team Dührkop noted that there was a large over-
lap between the challenges and their training set and 
investigated this with the CSI:FID_leaveout entry 
(described in the methods). For the sake of interpreta-
tion in this manuscript, this entry was updated post-
contest once the exact solutions were known to make it a 
true “leave out” analysis. Although the performance was 
reduced compared with CSI:FID (36 vs. 70 Top 1 ranks 
in positive mode), the CSI:FID_leaveout entry still 
had more Top 1 ranks than any other non-CSI method 
in the contest (for positive mode only).

Following the idea of Team Dührkop, the CASMI 
results were evaluated for all participants on only those 
challenges where no contestant had the correct candidate 
in their training sets. Teams Dührkop, Allen and Brouard 
provided comprehensive lists of their training sets. These 
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were used to determine the overlap between all training 
sets and the CASMI challenges. The results over those 
challenges that were not in any training set (44 positive 
and 43 negative challenges) are given in Table 7.

The general observations made on the full contest data 
are supported by this reduced dataset as well, despite the 
unsurprising fact that the results on this reduced dataset 
were generally worse than the official contest results (see 
Table  2). This demonstrates that, as expected, machine 
learning methods do better on compounds from within 
their training sets (for example, the percentage of maxi-
mum Top 1 ranks dropped from 34 to 18%). Although the 
median ranks were worse, the Top 10 ranks still remained 
around 40–50% for most methods. Cluster plots on this 
reduced dataset for negative and positive mode, given in 
the supporting information (Additional file 1: Figures S5, 
S6), show similar patterns to the cluster plots on the full 
dataset.

Interestingly, these results show that the CSI:FID_
leaveout entry outperformed CSI:FID, while 
CSI:IOKR_A also outperformed CSI:IOKR_AR, the 
retrained dataset, also for some different scores—simi-
lar observations could be made for CFM_orig versus 
CFM_retrain. While this could be a potential sign for 
overfitting, this is a small dataset and some or all of these 
observations could be due to fluctuations in the data. 
Overfitting is a potential problem that developers, espe-
cially of non-standard machine learning methods should 
test for, e.g. by checking if their performance decreases 
significantly for compounds which are structural dis-
similar to compounds in the training data. These results 
highlight just one means by which the choice of training 
set can influence the performance of automated meth-
ods. The training set can also impact challenge results 
in a range of other ways that are harder to disambiguate. 
One training set may be more or less compatible with 
the challenge set, even after common compounds are 
removed. This suggests the importance of assessing auto-
mated methods using the same training set, where at all 
possible.

Metadata and consensus identification
The dataset for CASMI 2016 was predominantly well-
known anthropogenic substances and as a result there 
are many distinct and highly referenced substances in 
the candidate lists. This is shown in the huge improve-
ment that the metadata made to the ranking perfor-
mance (Tables 4, 5). Figure 3 shows clearly that the vast 
majority of substances were either ranked first or second 
based purely on the reference count, with most other 
candidates having much lower counts. Figure  4 gives 
an overview of the contribution the metadata made 
to each approach based on the CASMI 2016 entries, 

merging team results in the case of MS-FINDER. In the 
environmental context, it is quite common to search an 
exact mass or formula in databases such as ChemSpi-
der, where e.g. the highest reference count as well as the 
substance with the “lowest CSID” are often picked as 
the most promising hit in many cases, discussed e.g. in 
[49]. The success with these strategies would have been 
quite considerable with this dataset. However, for new 
(emerging) anthropogenic substances and transformation 
products of known chemicals, these strategies would not 
work so well as they would have neither a high reference 
count nor a low database identifier. This situation is also 
likely to be drastically different for natural products and 
metabolites, where many more closely-related substances 
or even isomers could be expected.

The metadata results in Category  3 show that the 
importance of the sample context cannot be ignored 
during identification, especially for studies looking to 
find well-known substances. This is also highlighted by 
the comparison with the approaches used in Category 1, 
where also manual and semi-automatic approaches were 
considered. The current reality is that most automated 
approaches still depend on retrieving candidates from 
compound databases containing known structures—i.e. 
the situation replicated in this CASMI contest. Com-
pound databases such as the Metabolic In Silico Network 
Expansion Databases (MINEs)  [50] could be used as 
alternative sources of candidates for predicted metabo-
lites in the metabolomics context, but would have had 
limited relevance in this contest.

While metadata, the way it was used here, will not 
help in the case of true unknowns, there are two cases 
to consider for automated approaches at this stage. For 
“unknowns” that happen to be in a database almost 
accidentally (e.g. a to-date unknown transformation 
product), the automated fragmentation approaches are 
very useful, because these structures can be retrieved 
from substance databases. However for true “unknown 
unknowns” that are not in any database, fragmenters 
could only be used in combination with structure gen-
eration, which is still impractical with the quality of data 
and methods at this stage unless candidate numbers can 
be restrained sufficiently. These cases are often extremely 
difficult to elucidate using MSn alone and the informa-
tion from additional analysis such as NMR will usually be 
necessary.

Stereoisomerism is another aspect of identification 
that was not covered in this contest. None of the cur-
rent approaches are able to distinguish stereoisomers 
(even cis/trans isomers) using only MS/MS informa-
tion for known unknowns. The evaluation of this contest 
addressed this by taking the best scoring stereoisomer 
and eliminating others (see “Methods”) to reduce the 
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influence of stereoisomers on the ranking results. How-
ever, for electron ionization (EI) MS it is already possi-
ble to distinguish stereoisomers in some cases using ion 
abundances. This is an aspect that should be developed 
in the future for MS/MS once the spectrum generation 
is sufficiently reproducible to allow this. Coupling with 
suitable chromatography will potentially enhance the 
ability to distinguish between stereoisomers further.

Evaluating methods and winner declaration
Contests such as CASMI always generate much discus-
sion about how the winner was evaluated and declared; 

this years contest was no exception. A “contest” setting 
is different to the way individual methods compare their 
performance with others and this is the role of CASMI—
to look at the approaches in different ways, relative to 
one another. One change in CASMI 2016 was to use the 
“average rank” instead of the “worst-case” rank to account 
for equal candidate scores, as participants pointed out 
that for previous contests one could add small random 
values to break tied scores and improve results in the 
contest. There will be several cases where candidates are 
indistinguishable according to the MS and it is impor-
tant to capture this aspect in CASMI. While equal scores 
may make most chemical sense in these cases, compu-
tational methods deal with this differently; some report 
equal scores, others generate slightly different scores for 
effectively equal candidates. The average rank deals with 
this better than the “worst-case” rank, but can now disad-
vantage methods that report equal scores compared with 
others, as the chances are that at least one other method 
will beat it each time.

The criteria for declaring the winner in this contest 
was that the best performing participant(s), i.e. the win-
ner, was defined per challenge and then the wins were 
added to determine the overall winner. This allows 
the declaration of a winner per challenge, irrespec-
tive of the actual performance (i.e. the winner could 
have rank 100, if all other participants were worse). 
The drawback of this approach is that it creates cross-
dependencies between participants, i.e. the removal 
(or addition) of one participant completely changed the 
rank of the other participants. CFM likely suffered from 

Fig. 3 The distribution of references for CASMI 2016 candidates
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this, as a machine-learning approach with similar train-
ing set coverage to CSI, which allowed the complemen-
tary approach of MS-FINDER to claim third place ahead 
of CFM. An alternative approach could be to look at this 
in terms of overall success and say that if a team had the 
correct structure as the 20th hit and other teams were 
even worse, none of the approaches were really suffi-
cient to the task and nobody should then earn a ‘win’. This 
may reflect real structure elucidation cases better, where 
investigators would likely also consider the Top 3, Top 5, 
or maybe even Top 10 structures, but is perhaps not so 
good to declare a winner in a contest as some (difficult) 
challenges would have no “winner” and the performance 
of methods on difficult challenges is also an important 
aspect of the contest. This idea was investigated in this 
publication by also providing the Top  1, Top  3, Top  10 
ranks per participant, as well as the Formula 1 Score 
(scaled Top  1–10 results) and Medal Score, where the 
medal count is based on Top 1, 2 and 3 ranks. The results 
of these metrics confirm the overall pattern observed in 
the contest: the two CSI teams outperformed all others 
in Category 2, followed by either MS-FINDER or CFM 
depending on exactly which score was used. In other 
words, the approaches have made fantastic progress, are 
complementary to one another but actually quite diffi-
cult to tell apart. Although 208 challenges is an order of 
magnitude in terms of challenge numbers above previous 
CASMIs, these numbers are still quite small and almost 
random differences between the methods resulted some-
times in large changes in the various scores, as shown 
with the different CSI entries.

Participant perspectives
Team Allen submitted two alternative versions of CFM, 
the main difference being that for CFM_retrain ver-
sion, additional training data was added from the 2014 
NIST MS/MS database. While the addition of extra train-
ing data may have been expected to improve the results, 
this appears not to have been the case for this competi-
tion. One possible reason for this is that the additional 
data were generally of poorer (often integer) mass accu-
racy as compared to that used to train the original CFM 
model. This required a wider mass tolerance (0.5 Da) to 
be used during the retraining (compared to 0.01 Da pre-
viously), which may have hindered the training algorithm 
from accurately assigning explanations to peaks, and so 
modeling their likelihoods. This highlights that while the 
production of larger, more comprehensive data sets is 
likely crucial for better training of automated methods, 
the quality of these data sets is also very important. Most 
automated methods would likely benefit from training on 
cleaner data with better mass accuracies.

Team Dührkop investigated how CSI:FingerId 
compared with a direct spectral library search. A spec-
tral library containing all structures and spectra used to 
train CSI:FingerId was created and searched with a 
10 ppm precursor mass deviation. The resulting spectra 
were sorted via cosine similarity (normalized dot prod-
uct), again with 10 ppm mass accuracy. Candidates were 
returned for 91 of the 127 (positive mode) challenges; 
the correct answer was contained in the library for 69 of 
these. The spectral library search correctly identified 63 
of the 69 structures in total, 40 of these were “trivial” (the 
correct answer was the only candidate). On average, can-
didate lists for the spectral library search contained only 
2.4 candidates, which was almost three orders of mag-
nitude below the average CASMI candidate list of 1114 
candidates. The cosine product between the challenge 
spectrum and the corresponding training spectrum of the 
same compound was only 0.76 on average; for one chal-
lenge it was below 0.01. For example, the cosine similarity 
between the spectrum for Challenge 202 (Pendimethalin) 
and the training spectrum was only 0.137, but it was still 
“correctly identified” as it was the only candidate with 
this precursor mass. This compound was correctly iden-
tified in the original CSI:FID submission, and ranked 
569 for the CSI:FID_leaveout submission. This indi-
cates that CSI:FingerId and other machine-learning 
approaches are capable of learning inherent properties 
from the mass spectra, beyond simple spectral similarity.

Team Vaniya The CASMI Category 2 contest was a 
reshuffling contest: potential structures were given to 
all participants, listing one to over 8000 potential struc-
tures for each challenge. These structures were within 
5  ppm mass accuracy and often included different ele-
mental formulas. Therefore, Category 2 was a ‘structure 
dereplication’ contest, finding the best structure within 
a pre-defined list of structures, not a completely open 
in silico test on all exhaustive structures in the chemos-
phere. In practical terms, it is important to note that an 
in silico software does not eliminate the time consuming 
aspects of data preparation, formatting, and interpreta-
tion. Counting the computing power and manual effort 
between two people, it took about 24 h to complete the 
208 challenges for the MS-FINDER submission.

From Table 2, one could say that MS-FINDER was best 
based on the mean rank (19.75), but ranks lower than 
10 are less relevant in reality. While MS-FINDER had 
almost 50% of the challenges within the top 10 ranks, so 
did every other software (or team). In reality, no chem-
ist would use a software without any database or mass 
spectral library behind it. The importance of using a 
priori knowledge is seen by Team Allen’s submission 
that improved the Top  1 correct structure hits from 39 
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to 120 challenges in Category 3, a bit more than 50% of 
the challenges. Hence, we conclude that the glass is half 
full: if only in silico methods are used, some 50% of the 
challenges are within the top  10 hits within the struc-
tures given by the CASMI organizers. However, many 
challenges would score much higher if other metadata 
are used, e.g. constraining the search database to par-
ticular classes of compounds that can be expected for a 
specific study. Which parameters need to be optimized, 
and which a priori metadata should be used? Those ques-
tions may be answered in a more tailored future CASMI 
contest.

Team Verdegem participated in Category  2 of the 
CASMI 2016 contest with MAGMa+, which is a fast, plug-
and-play method relying on combinatorial fragmenta-
tion without requiring a preliminary training phase for 
improved performance. The entire submission, includ-
ing scripting for automation and single core calculations, 
took less than 1  day. MAGMa+ outperformed MAGMa, 
showing the use of the parameter optimization per-
formed to improve several second and third ranked can-
didates to first place. MAGMa+ shared the best ranking 
for 44 of 208 challenges (see Table 2) and performed con-
siderably better than other contestants for nine of those 
challenges (21, 32, 36, 40, 52, 61, 121, 157 and 189), indi-
cating the relevance of the underlying algorithm.

Since MAGMa+ outperformed MAGMa accord-
ing to some (e.g. number of gold medals, Top 1 and 
3 ranks) but not all metrics, further more advanced 
parameter optimizations are planned to achieve a more 
global performance improvement. However, further 
improvements to the performance of MAGMa/MAGMa+ 
will require interventions of a different kind. The per-
formance of MAGMa+ decreases with increasing can-
didate numbers (in this contest 1116 on average after 
the removal of duplicate stereoisomers), however, in 
case of smaller numbers, it starts to outperform some 
of the other methods  [25, 42]. For untargeted metabo-
lite identification in biological/biomedical setups, it is 
arguably more suitable to restrict the candidate struc-
ture database to those metabolites known to exist in 
the organism under study, e.g. using only the ≈42,000 
metabolites currently present in the HMDB  [21] for 
samples of human origin. This was noted also in pre-
vious CASMI contests  [2]. Many candidate structures 
had identical scores with MAGMa+, resulting in the cor-
rect matches being given lower ranks according to the 
evaluation rules. Whereas on average 1098 structures 
were retained from the structure database based on the 
parent mass match, only 616 different score values were 
observed (on average). Team Verdegem will investigate 
more discriminative scoring options for MAGMa+ in the 
future.

Conclusions
This was the first CASMI contest to use a large set of 
challenges, targeted especially at the automated methods. 
This decision was taken on the basis of feedback from 
several representatives at the 2015 Dagstuhl seminar in 
Computational Metabolomics [51], to allow a statistically 
more robust comparison of the methods. The decision to 
provide candidates this year was also on the basis of Dag-
stuhl discussions, to eliminate the data source as an influ-
ence on the contest outcomes and thus focus more on the 
role of the in silico fragmentation approaches themselves.

From the perspective of the organizers, it was a great 
success to have participants contribute from each of the 
major different approaches; MetFrag was added inter-
nally for the sake of completion as this was not otherwise 
represented and allows this paper to complement the 
work in [25] on a different dataset. Very interesting and 
constructive discussions have resulted from choosing to 
prepare this article with “all on board” and the post-con-
test analysis has been instrumental in teasing apart some 
of the differences between the actual contest results.

The contest winners, Team Brouard with 
CSI:IOKR_A in Category 2 and Team Kind with MS-
FINDER+MD in Category 3 prove that the latest develop-
ments in this field have indeed resulted in great progress 
in automated structure annotation. Despite the very 
large candidate sets, the majority of methods achieved 
around 50% in the Top  10, which is very positive for 
real-life annotation, especially with an outlook to higher-
throughput untargeted analysis. The combination of the 
Category  2 submissions resulted in even better overall 
performance than each individual method, indicating 
the complementarity of the approaches and supporting 
the potential use of consensus fragmentation results as 
has been shown earlier for fragmenters [12, 52] and also 
recently for toxicity modeling using a more sophisticated 
weighting than that attempted here [53]. The role of the 
metadata and comparison with Category  1 shows that 
sample context cannot be ignored during identification.

In this contest, few participants used the CASMI train-
ing set provided, which was also a suggestion from Dag-
stuhl. In the end this was too “big” for pure parameter 
optimization (where a few spectra may suffice), but too 
small for serious method training. Team Brouard added 
it to their other training data in their original submis-
sions, while it was used to determine the score weights 
in the MetFrag entries. Team Vaniya did not use this 
for MS-FINDER to avoid over-training; Team Allen due 
to a lack of time. One conclusion from the post-contest 
evaluation is that future CASMIs could consider provid-
ing an extensive, open training dataset (e.g. the GNPS/
MassBank collection used by CSI:FID) and ensure 
all CASMI challenges are absent from this set. This 
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would, however, force all machine-learning approaches 
to retrain their methods prior to submission. Another 
option is that the organizers would have to ensure that 
all challenges are outside all available datasets—which 
is possible but also difficult with the number of private 
and closed collections available. A compromise could be 
to ensure that a sufficient majority of the candidates are 
outside the “major” mass spectral resources, with some 
overlap to ensure sufficient challenges are available (find-
ing data sources for CASMI is a challenging task!) and 
require participants to submit InChIKey lists of their 
training sets with their submissions; as done with Teams 
Allen, Brouard and Dührkop post-contest here.

Challenges for future contests remain true unknowns, 
i.e. substances that are not present in compound data-
bases. This would currently be feasible for manual 
approaches and was attempted already once in CASMI 
2014, Challenges 43–48 [54], albeit with limited success. 
Automated approaches would need either a metabolite 
database such as MINEs [50] or structure generation 
[55], but finding sufficient appropriate data for an auto-
mated category will also be a challenge for the contest 
organizers, let alone the participants! The ability to dis-
tinguish stereoisomers using MS/MS alone also remains 
a challenge for the future that is not yet ripe enough for 
a CASMI contest; distinguishing (positional) isomers is 
likely sufficient challenge for the next few years.

The huge improvements in machine learning 
approaches will continue as more training data becomes 
available—the more high quality data with likewise high 
quality annotations that becomes available in the open 
data domain will ensure that the best computational 
people can work on the best identification methods. The 
complementarity of the chemistry behind MS-FINDER 
and the machine learning behind CSI shows that devel-
opments in both directions will carry the field forward.

The “take home” messages of CASMI 2016 are:

  • The latest developments in the field, CSI:IOKR and 
MS-FINDER were well-deserved winners of Catego-
ries 2 and 3, respectively.

  • The complementarity of different approaches is clear; 
combining several in silico fragmentation approaches 
will improve annotation results further.

  • The best methods are able to achieve over 30% Top 1 
ranks and most methods have the correct candidate 
in the Top  10 for around 50% of cases using frag-
mentation information alone, such that the outlook 
for higher-throughput untargeted annotation for 
“known unknowns” is very positive.

  • This success rate rises to 70% Top  1 ranks (MS-
FINDER) and 87% Top 10 ranks (CFM) when includ-
ing metadata.

  • The machine learning approaches clearly improve 
with larger training data sets—the more high quality 
annotated, open data that is available, the better they 
will get.

  • Developments that focus on the chemistry such as 
MS-FINDER are also essential, especially to cover 
the cases where no training data is available.

  • Despite the above, several challenges remain where 
the simple combinatorial approach of MetFrag and 
MAGMa still performs best.

  • Improved incorporation of experimental “metadata” 
will increase annotation successes further, especially 
for large candidate sets.

  • Challenges for future contests remain true 
unknowns, assessing the ability of methods to distin-
guish positional isomers and eventually also stereoi-
somers.

Finally, a big thank you to all those who participated in 
CASMI 2016 in any way, shape or form and keep an eye 
on the CASMI website [1] for future editions.
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N/A and a database identifier represents the presence or absence of 
a compound in a given database. For example, 1,3-butadiyne is only 
present in ChEBI database (CHEBI:37820). This ESD file was replaced by a 
dummy file where all HMDB identifiers were modified to dummy identi-
fiers AV001... AV00n and all other identifiers replaced by -1 or N/A. Table A2: 
Formatted ESD file for CASMI 2016 Category 2 Challenge-001. The first 10 
compounds from the candidates list for Challenge-001 are listed above. 
Columns for InChIKey, short InChIKey, PubChem CID, exact mass, formula, 
SMILES are shown in this table. Databases from BMDB through PubChem 
are replaced by dummy information.
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Fragmentation Modeling for Metabolite Identification; NIST: National Institute 
of Science and Technology (USA); HMDB: human metabolome database; 
ChEBI: Chemical Entity of Biological Interest; CSI:FID: Compound Structure 
Identification:FingerID; IOKR: Input Output Kernel Regression; (Uni-)MKL: 
(Uniform) Multiple Kernel Learning; CDK: Chemistry Development Kit; GNPS: 
Global Natural Products Social Networking; SVM: support vector machine; 
Q-TOF: Quadrupole Time of Flight; HR: hydrogen rearrangement; GUI: graphi-
cal user interface; MoNA: MassBank of North America; ESD: Existing Structure 
Database; CSIDs: ChemSpider Identifiers; RT: retention time; MINEs: Metabolic 
In Silico Network Expansion Databases; EI-MS: electron ionization mass 
spectrometry.
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