
Wavelet based image compression

using FPGAs

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlich-Technischen Fakultät
der Martin-Luther-Universität Halle-Wittenberg

von Herrn Jörg Ritter

geb. am 12. April 1971 in Greiz

Gutachter:

1. Prof. Dr. Paul Molitor, Martin-Luther-University Halle-Wittenberg, Germany

2. Prof. Dr. Scott Hauck, University of Washington, Seattle, WA, USA

3. Prof. Dr. Thomas Rauber, University of Bayreuth, Germany

Halle (Saale), 06.12.2002

urn:nbn:de:gbv:3-000004615
[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000004615]

Abstract

In this work we have studied well known state of the art image compression algorithms. These codecs are
based on wavelet transforms in most cases. Their compression efficiency is widely acknowledged. The
new upcoming JPEG2000 standard, e.g., will be based on wavelet transforms too. However, hardware
implementations of such high performance image compressors are non trivial. In particular, the on chip
memory requirements and the data transfer volume to external memory banks are tremendous.
We suggest a solution which minimizes the communication time and volume to external random access
memory. With negligible internal memory requirements this bottleneck can be avoided using the partitioned
approach to wavelet transform images proposed in this thesis. Based on this idea we present modifications
to the well known algorithm of Said and PearlmanSet Partitioning In Hierarchical Trees SPIHTto restrict
the necessity of random access to the whole image to a small subimage only, which can be stored on
chip. The compression performance in terms of visual property (measured with peak signal to noise ratio)
compared to the original codec remains still the same or nearly the same. The computational power of the
proposed circuits targeting to programmable hardware are promising. We have realized a prototype of this
codec in a XC4000 Xilinx FPGA running at 40MHz which compresses images 10 times faster than a 1GHz
Athlon processor. An application specific integrated circuit based on our approach should be much faster
over again.

Zusammenfassung

Im Rahmen dieser Disseration haben wir die besten, derzeit verfügbaren Bildkompressionsverfahren ana-
lysiert. Die meisten dieser Algorithmen basieren auf Wavelet-Transformationen. Durch diese Technik
können erstaunliche Ergebnisse im Vergleich zu den bekannten, auf diskreten Kosinus-Transformationen
basierenden Verfahren erreicht werden. Unterstrichen wird diese Tatsache durch die Wahl eines wavelet-
basierten Kodierers von der Joint Picture Expert Group als Basis für den neuen JPEG2000 Standard. Die
Entwicklung von speziellen Hardware-Architekturen für diese Kompressionsalgorithmen ist sehr komplex,
da meist viel interner Speicher benötigt wird und zusätzlich riesige Datenmengen zwischen Peripherie und
dem Hardware-Baustein ausgetauscht werden müssen.
Wir stellen in dieser Arbeit einen Ansatz vor, welcher ausgesprochen wenig internen Speicher erfordert
und gleichzeitig das zu transportierende Datenvolumen drastisch reduziert. Aufbauend auf diesem par-
titionierten Ansatz zur Wavelet-Transformation von Bildern stellen wir Modifikationen des bekannten
Kompressionsverfahrens von Said und PearlmanSet Partitioning In Hierarchical Trees SPIHTvor, um
diesen effektiv in Hardware realisieren zu können. Diese Veränderungen sind notwendig, da im Origi-
nal extensiv von dynamischen Datenstrukuren Gebrauch gemacht wird, welche sich nicht oder nur mit
erheblich Aufwand an Speicher realisieren lassen. Die visuelle Qualität im Vergleich zum Originalalgo-
rithmus bleibt jedoch exakt gleich oder ist dieser sehr ähnlich. Jedoch sind die Geschwindigkeitsvorteile
unserer Architektur gegenüber aktuellen Prozessoren von Arbeitsplatzrechnern sehr vielversprechend, was
wir durch praktische Versuche auf einem programmierbaren Hardware-Baustein überzeugend nachweisen
konnten. Wir haben einen Prototypen auf einem Xilinx XC4000 FPGA realisiert, welcher mit 40 MHz
getaktet werden konnte. Schon dieser Prototyp des Hardware-Bildkomprimierers komprimiert Bilder 10
mal schneller als ein Athlon Prozessor getaktet mit 1GHz. Ein mit ensprechender Technologie basierend
auf unserem partitioniertem Ansatz produzierter anwendungsspezifischer Schaltkreis würde diese Leistung
noch bei weitem übertreffen.

Contents

1 Mathematical Background 7
1.1 Discrete Signal and Filters. 7

1.1.1 z-Transform . 8
1.1.2 Impulse train function. 8

1.2 Measure of Information. 9
1.3 Distortion Measures. 10
1.4 Downsampling, Upsampling, and Delay. 11
1.5 Wavelets. .13
1.6 Discrete Wavelet Transforms. 14
1.7 Cohen-Daubechies-Feauveau CDF(2,2) Wavelet. 17
1.8 Lifting Scheme .20

1.8.1 Integer-to-Integer Mapping. 22
1.8.2 Lifting Scheme and Modular Arithmetic. 22

2 Wavelet transforms on images 23
2.1 Reflection at Image Boundary. 24
2.2 2D-DWT .26
2.3 Normalization Factors of the CDF(2,2) Wavelet in two Dimensions. 28

3 Range of CDF(2,2) Wavelet Coefficients 31
3.1 Estimation of Coefficients Range using Lifting with Rounding. 35
3.2 Range of coefficients in the two dimensional case. 38

4 State of the art Image Compression Techniques 41
4.1 Embedded Zerotree Wavelet Encoding. 41

4.1.1 Wavelet Transformed Images. 41
4.1.2 Shapiro’s Algorithm . 41

4.2 SPIHT- Set Partitioning In Hierarchical Trees. 45
4.2.1 Notations. .45
4.2.2 Significance Attribute . 46
4.2.3 Parent-Child Relationship of the LL Subband. 46
4.2.4 The basic Algorithm. 46

5 Partitioned Approach 49
5.1 Drawbacks of the Traditional 2D-DWT on Images. 49
5.2 Partitioned 2D-DWT . 50

5.2.1 Lossless Image Compression. 51
5.2.2 Lossy Image Compression. 52
5.2.3 Boundary Treatment. 53
5.2.4 Future Work: Taking Advantage of Subimage and QuadTree Similarities. 54

5.3 Modifications to theSPIHTCodec . 55
5.3.1 Exchange of Sorting and Refinement Phase. 55

3

4 CONTENTS

5.3.2 Memory Requirements of the Ordered Lists. 55
5.4 Comparison between the Original and the ModifiedSPIHTAlgorithm 58

6 FPGA architectures 61
6.1 Prototyping Environment. 61

6.1.1 The Xilinx XC4085 XLA device. 63
6.2 2D-DWT FPGA Architectures targeting Lossless Compression. 64
6.3 2D-DWT FPGA Architectures targeting Lossy Compression. 65

6.3.1 2D-DWT FPGA Architecture based on Divide and Conquer Technique. 65
6.3.2 2D-DWT FPGA Pipelined Architecture. 66

6.4 FPGA-Implementation of the ModifiedSPIHTEncoder. 70
6.4.1 Hardware Implementation of the Lists. 72
6.4.2 Efficient Computation of Significances. 72
6.4.3 Optional Arithmetic Coder. 74

7 Conclusions and Related Work 79
7.1 EBCOTand JPEG2000. 79

7.1.1 TheEBCOTAlgorithm . 80
7.2 Similarities and Differences of JPEG2000 and our Approach. 82

A Hard/Software Interface MicroEnable 85
A.1 Register/DMA on Demand Transfer, C example. 85
A.2 Register/DMA on Demand Transfer, VHDL example. 87
A.3 Matlab/METAPOST-Scripts . 91

Introduction

Reading a user manual of a new mobile phone you may wonder whether it is possible to make a phone
call at all. We grant that this is overstated. But besides the central functionality of a mobile phone there
are a lot of additional features. Many of them fall into the category of multimedia applications. You can
play music, hear radio, read and write emails, and surf in the internet. However, even with new connection
standards like GPRS, HSCD, or UMTS, which provide high speed data transfers, the bandwidth is limited.
Data compression and error resilience in noisy environments like transfers to mobile phones are basically
to provide those multimedia features. In contrast to a personal computer where you can rely on powerful
processors with huge main storage capabilities one has to think about low cost hardware solutions, here.
This is also the case for digital cameras. The photograph expects that immediately after taking a picture he
can inspect the result. To support this behavior the picture has to be compressed, stored on a flash memory
card, decompressed, and shown at a LCD display in nearly real time. Features like high speed previews with
incremental refinement have to be provided. Furthermore the digital photograph could expect, that more
than say 36 pictures can be stored on the memory stick. Therefore efficient hardware image compression
algorithms with excellent visual properties are necessary.
Even surfing the world wide web using a powerful personal computer and high speed internet access we
often have to wait until web sites are rendered. Basicly not the searched information itself determines
the data transfer volume but the presentation of it and accessory advertising. These product presentations
heavy rely on color illustrations or animations. Thus the surfer and manufacturer are interested in efficient
data compression methods, too. The potential customer finds the information he was looking for in shorter
time and the supplier saves money for server farms to provide huge bandwidth.
In this work we have studied well known state of the art image compression algorithms. These codecs are
based on wavelet transformations in most cases. Their compression efficiency is widely acknowledged.
The new upcoming JPEG2000 standard will be based on wavelet transformations, too. Hardware imple-
mentations of such high performance image compressors are non trivial. Especially the on chip memory
requirements and the data transfer volume to external memory banks are tremendous.
We suggest a solution which minimizes the communication time and volume to external random access
memory. With negligible internal memory requirements this bottleneck could be avoided using a parti-
tioned approach to wavelet transform images. Based on this idea we propose modifications to the well
known algorithm of Said and PearlmanSet Partitioning in Hierarchical Trees SPIHTto restrict the neces-
sity of random access to the whole image to a small subimage only, which can be stored on chip. However,
the compression performance in terms of visual property (measured with peak signal to noise ratio) com-
pared to the original codec is still the same or nearly the same. The computational power of the proposed
circuits targeting to programmable hardware are promising. We have realized a prototype of this codec in
a XC4000 Xilinx FPGA running at 40MHz which compresses images 10 times faster than a 1GHz Athlon
processor. An application specific integrated circuit based on our approach should be much faster over
again.

This thesis is structured as follows.

Mathematical background In Chapter1we introduce necessary notations and discuss up/downsampling
and delaying of discrete signals in detail. These techniques will be very useful in Chapter3. Furthermore
we give a short overview of the coherence of wavelet transforms and filtering.

5

6 CONTENTS

Wavelet transform on images The digital representation of images and the tensor product of one di-
mensional wavelet transforms applied to images are introduced in Chapter2. We also discuss the implicit
storage of the normalization factors, which are necessary to preserve the average brightness of the images.

Range of CDF(2,2) wavelet coefficients In Chapter3 the dynamic range of coefficients after a wavelet
transformation had taken place is analyzed. We deduce lower and upper bounds for the endpoints of the
corresponding intervals for each scale and orientation. Theses bounds are used to reduce the memory
requirements down to the minimum.

State of the art image compression techniquesBefore we present the central part of this thesis, we
give a survey of state of the art wavelet based image compression techniques in Chapter4. We shortly
outline the embedded zerotree wavelet algorithm of Shapiro and discuss theSPIHT algorithm in more
detail. This codec is widely acknowledged as a reference for effective image compression methods with
excellent visual properties of the reconstructed images.

Partitioned Approach In Chapter5 we present in detail the main contribution of this thesis, the par-
titioned approach to wavelet transform images. At first we motivate, why there is a need for such an
approach, if one considers implementations of image compression algorithm based on wavelet transforms
in programmable hardware. Furthermore to achieve efficient circuits with respect to clock rate and data
throughput we present necessary modifications of the originalSPIHTcodec and compare them in terms of
visual quality.

FPGA Architectures The designs are discussed in Chapter6. Here we present VHDL projects for the
partitioned approach itself and the appropriate adaptedSPIHTcodec. We discuss our prototyping environ-
ment, a PCI card equipped with a Xilinx FPGA, which offers the opportunity to us to derive convincing
experimental result.

Conclusions and Related Work To conclude this thesis we summerize our obtained results in terms
of theoretical aspects as well as practical experiences. Furthermore the features of the upcoming new
JPEG2000 standard and the integrated compressor named EBCOT are exemplified. We balance the advan-
tages and disadvantages of our approach to the proposed method in the JPEG2000 standard.

Acknowledgements I thank my advisor Prof. Dr. Paul Molitor who arouses my interest in wavelet
based image compression and for all the fruitful discussions. Special thanks to Stepan Sutter, Henning
Thielemann, and Görschwin Fey for their corporation in the last years. Thanks to all my colleagues whose
feedback has allowed me to improve the contents of this thesis. A special acknowledgment to Sandro Wefel
for his continuing support throughout the whole process of developing and writing this thesis.

Chapter 1

Mathematical Background

Wavelet based image compression techniques are funded on several fundamental mathematical theories.
The wavelet transform used to decorrelate the input signal has its theoretical roots in several traditional
sciences like Fourier analysis, signal processing, or filter theory. Here we cannot give a detailed intro-
duction to all concepts. We restrict our explanations to the central notations, which are necessary for the
understanding of this thesis.

1.1 Discrete Signal and Filters

Discrete signals and filters can be represented by vectors. In many cases we do not distinguish between
signals of finite or infinite length. A signalx is written as

x = (. . . , x−2, x−1, x0, x1, x2, . . .),

with coefficientsxn ∈ Z, R, or C for all n ∈ Z. Analogously, a filterf with coefficientsfm ∈ Z, R, or C
for all m ∈ Z (often calledfilter taps) is declared by

f = (. . . , f−2, f−1, f0, f1, f2, . . .).

Sometimes it is necessary to locate the coefficient at index zero. We then emphasize that coefficient like
this

x = (. . . , 0.25,1.25,−0.5, 0.75, . . .).

Usually, the signal and filter coefficients are non zero at finite positions only. If so, the corresponding signal
and filters have so calledfinite support. Let fa andfb be the right most and left most non zero coefficient,
respectively. Thenumber of tapsor similarly thefilter lengthis then defined as

|f | = b− a+ 1.

In the filter theory one distinguishes betweenfinite impulse response (FIR)and infinite impulse response
(IIR) filters. The impulse response of a filterf is the filter output if the filter input is the signalδ defined by

δn =
{

1 : n = 0
0 : else

,

where all samples are zero except one. If the impulse response is finite, because there is no feedback in the
filter, the filter is calledFIR filter. This category of filters has some important advantages:

• simple to implement (MAC operations (multiply and accumulate)),

• desirable numeric properties (with respect to fixed and floating point arithmetic), and

• they can be designed to belinear phase. Linear phase filters do not distort the phase by introducing
some delay if (and only if) its coefficients are symmetrical around the center coefficient.

7

8 CHAPTER 1. MATHEMATICAL BACKGROUND

In this thesis we will restrict to FIR filter and we use the notionfilter as an acronym of FIR filter.

Theconvolutiony = f ∗ x of a signalx with a filterf is the signaly with

yn :=
∑
k∈Z

fkxn−k =
∑
k∈Z

fn−kxk.

1.1.1 z-Transform

In Chapter3 we will estimate greatest lower and least upper bounds for the minimal bitwidth necessary
to store coefficients as result of wavelet transform. In order to compute accurate estimations we have to
analyze filtered signals. A helpful technique will be the so calledz-transform. This is a generalization of
the discrete time Fourier transform. It is defined for filters and signals by

F (z) =
∑
l∈Z

flz
−l and X(z) =

∑
k∈Z

xkz
−k, (1.1)

respectively, wherez ∈ C, i.e., the variablez is of type complex number. Assuming that thez-transform
and its inverse exist, we will denote by

f ←→ F and x←→ X

a transform pair. Note that for discrete signals with finite support theregion of convergence(ROC) is the
wholez-plane, e.g., the series given in Equation (1.1) converge for allz with 0 < |z| < ∞. The relation
f ←→ F is a one-to-one mapping, iff is a discrete signal or filter with finite support. For a detailed
discussion of the properties ofz-transformswe refer to [OS89].

For a filtered signaly = f ∗ x theconvolution theorem

y = f ∗ x←→ Y = F ·X,

holds since

Y (z) =
∑
n∈Z

ynz
−n

=
∑
n∈Z

(∑
k∈Z

fkxn−k

)
z−n

=
∑
k∈Z

∑
n∈Z

fkxn−kz
−n

=
∑
k∈Z

fk

∑
n∈Z

xn−kz
−n

=
∑
k∈Z

fk

∑
n′∈Z

xn′z
−n′−k

=
∑
k∈Z

fkz
−k
∑
n∈Z

xnz
−n

= F (z)X(z)

for all z ∈ C.

1.1.2 Impulse train function

Beside filtering the upsampling, downsampling, and delaying of a signal are of interest, too. Here the
impulse train functionplays an important rule. It is defined by

δ(m)
n =

∑
k∈Z

δn−k·m =
{

1 : ∃k′ ∈ Z : n = k′ ·m
0 : else,

1.2. MEASURE OF INFORMATION 9

wherem denotes the distance between the one’s. This can also be written as

δ(m)
n =

1
m

m−1∑
k=0

e
i2πkn

m , (1.2)

wherei is the imaginary unit, using the properties of themth roots of unity in the complex plane. The
equationzm = 1 hasm solutions forz ∈ C [For83]. These solutions are

e
i2πk

m for 0 ≤ k < m,

which are illustrated in Figure1.1(a) for m = 7. The fact, that Equation (1.2) holds, is based on the
symmetry of the roots of unity. Ifn is a multiple ofm, then the sum in Equation (1.2) evaluates to one,
namely forn = k′ ·m we obtain

δ(m)
n =

1
m

m−1∑
k=0

e
i2πkn

m

=
1
m

m−1∑
k=0

(
e

i2πk
m

)n

=
1
m

m−1∑
k=0

(
e

i2πk
m

)k′·m

=
1
m

m−1∑
k=0

1k′ = 1.

In the case, thatn is not a multiple ofm, you sum up themth roots of unity in the way as illustrated in
Figure1.1(b). The sum is then equal zero. In the figure we have chosenm = 5. For instance, ifn = 1
then you take all roots. The red arrows shows the order, in which the roots are sum up forn = 1, starting
at e0. If n = 2 you take only every second root, ifn = 3 you take only every third root and so on. But
these roots are equally spaced around the unit circle. You can examine this behavior for the casen = 2
in Figure1.1(b) following the green arrows. You could also imagine the unit circle as a disc in the three
dimensional space mounted only at the center point and further that on eachmth root, which appears in the
sum a weight is mounted. Then the disc will be stable in terms of gravity.

In the special casem = 2 we get the sequence

δ(2) = (. . . , 0, 1, 0,1, 0, 1, . . .) or

δ(2)n =
1
2
(1 + (−1)n),

and form = 4

δ(4) = (. . . , 0, 0, 0, 1, 0, 0, 0,1, 0, 0, 0, 1, . . .) or

δ(4)n =
1
4
(1 + in + (−1)n + (−i)n).

These considerations will be useful in Section1.4and Chapter3.

1.2 Measure of Information

In this section we give some basics of information theory in order to introduce the notation ofentropyof
a discrete signal.Randomnessis in this context a basic concept. Consider the tossing of a coin, where the
outcome can come up with head or tail, typically this happens randomly. Arandom variableX is defined
to be a quantity, such as the position of a particle, which has many possible outcomes, together with the
likelihood of each outcome being specified. If an event is certain to occur, its probability is taken to be 1,
and if an event is impossible, its probability is taken to be 0. The likelihood of any event occurring, namely

10 CHAPTER 1. MATHEMATICAL BACKGROUND

1−1

1

−1

ei2π0/7

ei2π1/7

ei2π2/7

ei2π3/7

ei2π4/7

ei2π5/7

ei2π6/7

(a) roots of unity,z7 = 1

1−1

1

−1

ei2π0/5

ei2π1/5

ei2π2/5

ei2π3/5

ei2π4/5

(b) representation ofδ(5)n in Equation (1.2)

Figure 1.1: (a) the roots of unity form = 7, (b) the intersection of the blue lines with the unit
circle are the5th roots of unity, the red and green arrows shows the order, in which the roots are
sum up in Equation (1.2) for δ(1)n andδ(2)n respectively (starting withe0).

p, is always positive and must lie between 0 (impossibility) and 1 (certainty), that is0 ≤ p ≤ 1. A random
variableX whose outcomesα are discrete, such as that of tossing a coin, is adiscrete random variable.
These outcomesα are usually elementsai of an alphabetAX = {a1, a2, . . . , ak} where the probability,
that theith outcome isai, is given aspX (α == ai). This probability will be in short denoted byp(ai), if
this is clear.
Shannon [Sha] defined a quantity calledself information. If the outcome of a random variableX is ai with
probabilityp(ai), then the self information is given by

log
1

p(ai)
= − log p(ai) (1.3)

Now we have all necessary terms to define the notion ofentropy.

Definition 1 The entropyH(X) of a random variableX with the given alphabetAX and the probabilities
pX is defined by

H(X) = −
∑

i

pX (α == ai) log pX (α == ai)

= −
∑

i

p(ai) log p(ai) (1.4)

Shannon showed, that the entropy is a measure of the average number of binary symbols needed to encode
the output of a source (e.g. a random variable). For lossless compression it follows, that the best we can do
is to encode the output of a source with an average number of bits equal to the entropy of the source.

We will use the entropy as a measure of the compression efficiency in order to compare the quality of
different lossless encoders.

1.3 Distortion Measures

For lossy compression it is important to know how much a modification of the transformed signal distorts
the restored signal. One might expect that a small modification of the transformed signal causes small

1.4. DOWNSAMPLING, UPSAMPLING, AND DELAY 11

distortions in the restored data. But there is an uncertainty in general. Consider an input signalx (e.g., an
image data) and the operationW which is performed by a complete wavelet transform (see Section1.6for
explanations). The transformed signalWx is now modified by a lossy compression.

Let us assume that the lossy compression process outputs signalα. Because every wavelet transform
applied for compression must be invertible, there exists a signaly such thatWy = α. Thus input signaly
is restored by the decompression step.

We are looking for an accurate estimation of how much the original signal changes if a modification occurs
on the transformed signal, in other words, how much distortion is introduced in the compression process.
For measuring the difference of two signals or the introduced distortion thesignal to noise ratio(SNR) and
thepeak signal to noise ratio(PSNR) (see [TM02], [Say96]) are widely used. They provide a compromise
between visual perception and easiness of computation.

Both theSNR and thePSNR are logarithmic scaled forms of the EUCLIDean metric of two vectors/signals
x andy

‖x− y‖2 =
√∑

i

(xi − yi)2

where the possible value range of the sampled data and the number of samples have an influence, too.
Let x, y be signals, each consisting ofn values with a possible range of[0, xmax] (e.g. [0, 255] for 8 bit
images), then

• themean squared errorMSE is defined by

MSE(x, y) :=
1
n

n−1∑
i=0

(xi − yi)2

• thesignal to noise ratioSNR is defined by

SNR(x, y) := 10 log10

‖x‖22
‖x− y‖22

dB

• thepeak signal to noise ratioPSNR is defined by

PSNR(x, y) := 20 log10

xmax ·
√
n

‖x− y‖2
dB

= 10 log10

x2
max

MSE(x, y)
dB

where the units of measurement aredecibels(abbreviated todB).

1.4 Downsampling, Upsampling, and Delay

Downsampling bymd andupsampling bymu are used to express wavelet transforms in terms of filter
operations (md,mu ∈ N). That is, after filtering all samples with indices modulomd different from zero
are discarded ormu − 1 samples are inserted at every index, respectively.

Downsamplinga sequencex bymd can be expressed as

yn = xn·md

12 CHAPTER 1. MATHEMATICAL BACKGROUND

or in z-transform domain

Y (z) =
1
md

md−1∑
k=0

X(e
−i2πk

md z
1

md)

with y ←→ Y andx←→ X. This can be shown using Equation (1.2)

Y (z) =
∑
k∈Z

xkmd
z−k

=
∑
n∈Z

xnδ
(md)
n z

−n
md

=
∑
n∈Z

xn

(
1
md

md−1∑
k=0

e
i2πkn

md

)
z
−n
md

=
1
md

md−1∑
k=0

(∑
n∈Z

xne
i2πkn

md z
−n
md

)

=
1
md

md−1∑
k=0

(∑
n∈Z

xn

(
e
−i2πk

md z
1

md

)−n
)

=
1
md

md−1∑
k=0

X
(
e
−i2πk

md z
1

md

)
.

Upsamplinga sequencex bymu can be expressed as

yn =
{
xn/mu

: ∃k ∈ Z : n = k ·mu

0 : else

or in z-transform domain

Y (z) =
∑
n∈Z

ynz
−n

=
∑
k∈Z

xkz
−(k·mu)

=
∑
k∈Z

xk (zmu)−k

= X(zmu)

with y ←→ Y andx←→ X.

The downsampling and upsampling operation for signalx are denoted byx ↓ md andx ↑ mu, respec-
tively. In the following illustrations we will depict both operations with the symbols↓ md and ↑ mu ,
respectively.

In order to discard even or odd indexed samples we also need the termdelay bymdly wheremdly ∈ Z.
Consider the sequencey defined byyn = xn−mdly , that is the signalx delayed bymdly. In z-transform
domain this can be expressed as

Y (z) = z−mdlyX(z).

1.5. WAVELETS 13

This can be easily seen by pluggingxn−mdly into the definition of thez-transform, i.e.,

Y (z) =
∑

n

ynz
−n

=
∑

n

xn−mdlyz
−n

=
∑
n′

xn′z
−n′−mdly

= z−mdly
∑

n

xnz
−n

= z−mdlyX(z).

1.5 Wavelets

Wavelets (little waves) are functions that are concentrated in time as well as in frequency around a certain
point. For practical applications we choose wavelets which correspond to a so calledmultiresolution anal-
ysis[Dau92] due to the reversibility and the efficient computation of the appropriate transform. Wavelets
fulfil certain self similarity conditions. When talking about wavelets, we mostly mean a pair of functions:
the scaling functionφ and the wavelet functionψ [Swe96], [Thi01]. Several extensions to this basic scheme
exist, but for the introduction we will concentrate on this case. The self similarity (refinement condition)
of the scaling functionφ is bounded to a filterh and is defined by

φ(t) =
√

2
∑
k∈Z

hkφ(2t− k) t, hk ∈ R (1.5)

which means thatφ remains unchanged if you filter it withh, downsample it by a factor of two, and
amplify the values by

√
2, successively (see Figure1.2). One could also say, thatφ is the eigenfunction

with eigenvalue 1 of the linear operator that is described by the refinement. Since eigenfunctions are unique
only if the amplitude is given, the scaling function is additionally normalized to∑

k∈Z
φ(k) =

√
2

to make it unique.
The wavelet functionψ is built onφ with help of a filterg (Figure1.3):

ψ(t) =
√

2
∑
k∈Z

gkφ(2t− k) gk ∈ R. (1.6)

φ andψ are uniquely determined by the filtersh andg.
Variants of these functions are defined, which are translated by an integer, compressed by a power of two,
and usually amplified by a power of

√
2:

ψj,l(t) = 2j/2ψ(2jt− l) (1.7)

φj,l(t) = 2j/2φ(2jt− l) (1.8)

with j, l ∈ Z, t ∈ R

• j denotes the scale – the biggerj the higher the frequency and the thinner the wavelet peak

• l denotes the translation – the biggerl the more shift to the right, and the biggerj the smaller the
steps

14 CHAPTER 1. MATHEMATICAL BACKGROUND

−1 0 1

0

1 ∑
k∈Z

hkφ(2t− k)

−1 0 1

0

1
φ(2t− 1)φ(2t+ 1) φ(2t)

−1 0 1

0

1
φ(t)

−1 0 1

0

1
h1φ(2t− 1)h−1φ(2t+ 1)

h0φ(2t)

a

c

bd

Figure 1.2: Refinement condition of the scaling function – In stepa the scaling function is

duplicated, translated and scaled in abscissa. In stepb the translated and scaled duplicates are
amplified.
The used filter coefficientsh−1 = 1√

2
· 1

2 , h0 = 1√
2
· 1, h1 = 1√

2
· 1

2 correspond to the synthesis
scaling function filter of the CDF(2,2) wavelet that will be frequently used in this document (see
Section1.7). In step c the translated, scaled, and amplified duplicates are added. (stepa to

b form the filtering). Stepd scales the function with
√

2.

A scaling function is characterized by being invariant under the sequence of the stepsa , b ,

c , and d .

1.6 Discrete Wavelet Transforms

The goal is to represent signals as linear combinations of wavelet functions at several scales and of scaling
functions of the widest required scale:

ξ(t) =
∑
l∈Z

c1−J,l(t)φ1−J,l +
0∑

j=1−J

∑
l∈Z

dj,lψj,l(t), t ∈ R.

The choice of wavelet functions as primitives promises to be good, because natural signalsx like audio
streams or images consist of same structures at different scales and different positions. The coefficients
c1−J,l anddj,l for −J < j ≤ 0 describe the transformed signal we want to feed into a compression
routine. J corresponds to the number of different scales we can represent, which is equal to the number
of transform levels that will be considered later in detail. The biggerJ the more coarse structures can be
described. A possible set of scaling and wavelet functions is shown in Figure1.4.
We usually have to handle with discrete functions, known as sampled audio or image data. For simplicity
we consider only one dimensional data. In the case of two dimensional image data we process rows and
columns separately. This is explained in detail in Chapter5.
Its values. . . , x−1, x0, x1, x2, . . . represent the amplitudes of pulses. If we want to integrate such signals
into the wavelet theory we have to read thexn as amplitudes of small scaling functions

ξ(t) =
∑
n∈Z

xnφ1,n(t).

1.6. DISCRETE WAVELET TRANSFORMS 15

−1 0 1 2

0

1
(t)

−1 0 1 2

0

1
g3φ(2t− 3)

g2φ(2t− 2)g0φ(2t)
g−1φ(2t+ 1)

g1φ(2t− 1)

−1 0 1 2

0

1

φ(t)

−1 0 1 2

0

1

∑
k∈Z

gkφ(2t− k)

a

b

c

Figure 1.3: Building the wavelet function from scaling functions – In stepa the scaling
function is duplicated, translated, amplified, and scaled in abscissa. The filterg is borrowed
from the CDF(2,2) synthesis wavelet, again, and is determined by the coefficientsg−1 =

√
2 ·

(− 1
8), g0 =

√
2 · (− 1

4), g1 =
√

2 · 3
4 , g2 =

√
2 · (− 1

4), g3 =
√

2 · (− 1
8) In step b the functions

of step a are added. Stepc in this figure represents scaling in ordinate direction.

Therefore we set

c1,l := xl, for l ∈ Z

for discrete signalsx. At levelJ , we use the representation

ξ(t) =
∑
l∈Z

c1−J,lφ1−J,l(t) +
0∑

j=1−J

∑
l∈Z

dj,lψj,l(t). (1.9)

Given the wavelet decomposition of a signal at levelJ , we obtain that of levelJ − 1 by replacing all
functions of levelJ by their refinements defined in Equation (1.7) and Equation (1.8). Iterating until
reaching level0 results in the searched signal representation. Now let us illustrate this remark and let us
start with Equation (1.9).

ξ(t) =
∑
l∈Z

c1−J,lφ1−J,l(t) +
0∑

j=1−J

∑
l∈Z

dj,lψj,l(t)

According to the definition ofφj,l, ψj,l Equation (1.8) we obtain

ξ(t) = 2
1−J

2

(∑
l∈Z

c1−J,lφ(21−J t− l) +
∑
l∈Z

d1−J,lψ(21−J t− l)

)
+

0∑
j=2−J

∑
l∈Z

dj,lψj,l(t).

Applying refinement conditions Equation (1.5) and Equation (1.6) results in

ξ(t) = 2
2−J

2

(∑
l∈Z

c1−J,l

∑
k∈Z

hkφ(2 · (21−J t− l)− k) +

ξ(t) 2
2−J

2

(∑
l∈Z

d1−J,l

∑
k∈Z

gkφ(2 · (21−J t− l)− k)

)
+

0∑
j=2−J

∑
l∈Z

dj,lψj,l(t)

16 CHAPTER 1. MATHEMATICAL BACKGROUND

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

−4 0 4 8

0

1

φ−2,0 φ−2,1

−2,0 −2,1

−1,0

−1,1 −1,2

0,0 0,1 0,2 0,3 0,4 0,5

Figure 1.4: A basis consisting of scaling and wavelet functions of the CDF(2,2) wavelet – This
basis covers three levels of wavelet functions. Only a finite clip of translates is displayed.

Now, substitutingL := l, one obtain

ξ(t) = 2
2−J

2

∑
k∈Z

(∑
L∈Z

(c1−J,Lhk + d1−J,Lgk)φ(2 · (21−J t− L)− k)

)

+
0∑

j=2−J

∑
l∈Z

dj,lψj,l(t)

and substituting backl := 2L+ k results in

ξ(t) = 2
2−J

2

∑
l∈Z

(∑
L∈Z

c1−J,Lhl−2L +
∑
L∈Z

d1−J,Lgl−2L

)
︸ ︷︷ ︸

c2−J,l:=

φ(22−J t− l)

+
0∑

j=2−J

∑
l∈Z

dj,lψj,l(t)

=
∑
l∈Z

c2−J,lφ2−J,l(t) +
0∑

j=2−J

∑
l∈Z

dj,lψj,l(t).

Indeed, this is the signal representation at levelJ − 1 of the wavelet decomposition. We see that the new
coefficientsc2−J,l are derived fromc1−J,l andd1−J,l by a kind of filtering. The difference to traditional
filtering is, that for evenl, cj,l depends only onhk andgk with evenk, and for oddl, cj,l depends only
on hk andgk with oddk. This is the reason why we will split bothg andh in its even and odd indexed
coefficients for most of our investigations. For more details we refer to Section1.8, where theLifting
Schemeis discussed.
It is easy to see that the conversion from wavelet coefficients to signal values is possible without knowingφ
orψ, the only information needed, are the filters which belong to them. Under certain conditions, the same
is true for the reverse conversion. It allows us to limit our view to the filtersg andh and hide the functions
φ andψ. Thus the computation of this change in representation can be made with the use of filters.

1.7. COHEN-DAUBECHIES-FEAUVEAU CDF(2,2) WAVELET 17

In the following we have to distinguish between the conversion from the original signal to the wavelet
coefficients and from the wavelet coefficients back to the signal or an approximated version of it. The first
conversion is usually denoted bywavelet analysisor wavelet decomposition, and the second bywavelet
synthesisor wavelet reconstruction. We will use these notions throughout the document.
Since the filters and the scaling and wavelet function can differ for wavelet analysis and synthesis (for
instance in the case of biorthogonal bases) we will denote the analysis scaling and wavelet functions by
φ̃ and ψ̃, respectively. For the synthesis scaling and wavelet functions we use the symbolsφ andψ,
respectively. The corresponding filters are denoted accordingly byg̃, h̃ andg, h.

Now, one level of discrete wavelet transform can be expressed

↓ 2

↓ 2

h̃

g̃z1

↑ 2

↑ 2

h

+

g z−1

xn x′n

c0,l

d0,l

Figure 1.5: one level of wavelet transform expressed using filters

as depicted in Figure1.5. Usually the filterg and h̃ are low pass filter. The filterh and g̃ are high pass
filter. Thus, we can interpret the coefficientsc0,l as coarse version of the signalx at half resolution. The
coefficientsd0,l are the differences or details that are necessary to reconstruct the original signalx from

the coarse version. The delayz−1 is necessary, to discard even and odd indices after filtering. We can
recursively apply this filtering scheme to the coefficientscj,l if we want to perform more than one level of
transform. In Figure1.6three levels of transform are applied. This scheme is known asMallat’s algorithm

↓ 2

↓ 2

h̃

g̃z1

↓ 2

↓ 2

h̃

g̃z1

↓ 2

↓ 2

h̃

g̃z1

↑ 2

↑ 2

h

+

g z−1

↑ 2

↑ 2

h

+

g z−1

↑ 2

↑ 2

h

+

g z−1

xn x′n

d0,l

d−1,l

d−2,l

c0,l

c−1,l

c−2,l

c′−1,l

c′0,l

Figure 1.6: tree levels of wavelet transform

[Mal89]. For implementation issues we have to note, that this filter bank approach is not that efficient to
compute the coefficientscj,l and dj,l. As you can see, every second computed coefficient is dropped
after the filtering due to the downsampling. In Section1.8 we introduce theLifting Schemepresented by
Wim Sweldens [Swe96], which provides an efficient implementation of the wavelet decomposition and
reconstruction.

1.7 Cohen-Daubechies-Feauveau CDF(2,2) Wavelet

In this thesis we make intensive use of the so called CDF(2,2) wavelet presented by Cohen, Daubechies,
and Feauveau [CDF92]. It is also known as the biorthogonal (5,3) wavelet because of the filter length
of 5 and3 for the low and high pass filters, respectively. We have already referred to this specific wavelet
while discussing the self similarity properties of scaling functions and the coherence of scaling and wavelet
functions.

The CDF(2,2) is a biorthogonal wavelet. In contrast to orthogonal wavelets (except the Haar wavelet
[Haa10]) the filters as well as the scaling and wavelet functions for decomposition and reconstructions are

18 CHAPTER 1. MATHEMATICAL BACKGROUND

symmetric. A symmetric filterf always has odd filter length and it holds that

fa+k = fb−k

for all 0 ≤ k < b−a
2 anda andb are the smallest and greatest indexl, respectively, wherefl is different from

zero. Symmetry is a very important property if we consider image compression, because in the absence of
symmetry artefacts are introduced around edges.

Let us first introduce the coefficients of the filtersg̃, h̃, g, h. They are listed in Table1.1.

Table 1.1: filter coefficients of the CDF(2,2) wavelet, the delay operatorsz1 and z−1 are
implicit enclosed in the filters

i −2 −1 0 1 2 3

h̃
√

2 · (− 1
8
)

√
2 · 1

4

√
2 · 3

4

√
2 · 1

4

√
2 · (− 1

8
)

g̃ 1√
2
· (− 1

2
) 1√

2

1√
2
· (− 1

2
)

h 1√
2
· 1

2
1√
2

1√
2
· 1

2

g
√

2 · (− 1
8
)

√
2 · (− 1

4
)

√
2 · 3

4

√
2 · (− 1

4
)

√
2 · (− 1

8
)

Note that in an implementation we do not deal with the normalization factors
√

2 and 1√
2

during the
filtering. These normalization factors are applied after all wavelet transforms have taken place. If the
input signal is an image we will apply the CDF(2,2) transform as tensor product to the rows and columns
independently. Here it will be not necessary to deal with

√
2 or 1√

2
directly, because their products leads

to 2k for somek ∈ Z (see Section2.3).
Thus, we only need the operations

• addition,

• multiplication with constants, and

• shifts,

which is one of the important facts to use this wavelet in a hardware implementation of wavelet based image
codecs. Furthermore, theLifting Schemeapplied to CDF(2,2) results in an integer-to-integer mapping
(Lifting is presented in Section1.8). The operations above can be implemented using integer arithmetic.
We avoid floating point units in our FPGA architectures, which are very expensive in terms of chip area.

For the sake of completeness we have computed the graphs of the functionsψ̃, φ̃, φ, andψ. Since no
closed expression is available for the limit functionsφ̃ and ψ̃, we used the so calledcascade algorithm
[Dau92] to calculate these graphs. To obtain the graph ofφ̃ we start with the discrete impulseδ as input
signal. Then we convolveδ with the analysis low pass filter̃h. Let the result be denoted bỹφ(1). After
that we upsample the filter̃h and convolve the upsampled filter with̃φ(1) resulting inφ̃(2). This procedure
can be repeated until a sufficient accuracy is achieved. In the literature this is usually done eight or nine
times. The resulting graph is shown in Figure1.7(a). In AppendixA.3 you find the corresponding code in
order to produce these graphs using Matlab orMETAPOST. The graph forψ̃ is derived in an analogous
manner. The last convolution is done using the appropriate upsampled high pass filterg̃ instead ofh̃.
For an illustration see Figure1.7(b). The synthesis scaling and wavelet functionφ andψ can be derived
analogously. But these two functions were constructed to be linear splines, so we could even depict them
directly.

1.7. COHEN-DAUBECHIES-FEAUVEAU CDF(2,2) WAVELET 19

−1 0 1 2

−2

0

2

4

(a) Decomposition / analysis scaling functionφ̃,

filter coefficientsg̃0 = 1√
2
· (− 1

2
), g̃1 = 1√

2
·

1, g̃2 = 1√
2
· (− 1

2
)

−1 0 1 2

−2

0

2

4

(b) Decomposition / analysis wavelet functioñψ,

filter coefficientsh̃−2 =
√

2 · (− 1
8
), h̃−1 =√

2 · 1
4
, h̃0 =

√
2 · 3

4
, h̃1 =

√
2 · 1

4
, h̃2 =√

2 · (− 1
8
)

Figure 1.7: the analysis scaling̃φ and wavelet functioñψ of CDF(2,2)

Remark the different support for each of the four functionsψ̃, φ̃, φ, andψ. The corresponding filters are

just the same as listed in Table1.1. The delay operatorsz1 or z−1 are implicit enclosed in the filters.

For image compression applications it is interesting to discuss the relation between the regularity of the
synthesis wavelet and the number of so calledvanishing momentsof the analysis wavelet. A biorthogonal
wavelet hasm vanishing momentsif and only if its dual scaling function generates polynomials up to de-
greem. In other words, vanishing moments tend to reduce the number of significant wavelet coefficients
and thus, one should select a wavelet with many of them for the analysis (the notation of significance is in-
troduced in Chapter4). On the other hand, regular or smooth synthesis wavelets give good approximations,
if not all coefficients are used for reconstruction, as it is the case for lossy compression.

To increase the number of vanishing moments of the decomposition wavelet one has to enlarge the fil-
ter length of the corresponding analysis low and high pass filters. That is, you have a trade off between
filter length and number of vanishing moments of the decomposition wavelet. In terms of image compres-
sion you can improve the compression performance at the expense of increasing computational power to
calculate the filter operations.

Another way to increase the number of vanishing moments is to use smoother reconstruction wavelets.
This corresponds to better compression performance at the expense of enlarged synthesis filters, too. Fur-
thermore, to achieve regular analysis wavelets the filter lengths have to be increased to a greater extend
compared to not that smooth reconstruction wavelets.

Both vanishing moments of the decomposition wavelet and regularity of the reconstruction wavelet are
important in improving both subjective and objective compression measures. In many cases, increasing
the reconstruction regularity, even at great expense in decomposition vanishing moments, improves results.
That is the case for the CDF(2,2) wavelet as you can observe immediately comparing Figure1.7 and
Figure1.8.

20 CHAPTER 1. MATHEMATICAL BACKGROUND

−1 0 1 2

0

1

(a) Reconstruction (synthesis) scaling functionφ,

filter coefficientsg−1 = 1√
2
· 1

2
, g0 = 1√

2
·

1, g1 = 1√
2
· 1

2

−1 0 1 2

0

1

(b) Reconstruction (synthesis) wavelet function

ψ, filter coefficientsh−1 =
√

2 · (− 1
8
), h0 =√

2·(− 1
4
), h1 =

√
2· 3

4
, h2 =

√
2·(− 1

4
), h3 =√

2 · (− 1
8
)

Figure 1.8: the synthesis scalingφ and wavelet functionψ of CDF(2,2)

1.8 Lifting Scheme

An alternative computation method of the discrete wavelet transform is the so calledLifting Schemeorig-
inally presented by Wim Sweldens [Swe96]. Usually it is explained while discussing the Haar wavelet
transform. In order to be consistent we base our introduction to Lifting on the CDF(2,2) wavelet, which is
taken as explanation example too. The Lifting Scheme is composed of three steps, namely:

• Split (also called Lazy Wavelet Transform),

• Predict,

• and Update.

The first step is splitting the input signalx into even and odd indexed samples.
Then we try to predict the odd samples based on the evens. If the original signal has local correlation,
then the prediction should be of high accuracy. The odd samples are replaced by the old ones minus the
prediction. Now we can interpret them as the detail coefficients, to which we are now familiar with. On
the other hand we want to think of the even samples as the coarser version of the input sequence at half the
resolution. But we have to ensure that the average of the signal is preserved, that is∑

k∈Z
cj,k =

1
2

∑
k∈Z

cj+1,k

for all −J < j ≤ 0
This task is performed in the so called update step, where the detail coefficients are used to update the
evens in order to preserve the average. In the left side of Figure1.9 these three steps are depicted. We
have used the symbolsP and U for the Predict and Update operator, respectively.
The inverse procedure is really simple. Just exchange the sign for the predict and update step and apply all
operations in reversed order as shown on the right side of Figure1.9.
Note, that withz-transformnotation we could express the split and merge step using downsampling, delay,
and upsampling, respectively. This is illustrated in Figure1.10
Let us now look at the predict and update steps for the CDF(2,2) wavelet [SS96]. Here the predictor is
chosen to be linear, that is, if the input signal is a polynomial of degree one, the prediction is perfect. In
that case all detail coefficients will be zero. Therefore we have

dj,k = cj+1,2k+1 −
1
2
(cj+1,2k + cj+1,2k+2) (1.10)

1.8. LIFTING SCHEME 21

Split P

−

+

U

−

U P

+

Merge

Figure 1.9: The lifting scheme

z1

↓ 2

↓ 2 z−1

↑ 2

↑ 2

+
xn yn

xeven

xodd

xeven

xodd

Figure 1.10: split and merge step described using down/upsampling and delay

for the prediction step and

cj,k = cj+1,2k +
1
4
(dj,k + dj,k−1) (1.11)

for the update step.
Indeed, this is equivalent to the filter given in Table1.1 (up to the normalization factors), if we insert
Equation (1.10) in Equation (1.11)

cj,k = cj+1,2k +
1
4
(dj,k + dj,k−1)

= cj+1,2k +
cj+1,2k+1 − cj+1,2k+cj+1,2k+2

2 + cj+1,2k−1 − cj+1,2k−2+cj+1,2k

2

4

= cj+1,2k +
cj+1,2k+1

4
− cj+1,2k + cj+1,2k+2

8
+
cj+1,2k−1

4
− cj+1,2k−2 + cj+1,2k

8

= −1
8
cj+1,2k−2 +

1
4
cj+1,2k−1 +

3
4
cj+1,2k +

1
4
cj+1,2k+1 −

1
8
cj+1,2k+2 (1.12)

=
∑

n

gncj+1,2k−n.

What are the advantages of this method ?

1. The most important fact is that we do not throw away already computed coefficients as in the filter
bank approach.

2. It is also remarkable, that the wavelet transform can now be computed in place. This means, that
given a finite length signal withn samples we need exactlyn memory cells, each of them capable to
store one sample, to compute the transform.

3. Furthermore we reduce the number of operations in order to compute the coefficients of the next
coarser or finer scale, respectively. For the CDF(2,2)-wavelet we save three operations using the
Lifting Scheme in comparison with the traditional filter bank approach.

22 CHAPTER 1. MATHEMATICAL BACKGROUND

1.8.1 Integer-to-Integer Mapping

Obviously, the application of the filter bank approach or the Lifting Scheme leads to coefficients, which are
not integers in general. In the field of hardware image compression it would be convenient, that coefficients
and the pixel of the reconstructed image are integers too. Chao et.al.[CFH96] and Cohen et.al.[CDSY97]
have introduced techniques for doing so. The basic idea is to modify the computation of the Predict and
Update step in the following way

d′j,k = c′j+1,2k+1 − bP c
c′j,k = c′j+1,2k + bUc ,

wherec′1,k = c1,k = xk for all k ∈ Z. Here the symbolsP andU represent any reasonable predictor or
update operator, respectively.

Remark It is easy to verify, that perfect reconstruction in case of lossless compression is guaranteed,
since that same value of the modified predictor and update operator is added and subtracted. However,
since we lose the linearity of the transform due to the rounding, the influence of this modification in terms
of image compression efficiency is hard to estimate. Fortunately, our practical experiences do not show any
remarkable differences between the Lifting Scheme and the modified version.

For the special case of the CDF(2,2) wavelet we therefore use the prediction and update steps as follows:

d′j,k = c′j+1,2k+1 −
⌊

1
2
(c′j+1,2k + c′j+1,2k+2)

⌋
(1.13)

c′j,k = c′j+1,2k +
⌊

1
4
(d′j,k + d′j,k−1)

⌋
. (1.14)

As a consequence the coefficients of all scales−J < j ≤ 0 can be stored as integers and for all operations
integer arithmetic is sufficient. Note, that the coarser the scale the more bits are necessary to store the
corresponding coefficients. To overcome the growing bitwidth at coarser scales modular arithmetic can be
used in the case of lossless compression.

1.8.2 Lifting Scheme and Modular Arithmetic

Chao et.al. suggest to use modular arithmetic in combination with the Lifting Scheme [CFH96]. We use
the symbols⊕ and	 for the modular addition and subtraction, which are defined as

a⊕ b := a+ b mod m and

a	 b := a− b mod m

for reasonablem ∈ N, respectively. Equation (1.13) and Equation (1.14) now look like

d′j,k = c′j+1,2k+1 	
⌊

1
2
(c′j+1,2k ⊕ c′j+1,2k+2)

⌋
c′j,k = c′j+1,2k ⊕

⌊
1
4
(d′j,k ⊕ d′j,k−1)

⌋
.

As a consequence, all coefficients at all scales as well as the reconstructed signal have the same bitwidth as
the original sequence, if we initializem = 2dpth, wheredpth is the given bitwidth of the original samples.
Additionally, the computational units for addition and subtraction have to be provided form bit operands
only. With respect to the hardware implementation we save memory resources and logic in the arithmetic
logic units.
Remark, that this modification is only feasible in case of lossless compression. The approach of Chao et.al.
is limited to lossless compression, since in fact transform coefficients of large magnitude become small due
to modular arithmetic. This is counterproductive for quantization purposes in wavelet based compression
techniques, where coefficients with large magnitude are considered as important and small coefficients tend
to be neglected (see Chapter4 for a detailed discussion of wavelet based image codecs).

Chapter 2

Wavelet transforms on images

Until now we have discussed one dimensional wavelet transforms. Images are obviously two dimensional
data. To transform images we can use two dimensional wavelets or apply the one dimensional transform
to the rows and columns of the image successively as separable two dimensional transform. In most of
the applications, where wavelets are used for image processing and compression, the latter choice is taken,
because of the low computational complexity of separable transforms.

Before explaining wavelet transforms on images in more detail, we have to introduce some notations. We
consider anN × N image as two dimensional pixel arrayI with N rows andN columns. We assume
without loss of generality that the equationN = 2r holds for some positive integerr.

0 1 2 N − 1

0

1

2

N − 1

row

col

ro
w

s

columns

Figure 2.1: images interpretation as two dimensional arrayI, where the rows are enumerated
from top to bottom and the columns from left to right, starting at index zero

In Figure2.1 we illustrate, how the pixels of the images are arranged in the corresponding arrayI. The
rows are enumerated from top to bottom and the columns from left to right. The index starts with zero and
therefore the largest index isN − 1. The image pixels themself at rowi and columnj will be denoted
by I[i, j] or Ii,j . The wavelet transformed image will be denoted byÎ and the coefficients are addressed
with Î[k, l] or Îk,l. For the reconstructed image we will useĨ and address the corresponding reconstructed
pixels asĨ[n,m] or Ĩn,m.

The pixels and coefficients themselves are stored as signed integers in two’s complementary encoding.

23

24 CHAPTER 2. WAVELET TRANSFORMS ON IMAGES

Therefore the range is given as

I[row, col] ∈
[
−2dpth−1, 2dpth−1 − 1

]
,

where0 ≤ row, col < N , assuming adpth-bit greyscale resolution. Thus, we can distinguish between
2dpth different values of brightness. For an illustration see Figure2.2. The smallest value−2dpth−1 and

−2dpth−1 2dpth−1 − 10

Figure 2.2: greyscales and the corresponding pixel values fordpth-bit resolution

the largest value2dpth−1 − 1 correspond to black and white, respectively. As a consequence pixels with
magnitude around zero appear as grey color.

In color images each pixel is represented by several color components. Typically there are three of them
per pixel. In the RGB color space, e.g., there is one component for red, green, and blue, respectively. Other
choices are the YUV color space (luminance and chrominance) and the CMYK color space (cyan, magenta,
yellow, black). Note, that there exist YUV based image and video formats, where the sizeN of the different
components is different (e.g. 4:2:2 and 4:1:1). In the case of the 4:1:1 format for instance, we obtain three
pixel arrays of sizeN , N

4 , andN
4 .

Throughout this thesis we will treat each color component of color images as separate greyscale image.

Now, let us come back to wavelet transforms on images. As already mentioned the one dimensional trans-
form will be applied to rows and columns successively. Consider a rowr = (r0, . . . , rN−1) of an image
I. This row has finite length in contrast to the signals or sequences we have considered until now. In order
to convolve such a rowr with a filter f we have to extend it to infinity in both directions. Letr′ be the
extended row defined by

r′ = (. . . , r′0, . . . , r
′
N−1, . . .),

wherer′k = rk for all 0 ≤ k < N − 1. But, how do we have to set the values ofr′ at positionsk with
k /∈ [0, N − 1]? In some sense we are free to choose these remaining samples. In the next section we will
explain, why reflection at the image boundary should be used in horizontal and in vertical direction.

2.1 Reflection at Image Boundary

There are several choices to choose the values ofr′k from outside the interval[0, N − 1]. The most popular
one’s are

• padding with zeros,

• periodic extension, or

• symmetric extension.

The simplest choice is to set all remainingr′k to zero. For an illustration see Figure2.3. In Figure2.3(a)a
sequencer of lengthN = 8 is shown, wherer = (−8,−3,−5, 0, 6, 7, 5, 4). In Figure2.3(b)this sequence
is padded with zeros in order to obtain the infinite sequencer′:

r′k =
{
rk : for all 0 ≤ k < N
0 : else.

We can observe, that in general there will be discontinuities at the boundary.
The substantial difference between the value of the border coefficients and zero leads to coefficients of large
amount in the high frequency subbands. These differences decrease the compression efficiency and intro-
duce artefacts at the boundaries since the reconstructed pixel values depend on the values of the coefficients
from outside, too, if lossy compression is considered.

2.1. REFLECTION AT IMAGE BOUNDARY 25

−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11

−8
−6
−4
−2

0
2
4
6

i

ri

(a) the original sequencer(e.g. image row)

−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11

−8
−6
−4
−2

0
2
4
6

.

j

r′j

(b) r′ obtained fromr by zero padding

−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11

−8
−6
−4
−2

0
2
4
6

.

j

r′j

(c) r′ obtained fromr by periodic extension

−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11

−8
−6
−4
−2

0
2
4
6

.

j

r′j

(d) r′ obtained fromr by symmetric extension

Figure 2.3: different choices for the boundary treatment of finite length sequences, herer =
(−8,−3,−5, 0, 6, 7, 5, 4) of lengthN = 8

The computation of the coefficientsc0,0, c0,1 andd0,N−1 at the first level of a wavelet transform using the
CDF(2,2) wavelet depends on pixels from outside. In general, for a symmetric wavelet with corresponding
analysis filters̃h andg̃ the computation of the coefficients

c0,0, c0,1, . . . , c0,l with l =

∣∣∣h̃∣∣∣+ 1

2

d0,N−1−l, d0,N−l, . . . , d0,N−1 with l =
|g̃|+ 1

2

depends on pixels from outside.

A different approach known from Fourier techniques is periodic extension of the signal, that is

r′k·N+l = rl

where0 ≤ l < N andk ∈ Z. Here we encounter the same drawbacks as in the case of padding with zeros
(cf. Figure2.3(c)). The introduced differences at the boundary are considerable as well. Another drawback
arises in hardware implementations. Here we have to buffer the first samples ofr in order to perform the
operations at the end of the sequencer. This can result in large buffers.

The most preferred method for the choice of the coefficients from outside ofr is based on symmetric
extension. Figure2.3(d)depicts this method applied to our example sequence. More formally, symmetric
extensionr′ is defined by

r′k·N+l =
{
rN−1−l : if k is an odd value

rl : if k is an even value.

26 CHAPTER 2. WAVELET TRANSFORMS ON IMAGES

where0 ≤ l < N andk ∈ Z. The already mentioned difference between coefficients at the boundary do
not appear using this kind of extension. Furthermore due to the locally known coefficients no significant,
additional amount of buffer memory is required.

In the following we assume, that the boundary treatment was done using symmetric extension. Therefore
we do not distinguish between finite and infinite sequence anymore.

2.2 2D-DWT

Now we are able to discuss the separable two dimensional wavelet transform in detail. Consider again a row
r of a given image of sizeN ×N . Recall from Section1.8the computation of a specific wavelet transform
using the Lifting Scheme. After one level of transform we obtainN

2 coefficientsc0,l and N
2 coefficients

d0,k with 0 ≤ l, k < N
2 . These are given in interleaved order, that is

(c0,0, d0,0, c0,1, d0,1, . . . , c0,N−1, d0,N−1), (2.1)

because of the split in odd and even indexed positions in the Lifting Scheme. Usually the row of (2.1) is
rearranged to

r(0) = (c0,0, c0,1, . . . , c0,N−1, d0,0, d0,1, . . . , d0,N−1),

because we will apply the transform to the low frequency coefficientsc0,l recursively.
Suppose we have already transformed and rearranged all rows of a given image as described above. If we
store the computed coefficients in place, that is in the memory space of the original image, we obtain a new
array with a structure as shown in Figure2.4.

(a) lena,N = 512, dpth = 8 (b) CDF(2,2) wavelet trans-
form applied to the rows of (a)

L H

(c) low (L, c0,k) and high
(H, d0,k) frequency coefficient
blocks

Figure 2.4: one dimensional CDF(2,2) wavelet transform applied to the rows and columns of the
benchmark imagelenawith reflection at the boundaries

On the left the well known benchmark imagelena1 is shown. To the right of it we have applied the CDF(2,2)
wavelet transform to the rows of the image. The corresponding result is interpreted as image again (Fig-
ure2.4(b)) and is composed of a coarse and scaled version of the original and the details, which are nec-
essary to reconstruct the image under consideration. On the right we have illustrated this interpretation as
low and high frequency coefficients blocks, denoted by L and H, respectively. Remark that most of the

1For the curious: ’lena’ or ’lenna’ is a digitized Playboy centerfold, from November 1972. (Lenna is the spelling in Playboy,
Lena is the Swedish spelling of the name.) Lena Soderberg (ne Sjööblom) was last reported living in her native Sweden, happily
married with three kids and a job with the state liquor monopoly. In 1988, she was interviewed by some Swedish computer related
publication, and she was pleasantly amused by what had happened to her picture. That was the first she knew of the use of that picture
in the computer business. (http://www.lenna.org)

http://www.lenna.org

2.2. 2D-DWT 27

high frequency coefficientsd0,k are shown in grey color, which corresponds to small values around zero
(cf. Figure2.2).

The one dimensional wavelet transform can be applied to the columns of the already horizontal transformed
image as well. The result is shown in Figure2.5 and is decomposed into four quadrants with different
interpretations.

LL: The upper left quadrant consists of all coefficients, which were filtered by the analysis
low pass filter̃h along the rows and then filtered along the corresponding columns with
the analysis low pass filter̃h again. This subblock is denoted by LL and represents the
approximated version of the original at half the resolution.

HL/LH: The lower left and the upper right blocks were filtered along the rows and columns with
h̃ andg̃, alternatively. The LH block contains vertical edges, mostly. In contrast, the HL
blocks shows horizontal edges very clearly.

HH: The lower right quadrant was derived analogously to the upper left quadrant but with the
use of the analysis high pass filterg̃ which belongs to the given wavelet. We can interpret
this block as the area, where we find edges of the original image in diagonal direction.

The two dimensional wavelet transform can be applied to the coarser version at half the resolution, recur-
sively, in order to further decorrelate neighboring pixels of the input image. For an illustration we refer to
Figure2.6. The subbands in the next higher transform levelsl will be denoted by LL(l), LH(l), HL(l), and
HH(l), where LL(1) = LL, LH (1) = LH, HL(1) = HL, and HH(1) = HH, respectively.

(a) CDF(2,2) wavelet applied
as tensor product to the rows
and columns of the imagelena

LL HL

LH HH

(b) the different frequency
blocks

(c) set all coefficientsv in LH,
HL, HH with −20 < v < 20
to white color

Figure 2.5: one dimensional CDF(2,2) wavelet transform applied to the rows of the benchmark
imagelenawith reflection at the image boundaries

Since we have restricted the images to be of quadratic sizeN = 2l for l ∈ N , we can perform at most
l = log2N levels of transform. Thereafter the coefficient in the upper left corner represents the average
greyscale value of the whole image and is calledDC coefficient(DC : direct current). In practice, usually
four up to six level of wavelet transform level will be performed.
Due to the local similarities between neighboring pixels, many coefficients in the LH, HL, and HH subbands
at different scales will be small. As a consequence only a few samples, especially those of the LL block at
the coarsest scale, represents most out of theimages energy. TheenergyE(I) of an imageI is defined as

E(I) =
N−1∑
r=0

N−1∑
c=0

(Ir,c)2 (2.2)

This observation is the starting point of wavelet based image compression algorithms, which are explained
in Chapter4.

28 CHAPTER 2. WAVELET TRANSFORMS ON IMAGES

HL

LH HH

LH(2)

LL (2)

HH(2)

HL(2)

(a) two levels of 2D-DWT

HL

LH HH

LH(2) HH(2)

HL(2)

LH(3)

LL (3)

HH(3)

HL(3)

(b) three levels of 2D-DWT

HL

LH HH

LH(2) HH(2)

HL(2)

LH(3) HH(3)

HL(3)
LL (4)

LH(4) HH(4)

HL(4)

(c) four levels of 2D-DWT

Figure 2.6: multiresolution scheme after several levels of wavelet transform

In this thesis we will focus on the tree structured decomposition as shown in Figure2.6, where only the
LL blocks are subdivided. This type of image decomposition is also known asmultiresolution schemeand
multiscale representation. Other decomposition types are possible and known under the terms ofwavelet
packets[CMQW94].

2.3 Normalization Factors of the CDF(2,2) Wavelet in two Dimen-
sions

In Section1.7 we have already mentioned the normalization factors of the CDF(2,2)-wavelet for one di-
mension. To simplify the calculation of the transform we have extracted the factors

√
2 and 1√

2
, which

allows us to use efficient integer arithmetic units in hardware implementations.
In order to preserve the average of a one dimensional signal, or the average of the brightness of images, we
have to consider the normalization factors after the wavelet transform has taken place.

√
2

1√
2

(a) 1D-DWT
(rows)

2

1
2

1

1

(b) 1D-DWT
(columns)

4

2

2

1

1
2

1

1

(c) 2nd level

8

4

4

2

2

2

1

1
2

1

1

(d) 3rd level

16

8

8

4

4

4

2

2

2

1

1
2

1

1

(e) 4th level

Figure 2.7: normalization factors of the CDF(2,2) wavelet in two dimension for each levell,
0 ≤ l < 5

In one dimension we have to scale the low pass coefficients with
√

2 and the high pass coefficients with
1√
2
, which is shown in Figure2.7(a). Thereafter the same has to be done in vertical direction. Here, the

normalization factors become integer powers of two as you can easily verify in Figure2.7, where each
subblock is indexed with the corresponding factor.

To summarize, we can abstract from those normalization factors during the implementation of the CDF(2,2)
wavelet transform. Afterwards they will implicit stored and processed. Note, that these implicit factors have

2.3. NORMALIZATION FACTORS OF THE CDF(2,2) WAVELET IN TWO DIMENSIONS 29

no influence to the growth of bitwidth, which is necessary to store the wavelet coefficients.

30 CHAPTER 2. WAVELET TRANSFORMS ON IMAGES

Chapter 3

Range of CDF(2,2) Wavelet Coefficients

As we have seen in Section1.6wavelet transforms can be expressed using filters.
Recursively filtering a signal with low and high pass FIR filters generally results in growing bitwidth of the
scaling and wavelet coefficients. If we focus on hardware implementation this is equivalent with growing
memory requirements to store the coefficients with additional bits. Thus we are interested in finding the
smallest bitwidth, which is necessary to store the coefficients without any loss of information.
More formally, we are searching for minimal intervals[cj , cj] and[dj , dj] wherecj , dj , cj , dj ∈ Z, cj ≤ cj ,

anddj ≤ dj for all −J < j ≤ 0, such that

cj,l ∈ [cj , cj] and dj,l ∈ [dj , dj]

holds for alll ∈ Z and−J < j ≤ 0.

Assume an image with a color depth ofdpth bits using two’s complement number representation is given.
Then the range of the pixel values is given as the interval of integers

[−2dpth−1, 2dpth−1 − 1].

Thus the minimum and maximum values of all coefficients ofc0,i are

c0 ≤ max
i

(h̃ ∗ x)i = −−2dpth−1

8 + 2dpth−1−1
4 +

3(2dpth−1−1)
4 + 2dpth−1−1

4 − −2dpth−1

8

= 3
22dpth−1 − 5

4

c0 ≥ min
i

(h̃ ∗ x)i = − 2dpth−1−1
8 + −2dpth−1

4 +
3(−2dpth−1)

4 + −2dpth−1

4 − 2dpth−1−1
8

= − 3
22dpth−1 + 1

4

The same computation can be done for the coefficientsd0,j :

d0 ≤ max
j

((g̃ ∗ x)j) = −−2dpth−1

2 + 2dpth−1 − 1 − −2dpth−1

2

= 2dpth − 1

d0 ≥ min
j

((g̃ ∗ x)j) = − 2dpth−1−1
2 − 2dpth−1 − 2dpth−1−1

2

= −(2dpth − 1)

Therefore the range of the coefficientsc0,i is[⌊
−3

2
2dpth−1 +

1
4

⌋
,

⌈
3
2
2dpth−1 − 5

4

⌉]
,

31

32 CHAPTER 3. RANGE OF CDF(2,2) WAVELET COEFFICIENTS

and the range of the coefficientsd0,j is[
−(2dpth − 1), 2dpth − 1

]
.

To determine the range of the coefficients of the next levels we could use the already obtained range and
compute the maximum and minimum values based on them. This obviously give us a lower and an upper
bound for the left and right endpoint of the interval after each wavelet transform level, respectively.
In Table3.1 we have summarized the range of the coefficients for the one dimensional case. We assume
that the original sequence has a color depth of 8 bit. This is a serious choice, because we focus on greyscale
images only. Furthermore, color images in 24 bit color depth are treated as three 8 bit greyscale images. For
detailed introduction of the representation of images in the digital world we refer to Chapter2. Therefore
the same considerations apply for color images. To compute lower and upper bounds for further bitwidths,
we refer to the Matlab code in AppendixA.3.

Table 3.1: lower and upper bounds of the endpoints of the coefficient range after each level of
transform and the corresponding bitwidth, necessary to store these coefficients

level j coefficients bitwidth
c−j+1 c−j+1 d−j+1 d−j+1 c−j+1,k d−j+1,k

1 -192 191 -255 255 9 9
2 -288 288 -384 384 9 10
3 -432 432 -576 576 10 11
4 -648 648 -864 864 11 11
5 -972 972 -1296 1296 11 12
6 -1458 1458 -1944 1944 12 12

The given bounds in Table3.1 can be improved significantly. Until now we have calculated the bounds
for each scale independently of each other. We have taken the resulting interval of scalej as input for the
computation of the new bounds for the next scalej − 1. As a result the intervals grow significantly.

Consider the recursive convolution of the signal with the analysis filterh̃ of a given wavelet, which is a low
pass filter in general. Therefore in each recursion step more and more of the high frequency components of
the signals will vanish. In this context high frequency components are neighboring samples (pixels) with
large differences. That means, that those samples become smaller with respect to there magnitude.
In order to calculate better bounds we determine new filters, which lead directly to scale1 − J . Consider
the direct calculation of the coefficientsc1−J andd1−J as

c1−J = (h̃ ∗ ((. . . h̃ ∗ ((h̃ ∗ ((h̃︸ ︷︷ ︸
J times

∗c1) ↓ 2)) ↓ 2) . . .) ↓ 2)) ↓ 2

and

d1−J = (g̃ ∗ ((. . . h̃ ∗ ((h̃ ∗ ((h̃︸ ︷︷ ︸
J−1 times

∗c1) ↓ 2)) ↓ 2) . . .) ↓ 2)) ↓ 2

respectively.
If we can interchange the filtering and downsampling operations then the analyse of the resulting filter will
give us the facility to compute improved bounds. The following proposition will be very useful.

Lemma 3.1 (Interchange of filtering and up/downsampling) [VK95]

i) Downsampling byn followed by filtering with a filter havingz-transformF (z) is equivalent to
filtering with the upsampled filterF (zn) before the downsampling.

ii) Filtering with a filter havingz-transformG(z) followed by upsampling byn is equivalent to upsam-
pling followed by filtering withG(zn).

33

Proof:

We have to show that the equation

f ∗ (x ↓ n) = ((f ↑ n) ∗ x) ↓ n (3.1)

holds in order to prove part i) of Lemma3.1. In z-transform domain the left side of Equa-
tion (3.1) is obviously equivalent to

F (z)
1
n

n−1∑
k=0

X
(
e
−i2πk

n z
1
n

)
.

On the right side of Equation (3.1) we let f ′ = (f ↑ n) ∗ x. Then we have inz-transform
domain

1
n

n−1∑
k=0

F ′
(
e
−i2πk

n z
1
n

)
.

SinceF ′(z) = F (zn)X(z) we obtain

1
n

n−1∑
k=0

F
((
e
−i2πk

n z
1
n

)n)
X(e

−i2πk
n z

1
n) =

1
n

n−1∑
k=0

F
(
e−i2πkz

)
X
(
e
−i2πk

n z
1
n

)
which can be transformed into

F (z)
1
n

n−1∑
k=0

X(e
−i2πk

n z
1
n)

by using

ei2π = 1, e−i2πk = (ei2π)−k = 1, for k ∈ Z.

The second proposition of Lemma3.1 is trivial, since both sides of the equation

(f ∗ x) ↑ n = (f ↑ n) ∗ (x ↑ n) (3.2)

leads inz-transform domain toF (zn)X(zn).

�

With the help of the proposition of Lemma3.1 we can interchange the filtering and up/downsampling
operations to make the computation of the bounds independent of the underlying signalx.
Let s(0) be the original sequencec1 filtered with the analysis low pass filterh̃, that is

s(0) = h̃ ∗ c1.

Note, that downsampling by two of this intermediate signals(0) leads toc0. We can obtains(j) as

s(j) = h̃ ∗ (s(j+1) ↓ 2)

for all J < j < 0.

Using Equation (3.1) we can exchange the filtering and the downsampling operation as follows

s(j) = ((h̃ ↑ 2) ∗ s(j+1)) ↓ 2.

34 CHAPTER 3. RANGE OF CDF(2,2) WAVELET COEFFICIENTS

That is, we can first compute the filterh̃′ = (h̃ ↑ 2) before considering signals(j+1). Sinces(j+1) can be
derived froms(j+2) in the same manner, we have

s(j) = ((h̃ ↑ 2) ∗ s(j+1)) ↓ 2
= ((h̃ ↑ 2) ∗ (h̃ ∗ (s(j+2) ↓ 2))) ↓ 2
= ((h̃ ↑ 2) ∗ ((h̃ ↑ 2) ∗ s(j+2)) ↓ 2) ↓ 2
= ((((h̃ ↑ 2) ↑ 2) ∗ (h̃ ↑ 2) ∗ s(j+2)) ↓ 2) ↓ 2.

Since the operation∗ is associative, we get

s(j) = (((h̃ ↑ 4) ∗ (h̃ ↑ 2)) ∗ s(j+2)) ↓ 4.

After J level we obtain

s(1−J) = (((h̃ ↑ 2J) ∗ (h̃ ↑ 2J−1) ∗ . . . ∗ (h̃ ↑ 21)) ∗ s0) ↓ 2J . (3.3)

We will prove this by induction over the number of levelsJ .

Proof:

First we have to verify that the statement holds forJ = 1

s(−1) = h̃ ∗ (s(0) ↓ 2)
= ((h̃ ↑ 2) ∗ s(0)) ↓ 2,

which was already mentioned.

Now assume, that

s(1−J) = (((h̃ ↑ 2J) ∗ (h̃ ↑ 2J−1) ∗ . . . ∗ (h̃ ↑ 21)) ∗ s(0)) ↓ 2J (3.4)

holds for someJ with J > 1. We now have to show thats(−(J+1)) can be represented accord-
ingly. Let

h̃(J) = (h̃ ↑ 2J) ∗ (h̃ ↑ 2J−1) ∗ . . . ∗ (h̃ ↑ 21)

be the iterated and upsampled filter corresponding to levelJ .

Using Equation (3.4) we obtain

s(−(J+1)) = h̃ ∗ (s(−J) ↓ 2)

= h̃ ∗
([

(h̃(J) ∗ s(0)) ↓ 2(J)
]
↓ 2
)

= h̃ ∗
[
(h̃(J) ∗ s(0)) ↓ 2(J+1)

]
=

(
(h̃ ↑ 2(J+1)) ∗ (h̃(J) ∗ s(0))

)
↓ 2(J+1)

=
(
(h̃ ↑ 2(J+1)) ∗

[
((h̃ ↑ 2J) ∗ (h̃ ↑ 2J−1) ∗ . . . ∗ (h̃ ↑ 21)) ∗ s(0)

])
↓ 2(J+1)

=
(
((h̃ ↑ 2(J+1)) ∗ (h̃ ↑ 2J) ∗ (h̃ ↑ 2J−1) ∗ . . . ∗ (h̃ ↑ 21)) ∗ s(0)

)
↓ 2(J+1)

which proves the supposition. �

In an analogous manner we define the filterg̃(J) for the high pass filter̃g. In Table3.2we have summarized
the range of the coefficients for the one dimensional case. We again assume that the original sequence has
a color depth of 8 bit.

3.1. ESTIMATION OF COEFFICIENTS RANGE USING LIFTING WITH ROUNDING 35

Table 3.2: Range of coefficients after each level of transform

level j coefficients bitwidth
c−j+1 c−j+1 d−j+1 d−j+1 c−j+1,k d−j+1,k

1 -192 191 -255 255 9 9
2 -208 207 -319 319 9 10
3 -216 215 -351 351 9 10
4 -217 216 -358 358 9 10
5 -219 218 -360 360 9 10
6 -217 216 -363 363 9 10

3.1 Estimation of Coefficients Range using Lifting with Rounding

The above computed ranges of coefficients at different scales and orientation refer to filter bank or Lifting
implementations of the CDF(2,2) wavelet transform. We do not yet considered the case of a integer-to-
integer mapping of this wavelet transform, which will be used in our hardware architecture. Let us consider
the modified Lifting Scheme with respect to rounding from Section1.8.1. The prediction step is given as

d′j,k = c′j+1,2k+1 −
⌊

1
2
(c′j+1,2k + c′j+1,2k+2)

⌋
,

and the update step as

c′j,k = c′j+1,2k +
⌊

1
4
(d′j,k + d′j,k−1)

⌋
.

The proven lower and upper bounds for the endpoints of the coefficient interval could be violated by
rounding. Therefore, let us estimate the maximum error that can occur, if we use rounded predict and
update steps.
Consider the maximum distance betweend′j,k anddj,k andc′j,k andcj,k for all k ∈ Z and−J < j ≤ 0,
that is∣∣d′j,k − dj,k

∣∣ and
∣∣c′j,k − cj,k∣∣ ,

respectively.
We can deduce estimations of these distances using the triangle inequality, that is

∣∣d′j,k − dj,k

∣∣ =
∣∣∣∣c′j+1,2k+1 −

⌊
c′j+1,2k + c′j+1,2k+2

2

⌋
− cj+1,2k+1 +

cj+1,2k + cj+1,2k+2

2

∣∣∣∣
≤

∣∣∣∣c′j+1,2k+1 −
c′j+1,2k + c′j+1,2k+2

2
− cj+1,2k+1 +

cj+1,2k + cj+1,2k+2

2

∣∣∣∣+ 1

≤
∣∣c′j+1,2k+1 − cj+1,2k+1

∣∣+ ∣∣∣∣c′j+1,2k − cj+1,2k

2

∣∣∣∣+ ∣∣∣∣c′j+1,2k+2 − cj+1,2k+2

2

∣∣∣∣+ 1

and ∣∣c′j,k − cj,k∣∣ =
∣∣∣∣c′j+1,2k +

⌊
d′j,k + d′j,k−1

4

⌋
− cj+1,2k −

dj,k + dj,k−1

4

∣∣∣∣
≤

∣∣c′j+1,2k − cj+1,2k

∣∣+ ∣∣∣∣d′j,k − dj,k

4

∣∣∣∣+ ∣∣∣∣d′j,k−1 − dj,k−1

4

∣∣∣∣+ 1

in general for−J < j < 0 andk ∈ Z.

36 CHAPTER 3. RANGE OF CDF(2,2) WAVELET COEFFICIENTS

The distance of
∣∣∣d′0,k − d0,k

∣∣∣ can be estimated somewhat better as

∣∣d′0,k − d0,k

∣∣ =
∣∣∣∣c′1,2k+1 −

⌊
c′1,2k + c′1,2k+2

2

⌋
− c1,2k+1 +

c1,2k + c1,2k+2

2

∣∣∣∣
=

∣∣∣∣c1,2k + c1,2k+2

2
−
⌊
c′1,2k + c′1,2k+2

2

⌋∣∣∣∣
≤ 1

2
,

becausec1,2k andc1,2k+2 are integers andc′1,k = c1,k for all k ∈ Z.

The special case for the distance
∣∣∣c′0,k − c0,k

∣∣∣ is estimated by

∣∣c′0,k − c0,k

∣∣ ≤ ∣∣c′1,2k − c1,2k

∣∣+ ∣∣∣∣d′0,k − d0,k

4

∣∣∣∣+ ∣∣∣∣d′0,k−1 − d0,k−1

4

∣∣∣∣+ 1

=
1
4
· 1
2

+
1
4
· 1
2

+ 1 =
5
4

asc1,k = c′1,k for all k ∈ Z.

In summary, letdistc(l) anddistd(l) be the estimation for the distance
∣∣∣c′−l,k − c−l,k

∣∣∣ and
∣∣∣d′−l,k − d−l,k

∣∣∣,
respectively. Then it holds, that

distd(l) = 2 distc(l − 1) + 1 (3.5)

and

distc(l) = distc(l − 1) +
1
2

distd(l) + 1

= 2distc(l − 1) +
3
2

(3.6)

for l > 1 and

distd(0) =
1
2

and distc(0) =
5
4

for l = 0.

These arefirst order recurrence equations[And01].

Let us give a definition of those types of equations first.

Definition 2 Letf : N0 −→ R be a mapping from integers to the real numbers, then the relation

f(n) = a · f(n− 1) + b, f(0) = c

with a, b, c ∈ R andn ∈ N0 is called first order recurrence.

The explicit solution for suchf(n) is given in the following theorem.

Theorem 1 Letf be a real valued sequence, such that

f(n) = a · f(n− 1) + b, f(0) = c

with a, b, c ∈ R andn ∈ N0 anda 6= 1 then it holds that

f(n) = an · f(0) + b · a
n − 1
a− 1

(3.7)

for n > 0.

3.1. ESTIMATION OF COEFFICIENTS RANGE USING LIFTING WITH ROUNDING 37

Using Equation (3.7) and settinga = 2 and b = 3
2 we obtain explicit version of Equation (3.5) and

Equation (3.6) leading to

distc(l) =
11
4

2l − 3
2

(3.8)

distd(l) =
11
4

2l − 2 (3.9)

for all 0 < l < J .

In Table3.3you can see the estimations fordistc anddistd up to level five.

Table 3.3: error estimation of the coefficients range using Lifting with rounding in comparison
to Lifting without rounding with respect to the bitwidth

level l distc(l − 1) distd(l − 1)
1 1.25 0.5
2 4 3.5
3 9.5 9
4 20.5 20
5 42.5 42

With the help of Equation (3.8) and Equation (3.9) we have computed the estimations fordistc anddistd up
to level5. These estimations were added to the intervals from Table3.2and are illustrated in Figure3.1and
Figure3.2. As you can see, up to level four there is no need to provide additional bits as the intervals still

[−
19

2,
19

1]

[−
19

3.
25
,1

92
.2

5]

[−
20

8,
20

7]

[−
21

2,
21

1]

[−
21

6,
21

5]

[−
22

5.
5,

22
4.

5]

[−
21

7,
21

6]

[−
23

7.
5,

23
6.

5]

[−
21

9,
21

8]

[−
26

1.
5,

26
0.

5]

cj,k c′j,k

nr. of levels

rangeof

1 2 3 4 5

−512

−384

−256

−128

0

128

256

384

512

Figure 3.1: range of the coefficientscj,k in comparison toc′j,k with respect to the range of the
two’s complement number representation

reside inside the range
[
−29, 29 − 1

]
and

[
−210, 210 − 1

]
, respectively. Due to the partitioned approach

38 CHAPTER 3. RANGE OF CDF(2,2) WAVELET COEFFICIENTS

to wavelet transforms discussed in Chapter5 and the given prototyping platform with limited on chip
memory resources we will perform up to 4 levels. Therefore the given bounds of Table3.2 still holds for
our application.

[−
25

5,
25

5]

[−
25

5.
75
,2

55
.7

5]

[−
31

9,
31

9]

[−
32

2.
5,

32
2.

5]

[−
35

1,
35

1]

[−
36

0,
36

0]

[−
35

8,
35

8]

[−
37

8,
37

8]

[−
36

0,
36

0]

[−
40

2,
40

2]

[−
36

3,
36

3]

[−
44

9,
44

9]

dj,k d
′
j,k

nr. of levels

rangeof

1 2 3 4 5 6

−512

−384

−256

−128

0

128

256

384

512

Figure 3.2: range of the coefficientsdj,k in comparison tod′j,k with respect to the range of the
two’s complement number representation

The careful reader would have noticed, that the range for the coefficientsd′0,k for all k ∈ Z remains the
same in Figure3.2. In contrast to the estimation of the errordistd(0) = 0.5 we can show that the smallest
and greatest coefficients do not exceed the range[−255, 255] as

d0 = 127− −128− 128
2

= 127−
⌊
−128− 128

2

⌋
= max

k
d′0,k

and

d0 = −128− 127 + 127
2

= −128−
⌊

127 + 127
2

⌋
= min

k
d′0,k

Thus, we see that the computed bitwidths of Table3.2 are large enough if the computation of the one
dimensional CDF(2,2) wavelet transform was done using the Lifting Scheme with or without rounding.

3.2 Range of coefficients in the two dimensional case

If we are talking about image wavelet transforms we apply tensor products of one dimensional transforms.
Remember that in the traditional case vertical and horizontal transforms are executed alternatively. Now

3.2. RANGE OF COEFFICIENTS IN THE TWO DIMENSIONAL CASE 39

we apply the filters̃h andg̃ to coefficients which are already filtered by eitherh̃ or g̃. This influences the
precomputation of the filters as it was shown in Equation (3.4). Accordingly to the multiresolution scheme,
which was introduced in Section2.2, we get coefficient ranges, which are different for each scale and each
orientation. In Figure3.3 we have repeated the intervals of the different subbands from Table3.2. The

[−192, 191] [−255, 255]

(a)

[−255, 255]
[−

20
8,

20
7]

[−
31

9,
31

9]

(b)

[−255, 255]

[−
31

9,
31

9]

[−
21

6,
21

5]

[−
35

1,
35

1]

(c)

[−255, 255]

[−
31

9,
31

9]

[−
35

1,
35

1]

[−
21

7,
21

6]

[−
35

8,
35

8]

(d)

Figure 3.3: coefficient range after four level of the CDF(2,2) wavelet transform in horizontal
direction, (the bounds are taken from Table3.2)

bounds of the endpoints of these coefficient ranges were deduced, since we have performed all horizontal
transforms first (in our example four). This results in a slightly different decomposition scheme as the tree
structured one introduced in Section2.2.

In order to obtain good estimations of the coefficient ranges in the two dimensional case we want to apply
all vertical transforms at once, too. Our starting point is the decomposition scheme shown Figure3.3(d)
with the corresponding maximum and minimum values. The order of calculation is depicted in Figure3.4(a)
and Figure3.4(b). The coefficient ranges can now be obtained by taking the maximum and minimum over
all different ranges in a given subblock of the tree structured decomposition.

(a) (b) (c) (d)

Figure 3.4: (a) subdivision in coefficient blocks with different ranges after all horizontal trans-
forms have taken place, (b) after all vertical transforms, (c) different rows transformed with
different number of levels, (d) the traditional multiscale representation

Another way to preserve the traditional decomposition type is to apply only that much levels of transform
in horizontal and vertical direction, that are necessary. This is illustrated in Figure3.4(c)and Figure3.4(d).
Note, that we have to take the maximum and minimum over all rows in the column under consideration
before calculating the bounds of the endpoints of the coefficients range in vertical direction.

All calculations were executed using Matlab. We refer to AppendixA.3 for the corresponding scripts.
As a consequence our memory modules for the 2D-DWT should have at minimum the bitwidth given in
Figure3.5.

40 CHAPTER 3. RANGE OF CDF(2,2) WAVELET COEFFICIENTS

The hardware implementation of these memory modules is done using slices of different bitwidth. These
slices are shown in Figure3.5 as dashed lines. Note, that we take the maximum bitwidth of the several
subbands of the slice. For further details of the implementation itself see Section6.3.2.

10

11

11

10

11

11

10

11

11

10

11

11

10

10

1011
1111 11

Figure 3.5: minimal affordable memory bitwidth

Chapter 4

State of the art Image Compression
Techniques

In this thesis we focus mainly on the adaption of state of the art wavelet based image compression tech-
niques to programmable hardware. Thus, an understanding of these methods is basically. Therefore we take
a closer look at these algorithms in this chapter.
In 1993, Shapiro has presented an efficient method to compress wavelet transformed images. Thisembed-
ded zerotree wavelet(EZW) encoder exploits the properties of the multiscale representation. An significant
improvement of this central idea was introduced by Said and Pearlman in 1996. Their algorithmSet Par-
titioning In Hierarchical Trees(SPIHT (pronounced:spite)) is explained and analyzed in detail in the
following.

4.1 Embedded Zerotree Wavelet Encoding

To explore the special properties of the multiresolution scheme after a wavelet transform of several levels,
Shapiro [Sha93] has proposed an algorithm calledembedded zerotree wavelet encoder. This algorithm takes
effort from the self similarities of the different scales in each orientation. For illustration see Figure4.1.
The key idea behind this special codec is to model the self similarities as zerotrees and try to exclude huge
areas in lower scales of the image from compression due to only one coefficient located in higher scales of
the multiresolution scheme.
This results in a so called embedded bit stream. In such a bit stream, the important information comes first.
Thus, in terms of compression any prefix of the bit stream represents a coarse version of the original. The
visual quality of the reconstructed images increases as the prefix becomes longer.

4.1.1 Wavelet Transformed Images

Before embedded zerotree like algorithms are applied, a wavelet transform is performed on the image. This
results in a multiscale representation. The transform reduces the correlation between neighboring pixels.
The energy of the original image is concentrated in the lowest frequency band of the transformed image.
We have already mentioned the specific properties of this decomposition in Section2.2.
Additionally, self similarities between different scales which result from the recursive application of the
wavelet transform step to the low frequency band can be observed (see Figure4.1). Consequently, based
upon these facts good compression performance can be achieved if those coefficients are first transmitted
which represent most of the image energy.

4.1.2 Shapiro’s Algorithm

The overall encoding procedure is basicly a kind ofbitplanecoding. Thereby thekth bits of the coefficients
constitute abitplane. In general, a bitplane encoder starts coding with the most significant bit of each

41

42 CHAPTER 4. STATE OF THE ART IMAGE COMPRESSION TECHNIQUES

(a) peppers, N = 512,
dpth = 8

(b) peppers CDF(2,2) trans-
formed, (six levels)

Figure 4.1: self similarities illustrated at the wavelet transformed imagepeppersup to six levels

coefficient. When all those bits are coded, the next bitplane is considered until the least significant bits are
reached. Within a bitplane the bits of the coefficients with largest magnitude come first. We have illustrated
this ordering in Figure4.2 as bar chart. The coefficients are shown in decreasing order from left to right.
Each coefficient is represented with eight bit, where the least significant bit is in front.

bitplanes

bit

coefficient

magnitude

Figure 4.2: bitplane coding

As a consequence, such a bitplane coding scheme encodes the important information in terms of compres-
sion efficiency first, if a energy compacting transform was applied before (see Equation (2.2)). On the other
hand, we have to store or transmit the ordering information, which can scatter the compression effect.

Shapiro does not reorder the wavelet transform coefficients. He proposes to scan the samples from left to
right and from top to bottom within each subband, starting in the upper left corner. The subbands LH, HL,
and HH at each scales are scanned in that order. Furthermore, in contrast to traditional bitplane coders
he has introduced data dependent examination of the coefficients. The idea behind is, if there are large
areas with unimportant samples in terms of compression, they should be excluded from exploration. The
addressed self similarities are the key to perform such exclusions of large areas.

In order to exploit the self similarities during the coding process, oriented trees of outdegree four are taken
for the representation of a wavelet transformed image. Each node of the trees represents a coefficient of
the transformed image. The levels of the trees consist of coefficients at the same scale. The trees are rooted
at the lowest frequency subbands of the representation. In Figure4.3 we have only one coefficient in the
lowest frequency band LL(4). The corresponding node has three children, namelyÎ(0, 1), Î(1, 0), and

4.1. EMBEDDED ZEROTREE WAVELET ENCODING 43

Î(1, 1), depicted with blue, green, and red color, respectively. Each coefficient in the LH, HL, and HH
subbands of each scale has four children. The corresponding trees with all their coefficients are drawn
with appropriate brightened color. The coefficients at the highest frequency subbands have no children.

Î(6, 2)

Î(5, 5)

Î(0, 3)

Figure 4.3: oriented quad tree’s, four transform level,N = 16

To address the data structure more precisely, we have emphasized three sample nodes of different trees,
namely at index positionŝI(0, 3), Î(5, 5), andÎ(6, 2). Each of them represents a root of a subtree, too.
The four children are marked with hatching in the corresponding color.

Shapiro assumes that each coefficientc is a good predictor of the coefficients which are represented by the
subtree rooted byc. The overall procedure is controlled by an attribute assigned to each coefficientc of the
quad trees which gives information on the significance of the coefficients rooted byc.

Definition 3 A coefficient of the wavelet transformed image is insignificant with respect to a thresholdth
if its magnitude is smaller than2th, th ∈ N0.
Otherwise it is called significant with respect to the thresholdth.

In the following we have written Shapiro’s algorithm in pseudo code notion.

th := kmax;
while (th > 0) {

dominant_pass();
th−−;
subordinate_pass();

}

At first we compute the maximum thresholdkmax.

kmax = blog2 max
{(i,j)|0≤i,j<N}

|Îi,j |c.

It is easy to see that the bitskmax + 1, kmax + 2, . . ., dpth−1 of all the coefficients are zero so that they
have not to be transmitted, i.e., the bitplaneskmax + 1, . . . ,dpth−1 must not be processed.

Dominant pass In the dominant pass, the coefficients are scanned in raster order (from left to right and
from top to bottom) within the quadrants. The scan starts with the quadrants of the highest transform level.
In each transform level the quadrants are scanned in the order HL, LH, and HH. The coefficients are coded
by symbolP, N, ZTR , or IZ . This is done in the following manner. A coefficient is coded by

• P, if it is greater than the given threshold2th and is positive,

• N, if its absolute value is greater than the given threshold2th and it is negative,

44 CHAPTER 4. STATE OF THE ART IMAGE COMPRESSION TECHNIQUES

• ZTR , if its absolute value is smaller than the given threshold2th and the absolute value of all coef-
ficients in the corresponding quad tree are smaller than the threshold, too

• IZ , if its absolute value is smaller than the given threshold2th and there exists at least one coefficient
in the corresponding quad tree that is greater than the given threshold with respect to the absolute
value.

Furthermore there is a symbolZ which is used within the high frequency bands of level one only, because
all coefficients in these quadrants could not be root of a zerotree. This symbolZ can thus be seen as the
combination ofZTR andIZ for this special case.
Once a coefficient is encoded as the symbolP or N it is not included in the determination of zerotrees.

Subordinate pass Each coefficient, that has been coded asP or N in the previous dominant pass, is
now refined, while coding theth-bit of its binary representation. As already mentioned this corresponds
to a bitplane coding, where the coefficients are refined in data dependent manner. The most important fact
hereby is, that no indices of the coefficients under consideration have to be coded. This is done implicitly,
due to the order in which they become significant (coded asP or N in the dominant pass).

Let us conclude the discussion of Shapiro’s algorithm with a detailed explanation of the following simple
example.

Example 1 Suppose we want to encode the wavelet transformed image given in Figure4.4using the em-
bedded zerotree wavelet algorithm of Shapiro. At first we obtainkmax = 6 as the maximum threshold.

(a) greyscales

75 97 −1 −2 1 −2 3 −6

92 −9 12 −39 1 0 1 −8

1 26 −1 −3 3 1 −1 −14

45 −67 17 3 12 −5 −8 −3

−1 2 8 11 1 1 1 −1

−3 0 4 4 2 1 2 −3

−5 −6 −4 −3 −1 0 0 −3

8 −7 −22 −12 10 −9 1 −2

(b) coefficients

Figure 4.4: wavelet transformed portion of an image,N = 8, dpth = 8

Thus, in the first dominant pass we are looking for coefficients whose absolute value is greater than or
equal26 = 64. The encoding starts as follows:

Scanning LL (3): read 75 ⇒ output P
Scanning HL (3): read 97 ⇒ output P
Scanning LH (3): read 92 ⇒ output P
Scanning HH (3): read −9 ⇒ output ZTR
Scanning HL (2): read −1 ⇒ output ZTR

read −2 ⇒ output ZTR
read 12 ⇒ output ZTR
read −39 ⇒ output ZTR

Scanning LH (2): read 1 ⇒ output ZTR
read 26 ⇒ output ZTR
read 45 ⇒ output ZTR
read −67 ⇒ output N

Scanning LH (1): read −4 ⇒ output ZTR

4.2. SPIHT- SET PARTITIONING IN HIERARCHICAL TREES 45

read −3 ⇒ output ZTR
read −22 ⇒ output ZTR
read −12 ⇒ output ZTR

As you can see, the several subbands are scanned in the given order. In contrast to a bitplane coder, e.g.,
the subbands HH(2) and HH are completely excluded from the scan, becauseÎ1,1 represents a zerotree.
Furthermore the subband HL is excluded and the subband LH is scanned only partially. The corresponding
block is depicted in Figure4.4(b).
In the subordinate pass we have to refine four coefficients, which were encoded with the symbolsP andN
in the previous dominant pass. These are the coefficientsÎ0,1, Î1,0, Î0,0, andÎ3,1 producing the output

Scanning LL (3): 1 0 0 0.

They are ordered in decreasing order of the reconstructed values. The reconstructed coefficients are ini-
tialized to zero at the decoder. If a coefficient is coded with the symbolP or N using thresholdk then
the reconstructed value is set to the middle of the interval[2k, 2k+1]. Depending on the next refinement
bit the reconstructed value is adapted accordingly, resulting in an interval of half the size. In our ex-
ample the first refinement bit of the coefficientÎ(3, 1) is one (it became significant in bitplane6). Since
Î(3, 1) = 97 > 96 = 64 + 32 the 5th bit of the binary representation is set. Therefore the new re-
constructed value is set to112, the middle of the interval[96, 128). The ordering of the refinement bits
improves the creation of an embedded compressed bitstream.

4.2 SPIHT- Set Partitioning In Hierarchical Trees

Said and Pearlman have significantly improved the codec of Shapiro. The main idea is based on partition-
ing of sets, which consists of coefficients or representatives of whole subtrees [SP96]. They classify the
coefficients of a wavelet transformed image in three sets:

1. the list LIP of insignificantpixels which contains the coordinates of those coefficients which are
insignificant with respect to the current thresholdth.

2. the list LSP of significant pixels which contains the coordinates of those coefficients which are
significant with respect toth, and

3. the list LIS of insignificantsets which contains the coordinates of the roots of insignificant subtrees.

During the compression procedure, the sets of coefficients inLIS are refined and if coefficients become
significant they are moved fromLIP to LSP.
The first difference to Shapiro’s EZW algorithm is the distinct definition of the significance. Here, the root
of the tree is excluded from the computation of the significance attribute, which can be explained more
simply using the following notations.

4.2.1 Notations

For allm with 0 < m ≤ log2N , letH = H(m) be the set of the coordinates of the tree roots afterm
wavelet transform steps, i.e.,

H := {(i, j) | 0 ≤ i, j < N

2m−1
}. (4.1)

Furthermore, let

O(i, j) :=
{

(2i, 2j) , (2i, 2j + 1),
(2i+ 1, 2j) , (2i+ 1, 2j + 1)

}
(4.2)

be the set of the coordinates of the children of node(i, j), in the case that this node has children. The set
D(i, j) is composed of the descendants of node(i, j), and

L(i, j) := D(i, j)\O(i, j) (4.3)

46 CHAPTER 4. STATE OF THE ART IMAGE COMPRESSION TECHNIQUES

(i, j)

O
D

O
D

O
D

O
D
D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

D
L

Figure 4.5: the setsO(i, j), D(i, j) andL(i, j) with i = 1 andj = 1, the labelsO, D, L show,
that this coefficients is a member of the corresponding set,(N = 8)

is the set of the descendants excluding the four children. Figure4.5 illustrates these sets.
Each element ofLIS will have as attribute eitherA orB. If the type of an entry(i, j) ∈ LIS isA, then the
entry(i, j) represents setD(i, j). If the type isB, then it representsL(i, j).

4.2.2 Significance Attribute

Now let us define the significance of these sets.

Definition 4 A setT of coefficients is calledinsignificant with respect to the thresholdth, th ∈ N0, if all
of its elements are insignificant with respect to the thresholdth.
More formally, we define a functionSth

Sth(T) :=

{
1, max

(i,j)∈T
|Îi,j | ≥ 2th

0, else
(4.4)

which characterizes the significance ofT .
Therefore, a setT is called insignificant if and only ifSth(T) = 0.
The significance of a single coefficientSth({Î(i, j)}) is denoted asSth(i, j), in short.

In theSPIHTalgorithm the signification is computed for the setsD(i, j) andL(i, j). As you will see, the
root of each quadtree is, in contrast to the algorithm presented by Shapiro, not included in the computation
of the significance.

4.2.3 Parent-Child Relationship of the LL Subband

Shapiro proposed, that each element in the LL subband has three children as depicted in Figure4.6(a). For
example, the coefficient̂I0,1 (blue color) has the three children̂I0,3, Î2,1, andÎ2,4 (depicted with brighten
color). Said and Pearlman have changed this parent-child relationship in the LL subband as shown in
Figure4.6(b). Here, each fourth coefficient is not a tree root. In the example the coefficientÎ0,0 does not
have any children. More formally, all coefficients in the setH with even row and even column index have
no children.

4.2.4 The basic Algorithm

In general, the decoder duplicates the execution path of the encoder as it was also the case in Shapiro’s
algorithm. To ensure this behavior, the coder sends the result of a binary decision to the decoder before a
branch is taken in the algorithm. Thus, all decisions of the decoder are based on the received bits.
The name of the algorithm is composed of the wordssetandpartitioning. The setsO(i, j), D(i, j) and
L(i, j) were already mentioned. Now we introduce the set partitioning rules of Said and Pearlman.

4.2. SPIHT- SET PARTITIONING IN HIERARCHICAL TREES 47

(a) in Shapiro’s
EZW algorithm

(b) in theSPIHT
algorithm

Figure 4.6: different parent-child relationships of the LL band

• the initial partition is formed with the sets

– {(i, j)} for all (i, j) ∈ H and

– D(i, j) for all {(i, j)|(i, j) ∈ H with D(i, j) 6= ∅}

• if Sk(D(i, j)) = 1 thenD(i, j) is partitioned intoL(i, j) and the four sets{(e, f)} ∈ O(i, j)

• if Sk(L(i, j)) = 1 thenL(i, j) is partitioned into the four sets{(e, f)}, with (e, f) ∈ O(i, j)

The pseudo code of the basicSPIHTalgorithm is shown in Figure4.7.
It can be divided into three parts. The first part initializes the lists, computes, and output the initial threshold
similar to the algorithm of Shapiro.

Afterwards, the sorting phase and the refinement phase are executedkmax + 1 times starting with bitplane
kmax down to bit plane 0. In passk, the sorting phase first outputs thekth bits of the coefficients inLIP.
If the kth bit of some coefficient̂Ii,j is 1, i.e.,Sk(i, j) = 1, coefficientÎi,j is significant with respect tok
and insignificant with respect tok + 1. Therefore, the sign of̂Ii,j has to be output.

Sorting phase The elements ofLIS are now processed using the set partitioning rules. First, the signifi-
cance bit for setD(i, j) orL(i, j) is written out, respectively.
The set corresponding to an element(i, j) of type A, which is now significant with respect to the current
threshold, is partitioned into four single element sets{(e, f)} for each(e, f) ∈ O(i, j). Each of the co-
efficients(e, f) are appended toLIP or LSP, depending on there significance. The element(i, j) itself is
changed to type B and moved to the end of the listLIS, if the setL(i, j) is non empty.
The elements(i, j) of type B in LIS are refined to the four elements(e, f) ∈ O(i, j) of type A, if the
Sk(L(i, j)) = 1.

Refinement phase The refinement phase outputs thekth bit of each elements of listLSP, if it was not
included in the last sorting phase.

Another advantage ofSPIHT in comparison to Shapiro’s algorithm is, that the complete outcome of the
encoder is binary. Therefore, the compression rate can be achieved exactly and arithmetic encoders for
binary alphabets can be applied to further increase the compression efficiency.

48 CHAPTER 4. STATE OF THE ART IMAGE COMPRESSION TECHNIQUES

(0) Initialization
compute and output k = blog2 max

{(i,j)|0≤i,j<N}
|Îi,j |c;

set LSP := ∅ and LIP := H(nrOfLevels)
add those elements (i, j) ∈ H(nrOfLevels) with D(i, j) 6= ∅ to LIS as type A;

(1) Sorting phase
(2) foreach (i, j) ∈ LIP
(3) output Sk(i, j);
(4) if Sk(i, j) = 1 then

move (i, j) to LSP and output the sign of Ii,j

(5) foreach (i, j) ∈ LIS
(6) if (i, j) is of type A then
(7) output Sk(D(i, j));
(8) if Sk(D(i, j)) = 1 then
(9) foreach (e, f) ∈ O(i, j)
(10) output Sk(e, f);
(11) if Sk(e, f) = 1 then

add (e, f) to LSP and output the sign of Îe,f

(12) else
append (e, f) to LIP;

(13) if L(i, j) 6= ∅ then
(14) move (i, j) to the end of

LIS as an entry of type B and go to step (5)
(15) else remove (i, j) from LIS
(16) if (i, j) is of type B then
(17) output Sk(L(i, j));
(18) if Sk(L(i, j)) = 1 then
(19) append each (e, f) ∈ O(i, j)

to LIS as an entry of type A
and remove (i, j) from LIS;

(20) Refinement phase
foreach (i, j) ∈ LSP except those included in the last sorting phase

output the kth bit of |Îi,j |;
(21) Quantization-step update
(22) decrement k; if k < 0 stop; else goto step (1);

Figure 4.7: TheSPIHTalgorithm

Chapter 5

Partitioned Approach

In this chapter we present the partitioned approach to wavelet transform images. This partitioned approach
itself was developed in 19981.
At first we motivate, why there is a need for such an approach, if one considers implementations of image
compression algorithm based on wavelet transforms in programmable hardware. We discuss accurately
why these wavelet based image compression algorithms need to be adapted at all to implement them into
programmable hardware. Then we present the application of the partitioned approach to lossless image
compression. The more interesting investigation is the extension to lossy image compression, where we
have to deal with boundary effects between the image partitions. Here we present different solutions in
order to avoid block artefacts known from compression methods based on discrete cosine transforms.

In Section5.3 of this chapter we present the modifications to the originalSPIHTalgorithm, which cor-
respond to the accommodation to the partitioned approach and the necessities for hardware architectures
with minimal memory requirements. Then we compare the two algorithms in terms of mean squared error
in Section5.4.

5.1 Drawbacks of the Traditional 2D-DWT on Images

Let us review the traditional two dimensional discrete wavelet transform on images introduced in Chapter2.
We have seen, that images are wavelet transformed using the one dimensional transform applied to rows
and columns of the image, separately. In Section1.8we have introduced the Lifting Scheme as a technique
to compute the transform in place.
In the case, that the image can be stored completely in main memory (software solution) of a PC or in on
chip memory (hardware solution) the transform can easily be implemented. The only additional buffer we
need has a size comparable to the size of a row or a column, respectively, to reorder the low and high pass
coefficients. To compute the 2D-DWT we have to load the image into the memory. Then we transform it
using the mentioned buffer, if enough internal memory is available. Typically, images have hundreds of
rows and columns and each pixel is represented by one up to24 bits or even more. Therefore we have to
deal with data volumes of several kbytes up to a couple of megabytes. Obviously, this exceeds the memory
limits, if we consider hardware solutions. Thus, we have to limit the number of rows and columns and
the maximum bitwidth. As a consequence images of larger sizes must be split into manageable pieces.
Remember from Section2.1 that we then have to deal with boundary effects even at the boundary of each
piece of the original image, when targeting to lossy compression.

1 After making first experiences with the corresponding hardware architecture for lossless image compression on FPGAs we have
published the basic ideas at the Custom Integrated Circuits Conference in 2000 (CICC2000) [RM00]. The extension to lossy image
compression was presented at the ACM conference on Field Programmable Gate Arrays in 2001 (FPGA2001) [RM01]. The FPGA
implementation of a modifiedSPIHTalgorithm based on the partitioned approach was published at the ACM conference on Field
Programmable Gate Arrays (FPGA2002) [RFM02a] and the45th Midwest Symposium on Circuit and Systems (MWSCAS2002) in
2002 [RFM02b].

49

50 CHAPTER 5. PARTITIONED APPROACH

On the other hand we can store the image data externally and compute the transform row by row and col-
umn by column, reducing the internal memory to the size of a row or column. In that case, the data transfer
from and to the internal memory will become the bottleneck of the implementation. Remark, that already
transformed coefficients have to be saved and loaded again during the next level of computation. Further-
more, after the whole transform had taken place, the transformed image is stored in external memory, but
an embedded zerotree wavelet coder needs random access to it.

To overcome these difficulties we will present the partitioned approach to wavelet transform images, which
is applicable to both lossless and lossy compression.

5.2 Partitioned 2D-DWT

Let us start with some notations. Remember from Chapter2 that we consider anN × N image as two
dimensional pixel arrayI with N rows andN columns and assume adpth-bit greyscale resolution. Fur-
thermore, we assume without loss of generality that the equationN = 2k holds for some positive integer
k.
Partitioning an imageI into (N

q)2 quadratic subimages

I(0,0), . . . , I(N
q −1, N

q −1)

of sizeq with q = 2r for some positive integer1 ≤ r < k results in subimages with

I(s,t)[i, j] = I[s · q + i, t · q + j]

for all 0 ≤ s, t < N
q and0 ≤ i, j < q.

Before the transform takes place, we partition the original imageI into quadratic subimagesI(s,t) as
described above. Then each subimage is transformed in the conventional way. We refer for an illustration
to Figure5.1. The first idea is to transform the subimages independently of the neighboring subimages.
However, this approach is only applicable, if no quantization takes place, otherwise artefacts are introduced.
What are the advantages and disadvantages of this partitioned approach?

+ The internal memory requirements are dramatically reduced.

+ The subimages can be transformed independently of each other.

+ The traditional 2D-DWT can be directly applied to the subimages without any modifications.

− It is not applicable for lossy compression.

For lossy compression we have to take into account the coefficients of the neighboring subimages in order
to guarantee that the partitioned approach is as efficient as the traditional one. We will denote this type
of transformation aspartitioned approach with boundary treatment. Suppose we have given a wavelet
transformed imagêI using the traditional approach as shown in Figure5.1(a). We have to manage that the
partitioned transformed image is a permutation of the coefficients of the traditional transformed image. For
illustration consider Figure5.2(b). Consider the LL subband on the left of Figure5.2(a), which corresponds
to the approximated original at half the resolution, and the64 LL subbands of all partitions on the right.
We observe, that composing all LL subbands on the right results in the LL subband on the left.

We can compute the partitioned 2D-DWT with boundary treatment even without the traditional one given
first. We will discuss it later in this chapter. Let us summarize first the advantages and disadvantages for
this kind of partitioned transform, too.

+ The internal memory requirements are dramatically reduced, too. In contrast to the approach with
reflection at the partition boundaries we need additional memory for coefficients of neighboring
subimages or we have to deal with increased data transfer volume.

+ It is applicable for lossy compression.

5.2. PARTITIONED 2D-DWT 51

(a) traditional 2D-DWT
scheme

(b) 2D-DWT scheme based on
the partitioned approach

Figure 5.1: traditional versus partitioned two dimensional wavelet transform of images,N =
512, q = 64, five level of transform

− We reduced the internal memory at the expense of increased computational load or larger data trans-
fer volume. The amount of additional complexity depends on the partition sizeq and the filter length
of the corresponding low and high pass filter of the wavelet.

5.2.1 Lossless Image Compression

Lossless image compression of partitioned images is quite easy. The subimagesI(s,t) can be wavelet
transformed independently of the other subimages. Of course, the resulting transformed image which is
composed bŷI(1,1), . . . , Î(N

q , N
q) differs from the conventionally wavelet transformed imageÎ. However,

reversibility is ensured. Note that this simple solution works for lossless image compression as no quanti-
zation takes place. Figure5.1 illustrates this simple approach and demonstrates the potential to parallelize
the computation of the wavelet transform.
According to the chosen partition sizeq ∈ {16, 32, 64} computing up to five levels of transform are possible
and reasonable. After having applied the partitioned wavelet transform, we can apply an EZW algorithm
on each partition. Thus, random access is only necessary on the subimage itself which is stored in internal
memory. This makes the partitioned approach suitable for a FPGA hardware implementation.
To quantify the effectiveness of approach, we have measured the entropy of both, the conventionally
wavelet transformed imagêI and the partitioned wavelet transformed imageÎ(p). We used the integer-
to-integer CDF(2,2)-wavelet with modular arithmetic as introduced in Section1.8.2. Thus, the transformed
image also hasdpth-bit greyscale resolution. Boundary treatment has been done by reflection at im-
age/partition boundaries. The benchmark images used are the common8-bit greyscale images of size
N = 512. The size of the subimages has been set toq = 64.
Recall from Section1.2, that the entropyH is defined as

H(I) = −
∑

i

p(Ii,j) log p(Ii,j),

wherep(Ii,j) represents the cumulative percentage of the corresponding greyscale value.
Table5.1 summarizes the results. The first column specifies the image under consideration. The second,
third, and fourth column gives the entropyH of the original imageI, the conventionally wavelet trans-
formed imagêI, and the partitioned wavelet transformed imageÎ(64), respectively. We observe that the
entropy of a partitioned wavelet transformed image is only slightly higher than the entropy of the conven-
tionally wavelet transformed image. Thus, the software and hardware solution based on this partitioned
approach with reflection at partition boundaries allows compression ratios comparable to those guaranteed
by traditional wavelet based solutions.

52 CHAPTER 5. PARTITIONED APPROACH

(a) barbara, traditional 2D-DWT (b) barbara, partitioned 2D-DWT

Figure 5.2: the two schemes can be obtained from each other using a permutation,N = 512,
q = 64, one level of transform

Table 5.1: entropy of the image themself, the traditional, and partitioned discrete wavelet trans-
formed images,N = 512, q = 64, computed with reflection at image and partition boundaries

image H(I) H(Î) H(Î(64))

airplane 6.70589 4.26506 4.28643

baboon 7.35795 6.16171 6.17883

goldhill 7.47778 4.89972 4.92269

lena 7.44551 4.42012 4.45058

peppers 7.59245 4.71864 4.74100

5.2.2 Lossy Image Compression

If stronger requirements on transmission time or storage space are postulated, higher compression ratios are
needed. The only way to meet these requirements is allowing loss of information. This is usually done by
quantization after the wavelet transform had taken place. If we apply the approach presented in the previous
section, namely transforming each subimage independently of the neighboring subimages by simply using
reflection at the boundaries of the subimage, we obtain block artefacts known from JPEG compressed
images [Wal91].

Figure 5.3(b) shows the imagelena (N = 512, dpth = 8) transformed with the partitioned approach
presented in the previous section. The resulting imageÎ(32) was compressed by a factor 21 using the
SPIHTalgorithm. Thereby we have compressed each subimage separately. This shows that reflection at
partition boundaries is no longer feasible.

Our objective is that the partitioned transformed and compressed image does not differ from the conven-
tionally compressed image. Figure5.3(a)shows the image compressed by a factor 25 if the original image
is transformed by anon partitionedDWT algorithm and compressed by a factor 25 by theSPIHTencoder.
This emphasizes the necessity not to use reflection at partition boundaries, but to work with the original
pixels.

5.2. PARTITIONED 2D-DWT 53

(a) lena transformed by the traditional 2D-DWT
and compressed withSPIHTby a factor 25.

(b) lena transformed by the partitioned 2D-DWT
presented in Section5.2.1 and SPIHT com-
pressed by a factor 21.

Figure 5.3: partitioned wavelet transform without boundary treatment introduces block artefacts
targetting to lossy compression

5.2.3 Boundary Treatment

Let us examine which pixels have to be considered in order to compute the low and high pass coefficients
using the CDF(2,2)-wavelet. Considering the filter bank approach to compute the coefficients (compare
Equation (1.12)) we obtain the equations

cj,k = −1
8
cj+1,2k−2 +

1
4
cj+1,2k−1 +

3
4
cj+1,2k +

1
4
cj+1,2k+1 −

1
8
cj+1,2k+2 and

dj,k = −1
2
cj+1,2k + cj+1,2k+1 −

1
2
cj+1,2k+2.

Now, take a look at a one dimensional discrete signal (a pixel row)r of length 32 which consists of
pixels r0, . . . , r31. The signalr is transformed using the CDF(2,2) wavelet. We obtain16 low pass co-
efficientsc0,0, . . . , c0,15 and16 high pass coefficientsd0,0, . . . , d0,15. These coefficients depend on the
pixels r−2, r−1, r0, r1, . . . , r31, r32. Note that in the partitioned approach proposed in Section5.2.1 the
pixelsr−2, r−1, andr32 are not available in the internal memory. Thus, in order to compute the coefficients
c0,0, . . . , c0,15 andd0,0, . . . , d0,15, the transform has to look out over the right and left boundary of the pixel
row r by one and two pixels, respectively. In the following transform levels further pixels from outside of
the pixel rowr have to be accessed. Figure5.4shows on which pixels of rowr the new coefficients depend
on. Note that only the low pass coefficients are transformed during the next levels of a wavelet transform
and one has to look out over the neighboring subimages only if more than four levels of transform are
performed (in the case thatq = 32 and the CDF(2,2) wavelet is used).
After four levels of transform, the wavelet transform of the rowr of length32 has to look out over the left
and right boundary by 30 and 15 pixels, respectively. Since the same arguments can be deduced for the
columns of an image, we have illustrated the effect in two dimensions in Figure5.5. As one can observe,
the number of coefficients from neighboring subimages depends on the low and high pass filter lengths, not
on the partition sizeq. In general, we have to look out over the left and top boundary by

β = max

{
|h̃| − 1

2
,
|g̃| − 1

2
− 1

}
,

54 CHAPTER 5. PARTITIONED APPROACH

0 31−30 46

c1,i

c0,j

c−1,k

c−2,l

c−3,m

Figure 5.4: the computation of the low pass coefficients and their dependences on the coefficients
of the previous scales

(a) N = 512, q = 64, four
levels

30 15

30

15

64× 64

(b) N = 512, q = 64, four
levels, CDF(2,2) wavelet

β · (2l − 1) γ
·(

2l
−

1)

β · (2l − 1)

γ · (2l − 1)

q × q

(c)N = 512, l level

Figure 5.5: area of coefficients, which have to be incorporated into the computation of the trans-
form of the partition under consideration

and over the right and bottom boundary

γ = max

{
|h̃| − 1

2
− 1,

|g̃| − 1
2

}

after the first transform level, if we assume that the filtersh̃ andg̃ correspond to a symmetric biorthogonal
wavelet. The enlargement afterl levels is shown in Figure5.5(c).
Thus, a first solution to implement a partitioned 2D-DWT with boundary treatment is to provide all nec-
essary neighboring coefficients in addition to each subimage. Unfortunately, it can be too expensive to
simply store all these additional coefficients in internal memory, too. This would result in an internal mem-
ory which is capable to store

(q + β · (2l − 1) + γ · (2l − 1))2

coefficients. In our example this results in a extended subimage of size109× 109, which is about3 times
larger than the internal memory used till now (cf. Figure5.5(b)).

In Chapter6 we present two approaches to avoid the enlargement of the internal memory when targeting to
hardware implementations. These two methods are based ondivide and conquertechniques andpipelined
architectures, respectively.

5.2.4 Future Work: Taking Advantage of Subimage and QuadTree Similarities

It is interesting to investigate, whether the approach presented can be used to improve the compression
ratio. We were looking for methods allowing the partitioned approach to result in higher compaction ratios
than the non partitioned algorithms.

5.3. MODIFICATIONS TO THE SPIHTCODEC 55

One point of departure could be to classify the subimages with respect to similarity, to compress only
one representativeJC of each classC, and to represent the remaining subimagesI of classC by the
imageI − JC which specifies the differences between subimageI and its representativeJC . Another
point of departure could be to exploit similarities between the trees of the multiscale representation. There
are similarities between the quadtrees. The difficulty is a convincing measure of similarity, which is of
adequately computational complexity. We have made some experiences with the mean squared error and
the gain of reduced output of theSPIHTalgorithm. Unfortunately, the computational overload was to large
in order to obtain useful results.

5.3 Modifications to theSPIHT Codec

In this section we present the modifications necessary to obtain an efficient hardware implementation of
theSPIHTcompressor based on the partitioned approach to wavelet transform images.
At first, we exchange the sorting phase with the refinement phase to save memory for status information.
However, the greatest challenge is the hardware implementation of the three listsLIP, LSP, andLIS. In the
following we deduce estimations of the memory requirements of these lists. This section will be concluded
with the outline of the modifiedSPIHTencoder.

5.3.1 Exchange of Sorting and Refinement Phase

In the basicSPIHT algorithm status information has to be stored for the elements ofLSP specifying
whether the corresponding coefficient has been added toLSP in the current iteration of the sorting phase
(see Line 20 in Figure4.7). In the worst case all coefficients become significant in the same iteration.
Consequently, we have to provide a memory capacity ofq2 bits to store this information. However, if we
exchange the sorting and the refinement phase, we do not need to consider this information anymore. The
compressed data stream is still decodable and it is not increased in size. Of course, we have to consider that
there is a reordering of the transmitted bits during an iteration. We will take a closer look at this problem
in Section5.4.

5.3.2 Memory Requirements of the Ordered Lists

To obtain an efficient realization of the listsLIP, LSP, andLIS, we first have to specify the operations that
take place on these lists and deduce worst case space requirements in a software implementation.

Estimations for LIS

We have to provide the following operations forLIS:

• initialize as empty list (Line 0),

• append an element (Line 0 and 19),

• sequentially iterate the elements (Line 5),

• delete the element under consideration (Line 15 and 19),

• move the element under consideration to the end of the list and change the type (Line 14).

Note that the initialization phase cannot be neglected because there are several partitions to compress.
Dependent on the realization chosen the cost of the initialization phase can be linear in the number of
elements.
The estimation of the space requirement forLIS is simplified by the fact thatLIS is an independent set,
i.e., for all elementsv, w ∈ LIS it holds thatv is neither a predecessor nor a successor ofw with respect
to the corresponding quad tree. This can be easily proved by complete induction [Fey01]. Note that if the
list is longest, then all its elements are of typeA. Consequently, the number of elements ofLIS is smaller

56 CHAPTER 5. PARTITIONED APPROACH

than or equal to the number of nodes in the next to the last tree level. Thus, the corresponding coefficients
lie in the left upper quadrant LL. However, none of them lies in the left upper quadrant of LL. Thus,LIS
contains at most(q

2

)2

−
(q

4

)2

=
3
16
q2

elements. To specify the coordinates of an element,2 log2

(
q
2

)
bits are needed. A further bit to code the

type information has to be added per element. This results in an overall space requirement forLIS of

3
16
q2 ·

(
2 log2

(q
2

)
+ 1
)

bits.

Estimations for LIP and LSP

Now, let us consider both the listLIP and the listLSP because they can be implemented together. Again,
we start with the operations applied to both lists:

• initialize as empty list (Line 0),

• append an element (Line 0, 4, 11, and 12),

• sequentially iterate the elements (Line 20),

• delete the element under consideration fromLIP (Line 4).

The maximum size of both lists is at mostq2. Furthermore, it holds, thatLIP∩LSP = ∅. Thus,

|LIP |+ |LSP | ≤ q2

also holds.q2 is a tight upper bound for|LIP |+ |LSP |. This worst case is attained by the image shown in
Figure5.6. (Remark: For illustration purposes we have changed the greyscales in the figure, so that they
do not correspond to the actual values.) It is easy to verify that all coefficients at the lower levels are greater
than 126. It follows, thatS6(D(i, j)) = 1 for all D(i, j) andS6(L(i, j)) = 1 for all L(i, j). In the6th
iteration of the algorithm, all sets are split and all coefficients are moved to eitherLIS or LSP.

(a) Original image (q=16, 8 bit,
four greyscales -128, -61, -60,
126 (from black to white))

(b) Image after four trans-
form steps (q=16, 9 bit, five
greyscales -33, 0, 126, 127, 128)

Figure 5.6:q2 is a tight upper bound for|LIP |+ |LSP |

Thus, the overall space requirement for both lists isq2 · 2 log2 q bits.

5.3. MODIFICATIONS TO THE SPIHTCODEC 57

(0) Initialization
compute and output k := blog2 max

{(i,j)|0≤i,j<N}
|ci,j |c;

foreach 0 ≤ i, j ≤ N − 1 set
LSP (i, j) = 0

LIP (i, j) =

{
1, if (i, j) ∈ H
0, else

foreach 0 ≤ i, j ≤ N
2
− 1 set

LIS(i, j) =

{
A, if (i, j) ∈ H andO(i, j) 6= ∅
0, else

(1) Refinement and sorting phase for listLIP
(2) for i = 0 . . . N − 1
(3) for j = 0 . . . N − 1
(4) if LSP (i, j) = 1 then

output the k-th bit of |ci,j |;
(5) if LIP (i, j) = 1 then
(6) output Sk(i, j);
(7) if Sk(i, j) = 1 then

LSP (i, j) = 1; LIP (i, j) = 0;
output the sign of ci,j ;

(8) Sorting phase for listLIS
(9) for i = 0 . . . N

2
− 1

(10) for j = 0 . . . N
2
− 1

(11) if LIS(i, j) = A then
(12) output Sk(D(i, j));
(13) if Sk(D(i, j)) = 1 then
(14) foreach (e, f) ∈ O(i, j)
(15) output Sk(e, f);
(16) if Sk(e, f) = 1 then

LSP (e, f) = 1;
output the sign of ce,f ;

(17) else LIP (e, f) = 1;
(18) if L(i, j) 6= ∅ then
(19) LIS(i, j) = B;
(20) else LIS(i, j) = 0;
(21) if LIS(i, j) = B then
(22) output Sk(L(i, j));
(23) if Sk(L(i, j)) = 1 then
(24) foreach (e, f) ∈ O(i, j))

LIS(e, f) = A;
(25) LIS(i, j) = 0;
(26) Quantization-step update
(27) decrement k; if k < 0 stop; else goto step (1);

Figure 5.7: The modified SPIHT algorithm

58 CHAPTER 5. PARTITIONED APPROACH

5.4 Comparison between the Original and the ModifiedSPIHT Al-
gorithm

In the previous section we have presented which modifications have been applied to the basic algorithm
and the dynamic data structures in order to obtain an efficient hardware implementation. It was ensured
that the compressed stream can still be decoded and that exactly the same number of bits are produced.
However, the reordering of the embedded stream which is due to the realization of the listsLIP, LSP, and
LIS by bitmaps can have an effect on the visual quality of the reconstructed images. In this section, we will
investigate this problem in detail. More precisely, we reflect on how much the reconstructed images of both
the basic compressor and the modified compressor differ in terms of visual quality.

Notations

Let b be the number of bits already encoded andĨ(b) the corresponding reconstructed image after receiving
b bits. The basicSPIHTalgorithm and our modified one can be compared by

E(Ĩ(b), Ĩ ′(b)) :=
∣∣∣MSE(I, Ĩ(b))−MSE(I, Ĩ ′(b))

∣∣∣
whereE(Ĩ(b), Ĩ ′(b)) is the difference between theSPIHT algorithm and the modified algorithm after
codingb bits in terms of mean squared error.
There are two main cases to consider. Figure5.8 illustrates schematically the following considerations.

MSE

(k + 1)th bitplane kth bitplane (k − 1)th bitplane
b

E
(Ĩ

(b
),
Ĩ′

(b
))

Ĩ(b)

Ĩ ′(b)

u(k)

l(k)

Figure 5.8: comparison of the mean squared error,l(b) andu(b) are upper and lower bounds for
E(Ĩ(b), Ĩ ′(b))

First, we have to compare the original and the reconstructed image after a complete bit plane is coded.
Because the same information is produced by both algorithms (even though in different order),

E(Ĩ(b), Ĩ ′(b)) = 0

holds.

5.4. COMPARISON BETWEEN THE ORIGINAL AND THE MODIFIED SPIHTALGORITHM 59

The more interesting case is the difference of the two algorithms during the coding of a bit plane. The
maximum difference during the coding of thekth bit plane can be estimated with lower and upper bounds
l(k) andu(k). Obviously, the lower boundl(k) is zero. This is a tight lower bound. In his master thesis Fey
[Fey01] provesu(k) = 4k. Note that this is a rough estimate because it is independent of the image under
consideration. For this reason, we have measured the differences on a set of known benchmark images.
However, it is very difficult to distinguish the reconstructed images with the naked eye. To circumstantiate
this remark, we have applied both algorithms onbarbara. We have measured the mean squares error after
each kbyte of compressed output. Figure5.9 shows the outcome of the experiment, which confirms our
informal observation. The mean squared errors are nearly equal.

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180

M
S

E

KByte

Barbara

modified alg.
SPIHT

(a) complete graph

5

10

15

20

25

30

35

40

45

50

55

60

15 20 25 30 35 40 45

M
S

E

KByte

Barbara

modified alg.
SPIHT

(b) detail of Figure5.9(a)

Figure 5.9: comparison of theMSE, imagebarbara,N = 512, dpth = 8

The comparison is done using our software implementation (namedubk) of theSPIHTcodec. That is, we

60 CHAPTER 5. PARTITIONED APPROACH

compare the compression result between our traditional and our modifiedSPIHTencoder. The original
algorithm of Said and Pearlman is available as binary version for educational purposes only. They use the
Daubechies 9/7 wavelet and perform always five level of wavelet decomposition.

PSNR(dB)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SPIHT-NC

qcc-Daub9/7

qcc-CDF(2,2)

ubk-Daub9/7

ubk-CDF(2,2)

bpp

(a) baboon,N = 512, dpth = 8

PSNR(dB)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SPIHT-NC

qcc-Daub9/7

qcc-CDF(2,2)

ubk-Daub9/7

ubk-CDF(2,2)

bpp

(b) barbara,N = 512, dpth = 8

Figure 5.10: comparison of the compression efficiency between the binary version of the original
SPIHTalgorithm, the public available QccPack version, and our software implementation, five
levels of wavelet transform are performed

Therefore we compared our implementation with the originalSPIHTand the free available version called
QccPack [Fow02]. QccPack provides an open-source collection of library routines and utility programs for
quantization, compression, and coding of data. In Figure5.10 the compression results are shown for the
imagesbaboonandbarbara. As long as we use the same wavelet, we achieve nearly the same compression
efficiency as the originalSPIHT and are almost as good as the QccPack version. Using the CDF(2,2)
wavelet reduces thePSNR values in our implementation as well as in the QccPack version.

Chapter 6

FPGA architectures

In this chapter we present several architectures and complete designs which are all based on the developed
partitioned approach for wavelet-based image compression for programmable hardware. All designs were
specified using the hardware description language VHDL. We turned our attention to rapid prototyping
without heavy manual optimizations after synthesis. As a consequence the experimental results mainly
show the mightiness of the partitioned approach1.
Each design was developed to run at our prototyping environment. This environment consists of a PC
equipped with a PCI card where a Xilinx XC4000XLA FPGA is mounted. The advantages and disadvan-
tages of this prototyping environment are explained in Section6.1.
All designs were described in VHDL language. As synthesis tool we decided to use the FPGA compiler
from Synopsys. The resulting netlists in EDIF format are taken as input to the Xilinx implementation flow
(mapping, place and route, timing analysis and bit stream generation) to generate a configuration bit stream.
We dispensed with manually optimizations like floor planning. These bitstreams are further processed with
an utility calledHap-Generatorfrom the vendor of the prototyping environment. The resulting files are
used to configure the FPGA using the provided software interface over the PCI bus.
In Section6.2we present a complete design for partitioned two dimensional discrete wavelet transform for
lossless compression capable of running at 40MHz at our prototyping environment. Then we show several
architectures to compute a partitioned wavelet transform for lossy compression in programmable hardware.
These architectures can be combined with the design for lossy compression, which is shown in detail in
Section6.3. This design implements the well knownSPIHTalgorithm of Said and Pearlman adapted to
our partitioned approach. Furthermore an arithmetic encoder can be included in the architecture to further
improve the compression rates.

6.1 Prototyping Environment

In order to obtain experimental results on real world data we have used a PC equipped with a FPGA
PCI board as prototyping platform. This PC is running under WinNTR©and Linux operating system. The
FPGA prototyping board was manufactured by Silicon Software GmbH, Mannheim, Germany [Gmb99].
It is equipped with a Xilinx device of the XC4000XLA series. The device has the speed index−09 and is
mounted on the PCI board in a HQ240 package. The data path diagram of the board is shown in Figure6.1.
Beside the Xilinx device the PCI card is equipped with 2Mbyte SRAM which is connected directly to the
FPGA with 36 data lines. This memory bank can be accessed with at most 80MHz frequency. Furthermore
there is a programmable clock generator and a device to manage the communication with the PCI bus.
The prototyping environment provides several mechanism to exchange data between the mounted Xilinx
device, the local SRAM and the PC main memory. These could be categorized into

1. direct access to registers/latches (configured into the FPGA)

1Stephan Sutter and Görschwin Fey, students of mine, assist me to implement, simulate, synthesize and validate the VHDL designs
in the scope of their master theses [Sut99], [Fey01].

61

62 CHAPTER 6. FPGA ARCHITECTURES

PCI Interface

R
A

M

C
on

ne
ct

or

Clock&
Support

FPGA

PCI bus,33MHz

Localbus,
40MHz

64 64

32

Figure 6.1: Data path diagram of the FPGA prototyping board

2. access to memory cells of the local SRAM (all data transfers are going through the FPGA),

3. DMA transfers and DMA on demand transfers,

4. and interrupts.

To communicate with the PCI card one has to write a simple C/C++ program, which initializes the card,
configures the FPGA, set the clock rate and starts the data transfer or the computation. See AppendixA.1
for an example. In our applications the images are transfered to the FPGA or the local SRAM. Then
the compression algorithms configured in the FPGA is started by setting a FPGA status register. While
compressing, the specific codec takes over the control of the data transfer at all using the DMA on demand
and interrupt features. The local bus on the PCI card can be clocked with a frequency of at most 40 MHz,
whereas the FPGA design itself can be clocked with at most 80MHz. We tried to achieve a clock rate of
40MHz, which is a strength constraint if internal memory is configured into the Xilinx device.
The FPGA itself can be configured with a circuit of your choice. Due to the fixed data path on the PCI card
one has to consider some limitations. Each design has to be wrapped with a so calledtop level module.
This module (there are 9 different modules each with different complexity) provides the following VHDL-
interface

entity extDesign is
address : in std_logic_vector(21 downto 0);
dataFromPci : in std_logic_vector(31 downto 0);
dataToPci : out std_logic_vector(31 downto 0);
rdRdy1 : in std_logic;
wrRdy1 : in std_logic;
rdRdy2 : in std_logic;
wrRdy2 : in std_logic;
rdTransfer2 : in std_logic;

interfaceClk : in std_logic;
designClk : in std_logic;
designClk2 : in std_logic;
cmcClk : in std_logic;

interruptClk : out std_logic;

6.1. PROTOTYPING ENVIRONMENT 63

interruptSignal : out std_logic;
interruptStatus : in std_logic

);

end extDesign;

To communicate with both the PC main memory and the local SRAM one has to multiplex the busses
dataFromPci anddataToPci . This decreases the routability of the design in a significant manner.
Another disadvantage with respect to our application are the fixed alignments of the busses to the primary
ports of the device at north and south side. Since arithmetic components like adder should be aligned
vertical due to the fast carry chain in XC4000 devices data ideally flows in horizontal direction. This gives
a contradiction to the port alignments at the north and south side.
The prototyping environment had influence to our designs, too. Using huge internal RAM modules leads
to a substantial drawback using devices without BlockRAMR©like the devices of the XC4000XLA series.
The RAM has to be configured into theCLBs. EachCLB can represent a 16x1 bit or a 32x1 bit RAM
block with 4 or 5 address lines, respectively. These address lines have to be connected to eachCLB of the
corresponding RAM module. As a consequence huge fanout is introduced. This is problematical in terms of
routability and overall performance constraints. Newer devices provide special components like RAM cells
and arithmetical units in the FPGA. Since there was no budget to buy a second prototyping environment,
we can only provide experimental result based on the givenµEnable product.

6.1.1 The Xilinx XC4085 XLA device

The Xilinx XC4085 device consists of a matrix ofConfigurable Logic Blocks(CLB) with 56 rows and56
columns. TheseCLBs are SRAM based and can be configured many times. After shut down the power
supply they have to be reconfigured. TheCLBs could be interconnected with horizontal and vertical
signals.
Figure6.2shows the schematic of oneCLB [Xil97]. It can be configured to represent any function with 4
or 5 inputs (see Figure6.2: function generatorF , G, orH). Furthermore there are mainly two flip-flops,
two tristate drivers and the so calledcarry-logicavailable. The routing is done usingprogrammable switch
matrices(PSM), see Figure6.3(b). Remark that each switch corresponds to a multiplexer with a specific
delay. EachCLB can be configured to provide internal RAM. In order to do this, conceive the four input
signals toF andG as address lines. Thus aCLB provides two 16×1 or one 32×1 random access memory
module, respectively. At maximum we have 12kbyte RAM available. Each RAM block can be configured
with different behavior:

• synchronous RAM: edge-triggered

• asynchronous RAM: level-sensitive

• single-port-RAM

• dual-port-RAM

The provided tristate drivers are somewhat counter productive in our specific application. In fact, they could
be connected to horizontal (especially long) lines only. In contrast, the wide address and data busses, where
switching between different signal source (the typical application field of tristate drivers) is necessary,
have to be routed in vertical direction, due to the generated modules from the Xilinx toolsLogibloxR©or
Core-generatorR©.
Using multiplexer instead of tristate drivers reduces the time for place and route dramatically or makes it
even possible to place and route the design at all.
Arithmetic operations are supported by the dedicatedcarry logic in the XC4000 family [New96]. Each
CLB contains hard-wired carry logic to accelerate arithmetic operations. Fast adders can be constructed as
simple ripple carry adders, using the special carry logic to calculate and propagate the carry between full
adders in adjacentCLBs. OneCLB is capable of realizing two full adders.

64 CHAPTER 6. FPGA ARCHITECTURES

D Q
S/R

EC

YQ

Y

DIN

H

G
F

G

H

D Q
S/R

EC

XQ

DIN

H

G
F

H

X

H

F

G

G4

G3

G2

G1

F
F3

F2

F1

F4

F
CARRY

G
CARRY

C C DOWNCARRY
LOGIC

D

CC UP K S/R EC

H1

OUT

INOUT IN

IN

COUT0

Figure 6.2: simplified schematic of XC4000CLBs

6.2 2D-DWT FPGA Architectures targeting Lossless Compression

To show the computational power of the partitioned approach for discrete wavelet transforms, we have
firstly implemented circuits for the two dimensional DWT in case of lossless compression. As already
mentioned in Section5.2.1we do not have to consider boundary effects and could use modular arithmetic
in combination with the lifting scheme. We have implemented several VHDL designs. All designs can
wavelet transform greyscale images (wavelet decomposition) and make the inverse transform (wavelet
reconstruction), too. The architectures differs in the number of one dimensional Lifting units and the way
of transferring data between the prototyping board and the PC. In the following all available architectures
are listed.

• one Lifting unit

– data transfer from the PC directly to the internal memory and vice versa

– data transfer from the PC to the SRAM on the prototyping board vice versa

• four Lifting units working in parallel

– data transfer from the PC to internal memory and vice versa

– data transfer from the PC to SRAM on the prototyping board vice versa

6.3. 2D-DWT FPGA ARCHITECTURES TARGETING LOSSY COMPRESSION 65

Quad

Quad

Single

Double

Long

Direct
Connect

Long

CLB

Long Global
Clock

Long Double Single Global
Clock

Carry
Chain

Direct
Connect

(a) interconnections between theCLBs

CLB

PSM PSM

PSMPSM

CLB CLB

CLB CLB CLB

CLB CLB CLB

Doubles

Singles

Doubles

X6601

(b) switch matrices in XC4085XLA

Figure 6.3: XC4000 device, routing resources

The implementations with four Lifting units introduce parallelism with respect to the rows of a subimage.
Once the FPGA is configured, a whole image can be transfered to the SRAM of the PCI card (maximum
size 2Mbyte). Each subimage is then loaded into the internal memory, wavelet transformed, and the result
is stored in the SRAM where it can be transfered back to the PC.
Another choice is to write a subimage directly into the internal memory of the FPGA, start the transform,
and read the wavelet transformed subimage back to the PC.
The computation itself is started if an internal status register is set by the software interface. The FPGA
causes an interrupt, if the computation has finished.
In Figure6.4you can see the global data path diagram of a circuit with four parallel working lifting units.
To distinguish between data and address signals they are labeled withD andA, respectively. As you can
observed, there are wide busses necessary for communications between the RAM modules and the Lifting
units. The RAM itself is further decomposed in smaller units to support the parallel execution of the four
Lifting units. Its is capable to store a subimage of size 32×32. There exists two separate finite state machines
to control the wavelet transform and its inverse, respectively.
We achieved clock rates in an order of magnitude of 40 MHz which result in a computation time for wavelet
transformation of a 512×512 image of less than 20 milliseconds. Most of the running time is due to huge
routing delays caused by the relative large internal memory blocks in the XC4085XLA.

6.3 2D-DWT FPGA Architectures targeting Lossy Compression

As mentioned in Chapter5 we will distinguish between two different architectures for the partitioned
discrete wavelet transform on images. The first one is based ondivide and conquertechniques. The second
one is based onpipelining.

6.3.1 2D-DWT FPGA Architecture based on Divide and Conquer Technique

Recall from Section5.2.3that in order to compute one level of CDF(2,2)-wavelet transform in one dimen-
sion we need two pixels to the left and one pixel to the right of each rows of an image, respectively.
Thus, we append a row of an image by one and two memory cells on the right and on the left, respectively.
We called such a enlarged rowextended row.
Let r be a row of an image of length16. Now, the problem is split in two subproblems which are solved
interlocked. The first module computes the ’inner’ coefficientsc0,0, . . . , c0,15 andd0,0, . . . , d0,15 which

66 CHAPTER 6. FPGA ARCHITECTURES

R00 R01 R02 R03

R10

RAM

R11 R13R12

2D-DWT invers 2D-DWT

FSMFSM

I/O-unit

DAD A

D

D

A

A

D

D

P

U

P

U

P

U

P

U

Figure 6.4: schematic dataflow of the 2D-DWT architecture

only depend on the extended row. In order to proceed to the next level of the wavelet transform, the coeffi-
cients at appended positions have to be made topical, i.e., the coefficientsc0,−2, c0,−1, andc0,16 have to be
computed. The first module which is responsible for the inner coefficients computes the subtotals ofc0,−2,
c0,−1, andc0,16 that only depend on the extended row. The second module computes the subtotals ofc0,−2,
c0,−1, andc0,16 that depend on pixels not in row. Adding up corresponding subtotals results in the wavelet
coefficients needed in the next level of the wavelet transform. As example, let us consider coefficientc0,16.
The module which is responsible for the inner coefficients computes the subtotal− 1

8r30 + 1
4r31 + 3

4r32.
The other module computes14r33 −

1
8r34 in parallel. Adding up these two subtotals gives the coefficient

c0,16 which has to be stored in the right appended memory position. Note that the second module loads
the external pixels needed one by one and processes them without storing them all the time. Only four
temporal memory positions have to be stored in addition in order to perform four levels of transform. The
generalization to two dimensions which is needed for wavelet transform on images goes straightforward as
the same technique can be applied to the columns of the image, too.
The drawback of this technique is that random access to the external memory is basically and that we have
to provide a complex control unit to synchronize the parallel memory accesses to the external SRAM. We
have decided to use the second architecture based on pipelining in our VHDL implementation.

6.3.2 2D-DWT FPGA Pipelined Architecture

The proposed architecture in this section for the partitioned 2D-DWT mainly consists of two one dimen-
sional DWT units (1D-DWT) for horizontal and vertical transforms, a control unit realized as a finite state
machine, and an internal memory block. For illustration see Figure6.5. To process a subimage, all rows
are transfered to the FPGA over the PCI bus and transformed on the fly in the horizontal 1D-DWT unit
using pipelining. The coefficients computed in this way are stored in internal memory of different types.
The coefficients corresponding to the rows of the subimage itself are stored in single port RAM. Now the

6.3. 2D-DWT FPGA ARCHITECTURES TARGETING LOSSY COMPRESSION 67

PC

FSM

pipelined
vert. 1D-DWT

pipelined
hor. 1D-DWT

internal
memory

FPGA

Figure 6.5: block diagram of the proposed architecture

vertical transform levels can take place. This is done by the vertical 1D-DWT unit. The control unit coor-
dinates these steps in order to process a whole subimage and is responsible for generating enable signals,
address lines, and so on.
At the end, the wavelet transformed subimage is available in the internal RAM. At this point an EZW-
algorithm can be applied to the multiscale representation of the subimage. Since all necessary boundary
information was included in the computation, no block artefacts are introduced by the following quantiza-
tion.
The following sections describe the horizontal 1D-DWT unit, in detail.

Horizontal DWT unit

As opposed to the conventional 2D-DWT where horizontal and vertical 1D-DWT alternate, we compute
first all four horizontal transform levels as described in Section3.2. This allows a pipelined approach
because the intermediate results do not have to be transposed. The whole horizontal transform is done
for the 16 rows of the subimage under consideration. In addition, 30 rows of the neighboring subimage
in the north and 15 rows of the southern subimage are transformed in the same manner. These additional
computations are required by the vertical DWT applied next.
This unit has to take four pixels of a row at each clock cycle and must perform 4 levels of horizontal
transforms. Figure6.6 illustrates that the unit consists of four pipelined stages, one for each transform
level.
The data throughput is mainly dominated by the first stage, since the number of coefficients is down sam-
pled to half after each level of transform. Therefore the first and second level are performed by a module
with higher throughput than the following two levels. The first and second stage outputs two low and two
high frequency coefficients at one clock cycle, respectively. After the first stage, the two high frequency
coefficients (the ones at even and odd positions) are merged together to output a continuous stream ofd0,j .
The two low frequency coefficients are merged together in the same manner. Furthermore they are com-
bined into a four pixels wide bus as input of the second stage. This is done in the module named2to4by a
simple delay element.
The second stage operates similar to the first one but at only half speed. The computed low frequency
coefficients of level two are merged together into a single data stream. This is the input for the third stage.
The high frequency coefficients are merged in the same way and are shifted out.
The transform units of stage three and four (named1i2o in Figure6.6) take only one coefficient of the
previous level as input and alternately outputs a low or a high frequency coefficient at one clock cycle. The

68 CHAPTER 6. FPGA ARCHITECTURES

4i4o

c1,i

c1,i+1

c1,i+2

c1,i+3

merge

2to4

merge

4i4o

merge

merge 1i2o

1i2o

d0,j

d−1,k

d−2,l

d−3,p

c−3,q

c0,j c−1,k c−2,l

Figure 6.6: 4 level horizontal 1D-DWT unit

horizontal 1D-DWT unit processes a pixel row of length 16 in only 32 input clock cycles including the
boundary pixel.
In the following two subsections we specify the modules1i2o and4i4o used in the different transform
levels.

Thew-bit input 1D-DWT unit (1i2o)

To implement one level of DWT using the lifting method (see Chapter5) the following steps are necessary:

• split the input into coefficients at odd and even positions,

• perform apredict-step, that is the operation given in Equation (1.13),

• perform anupdate-step, that is the operation given in Equation (1.14).

An efficient realization of the last two steps is given in Figure6.7and Figure6.8. The computation is split

w

w

w + 1w + 1

w + 1

w + 2

di+1,k

di+1,k−1

ci,2k

(w + 1) bit
registered

adder
w bit

registered
adder

� 2

ci+1,k

Figure 6.7: predict unit

into the elementary pieces, which are additions, subtractions, and shifts. With the given arrangement, the
combinational functions between two flip-flops fits into one column ofCLBs. Furthermore the registered
adder/subtracters generated by Logiblox are configured such that the dedicated carry logic in the XC4000
series is used.

6.3. 2D-DWT FPGA ARCHITECTURES TARGETING LOSSY COMPRESSION 69

w

w

w

w

w + 1

w + 1

ci,2k

ci,2k+2

ci,2k+1

(w + 1) bit
registered

adder
w bit

registered
substractor

� 1

di+1,k

Figure 6.8: update unit

The wholew-bit 1D-DWT unit is constructed accordingly to the lifting scheme [Swe96]. Figure 6.9
sketches the architecture. The unit consists of two register chains. The registers in the upper chain are
enabled at even, the registers in the lower chain at odd clock edges. This splits the input into words at even
and odd positions. Now the predict and update steps can be applied straightforward.

w

w + 1

w + 1

w + 1FF

FF FF

FF
predict

update

ci,j

di+1,k

ci+1,k

Figure 6.9:w-bit input 1D-DWT unit

The 4w-bit input 1D-DWT unit (4i4o)

In order to perform a faster transform, which is needed during the first and second level, thew-bit input
1D-DWT has to be parallelized. One approach is to process four rows in parallel but we have to take into
account the growing chip area (factor 4). Another disadvantage is the fact, that we have to split the RAM
into four slices, where each slice corresponds to aw-bit input 1D-DWT. This results in additional data and
address lines and slows down the access time to the RAM. As a direct consequence of this, the order of the
data transfered to the FPGA has to be adapted accordingly.
To avoid the disadvantages just mentioned we have implemented a filter unit as shown in Figure6.10,
which takes four pixels of thesamerow at a time. Instead of 12w-bit and 12w+1-bit flip-flops, 4 predict
and update units we only need 4w-bit and 5w + 1-bit flip-flops and 2 predict and update components, if
the bitwidth of the input coefficients/pixels isw.
We use this unit for both the first and the second level of the transform.

Internal Coefficient Memory

The internal memory for the wavelet coefficients is capable to store16×16 coefficients. Since the bitwidth
of the coefficients differs with their corresponding subbands the memory block consists of 5 slices. In

70 CHAPTER 6. FPGA ARCHITECTURES

ci,j

ci,j+1

ci,j+2

ci,j+3

di+1,l

ci+1,k

di+1,l+1

ci+1,k+1

w

w

w

w

w + 1

w + 1

w + 1

w + 1

w + 1

FF

FF

FF

FF

FF
predict

predict

update

update

Figure 6.10:4w-bit input 1D-DWT unit

Figure6.11(a)we have shown once again the minimal affordable bitwidth for each subbands as deduced in
Section3.2. The structure of the internal memory is illustrated in Figure6.11(b).

10

11

11

10

11

11

10

11

11

10

11

11

10

10

1011
1111 11

(a) minimal affordable memory
bitwidth

1111 11 11 10

(b) slices of memory

Figure 6.11: structure of the internal memory to store the wavelet coefficients

6.4 FPGA-Implementation of the ModifiedSPIHT Encoder

In this section we give a brief overview to our VHDL implementation of the modifiedSPIHTcompres-
sor proposed in Section5.3. In comparison to the algorithmSPIHT Image compression without Listsof
Wheeler and Pearlman [WP00] we could reduce the internal memory from(4 + 5

16d
′)N2 to(

37
16

+
5
16

log2(d
′ + 1)

)
N2

bits (N = 512, d′ = 11), which is required in addition to the memory for the wavelet coefficients. The
amount of internal memory needed can be deduced from Figure6.12. There are four RAM blocks besides
the memory to store the wavelet coefficients. The modules namedLP := LIP

⋃
LSP andLIS represents

the three listsLIP, LSP, andLIS, respectively. The modules namedSL andSD store the precomputed sig-
nificance attributes for all thresholds. Table6.1shows the size for each of these modules. It is remarkable,
that in conjunction with the partitioned approach we need(37

16 + 5
16 · 4) · q2 = 0.111 kbytes only compared

6.4. FPGA-IMPLEMENTATION OF THE MODIFIED SPIHTENCODER 71

Table 6.1: size in bits of each RAM block

LIS
(

N
2

)2
+
(

N
4

)2
LP 2N2

37
16N

2

SL
(

N
4

)2 · log2(d′ + 1)

(
37
16 + 5

16 log2(d′ + 1)
)
N2

SD
(

N
2

)2 · log2(d′ + 1)
5
16N

2 · log2(d′ + 1)

to (4 + 5
16 · 11) ·N2 = 238 kbyte of the algorithmSPIHT Image compression without Listson the whole

image (N = 512, d′ = 11, q = 16).

Loop_LP
FSM

Loop_LIS
FSM

RAM

LP
RAM

SD
RAM

SL

SPIHT_cntr
FSM

FSM

SPIHT

LIS

RAMRAM

OutputCoeff

RAMRAMRAMRAM SREG SREG

Init_LP_LIS
FSM

Init_S_ij

Figure 6.12: block diagram of our modifiedSPIHTcompressor

We shortly explain the overall functionality before we present some of the modules in detail. Figure6.12
shows the block diagram of the whole circuit.
Each subimage of the wavelet transformed image is transfered once to the internal memory module named
’coeff’ or is already stored there. At first, the initialization of the modules representingLIP, LSP, and
LIS and the computation of the significances is done in parallel. The listsLIP andLSP are managed by
the module ’LP’, the bitmap ofLIS by the module ’LIS’. The significances of sets are computed for all
thresholdsth ≤ kmax at once and are stored in the modules named ’SL’ and ’SD’, respectively. Here
we distinguish between the significances for the setsL andD. Details of this computation are presented
in Section6.4.2. With this information the compression can be started with bit planekmax. Finite state
machines control the overall procedure.

72 CHAPTER 6. FPGA ARCHITECTURES

The data to be output is registered in module ’output’ from which it is put to the local SRAM on the PCI
card on a 32 bit wide data bus. Additionally, an arithmetic coder can be configured into that module. This
further reduces the compression ratio (see Section6.4.3).

6.4.1 Hardware Implementation of the Lists

To reduce the memory requirement for the list data structures in the worst case, we implement the lists as
bitmaps. The bitmap of listL represents thecharacteristic functionof L.

Definition 5 LetL be a list of elements out of{0, . . . , N − 1} × {0, . . . , N − 1}. A map
Lχ : {0, . . . , N − 1} × {0, . . . , N − 1} → {0, 1} with

Lχ(i, j) =
{

1 if (i, j) ∈ L,
0 else

.

is called characteristic function of the listL.

Note that by this approach we loose the ordering information within the listsLIP, LSP, andLIS. The effect
of this reordering with respect to the decoded image was discussed in detail in Section5.4. The bitmaps
themselves are implemented using RAM modules.
We provide two synchronous RAM modules for the three lists. The listsLIP andLSP are realized in
one RAM module, the listLIS in the other one. The RAM module which realizesLIP andLSP has a
configuration ofq × q entries of bit length2 as for each pixel of theq × q subimage either(i, j) ∈ LIP,
(i, j) ∈ LSP, or (i, j) /∈ LIP∪LSP holds.
The second RAM module implementsLIS. Since none of the coefficients in the subbands LH(0), HL(0),
and HH(0) can be the root of a zerotree, we have to provide a bitmap of size

(
q
2

)2
. Furthermore, in the area

which corresponds to LL(0) we have to distinguish between zerotrees of typeA andB. Inside this quadrant,
only coefficients of the upper left subquadrant can be of typeB, the other coefficients are always of type
A. Consequently, only for the area which corresponds to LL(1) the type information has to be stored. This
results in additional

(
q
4

)2
bits.

We decided to use these two RAM modules for the representation of the three lists due to the simple control
mechanism. Of course, with logarithmic coding we could further reduce the RAM size. There are three
possible states for each coordinate in the area of the subband LL(0), which can occur in the combinations
given in Table6.2. The combinations can be found by a detail analyse of the original algorithm. With

Table 6.2: possible configuration states of a coordinate(i, j)

(i, j) /∈ (LIP∪LSP) ∈ LIP ∈ LSP
/∈ LIS (a) (b) (c)

∈ LIS, typeA (d) (e)
∈ LIS, typeB (f) (g)

logarithmic coding we would reduce the RAM size to

3 ·
(q

2

)2

+ 2 · 3
4
q2 =

9
4
q2.

For q = 16 this results in a saving of16 bit only in contrast to the representation without logarithmic
coding. This corresponds to only oneCLB in the FPGA.

6.4.2 Efficient Computation of Significances

In the following we will concentrate on the module which computes the significances. The significance of
an individual coefficient is trivial to compute. Just select thekth bit of |ci,j | in order to obtainSk(i, j).

6.4. FPGA-IMPLEMENTATION OF THE MODIFIED SPIHTENCODER 73

This can be realized by using bit masks and a multiplexer. However, it is much more difficult to efficiently
compute the significance of sets for all thresholds in parallel. Before we go into details, we have to introduce
some notations.
We defineS∗(T) as

S∗(T) :=
{

max{k|Sk(T) = 1}+ 1 if T 6= ∅ and∃k : Sk(T) = 1
0 else

Thus,S∗(T) stands for the maximum thresholdk for which some coefficient inT becomes significant.
OnceS∗(T) is computed for all setsL andD, we have preprocessed the significances of sets for all
thresholds. In order to do this, we use the two RAM modulesSL andSD. They are organized as

N

4
× N

4
× 4 bit

and

N

2
× N

2
× 4 bit

memory, respectively.
The computation is done bottom up in the hierarchy defined by the spatial oriented trees. The entries of
both RAMs are initialized with zero. Now, let(e, f) be a coordinate with0 < e, f < q just handled by the
bottom up process and let

(i, j) =
(⌊e

2

⌋
,
⌊f

2

⌋)
be the parent of(e, f) if it exists. ThenSD andSL have to be updated by the following process

foreach 0 < e, f < 8
SD(e, j) := 0;
SL(e, j) := 0;

foreach (e, f)

if e <
N

2
and f <

N

2
then

SL(i, j) := max{SL(i, j),SD(e, f)} (6.1)

SD(i, j) := max{SD(i, j), S∗(e, f)} (6.2)

if e <
N

2
and f <

N

2
then

SD(i, j) := max{SD(i, j),SD(e, f)} (6.3)

The initialization and the bottom up process are organized by the finite state machine shown in Figure6.13.
After reset we start the computation in state one and initializek′max and the row and column indicese and
f . At this timeSD(e, f) andSL(e, f) hold their old values from the last subimage under consideration for
all 0 < e, f < q. If the enable signal becomes active, we proceed in state 2. Here we buffer the present
value ofSD(e, f). In the states3, 4, 5, and6 we compute line (6.1). The condition

e, f are odd

checks, if we visit a2 × 2 coefficient block for the first time. The states2, 5, and6 are responsible for
computing the maximum ofSD(i, j) andS∗(e, f) (line (6.2)), which is buffered intS. State8 performs
the assignment in line (6.3). Furthermore, this finite state machine updates the valuek′max = kmax + 1
for the subimage under consideration. In state10 the low frequency coefficient at position(0, 0) will be
included in this computation, too. The operation in state9 is done using a simple subtractor and a combined
representation with interleaved bitorder of the row and column indexe andf , that is

fn−1, en−1, fn−2, en−2, . . . , f1, e1, f0, e0.

74 CHAPTER 6. FPGA ARCHITECTURES

1

(e, f) = (15, 15)
k′max = 0

2

if e < 8 and f < 8
then

tS = SD(e, f)

3 4

SL(i, j) = tS

56

tS = S∗(e, f)

7

if S∗(e, f) > k′max then
k′max = S∗(e, f)

8

SD(i, j) = tS

9

(e, f)−−

10

rdy = 1
if k′max < S∗(e, f) then

k′max = S∗(e, f)

reset
e

n
a

b
le

=
1 else

tS < S∗(e, f)

else

SD
(i
, j

) <
tS

e,
f

ar
e

od
d

or

else

else(e, f) = (0, 0)

e
ls

e

e < 8 andf < 8 SL(i, j) < tS or

e, f are odd

Figure 6.13: FSM to computeS∗(L) andS∗(D)

6.4.3 Optional Arithmetic Coder

Our design can optionally be configured with an arithmetic coder that processes the data which is output by
the modifiedSPIHTalgorithm. We decided to utilize the coder of Feygin, Gulak, and Chow [FGC93]. It is
very suitable for FPGA designs because it does not contain multiplication operations. The implementation
is straightforward. It needs three clock cycles to code one bit of the modifiedSPIHToutput. The overall
structure of the arithmetic coder module is shown in Figure6.14. The compressed stream of the modified
SPIHTalgorithm is first stored in a circular buffer of length 4. The signaltype determines the probability
model. We have investigated the cumulative percentage of the different output positions in the algorithm
in detail. Note that in our modified algorithm (see Figure5.7) there are exactly eight lines (Line 0, 4, 6,
7, 12, 15, 16, 22) which output some data. For each of these output positions we provide one probability
model and call themA1, . . .A8. The modelA4 for instance describes the properties of the sign output at
Line 7. The module named ’carry chain’ implements the so calledbit stuffingfor the potential carry overs
in the arithmetic coder [RL81]. Furthermore, there exist signals to insert special markers and to stop the
compression at the specified bit rate.
The most interesting part was the development of probability models adapted to the modifiedSPIHTcom-
pressor.

6.4. FPGA-IMPLEMENTATION OF THE MODIFIED SPIHTENCODER 75

models

1

3

5

7 8

6

4

2
DO

read

rdy

BI

type

enable

insertEOP

ACoder

busy

Buffer Coding
Carry
Chain Output

insertEOF

Figure 6.14: overall structure of the arithmetic coder

Probability models

In order to obtain meaningful models, we have counted the number of one’s and zeros with respect to
their output position while compressing our set of benchmarks images. Table6.3 shows the cumulative
percentage for Line 0 of the algorithm.

Table 6.3: cumulative percentage ofkmax

kmax cumulative percentage
0-3 0 %
4 1.9 %
5 11.1 %
6 26.7 %
7 42.7 %
8 17.1 %
9 0.4 %

10-15 0 %

The cumulative percentages can be expressed with conditional probabilitiesp(0|w) with w ∈ {0, 1}∗ It
describes the probability that the next symbol is zero under the condition thatw has already been read. We
use a history of maximum size four. (Remember that, for subimages of size16×16, kmax can be at most11
because of the used wavelet and the number of transform steps.) To simplify matters, the probabilities were
rounded to multiples of5%. In this context, we certainly have to avoid the exceptional cases0% and100%
because we work with cumulative percentages. Therefore, the values1% and99% have been introduced.
As example, assume thatkmax equals 6, i.e., Line 0 of the modified algorithm outputs the binary string
0110. We have to read four bits in order to obtain

kmax = k3k2k1k0

= 0110,

starting with the most significant bitk3. The conditional probability that the first bit is zero is

p(0|ε) = 0% + 1.9% + 11.1% + 26.7% + 42.7% = 82.4% ≈ 80%.

since in that casekmax has to be smaller than8. Analogously, we have

p(0|0) =
0 + 0 + 0 + 0

82.4
= 0% ≈ 1%

p(0|01) =
1.9 + 11.1

82.4
= 15.8% ≈ 15%

p(0|011) =
26.7

26.7 + 42.7
= 38.5% ≈ 40%

76 CHAPTER 6. FPGA ARCHITECTURES

All the other probability modelsA2, . . . ,A8 are obtained in an analogous manner.
The VHDL implementation of these probability models has been specified by finite state machines, too.

readk2

readk1 readk1

readk0 readk0 readk0 readk0

readk3

2

3 4

5 6 7 8

1

k3 = 0/p(0|0) := 0.01 k3 = 1/p(0|1) := 0.99

k2 = 0/p(0|00) := 0.5 k2 = 1/p(0|01) := 0.15 k2 = 0/p(0|10) := 0.99 k2 = 1/p(0|11) := 0.5

p
(0
|ε

)
:=

0.
8

k1 = 0/p(0|000) := 0.5

k1 = 1/p(0|001) := 0.5

k1 = 0/p(0|010) := 0.15

k1 = 1/p(0|011) := 0.4

k1 = 0/p(0|100) := 0.95
k1 = 1/p(0|101) := 0.5

k1 = 0/p(0|110) := 0.5

k1 = 1/p(0|111) := 0.5reset

Figure 6.15: finite state machine to represent the modelA1

Figure6.15shows the finite state machine of modelA1. We will discuss the functionality of this finite state
machine for the inputkmax = 6. The edges are labeled with pairs

condition / probability of zero to be output.

In each state we start reading one bit from the modifiedSPIHToutput stream of Line 0. In state1 we do
not know anything aboutkmax. Therefore the output of this finite state machine isp(0|ε) = 0.8, labeled
at the edge from state1 to state2. Now we know thatk3 = 0, start readingk2, and follow the edge
with the conditionk3 = 0 leading in state3. Currently the probability to be output isp(0|0) = 0.01. In
state3 we start readingk1 and have to follow the edge labeled withk2 = 1. The output probability is
now p(0|01) = 0.15. From state6 we lead to state1 and output the probabilityp(0|011) = 0.4. This
completes the generation of the probabilities for thekmax of a subimage. Note, that forkmax < 4 or
kmax > 9 (cumulative percentage is zero) we set the conditional probability of the bitk1 and bitk0 to 50%.
Therefore, e.g. the edges from state3 to 5 and state5 to 1 are labeled with the probability0.5.

Experimental results

We have implemented two versions of the modifiedSPIHTencoder based on the partitioned approach,
one without and one with the arithmetic coder. Table6.4 summerize the runtimes for several images. All
compressions were done in a lossless manner. We have achieved clock rates of 40MHz for both implemen-
tations. Note that our VHDL designs were synthesized without manual optimizations. All basic memory
and arithmetic modules were generated with Xilinx tools. Our implementations take 743 and 1425 logic
blocks of the Xilinx XC4085XLA device, respectively.
In order to compare the software implementation with our presented FPGA design we measured the exe-
cution time of both. To obtain a faithful measurement of the hardware execution time we have included a

6.4. FPGA-IMPLEMENTATION OF THE MODIFIED SPIHTENCODER 77

Table 6.4: execution times of hard- and software implementations in the case of lossless com-
pression, 8 bit grey-scale images of sizeN = 512, partition sizeq = 16

image ubk-software FPGA
arithm. coder

without with
baboon 2.3 s 204.0 ms 272.3 ms
barbara 2.0 s 203.1 ms 254.0 ms
goldhill 2.0 s 195.8 ms 246.9 ms

lena 1.9 s 192.5 ms 236.4 ms
peppers 1.9 s 196.7 ms 245.0 ms

counter (resolution 25ns) into the design. We could improve the compression time of512 × 512 × 8 bit
greyscale images by a factor of 10 in comparison to an AMD 1GHz Athlon processor.
The effect of the arithmetic coder upon the compression ratio is shown in Table6.5. The coder compresses
theSPIHToutput by further 2 to 4 percent. It is remarkable, that the compression ratio is always improved,
in the lossless as well as in the lossy case.

Table 6.5: influence of the arithmetic coder

image baboon barbara goldhill lena peppers
0.5 bpp 95.9 98.6 97.4 97.3 95.7
lossless 97.8 97.3 96.8 96.0 96.1

78 CHAPTER 6. FPGA ARCHITECTURES

Chapter 7

Conclusions and Related Work

In this thesis we have presented a partitioned approach to wavelet based image compression and its applica-
tion to image encoders using programmable hardware. We have developed an efficient FPGA architecture
of the state of the art image codecSPIHT, which is comparable to the original software solution in terms
of visual quality. We have achieved clock rates of 40MHz for our FPGA implementations. Note that our
VHDL designs were synthesized without manual optimizations. All basic memory and arithmetic modules
were generated with Xilinx tools. We could improve the compression time of512× 512× 8 bit greyscale
images by a factor of 10 in comparison to an AMD 1GHz Athlon processor. The optional arithmetic coder
compresses the modifiedSPIHToutput by further 2 to 4 percent. It is remarkable, that the compression
ratio is always improved, in the lossless as well as in the lossy case.
The main contribution is that we have proposed image encoder suitable for low cost programmable hard-
ware devices with minimal internal memory requirements. This method outperform the recently published
algorithm of Wheeler and PearlmanSPIHT Image Compression without Lists[WP00] with respect to the
affordable memory.

In the following we will introduced the upcoming new JPEG2000 standard, which is also wavelet based,
but is not premised on an embedded zerotree wavelet encoder. Afterwards, we will balance the advantages
and disadvantages of our approach to the proposed method in the JPEG2000 standard.
It will become apparent, that there are some marked similarities to our partitioned approach. We emphasize
that both developments were done independently of each other. Note, that until now to our knowledge
no JPEG2000 encoder ASIC (application specific integrated circuit) is available. First intelligent property
cores for JPEG2000 codecs are offered by Amphion Semiconductor Ltd. and inSilicon Corporation in 2002
[Amp02], [inS02].

7.1 EBCOT and JPEG2000

An algorithm namedEBCOT, EmbeddedBlock Coding with Optimal Truncation presented by David
Taubman [Tau00] was chosen as the central codec behind the new JPEG2000 Standard [TM02]. Mostly all
of the desired features of the new still image compression standard are supported by theEBCOTalgorithm.
The most import ones are

• excellent visual quality of the reconstructed images even at lowest bit rates

• SNR scalability

• resolution scalability

• region of interest coding

• error resilience (noisy channels).

79

80 CHAPTER 7. CONCLUSIONS AND RELATED WORK

The algorithm itself is wavelet based, one of the basics to support the resolution scalability, which is an
inherent feature of wavelet transforms. In contrast to compressors likeSPIHTthey partition the multireso-
lution scheme into so calledcode blocksof typical size64 by 64 coefficients. These blocks are compressed
independently of each other. TheSNR scalability is accomplished by post compression rate distortion op-
timization and tricky bit stream organization. Errors encountered in code blocks have no influence to the
other blocks. Therefore error resilience could be achieved in error prone environments. The region of in-
terest coding could easily be adopted by weighting the distortion contribution of code blocks from inside
the given region.
For the sake of completeness we give a short overview of theEBCOTalgorithm. Since this is the central
part of the JPEG2000 standard you will find all of the described techniques in available and upcoming
codecs supporting JPEG2000.

7.1.1 TheEBCOT Algorithm

bitplanes

bits

coefficient

a) b)

c)

d)

e)

f)

g)

magnitude

Figure 7.1: overview of theEBCOTalgorithm

Figure7.1gives an overview of the stages of theEBCOTcompressor. In the first stage the image is divided
in tilesof manageable size, which is dependent on the type of the encoder. A software encoder on a modern
computer can choose huge tiles compared to a hardware encoder implemented on a digital signal processor.
Each of thesetiles is now decomposed in color components which are coded independently of each other
(cf. Figure7.1c)).
At first a discrete wavelet transform is performed on each color component of the tiles. For lossy com-
pression the Daubechies (9,7)-wavelet [Dau92] and for lossless compression the CDF(2,2)-wavelet has
to be used, respectively (cf. Figure7.1d)). Beside the usually wavelet decomposition known fromMallat
[Mal89] other decompositions like wavelet packets are possible too [VK95].
Each subband (cf. Figure7.1e)) of the given decomposition is now partitioned into code blocks of size 64
by 64 or 32 by 32 (cf. Figure7.1f)). With each code block the information of the corresponding subband
and the relative offset is stored. These code blocks are compressed in three passes. An adaptive arithmetic
coder based on theMQ-coder[PM88] is used. The corresponding models are determined using a similar

7.1. EBCOTAND JPEG2000 81

signification attribute known from zerotree algorithms. As a result each code block is represented by a fine
embedded bit stream (cf. Figure7.1g)).

PCRD-opt

After each of the code blocks are compressed independent of each other a so calledPostCompressionRate
Distortion optimization method is applied. Simply spoken, they try to minimize the overall distortion for a
given target bitrate. This can be seen as a linear optimization problem if some assumptions are made.

LetD
t
ri
i

i be the distortion contribution andL
t
ri
i

i the length of the truncated compressed bit stream of code
block i at a truncation pointtri

i , respectively, where0 ≤ ri < ni if code blocki has at mostni truncation
points assigned. If the distortion metric is additive, i.e.

D =
∑

i

D
t
ri
i

i ,

they have to solve the resource allocation problem

minimize D =
∑
i

D
t
ri
i

i

subject to
∑
i

L
t
ri
i

i <= Lmax

Remark that this is an integer linear program, which means, that in general there is no set{tri
i } which

yields to
∑
i

L
t
ri
i

i = Lmax.

To reduce the overall solution space it is suggested to restrict the available truncation points to the ones
on the convex hull of the rate distortion graph. For illustration see Figure7.2. Each point corresponds to a

pair (Lt
rk
k

k , D
t
rk
k

k). The longer a prefix of a code block, the smaller is the corresponding distortion and vice
versa. As you can see, the only rate distortion pairs that make sense are the ones on the convex hull (red
polygon). This scales down the search space significantly.

L

D

(Lt
2
i

i ,D
t
2
i

i)

(Lt
8
i

i ,D
t
8
i

i)

Figure 7.2: rate distortion curve and convex hull

After this optimization problem is solved, one has several possibilities to generate a bit stream.

SNR scalability To produce an embedded bitstream, that is a bitstream, where each prefix is a near
optimal approximation of the original image in terms of the signal to noise ratio, the fine embedded code
blocks are stringed together as illustrated in Figure7.3. Thus, a prefix of some code block is located at the
begin of the bitstream, if a lot of image energy is represented by this prefix. In the JPEG2000 standard this
is done using so calledquality layers. Each quality layer contains incremental contributions from various
code blocks. With each received fraction of the overall bitstream the reconstructed image is successively
enhanced.
This ordering is useful for image transfer over channels with narrow bandwidth. The decoder can present a
preview at low visual quality in full resolution even if only few bytes are available.

82 CHAPTER 7. CONCLUSIONS AND RELATED WORK

Figure 7.3: subbands after three level of wavelet transforms, in case ofSNR scalability incre-
mental code blocks contributions from all subbands ordered by there rate distortion ratio are
used to construct a bitstream

Resolution scalability Another interesting question is, whether a small preview of a huge image is re-
quired only. Then it would be helpful, if the bitstream is ordered in a way, that the bytes at the beginning
of the bitstream represent the original image at lower resolution but with excellent visual quality. The more
bytes are available the larger resolution is possible. The multiresolution scheme after the wavelet transform
had taken place gives the opportunity to support this resolution scalability.

Figure 7.4: in case of resolution scalability code blocks contributions from those subbands are
used that allow a reconstructed image of quarter size (second image), half size (third image), and
full size (fourth image)

For an illustration see Figure7.4. The first information in the bitstream is now composed from code blocks
of all subbands of a transform level beginning with the last.

7.2 Similarities and Differences of JPEG2000 and our Approach

TheEBCOTalgorithm was chosen to be the central codec behind the new JPEG2000 standard because of
the many supported features. Since we have adapted the embedded zerotree wavelet encoderSPIHTwe will
enumerate the advantages and disadvantages of this type of algorithm, included our adapted one, compared
to EBCOT.

• The excellent visual quality of both codecs are undisputable. TheSNR scalability is an inherited
feature of codecs which produce embedded bitstreams. Therefore this property is provided by both
methods.

• Resolution scalability can not be made available by the originalSPIHTalgorithm. Unfortunately, the
partitioned approach does not help to support this feature, too.

• Region of interest coding can be provided by theSPIHT codec. The region of interest has to be
translated into the wavelet domain and can then be represented by appropriate weighting of the
coefficients in that areas. This is strongly simplified due to the partitioned approach, since related
techniques as in theEBCOTparadigm can be used.

• Error resilience is not feasible by the originalSPIHTmethod. Suppose some of the signification bits
are toggled in a noise channel, then the decoder can not duplicate the execution path of the encoder
anymore. There are no synchronization points in the bitstream available. Thus, even a simple bit

7.2. SIMILARITIES AND DIFFERENCES OF JPEG2000 AND OUR APPROACH 83

fault can distort the whole decompression procedure. In the case, that bit faults are introduced in a
bitstream generated using the modifiedSPIHTencoder based on the partitioned approach, the impact
of such an incident is limited to the corresponding subimage. This is similar to the error handling of
theEBCOTalgorithm.

• A feature, that is not provided by theEBCOTcompressor, is taking advantage of the self similari-
ties between the different subbands in each orientation. The partitioning into code blocks offers the
opportunity of parallel processing and efficient hardware architectures. Our partitioned approach is
capable to take advantage of the mentioned self similarities as well as the preferences of the local
processing of each subimage.

• Besides the excellent techniques to compress the individual code blocks the post compression rate
distortion optimization is the key to obtain good performance. The price to pay is the computational
complexity in order to implement this optimization. The currently available JPEG2000 codecs suffers
especially from the tremendous computation times [Ada01], [Tau02]. However, the post compression
rate distortion optimization can be combined with the partitioned approach in order to improve the
compression efficiency.

84 CHAPTER 7. CONCLUSIONS AND RELATED WORK

Appendix A

Hard/Software Interface MicroEnable

A.1 Register/DMA on Demand Transfer, C example

#include<stdio.h>
#include"menable.h"
int main(int argc, char** argv) {

microenable* board;
fpga_design* design;
volatile unsigned long *reg;
int error;
char c;

// initialize board
board = initialize_microenable() ;
if(board == NULL){

fprintf(stderr,"initialization error %d\n",Me_GetErrCode(board));
exit(-1);

}
// load design
design = load_design(board,"./example.hap");
if(design == NULL){

fprintf(stderr,"load design error %d\n",Me_GetErrCode(board));
exit(-1);

}
// config FPGA
if((error = configure_fpga(board, design)) < 0){

fprintf(stderr,"config error %d\n",error);
exit(-1);

}
// set PLX clock in MHz
set_plx_clk(board, design, 40);
// set design clock in MHz
set_fpga_clk(board, design, 40);
// get access pointer
reg = GetAccessPointer(board);
if (reg == NULL){

fprintf(stderr,"Get access Pointer is NULL\n");
exit(-1);

}
// access the design
// read the fixed register
printf("Reg 3 : 0x%8X\n\n",reg[3]);

85

86 APPENDIX A. HARD/SOFTWARE INTERFACE MICROENABLE

// set a register at address 0x0
reg[0x000000] = 0x00000f0f;
// read registers
printf(" Ctr Reg 0 : 0x%8X\n",reg[0x000000]);
printf(" Ctr Reg 1 : 0x%8X\n",reg[0x000001]);
printf(" Ctr Reg 3 : 0x%8X\n",reg[0x000003]);

// wait for user response
c = getchar() ;
printf(" DMA Access \n");
// allocate buffers
unsigned long writeBuffer[128];
unsigned long readBuffer[128];
int i;

// initialize the buffers
for(i = 0; i < 128 ; i++){

readBuffer[i] = 0;
writeBuffer[i] = i;

}

// Load the Rotator register
reg[1] = 0x00000001;

// start the rotation
reg[0] = 0x20000000;

// read data via dma on demand from the design
error = ReadDmaDemandData(readBuffer,

32*sizeof(unsigned long),
1,
0x04000000,
1,
board);

printf("transfer OK\n");
// error Check
if(error < 0)

printf(" error %d during data transfer",error);
// display the result
for(i = 0; i < 32 ; i++){

printf("%8X\n",readBuffer[i]);
}
// return from the programm
return 0;

}

A.2. REGISTER/DMA ON DEMAND TRANSFER, VHDL EXAMPLE 87

A.2 Register/DMA on Demand Transfer, VHDL example

library IEEE;
use IEEE.std_logic_1164.all;

entity registerSpace is
port(

origWord : out std_logic_vector(31 downto 0);
address : in std_logic_vector(21 downto 0);
dataIn : in std_logic_vector(31 downto 0);
dataOut : out std_logic_vector(31 downto 0);
writeRdy : in std_logic;
readRdy : in std_logic;
clk : in std_logic;
reset : in std_logic;
rotateRdy : in std_logic;
rotateStart : out std_logic;
regReset : out std_logic

);
end registerSpace;

architecture registerSpaceArchitecture of registerSpace is
signal registerA : std_logic_vector(31 downto 0);
signal registerB : std_logic_vector(31 downto 0);

begin

-- Write process

WRITE_REG_PROCESS : process (reset, clk)
begin

if reset = ’1’ then -- reset active
registerA <= (others => ’0’);

elsif (clk’event and clk = ’1’) then -- on rising edge
-- registers set from the PCI side
if (writeRdy = ’1’ and address(3 downto 0) = "0000") then

-- register address 0x000000
registerA(30 downto 0) <= dataIn (30 downto 0);
registerA(31) <= rotateRdy;

elsif (writeRdy = ’1’ and address(3 downto 0) = "0001") then
-- register address 0x000001
registerB <= dataIn (31 downto 0);

else -- no write access
registerA(30 downto 0) <= registerA(30 downto 0);
registerA(31) <= rotateRdy;
registerB <= registerB;

end if;
end if;

end process WRITE_REG_PROCESS;

-- Read Process

READ_REG_PROCESS : process (readRdy, address, registerA, registerB)
begin

if (readRdy = ’1’) then
-- Adr: 0x00000000
if (address(3 downto 0) = "0000") then

dataOut <= registerA;

88 APPENDIX A. HARD/SOFTWARE INTERFACE MICROENABLE

-- Adr: 0x00000001
elsif (address(3 downto 0) = "0001") then

dataOut <= registerB;
-- Adr: 0x00000003
elsif (address(3 downto 0) = "0011") then

dataOut(15 downto 0) <= "1010101000010010";
dataOut(31 downto 16) <= "0001001000110100";

else
dataOut <= (others=>’0’);

end if;
else

dataOut <= (others=>’0’);
end if;

end process READ_REG_PROCESS;

--
-- Set the registers to the output
--
regReset <= registerA(30);
origWord <= registerB;
rotateStart <= registerA(29);

end registerSpaceArchitecture;

A.2. REGISTER/DMA ON DEMAND TRANSFER, VHDL EXAMPLE 89

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rotator is
port (

wordIn : in STD_LOGIC_VECTOR (31 downto 0);
wordOut : out STD_LOGIC_VECTOR (31 downto 0);
rotateEnable : in std_logic;
rotateStart : in std_logic;
rotateRdy : out std_logic;
rotateAlmostRdy : out std_logic;
clk : in std_logic;
reset : in STD_LOGIC

);
end rotator;

architecture rotatorBehave of rotator is
type fsmStateType is (idle, rotate);
signal fsmState : fsmStateType;

begin
FSM_PROCESS : process(clk, fsmState, rotateStart, reset, wordIn)

variable countValue : integer;
variable tmpValue : std_logic_vector(31 downto 0);
variable tmpBit : std_logic;

begin
if reset = ’1’ then

countValue := 0;
fsmState <= idle;
wordOut <= wordIn;
rotateAlmostRdy <= ’0’;

elsif clk’event and clk = ’1’ then
-- default assignment
rotateAlmostRdy <= ’0’;

case fsmState is
when idle => -- wait for the start signal

if rotateStart = ’1’ then
tmpValue := wordIn;
countValue := 0;
fsmState <= rotate;
wordOut <= tmpValue;

end if;
rotateRdy <= ’0’;

when rotate => -- rotate until the 32 round
if countValue <= 30 then
-- rotate another bit

if rotateEnable = ’1’ then
tmpBit := tmpValue(31);
tmpValue(31 downto 1) := tmpValue(30 downto 0);
tmpValue(0) := tmpBit;
wordOut <= tmpValue;
countValue := countValue + 1;
rotateRdy <= ’0’;

end if;
-- generate the rotateAlmostRdy signal
if(countValue = 31) then

90 APPENDIX A. HARD/SOFTWARE INTERFACE MICROENABLE

rotateAlmostRdy <= ’1’;
end if;

else
-- finish the rotation
rotateRdy <= ’1’;
if rotateStart = ’1’ then

fsmState <= idle;
end if;

end if;
end case;

end if;
end process;

end rotatorBehave;

A.3. MATLAB/METAPOST-SCRIPTS 91

A.3 Matlab/METAPOST-Scripts

%
% Matlab code to draw the limit functions ψ̃ and ψ̃
%

impulse=[1];

g0=sqrt(2)*[-1/8,1/4,3/4,1/4,-1/8];
h0=1/sqrt(2)*[0,0,-1/2,1,-1/2];
dwtsig=impulse;

for level=1:7
dwtsig=sqrt(2)*conv(dwtsig,g0);
g0=upsample(g0);
h0=upsample(h0);

end

dwtsig2=sqrt(2)*conv(dwtsig,h0);
dwtsig=sqrt(2)*conv(dwtsig,g0);

x=[-2:4/(length(dwtsig)-1):2];
length(x)
y=[-2:4/(length(dwtsig2)-1):2];
length(y)
plot(x,dwtsig,y,dwtsig2); grid

%
% Matlab code to compute the ranges of wavelet coefficients
%

l=[-1/8,1/4,3/4,1/4,-1/8];
h=[-1/2,1,-1/2];

echo on;
cdfRange(6,l,h,127,-128);
cdfRange(1,l,h,255,-255);
cdfRange(2,l,h,319,-319);
cdfRange(3,l,h,351,-351);
cdfRange(4,l,h,358,-358);
cdfRange(4,l,h,216,-217);

92 APPENDIX A. HARD/SOFTWARE INTERFACE MICROENABLE

%
% Matlab code -- utility functions
%

function cdfRange(level,l,h,max,min);
maxl=max;
maxh=max;
minl=min;
minh=min;

lup=l;
hup=h;

for i=1:level
[maxl,minl]=maxmin(l,max,min)
[maxh,minh]=maxmin(h,max,min)
lup=upsample(lup);
hup=upsample(hup);
h=conv(l,hup);
l=conv(l,lup);

end

function f = upsample(x)
n=length(x);
for i=1:n

f(2*i-1)=x(i);
if i<n

f(2*i)=0;
end

end

function [maxf,minf] = minmax(f,max,min);
maxf=0;
minf=0;
for I = 1:length(f);

if f(I)<0
maxf=maxf+min*f(I);
minf=minf+max*f(I);

else
maxf=maxf+max*f(I);
minf=minf+min*f(I);

end
end
maxf=ceil(maxf);
minf=floor(minf);
end

A.3. MATLAB/METAPOST-SCRIPTS 93

%
% METAPOST code to draw the limit function φ̃
%

input mpFunctions

beginfig(1);

e:=10mm;

drawxyaxis(1mm,0e,0e,1e,1e,-1,2,-2,4,1,1,1,2);

numeric g[],dwtsigg[];
g1=sqrt(2)*(-1/8);
g2=sqrt(2)*(1/4);
g3=sqrt(2)*(3/4);
g4=sqrt(2)*(1/4);
g5=sqrt(2)*(-1/8);

dwtsigg[1]:=1;

approx:=7;
i:=1;

for level=1 upto approx:
conv(dwtsigg,g);
i:=1;
forever:

dwtsigg[i]:=sqrt(2)*dwtsigg[i];
exitif unknown dwtsigg[i+1];
i:=i+1;

endfor;
if (level<approx):

upsample(g);
fi;

endfor;

pair p[];
for k=1 upto i:

p[k]:=(k*0.1e,dwtsigg[k]*0.5e);
endfor;
draw (

(for k=1 upto i-1: p[k] -- endfor p[i])
xscaled (10/((2**approx)-1))
) shifted (0,2e);

endfig;
end;

94 APPENDIX A. HARD/SOFTWARE INTERFACE MICROENABLE

Bibliography

[Ada01] Michael D. Adams.The JasPer Project Home Page, 2001.http://www.ece.uvic.ca/
~mdadams/jasper/ .

[Amp02] Amphion Semiconductor Ltd.JPEG2000 Core Accelerates Next-Generation Image Com-
pression for Digital Cameras, 2002.http://www.amphion.com .

[And01] Peter Andree. MATH Online, September 2001.http://www.ksk.ch/mathematik/
mathonline/ .

[CDF92] A. Cohen, I. Daubechies, and J.C. Feauveau. Biorthogonal bases of compactly supported
wavelets.Communications on Pure and Applied Mathematics, 45:485–560, 1992.

[CDSY97] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. Lossless image compression
using integer to integer wavelet transforms. InInternational Conference on Image Processing
(ICIP), Vol. I, pages 596–599. IEEE Press, 1997.

[CFH96] H. Chao, P. Fisher, and Z. Hua. An approach to integer wavelet transformations for lossless
image compression.Technical Paper, University of North Texas, Denton, TX 76208, 1996.

[CMQW94] R. Coifman, Y. Meyer, St. R. Quake, and M. V. Wickerhauser. Signal processing and com-
pression with wavelet packets. InWavelets and Their Applications, volume 442 ofNATO ASI
Series C: Mathematical and Physical Sciences, pages 363–379. Kluwer Academic Publish-
ers, Dordrecht/Boston/London, 1994.

[Dau92] I. Daubechies.Ten Lectures on Wavelets. Number 61 in CBMS/NSF Series in Applied Math.
SIAM, 1992.

[Fey01] G. Fey. Set Partitioning in Hierarchical Trees: A FPGA - implementation.Master Thesis (in
german), Martin-Luther-University Halle, Germany, 2001.

[FGC93] G. Feygins, P. G. Gulak, and P. Chow. Minimizing error and vlsi complexity in the multi-
plication free approximation of arithmetic coding.IEEE Transactions on Signal Processing,
1993.

[For83] O. Forster.Analysis 1,2,3. Vieweg, Braunschweig, Germany, 1983.

[Fow02] James E. Fowler.The QccPack, 2002.http://qccpack.sourceforge.net .

[Gmb99] Silicon Software GmbH. microEnable - A FPGA prototyping platform.Data sheet and User
manual, 1999.

[Haa10] A. Haar. Zur Theorie der orthogonalen Funktionensysteme.Math. Annal., 69:331–371, 1910.

[inS02] inSilicon Corporation.JPEG2000 Encoder, 2002.http://www.inSilicon.com .

[Mal89] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation.
IEEE Transactions on Pattern Recognition and Mach. Intell., 11(3):674–693, 1989.

95

http://www.ece.uvic.ca/~mdadams/jasper/
http://www.ece.uvic.ca/~mdadams/jasper/
http://www.amphion.com
http://www.ksk.ch/mathematik/mathonline/
http://www.ksk.ch/mathematik/mathonline/
http://qccpack.sourceforge.net
http://www.inSilicon.com

96 BIBLIOGRAPHY

[New96] Bernie New. Using the Dedicated Carry Logic in XC4000E. Technical report, Xilinx Inc.,
July 1996.

[OS89] A.V. Oppenheim and R.W. Shafer.Discrete-Time Signal Processing. Prentice-Hall, Engle-
wood Cliffs, New Jersey 07632, 1989.

[PM88] W. Pennebaker and J. Mitchell. An overview of the basic principles of the q-coder adaptive
binary arithmetic coder. InIBM J. Res. Develop, volume 32(6), pages 717–726, 1988.

[RFM02a] J. Ritter, G. Fey, and P. Molitor. An efficient FPGA implementation of the SPIHT algorithm.
In Tenth International Symposium on Field Programmable Gate Arrays, Poster session. ACM,
March 2002.

[RFM02b] J. Ritter, G. Fey, and P. Molitor. SPIHT implemented in a XC4000 device. InProceedings of
the Midwest Symposium on Circuit and Systems. IEEE, 2002.

[RL81] J. Rissanen and G. G. Langdon. Universal modeling and coding.IEEE Transactions on
Information Theory, 2:27, 1981.

[RM00] J. Ritter and P. Molitor. A partitioned wavelet-based approach for image compression using
FPGA’s. InProceedings of the 2000 Custom Integrated Circuits Conference, pages 547–550.
IEEE, 2000.

[RM01] J. Ritter and P. Molitor. A pipelined architecture for partitioned DWT based lossy image
compression using FPGAs. InNinth International Symposium on Field Programmable Gate
Arrays. ACM, February 2001.

[Say96] K. Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers, Inc., San
Francisco, CA 94104-3205, 1996.

[Sha] C. E. Shannon. A Mathematical Theory of Communication.Bell Systems Technical Journal,
27:379–423,623–656.

[Sha93] J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. InTransac-
tions on Signal Processing, volume 11, pages 3115–3162. IEEE, 1993.

[SP96] A. Said and W. A. Pearlman. A New Fast and Efficient Image Codec Based on Set Partitioning
in Hierarchical Trees.IEEE Transactions on Circuit and Systems for Video Technology, 6,
1996.

[SS96] W. Sweldens and P. Schröder. Building your own wavelets at home. InWavelets in Computer
Graphics, pages 15–87. ACM SIGGRAPH Course notes, 1996.

[Sut99] St. Sutter. FPGA-architectures for partitioned wavelet transformations on images.Master
thesis (in German), Martin-Luther-University Halle-Wittenberg, D-06099 Halle, Germany,
1999.

[Swe96] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets.
Appl. Comput. Harmon. Anal., 3(2):186–200, 1996. http://cm.bell-labs.com/
who/wim/papers/papers.html#lift2 .

[Tau00] D. Taubman. High performance scalable image compression with EBCOT. InTransactions
on Image Processing, volume 9(7), pages 1158–1170. IEEE, 2000.

[Tau02] D. Taubman.Kakadu Software - A Comprehensive Framework for JPEG2000, 2002.http:
//www.kakadusoftware.com .

[Thi01] H. Thielemann. Adaptive construction of wavelets for image compression.Master Thesis,
Martin-Luther-University Halle, Germany, 2001.

http://cm.bell-labs.com/who/wim/papers/papers.html#lift2
http://cm.bell-labs.com/who/wim/papers/papers.html#lift2
http://www.kakadusoftware.com
http://www.kakadusoftware.com

BIBLIOGRAPHY 97

[TM02] D. Taubman and M. Marcellin.JPEG 2000: Image compression fundamentals, standards and
practice. Kluwer Academic Publishers, Norwell, Massachusetts 02061, 2002.

[VK95] M. Vetterli and J. Kovacevic.Wavelets and Subband Coding. Prentice-Hall, Englewood
Cliffs, New Jersey 07632, 1995.

[Wal91] G.K. Wallace. The JPEG still picture compression standard.Comm. ACM, vol. 34, 34:30–44,
1991.

[WP00] F. W. Wheeler and W. A. Pearlman. SPIHT Image Compression without Lists.IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing ICASSP, 2000.

[Xil97] Xilinx Inc. Xilinx XC4000E and XC4000X Series FPGA Data Sheet, November 1997.

Jörg Ritter

ritter@informatik.uni-halle.de

Persönliche Angaben

Familienstand: ledig

Staatsangehörigkeit: deutsch

Geburtstag: 12.04.1971

Geburtsort: Greiz

Ausbildung

1987 Polytechnische Oberschule Greiz-Pohlitz
Abschlußzeugnis (Gesamtnote: sehr gut)

1989 Erweiterte OberschuleTheodor NeubauerGreiz
Abitur (Gesamtnote: sehr gut)

1997 Universität des Saarlandes
Diplom-Hauptprüfung für Informatiker, Nebenfach Wirtschaftswissenschaften
(Gesamtnote gut)

September 2002 Martin-Luther-Universität Halle-Wittenberg
Einreichung der Promotionsarbeit

Wehrdienst

1989-1990 Grundwehrdienst in der Nationalen Volksarmee der ehemaligen DDR

Beruflicher Werdegang

1994-1997 Universität des Saarlandes
hilfswissenschaftlicher Mitarbeiter im Sonderforschungsbereich 124
VLSI Entwurfsmethoden und Parallelität
der Deutschen Forschungsgemeinschaft (DFG)

1997-1998 Universität des Saarlandes
wissenschaftlicher Mitarbeiter am Lehrstuhl für Angewandte Mathematik
und Theoretische Informatik (Prof. Dr. Günter Hotz)

1998-2002 Martin-Luther-Universität Halle-Wittenberg
wissenschaftlicher Mitarbeiter am Lehrstuhl für Technische Informatik
(Prof. Dr. Paul Molitor)

Promotionsverfahren Jörg Ritter

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, daß ich diese Arbeit selbständig und ohne fremde Hilfe verfaßt, andere
als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich
oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Um einen Doktorgrad habe ich mich bisher nicht beworben.

Jörg Ritter

Halle/Saale, den 06.12.2002

	Abstract / Zusammenfassung
	Contents
	Introduction
	1 Mathematical Background
	1.1 Discrete Signal and Filters
	1.1.1 z-Transform
	1.1.2 Impulse train function

	1.2 Measure of Information
	1.3 Distortion Measures
	1.4 Downsampling, Upsampling, and Delay
	1.5 Wavelets
	1.6 Discrete Wavelet Transforms
	1.7 Cohen-Daubechies-Feauveau CDF(2,2) Wavelet
	1.8 Lifting Scheme
	1.8.1 Integer-to-Integer Mapping
	1.8.2 Lifting Scheme and Modular Arithmetic

	2 Wavelet transforms on images
	2.1 Reflection at Image Boundary
	2.2 2D-DWT
	2.3 Normalization Factors of the CDF(2,2) Wavelet in two Dimensions

	3 Range of CDF(2,2) Wavelet Coefficients
	3.1 Estimation of Coefficients Range using Lifting with Rounding
	3.2 Range of coefficients in the two dimensional case

	4 State of the art Image Compression Techniques
	4.1 Embedded Zerotree Wavelet Encoding
	4.1.1 Wavelet Transformed Images
	4.1.2 Shapiro's Algorithm

	4.2 SPIHT- Set Partitioning In Hierarchical Trees
	4.2.1 Notations
	4.2.2 Significance Attribute
	4.2.3 Parent-Child Relationship of the LL Subband
	4.2.4 The basic Algorithm

	5 Partitioned Approach
	5.1 Drawbacks of the Traditional 2D-DWT on Images
	5.2 Partitioned 2D-DWT
	5.2.1 Lossless Image Compression
	5.2.2 Lossy Image Compression
	5.2.3 Boundary Treatment
	5.2.4 Future Work: Taking Advantage of Subimage and QuadTree Similarities

	5.3 Modifications to the SPIHT Codec
	5.3.1 Exchange of Sorting and Refinement Phase
	5.3.2 Memory Requirements of the Ordered Lists

	5.3 Comparison between the Original and the Modified SPIHT Algorithm

	6 FPGA architectures
	6.1 Prototyping Environment
	6.1.1 The Xilinx XC4085 XLA device

	6.2 2D-DWT FPGA Architectures targeting Lossless Compression
	6.3 2D-DWT FPGA Architectures targeting Lossy Compression
	6.3.1 2D-DWT FPGA Architecture based on Divide and Conquer Technique
	6.3.2 2D-DWT FPGA Pipelined Architecture

	6.4 FPGA-Implementation of the Modified SPIHT Encoder
	6.4.1 Hardware Implementation of the Lists
	6.4.2 Efficient Computation of Significances
	6.4.3 Optional Arithmetic Coder

	7 Conclusions and Related Work
	7.1 EBCOT and JPEG2000
	7.1.1 The EBCOT Algorithm

	7.2 Similarities and Differences of JPEG2000 and our Approach

	Appendix: Hard/Software Interface MicroEnable
	Register/DMA on Demand Transfer, C example
	Register/DMA on Demand Transfer, VHDL example
	Matlab/Metapost-Scripts

	Bibliography

