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Chapter 1

Introduction

The amount of data stored in databases grows with an increasing rapid pace. As the capacity of
human analysts is limited, there is a strong need for automated and semi-automated methods to
extract useful knowledge from large data sets. Data mining attempts to find unexpected, useful pat-
terns in large data bases. Due to the new nature of the problems in this context contributions from
many related research fields have been proposed in data mining. Despite of innovative solutions,
problems arise from the different backgrounds of the contributors, which make the comparison of
the proposed algorithms highly non-trivial. So, today’s data mining systems often consist of a
collection of different algorithms, however, without proper guidances, which algorithm is best used
in a given application context. Also the differences between the results of the algorithms are not
fully understood and characterized.

In the following paragraphs we give a short overview on the current situation. There are
three basic methodologies used in data mining, namely association rule mining, classification and
clustering.

Association rules are first defined on transactions, each consisting of several items. Such data
often appear in the context of market basket analysis where each transaction is a set of items
bought by a customer. After the introduction of association rules many other applications have
been identified, where such data are produced. The goal is to find rules (consisting of premise and
conclusion) between itemsets, for which exist a minimal number of examples in the database and
which are true in a given minimal percentage of the stored cases fulfilling the premise.

Classification attempts to learn a mechanism from a given set of pre-classified examples which
is able to correctly assign (non-classified) objects to a class from a given set of classes based on
feature attributes describing the object. There are several methods known to do this task. A very
popular method is to use decision trees. This method also delivers a set of interpretable rules
describing the classification process. The ability to explain the results is a very important aspect
in data mining, because this makes it possible to get deeper insights to the problem and so to find
useful unknown knowledge.

Clustering, which is investigated in this work, groups objects into clusters based on the similarity
between the objects, so that similar objects are in the same group and objects from different groups
are dissimilar. Often the similarity is determined from features, describing the objects. Clustering
is used for different purposes, e.g. finding of natural classes or as a data reduction method. Typical
applications are customer segmentation, document or image categorization as well as class finding
in scientific data.

As mentioned above, data mining is a strongly interdisciplinary research field, with many con-
tributions from statistics, machine learning, databases and visualization. These different research
fields came together to form the new research field data mining, because the problems in the context
of rapidly growing amounts of information require integral, holistic approaches. In that way data
mining can be seen as an united effort to handle knowledge extraction from very large data sources.
There are many statements in the literature and in key note talks saying that the research and the
problems in this context are not covered by a single research field of the mentioned contributors.
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4 CHAPTER 1. INTRODUCTION

The basic techniques mentioned above have been studied for a long time in several of contributing
research areas, however with different backgrounds and research goals. As the main problem of the
early data mining research has been scaling algorithms to large databases, many different trade-
offs between result quality and runtime have been proposed, which are motivated by the different
research backgrounds. Beside the positive effects of this research interaction, as a result, many
algorithms are known solving strongly related problems, but trading quality for runtime in very
different ways, making it nearly impossible for the user to understand the differences.

For example database oriented researchers proposed density-based clustering algorithms sup-
ported by multidimensional indices, without making use of the well-established theory about den-
sity estimation from statistics [32]. For basically the same problem (finding arbitrary shaped clus-
ter), solutions have been proposed from the machine learning community using analogies to neural
signal processing in the brain [36] and from image processing people using wavelets, a technique,
which is often used for image compression [101].

The disadvantages for data mining is the limited use of the algorithms. So the database oriented
solution depends on the existence and the good performance of a multi-dimensional index, which is
not guaranteed in a typical data mining scenario. Since the machine learning solution is an on-line
method, no statements can be made about the state of convergence and whether all data points
are taken into account. The wavelet solution is rather limited to two-dimensional data, because it
treats the data like a two-dimensional image. The user has to be aware of all these conditions and
their impacts to the result, when the appropriate algorithm has to be chosen.

One contribution of this work is the development of a new consistent framework for clustering
and related problems (like outlier detection and noise filtering), which is based on sound statistical
theory and allows to chose a reasonable compromise between quality and runtime within the
framework. The advantage is that the overall setting does not change and one can focus on the
scaling problem. The main contribution of our framework is the decoupling of density estimation
and clustering scheme. While the choice of the density estimation method has to do with scaling, the
selection of the appropriate clustering scheme is a semantic question depending on the application
context. There are two improvements. The first improvement is of technical nature, because the
new concept of decoupling density estimation and clustering scheme leads to new more scalable
algorithms. Secondly, the usability of clustering is improved by the framework, because semantic
decisions are separated from technical scaling problems.

Today, there is a large amount of data stored in traditional relational databases. This is also
true for databases of complex 2D and 3D multimedia data such as image, CAD, geographic, and
molecular biology data. It is obvious that relational databases can be seen as high-dimensional
databases (the attributes correspond to the dimensions of the data set), but it is also true for
multimedia data which - for an efficient retrieval - are usually transformed into high-dimensional
feature vectors such as color histograms [44], shape descriptors [61, 81], Fourier vectors [107], and
text descriptors [72]. In many of the applications mentioned above, the databases are very large
and consist of millions of data objects with several tens to a few hundreds of dimensions.

As an insight from relying on the statistical theory of density estimation, we learned that
clustering in high-dimensional feature space is very limited, because the huge volume of such
spaces can not be sampled sufficiently with data points even when gigabytes of data are used.
Scott and Härdle [47] gave an impressing example to illustrate this situation and then they asked:

”Should we give up now that we know that smoothing1 high dimensions is almost
impossible unless we have billions of data points that we can’t analyze effectively? No,
we could still try to pursue the goal to extract the most interesting low dimensional
feature.”

We followed this advise and investigated the problem of finding clusters in low dimensional pro-
jected spaces. This problem is much more difficult than the traditional clustering problem, because
the number of possible projections is very large. Note that standard dimensionality reduction tech-
niques like principal component analysis can not be used for this problem, because these techniques

1In the statistical literature smoothing is often used as a synonym for density estimation.
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attempt to find a single projection, which is applied to all data points and so to all clusters. The
new aspect of projected clustering is, that each cluster may have its own relevant projection.

In the first part of chapter 4 we develop a new notion of similarity as well as a generalized
definition for nearest neighbor search, which takes this aspect into account. The new contribution
is that a metric is not used anymore for the whole feature space, but serves as similarity measure
only in a region around the query point using only a subset of the attributes.

There are only a few publication available for projected clustering in the literature. We review
shortly the existing algorithms and explain their problems. Our main contribution in this part is
the development of a new projected clustering algorithm, which overcomes weighty drawbacks of
the other ones. We apply our algorithm to several real data sets and show its usability in different
application contexts.

The final chapter deals with the usability of the previously developed automated clustering
methods. As in the application of clustering always some semantic decisions are involved, the
user has to be enabled to understand the impact of her/his decisions. Visualizations can be very
effective to support this understanding and to bridge the semantic gap between the user and the
clustering system. The term ’semantic gap’ describes a situation where it is difficult for the user
to communicate her/his needs and expectations to a software system. The bridging of the sematic
gap or semantic chasm is one of the most challenging tasks, which are faced by today’s research
in information retrieval, human computer interfaces and with growing importance also in data
mining.

The main challenge for clustering and projected clustering is to find a meaningful definition
of similarity. For high-dimensional data different alternatives are possible, which differ by their
weighting of the used attributes. The finding of axes-parallel projections, which allow the mean-
ingful separation of clusters, is a simplified variant of the problem. However, it is highly non-trivial
for the user to communicate a definition of meaningful to the clustering system in a formal way.
Here we are facing an instance of the problem of bridging the semantic gap.

We developed an system called HD-Eye, which integrates several (semi-) automated clustering
method and interactive visualizations. With the help of the visualizations the user may select
meaningful projections, directly specify partial cluster-descriptions, tune parameters according to
her/his intention or understand the results of automated clustering procedures. The system is
especially useful for data exploration tasks, because the visualizations can also partially show
hidden structure in the data or may disclose unknown properties, which are not captured by more
formal summaries. This stimulates the user to generate different hypothesis about the data and
serves in that way the exploration process.

HD-Eye also supports the semantic decisions needed for projected clustering, by allowing the
comparison of different models for the found clusters. This is an important aspect in projected
clustering, since the choice of the projections are crucial for the relevance and meaningfulness of
the results.

Many of the results presented in this work have been published before in different conference
proceedings and journals. Most of the articles present joint work with Prof. Dr. Daniel Keim.
In [50,53] we published an new clustering algorithm called DENCLUE based on density estimation.
In [55] we investigated a first clustering algorithm using projection and in [52] we developed a new
notion for projected nearest neighbor search. First results from our visual clustering system HD-
Eye have been published in [51]. We gave also a tutorial about clustering at several conferences
[54, 56, 67], which builds the basis for the related work chapter. All materials presented in this
dissertation is original work except the basic definitions on density estimation and the WARPing
methods presented in chapter 3.

There is also ongoing development of software packages which implements the HD-Eye system
and the ideas of the introduced separator framework for clustering. The software packages are
not described in the thesis. A first prototype of HD-Eye was demonstrated at the SIGMOD’02
conference [57].
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Chapter 2

Related Work

2.1 Common Concepts

Clustering has been successfully applied in many areas, for instance statistical description of bi-
ological phenomena, use in social investigation, psychology, statistical interpretation of business
data and many more. The general purpose for doing clustering is to group similar objects together,
so that unsimilar objects are in different groups and to build by this procedure an abstract but
useful model of the part of the real world, which is investigated in the application. Second order
purposes can be data reduction, discretization of continuous attributes, outlier finding, detection
and description of natural classes and noise filtering.

The first purpose has to do with knowledge discovery, the second is more technical and deals
with statistics, machine learning and data mining. Each approach of the related work described
in the next sections is more or less dedicated to some of the second order purposes. Each specific
approach serves in the context as a tool to reach the general goal of knowledge discovery and mostly
defines implicitly the apriori blurred terms ‘similar’ and ‘useful’. The translation of these terms
into the application context is the most challenging task for successful clustering.

Clustering generally requires two preconditions: a set of objects, which should be clustered and
a similarity function. There are two main ways to meet these requirements. The first is to provide
the objects as a set of abstract symbols and the distance function as a distance matrix, which stores
the distances or similarities of an object to each other. This approach avoids many difficulties of
the second, because no transformation of the data is needed. But in case of a large object set
this approach is prohibitive, because of the quadratic growth of the computational costs caused
by the distance matrix. The second approach translates the meaning of the objects into vectors of
fixed lengths, which can be seen as an enumeration of attributes. Then a mathematical distance
function over the vector space is chosen to serve as a distances or similarity function for the objects.
Using properties of the vector space, algorithms has been developed, which show a subquadratic
behavior 1. However, in contrast to the first approach it remains largely unchecked whether the
distances or similarities resulting from the translation into the feature vector space and the chosen
distance are useful for all combinations of objects. The work involved in the translation is called
data preparation and is often separated from the clustering step. Since the application context in
this work implies large objects sets, only algorithms based on the second approach are explored.
As a further restriction the attributes have to be of numeric type, which can be ordered.

All clustering algorithms for this type of data estimate the probability density in the vector
space. The estimated density generally depends on input parameters from the user. All clustering
techniques use the density information to build groups of data points. There are two extreme
possibilities to group the data points, which are useless from the point of knowledge discovery.
First, the grouping of the all data points into one cluster does not reveal a new contribution. But
also taking each object as a cluster of its own is not an gain of information. So any algorithm tries

1Often particular assumptions about the data distribution or the result are necessary for this.
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8 CHAPTER 2. RELATED WORK

to find a clustering between the both extremes by examining the data distribution according to
the chosen technical approach and the parameter setting. However there is no general criterion
of how to choose the best approach and the best parameter setting for an application, because of
the a-priori unknown translation of ‘similarity’ and ‘useful’ from the objects and their application
context into the feature vector representation and the used cluster paradigm.

2.2 Classification of Methods

In this section approaches proposed in the literature are classified and described according to the
used method of density estimation and the clustering paradigm. So far as possible the intercon-
nection between the approaches is extracted but also historical aspects are considered. The classes
are model-based, linkage-based and density-based approaches.

2.2.1 Model-Based Approaches

The approaches in this class are called model-based, because the used algorithms adopt a fixed
model to a given data set. Since the model is in general smaller then the data set these algorithms
are often used for data compression. In the statistical literature the methods of this class are
also called parametric, because parameters of a model are adopted, in opposite to non-parametric
methods, which construct a result and return it as a not predefined model. Model-based algorithms
can be formulated as an optimization problem. The idea behind is, that the parameters should
be optimally estimated according to an optimization function and the used model. Note that
optimally estimated cluster centroids are not necessarily meaningful within an application context.
E.q. when the clusters have arbitrary shapes or different average densities and sizes centroid based
approach are likely to split clusters.

An early published, but still relevant algorithm is k-means also referred as LBG [75, 76].
The aim is to find for a given finite data set D ⊂ F positions of a set of k centroids P =
{p1, . . . , pk} in a feature space F ⊂ Rd, which minimize the quantization error. Given a data set
D = {x1, . . . , xn} ⊂ F , a set of reference vectors (centroids) P = {p1, . . . , pk} ⊂ F , a distance

function x, y ∈ F, d(x, y) → R =
∑d

i=1(xi − yi)
2 and an index function I(x) = min

{

i : ∀j ∈
{1, . . . , k}d(pi, x) ≤ d(pj , x)

}

the quantization error is

E[D,P ] =
1

#D

∑

x∈D
min
{

d(p, x), p ∈ P
}

=
1

#D

∑

x∈D
d(x, pI(x))

The LBG algorithm finds a local optimum with an iterative procedure. LBG initializes the reference
vectors at randomly chosen data points. In an iteration step it calculates for each reference vector
the set Rc = {x : x ∈ D, I(x) = c} of data points which have the centroid pc as the nearest
centroid. Each reference vector pc is moved to the mean of Rc. Since this movement of the
reference vectors may cause a change of the sets Rc the iteration is done again. This step, also
called Lloyd Iteration, produces a lower or equal quantization error [41]. The iteration stops if
the centroids do not change any more. The result of LBG can be seen as a centroidal Voronoi
partitioning of the data space F , where the mean of each Voronoi cell is at the position of the
centroid. There are different interpretations of the result, namely the direct use of the centroids as
cluster centers and alternatively vector quantization as a data reduction method not as a clustering
method. In case of the first interpretation the clusters have to have round and compact shape and
nearly equal density. The data compression works best, if no uniformly distributed points are in
the data. The run time complexity is in O(n · d · k).

A drawback of LBG is to assume the data can be averaged to calculate a mean. There are cases,
where the mean of a set of data points is not defined or meaningless. An alternative to LBG is
CLARANS [82], which uses medoids instead of centroids. Medoids are special data points, which
are selected as representatives. The optimization function is the same as for LBG, but instead of
the Lloy Iteration CLARANS uses a bounded search heuristic to approximate the gradient. The
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authors introduced the parameters num local which is the number of iterations and max neighbor
which is the number of tests per iteration to replace one medoid by a better data point. The
search space is formalized as a graph. Each node corresponds to a configuration of the medoids
and has n · k edges. The number of nodes is n!

k!(n−k)! . Due to the heuristic search and the very

large optimization the algorithms can not guarantee to reach a local optimum. So the algorithm
is well suited for low dimensional, small to medium sized data sets.

The LBG or CLARANS algorithms are increasingly sensitive to the initialization when the data
space becomes sparse. The problem of initialization has been studied in [26, 27]. The authors use
different heuristics to find a good initialization and to avoid poor local minimums.

The algorithms LBG-U [37] and k-harmonic means [22, 113] use different strategies to over-
come the initialization problem. The authors of k-harmonic means use a different optimization
function to minimize the quantization error, namely the harmonic mean:

OPT [D,P ] =
1

#D

∑

x∈D
ha
{

d(p, x) : p ∈ P
}

=
1

#D

∑

x∈D

k
∑

p∈P 1/d(x, p)q

This bases on the observation that the harmonic mean, which is defined as ha{a1, . . . , ak} =

k/
∑k

i=1
1
ai
, behaves more like a min function than an average function. The parameter q is used

for a weighting function. The derived update formula for a centroid uses not only information
about the nearest points but also about the position of the other centroids pj ∈ P :

pj =
k
∑

i=1

1

d(xi, pj)q+2
(
∑k

l=1
1

d(xi,pl)q

)2 · xi
/ k
∑

i=1

1

d(xi, pj)q+2
(
∑k

l=1
1

d(xi,pl)q

)2

The authors show empirically for 2-dimensional data sets that k-harmonic means finds indepen-
dently from the initialization a better local optimum than LBG.

LBG-U overcomes a poor local optimum by using non-local jumps, which moves not well
utilized centroids to better positions. Therefore the author introduces the utility of a prototype
U(p) = E[D,P\{p}] − E[D,P ] as a measure how useful is the actual position of the centroid p
for the data approximation. After the termination of the LBG algorithm the centroid p with the
minimal utility is moved near to the centroid p′, which causes the largest quantization error. Then
LBG is invoked again. The iteration stops when the quantization error is not improved any more.
The introduction of non-local jumps makes LBG-U independent from the initialization and the
algorithms finds a better local optimum than LBG.

The other research branch where model-based cluster algorithms has been developed is machine
learing. The methods are here also referred as unsupervised learning. The focus is the storage and
compression the history of presented data in a model. In contrast to the statistical algorithms,
which scan the whole database to derive the update information (batch mode), machine learning
algorithms update the model immediately after a single data object has been processed. This
mode is called online mode and models the behavior of organisms in a more natural way. In the
recent literature online-algorithms are studied in the context of data streaming, as the immediate
processing of data fit the streaming model.

A well established technique are Kohonen-maps [70, 89], also known as self organizing maps
(SOM). A map consists of k centroids, which are linked by edges according to a fixed topology,
like a 2D grid. The map is initialized randomly and trained for a data set by repetitively picking a
randomly chosen data point x ∈ D, determining the nearest centroid pI(x), adopting the centroid
pI(x) = α · (x− pI(x)) towards the picked data point according to a learning rate α as well as the
topological neighbors of pI(x) with a learning rate β ≤ α. To achieve convergence the learning
rates α and β decrease with the number of processed data points.

The neural gas algorithm [78] is an online learning algorithm without a fixed topology. In
contrast to other methods the topology is not represented by edges between the nodes. The
training algorithm starts with a fixed number of k centroids P = {p1, . . . , pk} which are randomly
initialized. In each training iteration a data point x ∈ D is randomly chosen. Then all centroids
are placed in ascending order according to the distance to the picked data point x. These order
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is represented as an index sequence (i0, i1, . . . , ik−1) starting with the closed centroid pi0 to the
farthest one pik . All centroids are updated according to the following formula:

∆pi = ε · hλ(l) · (x− pi), with 0 ≤ l ≤ k − 1 and pi = pil ; hλ(l) = e−l/λ

The ε and λ are time-depended functions and decrease with the iteration counter t, 0 ≤ t ≤
tmax according to λ(t) = λi(λf/λi)

t/tmax and ε(t) = εi(εf/εi)
t/tmax . The parameters used in the

simulation in [78] are λi = 10, λf = 0.01, εi = 0.5, εf = 0.005, tmax = 40000. The iteration stops
when the iteration counter t reaches tmax. Since the map has no predefined topology it can adopt
arbitrary distributions. However, the plasticity (number of centroids) and the parameters for the
learning rates have to be specified for the algorithm.

A method to find a topology represented by edges for a given set of centroids is Competitive
Hebbian Learning [77,79]. The desired topology graph connects neighbored centroids by edges.
In the general case this is a Delaunay graph, which is very costly to derive for high dimensional
data. Competitive Hebbian learning derives an induced Delaunay Graph by masking the origi-
nal Delaunay triangulation with a data distribution. In the induced Delaunay graph centroids
are connected, if the maximum of probability density at the common border of the both corre-
sponding Voronoi faces is greater than zero. The algorithm takes an initialized set of centroids
P = {p1, . . . , pk} and a set of data points D ⊂ Rd. The induced Delaunay graph G = (V,E) is
initialized as undirected graph with V = P and E = ∅. Then it picks randomly data points from D
until a maximum number tmax is reached. For each data point the nearest and the second nearest
centroid p1, p2 is determined. If there is no edge between p1 and p2 in E an new edge is inserted
E = E∪{(p1, p2)}. Martinetz and Schulten [79] proved that the resulting induced Delaunay graph
is a subgraph of the original Delaunay graph for the given set of centroids P . The method works
for all vector quantization techniques.

Fritzke proposed in [36] a algorithm called growing neural gas, which combines neural gas
and Hebbian learning with a growing strategy. The method starts with two centroids connected
by an edge. Similar to the Kohonen map the training algorithm picks randomly a data point
x, determine the nearest and second nearest centroid p1, p2. If both centroids are connected by
an edge, the age of the edge is set to zero else a new edge with zero age is inserted. Then p1

and the topological neighbors are moved towards x according to a constant learning rate. In the
reminder of the iteration step all age counter of the edges outgoing from p1 (the nearest centroid)
are incremented and edges older than amax are deleted. In case of isolated centroids result from the
deletion, these centroids will be deleted as well. The growing strategy bases on the approximation
error, which is associated to each centroid and incrementally derived during the iteration. The
approximation error of nearest centroid p1 is updated with δE1 = d(p1, x)

2. An new centroid
is inserted every lth iteration using the following procedure. The centroid pq with the largest
approximation error Eq and the neighboring centroid pf of pq with largest error are determined.
The new centroid pr = 0.5(pq+pf ) gets the position between the selected centroids pq and pf . The
approximation errors of pq, pf are reduced by δEq = −αEq resp. δEf = −αEf with 0 < α < 1 and
the approximation error of the new centroid pr is Er = 0.5(Eq + Ef ). At last the approximation
error of all prototypes is decreased by δEc = −βEc. Fritzke used for the experiments in his
publications the following parameter settings: l = 200, α = 0.5, amax = 88, β = 0.0005. As
stop criterion can be used the net size or the average approximation error. In contrast to the
combination of neural gas and Hebbian learning the advantage of growing neural gas is that the
net size has not to be predefined and all intermediate training states are valid approximations of
the data distribution.

2.2.2 Linkage-Based Approaches

The next class of clustering methods are linkage-based approaches. There are a number of dif-
ferent hierarchical linkage methods known, for example single, complete and average linkage. In
this section we describe extensions of the centroid and the single-linkage approach, which have
become a focus of recent data mining research. Centroid and single-linkage generate a hierarchy
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of clusters (also called dendrogram). Both start in the agglomerative case with the data points
as clusters and merges in each iteration step the two clusters with the smallest distance. The
iteration runs until only one cluster remains. The distance between two clusters A and B, which
are sets of data points, is the distance between mean(A) and mean(B) in case of centroid linkage,
the minium/maximum distance between a point from A and a point from B for single/complete
linkage. The computation of a complete hierarchy is very costly for large data sets because in
each iteration all pairwise distances between the current clusters have to be computed. A way to
circumvent the high complexity is to determine only a part of the hierarchy.

BIRCH [115] determines the upper part of the hierarchy using a variant of centroid linkage
which depends on the order of the processed data points. For this a R-tree like structure called
CF-tree is build, which stores summaries about all data points seen so far. In contrast to a R-tree
the CF-tree represents the data points by centroids with variance. The entries of a CF-tree are
additive that means nodes on higher levels are the sum of the sons. BIRCH stores only the upper
part of the complete hierarchy, which has a size lower than a given threshold M . The size of the
tree is controlled by the variance of the leafs, which must not exceed a threshold t ≥ 0. In case the
tree becomes too large the variance threshold is increased so that the leafs can absorb more data.
The new tree is rebuilt by inserting the leafs of the old tree. Since the allowed variance in the leafs
is larger the new tree is smaller than the previous one. The output of BIRCH are the centroids
of the leaf level, which can be used like any other result from a vector quantization method. In
contrast to k-means the number of centroids depends on the size of the given memory, the order
and the distribution of the data. BIRCH needs only one scan over the data to build the CF-tree.

In case of single-linkage clustering the smallest part of an hierarchy is a horizontal cut, which
corresponds to a minimum linkage distance ε > 0 and a partitioning C = {C1, . . . , Cm} of the data
set D. Such a flat single-linkage clustering fulfills three main conditions:

1. Non-Emptiness: Ci 6= ∅ for i = 1, . . . ,m

2. Connectivity: x ∈ Ci and dist(x, y) ≤ ε⇒ y ∈ Ci

3. Maximality: There is no i, j ∈ {1, . . . ,m}, i 6= j that (Ci∪Cj) fulfills the first both conditions.

A simple algorithm, which can directly determine such a clustering (not in an agglomerative way),
takes each data point as a node of a graph and inserts an edge between two data points if the dis-
tance between them is smaller than ε. The clusters Ci are the connected components of the graph.
The clusters may have arbitrary shape in multi-dimensional spaces, since a cluster is represented by
all points which belong to the cluster. This is the main difference to vector quantization methods,
which represent a cluster only by one point and produce clusters of compact and nearly round
shape. The run time of the flat single-linkage algorithm is in O(n2), because for the determination
of the edges all pairwise distances have to be computed.

The past data mining research on this algorithm dealt with two main issues, namely the im-
provement of the effectivity and scaling of the algorithm to large data sets. At first, we review
the research on improved effectivity. A disadvantage of single-linkage is, that two dense groups of
points which are linked by a chain of close points are determined as one cluster by single-linkage.
The undesired effect is also called chaining effect.

An simple method to reduce the chaining effect was published by Wishart [111]. He proposed
a preprocessing step in which all data points, having less than c ∈ N other data points in their ε-
neighborhood are removed. This heuristic removes points of the chain. The single-linkage algorithm
is applied to the reduced data set. This idea has been taken up by Sander et al. who proposed
the DBSCAN-algorithm [32], which defines a cluster in a very similar way like Wishart. The only
difference to Wisharts method is, that also points within the neighborhood of a core point (a data
point with more than MinPts ∈ N data points in the ε-neighborhood) belong to a cluster. The
main contribution of the DBSCAN approach deals with the efficiency issue which is discussed later.

Since it is difficult to tune the parameters ε and c (or MinPts in the publications of Sander
et al.) Xu et al. [112] proposed an algorithm which has no parameter but assumes the points are
uniformly distributed within the clusters. Instead of DBSCAN’s core point condition the authors
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Figure 2.1: Example illusttration of the cluster-ordering found by OPTICS. In the figure a cluster corre-
sponds to a valley. (Taken from [12], page 6)

require for the nearest neighbor distance of the points in a cluster to be normally distributed which
is the case if the data points fill the region of the cluster uniformly. The condition is checked via
the χ2-test on the theoretical nearest neighbor distance distribution and the observed one.

Both extensions of single-linkage reduce the chaining effect by introducing a special condition
which describes the border of a cluster. So the algorithms can be seen as single-linkage plus an
additional stop criterion, which decides locally whether a point can be linked to a cluster or not.

In case of clusters with different densities the approach fails since the border of the clusters can
not be uniquely described. To deal with different densities in the data the OPTICS approach [12]
computes the lower part of the single-linkage hierarchy. OPTICS is an further development of
DBSCAN so the core point condition to reduce the chain effect is also integrated. The lower part
of a single-linkage hierarchy corresponds to linkage distances 0 ≤ ε ≤ εmax. The lower part is
not a hierarchy tree, but consists of many small subtrees. OPTICS determines instead of the
subtrees an ordering of the data points so that the points belonging to the same subtree appear in
sequence in the ordering. To each point in the sequence a value reciprocal to the density (called
reachability distance) is attached. So hierarchical clusters can be recognized as nested valleys in
a graph with the point ordering on the x-axis and the reachability distance on the y-axis. The
determination of the ordering is a single-linkage process which is guided by the density of the
points to link. In contrast to standard single-linkage the graph scan is implemented as breadth
first search using a priority queue instead of a simple one. The priority of data points (or nodes
of the graph) correspond to their density measured by the k-nearest neighbor distance within an
εmax-neighborhood. So points with high density are processed earlier than low density point at
the border of an cluster. The ordering produced is the processing order of the points. The priority
queue guides the graph scan from any point of the cluster to the most dense region and from there
it discovers the cluster in a manner of concentric circles until the border is reached. In case a path
to another more dense area is found the points there are explored first. So regions of different
densities can be handled. The output of OPTICS is usually displayed by a graph like in figure 2.1.
Different levels of the partial hierarchy are extracted by cutting the graph with horizontal lines
and taking all points in a valley below a line as one cluster. In that manner a partial dendrogram
can be determined, which captures the cluster structure in the data.

In the last part of this subsection we want to review the work on making single-linkage and the
variants more efficient. The standard partitioning algorithm has to check the distances between
all pairs of points, whether the distance is below the linkage distance and might establish an edge
between the points. This causes a quadratic run time of the standard algorithm. Sander et al.
proposed to use a spatial index structure like R∗-tree or any other advanced spatial index structure
supporting near neighbor queries. Using such index structures the ε-surrounding of a data point can
be retrieved more efficiently. Assuming the index structure can deliver points in an ε-surrounding
in O(log n) the run time of whole clustering comes down to O(n · log n). The assumption is only
true for low and medium dimensional data and small query regions. Studies on index structures
have shown that the efficiency decreases with growing dimensionality and will be beaten by a linear
scan for high dimensionality. Another scaling variant is to approximate single-linkage clusters. An
approximation method for single-linkage clusters using a quad-tree like grid structure has been
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proposed by Muntz et al. [109]. Another method [28] pre-compresses the data using BIRCH and
does the single-linkage clustering on the compressed data.

2.2.3 Density-Based Approaches + KDE

Density-based clustering has been early studied in the field of applied statistics. The idea is to
estimate the probability density function using observations which are given by multi-dimensional
data points. In the second step the clusters are constructed using the density function. In early
work [38,94] the clusters are constructed using the gradient of the density function. The methods
apply to each data point an iterative hill climbing procedure. A cluster is defined by a local
maximum of the density function and consists of the data points, which converge to the maximum.
The algorithms are designed for small data sets. The determination of the proposed density
functions at one point in the data space requires distance calculations to each data point. Since in
each iteration the density and the density gradient is determined for all data points the algorithms
have a runtime in O(n2) (n is the number of data points).

Density estimation is a separate research area in the statistic community with many appli-
cations including cluster and regression analysis. There are a number of different techniques to
construct a density estimate using data points, namely multi-dimensional histograms, averaged-
shifted histograms [96], frequency polygons and kernel density estimation [98, 105, 108]. Kernel
density estimation has become a widely studied framework and in which nearly all estimation
methods can be formulated. The idea of kernel density estimation is to model the density as a
sum of the influences of the data points. The influence of a data point is given by a kernel func-
tion, which is symmetric and has the maximum at the data point. Examples for kernel functions
are Gaussian bell curve, square wave function or nearest-neighbor distance function. The density
function takes higher values than the simple kernels of the points in regions, where some kernel
functions have a significant overlap. Since in the general case the kernel function of an data point
is in the whole data space above zero the determination of the density function which is the sum of
kernels at different positions has no zero added, which could be excluded from the summation. So
the complexity of a kernel density function for the determination of the density at a single point is
in O(n), which makes the function very costly for large applications. The WARPing-framework [47]
proposes to pre-aggregate the data in advance and to use the aggregated points. A special case
of WARPing using BIRCH as aggregation method has been published by Zhang et.al [116]. The
complexity of the density function can be reduced from O(n) down to O(k), where k is the number
of used centroids with k ¿ n.

In the KDD literature other density-based approaches than DBSCAN [32] has been proposed.
This methods makes use of histogram-based density estimation. The approach called grid-clustering
by Schikuta [93] constructs a grid-file like data structure and scan connected grid cells according
to the density in decreasing order. The output is a similar ordering like the one from OPTICS,
but grid clustering starts directly in the center of a cluster.

The wavecluster approach [101] constructs a fine 2D histogram of the data (only 2D can be
handled by this approach). In a second step the bin values are taken as grey signals of an image
and transformed using wavelets to clean out noisy parts of the data. After the transformation the
clusters are determined as connected regions with a bin value above zero. The wavelet approach
enables also the finding of clusterings with different resolutions.

2.3 Projected Clustering

The problem of projected clustering is motivated by the observation that high dimensional data
spaces are sparsely populated with data points despite the large size of the used data sets. This is
due to the fact that the number of data points needed to fill a high dimensional space grows expo-
nentially with the number of dimensions. There are different consequences of this fact. In Beyer et
al. [21] is shown that nearest neighbor search becomes instable with growing dimensionality. The
lemma shown has very general conditions met by many data sets. Another consequence formulated
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by statisticians is that density estimation becomes insignificant in high dimensional spaces due to
the lack of observations with respect to the volume of the space [105]. These consequences limit the
effectivity of clustering in high dimensional spaces, since cluster heavily rely on these techniques. A
way out is to find clusters in subspaces of the original high dimensional space [47]. There are some
recent research activities in the KDD community which address the problem of finding clusters
within subspaces.

Aggrawal et al. [7] proposed an apriori-like algorithm called CLIQUE which identifies subspaces
with clusters. The algorithm bins the dimensions into several intervals and find in an apriori-like
fashion dense combinations of intervals from different dimensions. The involved dimensions of the
found combinations stretch a subspace which contains clusters. In the following clustering step all
connected dense interval combinations are grouped together. Experiments have shown that the
algorithm is sensitive to the initial binning. In case of a coarse binning many combinations are
dense (or frequent) and so the candidate sets of apriori becomes very large. This results into a
poor performance of CLIQUE. If the binning has fine granularity the algorithm produces dense
combinations, which rarely consists of more than three or four dimensions. So the dimensionality of
the found subspaces is low. The algorithm scales linear in the number of data point but quadratic
or super-quadratic in the number of initial dimensions.

Other approaches by Aggarwal et al. [3, 4] follow the strategy to partition the data into initial
clusters and reduce the dimensionality of these subsets to a given lower dimensionality. The dimen-
sionality reduction strategies are integrated into a k-means like framework. During the reduction
process clusters which become similar in the subspaces can be merged. In both approaches clusters
are described by a center point and a vector set spanning the subspace. In the first approach the
subspaces are restricted to be axes-parallel. The reduction process is guided by a variance criterion
measuring the deviation of data points from the center in each dimension. Dimensions with a large
deviation are greedily removed until a given minimal dimensionality is reached. The second ap-
proach allows arbitrary oriented subspaces. Here, the spanning vectors are determined by separate
applications of principal component analysis to the initial cluster subsets. Since both approaches
determine a partition of the data set, the algorithms can not detect whether a data point belongs
to more than one projected clusters within different subspaces. A more detailed review of recent
work of projected clustering is in section 4.2.

2.4 Outlier detection

The problem of finding outliers in large data sets is related to the clustering problem, because
some clustering algorithms indirectly are able to find outliers. On a raw level, from the clustering
perspective an outlier is an object, which can not be assigned to any of the found clusters with
large confidence. In fact it might be useful to examine whether the concepts for clustering may
serve for outlier detection.

The outlier detection problem has been extensively studied in the field of statistics. A generally
accepted characterization of the problem is given by Hawkins: ”an outlier is an observation that
deviates so much from other observations as to arouse suspicions that it was generated by a
different mechanism” [48]. A large number of tests for outliers are known in the statistical literature
[17]. All these tests are designed for univariate data and make assumptions about the underlying
distribution. In the data mining literature four different definitions of outliers have been proposed,
which do not make assumptions on the data distribution and can handle multivariate data.

Knorr and Ng introduce distance based outliers [68,69]. The definition requires an appropriate
chosen distance function, which measures the dissimilarity between two objects. An outlier is
assumed to be dissimilar to more than p percent objects of the data set. An object is dissimilar to
another one if the distance between both exceeds an given threshold D. The approach by Knorr
and Ng identifies all the objects with less than (1 − p) percent of objects in their D surrounding.
The authors propose two algorithms, first a cell based algorithm which is linear in the number
of data points but only scales up to four dimensions and second a nested-loop algorithm with a
complexity of O(d ·N2) and a very low constant.



2.5. SUMMARY 15

A variant of distance based outliers [87] uses the nearest neighbor distance to compute outliers.
Here, the authors define the n points with the largest nearest neighbor distance to be outliers. The
algorithms proposed in [87] uses index structures for low dimensional data and the nested loop join
for high dimensional data.

The second approach called local outliers has been proposed by Breunig et al. [28,29]. The au-
thors developed a measure called LOF based on the reachability distance also used for the OPTICS
clustering algorithm. The LOF measurement for a data point x is high when the reachability dis-
tance is much larger than the average reachability distance in the neighborhood of x. Data points
with a high LOF value are reported as outliers. The concept of the LOF value allows to find
outliers in regions of different average density. Such outliers can not be found by the previous
approaches. In case of local outliers the determination of the reachability distance of an object and
so the LOF-value requires a k-nearest neighbor query. For the efficient handling of these queries
a multi-dimensional index structure like R-tree or X-tree has been used by the authors. The ex-
periments show that this works well for low and medium-dimensional data sets. Since for high
dimensional data sets the performance of the index structure becomes linear, the LOF-method by
Breunig et al. converges to a quadratic runtime.

The work of Han et al. [62] improves the efficiency of the LOF-method using the following
concepts. First, the authors say, it is not necessary to compute the LOF and so the nearest
neighbor distance for all points of the data set, since only the n points with the largest LOF are
outliers. The authors use the BIRCH algorithms to partition the data into clusters and determine
for each partition an lower and upper bound for the nearest-neighbor distance and so for the LOF-
measure. In that way they are able to compute candidate partitions which possibly contain the
top-n local outliers. The other partitions are pruned. In the last step only the candidate partitions
are used to compute the n local outliers with the largest LOF-value.

An interesting approach by Aggarwal and Yu [5] deals with outliers in high dimensional spaces
and the inherent sparsity of such data spaces. The focus of their study is to find data points in low
dimensional projections where the density of the points deviates significantly from the expected one.
The approach partitions the dimensions into intervals. The intervals from different dimensions can
be combined to grid cells in the subspace, which is spanned by the used dimensions. The expected
density of a point in a grid cell is the product of the densities in the used intervals, while the
measured density is the number of data points in the grid cell. The authors use an evolutionary
search strategy to find grid cells in subspaces, where the measured density is significantly lower
than the expected one. The authors demonstrated on small, classified data sets from the UCI
machine learning repository that their notion of outliers is useful to find instances belonging to
small classes, which can be seen as outliers. However, due to the exponential search space of
the problem the evolutionary search heuristic can not guarantee to find all points matching the
proposed outlier definition.

2.5 Summary

In this section the previous work related to clustering is summarized. The model-based algorithms
(except CLARANS) can be seen as vector quantization methods. The vector quantization methods
are efficient, that means they have an acceptable asymptotic run time for large databases O(n ·d ·k)
in case of batch methods and O(tmax · d · k) in case of online learning. The algorithms differ in
the shown effectiveness, which can be measured by the quantization error. To use the algorithms
as cluster algorithms for general cluster types, post processing is required in all cases, since a
standalone vector quantization method detects only spherical clusters of nearly equal density and
size.

The standard k-means/LBG algorithm with random initialization finds a local optimum, which
depends on the chosen initial positions for the centroids. LBG-U and k-harmonic means overcome
this drawback, which find better local optimums than LBG.

The online methods from the machine learning research do not guarantee to find a local min-
imum of the quantization error function, since they are designed for different purposes. A great
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advantage is the topology, which can be used for the clustering. Neural gas/ Competitive Hebbian
Learning and Growing Neural Gas outperform with the adaptive topology the Kohonen map (fixed
topology), since they are able to avoid anomalies in the topology structure (see [89]). However
the online learning methods require an extensive parameterization, which prevent the use of the
methods in a general data mining tool.

In general, linkage based algorithms produce a hierarchy of clusters, but their high runtime
complexity (super quadratic) is prohibitive in case of large data sets.

Centroid linkage and BIRCH deliver like other vector quantization algorithms sets of centroid
which are a compressed version of the original data. BIRCH is an efficient, but order-dependent
variant of centroid linkage which needs only a single scan over the data and determines the upper
part of the complete hierarchy.

Other research on linkage-based algorithms focuses on extensions of single linkage. In contrast
to vector quantization this type of clustering algorithms can detect arbitrary shaped clusters. The
extensions on effectiveness improvements of single linkage are the handling of the chaining effect
(DBSCAN) and the determination of the lower part of the single linkage hierarchy (OPTICS).
Improvements on the efficiency include the use of spatial indexes which reduces the runtime com-
plexity to O(n log n) for low dimensional data.

Density estimation is a statistical research area with strong relations to clustering. There are
first approaches of density based clustering algorithms, which use multivariate density functions to
determine a clustering. However, the algorithms do not scale to large data sets. Interesting new
results on efficient density estimation have not been integrated into cluster algorithms. Recent
approaches into that direction mainly use histogram-based density estimation.

Beside full dimensional clustering the new branch of projected clustering has been developed.
This new field is motivated by many results, showing the decreasing efficiency and effectiveness
of methods when the dimensionality of the data grows high. First interesting results have been
proposed recently, which combine clustering with the frequent itemset algorithm apriori and with
principal component analysis.

Outlier detection is also strongly related to clustering. Since here objects should be found
which can be assigned to a cluster, this problem is complementary to the clustering problem.
The proposed concepts include distance-based outliers, local outliers and outliers in projected
spaces. For the first two concepts efficient algorithms have been proposed for low dimensional data.
However for high dimensional data only quadratic algorithms are available. Outlier detection in
projections is an interesting problem but due to the exponential growing size of the search space
(in number of dimensions) only heuristic methods are applicable.

The review of the related work has shown that scaling a (quadratic) clustering algorithms often
means trading result-quality against efficiency. On the other hand some algorithms introduced con-
cepts to improve the quality of the results. The proposed algorithms can be seen as a combination
of scaling strategy and (improved) clustering strategy. An open problem is how to build a consitent
framework which can integrate existing methods and allows an exploration of new combinations of
different scaling and clustering strategies.

Such a framework should also be extensible to the projected clustering problem. New search
strategies for the very large space of projections are needed. It is also an important question how to
interprete projected clusters and how different clustering paradigms can serve for full dimensional
clustering in this new context.

The last issue is how to integrate expert knowledge about the application domain into the
unknown clustering model. When such knowledge is hard to define or the mining goal is only
informally given visualization and user interaction might be helpful.



Chapter 3

A Clustering Framework based on

Primitives

3.1 Basic Definitions

For defining the clustering primitives, we need the basic definitions of the data space, data set and
density functions.

Definition 1 (Data Space, Data Set)
The d-dimensional data space F = F1× . . .×Fd is defined by d bounded intervals Fi ⊂ R, 1 ≤ i ≤ d.

The data set D = {x1, . . . , xn} ⊂ F ⊂ Rd consists of n d-dimensional data points xi ∈ F, 1 ≤ i ≤ n.

The probability density function is a fundamental concept in statistics. In the multivariate
case we have random variables from which we can observe data points in F . The density function
f gives a natural description of the distribution in F and allows probabilities to be found from the
relation

P (x ∈ Reg) =
∫

x∈Reg
f(x)dx, for all regions Reg ⊂ F

The density function is a basis to build clusters from observed data points. A very powerful and
effective method to estimate the unknown density function f in a nonparametric way from a sample
of data points is kernel density estimation [98,105].

Definition 2 (Kernel Density Estimation)
Let D ⊂ F ⊂ Rd be a data set, h be the smoothness level and ‖ · ‖ an appropriate metric with

x, y ∈ F, dist(x, y) = ‖x− y‖. Then, the kernel density function f̂D based on the kernel density
estimator K is defined as:

f̂D(x) =
1

nh

n
∑

i=1

K

(

x− xi
h

)

, with 0 ≤ f̂D and

∫

K(x)dx = 1

In the statistics literature, various kernels K have been proposed. Examples are square wave and
Gaussian functions. An example for the density function of a two-dimensional data set using a
square wave and Gaussian kernel is provided in figure 3.1. A detailed introduction to kernel density
estimation can be found in [98,105,108].

There had been various scaling methods for density estimation proposed in the literature
[37, 50, 108, 109, 115]. Table 3.1 presents an overview with the storage complexity and the run
time complexity needed to estimate the density at a given point x ∈ F . Note that beside the
runtime complexity, the computational costs for building a density estimator can be an important
issue. There are different types of density estimators. Local kernels (which are zero for a distant
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Figure 3.1: Example for density functions of a two-dimensional data set using a square wave kernel(b)
and a Gaussian kernel(c).

Table 3.1: Overview about the storage size and the run time complexity of different scaling methods for
density estimation (n: number of data points, d: number of dimensions). The run time complexity is the
time needed to estimate the density at a single point x ∈ F .

Type Size Time

KDE O(n) O(n)
Local Kernel + mult. dim. Index O(n) O(range query time)
Histogram (Heap) O(n) O(log(n))

Histogram (Array) O(2d) O(1)
k centroids, k ¿ n O(k) O(k)

regions with regards to the particular data point) require only the retrieval of data points in a
local neighborhood around the point of estimation. The retrieval can be supported by an multi-
dimensional index. Heap-based histograms store only the used grid cells but have to organize the
cells in the search structure like heaps or hash maps. Array-based histograms stores all grid cells
and have an constant access time, but waste a lot of memory. The output of BIRCH [115] and
LBG [75] are k centroids approximating the data set. So the centroids instead of the data points
can be used to estimate the density. The histogram and k centroids methods can be integrated
into the kernel density estimation concept by using binned kernel estimators [47,97,104,108].

3.2 Definition of the Separator Framework

3.2.1 Separators

Many approaches to clustering large data sets of numerical vectors use density estimation [56].
Density estimation measures the probability of observations of data points in a certain region and
the density function contains a lot of local aggregated information about the distances between the
data points. Actually this more abstract data description can serve as a basic method for cluster-
ing algorithms for numerical vector data. In our approach we strictly distinguish between density
estimation and clustering, since density estimation allows the generation of clusters according to
different schemes. This distinction has the following advantages: (a) since density estimation can
be very costly wrt. resources, the clustering algorithm can be more easily adopted to technical
application constraints (runtime, space) by varying the density estimator, (b) since density esti-
mators have different accuracies one can find a tradeoff between quality and efficiency, without
changing the clustering scheme (c) density estimators can be easily reused in several applications
of a clustering scheme, which reduces the overall runtime of the analysis.

We define the term density estimator as a function, which estimates the unknown density
function f based on a set of data points. The estimator can be one of the types presented in table
3.1. Note, the same type of estimator can be the output of different algorithms.
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Definition 3 (Density Estimator)
A density estimator is a function f̂D : F → R, D ⊂ F ⊂ Rd with

∫

Rd f̂
D(x)dx = 1, which estimates

the point density in the continuous data space F according to the given sample data set D.

Clustering algorithms basically use density estimation to determine which points should be
joined into a group and so separated from other points. The reader may note that there is a
dualism in the description of clusters. First one can describe why points are joined to form groups
and the second possibility is to describe why points are separated into different groups. In case
of hierarchical algorithms the dualism is known as agglomerative (bottom-up) and divisive (top-
down) generation of clusters. For the design of our framework we used the divisive methodology
since we believe that an analytical (divisive) approach is more natural and easier to understand in
the context of data exploration than a synthetical (agglomerative) one.

More detailed, our new framework employs a similar concept for clustering as decision trees do
for classification. A decision tree consists of a number of nodes, each containing a decision rule
which splits the data to achieve purer label sets in the child nodes. In our case we do not use class
labels to find a split but a density estimator. The equivalent to the decision rule is the separator,
which partitions and labels the points of the data space according to a clustering scheme.

Definition 4 (Separator)
A separator is a point labeling function S : F → {0, . . . , Split(S)−1} which uses a density estimator
to assign each point in the continuous data space F a label (integer) to distinguish different clusters
or groups of clusters. The number of separated regions is Split(S) > 0.

For convenience, given a set of point A ⊂ Rd the subset of points {x ∈ A : S(x) = i} is denoted
as Si(A) and Si(A) ∩ Sj(A) = ∅, i 6= j, 1 ≤ i, j < Split(S) and that a separator partitions the

data space so that
⋃Split(S)−1
i=0 Si(A) = A. Note that there might exist empty regions 0 ≤ i <

Split(S), Si(A) = ∅.
A separator is intended to describe the usage of clustering. The usage – we call it the clustering

scheme – determines how the blurred terms ”similarity” and ”useful grouping” are translated
into a computable formalism. In fact, there are different useful translations in the literature
(BIRCH [115], DBSCAN [32], DBCLASD [112] etc.). These algorithms produce results according
to different clustering schemes, which are not comparable.

However, clusterings according to the same clustering scheme are comparable via a quality
function. The quality function is equivalent to an index function like the Gini index in the decision
tree concept. Since the choice of the separator type (clustering scheme) is highly semantically
influenced by application domain knowledge there cannot exist a general quality function rating
all types of separators based on statistical information about the given data set. However, there is
an individual quality measure for each clustering scheme, which rates how well the scheme fits the
data.

We found four different classes of clustering schemes, namely data compression with centroids,
the density based single linkage scheme, noise separation and outlier detection.

• Data compression (vector quantization) with k centroids has the goal to minimize the
distortion error, which averages the distance from the data points to their nearest centroid.
A cluster is described by a single point (centroid) p ∈ F and contains all data points having
p as the nearest neighbor among the k centroids. So the k centroids represent the data set
and due to the nearest neighbor rule they form a Voronoi partitioning of the data space.
Using a typical metric like the euclidian metric the resulting clusters tend to be compact and
approximate d-dimensional spheres. So the data set is lossy compressed to k centroids, while
the average error (the average radius of the spheres) is minimized. The usage of this scheme
corresponds to the question: What is a smaller representation of the data points, when the
data should be represented by centroids?

The natural measure for the quality of data compression is the distortion error. For a set of
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Figure 3.2: The quality of the density based single linkage separator is determined as the maximum
density at the border between the clusters (solid line). Subfigure (a) shows the overall picture with two
clusters and the color coded density, (b) the density at the dashed line and (c) the density at the solid line.
The separation quality in the example is 0.57.

centroids P = {p1, . . . , pk} and a data set the distortion error is defined as:

E(P,D) =
1

n

∑

x∈D
dist(pI(x), x)

2

with I(x) = min
{

i : dist(pi, x) ≤ dist(pj , x) ∀j ∈ {1, . . . , n}
}

.

Most algorithms for centroid placement try to find positions for the centroids which have a
low distortion error.

• The density-based single-linkage scheme defines clusters as regions in the data space,
which are (a) connected, (b) of maximal size and (c) where the density is at all points
in a cluster region larger than a minimum threshold. Since in general a cluster according
to this scheme is arbitrary shaped, it can not be represented by a single centroid and the
nearest neighbor rule. Clusters according to the density-based single-linkage scheme are
useful to approximate complex correlations. The corresponding question is here: What are
the arbitrary shaped regions in the data space, which get densely populated by the underlying
data generation processes? The scheme focuses on finding natural classes in the data.

The quality measure for the density-based single-linkage scheme has not a straight forward
definition. Clusters of this type are defined by the minimum density at the border, while
shape and compactness have no influence. Clusters are separated by low density valleys.
We define the separation quality qsep (0 ≤ qsep ≤ 1) depending on the maximum density at
the borders of the cluster regions in the continuous data space F . The border points of the
cluster regions determined by a separator S wrt. a distance function dist(·, ·) are defined by:

Border(S) = {x ∈ F and ∀ε > 0: ∃i, j ∈ N, 0 ≤ i, j < Split(S) and

xa ∈ Si(F ), xb ∈ Sj(F ), i 6= j : dist(x, xa) ≤ ε and dist(x, xb) ≤ ε}.

The formula says a border point x has the property, that in each arbitrary small ε-neigh-
borhood around x there are points of the continuous data space with different cluster labels.
This definition is valid since a separator labels not only the data points but all points of the
continuous data space. The separation quality is defined as:

qsep(S) = 1−MAX
{

f̂D(x)| x ∈ Border(S)
}

Figure 3.2 shows the separator quality of an example data set. The color shows the density
on the border between the two clusters and the separator quality corresponds to the inverse
of the maximum density on the border.

• Noise separation partitions the data space into two regions, which are not necessarily
connected. In one region (noise) the density is low and nearly constant (uniform distribution).
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This scheme works like a filter, which discernes clustered data from uniformly distributed
data.

The goal in the noise separation scheme is to find areas with nearly uniformly distributed
data points and low density. Like any statistical distribution a uniform data distribution can
be tested with a χ2-test (or another distribution test). The test variable – the χ-value – can
be used as quality measure (see section 3.3.4 for more details).

• Outlier detection separates data points, which deviate strongly from the other data points.
In the literature the concepts of distance based [68,69,87] and density based outliers [29] had
been proposed. Since in case of clusters with different densities the second concept is the
more relevant definition [29], we focus only on density based outliers. The focus here is to
find data points, which deviate from their neighborhood wrt. to the estimated density.

Outliers are similar to noise since they do not belong to a cluster either. For density based
outliers the density at the outlier point x is compared with the average density at in the local
neighborhood LN(x). In [29] the authors proposed a measurement called LOF to rate the
outlier degree of a data point. We used an extension of this measurement as quality measure.
In contrast to [29], where a very specific notion of density estimation is used, we present an
extended version of LOF, which works for general density functions:

LOF (x) =

1
#(LN)

∑

x′∈LN f̂(x′)

f̂(x)
, x ∈ D, LN ⊂ D.

The ratio LOF (x) is high, when the average density of the data points in the local neighbor
hood LN is high and the density at x is low.

Cluster separators with different schemes can be applied to different parts of the data with in-
dividual parameters. The decision which cluster scheme applies best to a part depends on the
application knowledge or the task at hand, which makes it impossible in the general case to deter-
mine the best cluster scheme from the observed data. Our framework enables interactive decisions,
where the human analyst can chose a clustering scheme which is semantically meaningful.

3.2.2 Separator Tree

Like decision trees which are an assemblage of classification rules forming a classificator a separator
tree is a collection of cluster separators forming a cluster model for the given data, wrt. the user’s
intention. A separator tree is defined as follows:

Definition 5 (Separator Tree)
A separator tree T is a tree which corresponds to a recursive partitioning of a data set D. A node v
of T corresponds to a cluster region Rv ⊂ F . Except the leafs each node v has an assigned separator
Sv splitting the corresponding region Rv. The ith son of v corresponds to the region Siv(Rv). The
region of the root node is the whole data space F .

Next we introduce the split operation, which can be used to grow the tree. The split operation
takes a leaf node l of a separator tree T , assigns a separator S to l, and defines in that way the new
son nodes of l. The region R of l is decomposed into subregions, each containing different clusters
or groups of clusters. An example for the split operation is given in figure 3.3.

In the merge operation two or more independent separators can be joined to get a smaller
separator tree. Two separators are independent, if they can be found without applying one of the
other separators in advance. The merge operation of separators is defined as follows:

Definition 6 (Merge Operation)
Let be S1, . . . , Sp separators. The result of a merge operation of S1, . . . , Sp is defined as the mapping
function

S(x) = S1 × . . .× Sp =
p
∑

i=1

(

Si(x) ·
i−1
∏

j=0

Split(Sj)

)

with Split(S0) = 1
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Figure 3.3: Examples of growing the separator tree using a data compression separator with four centroids.
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Figure 3.4: Examples of Merge: Since separator S1 and S2 are independent of each other, that means
the application order is nonrelevant, the merge operation can form a separator (S1 × S2) which is the
conjunction of S1 and S2.

and the Split function is definded by

Split(S) =

p
∏

i=1

Split(Si).

The result of an merge operation can be thought of as an linearized arbitrary grid. The merge
operation can be used to make the separator tree more compact which intends to improve the
ability to interprete the tree. Figure 3.4 provides an example.

3.3 Clustering Primitives

In the previous section we formally introduced the separator tree framework for clustering with the
definitions of density estimators, separators with qualities and the separator tree. We identified
density estimators and separators as clustering primitives. In the first part (section 3.3.1) of this
section we evaluate different density estimators wrt. efficiency and effectiveness. In the rest of
the section we propose new or redesigned algorithms for separators, which work with all types of
density estimators.
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Figure 3.5: Comparison of the kernel density function with an approximation based on centroids for an
2D Example.

3.3.1 Density Estimators

The naive implementation of the standard kernel density function (see section 3.1) requires a
number of vector difference operations in O(n) (where n is the number of data points) to determine
the density at a single point x ∈ F . Since the size of a data set may be very large, the frequent
use of the density function is computationally expensive. There has been done much research to
find more efficient density estimation methods.

The WARPing framework (Weighted Averaging of Rounded Points) [47, 108] describes a way
to develop efficient density estimation methods based on prebinning. Approaches according to
WARPing are (a) the k centroids method [116], (b) histograms [98] and (c) average shifted his-
tograms (ASH) [96,98].

Another approach bases on local kernels with multidimensional index structures (partial range
queries) [32,112]. Since the efficiency of the multidimensional index structures is decreasing in high
dimensional spaces [110], we focus on the WARPing approaches, which can guarantee a sublinear
runtime behavior for determining the density at a single point.

Density estimation based on k centroids uses the sufficient statistics (average, variance and
number of data points) of the Voronoi cells, which are given by the positions of the k centroids.
The positions are determined by a placement algorithm (vector quantization). Using the WARPing
framework Zhang et. al. proposed in [116] a density function based k centroids, which approximates
the standard density function. Let P = {pi ∈ F : 1 ≤ i ≤ k} be the set of centroids, I(x) = min{i :
dist(x, pi) ≤ dist(x, pj)∀j ∈ {1, . . . , k}} the index function, which delivers the minimal index of
the nearest centroid pi, pi(D) = {x ∈ D : I(x) = i} the set of data points, which have pi as the
nearest centroid, ni = #pi(D) the number and σi the standard deviation of the data points in
pi(D). The density function based on the Voronoi prebinning and the Gaussian kernel for a given
smothing factor h ∈ R is:

f̂P (x) =
1

n

k
∑

i=1

ni√
2π
√

σ2
i + h2

d
· exp
(

− (x− pi)2
2(σ2

i + h2)

)

, 0 ≤ f̂P .

The function needs space in O(k·d) and has a runtime complexity of O(k·d) for a density estimation
at a single point, which is a significant reduction if k ¿ n. An example (figure 3.5) demonstrates
the impact of the data reduction and the loss of accuracy.

To produce a Voronoi binning several vector quantization methods can be used, namely random
uniform sampling, k-means or its variants (LBG [75], LBG-U [37], k harmonic means [114]), online
algorithms like neural gas [78], growing neural gas [36] or centroid linkage or its popular variant
BIRCH [115]. The runtime complexities of these algorithms except centroid linkage are linear in
the number of data points.

Now we compare the effectiveness of this density estimator in combination with different place-
ment algorithms. The effectiveness of vector quantization is typically measured by the distortion
error, which measures the average distance from the data points to its nearest centroid. Since we
want to measure the effectiveness wrt. density estimation we use a relative comparison with the
standard kernel density function. This comparison method has been proposed in [116] to evaluate
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the quality of the density functions by averaging the relative density difference at several break-
points. Using a standard kernel density function with Gaussian kernel as reference function the
relative density difference is defined as:

D(f̂ , x) =
2 · |f̂KDE(x)− f̂(x)|
f̂KDE(x) + f̂(x)

We evaluate the performance of different placement algorithms (random sampling, LBG, LBG-U
and BIRCH) on synthetic and real data sets. We measure the performance by the averaged density
difference relative to the standard KDE function using 100 randomly chosen breakpoints [116] and
by the quantization error. For the first experiments we configured the methods to use 20 centroids.
For the experiments we used synthetic data of two types, namely (1) the clustered data are in
one cluster (normally distributed) and (2) the clustered data are spread over 50 cluster (normally
distributed) of different sizes. In the experiments we used 20% noise and 80% cluster data. For
each type we varied the dimensionality from d = 2 to d = 20.

Figure 3.6 shows the quantization error and the averaged density difference depending on the
dimensionality for both types of synthetic data. Figures 3.6 (a,c) and (e,g) show, that the distortion
error as well as the averaged density difference grow with the dimensionality.

Since the curves are close together the reader may conclude from the experiments that it is
more or less the same, which placement algorithm is used. To devitalize this argument we take a
closer look at the results. Since random sampling is the simplest placement method we plotted all
measures relative to random sampling to check out whether the more sophisticated methods are
an improvement or not (see figure 3.6(b,d,f,h)). In order to measure the improvement over random
sampling in percent we transformed the measurements as follows:

Rel.DRS(f̂ , x) =

(

1− D(f̂ , x)

D(f̂RS , x)

)

· 100 and Rel.ERS(P,D) =

(

1− E(P,D)

E(PRS , D)

)

· 100

The plots in figure 3.6 show that LBG and LBG-U, which minimize the distortion error, also
have the smallest density difference and the largest improvement over random sampling for low
dimensional data. That leads to the conclusion that minimizing the distortion error improves the
quality of the density estimate. However, the results for the averages density difference also show
that all types of prototype based density estimation degenerate with growing dimensionality, which
is due to the so called ”curse of dimensionality”. So beyond a dimensionality of 16 the improvement
of density estimate by the minimization of the distortion error has only minor effects. The figure
also shows that BIRCH has some instabilities, which might be due to the dependence of the order
of the data points.

It is well understood that the degeneration of the density estimate can be deferred by using
more centroids [53,116], but this does not change the whole situation. Figure 3.7 shows the average
density difference for random sampling with different numbers of centroids (1%,5%,10% of the size
of the data set). The results on both types of synthetic data show that the degeneration of the
density estimate can be weakened but not removed. Note, that with a growing number of centroids
the desired run complexity reduction gets lost, because the k increases up to the order of n and the
run time complexity of O(k · d) of the centroids based density function approaches O(n · d), which
is the standard kernel density function. So the conclusion of this part is that density estimation
can be accelerated in low dimensional spaces by representing the data with centroids and sufficient
statistics. However, this approach is limited to data with a dimensionality d < 12.

The other efficient methods for density estimation are the histogram and the average shifted
histogram, which is an improved variant. A histogram can be thought as a multidimensional grid.
In [50,53] we proposed the key idea of our efficient implementation of high dimensional histograms,
which consists in storing only the populated grid cells. Considering the minimal bounding rectangle
MBR = [Min,Max], (Min,Max ∈ F d) of the data set and h1, . . . , hd as the bin width in each
dimension, the histogram may contain

M =

d
∏

i=1

⌈ |Mini −Maxi|
hi

⌉
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Figure 3.6: Comparison of density estimation based on k prototypes: We used for all experiments data
with 10000 data points (20% noise, 80% cluster, type 1 and 2) with different dimensionality. We con-
figured the methods to use 20 prototypes. Each measurement is the average of 10 runs. We compared
the effectiveness of the placement algorithms random sampling, BIRCH, LBG, LBG-U, measured by the
distortion error (a-d) and the density difference to the standard density estimation (e-h) (lower is better).
Part (b,d,f,h) shows the improvement over random sampling in percent (higher is better).
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Figure 3.7: We investigated the influence of the number of prototypes on the quality of prototype based
density estimation using random sampling as an example placement method. This does not limit the
results, since we showed that the improvement over random sampling wrt. density estimation decreases
with growing dimensionality. We used our synthetic data of type 1 and 2 with 10000 data points and set
the number of prototypes to 1%,5% and 10% of the size of the data set. Each measured value is averaged
over 10 runs.

bins. The number of possible binsM grows exponentially with the number of dimensions. However,
since a populated bin has to contain at least one data point, the number of populated bins is at
most n. In case of n¿M only the populated bins should be stored, which can be efficiently done in
a heap data structure. For the heap construction one has to determine for a given point x a unique
and sortable key for the bin of x. If the MBR is known such a key can be efficiently determined
by linearization. When the MBR is not known the key can be determined by discretization of the
axes and converting the discrete vector into a string which can be sorted lexicographically. Usable
heap data structures are randomized search trees for main memory [80] or B+ trees for storage on
hard disk. In the latter case, the histogram can be determined with standard SQL 92 queries and
can be stored in a relational database table with an index. The following example SQL statement
generates a equi-distant 15-dimensional histogram with (0, 0, . . . , 0) as origin and a bin width of
0.2 from the numerical attributes col1, . . . ,col15 of table “DataTable” by producing the key of a
bin and the corresponding bin count:

select concat(

round(col1/0.2)," ",round(col2/0.2)," ",round(col3/0.2)," ",

round(col4/0.2)," ",round(col5/0.2)," ",round(col6/0.2)," ",

round(col7/0.2)," ",round(col8/0.2)," ",round(col9/0.2)," ",

round(col10/0.2)," ",round(col11/0.2)," ",round(col12/0.2)," ",

round(col13/0.2)," ",round(col14/0.2)," ",round(col15/0.2)

) as key_attr,

count(*) as density

from DataTable

group by key_attr

The number of possible grid cells M can be used to decide whether the histogram should be
stored in an array (storing of all cells, if M < n, storage complexity O(2d), access complexity
O(1)) or in a heap (storing of the used cells, if M À n, storage complexity O(n), access complexity
O(log n)). For low dimensional data spaces the array is preferable, because it provides constant
access time to a grid cell, while the heap method provides logarithmic access time, but since only
the used grid cells are stored in the heap it has a storage complexity in O(n), which is much lower
than the space needed for arrays for a higher dimensionality. Let be h1, . . . , hd the bin widths in
each dimension the density function provided by an histogram is:

x ∈ F, f̂(x) = histogram[key(x)].count

n · h1 · . . . · hd
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Figure 3.8: Part (a) shows two histograms with the same bin width but different origins smoothing the
same data. The histograms are quite different demonstrating the impact of the choice of the origin. Part
(b) shows the average shifted histogram (ASH, m = 2) constructed from the both histograms of (a).

where histogram is the data structure, which stores the information of the grid cells and provides
access to them using the key-function. The count variable stores the number of data points in the
cell. The building runtime to initialize the histogram is O(n) for array based and O(n · log(n)) for
heap based histograms. There are also a lot of helpful rules and measures available in the statistical
literature for the problem how to determine useful parameters for a histograms. For an overview
see [98].

There are several drawbacks of histograms. One important is the dependency of the density
estimate from the histogram origin. For an example see figure 3.8 (a), which demonstrates the
impact of the choice of the origin. To weaken this undesired dependency Scott proposed in [96] to
use average shifted histograms (ASH). An ASH consists of m simple histograms which have the
same bin width but the origin is shifted by a part of the bin width. Figure 3.8 (b) gives an example
for the univariate case. To estimate the density at a point x the bin counts for x in each histogram
are determined and averaged.

x ∈ F, f̂(x) = 1

m

m
∑

i=1

histogrami[key(x)].count

n · hi,1 · . . . · hi,d

For our experiments we used the following shifts (for d-dimensional data): o1 = j/lh·e1, . . . , od =
j/lh ·ed, odiag = j/lh · [1, . . . , 1] and o0 = [0, . . . , 0], where ei is the unit vector with a 1 in dimension
i and 0 else, 1 ≤ j ≤ l−1 and l = 2, 3. This means that we have to construct ((d·(l−1))+2), l = 2, 3
d-dimensional histograms.

In figure 3.9 we show the results of the histogram based density estimation for the two types of
synthetic data. Also this density estimator degenerates with growing dimensionality. Figure 3.9(b)
shows that for density estimation in low dimensional spaces with average shifted histograms the
quality can be improved by using more histograms for the average, that means larger values for l.
However this also increases the computational costs.

In table 3.2 we showed a comparison of all methods using a real data set from the US census
bureau. The data consists of the geographic position of the averaged households at block level
(n = 276000, d = 2).

In figure 3.10 we compared the k centroid method and the histogram. For simplicity we used
only random sampling and the simple histogram. The result on the synthetic data show that
centroid based density estimation is better for low dimensional spaces (d < 8) and histogram
based density estimation is more suitable for medium dimensionality (8 ≤ d ≤ 16). For high
dimensional spaces (d > 16) both methods do not work well. This result is supported by statements
from [47, 98, 105], which say density estimation becomes statically insufficient in high dimensional
spaces. This is the starting point for all density based cluster algorithms.

3.3.2 Data Compression

Data compression has the goal to represent the data points D = {x1, . . . , xn} with k centroids
P = {p1, . . . , pk} ⊂ F ⊂ Rd. The assignment of the points to the centroids is typically done using
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Figure 3.9: The figures show the average density difference for the histogram estimator, the ASH with
l=1 and the ASH with l=2. The number of shifted histograms per dimension is denoted with l. The bin
width in each dimension is set to (max[i]−min[i])/2.
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Figure 3.10: The plots show the averaged density difference of the histogram density estimator and of
the prototype based density estimator with k = 1%, 5%, 10% of the size of the data set.

Table 3.2: The table shows a comparison of all density estimation methods using a real data set from
the US census bureau. The data consists of the geographic position of the averaged households at block
level (n = 276000, d = 2). The results show that centroid based density estimation performs better that
histograms. It also shows that LBG and LBG-U outperform all other methods wrt. estimation quality.

Data Algo. k,l Time/sec Density Diff

US Census

Rand. Samp.
k = 100 0.8 0.00836112
k = 1000 3.2 0.00110772

BIRCH
k = 100 0.8 0.00470599
k = 1000 3.2 0.00439966

LBG
k = 100 0.8 0.00165451
k = 1000 3.2 0.0009156

LBG-U
k = 100 0.8 0.00159414
k = 1000 3.2 0.0001112

Histogram - 0.3 0.441989
ASH l=2 0.5 0.331553
ASH l=3 0.6 0.264106



3.3. CLUSTERING PRIMITIVES 29

the nearest neighbor rule. This means that a data point is represented by its nearest centroid. The
euclidian metric is often used as distance function. The natural measure for the quality of data
compression is the distortion error. For a set of centroids P and a data set the distortion error is
defined as:

E(P,D) =
1

n

∑

x∈D
dist(pI(x), x)

2 with I(x) = min
{

i|dist(pi, x) ≤ dist(pj , x) ∀j ∈ {1, . . . , n}
}

.

Most algorithms for centroid placement try to find positions for the centroids which have a low
distortion error. For convenience we denote the subset of D with I(x) = i, 0 ≤ i < k as set Di and
the corresponding part of the data space F as Fi with the probability density fi. To minimize the
distortion error two conditions are necessary [41], firstly the nearest neighbor condition (a point x
has to be mapped to its nearest centroid) and the centroid condition (in case of euclidian distance:
pi = cent(Fi) = E[x| x ∈ Fi]). There are different placement algorithms working directly on the
data set, which is assumed to estimate the probability distribution in F . In this case the centroid
function reduces to the arithmetic average:

cent(Fi) =

∫

Fi

xfi(x)dx ≈
1

|Di|
∑

x∈Di

x

The key idea of LBG is to do Lloyd iteration steps until the algorithm converges. In the Lloyd
iteration each data point x is assigned to its nearest centroid. After determining the subsets Di

each centroid pi is set to the centroid of Fi estimated by the mean of Di. These moves may change
the Dis, which is the issue for the next iteration. The process converges when the Lloyd iteration
does not change the data point assignments anymore.

Our new algorithm approximates the centroid of a region using directly an estimate of the
probability density. First we set the density function for the part of the data space Fi to:

fi(x) =

{

c · f(x) if x ∈ Fi
0 else

where f(x) is the global density function and c a constant to assure
∫

fi(x)dx = 1. So we can
derive cent(Fi) using Monte-Carlo integration [86] as follows:

cent(Fi) =

∫

Fi

xfi(x)dx =
1

∫

Fi
f(x)dx

∫

Fi

xf(x)dx ≈ 1
∑

x∈B f̂(x)

∑

x∈B
xf̂(x)

where B is a uniform sample from Fi, which can be generated using numerical random number
generators. Our idea for the modification of the original LBG algorithm is to approximate the
most right formula using a density estimator and uniform sampling in Fi instead of the evaluation
of the mean of Di. The algorithm 1 implements this idea.

The density based LBG algorithm has two additional parameters mit and msample, which set
the number of iterations and the number of uniform sample points for the integral approximation.
Note, that in contrast to random sampling uniform sampling selects the points without bias of
the data points. The points are uniformly selected in the data space F , which is described by the
minimal bounding rectangle (MBR). Please note that due to the uniform character of the sample
points x, the lengths of the ∆pi vectors after the execution of the inner loop do not reflect the
degree of convergence of the whole algorithm. That’s why we chose to use a fixed number of runs
of the inner loop instead of coupling the execution of it with the state of convergence. This makes
our algorithm more similar to an online algorithm, which also does not guarantee convergence.

Since a uniformly selected point with the corresponding density may represent many data points
the value for mit can be smaller than n. This is helpful in case of clustered data with high density
areas. The theoretical run time of DB-LBG is in O(mit ·msample ·d(k+ density estimation time)).

The decoupling of density estimation and centroid placement leads to useful strategies of im-
proving the original LBG algorithm. First to trade quality against run time by using faster but
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Algorithm 1 Density Based LBG

Require: k,mit,msample ≥ 1, F described by the MBR, f̂(x) a well set density estimator
P ← UniformSample(F, k)
for i = 1 to mit do
∀0 ≤ i < k : ∆pi ← ~0, ni ← 0
for j = 1 to msample do
x← UniformSample(F, 1)

∆pI(x) ← ∆pI(x) + f̂(x) · x
ni ← ni + f̂(x)

end for
∀0 ≤ i < k : pi ← ∆pi/ni

end for

less accurate center approximations than the one based on nearest neighbor rule and the whole
data set. Second, since the used density estimator may require less memory than the data set the
new algorithm is more suitable for large data sets which do not fit into main memory.

Now we evaluate the algorithms experimentally on synthetic and real data sets. First we
used the k′ centroid estimator with random sampling (to avoid confusion we denote the number of

centroids for the density estimator with k′ in this subsection) to estimate the density function f̂(x).
Figure 3.11 shows the average estimation errors versus the needed runtimes of the algorithms. The
left point of a line shows run time and distortion error for density based LBG and the right point
for the original LBG. The figure shows results for data set of dimension d = 2, 4, 6, 8, 10, 12, 14, 16
(from bottom to top). Note that the line connects only the corresponding measurements but has
no additional meaning.

The experiments show that using the k′ centroids estimator a small loss in quality enables a
large performance gain. The other important advantage of the density estimator is the much lower
memory requirements, namely O(kd+ k′d) for DB-LBG in contrast to O(kd+ nd) for LBG which
needs a materialized data set. In our experiments the number of centroids where to set to k′ = 20
in opposite to n = 100000. Since the k′ centroid density estimator can be built in a single scan of
the data set the run time complexity and I/O costs of the DB − LBG algorithm are significantly
reduced compared to disk based LBG (however, we did not use disk based LBG in the runtime
experiments to have a fair comparison).

We also made experiments using the average shifted histogram as density estimator. Using this
estimator DB-LBG also reaches a comparable quality on our data sets but only for low dimensional
data a lower run time than LBG is achieved. The histogram does reduce the space requirements
only in the low dimensional case. The results for a synthetic data set are presented in table 3.3.

In case of data exploration, it is often required to run LBG several times on the same data set
to tune the parameters to the requirements of the application. In this case the total run time costs
reduce dramatically, because the density estimator has to be computed only one time. In Figure
3.12 we show for LBG and DB-LBG (k′ centroids and ASH) the number of repetitions versus the
total runtime required. It shows that the additional costs for time intensive estimator construction
quickly amortizes when the density estimator is used more often and DB-LBG outperforms LBG
by magnitudes.

We performed experiments with real data namely molecular biology data (d=19, n=100000),
US census data (d=2, n=254000) and cad data (d=11, n=36000). The results are presented in
table 3.4, which shows that DB-LBG has a much lower runtime than LBG with a small loss of
accuracy in case of low dimensional large data sets.

3.3.3 Density-based Single-Linkage

One of the most popular approaches to clustering is the single-linkage algorithm [103]. In general,
a single-linkage clustering with a given linkage distance l is defined as follows.



3.3. CLUSTERING PRIMITIVES 31

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

D
is

to
rt

io
n 

E
rr

or

Run Time / sec

LBG / DB-LBG(k Proto. Est.), Noise 5%, Cluster 95%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

D
is

to
rt

io
n 

E
rr

or

Run Time / sec

LBG / DB-LBG(k Proto. Est.),Noise 5%,Cluster 95%

(a) 5% noise + 95% cluster (1 normal
distribution)

(b) 5% noise + 95% cluster (50 normal
distributions)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0 5 10 15 20 25 30

D
is

to
rt

io
n 

E
rr

or

Run Time / sec

LBG / DB-LBG(k Proto.Est.),Noise 20%,Cluster 80%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

D
is

to
rt

io
n 

E
rr

or

Run Time / sec

LBG / DB-LBG(k Proto.Est.),Noise 20%,Cluster 80%

(c) 20% noise + 80% cluster (1 normal
distribution)

(d) 20% noise + 80% cluster (50 normal
distributions)

Figure 3.11: Comparison of the density based LBG with the original LBG: The left point of a line shows
run time and distortion error for density based LBG and the right point for the original LBG (average
values of 10 runs). The figure shows results for data sets of dimension d = 2, 4, 6, 8, 10, 12, 14, 16 (from
bottom to top). Note, the line connectd the corresponding measurements but has no additional meaning.
We used for DB-LBG the k-prototype density estimator with 20 prototypes, which were randomly selected
from D. The additional parameters were set to miter = 10 and msample = 50.

Table 3.3: Comparison of the Density based LBG with the original LBG using the ASH as density
estimator. The measurements are averages of 10 runs.

Data Dim Density Est. Alg. Run Time Dist. Error

Noise: 20%,
Cluster 80%,
(50 Norm. Dist.)

2
ASH DB-LBG 7.8 0.027

k′ centroids DB-LBG 5.1 0.029
- LBG 13.9 0.023

4
ASH DB-LBG 16.3 0.159

k′ centroids DB-LBG 5.8 0.159
- LBG 23.4 0.116

6
ASH DB-LBG 27.9 0.348

k′ centroids DB-LBG 6.3 0.319
- LBG 36.1 0.247

8
ASH DB-LBG 42 0.584

k′ centroids DB-LBG 6.7 0.499
- LBG 39.7 0.385

10
ASH DB-LBG 59 0.885

k′ centroids DB-LBG 7.3 0.676
- LBG 44 0.530
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Figure 3.12: Comparison of the density based LBG with the original LBG in the case of repeated runs
on the same data set with changed parameters. We used the 10 dimensional data set with 20% noise
and 80% cluster ( 50 normal dist.). The runtime for LBG grows linearly. For DB-LBG we used the k′

prototype estimator and the ASH. The run time of DB-LBG grows in both cases very slowly since the
repeated building of the density estimator can be avoided.

Table 3.4: Comparison of the density based LBG with the original LBG using the ASH as density estimator
on real data. The measurements are averages of 10 runs. The used real data sets are molecular biology
data (d=19, n=100000), cad data (d=11, n=36000) and US census data (d=2, n=254000).

Data Density Est. Alg. Run Time Dist. Error

Molecular Biology
Data

ASH DB-LBG 176 140523
k′ centroids DB-LBG 8.9 121905

- LBG 317.5 89754

CAD Data
ASH DB-LBG 30 4.93385

k′ centroids DB-LBG 2 3.05562
- LBG 40 1.46551

US Census
ASH DB-LBG 16 13.243

k′ centroids DB-LBG 10 13.263
- LBG 82 13.328
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Figure 3.13: 2-dim. example for the chaining effect

Definition 7 (Single-Linkage Clustering)
Given a set of objects O, the partition C = {C1, . . . , Cm} of O is a single-linkage clustering for
a distance function dist(·, ·) and a given linkage distance l > 0, iff the following properties are
satisfied for all Ci, i = 1, . . . ,m.

1. Ci 6= ∅
2. If the object o ∈ Ci, then are all objects o′ in the l-environment of o {o′ ∈ O : dist(o, o′) ≤ l}

belong to Ci.

3. There are no non-empty subsets C ′, C ′′ of Ci, which satisfy 1. and 2.

There are many algorithms to determine such a clustering. A general problem of the single-linkage
method is that is produces sometimes clusters which are not homogeneous, especially if clusters
of similar objects are linked by a chain. When the data contains noise, this is likely to occur.
Figure 3.13 illustrates such a case. A method to reduce the chaining effect has been proposed by
Wishart [111] (see also [23]). Wishart suggests as a preprocessing step to remove all objects o from
the data set for which

#{o′ ∈ D : dist(o, o′) ≤ l} < den, den ∈ N (3.1)

and then to apply the single-linkage method to the reduced data set. The preprocessing removes
the points which are in regions of low density in the data space and in that way reduces the
chaining effect. In the following text we assume that the objects are given by feature vectors and
the distance is the Euclidian metric in this space. With this assumption definition 7 together with
the additional condition 3.1 forms the density-based single-linkage scheme.

The concept has been slightly modified reinvented by Ester et al. in [32, 63] with the focus on
scaling the single-linkage method. They supported the near neighbor search of the l-environment
with spatial index structures like R∗-tree and X-tree to reduce the overall complexity from O(n2)
to O(n · timeretrieval) which is for low dimensional spaces O(n log n).

Despite some promising results in [32, 63] the concept of single-linkage consisting of linkage
distance and the number of points in the neighborhood remained. In [50, 53] we showed that
density-based single-linkage can be simulated using kernel density estimation with square wave
functions. In our new approach we redesign the density-based single-linkage concept to work with
general density functions, which leads to interesting new efficient algorithms for building such
clusterings.

Based on the ideas in [50,53], we give a definition for density-based single-linkage which makes
no assumption about the employed density estimation function. We replace the condition 2 in
definition 7 that linked points are near enough (dist(x, x′) < l) and the additional condition 3.1
that more than den points have to be in the l-environment by the condition, that the density on
the line between x and x′ is not below a given threshold value ξ.

Definition 8 (Density-Based Single-Linkage Clustering)
Given a set of objects described by the set of feature vectors D = {x1, . . . , xn}, the partition C =

{C1, . . . , Cl} of D is a density-based single-linkage clustering for a given density function f̂(·) and
a noise level ξ, iff the following properties are satisfied for all Ci, i = 1, . . . , l.
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1. Ci 6= ∅

2. If x ∈ Ci, then are all x′ ∈ Ci with: ∀t ∈ [0, 1] : f̂(x+ t · (x′ − x)) ≥ ξ.

3. There are no non-empty subsets C ′, C ′′ of Ci, which satisfy 1. and 2.

Points x ∈ D with f̂(x) < ξ are called outlier.

The new requirement 2. enforces that the density between x and x′ is high and so enough points
are between x and x′ to get them at least transitively linked. With values for ξ which are larger
than zero also the additional condition of Wishart can be fulfilled. Note that the clustering may
vary depending on quality of the underlying density function. The intuition behind this definition
is that a cluster is formed by a connected region R of the data space and the density at all points of
R is above the noise threshold ξ. The clusters are isolated by low density valleys. For our separator
approach we need an algorithm, which finds the valley with the lowest density which separates two
clusters.

By definition the original single-linkage problem has quadratic runtime complexity in the num-
ber of data points, since each data point has to be compared with each other whether they can be
linked. For density functions, which are zero in some regions, combinations of data points can be
excluded from the search. However, in general this regions are not known. To make the algorithm
scalable we propose first to reduce the set of data points D = {x1, . . . , xn} to a set of centroids
P = {p1, . . . , pk}. This can be done with the DB-LBG algorithm which accepts general density
functions or any other placement method in special cases. The reduction decreases the number of
objects from n to k with k ¿ n.

After reducing the data set, the second task is to determine the connected high density regions
based on the centroid representation of the data set. The naive approach starts with a complete,
undirected and weighted graph, called cluster graph:

G = (V,E,w) with V = {pi : 1 ≤ i ≤ k}, E =
{

(pi, pj) : i, j ∈ {1, . . . , k}
}

and ∀e = (p, p′) ∈ E, w(e) = min
{

f̂(p+ t · (p′ − p))
}

, t ∈ [0, 1].

Since the density function is not in analytical form available the implementation of the weight
determination works with a discretization of the line between the centroids and estimates the
density on r ≥ 1, r ∈ N points at the line between p and p′. So the time for the determination of a
weight is in O(r · timeDE) where timeDE is the time needed for the density estimation at a single
point.

Centroids belonging to the same high density region are at least transitively linked in the cluster
graph with edges of large weights. To separate such regions edges are deleted in the ascending order
of their weights until the graph splits into two connected components. The threshold for the noise
level ξ is set to the weight of the last deleted edge. All nodes with a lower density than ξ are
assumed to approximate noise points and are collected in a special prototype subset P0. Algorithm
2 describes the method in pseudo code.

The disadvantage of the naive approach is that in the cluster graph the number of edges is
(

k
2

)

.
To ensure that high density regions are connected in the initial cluster graph the Delaunay graph of
the centroids can also be used. Informally, the Delaunay graph connects neighboring centroids by
an edge. In low dimensional spaces (d = 2, 3) the Delaunay graph can be computed in O(k log k)
time, however for higher dimensionality the costs grow exponentially. Since the Delaunay graph in
two dimensional spaces is planar the number of edges is bounded by #(E) ≤ 3 · k − 6. However,
for d ≥ 3 the Delaunay graph may be the complete graph for which the number of edges is

(

k
2

)

( [16], page 357). For a survey on Delaunay graphs and the dual structure – the Voronoi diagram
– we refer to [16].

To use the advantage of Delaunay graphs (having less edges as the complete graph) also in
multidimensional spaces with d > 3 the initial cluster graph can be given as induced Delaunay
graph of the centroids which is an subgraph of the full Delaunay graph. For large data sets and
low dimensional spaces the induced Delaunay graph is statistically convincing and so also fulfills
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Algorithm 2 Density-Based Single-Linkage Separator

db slink separator(G(V = P,E,w), f̂ )

Require: G(V = P,E,w) initial cluster graph
Ensure: P1, P2, . . . contains the centroids in connected high density regions isolated by density

valleys with maximal density ξ (separation quality), P0 contains prototypes approximating
noise

1: ξ ← 0, P0 ← ∅
2: while G is connected do
3: determine e with w(e) = min{w(e′), e′ ∈ G.E}
4: ξ ← w(e)
5: G.delete edge(e)

6: P0 ← P0 ∪ {p ∈ G.V, f̂(p) < ξ}
7: delete all nodes p from G with f̂(p) < ξ
8: end while
9: P1, P2, . . .← Determine Connected Components(G)
10: return(P1, P2, . . . , P0, ξ)

the requirements for the initial cluster graph. According to Martinetz and Schulten [77, 79] the
induced Delaunay graph is defined as follows:

GID = (V,E,w) with V = {pi : 1 ≤ i ≤ k} and E =
{

(pi, pj) : ∃x ∈ D with

(i = I(x) and j = I2(x, i)) or (j = I(x) and i = I2(x, j))
}

with I(x) = min{i : dist(x, pi) ≤ dist(x, pj)∀j ∈ {1, . . . , k}}
and I2(x, iout) = min{i : i 6= iout and dist(x, pi) ≤ dist(x, pj)∀j ∈ {1, . . . , k}}.

In contrast to [79] we extended the simple induced Delaunay graph to an weighted, undirected
graph, reflecting the density between the centroids. An example is shown in figure 3.14.

The simple induced Delaunay graph can be determined with a linear scan over the data, which
costs time in O(d · n · k). The determination of the weight costs time in O(#(EID · r · timeDE)
with #(EID) denoting the number of edges in the induced Delaunay graph.

Now we compare the induced Delaunay graph and the complete graph. The number of edges of
the induced Delaunay graph are in general lower or equal to the number of edges of the complete
graph. The induced Delaunay graph has additional costs of an linear scan over the data. The use
of this graph is preferable when the costs of the linear scan are amortized by the saved costs of
density estimation for the lower number of edges. More formally, the use of the induced Delaunay
graph GID has only advantages over the complete graph if GID is statistically convincing and
n · k+#(EID) · r · timeDE <

(

k
2

)

· r · timeDE . From the inequations result the following conditions
for the usage of the induced Delaunay graph instead of the complete cluster graph in case of the k
centroid and the histogram density estimator:

k centroids: #(EID) <
k(k − 1)

2
− n

r
and Histograms: #(EID) <

k(k − 1)

2
− n · k
r · log n

In case of histograms, if log n is much smaller than k the complete graph is preferable because of
the low costs for histogram density estimation.

In figure 3.15 we show the determined number of edges for the induced Delaunay graph for
uniformly distributed data, randomly selected centroids and growing dimensionality. Uniformly
distributed data are the worst case for the induced Delaunay graph, since the almost all possible
edges are inserted. Figure 3.15 (a) shows that with growing dimensionality the number of edges
approaches the theoretical bound for of

(

k
2

)

. Part (b) shows the number of edges which are saved
in the induced Delaunay graph and the bound, when this number becomes to small to prefer this
method.
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Figure 3.14: The figure schematically shows a Voronoi partitioning (thin solid lines) with an underlying
data distribution (shaded areas) and the induced Delaunay graph (thick solid and dashed lines). The thick
dotted edges belong to the full Delaunay graph, but are not inserted into the induced graph. The thick
dashed edges have a low density and are deleted by the density based single linkage separator.
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Figure 3.15: Part (a) shows the number of edges of the induced Delaunay graph. The data sets used are
uniformly distributed and have n = 100000 data points. The graph has k = 100 vertices and the upper
bound for the number of edges is

(

100
2

)

= 4950. Part (b) shows the difference
(

100
2

)

−#(EID). The lines
show when both graphs have the same costs for the case the k prototype estimator and r = 25 and r = 50
is used. The complete graph gets better when the difference of edges is below the line.
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From the inequation and the empirical observations we conclude that for data with a dimension-
ality 3 < d ≤ 8, when high accuracy is desired (larger values for r) and the k centroid estimator is
used, the induced Delaunay graph is preferable as cluster graph. In case of d ≤ 3 the full Delaunay
graph should be used, because this graph can be computed without scanning the data points. In
all other cases the use of the complete graph as initial cluster graph is the choice with the lowest
costs.

The output of the separator algorithm is a partition of P into at least two subsets of centroids
which approximates connected clusters and possibly a subset of centroids which approximates
outliers P0. If the initial cluster graph is not connected (which may only happen when an induced
Delaunay graph is used) the while loop is not executed and it is possible that more than two clusters
groups have been separated by the algorithms. When the initial cluster graph is connected, during
the while loop the edges with lowest weights are deleted until the graph splits into two components.
A data point x can be labeled (or assigned to a cluster) by looking for the nearest centroid pI(x) ∈ P
and determining the index i of the subset of centroids with pI(x) ∈ Pi. So the separating density
valley is approximated by the Voronoi edges which correspond to the deleted edges in the induced
Delaunay graph.

A recursive variant of the separator algorithm can be used to approximate the single-linkage
hierarchy. In this case the subsets of centroids as well as the corresponding subgraphs of the cluster
graph are inputs of recursive calls of the separator algorithm. The algorithm for approximating
the hierarchy is described in pseudo code in algorithm 3. The intermediate cluster descriptions C
can be stored in a tree to form the hierarchy.

Algorithm 3 Approximation of the Single-Linkage Hierarchy

db slink hierarchy(G(V = P,E,w), f̂ )

Require: G(V = P,E,w) cluster graph
1: if #(P ) = 1 then
2: return
3: end if
4: (P1, P2, . . . , P0, ξ)← db slink separator(G(V = P,E,w), f̂ )

{We assume G contains only nodes with f̂(p) ≥ ξ and edges with w(e) ≥ ξ after the call.}
5: C ← {P1, P2, . . .} {Note that P0 does not belong to the actual clustering C.}
6: for all Pi ∈ C do
7: Vsub ← Pi, Esub ← {e(p, p′) : p, p′ ∈ P and e ∈ G.E
8: db slink hierarchy(Gsub(Vsub, Esub, w), f̂ )
9: end for

Figures 3.16 (a-b) shows a comparison of clusters found by DBSCAN and the approximation
determined using db slink hierarchy. The results show that DBSCAN and the density-based
single-linkage separator find arbitrary shaped cluster with comparable quality. Figure 3.16 (c)
shows the upper part of the corresponding hierarchy. Relevant parts of the hierarchy can be
integrated into the separation tree by using the density-based single-linkage separator recursively
until all clusters are separated. The separation quality of the clusters on each level is reflected by
the noise level ξ (or splitting density), which increases for each recursive splitting. Higher splitting
density indicates low separation quality. The separator tree can also be used to exclude branches of
the hierarchy form further separation. In that way arbitrary shaped clusters of different densities
can be handled.

The runtime behavior of the whole process of clusters separation is dominated by the density
estimator. In the runtime experiments we used LBG-U as a placement algorithm for the centroids
of the density estimator and as reduction algorithm with the induced Delaunay Graph on the data
set with dimensionality d = 5. In figure 3.17 we show empirically the overall runtime behavior of the
density-based single-linkage separator + density estimator depending on the number of data points
and the number of centroids. The linear runtime of the density-based single-linkage separator is
a good improvement over existing methods like DBSCAN or OPTICS whose runtimes strongly
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Figure 3.16: Comparison of clusters found by DBSCAN and the approximation determined using the
cluster primitives (k=60, density threshold=0.005) for an 2D Example of 400 data points. Part (a,b) show
that DBSCAN and the density-based single-linkage separator are comparable wrt. the quality of the result.
Part (c) shows the upper part of the single-linkage hierarchy.
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Figure 3.17: Part (a) shows the overall runtime behavior of the density-based single-linkage separator +
the LBG-U based density estimator depending on the number of data points. The experiments indicate
that the separator has a linear runtime wrt. number of data points. This is a good improvement over of
existing methods like DBSCAN or OPTICS whose runtimes strongly depend on the underlying index. The
use of the index causes a superlinear runtime behavior for both methods.

depend on the underlying index. The use of the index causes a superlinear runtime behavior for
both methods.

3.3.4 Noise & Outlier Separators

Real data often contains objects which do not fit into clusters because the objects are independent
from the rest. Our assumption is, that after the object’s transformation into vector data, these
objects are noise and are uniformly distributed in the feature space F or they are outliers and have
a high LOF value.

The filtering of uniformly distributed noise is very important since the most placement meth-
ods for centroids are sensitive to noise and produce low quality results. It is well known that
noise can be effectively filtered by multidimensional histograms (grids) [50, 55], but other efficient
density estimators may be used. For the noise separator we use the observation that the density
of uniformly distributed points is low and nearly equal. This fact is captured in the frequency
distribution, which shows how often a density value occurs at a data point x ∈ D. For indepen-
dent, uniformly distributed data points the normalized frequency distribution follows a binomial
distribution B(n, p) with n is the number of data points and p is the probability that a randomly
picked point x ∈ F (according to the uniform distribution) has density den ∈ R. For a small p and
a large n the binomial distribution

Pbinom(k) =

(

n

k

)

pk(1− p)n−k, 0 ≤ k ≤ n
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can be approximated by a Poisson distribution

Ppoisson(k) =
λk · e−λ

k!
, λ = np, 0 ≤ k ≤ n

with the mean µ = λ = np (for further information about the probability distributions see [84]).
Since it is hard to directly estimate p, we determine it from the mean using the relation p = µ/n.

The data may contain data points which are not uniformly distributed, so we want to find the
density threshold t with the property, that the frequency distribution below t follows a binomial
distribution. Then a point x ∈ D is noise if f̂(x) ≤ t. To find an appropriate value for t,
the algorithm determines the χ2-value for the intervals [0, t′], t′ ∈ [tmin, tmax] of the frequency
distribution wrt. the estimated binomial distribution in the given interval. The χ2-value reflects
how well the interval [0, t′] fits a binomial distribution B(p, nt′) with µ = mean([0, t′]), p = µ/nt′

and nt′ = #{x ∈ D and f̂(x) ≤ t′}. Note that the observed frequency distribution has to be
renormalized according to nt′ in each step. The result t is the density threshold with the lowest
χ2-value, that means the frequency distribution in [0, t] has the best fit with the estimated Binomial
distribution for this interval. Algorithm 4 show this procedure in pseudo code. As alternative to
the χ2-test also the Kolmogorow-Smirnow test with the associated test variable can be used. The
algorithm needs a lower bound tmin for the threshold t to have enough points to estimate the
binomial distribution. A good choice for tmin is when ntmin

is larger then 1000. The upper bound
tmax is only for time saving purposes and can be set to tmax =∞.

Algorithm 4 Noise Separator

noise separator(D, f̂ , tmin, tmax, r)

Require: The data set D = {x1, . . . , xn}, a well set density estimator f̂(·), minimal and maximal
values for the desired density threshold t, the resolution r > 0 of the frequency plot.

Ensure: t is the density threshold in[tmin, tmax] with best quality (lowest χ2-value).

1: max density ← max{f̂(x), x ∈ D}
2: if tmax =∞ then
3: tmax ← max density
4: end if
5: frequency[0, . . . , r − 1]← [0, . . . , 0]
6: for all x ∈ D do
7: i←

⌊ f̂(x)
max density · r

⌋

8: frequency[i]← frequency[i] + 1
9: end for
10: ibest ← 0, qbest ←∞, imin ←

⌊

tmin

max density · r
⌋

, imax ←
⌊

tmax

max density · (r − 1)
⌋

11: nt′ ←
∑imin

i=0 frequency[i]
12: for i = imin to imax do
13: test[0, . . . , i]← frequency[0, . . . , i]/nt′

{The division by nt′ applies to each component which renormalizes the frequency distribution
to the new interval.}

14: µ← mean(test), p = µ
nt′

15: qi ← χ2-function
(

test, B(µ, p)
)

16: if qi < qbest then
17: qbest ← qi, ibest = i
18: end if
19: nt′ ← nt′ + frequency[i]
20: end for
21: return(t = i

r−1 ·max density, qbest)

Figure 3.18 shows the frequency distribution and the χ2 values for two different data sets. The
experiments base on a histogram density estimator. Note that the density values and frequency
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Figure 3.18: Experiment for noise level estimation for 5D data sets with 5000 data points. A low χ2-value
corresponds to a good fit of the estimated Binomial distribution and the observed frequency distribution.
For t = 21 (experiment (a)) 94% of the uniformly distributed points are separated.
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Figure 3.19: Run Time Behavior of the Noise Separator based on a histogram density estimator

are not normalized in the figure. The data set used in figure 3.18(a) consists of uniform noise and
one Gaussian cluster while the data set used in figure 3.18(b) only contains uniform noise. Both
data sets have the dimensionality 5 and contain 5000 data points. In the figure, a good value for
t corresponds to a small χ2-value. For the data set shown in figure 3.18(a), our noise separation
algorithm determines a noise level threshold of t = 21 (the first value when going from left to right,
where the χ2-values becomes zero) which almost perfectly separates the noise data from the cluster
data (94% of the noise points are separated). For the data set shown in 3.18(b), our algorithm
determines t = 27 as threshold with the result that all of the data is recognized as noise. Note that
in the general case, the noise regions do not need to be connected in the feature space.

An interactive version of the algorithm may use a similar plot like in figure 3.18 to allow a good
choice to t.

The noise separator itself has to store only the frequency distribution, which is very small.
But the needed density estimator may have storage costs in O(n), when a heap based histogram
is used. But alternative density estimators are possible like the centroid based estimator, which
might be combined with random sampling, LBG, LBG-U or BIRCH as placement methods. The
runtime is dominated by the runtime needed for density estimation, since the operations on the
small frequency distribution are negligible. In figure 3.19 we show empirically the run time behavior
of the noise separator based on a histogram density estimator depending on the number of data
points and the dimensionality.

The outlier separator has to determine the LOF value defined in section 3.2.1 for the data
points and marks points with a high LOF value as outlier. The concept of LOF has been proposed
by Breunig et al. in [29] and bases mainly on k nearest neighbor distances. In fact, to determine
the LOF value the authors defined a local reachability density (in short ldr(p) ) of an object p
by averaging the k nearest neighbor distance of neighboring objects o’ of p. It is important to
see that ldr(p) is a mixture of the naive estimator and the k nearest neighbor estimator (see [105]
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pages 13, 19). Han, Tung and Jin [62] proposed a more scalable algorithm to find the top ntop
local outliers which relies on a spatial data structure. However, the theoretical foundations in this
paper have been left unchanged. The disadvantages of this algorithms are that their performance
strongly depends on the underlying index, which is used to support the nearest-neighbor query.
Since indices do not perform well with high dimensional data the methods becomes computationally
expensive and the runtime changes from O(n log n) to O(n2).

We redesigned the LOF concept to work on general density functions. The general LOF value
is defined as

LOF (x) =

1
#(LN)

∑

x′∈LN f̂(x′)

f̂(x)
, x ∈ D, LN = {x′ ∈ F : dist(x, x′) = l}.

The ratio LOF (x) is high, when the average density of the points in the local neighbor hood LN
is high and the density at x is low. Note that LN does not contain data points, but randomly
generated points around x. The number of points in LN is a parameter for the measurement. For
small samples of the local neighborhood it is better to use the maximum density instead of the
average density, since sample points in low density regions around x can distort the LOF value.

The determination of the average or the maximum density in the local neighborhood can be
done by randomly picking points x′ ∈ F on the fly which are distributed equidistantly around the
examined data point x. There is no need to store the points in LN . To find the top ntop local
outliers we propose algorithm 5.

Algorithm 5 Local Outlier Separator

local outlier separator(D, f̂ ,msample, ntop, l)

Require: The data set D = {x1, . . . , xn}, a well set density estimator f̂(·), the number of sample
points msample for the local neighborhood and the number l of the top local outliers.

Ensure: D0 contains the top l local outliers (data points with highest LOF -values).
1: D0 ← ∅
2: for all x ∈ D do
3: LN ← gen sample(x,msample)

{LN is a set of randomly generated sample points around x with ∀x′ ∈ LN : dist(x, x′) = l}
4: LOF (x)←

1
#(LN)

∑

x′∈LN f̂(x′)

f̂(x)

5: if #(D0) < ntop then
6: D0 ← D0 ∪ {x}
7: end if
8: if #(D0) = ntop and ∃y ∈ D0 : LOF (y) < LOF (x) then
9: D0 ← D0 − {y}
10: D0 ← D0 ∪ {x}
11: end if
12: end for
13: return(D0)

Runtime and space requirements depend on the underlying density estimator. For the exper-
iments we used the k centroid density estimator. For this type of density estimator algorithm 5
becomes a runtime complexity of O(n ·msample ·k ·d+n · log ntop), where the first term corresponds
to the LOF determination and the second to the filtering of the top ntop local outliers. If the LOF
value should be determined for all points the last term changes to n log n. The complexity for
finding the top ntop outliers is much lower than those of the algorithms in [29,62]. Figure 3.20 and
3.21 shows the results of our experiments.
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Figure 3.20: Part (a) shows the two dimensional data consisting of 10000 normally distributed points and
100 uniformly distributed points, which simulates the outliers. Part (b) shows the DB-LOF value for the
data points, which states that the uniformly distributed points have a much higher LOF-value. Part (c)
shows a ranking of the data points with the LOF values, starting with the highest LOF-value. The figure
allows a visual determination of the top n local outliers, by looking for the knee in the plot. The figure
shows that our DB-LOF notion also allows a nearly perfect detection of the outliers. The k centroid density
estimator with k = 100 and random sampling as placement method have been used in the experiment.
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Figure 3.21: For the experiments we used DB-LOF in combination with the k centroids density estimator
with random sampling as placement algorithm. For this combination we expect a linear runtime for DB-
LOF. In the experiments (a,b) we used 5 and 20-dimensional data with one cluster and 10% outliers. The
number of the top outliers has been set to ntop = 150. Part (a) and (b) shows the runtimes of DB-LOF
depending on the number of data points for different settings for k of the density estimator. For both data
sets we get a linear total runtime which is a significant improvement over existing LOF algorithms, which
depend on the use of an index. Part (c) shows the behavior of DB-LOF wrt. dimensionality. Also in this
experiment we observed the expected linear runtime behavior. The small perturbations are due to caching
effects of the operation system.
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3.4 Improvements

In this section we discuss the improvements of our framework on existing approaches. The first
improvement comes from the decoupling of density estimation and clustering scheme, which allows
to find a reasonable tradeoff between efficiency and accuracy. As a result, methods with a better
runtime complexity can be developed without loss of much accuracy.

The other improvement is that the separation framework better fits the situation of knowledge
discovery and data mining, because within the framework semantic decisions (e.g. which type of
separator is meaningful for an application) remain as such and are not transformed into quanti-
tative parameterization problems [42] or into numerical optimizations of global cluster validation
metrics [45]. We believe that the separator framework provides a language, which is useful for
communicating problems related to clustering in a common scenario in knowledge discovery and
data mining.

3.4.1 Improvements of Complexities

The first improvement comes from the decoupling of density estimation and clustering scheme,
which allows to construct a clustering algorithm as a combination of a density estimation method
and a specific clustering scheme. The choice of the density estimation method has a large impact
on the quality and the efficiency of the whole clustering algorithm. It is a disadvantage that
existing clustering algorithms strongly integrated both concepts, which results into a large variety
of different algorithms. This issue is reported in a recent paper [33] with the title ’Why so many
clustering algorithms?’. Our framework could be a helpful answer to this question because the
number of clustering algorithms is reduced to a small number of primitives. This approach sets
free much potential to find a reasonable tradeoff between efficiency and accuracy by combining
primitives with the desired features.

So runtimes of the algorithms DBSCAN, OPTICS, and the LOF-Outlier detection strongly
depend on the performance of the used indices. In the best case the complexity of the algorithms
is in O(n log n). However it is well known that the best case performance decreases with increasing
the dimensionality [110], which causes that the runtime complexity of the algorithms goes up to
O(n2) which is prohibitive for large data bases. In section 3.3.3 and 3.3.4 we showed that using
the centroid-based density estimator the runtime of the density-based single-linkage separator as
well as the density-based LOF outlier detector can be brought down to O(n) which is a significant
performance gain, with only a small loss of accuracy. Using more expensive density estimators
the quality can be improved but on the costs of a larger runtime. The advantage of the separator
framework is that the tradeoff can be found by varying the separators and not by trying different
clustering algorithms, which might use different parameters and different clustering schemes.

3.4.2 Benefits of the Framework

A first advantage of the separator framework is that growing the separator tree is a good way to
apply the same separator method to different subsets using specially adopted parameter settings.
This feature enables the user to build cluster hierarchies in a easy way. Cluster hierarchies often
capture much more information about the structure of the data than non-hierarchic methods.

The separator framework also allows to integrate different clustering schemes into a global
clustering model. The advantage here is that different schemes can be applied to subsets of the
data. In that way the method can firstly generalize other methods and secondly integrate them to
build more complex models for the data.

The second advantage is that the separator framework provides a language, which is useful for
communicating problems related to clustering in a common scenario in knowledge discovery and
data mining. This means that the design of different separators with different quality functions
makes clear that there are different clustering schemes which are not comparable and that the
choice of a clustering scheme is semantically dependent from the application.
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In contrast to other clustering algorithms where density estimation is strongly integrated with
the clustering scheme, the separator framework allows to handle the question of efficiency indepen-
dently from the question of which clustering scheme is used. Efficiency questions can be handled
by parameter setting, e.g. a larger number of centroids provides often better results but increases
the runtime of the method. However, the question of which separator type is suitable for a given
application remains as a semantic decision in the framework, which can only made by the user. By
making the decision explicit the framework model provides a natural language for communicating
problems related to clustering. The rationales why the decision is meaningful is left to the user.
There are many approaches which are not aware of this semantic problem and offer highly biased
solutions. However, we believe that in the field of knowledge discovery and data mining semantic
decisions needs rationales, which can be only developed by the user, because only the user can de-
cide what is meaningful for a given application. As our framework allows such semantic decisions,
it is very suitable for a knowledge discovery context.



Chapter 4

Clustering in Projected Spaces

As mentioned in the previous chapter, clustering in high dimensional spaces has difficulties. In
section 3.3.1 we showed that density estimation in high dimensional spaces degenerates wrt. effec-
tiveness. The reason is the increasing sparsity of the data space, which comes from the exponential
growing volume of the data space without a corresponding growth of the data sets. So from the
statistical point of view we face the situation that we want to estimate a function over a fast
growing attribute space with a nearly constant number of sample points. So it is obvious that the
results loose significance in high dimensional spaces.

We approach the problem of clustering high dimensional data from different directions. In the
first section in this chapter, we examine the behavior of distance metrics and similarity in high
dimensional spaces, which we published in [52]. As a result we found a more general definition for
nearest neighbor search in high dimensional spaces.

Since clustering is very dependent on the applied similarity notion, this leads us to the intu-
ition of projected clusters and provides us with a useful interpretation. We published a preliminary
approach to that problem in [55]. In section 4.3 we explore a new strategy and develop an new
algorithm for mining projections. In contrast to recent approaches to projected clustering which
starts with the high dimensional space, partition the data into subsets and reduce the dimen-
sionality of the subsets, we start with low dimensional projections and combine them to higher
dimensional ones using a frequent item set algorithm like the apriori algorithm. Another question
is how many low dimensional projections are needed to find projected clusters. In the last sections
of this chapter we present experimental results of our new approach to projected clustering and
introduce an extension of our approach to more complex projected clusters.

4.1 Similarity in high dimensional Spaces

In the context of vector data it is a very common concept to use a vector metric as dissimilarity
function. That’s why we focus in this section on nearest neighbor search to find similar objects for
a given query object.

Nearest neighbor search in high dimensional spaces is an interesting and important, but difficult
problem. The traditional nearest neighbor problem of finding the nearest neighbor xNN of a given
query point q ∈ Rd in the database D ⊂ Rd is defined as

xNN = {x′ ∈ D|∀x ∈ D,x 6= x′ : dist(x′, q) ≤ dist(x, q)}.

Finding the closest matching object is important for a number of applications. Examples include
similarity search in geometric databases [71, 81], multimedia databases [34, 100], and data mining
applications such as fraud detection [24, 49], information retrieval [10, 90] among numerous other
domains. Many of these domains contain applications in which the dimensionality of the represen-
tation is very high. For example, a typical feature extraction on an image will result in hundreds
of dimensions.

45
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Nearest neighbor problems are reasonably well solved for low dimensional applications for which
efficient index structures have been proposed. Starting with the work on the R-Tree [43], a wide
variety of multidimensional indexes have been proposed which work well for low dimensional data
(see [40] for a comprehensive overview). These structures can support a wide range of queries such
as point queries, range queries, or similarity queries to a predefined target. Many empirical studies
have shown that traditional indexing methods fail in high dimensional spaces [20,21,110]. In such
cases, almost the entire index is accessed by a single query. In fact, most indexes are handily
beaten by the sequential scan [110] because of the simplicity of the latter.

However, as recent theoretical results [21] show, questions arise if the problem is actually
meaningful for a wide range of data distributions and distance functions. This is an even more
fundamental problem, since it deals with the quality issue of nearest neighbor search, in opposite
to the performance issue. If the nearest neighbor problem is not meaningful to begin with, then
the importance of designing efficient data structures to do the search is secondary. Here we deal
with the quality issue of nearest neighbor search, and examine several theoretical and practical
aspects of performing nearest neighbor queries in high dimensional space.

There can be several reasons for the meaninglessness of nearest neighbor search in high di-
mensional space. One of it is the sparsity of the data objects in the space, which is unavoidable.
Based on that observation it has been shown in [21] that in high dimensional space all pairs of
points are almost equidistant from each other for a wide range of data distributions and distance
functions. In such cases, a nearest neighbor query is said to be unstable. However, the proposition
of [21] is not that the difference between the distance of the nearest and the farthest data point to
a given query point approaches zero with increasing dimensionality, but the authors proved that
this difference does not increase as fast as the distance from the query point to the nearest points
when the dimensionality goes to infinity. It is still an open question whether and when nearest
neighbor search in high dimensional spaces is meaningful. One objective of this work is to qualify
the results reported in [21].

It is useful to understand that high-dimensional nearest neighbor problems often arise in the
context of data mining or other applications, in which the notion of similarity is not firmly pre-
decided by the use of any particular distance function. Often applied metrics are instances of the
Lp metric (p = 1, Manhattan; p = 2, euclidian) based on a comparision of all dimensions. In
this context, many interesting questions arise as to whether the current notion of nearest neighbor
search solves the right problem in high dimensions. If not, then what is the nearest neighbor in
high dimensions? What is the meaning of the distance metric used? One of the problems of the
current notion of nearest neighbor search is that it tends to give equal treatment to all features
(dimensions), which however are not of equal importance. Furthermore, the importance of a given
dimension may not even be independent of the query point itself.

In this section, we report some interesting experiments on the impact of different distance
functions on the difference between the nearest and farthest neighbor. As we will see, our findings do
not contradict the findings of [21] but provide interesting new insights. We discuss why the concept
of nearest neighbor search in high dimensional feature spaces may fail to produce meaningful results.
For that purpose, we classify the high dimensional data by their meaning. Based on our discussion
and experiments, we introduce a new generalized notion of nearest neighbor search which does not
treat all dimensions equally but uses a quality criterion to assess the importance of the dimensions
with respect to a given query. We show that this generalized notion of nearest neighbor search,
which we call projected nearest neighbor search, is the actually relevant one for a class of high
dimensional data and develop an efficient and effective algorithm which solves the problem.

The projected nearest neighbor problem is a much more difficult problem than the traditional
nearest neighbor problem because it needs to examine the proximity of the points in the database
with respect to an unknown combination of dimensions. Interesting combinations of dimensions
can be determined based on the inherent properties of the data and the query point which together
provide some specific notion of locality. Note that the projected nearest neighbor problem is closely
related to the problem of projected clustering [3, 4] which determines clusters in the database by
examining points and dimensions which also define some specific notion of data locality.
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d Dimensionality of the data space
N Number of data points
F 1-dimensional data distribution in (0, 1)
µF Mean of F
Xd Data point from Fd, each coordinate follows F
distd(·, ·) Symmetric distance function in [0, 1]d,

with distd(·, ·) ≥ 0 and triangle inequality
‖ · ‖ Distance of a vector to the origin (0, . . . , 0)
Dmaxd = max{‖Xd‖} maximum distance from the origin
Dmind = min{‖Xd‖} minimum distance from the origin
P [e] Probability of event e
E[X], var[X] Expected value and variance of a random

variable X
Yd →p c A sequences of vectors Y1, . . . converges

in probability to a constant vector c if:
∀ε > 0 limd→∞P [distd(Yd, c) ≤ ε] = 1

Table 4.1: Notations and Basic Definitions

4.1.1 Nearest Neighbor Search in high-dimensional Spaces

The results of [21] show that the relative contrast of the distances between the different points in the
data set decreases with increasing dimensionality. In this section we first present some interesting
theoretical and practical results which extend the results presented in [21]. The outcome is very
interesting since – despite the pessimistic conclusions of [21] – the results show that meaningful
nearest-neighbor search in high dimensions may be possible under certain circumstances.

Theoretical Considerations

Let us first recall the important result discussed in Beyer et. al. [21] which shows that in high
dimensions nearest neighbor queries become unstable. Let Dmind be the distance of the query
point to the nearest neighbor and Dmaxd the distance of the query point to the farthest neighbor
in d-dimensional space (see table 4.1 for formal definitions).

The theorem by Beyer et. al. states that under certain rather general preconditions the
difference between the distances of the nearest and farthest points (Dmaxd − Dmind) does not
increase with dimensionality as fast as Dmind. In other words, the ratio of Dmaxd −Dmind to
Dmind converges to zero with increasing dimensionality. Using the definitions given in table 4.1,
the theorem by Beyer et al. can be formally stated as follows.

Theorem 1
If limd→∞ var

(

‖Xd‖
E[‖Xd‖]

)

= 0, then

Dmaxd −Dmind
Dmind

→p 0.

Proof: See [21]. ¥
The theorem shows that in high dimensional space the difference of the distances of farthest and
nearest points to some query point1 does not increase as fast as the minimum of the two. This is
obviously a problem since it indicates poor discrimination of the nearest and farthest points with
respect to the query point.

1For our theoretical considerations, we consistently use the origin as the query point. This choice does not affect

the generality of our results, though it simplifies our algebra considerably.
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Metric Dmax−Dmin converges against

L1 C1 ∗
√

(d)
L2 C2

Lk, k ≥ 3 0

Table 4.2: Consequences of Theorem 2

It is interesting however to observe that the difference between nearest and farthest neighbor
(Dmaxd − Dmind) does not necessarily go to zero. In contrast, the development of (Dmaxd −
Dmind) with d largely depends on the distance metric used and may actually grow with the
dimensionality for certain distance metrics. The following theorem summarizes this new insight
and formally states the dependency between (Dmaxd −Dmind) and the distance metric used. It
allows to draw conclusions for specific metrics such as the Manhattan distance (L1), Euclidean
metric (L2), and the general k-norm Lk.

Theorem 2
Let F be an arbitrary distribution of two points and the distance function ‖ · ‖ be an Lk metric.
Then,

limd→∞E

[

Dmaxkd −Dminkd
d1/k−1/2

]

= Ck,

where Ck is some constant dependent on k.

Proof: see [52]. ¥
We can easily generalize the result for a database of N uniformly distributed points. The following
theorem provides the result.

Theorem 3
Let F be an arbitrary distribution of n points and the distance function ‖·‖ be an Lk metric. Then,

Ck ≤ limd→∞E

[

Dmaxkd −Dminkd
d(1/k)−(1/2)

]

≤ (n− 1) · Ck,

where Ck is some constant dependent on k.

Proof: If C is the expected difference between the maximum and minimum of two randomly drawn
points, then the same value for n points drawn from the same distribution must be in the range
[C, (n− 1) · C]. ¥

A surprising consequence of theorem 2 is that the value of Dmaxd−Dmind grows (in absolute
terms) as d(1/k)−(1/2). As a result, Dmaxd −Dmind increases with dimensionality as

√
d for the

Manhattan metric (L1 metric). The L1 metric is the only metric for which the absolute difference
between nearest and farthest neighbor increases with the dimensionality. It is also surprising that
for the Euclidean metric (L2 metric), Dmaxd −Dmind converges to a constant, and for distance
metrics Lk for k ≥ 3, Dmaxd −Dmind converges to zero with increasing d. These consequences
of theorem 2 are summarized in table 4.2.

Experimental Confirmation

We performed a series of experiments to confirm these theoretical results. For the experiments we
used synthetic (uniform and clustered) as well as real data sets. In figure 4.1, we show the average
Dmax −Dmin of a number of query points plotted over d for different data distributions. Note
that the resulting curves depend on the number of data points in the data set.

Note that these experimental results are no contradiction to the results of [21]. The reason
that even for the L1 and L2 metrics Dmaxd−Dmind

Dmind
→p 0 is that Dmind grows faster with d than
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Figure 4.1: |Dmax−Dmin| depending on d for different Lk metrics (uniform data)

Dmaxd − Dmind. In case of the L1 metric, Dmind grows linearly with d and in case of the L2

metric, Dmind grows as
√
d with d. As a result, for the L1 metric limd→∞

√
d
d = 0 and for the L2

metric limd→∞
C2√
d
= 0.

The theoretical and experimental results of this section show that for Lk metrics with k ≥ 3,
nearest neighbor search in high dimensional spaces is meaningless while for the L1 and L2 metrics
the distances may reveal important properties of the data.

4.1.2 Problems of high dimensional data and meaningful nearest neigh-
bor

In one- or two-dimensional spaces, it is usually rather easy to understand the properties of the data
and identify the data distribution. It is safe to assume that all dimensions are equally relevant and
that a standard (Euclidean) metric provides meaningful results. In general, this is not true in the
high-dimensional case.

To get a deeper understanding of the nature of high dimensional data, it is important to uncover
the meaning of the dimensions. High dimensional data points or feature vectors are typically
derived from complex real world objects like products, images, CAD data, etc. There are three
main methods to derive a high dimensional feature vector from complex real world objects, namely

• enumerating some properties of the objects (irreversible transformation),

• determining histograms which describe some statistical properties of the objects (irreversible
transformation) or

• transforming the full description of the objects into a feature vector (reversible transforma-
tion).

In the following, we examine the impact of the three potential sources of high dimensional data to
the meaningfulness of the nearest neighbor problem.

Enumeration of Properties: We use an example in order to elucidate this case. For our
example we assume that we want to compare cars. Comparing cars is often done by deriving various
properties of the cars such as motor power, equipment, design and so on. Each measurement forms
a dimension which is only related to the other measurements of the same object. When users query
the car data base, they can select or weight the importance of the different properties, and in that
way each user is able to form his own meaningful distance metric. The reason why a user can easily
perform a meaningful nearest neighbor search is that the dimensions are directly interpretable by
the user. By omitting some of the dimensions and by weighting them the user can control the
degree of abstraction for the nearest neighbor search. In our experience, the dimensionality of such
data is in the medium range (10 to 50).

Determination of Histograms: Histograms are often used to produce high dimensional data
because they allow a flexible description of complex properties of real world objects. Examples
are color histograms [44], word counts for document retrieval and text mining [72, 90] and census
data [83]. Each bin of the histogram is taken as a single dimension. The information transformation
from the real world object into the histogram is an irreversible process which means that some
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information about the object is lost. The user of a histogram data base has to be aware of this.
The goal of the query has to match the reduced information of the transformed object. On the
other hand the histogram may contain information about aspects (for instance the background in
an image) the user wants to abstract from. In that case, the information in the histogram must
be reduced to the relevant portion. However, in contrast to the enumeration method the users
are generally not able to specify the reduction because they usually do not know the underlying
transformation. Another difference to the previous method is that it is not useful to group the
dimensions independent from the users and the query points. In general all possible groupings
are potentially meaningful. First approaches to deal with that problem of query specification are
reported in [13, 34]. In general the connection between the information in the histograms and the
semantic information of the objects is weak. The dimensionality of such data can vary from the
medium to large range (10 to 1000).

Full Feature Description: The third method is to use the description of complex objects
directly as a feature vector. The advantage is that all information about the object is stored in
the feature vector and that the object is reconstructible from the vector. However, often the real
world objects do not allow a representation as a feature vector with fixed length. Examples for
data which allow such a representation are molecular biology data [31]. Like the histogram data,
it is also not meaningful to group the dimensions to sensible units independently from the query
point and/or the user. Due to the possibility of reconstruction, the semantic aspects are strongly
connected to the information stored in the feature vectors.

The three types of high dimensional data relate to different aspects of meaningfulness. In
general there is not a single meaningful nearest neighbor for a query, but the user has to select the
desired aspects. For the first category of high dimensional data, the user is able to specify his/her
notion of ‘meaningfulness’ (the actual relevant aspects) by his knowledge about the real world
objects. To deal with the second and third types of data, the user needs help from the data creator
or the database system to specify the ‘meaningful’ aspects. But how does a specification assistance
for the relevant aspects may look like? For certain applications, there are data dependent methods
which use interaction in the selection process [34]. In this part of the work, we focus on a data
independent method which selects the relevant dimensions automatically by extracting and rating
additional information about the data distributions.

As a second question we investigate how far a single metric can serve as a similarity measure
for the second and third type of data. We already stated that for those types of data the relevant
dimensions (attributes) depend on the query point and the intention of the user. If the meaningful-
ness of a metric depends on the query point, then a metric can not serve as a measure of similarity
between the query object and all other objects. In other words, a metric which is only based on
the relevant attributes (which are assumed to be a subset of all attributes) can only serve as a
criterion for similarity in a local environment of the query point. Objects (or data points) out-
side this environment are incomparable to the query object, because they may have other relevant
attributes. In summary one can say that for the second and third type of data, the relationship
between the metric and the intended similarity measure becomes weaker with increasing distance
to the query point. As a consequence, meaningful metrics for high dimensional data spaces have
to be varied according to the considered query point and data objects under consideration. Our
generalized notion of nearest neighbor search which is presented in the next section provides an
automatic adaptation of the similarity measure in order to allow a meaningful nearest neighbor
search in high dimensional space.

4.1.3 Generalized Nearest Neighbor Search

From the previous sections we have seen, that the problem of finding a meaningful nearest neighbor
in high dimensional spaces consists of the following two steps: First, an appropriate metric has to
be determined, and second, the nearest neighbor with respect to this metric has to be determined.
The first step deals with selecting and weighting the relevant dimensions according to the users
intention and the given query point. This step is obviously rather difficult since it is difficult to
select and weight the relevant dimensions among hundreds of dimensions. The basic idea of our
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approach is to automatically determine the relevant dimensions for a given query point based on
the properties of the data distribution. Although our approach can not guess the users intention,
in general the data distribution contains highly relevant information and allows a much better and
more meaningful nearest neighbor search.

Definition

In this section, we propose a generalization of the nearest neighbor search problem which remains
meaningful in high-dimensional spaces. The basic idea of our new notion of nearest neighbor search
is to use a quality criterion to dynamically determine which dimensions are relevant for a given
query point and use those dimensions to determine the nearest neighbor2. The space of all subsets
of dimensions can also be seen as the space of orthogonal projections of the data set, and the
problem can therefore be defined as an optimization problem over the space of projections. In
the following, we formalize our generalized notion of nearest neighbor search. First, we formally
introduce a quality criterion which is used to rate the usefulness of a certain combination of
dimensions (projection).

Let D = {x1, . . . , xn}, x ∈ Rd be a database of d-dimensional feature vectors, xq ∈ Rd the

query point, p : Rd → Rd′ , d′ ≤ d a projection, and dist(·, ·) a distance function in the projected
feature space.

Definition 9 (Quality Criterion)
The quality criterion is a function C(p, xq, D, dist) → R, C ≥ 0 which rates the quality of the
projection with respect to the query point, database, and distance function. In other words, the
quality function rates the meaningfulness of the projection p for the nearest neighbor search.

In section 4.1.4 we develop a useful quality criterion based on the distance distribution of the data
points to the query point within a given projection.

Let P be the space of all possible projections p : Rd → Rd′ , d′ ≤ d and ∀x ∈ Rd : p(p(x)) = p(x).
To find a meaningful nearest neighbor for a given query point xq we have to optimize the quality
criterion C over the space of projections P .

Definition 10 (Generalized Nearest Neighbor Search)
A meaningful nearest neighbor for a given query point xq ∈ Rd is the point3

xNN =

{

x′ ∈ D|∀x ∈ D,x 6= x′ : dist
(

pbest(x
′), pbest(xq)

)

≤ dist
(

pbest(x), pbest(xq)
)

}

where pbest =

{

p ∈ P | MAX
p:Rd→Rd′ ,d′≤d

{

C(p, xq, D, dist)
}

}

.

Solving the generalized nearest neighbor problem is a difficult and computation intensive task.
The space of all general projections P is infinite and even the space of all axes-parallel projections
has exponential size. In addition, the quality function C is a-priori unknown and therefore, it is
difficult to find a general and efficiently computable solution of the problem. In the next section,
we develop an algorithm which provides a very general solution of the problem.

4.1.4 Generalized Nearest Neighbor Algorithm

The most important but difficult task in solving the generalized nearest neighbor problem is to
find the relevant projections. As mentioned in the previous subsections, this decision is in general
query and data dependent which makes the problem computationally difficult. For our following

2Note that the nearest neighbor determined by our approach might be different from the nearest neighbor based

on all dimensions.
3Note that our definition can be easily generalized to solve the k-nearest neighbor problem by fixing the selected

projection and determining the k nearest neighbors.



52 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

considerations, we restrict the projections to the class of axes-parallel projections, which means
that we are searching for meaningful combinations of dimensions (attributes). The restricted search
space has still an exponential size with respect to dimensionality, which makes enumeration impos-
sible for higher dimensionality. In order to keep our algorithm generic and allow different quality
criteria (cf. subsection 4.1.4), our first approach was to use general optimization algorithms such
as random search, genetic and greedy optimization, for which the implementations can be made
largely independent of the specific problem structure. In random search, random combinations of
dimensions are evaluated in terms of the quality criterion, and the best projection is returned. The
genetic algorithm uses multiple populations which are mutated and combined based on the quality
criterion, and the greedy algorithm directly uses the best one-dimensional projections which are
combined into higher-dimensional ones. All three algorithms are sketched in pseudo code (see
figures 6, 7 and 8).

Algorithm 6 Random Optimization

random search (xq, dtar, D,C, dist, no iter)

pbest.quality ← 0
for i← 0 to no iter do

p← generate random projection( dtar )
p.quality ← C(p, xq, D, dist)
if pbest.quality < p.quality then

pbest ← p
end if

end for

return( pbest )

Algorithm 7 Genetic Optimization

genetic search (xq, dtar, D,C, dist, no iter)

population← ∅, pop size← 100, elite← 10, child← 80
for i := 0 to pop size do

p← generate random projection( dtar )
p.quality ← C(p, xq, D, dist)
population.insert(p)

end for

for i← 0 to no iter do

new pop← ∅
insert the elite best projection into new pop
for j ← elite to elite+ child do

{projections with high quality have higher probability to be selected for cross-over}
parent1← randomly select a projection from old pop
parent2← randomly select a projection from old pop
child← gen. a new proj. by comb. parent1, parent2
child.quality ← C(p, xq, D, dist)
new pop.insert( child )

end for

qualify and insert pop size− (elite+ child) random projections into new pop
population← new pop

end for

select the best projection pbest and return it

The results of the first experiments showed that none of the three algorithms was able to find the
relevant subset of dimensions. Even for synthetic data, for which the relevant subset of dimensions
is known, only a subset of the relevant dimensions was found. We found that random search had
been only useful to check whether a given quality criterion is effective on a specific data set or
not. If the random search does not find any projection with good quality, both genetic and greedy
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Algorithm 8 Greedy Optimization

greedy search (xq, dtar, D,C, dist, ptmp)

set of selected dimensions S ← ∅ or from ptmp

for i← 0 to dimtar do

pick the dimension ki 6∈ S such that the quality of the projection based on S ∪ {ki} is maximal
S ← S ∪ {ki}

end for

return (pbest(S))

algorithm are likely to fail in finding a good projection as well. However, in cases when random
search does not fail, the genetic search provides much better results. The greedy algorithm assumes
that the influence of a dimension on the quality is independent from other dimensions. In general,
this assumption is not true for real data sets. A crucial problem is that one-dimensional projections
of high dimensional data usually do not contain much information and so the greedy algorithm
picks the first dimensions randomly and is therefore not useful for selecting the first dimensions.
It turned out, however, that the greedy algorithm can be used effectively to refine results from
random or genetic search.

Algorithm 9 Generalized Nearest Neighbor Algorithm

p nn search (xq, dtar, D,C, dist)

dtmp ← between 3 to 5
no iter ← between 10 to 20
ptmp ← genetic search( xq, dtmp, D,C, dist, no iter)
pbest ← greedy search( xq, dtar, D,C, dist, ptmp)
xNN ← p nn search( xq, D, dist, pbest)
return( xNN )

Our algorithm to determine the relevant subset of dimensions is therefore based on a combina-
tion of the genetic and the greedy algorithm. For determining the first three to five dimensions,
we use a genetic algorithm and for extending the result to more dimensions we use a greedy-based
search. Figure 9 shows the pseudocode of the algorithm. For controlling the degree of abstraction
and improving the efficiency, we use the target dimensionality dtar = d′ ≤ d as a parameter of
the algorithm. If the genetic algorithm determines the first five of the relevant dimensions and the
greedy algorithm the remaining ones, the complexity of our algorithm is

O((5 ·#(Iterations) · PopulationSize+ d · (dtar − 5)) ·O(Quality Determination)).

Distance Distributions

In this section we develop a quality measure based on the distance distribution with respect to
the query point. The distance distribution of a data set D with respect to a query point xq is the
distribution of distances of the data points x ∈ D from xq. More formally, we have to consider the
probability that the distance of a query point xq to another data point is smaller than a threshold
distt:

Φ(distt) = P [dist(xq, x) < distt], x ∈ D, distt ∈ R

The corresponding probability density is

f(distt) = Φ′(distt).

Note that Φ(distt) is not continuous and therefore we can only estimate the probability density
f(distt). In this subsection, we use simple histograms showing the distances of the data points
from random query points.

To examine how typical distance distributions look like, we examine the distance distribution in
different dimensionality. Let us first consider the case of high-dimensional uniform data. We know
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that in this case the distances are meaningless. Figure 4.2 shows typical distance distributions4 of
a 50-dimensional data set consisting of 100,000 data points uniformly distributed in [0, 1]d. Figure
4.2 (a)-(c) shows typical projections5 onto randomly chosen 50, 10, and 2 dimensions. The distance
distribution has always one peak which means that all data points are basically in one large distance
cluster from the query point. As a consequence from the theorem in [21] the peak gets sharper
as the dimensionality to the query point grows. We avoid this effect for our quality criterion by
estimating the density only in the range [dmin, dmax], because this effect is common to mostly all
distributions and from section 4.1.1 we conclude that this effect does not necessarily tell something
about the meaningfulness of the nearest neighbor. From the discussion in section 4.1.2 we conclude
that a meaningful distance distribution should show two peaks. The nearer peak is formed by the
points which are comparable to the query point (the metric is related to a type of similarity). The
other peak – in most cases the larger one – is formed by those points which are incomparable to
the query point because other attributes are relevant for those data objects. However, with respect
to the currently used attributes they are assumed to behave like uniformly distributed data.

How to detect a two peak distance distribution? Our idea is to use kernel density estimation
(see [105] for an introduction) to smooth the distribution and suppress random artifacts. To
measure the quality we increase the kernel width (smoothing factor) until the smoothed distribution
yields only two maxima. The obtained kernel width is h1. Then we increase the kernel width until
the distance distribution yields only one maximum. This results in the kernel width h2. We use
the difference between the smoothing factor for one maximum and for two maxima h2 − h1 as
our quality criterion to measure the similarity of a current distance distribution with a distance
distribution that yields two significant peaks. To get rid of possible disturbances in the distribution,
which may also result in two maxima, we use only the k nearest percent of the data.

Figure 4.3 shows distance distributions of data, which contains uniformly distributed data
and a projected cluster, which means that these points follow a Gaussian distribution in some
dimensions and a uniform distribution in the others. Figure 4.3(a) shows the distance distribution
in a projection where all dimensions are relevant, which means that all selected dimensions are
used in the definition of the projected cluster. In Figure 4.3(b), one relevant dimension is replaced
by a non-relevant and in Figure 4.3(c) two relevant dimensions are replaced by non-relevant ones.
In 4.3(c) the two peak structure is hard to recognize and the quality criterion gives no hint on the
hidden relevant dimensions. From these observations we can conclude that the genetic algorithm
can only optimize projections with a dimensionality of 3-5. If the dimensionality is higher the
quality criterion degenerates to an oracle and the algorithm can only guess a good projection –

4In case of uniform data, the distance distribution is always similar independent of the chosen query point.
5In case of uniform data, the distance distribution always looks the same independent of the chosen projection.
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and the probability to guess a good projection in high dimensional data is rather low.

4.1.5 Summary

In this part of the chapter, we developed a generalized notion of nearest neighbor search in high
dimensional spaces. In [52] we showed that our new notion is highly relevant in practical applica-
tions and improves the effectiveness of the search. The basic idea is to determine a relevant subset
of dimensions depending on the query point and the data distribution by an optimization process
which rates the distance distribution for the selected subset of dimensions according to an elaborate
quality criterion. We also discussed some interesting aspects of using different Lp-distance metrics
for finding the nearest neighbor. Our new technique for solving the generalized nearest neighbor
problem is not only valuable for allowing a more meaningful and effective nearest neighbor search
in high dimensional spaces but it also provides a better understanding of the data and the rele-
vant notion of proximity. The ventilations leads us to a better understanding why clustering in
projections can be useful.

4.2 Problems of existing Approaches for Projected Cluster-

ing

From the projected nearest neighbor problem we learned that the similarity between objects is
better rendered by a distance metric in a low dimensional feature space than in a high dimensional
one. So clustering in low dimensional projections of high dimensional spaces may yield several
potentials to discover unknown structure in the data. In the first part of the section we will
examine three general observations on mining projected spaces and draw connections to existing
algorithms.

Firstly, we characterize the space of projections and restrict ourself to axes parallel projections.
This subset of possible projections forms a subset lattice of the set of dimensions, which is sketched
in figure 4.4. The complete enumeration of this space is not possible due its exponential size.
Especially in the middle of the lattice the number of projections is very large, so any search
strategy in this part is helplessly lost. We conclude from the figure that a search strategy has to
focus on the high or low dimensional part of the subspace lattice.

Second, we want to recall the observation from the beginning of the chapter regarding the
number of data points. To estimate the density in the space we can use only a nearly constant
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number of data points, which becomes insignificant when the dimensionality gets higher. Growing
dimensionality means exponential growing of the space volume, which is sampled by a constant
number of data points. So we can expect that only the low dimensional projections yield significant
information.

The last observation is that for projected clustering two tasks are necessary: the finding of the
projections and the grouping of the data into clusters. Both tasks are dependent in the following
way: the choice of the projection determines how similarity is defined and this definition induces
the particular clustering of the data. The assumption for projected clustering is that a projection is
meaningful for only a subset of the data points. Since the associated subsets of different projections
may overlap in general a data point may belong to multiple projected clusters. This is different
from full-dimensional clustering, where due to a global notion of similarity, clusters are found as
partitions or nested partitions (in the hierarchical case) of the data. So algorithms should be able
to assign data points to different clusters without assuming a cluster hierarchy. We argue that this
leads to a fundamental change in the design of clustering algorithms.

Now we shortly review existing algorithms for the problem and draw connections to the general
observations. Here we will focus on the method by which the space of projections is searched and
in which order the two tasks (projection finding and data partitioning) are processed.

The algorithms PROCLUS [3] and ORCLUS [4] start in the full dimensional space and partition
the data into many subgroups (seeds), reduce the dimensionality for the subgroups and join them
if appropriate. So the algorithms mine the projection space top down following a greedy strat-
egy. In each step of the greedy strategy the worst dimensions are removed. The dimensions are
independently rated using statistical properties like variance or singular value. After the reduction
the data points are reassigned to the cluster centers. During an iteration both algorithms use the
following order of the two tasks: first partition the data, then finding of projections. Since the data
points are assigned to exactly one cluster (partitioning) the algorithms can not detect overlapping
clusters.

The CLIQUE algorithm [7] mines the projection space bottom up by searching quantitative
frequent item sets (histogram bins) which are assembled to clusters on a single linkage basis. The
order of tasks is first making the quantitative data discrete by partitioning the data set into regular
histogram bins. Second, projections are searched by determining frequent item sets of the discrete
data. The resulting frequent multidimensional histogram bins are used as building blocks for
clusters. Overlapping clusters are possible here, but the clusters have to be reassembled in the
projections from the frequent histogram bins.

The three algorithms have in common that they first split the data into arbitrary subgroups
and then try to reassemble the subgroups to clusters according to their statistical and geometric
properties. The subgroups are used to find projections with clusters. However, all algorithms have
to deal with the problem to reassemble the previously splitted clusters.

Problems of Cluster Splitting We start with an examination of the impact of splitting the
data first wrt. to high dimensionality as described in [55]. To investigate this issue we discuss
the properties of different data distributions for an increasing number of dimensions. Let us first
consider uniformly distributed data. It is well-known that uniform distributions are very unlikely
in high-dimensional space. From a statistical point of view, it is even impossible to determine a
uniform distribution in high-dimensional space a-posteriori. The reason is that there is no possi-
bility to have enough data points to verify the data distribution by a statistical test with sufficient
significance. Assume we want to characterize the distribution of a 50-dimensional data space by
an grid-based histogram and we split each dimension only once at the center. The resulting space
is cut into 250 ∼ 1014 cells. If we generate one trillion data points by a uniform random data
generator, we get about 1012 cells filled with one data point which is about one percent of the
cells. Since the grid is based on a very coarse partitioning (one cutting plane per dimension), it
is impossible to determine a data distribution based on one percent of the cells. The available
information could justify a number of different distributions including a uniform distribution. Sta-
tistically, the number of data points is not high enough to determine the distribution of the data.
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Figure 4.5: Example Scenario for a Normal Distribution, d = 3

The problem is that the number of data points can not grow exponentially with the dimension,
and therefore, in high-dimensional space it is generally impossible to determine the distribution
of the data with sufficient statistical significance. (The only thing which can be verified easily is
that the projections onto the dimensions follow a uniform distribution.) As a result of the sparsely
filled space, it is very unlikely that data points are nearer to each other than the average distance
between data points, and as a consequence, the difference between the distance to the nearest and
the farthest neighbor of a data point goes to zero in high-dimensional space (see [21] for a recent
theoretical proof of this fact).

Now let us look at normally distributed data. A normal distribution is characterized by the
center point (expected value) and the standard deviation (σ). The distance distribution of the
data points to the expected point follows a Gaussian curve but the direction from the expected
point is randomly chosen without any preference. An important observation is that the number
of possible directions from a point grows exponentially in the number of dimensions. As a result,
the distance among the normally distributed data points increases with the number of dimensions
although the distance to the center point still follows the same distribution. If we consider the
density function of the data set, we find that it has a maximum at the center point although there
may be no data points very close to the center point. This results from the fact that it is likely
that the data points slightly vary in the value for one dimension but still the single point densities
add up to the maximal density at the center point. The effect that in high dimensional spaces
the point density can be high in empty areas is called the empty space phenomenon [105], Page 93
and [95].

To illustrate this effect, let us consider normally distributed data points in [0, 1]d having
(0.5, . . . , 0.5) as center point and a grid based on splitting at 0.5 in each dimension. The number of
directions from the center point now directly corresponds to the number of grid cells which is ex-
ponential in d (2d). As a consequence, most data points will fall into separate grid cells (Figure 4.5
shows an example scenario for d = 3). In high dimensions, it is unlikely that there are any points
in the center and that populated cell are adjacent to each other on a high-dimensional hyperplane
which is again an explanation of the high inter-point distances.

To show the effects of high-dimensional spaces on split-first clustering approaches, we performed
some interesting experiments based on using a simple grid as described and counting the number
of populated grid cells. Figure 4.6 (a) shows the total number of populated cells (containing at
least one data point) depending on the dimensionality. In the experiments, we used three data sets
consisting of 100000 data points generated by a uniform distribution, a normal distribution with
σ = 0.1 with a center uniformly distributed in [0, 1)d and a combination of both (20% of the data
is uniformly distributed)6. Based on the considerations discussed above, it is clear that for the
uniformly distributed data as many cells as possible are populated which is the number of available
cells (for d ≤ 16) and the number of data points (for d ≥ 20). For normally distributed data,
the number of populated grid cells is always lower but still converges against the number of data
points for higher dimensions due to the many directions the points may vary from the center point.
The third data set is a combination of the other two distributions and the speed of convergence

6The data points follows independently generated distributions in the projections.
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Figure 4.6: The figure (a) shows the number of populated grid cells for different data distributions (uni-
form, normal, normal + 20% noise ), each sampled with 100000 data points. Figure (b) shows the per-
centage of cells with more than one data point in.

is between uniformly and normally distributed data. Figure 4.6 (b) shows the percentage of grid
cells with more than one data point. The plot shows that for all data distributions the number of
such cell goes towards zero in high dimensional spaces, so grid cells with more than one data point
becomes unlikely in high dimensional spaces.

A general problem of clustering in high-dimensional spaces arises from the fact that the cluster
centers can not be as easily identified as in lower dimensional cases. In grid-based approaches it
is possible that clusters are split by some of the (d-1) dimensional cutting planes and the data
points of the cluster are spread over many grid cells. Let us use a simple example to exemplify this
situation. For simplification, we use a grid where each dimension is split only once. In general,
such a grid is defined by d (d − 1)-dimensional hyperplanes which cut the space into 2d cells. All
cutting planes are parallel to (d− 1) coordinate axes. By cutting the space into cells, the naturally
neighborhood between the data points gets lost. A worst case scenario could be the following case.
Assume the data points are in [0, 1]d and each dimension is split at 0.5. The data points lie on a
hypersphere with a small radius ε > 0 round the split point (0.5, 0.5, . . . , 0.5). For d > 40, most
of the points would be in separate grid cells despite the fact that they form a cluster. Note that
there are 2d cells adjacent to the split point. Figure 4.5 tries to show this situation of a worst
case scenario for a three-dimensional data set. In high-dimensional data, this situation is likely to
occur.

The experiments correspond directly to the CLIQUE approach since it also partitions the data
space by binning the dimensions which results in a grid which probably splits clusters. CLIQUE
connects adjacent grid cells and treat the connected cells as one cluster object. A naive approach to
find the adjacent populated cells is to test all possible neighboring cells of a populated cell whether
they are also populated. This approach however is prohibitively expensive in high-dimensional
spaces because of the exponential number of adjacent neighbor grid cells. The other possibility is
the test all populated grid cells whether they are adjacent to the actual one. However, this approach
has quadratic run time in the number of populated grid cells, which is for high dimensional spaces
in O(n2).

Similar arguments applies to the data splitting used in PROCLUS and ORCLUS. Here the
data is splitted into Voronoi cells defined by centroids. The data points are assigned to a number
of clusters seeds (centroids or medoids) using the nearest neighbor rule. The assumptions here is
that each initial partition induced by a seed is homogenous and comes more or less from the same
cluster. To guarantee this precondition the volumes of the Voronoi cells have to be sufficiently
small. Otherwise the quality of the clustering may decrease. Since the distances between the data
points grow fast in high dimensional spaces, a Voronoi splitting which meets the requirement of
homogeneity ends with about one data point per Voronoi cell. This causes high costs for refining
and merging the cells.
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Figure 4.7: The diagram shows the entropy depending on the number of randomly chosen seeds for data
set DS1. The data set consists of 20000 data points with 20 dimensions and contains two equally sized
projected clusters. Each axes-parallel projected cluster has 3 relevant and 17 non-relevant dimensions. To
simulate the initialization of ORCLUST we used random sampling to determine the seeds. The figure shows
the entropy of the induced partitioning (using the nearest neighbor rule), which measures the homogeneity
of the subsets. Low entropy (near to zero) indicates that the subsets mostly contain points from a single
cluster. The entropy goes down with increasing the number of seeds, however the runtime of ORCLUS
increases with the number of seeds quadratically. Because of the high computational costs we could not
test an seed set with zero entropy. In cases the zero entropy condition is not met the ORCLUST algorithm
is likely to converge to false relevant dimensions.

To elaborate the splitting issue we simulated the initialization of ORCLUS 7 by picking seeds
randomly from the data as described in the paper [4]. We generated a 20-dimensional data set
(to which is later referred as data set DS1) with two axes-parallel projected clusters of same size,
each with three relevant dimensions (relevant dimensions are normally distributed, non-relevant
dimensions are uniformly distributed). Since the data used has been labelled we could examine
the entropy of the partitioning D1, . . . , Dk of the data set D induced by the set of seeds S and the
nearest neighbor rule. The entropy of the partitioning is defined as

entropy(D1, . . . , Dk) =
k
∑

i=1

#Di

#D
· entropy(Di); entropy(Di) = −

c
∑

j=1

pj log2 pj

with pj denoting the frequency of cluster j in subset Di. The entropy measures the homogeneity of
the partitions according to the cluster labels. The entropy is near zero when the initial partitions
are homogeneous. Figure 4.7 shows the dependence of the entropy from the number of seeds. Since
the clusters in the data have only a few relevant dimensions and many non-relevant dimensions
nearest neighbor rule for the initial partitioning is dominated by the non-relevant information. Note
that ORCLUS’s runtime depends quadratically on the number of seeds. So if the data contains
many non-relevant dimensions, which means a large number of seeds are needed, the algorithm
is not applicable due to the high computational costs. However, when the partitioning is not
homogeneous (only a small number of seed is used) the local dimensionality reduction (principal
component analysis) goes wrong, because the spawning vectors of the relevant subspace of one
cluster are averaged (and so distorted) with the non-relevant dimensions from the other clusters.
This causes, that the algorithm is likely to converge to false relevant dimensions.

As a consequence, any approach which considers the connections for handling the effect of
splitted clusters will not work effectively and efficiently on large databases, and therefore another
solution guaranteeing the effectiveness while preserving the efficiency is necessary for an effective
clustering of high-dimensional data.

7Unfortunately the original ORCLUS algorithm is not available from IBM due to a pending patent.
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(a) general (b) contracting

Figure 4.8: General and Contracting Projections.

4.3 A new projected clustering Algorithm

Our new approach searches first for good low dimensional projections and then groups the data
into clusters. A projection has a high quality when data could be separated without splitting a
cluster. So our approach has not to reassemble previously splitted clusters. Before examining
projected clusters we introduce some general definitions and proof an important lemma. First we
give the definition of contracting projections. The use of such projections avoids distortions of the
projected data. The formal definition is given by:

Definition 11 (Contracting Projection)
A contracting projection for a given d-dimensional data space F and an appropriate metric ‖ · ‖ is
a linear transformation P defined on all points x ∈ F

P (x) = Ax with ‖A‖ = max
y∈F

(‖Ay‖
‖y‖

)

≤ 1 .

Figure 4.8 shows an example for general and contracting projections. An important question is
how to separate clusters in projected spaces and ensure at the same time that no other cluster is
splitted in the original high dimensional space. We proof an important lemma for the correctness
of our non-cluster splitting approach, which states that the density at a point x′ in a contracting
projection of the data is an upper bound for the density at the points x ∈ F with P (x) = x′ in the
original space.

Lemma 12 (Upper Bound Property)
Let P (x) = Ax with P : Rd → Rd′ be a contracting projection, P (D) the projection of the data

set D, and f̂P (D)(x′) the density for a point x′ ∈ P (F ). Then,

∀x ∈ F with P (x) = x′ : f̂P (D)(x′) ≥ f̂D(x) .

with

f̂D(x) =
1

nhd

n
∑

i=1

K

(

x− xi
h

)

and f̂P (D)(x) =
1

nhd′

n
∑

i=1

K

(

P (x)− P (xi)

h

)

.

Proof: First, we show that the distance between points becomes smaller by the contracting pro-
jection P . According to the definition of contracting projections, for all x, y ∈ F :

‖P (x)− P (y)‖ = ‖A(x− y)‖ ≤ ‖A‖ · ‖x− y‖ ≤ ‖x− y‖

The density function which we assume to be kernel based depends monotonically on the distance
of the data points. Since the distances between the data points in the projection becomes smaller,
the density in the projected space P (F ) grows. ¥



4.3. A NEW PROJECTED CLUSTERING ALGORITHM 61

-5 0 5 10 15 20 25 30 35
X 1

0
5
10
15
20
25
30
35

X 2

PRUNE
=> Remove redundent

Combinations

APRIORY
=> Frequent Combinations
of Separator Regions

Clustering in Projections
=> discrete Attributes

Cluster−Separators
Noise−Separators

=> Group Cluster
Descriptions together
according to the similarity

POOL

Partial Cluster−Descriptions

Final Cluster−DescriptionsProjected Clusters

Data Find Separators

=> Determine the Similarity
between all
Partial Cluster Descriptions

SIMILARITY MATRIX

Figure 4.9: The first step is to find noise and cluster separators in projections of the data. This can be
seen as a transformation of the continuous vector data into discrete transaction. A transaction consists of
the separator regions which include the original data point. Second, the transactions are mined for frequent
itemsets, which are frequent occurring combinations of separator regions. A frequent combination can be
seen as a partial cluster description. To keep the complexity low redundant combination are pruned. In
the last steps the similarities between the combinations are derived. Similar combinations are pooled to
final cluster descriptions.

The assumption that the density is kernel based is not a real restriction. There are a number
of proofs in the statistical literature that non-kernel based density estimation methods converge on
a kernel based method [98]. Note that Lemma 12 is a generalization of the Monotonicity Lemma
in [7]. Lemma 12 allows to determine clusters in a projection and ensures that the density at the
border of an cluster does not exceed a fixed value.

In the following we characterize axes parallel projected clusters and develop an algorithm to
determine such clusters. An axes parallel projected cluster is defined on a subset of dimensions
(relevant attributes) and undefined on the other dimensions (non-relevant attributes). The points
of such a cluster are assumed to follow independent distributions in all dimensions, that means
there are no dependencies between the attributes. We also assume the non-relevant attributes to
be uniformly distributed on the whole attribute ranges. The relevant attributes are clustered in
sub-intervals of the attribute ranges.

Now we sketch the outline of our new algorithm. The first step is to find noise and cluster
separators in projections of the data. This can be seen as a transformation of the continuous vector
data into discrete transaction. A transaction consists of the separator regions which include the
original data point. Second, the transactions are mined for frequent itemsets, which are frequent
occurring combinations of separator regions. A frequent combination can be seen as a partial
cluster description. To keep the complexity as low as possible redundant combinations are pruned.
In the last steps the similarities between the combinations are derived. Similar combinations are
pooled to final cluster descriptions. A final cluster description captures the properties of a projected
cluster. The main difference is that the multiple cluster descriptions may refer to the same data
point. So non-hierarchic, overlapping clusters may be found. The outline of our algorithm for
projected cluster is sketched in figure 4.9.

4.3.1 Finding Separators

In this section we describe how to the find separators which serve for the discretization of the
continuous vector data without splitting clusters. This step has a strong impact on the whole
method. We propose to find the separators by looking only on the projected data (in a low
dimensional subspace). For simplicity we describe first the case of axes-parallel projected clusters



62 CHAPTER 4. CLUSTERING IN PROJECTED SPACES

and extent this approach to more general projected clusters afterwards.
Since axes parallel projected clusters are assumed to have no dependencies between the at-

tributes the information to decide whether an single dimension is relevant or not can be obtained
from the one dimensional projection onto the examined attribute. The challenge is that in the
projection the distributions of all clusters are jammed and it is difficult to separate them. Two
cases are possible, firstly distributions of two clusters are jammed and overlap each other, secondly
a cluster distribution and non-relevant distributions are mixed. The separation of the distributions
is not perfectly possible in the general case since data points drawn from different distributions
may be projected onto the same position. So the tasks for examining an one dimensional projection
is to separate the clusters from each other and from the non-clustered rest.

Due to the assumed independency of the data our algorithm examines only the one dimensional
axes parallel projections to find good separators. A separator in this context consists of several
d−1 dimensional hyperplanes, each defined by a split point in the same one-dimensional projection.
The split points partition the attribute range into subintervals, however the separator partitions
the feature space F into the same number of grid cells (or slices). A good split point is required
to have low density in the projection, because this gives a low upper bound for the density on the
d− 1 dimensional hyperplane and minimizes the risk to split a cluster (see lemma 12).

Due to the two separation tasks we introduce two different separators, an one dimensional
cluster separator and a noise separator. First we describe how to find the split points for cluster
separation. Good cluster separating split points are local minima of the one dimensional density
function. The quality of the separator built from a set of split points is the maximal density in
the projection at a split point. The algorithm looks for separating minima of the density function
which e.g. are not at a border of an attribute range and have sufficiently enough data points at
both sides. The separating minima are found by examining the smoothed gradient of the density
function and determining zero points of the gradient function. The density function is estimated
as discrete histogram. The smoothed gradient of the discrete histogram function is defined as

grad(x, f̂P (D)) =
1

s

( s
∑

i=1

fP (D)(x− i · ε)−
s
∑

i=1

fP (D)(x+ i · ε)
)

, ε ∈ R, s ∈ N

where ε is the bin width of the histogram and s is the smoothing factor describing how many bins
at both sides have to be averaged. The gradient is smoothed to make the procedure robust against
small disturbances. A zero point x of smoothed gradient function is a minimum of the density
function, if and only if x − ε < 0 and x + ε > 0. The other zero points are maxima. Figure 4.10
(b) shows the smoothed gradient function with the minima of the density function (a). Choosing
a minimum of the density function as split point for a separator reduces also the probability of
cluster splitting. However, not all minima necessarily separate clusters. To make a minimum to
a separating one, the maximum density of both, the left and right neighboring intervals have to
be above the noise threshold. In case of figure 4.10 (b) two of the three minima {2, 3, 4} have
to be deleted to make the remaining minimum to a separating one. In such a case the remaining
minimum is chosen as the one with the lowest split density. Part (c) of figure 4.10 shows the cluster
separator with the separating minima determined by the smoothed gradient. Algorithm 10 takes a
set of minima M , the histogram density function f and the noise threshold ξ and shows in pseudo
code how to determine the separating minima.

The intervals between the remaining, separating minima are directly mapped to separator re-
gions using the hyperplanes defined by the split points. Formally the cluster separator for dimension
j is given by an ascending ordered set of split points SC = {split0, . . . , splitlj−1}. The separator
function uses the set of split points SC and returns for an point x ∈ F the minimal index of the
split points, which are larger than the projection of the point.

x ∈ F, SCj (x) =
{

imin if ∃imin = min
{

i : i ∈ {0, . . . , lj − 1} and P (x) ≤ spliti
}

lj else P (x) > splitlj−1

For convenience SC,ij (F ) ⊂ F denotes the subset of F with x ∈ SC,ij (F )⇒ SCj (x) = i.
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Algorithm 10 Determination of Separating Minima

separating min(M,fP (F ), ξ)

Require: M = {x1, . . . , xlast} a set of ascending ordered minima, fP (F ) the density function in
projection P and ξ the noise threshold.

Ensure: Msep contains only separating minima.
1: for all xi ∈M do
2: xi.lMax← Determine the maximum density in the left interval [xi−1, xi]
3: xmin.rMax← Determine the maximum density in the right interval [xi−1, xi]

{The left interval for x1 is [min, x1] and the right interval for the last minium is [xlast,max].}
4: end for
5: i← 1; Mdel ← ∅
6: while xi ∈M and xi.lMax < ξ do
7: Mdel ←Mdel ∪ {xi}; i← i+ 1
8: end while
9: left← 0; right← 0
10: for i to last do
11: if xi.lMax ≥ ξ then
12: left← i
13: end if
14: if xi.rMax ≥ ξ then
15: right← i
16: end if
17: if left 6= 0 and right 6= 0 then
18: xremain ← xremain ∈ {xi : left ≤ i ≤ right} and fP (F )(xremain) ≤ fP (F )(xi).
19: Mdel ←Mdel ∪ {xi : left ≤ i ≤ right} − {xremain}
20: left← 0; right← 0
21: end if
22: end for
23: if left 6= 0 then
24: Mdel ←Mdel ∪ {xi : left ≤ i ≤ last}
25: end if
26: Msep ←M −Mdel

27: return(Msep)
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The other task for examining a one dimensional projection is to separate clusters from the
non-clustered rest. A noise separator can be used to separate points following a non-relevant
distribution in the current dimension from other points, which are clustered in the dimension.
Noise separators are only determined when no cluster separator is found.

To determine the noise threshold the methods described in section 3.3.4 could be used or
the threshold is estimated by hand from an example visualization of the density. Due to the
precondition that no separating minimum exists in the projection, a noise separator may consist of
one or two split points, which mark intersections of the noise level with the density function. This
corresponds to the following cases:

1. One split point: only the left or right part of the density function is above the noise level

2. Two split points: a middle part of the density function is completely above the noise level

As a consequence the density in exactly one interval is completely above the noise threshold. This
interval is labeled as cluster interval. The following formula shows how a noise separator labels a
point

x ∈ F, SNj (x) =

{

1 if fP (F )(P (x)) ≥ ξ

0 else

A point x with label 0 is marked as noise and with label 1 as cluster. Similar to the cluster
separator SN,ij (F ) ⊂ F denotes the subset of F with x ∈ SN,ij (F )⇒ SNj (x) = i. Figure 4.10 (d-f)
shows an application of the noise separator.

The whole procedure described in this section is sketched in algorithm 11. To find projected
clusters our algorithm tries to find for each axes parallel projection a cluster separator and, if no
cluster separator exists, a noise separator. Note that for a given noise threshold a cluster separator
or a noise separator do not necessarily exist. The found separators are collected in the sets SC

and SN . Both separator algorithms require an histogram of each one-dimensional projection. Such

Algorithm 11 finding of Separators

separation(D, ξ)

1: Determine histograms for all projections P1, . . . , Pd
2: SC ← ∅, SN ← ∅ {Sets of Separators (Cluster, Noise)}
3: for all histograms h1, . . . , hd do
4: SC ← SC ∪ findClusterSeparator(hi, ξ)
5: if no Cluster Separator Found then
6: SN ← SN ∪ findNoiseSeparator(hi, ξ)
7: if no Noise Separator found then
8: mark the current dimension as non-relevant
9: end if
10: end if
11: end for
12: return(SC , SN )

histograms can be determined in one linear scan of the data set. The separator algorithms itself
have also a linear runtime in the size of the histogram. So the runtime of this step is linear in the
number of data points. Please note that our separator finding step has the two important difference
to the CLIQUE approach. Firstly, CLIQUE splits the data using all dimensions and secondly, it
uses equi-distant splits, which do not take the data distribution into account. This makes it very
likely, that clusters are spread over multiple grid cells. As mentioned above, it is very costly to
reassemble the grid cells, which belong to the same cluster.

4.3.2 Determining partial Cluster Descriptions

After determining separators in the projections the question arises how to use the determined
separators. Each separator region can be seen as a primitive cluster description assigning data
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Figure 4.10: Part (a) shows a density function (histogram) of a one dimensional projection (source:
attribute 5 of the molecular biology data). Part (b) shows the smoothed gradient (s=2) with the zero points
for the minimums. Since not all minimums separates clusters, two of {2, 3, 4} have to be deleted. The
minimum with the smallest split density remains. Part (c) shows the separator with the three separating
minimums. Part (d-f) shows a case where the noise threshold can be used to find noise splits. All gradient
splits points are deleted since they do not separate clusters (see e). The noise splits are defined by the
intersections of the noise level with the density function (see f).
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points to a clusters. The point groups described by the separator regions may overlap, however, it
is unknown which separator regions correspond to the same projected cluster.

Since the separators are independently determined a naive approach would merge all separators
(see the merge-operation in section 3.2.1). This forms a grid, which partitions the data space F and
so the data set D. Due to our restriction to one dimensional axes parallel projections the grid is a
regular grid like in figure 4.11(a). Not all grid cells contain clusters, so a simple method to find cells
with clusters is desired. An intuitive approach is to require the grid cells with clusters to contain at
least a given number minsup ∈ N of data points. The problem is that the information from the one
dimensional projections allows no determination of the number of points in the multidimensional
grid cells.

Also the choice of separators with good quality (low split density) is no assurance to find grid
cells with clusters. To illustrate this we describe a short example consisting of a data set D ⊂ [0, 1]d

and each data point in D is near to a different corner of the hypercube. When d = 20 the size
of the data set is 220 = 1048676, which is quite large. Each of the 20 axes parallel projections
may look like figure 4.11(b) and contains a cluster separator of good quality. However, merging all
separators would result into a grid, whose grid cells contain only one data point despite the well
chosen separators.

The problem is how to find combinations of separator regions, which are large with respect
to the number of combined separators and are supported by a sufficiently large number of data
points. Both goals – increasing the number of combined separator regions and maximizing the
number of supporting data points – contradict each other. In terms of grid cells (a combination of
separator regions is a grid cell) this means to find the smallest grid cells which contain more than
minsup data points. It is important to note that after the discretization of the continuous vector
data into separator regions this problem can be transformed into a problem of finding frequent
itemsets. This is done by denoting each separator region containing one or more clusters by an
item. To convert a data point x into a transaction t those items are concatenated, which correspond
to separator regions including x. The noise intervals of the noise separator are not represented
by items, because they mark non-relevant attributes. The set of items I is constructed from the
cluster separators SCj and the noise separators SNj in the following way:

I =
⋃

SC
j ∈SC

{C0
j , . . . , C

lj
j } ∪

⋃

SN
j ∈SN

{N1
j }

with lj is the number of separator regions of the cluster separator for dimension j. The transaction
set is determined from the data set using the separators. Each data point xl ∈ D, l = 1, . . . , N is
transformed into a transaction tl, which consists of the following items:

tl =
⋃

SC
j ∈SC

{

Ci
j : S

C
j (xl) = i

}

∪
⋃

SN
j ∈SN

{

N1
j : if SNj (xl) = 1

}

Figure 4.11(b,c) shows an illustration of the construction. The determination of the frequent
itemset wrt. minsup can be done with any available algorithm like apriori [6], partitioning algo-
rithm [92], sampling based [106] or the using the FP -tree method [46]. The data generated by
the transformation of separators into items differs from typical buying records in the way that the
data is not sparse, that means very frequent items may occur. The handling of such data is an
important research topic. New algorithms have been proposed recently, which can handle dense
datasets and are able to find long frequent itemsets [2]. It is important to note that single items
with very high support (≥ 80%) have an strong negative impact on the efficiency of the algorithms
but add no substantial new information to the result. Such items come from separators which
produce very unbalanced splits of the data. While the small parts may contain potentially im-
portant information on outliers, the large part simply represents nearly the whole data set again.
Since this significantly increases the size of the result of any frequent set algorithm without adding
new information, such items are removed before running the frequent item set algorithm. In our
experiments we used a very fast implementation of apriori from Christian Borgelt [25].



4.3. A NEW PROJECTED CLUSTERING ALGORITHM 67

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������

���������������������������������������������������������������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

x x

x
x

x

x

2

1
Density

D
en

si
ty

Density

1

1

0 1

x

x

Projection to x 1

2

3

(a)

1Projection to x

min max

D
en

si
ty

Clus
ter

 S
pli

t

C 11C 10 N1
1

Projection to x 1

min max

D
en

si
ty

Noise Level

Nois
e S

pli
t

Nois
e S

pli
t

(b) (c)

Figure 4.11: Part (a) shows a regular grid determined by separators from axes parallel one dimensional
projections. It shows that clusters in the multidimensional space can not be determined by looking on one
dimensional projections. Part (b) is an illustration for an example that the use of high quality separators
is no assurance for finding good clusters. The example can be generalized to high dimensional spaces and
each projections yields high quality separator. But the merging for all separators leads to a grid with only
one data point in each cell. Part (c) illustrates the construction of the items from the separators.
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The result of all algorithms is a set of frequent itemsets FI. We propose as a post-processing
step to remove redundant itemsets. A redundant frequent itemset is covered by a frequent superset.
The set of remaining frequent itemsets is denoted with PFI. The pruned frequent itemsets stand
for grid cells which are not included by larger ones and contain a sufficiently large number of data
points. The grid cells can be seen as conjunctions of separator regions from different separators,
which describe projected clusters. We call this cluster descriptions partial ones since also in the
pruned set similar descriptions may occur describing the same cluster.

4.3.3 Final Cluster Descriptions

To make our method more robust against parameter settings we refine the partial cluster descrip-
tions to final ones. For example in case the minsup-parameter in the apriori step has been chosen
to high, different partial cluster descriptions might be found for the same projected cluster. In this
case each found maximal frequent itemset includes only a subset of the relevant attributes. So,
after the pruning, we propose to group similar frequent itemsets.

To explain this step we introduce the geometric interpretation of the frequent itemsets. Each
frequent itemset I ∈ PFI describes a hyper box. The boxes are constructed using the split points
of the separators. The data points in the box G, determined from the frequent itemset SI ′, are
given by

G =
⋂

Ci
j∈SI′

SCij (F ) ∩
⋂

N1
j ∈SI′

SN1
j (F ) ∩ D

Note that the different boxes may intersect others. On the other side it is important to note
that PFI may include different frequent itemsets which describe nearly the same clustered set of
points. Similarity between frequent itemsets can be measured by the similarity of the supporting
data point sets. A common set similarity measure is:

sim(G1, G2) =
#(G1 ∩G2)

#(G1 ∪G2)

with G1 and G2 are sets of data point ID’s. Using this formula the similarity matrix between
all pairs of partial cluster descriptions can be determined. Since the number of partial cluster
descriptions is low the runtime of this operation is acceptable.

Using the similarity matrix the grouping of the partial cluster descriptions can be done using
a standard hierarchical clustering algorithm. We used for our experiments the complete linkage
algorithm from the CLUTO package [64]. The output of the algorithm is a dendrogram of the
partial cluster descriptions in combination with the block diagonalized similarity matrix. Each
group of similar cluster descriptions appears as block around the diagonal. The visualization can
be used to find out how many groups are in the data and which cluster description should be left
out. An example of the visualization for synthetic data is shown in figure 4.12.

The last issue is the generation of the final cluster descriptions. After grouping similar partial
cluster descriptions we have to build final ones from the groups. For this we recall the geometric
interpretation of the partial descriptions, which are hyperboxes in the data space. The intersection
of all would not work very well since many data point would be excluded from the cluster, however
the bounding box of all partial boxes might include unwanted data points. We decided to fuse
the boxes which describe the projected clusters as crossing boxes. In logical terms, we use the
disjunction of conjunctions of separator regions as final cluster description. Figure 4.13(a) shows
an example for an projected cluster with its description. The relevant dimensions of a cluster
are those dimensions for which a separator region appears in one of the merged partial cluster
descriptions. The rest are non-relevant dimensions.

Note that also the cluster from the final cluster description may have some overlap. The block
diagonalized similarity matrix is able to show which clusters have some overlap.

The overlapping nature of the boxes (and so of the clusters) makes clear that projected clustering
delivers in general not a definite partitioning of the data, but a set of overlapping clusters. Examples
for the overlapping nature of projected clusters are shown in figure 4.13(b), where points of the
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Figure 4.12: The figure shows a hierarchical clustering (complete linkage) and the block diagonalized
similarity matrix of the partial cluster descriptions. The used data set has 20 dimensions and contains two
projected clusters.

Table 4.3: The table summarizes the facts about the used synthetic data sets. Both data sets have 20
dimensions (0, . . . , 19). The relevant dimensions are normally distributed, while non-relevant dimensions
are uniformly distributed. Shared relevant dimensions are heavy printed in bold typeface.

Data Set Class Relevant Dimensions Size

DS1
Class 1 5, 18, 19 10000
Class 2 9, 14, 15 10000

DS2
Class 1 0, 4, 5, 6, 8, 9, 11, 12, 16, 17 10000
Class 2 1, 4, 6, 9, 11, 12, 14, 15, 16, 19 10000

cluster SN1
1 (F ) are also included in the projected cluster SN1

2 (F ). For simplicity, here the final
cluster descriptions consist of only one separator region.

The process of finding axes parallel cluster as explained is summarized in algorithm 12.

4.3.4 Experiments

In this subsection we empirically evaluate the features of our projected clustering algorithm. In
the first part we investigate the effectiveness of the method.

There are two extreme cases for projected clusters. First, the projected clusters do not share
any relevant dimensions. Such projected clusters can only be separated with the noise separator,
because in each one-dimensional axes-parallel projection exists at most one dense interval. In the
opposite extreme case the data contains projected clusters, which share nearly all of their relevant
dimensions. In such a scenario it is likely that in the projections at least two clusters overlap. If
that is the case, the clusters can be separated by the cluster separator.

We demonstrate the effectiveness of our algorithm for the two cases. For this purpose we
generated two 20-dimensional, synthetic data sets each containing two projected clusters. Table
4.3 summarizes the information about the data sets. The clusters of the first data set DS1 do
not share a relevant dimension. Each cluster of this data set has three relevant dimensions. In
section 4.2 we used this data set to show the weakness of ORCLUS in finding projected clusters
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Figure 4.13: Part (a) shows a final projected cluster description consisting of the union of N 1
1 and N1

2 .
The united partial cluster descriptions are defined in the dimensions x1 and x2 while dimensions x3 is a
non-relevant one for this cluster. Note that the partial cluster descriptions have such a small size (length
1) only for illustration in the example. The typical length is larger. Part (b) shows a case where two
projected clusters have some overlap. The points in the intersection belong to both clusters.

Algorithm 12 Axes Parallel Clustering

AP clustering(D, ξ,minsup)

Require: D = {x1, . . . , xN} a d dimensional data set, ξ ≥ 0 noise level, minsup > 0 minimal
percentage of required data points in a projected cluster.

Ensure: C contains the final cluster descriptions, each with at least minsup points.
1: SC ← ∅, SN ← ∅ {Init separator set}
2: for j = 1 to d do
3: fPj(D) ← determine density(Pj(D))
4: SCj ← determine cluster separator(fPj(D), ξ)
5: if a Cluster Separator was found then
6: SC ← SC ∪ {SCj }
7: else
8: SNj ← determine noise separator(fPj(D), ξ)
9: if a Noise Separator was found then
10: SN ← SN ∪ {SNj }
11: end if
12: end if
13: end for
14: if SC = ∅ and SN = ∅ then
15: return(D) {No cluster found, return D as one cluster.}
16: end if{Determine Partial Cluster Descriptions}
17: T ← generate transactions(D,SC , SN )
18: T ′ ← delete freq items(T,maxsup = 80%)
{Delete the items from the transactions with a support larger than maxsup.}

19: FI ← determine freq itemsets(T ′,minsup)
20: if FI = ∅ then
21: return(D) {No cluster found, return D as one cluster.}
22: end if{Delete itemsets which are included by larger ones}
23: PFI ← remove small freq itemsets(FI)
{Determine Final Cluster Descriptions}

24: SimMatrix← determine similarity(PFI, T )
25: C ← group FI(PFI, SimMatrix)
26: label data(C,D)
27: return(C)
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Figure 4.14: The figure shows how separator regions can be combined using conjunctions and disjunctions.
The labels x, y, z in the logical terms correspond in this example to the separator regions (intervals), which
are defined in the respective dimensions. Conjunctions are frequent itemsets which could be united by
the logical OR-function. The parts (from a to c) sketch results for increasing minsup. Higher values for
minsup result in coarser final cluster descriptions.

Table 4.4: The table shows the resulting conformation matrices from the experiments with the DS1 and
DS2 data sets. The DS1 data set has been shown in section 4.2 to be difficult for ORCLUS. Part (a) shows
that our algorithm can find this type of projected clusters very well. The other parts show the results
for the DS2 data set with respect to different values for minsup. For high values the cluster description
includes many false positives. This is due the large volume of the united separator regions. For small
values the cluster description includes only the core part of the particular clusters. The best results are
found for minsup = 35%.

In/Out C1 C2

Class 1 9560 9
Class 2 6 9574

In/Out C1 C2

Class 1 10000 1505
Class 2 1505 9999

In/Out C1 C2

Class 1 9957 726
Class 2 227 9977

(a) DS1 (b) DS2, minsup = 45% (c) DS2, minsup = 40%
In/Out C1 C2

Class 1 9282 91
Class 2 1 9870

In/Out C1 C2

Class 1 6691 0
Class 2 0 9181

In/Out C1 C2

Class 1 6691 0
Class 2 0 5113

(d) DS2, minsup = 35% (e) DS2, minsup = 30% (f) DS2, minsup = 25%

with many non-relevant dimensions. As shown in table 4.4 (a) our new approach can find such
projected clusters very well.

The other data set DS2 also contains two clusters. Here the clusters share many of their
relevant dimensions. In the context of this experiment we want to explain the influence of the
minsup parameter. This parameter determines the minimum frequency of an frequent itemset and
implicitly the length of the maximal frequent itemsets (itemsets without frequent superset). A
lower minsup allows larger frequent itemsets. However, long frequent itemsets can occur only if
there are projected clusters in the data with many relevant dimensions. The extreme case is when
all separator regions of relevant dimensions are covered by a single frequent itemset. So, the final
cluster description consists of only one partial cluster description, which is a hyperbox with bounds
in each relevant dimension. When higher values for minsup are chosen only smaller subsets of the
full set of separator regions of relevant dimensions can become frequent. These partial cluster
descriptions are similar to each other and are united (logical OR) in the following step to a final
cluster description. So minsup parameter controls implicitly the structure of the final cluster
descriptions. Low minsup produces hyperboxes of high dimensionality and higher minsup unions
of hyperboxes with lower dimensionality. Figure 4.14 illustrates the different cluster descriptions.

We examine the data setDS2 with different values forminsup and show the results as confusion
matrices in table 4.4 (b-f). The minsup parameter is varied from 45% to 25%. In all experiments
the relevant dimensions were found correctly. The average length of the found partial cluster
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Figure 4.15: Part (a) shows the average length of the partial cluster descriptions and the average size
of the grouped final cluster descriptions depending the used minsup. The first measure drops to one
with increasing minsup while the second increases. This behavior exemplifies the tradeoff between the
conjunctions of separator regions and disjunctions. Part (b) shows that with increasing minsup the overlap
between the final cluster descriptions grows. If a partitioning in clusters is wanted a good choice forminsup
is the largest value where the overlap is zero. In the case of the DS2 data set minsup = 35% is the best
choice. As shown in table 4.4 for minsup = 35% also the accuracy is the best.

descriptions and the average size of the groups for the final cluster descriptions depending on
minsup are plotted in figure 4.15 (a). The overlap (measured in data points) between the finial
cluster descriptions is plotted in figure 4.15 (b). This measurement can be used as indicator for
choosing a good value for minsup if disjunct clusterings are wanted. For the DS2 data set we used
the rule, that the largest minsup-value with zero overlap is the best choice. As shown in table 4.4
(d) this gives also the best accuracy.

In the next experiments we examine the dependency of the algorithm’s runtime from the number
of data points as well as the number of dimensions. The data sets DS3 and DS4 generated for
this experiments, contain also two clusters. For DS3 the dimensionality is fixed to 20 and each
cluster has 10 relevant dimensions. The clusters are equally sized in each setting. The runtime
of the algorithm is dominated by the first (separator finding), the second step (frequent itemset
determination) and the third step (determination of similarity). The three steps perform in total
a nearly constant number of scan over the data. For lower minsup fewer maximal itemsets are
produced, which explains the slightly smaller runtime. Since the overall runtime of the algorithm
is linear with respect to the number of data points, the algorithm scales to large data sets.

To investigate the ability of the algorithm to scale to large dimensionality we used the data set
DS4, which also consists of two equally sized clusters, each with 25000 points. The dimensionality
varies from 5 to 50. The important point is that the number of relevant dimensions is for each
setting half of the full dimensionality. That means that the dimensionality of the clusters subspaces
also grows with global dimensionality. In the first case we set no limit for number of used separators.
This causes longer transactions and also longer frequent itemsets. Since Apriori is not designed
to handle long itemsets beyond a dimensionality of 25 the runtime of this step exploded. This
situation is reported in figure 4.16 (b). There is currently ongoing research on algorithms which
can handle this kind on data much better and find long frequent itemsets more efficiently. For
our purpose we restricted in a second experiment the number of used separators to a maximum
of 20. We chose the separators with the best separation quality. This restriction limited also the
length of the frequent itemsets to a size for which Apriory runs efficiently. As a consequence the
resulting cluster descriptions do not contain all relevant dimensions for a cluster, but separated the
clusters also very well. However, the full set of relevant dimensions for each cluster could be easily
computed in a post processing step by separately determining the noise separators for each cluster.
Each found noise separator marks a relevant dimension of the cluster. Since due to the restriction
of the number of separator the size of the transaction set fixed size is implicitly fixed and so the
growing dimensionality effects only the first step (separator finding). This explains the smaller
gradient after the restriction appealed. The runtime of the algorithms is shown in figure 4.16 (c).
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Figure 4.16: Part (a) shows the runtime depending on the number of data points. The used data DS3
contains two equally sized clusters and is 20-dimensional. The data set DS4 contains 50000 data data
points and two clusters. The number of relevant dimensions is half of the full dimensionality. Part (b)
shows the runtime when the number of used separators is not limited. Since the lengths of the frequent
itemsets grow with the increasing number of relevant dimensions, the runtime of apriori explodes beyond
25 dimensions. Part (c) shows the runtime depending on the dimensionality when the number of separators
is limited to 20, Since the resulting cluster descriptions do not contain all relevant dimensions. the full set
of relevant dimensions is separately determined for each cluster in a postprocessing step.

This demonstrates that the algorithms is also highly scalable with respect to dimensionality.

Application to real data After showing the behavior of our new algorithm we apply it to two
different real data sets. The first data set is derived from a collection of 8537 images. For each
image the gray scale color histogram was derived. The histograms have been wavelet-transformed
into a 64-dimensional feature vectors. The image transformation is described in detail in [65].
Using our new projected clustering algorithm 2 different clusters was found. The clusters consist
of 890 images (Cluster 1) and 1212 images (Cluster 2) respectively. This shows that our approach
is not forced to partition the data, like PROCLUS or ORCLUS and also finds small clusters. The
first cluster is very homogenous and consists of images with a white, shaded background and a
special object in the foreground. There is no restriction on the foreground objects, which also could
vary in their sizes. The other cluster does not seem to have a content-based interpretation. The
common feature of all images is, that always at least one light area appears in the images. Figure
4.17 shows typical examples from the clusters. The full clusters as well as the full image collection
could be found at http://www.informatik.uni-halle.de/∼hinnebur/diss/images/.

The second data set comes from a molecular biology simulation of a small peptide. During
the simulation every 20th pico-second a snapshot of the spatial conformation of the molecule was
taken. A single spatial conformation of the molecule is described by 19 dihedral angles, which
were used as dimensions of a feature vector. Such short peptides do not have a stable spatial
conformation and so they repeatedly fold and unfold over time. An interesting question is what
are stable states of the molecule which often occur in the data. The different states were assumed
to form clusters in the data. Our new projected clustering algorithm found 7 different cluster with
4 main clusters in the data. In figure 4.18 we show the hierarchical clustering and the similarity
matrix of the partial cluster descriptions. As shown in the similarity matrix all clusters have some
overlap, which indicates that the states could not be sharply fractionized. This goes along with the
intuition that the molecule folds over intermediate steps from one state into another. Note that
overlapping clusters could not be found by any other projected clustering method.

In summary we showed that our new projected cluster can find projected clusters with only
a few relevant dimensions, which are likely to be missed by the best known projected clustering
algorithm ORCLUS. We explained and empirically verified our new projected clustering concept
based on disjunctions of conjunctions of separator regions and showed the tradeoffs in this concept.
We showed that our algorithm is hilly scalable, namely linear in number dimensions as well as in
the number of data points. We applied our method to image and molecular biology data and
showed that our method finds clusters, which are missed by others, since our algorithms does not
need to partition the whole data set and allows to find overlapping clusters. In the next section
we extend our method to projected clusters with dependencies.
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(a) Cluster 1

(b) Cluster 2

Figure 4.17: The clusters consist of 890 images (Cluster 1) and 1212 images (Cluster 2) respectively. This
shows that our approach is not forced to partition the data, like PROCLUS or ORCLUS and also finds
small clusters. The first cluster is very homogenous and consists of images with a white, shaded background
and a special object in the foreground. There is no restriction on the foreground objects, which also could
vary in their sizes. The other cluster does not seem to have a content-based interpretation. The common
feature of all images is, that always at least one light area appears in the images.
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Figure 4.18: The figure shows the similarity matrix of the partial cluster descriptions for the molecular
biology data. The similarity matrix shows four main clusters which overlap each other. This goes along with
the intuition about the application domain that the simulated molecule has intermediate states between the
stable ones. Note that overlapping clusters could not be found by any other projected clustering method.

4.3.5 Extensions to Projected Clusters with Dependencies

In the previous subsections we assumed that the data has no dependencies between the dimen-
sions. Using this assumption we could restrict our projection pursuit in the first step (finding of
separators) to axes-parallel one-dimensional projections. Now arises the question how to deal with
projected clusters with dependencies between the relevant attributes.

First we have to redefine the term relevant dimension. This term shall capture the contribution
of a dimension to the cluster information. Unlike in case of axes-parallel projected cluster here
a relevant dimension is only relevant in the context of other relevant dimensions. Figure 4.19
illustrates the difference. The parts (b-c) show two-dimensional projections of the same data, in
the first case the data is projected to the dimensions (d1, d2) and in the second case to (d1, d3). In
the first case the dimensions d1 is relevant since the projected data contain a cluster, while in the
second case the same dimension is not relevant. So it makes no sense to define the relevance of a
dimension independently from the context (the other involved dimensions). This is due to the fact
that in case of dependent attributes the relevance of a dimension can not be concluded from the
marginal distribution.

As a consequence we have to redesign the first step: the finding of separators has to take
multi-dimensional projections into account. Since the other steps are decoupled from the multi-
dimensional representation these parts can be left unchanged.

So the problem is, how to find good separators using multi-dimensional projections. The prob-
lem can be decomposed into three sub-problems:

1. How to find useful multi-dimensional projections?

2. How to determine good separators in the projections?

3. How to rate and compare the quality of the separators?

First we look at the problem of searching the space of projections. There are two basic possibili-
ties to do the search, namely enumeration and heuristic search. Let us first look at the enumeration
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Figure 4.19: Unlike in the case of axes-parallel projected cluster (part a), in the case of projected clusters
with dependencies a relevant dimension is only relevant in the context of other relevant dimensions. The
parts (b-c) show two-dimensional projections of the same data, in the first case the data is projected to
the dimensions (d1, d2) and in the second case to (d1, d3). In the first case the dimensions d1 is relevant
since the projected data contain a cluster, while in the second case the same dimension is not relevant.

of projections. Since the general space of projections is infinitely large, there have to be additional
constraints to make enumeration possible. The smallest subspace of projections, which can capture

dependencies is the subspace of two-dimensional axes-parallel projections with a size of
(

d
2

)

= d(d−1)
2

(d ∈ N is the number of dimensions). With this kind of projection dependencies between two at-
tributes can be found. In general the subspace of axes-parallel projections of dimensionality d′

has a size of
(

d
d′

)

which grows by an exponential rate for d′ ≤ d/2. So enumeration of the general
subspaces becomes quickly infeasible.

The other search methods are of heuristic nature. One possible strategy is presented in the
section on projected nearest neighbor search. This strategy uses genetic search to find good low-
dimensional projections (d′ = 2, 3) and then it extends the set of dimensions in a greedy fashion.

We did not consider so far how projections are rated. What would a good projection looks like?
A good projection in this context is a subspace where groups of data points can be well separated
from others. Similar to the case of axes-parallel projections here we also search for separators in
the subspaces. The examination tasks for the multi-dimensional projections are the same as for
one-dimensional projections, namely cluster and noise separation. Clusters without dependencies
are compact ellipsoids stretched along the axes, while for clusters with dependencies the shape and
orientation plays an important role. So the separation of clusters with dependencies can be done
using the density-based single-linkage separator, which can handle arbitrary-shaped clusters. For
the noise separation task we use the noise separator assuming the noise to be uniformly distributed
in the subspace. Both separator types allow to determine a separation quality which corresponds
to the maximum density at the separation border between different separator regions. A good
separation quality indicates a low density at the cluster border, which lowers the probability of
splitting a cluster.

After building separator regions the approach described in the previous sections can be used
to find cluster descriptions for the projected clusters. The difference is that the separator regions
can capture dependencies between groups of relevant dimensions. With the help of this cluster
information the continuous data can be transformed into discrete transactions. Partial cluster
descriptions are determined by finding frequent itemsets (conjunction of separator regions). Then
groups of similar partial cluster descriptions (frequent itemsets) are combined by logical or to final
cluster descriptions (disjunction of conjunctions of separator regions). Unlike in case of axes-parallel
projections here the final cluster descriptions stand for complex high dimensional regions.

The disadvantages of this approach are first the higher runtime of the separator finding step and
second the uncertainty of not fully found dependencies when heuristic search is used. If the space
of two-dimensional axes-parallel projections is enumerated this uncertainty could be excluded,
however the whole method scales only quadratically in the number of dimensions. Runtime could
be saved when heuristic search methods are used but this gain of speed comes at the risk of
missing some dependencies. Here is a potential for finding reasonable tradeoffs between runtime
and quality, which we will investigate in further research.



Chapter 5

Clustering & Visualization

Clustering in high-dimensional databases is an important problem and there are a number of
different clustering paradigms which are applicable to high-dimensional data. In the previous
chapter we developed separators for the different clustering paradigms and applied the separator
framework to projected clustering. This variant of the clustering problem has the potential to
be more effective in cases of high dimensional data. Since the choice of meaningful projections is
often guided by domain knowledge we recognize a gap between automated algorithms which use
only statistical properties and implicit heuristics for the mining process and the user’s intention to
influence the results by her/his domain knowledge.

Our idea presented in this chapter is to use a combination of automated cluster separators with
new visualization methods for a more effective interactive clustering of the data. The starting point
is the separator framework with data compression, density-based single-linkage, noise and outlier
separators and the projected clustering problem. However, Choosing the contracting projections
and specifying the separators to be used in building a separator tree are two difficult problems
which can not be done fully automatically.

Visualization technology can help in performing these tasks. There are a large number of
potential visualization techniques to be used in data mining. Examples include geometric projection
techniques such as prosection matrices [39] and parallel coordinates [59,60], icon-based techniques
(e.g., [19, 85], hierarchical techniques (e.g., [74, 88, 102]), graph-based techniques (e.g., [18, 99]),
pixel-oriented techniques (e.g., [1, 11, 66]), and combinations hereof ( [8, 15]). In general, the
visualization techniques are used in conjunction with some interaction techniques (e.g., [9, 14, 30])
and also some distortion techniques [73, 91]. The existing techniques, however, do not allow an
effective support of the projection and separator finding process needed for an efficient clustering
in high-dimensional space. We therefore developed a number of new visualization techniques which
represent the important features of a large number of projections to allow an easy identification
of the most interesting projections and a selection of the best separators. For one-dimensional
projections we developed a pixel-oriented representation of the point density projections, allowing
an easy identification of the best-separating projections (cf. section 5.1.3). If the number of
interesting projections is large, the user may also use a different visualization which represents the
largest dense regions in the projections and their separation potential by small polygonal icons (cf.
section 5.1.2). The iconic representation is a reduction of the information in the pixel-oriented
visualization and allows a quick overview of the data. For two-dimensional projections, we use
a two-dimensional pixel representation which also allows complex density based single linkage
separators to be directly specified within the visualization (cf. section 5.1.5) and a similar iconic
representation. In the higher-dimensional case, due to the large number of projections, only the
iconic visualization can be used (cf. section 5.1.2). All visualization techniques are integrated by
using a visualization of the (extended) separator tree, which describes the projection and separator
hierarchy (cf. section 5.1). To show the effectiveness of our new visualization techniques we employ
the system for clustering a real data from molecular biology (cf. section 5.2). The experiments
show the effectiveness of our approach.
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Select Separator Nodes which
are childs of a single Data Node v

Group the partial Cluster Descriptions
to final ones

description is a child of the combined Separator

Add the resulting combined Separator
to the Data Node v, each final cluster

Decide

Determine partial Cluster Descriptions

Separation

Select final Separator Nodes
Finished

Input Data Set D

Generate initial extended Separator Tree
Root = D (Data Node)

Find Cluster Descriptions (Separator Combination)

Chose Data Node v

Add the separtor regions S1, ..., Sn as
data−node childs to S and
add S as child to v

Visually find a projection with a good
separator S for the data assigned to v

Figure 5.1: The figure shows the possible actions supported by HD-Eye. The left branch (separation)
deals with the visual finding and determination of projections and separators. The right branch stands
for the possibility of combining different separators to complex cluster descriptions. This incorporates the
algorithm described in the previous section into HD-Eye.

5.1 The HD-Eye System

Let us now give a brief overview of our visual clustering tool HD-Eye. There are two main tasks
which need visual support. The first is finding the appropriate contracting projections for parti-
tioning the data and second, finding and specifying good separators based on these projections.
Both tasks require the intuition and creativity of the human user and can not be done automat-
ically. The main difference between the OptiGrid or the projected clustering algorithm from the
previous section and HD-Eye is the visual determination of the projections and separators. By
visual feedback, the human observer gets a deeper understanding of the data set and is therefore
able to identify additional projections and separators corresponding to substructures which can not
be found by the automated algorithms due to the non-interactive determination of the projections
and separators. The visual interactive finding of separators is the left branch in figure 5.1. The
right branch allows the combination of separators to find complex cluster descriptions as reported
in the previous section.

The HD-Eye system allows to split recursively the data set. The recursive splitting lets grow the
separator tree, which forms a hierarchy representing the cluster structure in an intuitive way. The
simple separator tree can be extended by inserting the separators itself into the tree. An extended
separator tree consists of separator and data nodes. The levels of the tree are homogenous and the
nodes alternate between the levels starting a data node as root node. The input data set is assigned
to the root node. The advantage of an extended separator tree is that alternative separators for the
data could be stored in the same data structure. Also overlapping clusters are supported in that
way. The extended separator tree is a space efficient method to store multiple simple separator
tree. This allows the user to explore and to compare several alternative clusterings. Figure 5.2
shows an example for an extended separator tree and how it includes a simple separator tree.

There are two version of HD-Eye, the first implements only simple separator tree, while the
second allows the use of extended separator trees. Figure 5.3 shows overview screenshorts of
both versions. The data can be partitioned first using a set of simple one- and two-dimensional
orthogonal projections (1D, 2D) and then using a set of complex separators which can handle
clusters of arbitrary shape. The multiple levels of in the cluster hierarchy allow the use of different
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Figure 5.2: The extended separator tree allows the representation of alternative ways of separating in
the same data structure. Common parts of the alternatives are shared in the extended separator tree. By
fixing non-alternative separator nodes a simple separator tree can be extracted from the extended one.
Non-alternative separator nodes do not share the parent data node. The extended separator tree allows
the user to explore and to compare several alternative clusterings at the same time.

parameterizations for the different cluster separators. For example the noise level can be adapted
to different parts of the data set. Note that the separators allow clusters of arbitrary shape and
complex (linear, quadratic, and higher-order) dependencies to be found.

In the following, we describe the core of the visual mining capabilities of the HD-Eye system,
namely the visual techniques for finding good projections and separators (cf. different windows in
figure 5.3).

5.1.1 Visual Finding of Projections and Separators

One of the essential parts of the HD-Eye algorithm is to find projections, which are useful for
separating the data into clusters. In [55] it is shown that axes-parallel projections are sufficient for
detecting axes-parallel projected clusters with no linear dependencies between the attributes. In
case of clusters with linear or higher-order dependencies between the dimensions (arbitrary shaped
clusters) multi-dimensional projections and separators are necessary. Figure 5.4 shows an example,
where the two clusters could not be separated using only the density in the marginal distributions.
The two-dimensional projection to the plane (x1, x2) is needed.

Without prior knowledge about the dependencies or shapes of the clusters, it is hard to tune
the parameters of currently available automatic cluster discovery algorithms to find the correct
clustering. Visual techniques which preserve some characteristics of the data set can be of indis-
pensable value for obtaining good separators. In contrast to dimension reduction approaches such
as principal component analyses (FASTMAP [35]) or projection pursuit [58], our approach does
not require that all clusters are preserved by a single projection. In the projections some cluster
may overlap and may therefore not be distinguishable. For our approach, we only need projections
which allow a separation of the data set into at least two separated subsets without dividing any
clusters. The subsets may then be refined using other projections and are possibly partitioned
further based on separators in other projections. Since we only use contracting projections, parti-
tioning the data set in the minima of the projections does not cause any error on the clustering (cf.
Lemma 12). Based on the visual representation of the projections, it is possible to find clusters
with unexpected characteristics (shapes, dependencies), which are very difficult to be found by
tuning the parameter settings of automatic clustering algorithms.

The most important information about a projection is whether it contains well-separated clus-
ters. Note that well-separated clusters in the projection could result from more than one cluster
in the original space. But if it is possible to partition the data into subsets the more complex
structure can be detected in a recursive way using other projections which then become more
meaningful. In our approach we visually code the important information (whether the projection
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Figure 5.3: HD-Eye Screenshot Version 1 and Version 2
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Figure 5.4: Example for the need of multi-dimensional projections. The two clusters could not be found
using only the marginal distributions. The two dimensional projection to the plane (x1, x2) is needed.

contains well-separated clusters) in three different ways:

(a) Abstract iconic display,

(b) Color-based point density, and

(c) Curve-based point density.

Method (a) has two variants. The first variant is applicable to projections P : Rd −→ R1 while the
second variant is applicable to general contracting projections P : Rd −→ Rd′ , d′ ≤ d. Methods (b)
and (c) are limited to d′ ≤ 2.

In the following, we describe the three methods and discuss how the three methods are used
in finding interesting projections of the form P : Rd −→ Rd′ , d′ ≤ 2; and then we briefly describe
how the separators may be specified directly within the visualizations.

5.1.2 Abstract Iconic Visualizations of Projections

As the number of possible contracting projections is very large we need a visualization technique for
displaying the main properties of the data distribution of many projections. Since we are interested
in finding projections which allow a good partitioning of the data set, the main properties are in
our case

• the number of separator regions defined by separating maxima of the density function of the
projected data,

• the number of data items belonging to each separator region, and

• how well the regions are separated from each other.

In our approach we determine these properties based on histogram information of the point density
in the projected space. To make the system scalable, the histogram can be computed directly by
the underlying database, so that no data points have to be read into the main memory.

The abstract iconic display method uses an icon-based technique to display the properties. The
number of data points belonging to a separator region corresponds to the color of the icon. The
color follows a given color table ranging from dark colors for a large number of data points to bright
colors for smaller numbers. The measure of how well a separator regions is separated from the
others corresponds to the shape of the icon and the degree of separation varies from sharp pikes
for well-separated regions to blunt pikes for weak-separated regions (cf. figure 5.5). The icons for
the separator regions of a projection are arranged in a vertical line. In the one-dimensional case
(variant a), a natural order of the regions exists and the degree of separation can be measured
in the two directions (left and right). The degree of separation to the left corresponds to the
difference between the maximum density and the density of the border bin between the current
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(a) 1 dimensional (b) multidimensional

Figure 5.5: Structure of the icons

(a) one-dimensional (b) multidimensional

Figure 5.6: Examples of the icons

regions and the next region on the left. Analogously the separation for the right side is defined.
In the multidimensional case, the direction of the separation with respect to other clusters does
not make sense and therefore in the visualization we order the separator regions to obtain a good
contrast between the important regions and the less important ones. The degree of separation of a
cluster in a projection is determined by the highest density at the border of the region, that means
the smaller the maximum density at the border the better is the separation of the cluster. For
the cluster detection in the projected space we employ the density-based single-linkage separator
introduced in section 3.3.3 (page 30). Figure 5.5 shows the structure of the icons and figure 5.6
shows examples for visualizations resulting from a 1D and a 2D projection.

The iconic representation of the maxima of the density function can be used to identify the
interesting projections and for finding good separators. Figure 5.7 shows an example with a larger
number of 2D projections. The interesting projections have at least two well separated maxima
(dark, sharp icons).

5.1.3 Color Density and Curve Density Visualizations of Projections

The abstract iconic visualizations of the projection are used to find interesting projections among
a large number of projections. For further exploration such as testing whether the projections
allow useful separators, color density and curve density plots can be used. Figure 5.8 shows one-
dimensional examples for the color density and for the curve density plots. The darkness of the

Figure 5.7: Iconic representation of a large number of projections
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(a) Color (b) Curve

Figure 5.8: Examples for the one-dimensional density plots

Figure 5.9: Examples for the color density plots (two-dimensional)

color increases with higher point density. The examples correspond to the example of the abstract
1D iconic visualization method (figure 5.6 (a)). We used color density plots in form of an arc instead
to simple bar charts to prevent visual clutter, because long horizontally arranged bar charts could
be easily mixed up (visual influence between different bars) in cases of overview displays. Figure
5.12 (b) shows an example for an overview plot with 1D color density plots.

In addition to the one-dimensional plots, we also support two-dimensional color density plots.
The basic idea is to code the point density of the projection by color. In figure 5.9, we show
an example of a two-dimensional color density plot, which corresponds to the abstract iconic
representation in figure 5.6 (b). The color density plots are also used for an intuitive specification
of complex hyper-polygonal separators (cf. subsection 5.1.5).

5.1.4 Methodology for Pre-selecting Interesting Projections

Since the number of potentially interesting projections is very large, it is important to have some
procedure for the pre-selection of projections. In the HD-Eye system, we use an interactive opti-
mization procedure. The procedure starts by proposing some projections to the user. The initial set
of projections consists of all axes parallel projections, some diagonal projections, and some random
combinations of the previous ones. From this set, the user can select the interesting projections. In
case the presented projections are not sufficient, the user can generate other combinations from the
selected ones using crossover and mutation operators which are applied to the projection matrices.
In each iteration, the selected projections are preserved and potentially modified. The procedure
is a sort of genetic algorithm where the fitness function is defined by the user’s selections. The
iteration for good projections stops when satisfying projections are found or the user is convinced
that the data set can not be further partitioned.
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(a) one-dimensional, color density plot (b) one-dimensional, curve density plot

(c) two-dimensional, color density plot

Figure 5.10: Examples for Separators

5.1.5 Visual Finding of Separators

When a good projection is found which allows a separation of data points into clusters the user
can use the visualization to directly specify a separator. Due to unknown characteristics of the
clusters, finding separators can not be done effectively in an automatic way. In the HD-Eye system,
the separators are therefore specified visually using interactive tools. A separator can be defined
by simple geometric objects such as split lines or closed split polygons in the projected space. The
borders of the split objects are best placed in regions of relatively low point density. Using the
upper bound property (lemma 12), the point density in a projection is an approximation of the
point density in the data space. For finding separators in one-dimensional projections we use the
color and curve density plots with a high granularity (i.e. large number of grid cells). Split lines for
the separators can be directly placed in the visualizations using the mouse. In the two-dimensional
case, the split polygons can be drawn directly into the two-dimensional color density plots. Figures
5.10 (a), (b) and (c) show examples for separator lines in one-dimensional color and curve density
plots and a two-dimensional color density plot.

HD-Eye also allows a semi-automated way to determine separators. The automated heuristic
to find separators can be tuned to find a convincing result. The user can take advantage of the
visual feedback provided by the system to find meaningful values for e.g. the noise level or the
number of used centroids for the density-based single-linkage separator. For instance to find a
good threshold for the noise level the user can specify an initial value. The ranges below the noise
threshold are drawn in yellow (a color which is not in the used color table). After determining
separating minima the user can decide, based on the visual feedback provided, whether the setting
produces acceptable results or some adjustments are necessary. The methodology can be used to
find the appropriate number of centroids. Figure 5.11 shows examples for this feature.



5.1. THE HD-EYE SYSTEM 85

(a) (b)

(c) (d)

Figure 5.11: Part (a) shows the color-based density plots of the molecular biology data with the separating
minima for zero noise level. Using the visualizations the user increases the noise level up to 2%. Part (b)
shows the resulting density plots where intervals below the noise level are yellow plotted. The use of the
noise level removes many minima which are caused by noisy disturbances in the data. Part (c,d) show how
the increase of the number of centroids gives a much better approximation. In the example, data from the
US Census bureau are clustered into west coast and the eastern part.
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(a) Icon groups (b) Color density plots

Figure 5.12: Separators for the Molecular Biology Data Set(19 dimensional)

5.2 Experiments

In this section, we present the results of the application of the HD-Eye system to real high-
dimensional data from molecular biology. The experiments demonstrate the effectiveness of our
visual techniques.

The data used for the experiment comes from a complex simulation of a very small but flexible
peptide. (The time for performing the simulation took several weeks of CPU-time.) The data gen-
erated by the simulation describes the conformation of the peptide as a 19-dimensional point [31].
The simulation was done for a period of 50 nanoseconds with two snapshots taken every picosecond,
resulting in about 100000 data points. The purpose of the simulation was to determine the behav-
ior of the molecule in the conformation space. Due to the large amount of high-dimensional data,
it is difficult to find, for example, the preferred conformations of the molecule. This, however, is
important for applications in the pharmaceutical industry since small and flexible peptides are the
basis for many medications. The flexibility of the peptides, however, is also responsible for the fact
that the peptide has many intermediate non-stable conformations. The preferred conformations
correspond to large clusters and intermediate conformations are observable as noise.

At first, one-dimensional projections to the coordinate axes of the data are used. The icon-
based overview plot (figure 5.12(a)) shows that only the dimensions 0-2, 4, 5, 12, and 15-18 are
useful for separating clusters. The color density plots (figure 5.12(b)) allow a specification of the
separators.

In the second step, we use two-dimensional projections. The icon-based overview plot (figure
5.13) shows many two-dimensional projections with well separated clusters. The two-dimensional
density plots (figure 5.14) offer good possibilities for polygonal separators. The plots also allow
deeper insight into the correlations between the dimensions.
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Figure 5.13: Separators for the Molecular Biology Data (19 dimensional)

Figure 5.14: Separators for the Molecular Biology Data (19 dimensional)

In the second experiment we examined the image data set which we also used in the previous
section to gain more insight into the structure of the data. First we visualized the one-dimensional
projections and found two one-dimensional projections, which allow good cluster splitting (see
figure 5.15 a). This explains the two cluster cluster separators found by the experiments in the
previous section. Using two-dimensional projections we also found good separators (figure 5.15
b). These separators can not be found by one-dimensional projections and either by the projected
clustering algorithm described in the previous section. The visualization also allowed much more
insight into the structure of the data. So for example is the linear-dependend border of the data
in the upper part of the left two-dimensional visualization an interesting feature which would be
missed by automated algorithms.
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(a)

(b)

Figure 5.15: Part (a) shows the two one-dimensional projection which is important for the projected
clusters found in the previous chapter. The second part shows interesting two-dimensional projections
with insights about the data. For example the linear-dependend border of the data in the upper part
of the left two-dimensional visualization is an interesting feature, which would be missed by automated
algorithms.



Chapter 6

Conclusions

The problem of finding valuable information and knowledge in huge masses of data is still a growing
problem. This work tries to contribute to the ongoing research in data mining, which attempts to
handle the knowledge discovery in large amounts of data. We focus on three aspects of clustering, a
basic methodology in data mining, namely to develop a consistent framework for problems related
to clustering, to the new but very difficult problem of projected clustering to handle effectively
high dimensional data and the visual support of clustering to bridge the semantic gap between the
user and the automated algorithms.

In the first part of the work we developed a consistent framework for clustering based on
primitives (density estimators and cluster separators). One contribution of the framework is the
decoupling of density estimation and clustering. This shows that the theory of density estimation
can provide a sound statistical foundation for clustering. The foundation on density estimation
allows to use different scaling methods for density estimation directly to scale the clustering al-
gorithm. We showed that our new concept allows the development of new algorithms for finding
density-based single-linkage clustering or local outliers with lower complexities than other known
algorithms. The second contribution of our framework is the clear distinction between decisions
and scaling issues. While the choice of the needed efficiency and effectivity of the used density
estimator is a question of scaling the clustering algorithm, the decision, which type of separator is
best applied in a given context, strongly depends on the application and the task at hand. These
types of decisions can be made only by an human expert. We introduced examples which describe
typical situations for the use of the particular cluster separator types. Our new concept of sepa-
rator trees allows to build very complex clustering models, which also can consists of a mixture of
separators of different types.

From the use of the density estimation theory we learned that clustering in high dimensional
spaces is very limited, which is due the sparsity of the space. The way out is to find clusters
in the projections. We developed an new notion of nearest neighbor search in high dimensional
spaces, which uses only the relevant attributes (which form a projected subspace) to determine the
distance between data points. New is, that the relevant attributes may change for different points.
From this points we started to develop an projected clustering algorithm. Firstly, we reviewed
shortly existing work about this new clustering concept and disclosed their problems. Secondly, we
developed a new projected clustering algorithm, which overcomes the problems and finds clusters,
which are missed by the other algorithms. New features of our algorithm are the possibility to find
overlapping clusters, the algorithm is not forced to partition the data, that the found clusters can
be characterized by simple cluster descriptions and finally that the relationships among the clusters
can be visualized using the similarity matrix of the partial cluster descriptions. The feature that
overlapping cluster are found is very important for projected clustering, because found relevant
projections may correspond to different tasks or intentions, which are equally meaningful. So when
different similarities can be meaningful for the same data, also the same object may belong to
several clusters. Also the forced partitioning of the data should be avoided, since there could be
objects which do not fit into any cluster. We also identified interesting possibilities to extend our
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algorithm to find more complex projected clusters, which have dependencies between their relevant
attributes.

The last part of this thesis deals with the visual support for clustering and projected clustering.
We developed new visualization techniques, which help the user to disclose hidden properties of the
data, allow the selection of useful projections for clustering and support the tuning of parameters
for automated clustering procedures. The use of visualization is very important to bridge the
semantic gap between the user’s intention and the requirements of the clustering system. We
showed that visualization effectively supports the tuning of parameters and so enables the detection
of structure, which is missed otherwise. We implemented the ideas in a visual clustering system,
called HD-Eye, which allows many possibilities of interaction and enables the user to influence
the clustering method according to her/his domain knowledge for finding more interesting and
meaningful patterns.

As future research an integration of the projected clustering algorithm into the HD-Eye system
will be interesting. Also the development of an interface, which allows the integration of other
cluster algorithms, will be helpful to extend the functionality of the tool. Another interesting
extension is the development of database supported density estimators, which allow to perform
the significant work of density estimation directly in the database management system. This is a
way to make clustering more scalable, since significant amounts of work can be saved when the
database coordinates the density estimation. This allows the extensive reuse of provisional results.

After the years of the hype related to data mining the research field had become more mature.
New specific application areas of data mining appeared, like data mining of data related to the
internet, data mining in biological domains, multimedia data mining and text mining. It would
be a challenging task to develop clustering algorithms based on our separator framework, which
are specific for the different domains. Also user studies with the visual system in the specific
domains would be interesting to identify the special needs related to different scientific research
communities.
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