Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/101187
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Broneske, David | - |
dc.contributor.author | Drewes, Anna | - |
dc.contributor.author | Gurumurthy, Bala | - |
dc.contributor.author | Hajjar, Imad | - |
dc.contributor.author | Pionteck, Thilo | - |
dc.contributor.author | Saake, Gunter | - |
dc.date.accessioned | 2023-02-13T13:10:11Z | - |
dc.date.available | 2023-02-13T13:10:11Z | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2021 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/103143 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/101187 | - |
dc.description.abstract | Classical database systems are now facing the challenge of processing high-volume data feeds at unprecedented rates as efficiently as possible while also minimizing power consumption. Since CPU-only machines hit their limits, co-processors like GPUs and FPGAs are investigated by database system designers for their distinct capabilities. As a result, database systems over heterogeneous processing architectures are on the rise. In order to better understand their potentials and limitations, in-depth performance analyses are vital. This paper provides interesting performance data by benchmarking a portable operator set for column-based systems on CPU, GPU, and FPGA – all available processing devices within the same system. We consider TPC-H query Q6 and additionally a hash join to profile the execution across the systems. We show that system memory access and/or buffer management remains the main bottleneck for device integration, and that architecture-specific execution engines and operators offer significantly higher performance. | eng |
dc.description.sponsorship | Projekt DEAL 2021 | - |
dc.language.iso | eng | - |
dc.relation.ispartof | http://link.springer.com/journal/13222 | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Heterogeneous database systems | eng |
dc.subject | CPU | eng |
dc.subject | GPU | eng |
dc.subject | FPGA | eng |
dc.subject | Overlay architecture | eng |
dc.subject.ddc | 000 | - |
dc.title | In-depth analysis of OLAP query performance on heterogeneous hardware | eng |
dc.type | Article | - |
dc.identifier.urn | urn:nbn:de:gbv:ma9:1-1981185920-1031432 | - |
local.versionType | publishedVersion | - |
local.bibliographicCitation.journaltitle | Datenbank-Spektrum | - |
local.bibliographicCitation.volume | 21 | - |
local.bibliographicCitation.pagestart | 133 | - |
local.bibliographicCitation.pageend | 143 | - |
local.bibliographicCitation.publishername | Springer | - |
local.bibliographicCitation.publisherplace | Berlin | - |
local.bibliographicCitation.doi | 10.1007/s13222-021-00384-w | - |
local.openaccess | true | - |
dc.identifier.ppn | 1776432967 | - |
local.bibliographicCitation.year | 2021 | - |
cbs.sru.importDate | 2023-02-13T13:06:11Z | - |
local.bibliographicCitation | Enthalten in Datenbank-Spektrum - Berlin : Springer, 2001 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Fakultät für Informatik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Broneske et al._In-depth analysis_2021.pdf | Zweitveröffentlichung | 1.28 MB | Adobe PDF | View/Open |