Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/101187
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBroneske, David-
dc.contributor.authorDrewes, Anna-
dc.contributor.authorGurumurthy, Bala-
dc.contributor.authorHajjar, Imad-
dc.contributor.authorPionteck, Thilo-
dc.contributor.authorSaake, Gunter-
dc.date.accessioned2023-02-13T13:10:11Z-
dc.date.available2023-02-13T13:10:11Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/103143-
dc.identifier.urihttp://dx.doi.org/10.25673/101187-
dc.description.abstractClassical database systems are now facing the challenge of processing high-volume data feeds at unprecedented rates as efficiently as possible while also minimizing power consumption. Since CPU-only machines hit their limits, co-processors like GPUs and FPGAs are investigated by database system designers for their distinct capabilities. As a result, database systems over heterogeneous processing architectures are on the rise. In order to better understand their potentials and limitations, in-depth performance analyses are vital. This paper provides interesting performance data by benchmarking a portable operator set for column-based systems on CPU, GPU, and FPGA – all available processing devices within the same system. We consider TPC-H query Q6 and additionally a hash join to profile the execution across the systems. We show that system memory access and/or buffer management remains the main bottleneck for device integration, and that architecture-specific execution engines and operators offer significantly higher performance.eng
dc.description.sponsorshipProjekt DEAL 2021-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/13222-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectHeterogeneous database systemseng
dc.subjectCPUeng
dc.subjectGPUeng
dc.subjectFPGAeng
dc.subjectOverlay architectureeng
dc.subject.ddc000-
dc.titleIn-depth analysis of OLAP query performance on heterogeneous hardwareeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-1031432-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleDatenbank-Spektrum-
local.bibliographicCitation.volume21-
local.bibliographicCitation.pagestart133-
local.bibliographicCitation.pageend143-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s13222-021-00384-w-
local.openaccesstrue-
dc.identifier.ppn1776432967-
local.bibliographicCitation.year2021-
cbs.sru.importDate2023-02-13T13:06:11Z-
local.bibliographicCitationEnthalten in Datenbank-Spektrum - Berlin : Springer, 2001-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Informatik (OA)

Files in This Item:
File Description SizeFormat 
Broneske et al._In-depth analysis_2021.pdfZweitveröffentlichung1.28 MBAdobe PDFThumbnail
View/Open