Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/119225
Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Rusinov, Volodymyr | - |
dc.contributor.author | Basenko, Nikita | - |
dc.date.accessioned | 2025-06-18T09:51:57Z | - |
dc.date.available | 2025-06-18T09:51:57Z | - |
dc.date.issued | 2025-04-26 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/121183 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/119225 | - |
dc.description.abstract | This study explores the potential of Small Language Models (SLMs) as an efficient and secure alternative to larger models like GPT-4 for various natural language processing (NLP) tasks. With growing concerns around data privacy and the resource-intensiveness of large models, SLMs present a promising solution for research and applications requiring fast, cost-effective, and locally deployable models. The research evaluates several SLMs across tasks such as translation, summarization, Named Entity Recognition (NER), text generation, classification, and retrieval-augmented generation (RAG), comparing their performance against larger counterparts. Models were assessed using a range of metrics specific to the intended task. Results show that smaller models perform well on complex tasks, often rivalling or even outperforming larger models like Phi-3.5. The study concludes that SLMs offer an optimal trade-off between performance and computational efficiency, particularly in environments where data security and resource constraints are critical. The findings highlight the growing viability of smaller models for a wide range of real-world applications. | - |
dc.format.extent | 1 Online-Ressource (6 Seiten) | - |
dc.language.iso | eng | - |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0/ | - |
dc.subject.ddc | DDC::6** Technik, Medizin, angewandte Wissenschaften::60* Technik::600 Technik, Technologie | - |
dc.title | Exploration of the Efficiency of SLM-Enabled Platforms for Everyday Tasks | - |
local.versionType | publishedVersion | - |
local.publisher.universityOrInstitution | Hochschule Anhalt | - |
local.openaccess | true | - |
dc.identifier.ppn | 1927936381 | - |
cbs.publication.displayform | 2025 | - |
local.bibliographicCitation.year | 2025 | - |
cbs.sru.importDate | 2025-06-18T09:51:02Z | - |
local.bibliographicCitation | Enthalten in Proceedings of the 13th International Conference on Applied Innovations in IT - Koethen, Germany : Edition Hochschule Anhalt, 2025 | - |
local.accessrights.dnb | free | - |
Enthalten in den Sammlungen: | International Conference on Applied Innovations in IT (ICAIIT) |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
2-8-ICAIIT_2025_13(1).pdf | 902.69 kB | Adobe PDF | ![]() Öffnen/Anzeigen |