Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120437
Titel: Algorithms of a Digital Fire Prediction and Suppression System
Autor(en): Nurmukhamedov, Tolaniddin
Koraboshev, Oybek
Gulyamov, Javlon
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-06
Umfang: 1 Online-Ressource (7 Seiten)
Sprache: Englisch
Zusammenfassung: This article analyses the algorithms of digital systems created to predict fire hazards and effectively eliminate them. Natural and man-made fires are one of the factors that cause great damage to human life, ecology and the economy. Fire risk prediction algorithms analyze environmental conditions such as weather patterns, wind speed, temperature, and humidity to assess potential fire hazards. These algorithms determine the level of risk in real time, predict possible fire situations and provide early warnings. In particular, the introduction of analytical models based on artificial intelligence significantly increases the accuracy of predictions. Fire suppression algorithms, on the other hand, allow for rapid coordination of actions after a fire is detected, optimal allocation of resources, automation of evacuation plans and effective management of emergency services. These algorithms embody complex solutions that include digital maps, real-time data exchange and inter-system integration. Therefore, the use of modern digital technologies and algorithmic approaches in ensuring fire safety is of urgent importance. This article examines the basic principles of fire prediction algorithms, namely, methods for predicting the level of risk based on factors such as weather data, air humidity, temperature, wind speed and plant dryness. It also analyses the mechanisms for determining the probability of a fire using artificial intelligence and machine learning models (for example, Random Forest, Neural networks). In addition, algorithms for quickly eliminating a fire after it is detected are considered, including optimal resource management, automation of evacuation plans, and the possibility of integrating drones and IoT devices into the system. To increase the efficiency of the system, algorithms based on real-time monitoring and digital maps are recommended. The results of the research work reveal the practical importance of advanced algorithms in firefighting and contribute to the development of digital approaches in the field of fire safety.
URI: https://opendata.uni-halle.de//handle/1981185920/122393
http://dx.doi.org/10.25673/120437
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-19-ICAIIT_2025_13(2).pdf825.94 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen