Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/120999| Titel: | A Novel Encryption and Data Mining-Based Approach to Secure Sustainable Cloud Systems |
| Autor(en): | Ruksanan, Ruksanan Danggi, Erni Jaber, Ebaa Abdulsattar Imran, Arkan Adnan |
| Körperschaft: | Hochschule Anhalt |
| Erscheinungsdatum: | 2025-07-26 |
| Umfang: | 1 Online-Ressource (8 Seiten) |
| Sprache: | Englisch |
| Zusammenfassung: | Using cloud computing, businesses and individuals can store and process data more efficiently, flexibly, and cost-effectively. Despite this, with cloud systems becoming more and more integral to modern IT infrastructures, there has been a rise in concerns about data security and privacy. Traditional encryption methods may be effective if a limited amount of data is being handled but are inefficient if a large amount of data is being handled in a dynamic environment like a cloud. In this paper, advanced encryption methods are combined with data mining techniques to enhance cloud security. A novel approach to enhancing cloud security is presented in this paper, which combines advanced encryption methods with data mining. This model integrates decision tree methods with cryptographic protocols to address user authentication, data access control, and real-time detection of security threats. Further, data mining enhances cloud security by allowing detection of patterns and anomalies, enabling proactive instead of reactive security measures. A study of the potential of integrating these approaches into cloud computing systems aims to improve the privacy, security, and reliability of data. |
| URI: | https://opendata.uni-halle.de//handle/1981185920/122954 http://dx.doi.org/10.25673/120999 |
| Open-Access: | Open-Access-Publikation |
| Nutzungslizenz: | (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International |
| Enthalten in den Sammlungen: | International Conference on Applied Innovations in IT (ICAIIT) |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| 1-10-ICAIIT_2025_13(3).pdf | 1.05 MB | Adobe PDF | ![]() Öffnen/Anzeigen |
Open-Access-Publikation
