Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120999
Titel: A Novel Encryption and Data Mining-Based Approach to Secure Sustainable Cloud Systems
Autor(en): Ruksanan, Ruksanan
Danggi, Erni
Jaber, Ebaa Abdulsattar
Imran, Arkan Adnan
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-07-26
Umfang: 1 Online-Ressource (8 Seiten)
Sprache: Englisch
Zusammenfassung: Using cloud computing, businesses and individuals can store and process data more efficiently, flexibly, and cost-effectively. Despite this, with cloud systems becoming more and more integral to modern IT infrastructures, there has been a rise in concerns about data security and privacy. Traditional encryption methods may be effective if a limited amount of data is being handled but are inefficient if a large amount of data is being handled in a dynamic environment like a cloud. In this paper, advanced encryption methods are combined with data mining techniques to enhance cloud security. A novel approach to enhancing cloud security is presented in this paper, which combines advanced encryption methods with data mining. This model integrates decision tree methods with cryptographic protocols to address user authentication, data access control, and real-time detection of security threats. Further, data mining enhances cloud security by allowing detection of patterns and anomalies, enabling proactive instead of reactive security measures. A study of the potential of integrating these approaches into cloud computing systems aims to improve the privacy, security, and reliability of data.
URI: https://opendata.uni-halle.de//handle/1981185920/122954
http://dx.doi.org/10.25673/120999
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-10-ICAIIT_2025_13(3).pdf1.05 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen