Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/121003
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorBahrun, Andi-
dc.contributor.authorOge, La-
dc.contributor.authorAlmhanna, Ahmed Zeyad-
dc.contributor.authorMaktoof, Mohammed Abdul Jaleel-
dc.date.accessioned2025-11-04T12:28:07Z-
dc.date.available2025-11-04T12:28:07Z-
dc.date.issued2025-07-26-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/122958-
dc.identifier.urihttp://dx.doi.org/10.25673/121003-
dc.description.abstractAs the Internet of Things (IoT) expands rapidly, securing sensitive data has become increasingly complex, especially in environments with limited resources and strict latency requirements. By facilitating data processing at the network edge, fog computing minimizes delays and reduces bandwidth consumption. In this paper, we present APPA, which is a method for anonymizing and aggregating Fog-enabled IoT data in a privacy-preserving manner. The APPA provides IoT devices with the ability to choose between privacy-preserving and standard encryption methods based on their privacy preferences and eliminates the need to rely on trusted third parties. As a result of utilizing the Paillier and Bilinear Elagamal’s homomorphic encryption algorithms, the scheme is able to aggregate secure subsets, enable fault-tolerant decryption, and allow dynamic device enrolment and revocation. According to performance evaluations, APPA is significantly more efficient and has a lower communication overhead than existing solutions, thus making it a good choice for scalable and privacy-conscious IoT applications.-
dc.format.extent1 Online-Ressource (8 Seiten)-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subject.ddcDDC::6** Technik, Medizin, angewandte Wissenschaften-
dc.titleSecure and Privacy-Enhanced Data Aggregation for IoT Using Fog Computing-
local.versionTypepublishedVersion-
local.publisher.universityOrInstitutionHochschule Anhalt-
local.openaccesstrue-
dc.identifier.ppn1939670578-
cbs.publication.displayform2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2025-11-04T12:25:56Z-
local.bibliographicCitationEnthalten in Proceedings of the 13th International Conference on Applied Innovations in IT - Koethen, Germany : Edition Hochschule Anhalt, 2025-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2-3-ICAIIT_2025_13(3).pdf1.11 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen