Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/122075
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorIsmael, Reem Dheyaa-
dc.contributor.otherYousif, Rasha Abdalla-
dc.contributor.otherHussein, Wisal Saud-
dc.contributor.otherJelab, Rasha Ahmed-
dc.contributor.otherAktham Ahmed, Mohamed-
dc.contributor.otherAbdulwahhab, Zaidoon Tareq-
dc.date.accessioned2026-02-09T10:48:43Z-
dc.date.available2026-02-09T10:48:43Z-
dc.date.issued2025-08-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/124024-
dc.identifier.urihttp://dx.doi.org/10.25673/122075-
dc.description.abstractMotor Imagery (MI)-based Brain-Computer Interfaces (BCIs) have garnered considerable interest for facilitating direct neurological control of external devices, especially in assistive and rehabilitative technologies. However, the proficient classification of non-stationary, low-amplitude EEG signals continue to remain a significant difficulty. This study introduces a hybrid framework that combines Filter Bank Common Spatial Pattern (FBCSP) with a 1D Convolutional Neural Network (CNN) to improve the classification of motor imagery signals. Electroencephalogram data were acquired from four participants utilizing a 14-channel Emotive EPOC headset during two-class motor imaging tasks (left versus right hand imagery). The EEG samples were bandpass filtered into three frequency sub-bands (8-12 Hz, 12-16 Hz, and 16-30 Hz), and to extract discriminative spatial features the CSP was applied to each band. These features were combined and normalized before being entered into a lightweight CNN model for classification. The model was trained with the Adam optimizer and evaluated using standard metrics. Subject-specific results showed high classification ability, with accuracy approaching 100% for some individuals and an average accuracy above 90% across most subjects. The proposed FBCSP + CNN pipeline effectively captures spatial-spectral patterns in EEG data while being computationally inexpensive, making it ideal for real-time BCI applications that use consumer-grade EEG sensors. These findings emphasize the utility of hybrid handcrafted-deep learning models in actual MI-BCI systems.-
dc.format.extent1 Online-Ressource (7 Seiten)-
dc.language.isoeng-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subject.ddcDDC::6** Technik, Medizin, angewandte Wissenschaften-
dc.titleA Deep Learning-Driven Filter Bank CSP Approach for Motor Imagery EEG Decoding-
local.versionTypepublishedVersion-
local.publisher.universityOrInstitutionHochschule Anhalt-
local.openaccesstrue-
dc.identifier.ppn1951199464-
cbs.publication.displayform2025-
local.bibliographicCitation.year2025-
cbs.sru.importDate2026-02-09T10:42:15Z-
local.bibliographicCitationEnthalten in Proceedings of the 13th International Conference on Applied Innovations in IT - Koethen, Germany : Edition Hochschule Anhalt, 2025-
local.accessrights.dnbfree-
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei GrößeFormat 
2-6-ICAIIT_2025_13(4).pdf1.12 MBAdobe PDFÖffnen/Anzeigen