Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/38745
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkhtiamov, Oleg-
dc.contributor.authorSiegert, Ingo-
dc.contributor.authorKarpov, Alexey-
dc.contributor.authorMinker, Wolfgang-
dc.date.accessioned2021-10-13T08:38:43Z-
dc.date.available2021-10-13T08:38:43Z-
dc.date.issued2020-
dc.date.submitted2020-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/38991-
dc.identifier.urihttp://dx.doi.org/10.25673/38745-
dc.description.abstractHuman-machine addressee detection (H-M AD) is a modern paralinguistics and dialogue challenge that arises in multiparty conversations between several people and a spoken dialogue system (SDS) since the users may also talk to each other and even to themselves while interacting with the system. The SDS is supposed to determine whether it is being addressed or not. All existing studies on acoustic H-M AD were conducted on corpora designed in such a way that a human addressee and a machine played different dialogue roles. This peculiarity influences speakers’ behaviour and increases vocal differences between human- and machine-directed utterances. In the present study, we consider the Restaurant Booking Corpus (RBC) that consists of complexity-identical human- and machine-directed phone calls and allows us to eliminate most of the factors influencing speakers’ behaviour implicitly. The only remaining factor is the speakers’ explicit awareness of their interlocutor (technical system or human being). Although complexity-identical H-M AD is essentially more challenging than the classical one, we managed to achieve significant improvements using data augmentation (unweighted average recall (UAR) = 0.628) over native listeners (UAR = 0.596) and a baseline classifier presented by the RBC developers (UAR = 0.539).eng
dc.description.sponsorshipOVGU-Publikationsfonds 2020-
dc.language.isoeng-
dc.relation.ispartofhttps://www.mdpi.com/journal/sensors-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectAddressee detectioneng
dc.subjectHuman-computer interactioneng
dc.subjectComputational paralinguisticseng
dc.subjectSpeaking styleeng
dc.subjectData augmentationeng
dc.subjectSpeech classificationeng
dc.subject.ddc621.3-
dc.titleUsing complexity-identical human- and machine-directed utterances to investigate addressee detection for spoken dialogue systemseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-389910-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleSensors-
local.bibliographicCitation.volume20-
local.bibliographicCitation.issue9-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend15-
local.bibliographicCitation.publishernameMDPI-
local.bibliographicCitation.publisherplaceBasel-
local.bibliographicCitation.doi10.3390/s20092740-
local.openaccesstrue-
dc.identifier.ppn1698097239-
local.bibliographicCitation.year2020-
cbs.sru.importDate2021-10-13T08:33:27Z-
local.bibliographicCitationEnthalten in Sensors - Basel : MDPI, 2001-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Elektrotechnik und Informationstechnik (OA)

Files in This Item:
File Description SizeFormat 
Akhtiamov et al._Using_2020.pdfZweitveröffentlichung897.36 kBAdobe PDFThumbnail
View/Open