Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/42993
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNazarenko, Lidiia-
dc.contributor.authorGlüge, Rainer-
dc.contributor.authorAltenbach, Holm-
dc.date.accessioned2021-12-16T09:49:51Z-
dc.date.available2021-12-16T09:49:51Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/44947-
dc.identifier.urihttp://dx.doi.org/10.25673/42993-
dc.description.abstractThe linear theory of coupled gradient elasticity has been considered for hemitropic second gradient materials, specifically the positive definiteness of the strain and strain gradient energy density, which is assumed to be a quadratic form of the strain and of the second gradient of the displacement. The existence of the mixed, fifth-rank coupling term significantly complicates the problem. To obtain inequalities for the positive definiteness including the coupling term, a diagonalization in terms of block matrices is given, such that the potential energy density is obtained in an uncoupled quadratic form of a modified strain and the second gradient of displacement. Using orthonormal bases for the second-rank strain tensor and third-rank strain gradient tensor results in matrix representations for the modified fourth-rank and the sixth-rank tensors, such that Sylvester’s formula and eigenvalue criteria can be applied to yield conditions for positive definiteness. Both criteria result in the same constraints on the constitutive parameters. A comparison with results available in the literature was possible only for the special case that the coupling term vanishes. These coincide with our results.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/161-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subjectLinear theory of coupled gradient elasticityeng
dc.subjectStrain and strain gradient energy densityeng
dc.subjectFifth-rank coupling termeng
dc.subject.ddc621.8-
dc.titlePositive definiteness in coupled strain gradient elasticityeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-449473-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleContinuum mechanics and thermodynamics-
local.bibliographicCitation.volume33-
local.bibliographicCitation.pagestart713-
local.bibliographicCitation.pageend725-
local.bibliographicCitation.publishernameSpringer-
local.bibliographicCitation.publisherplaceBerlin-
local.bibliographicCitation.doi10.1007/s00161-020-00949-2-
local.openaccesstrue-
dc.identifier.ppn1741166373-
local.bibliographicCitation.year2021-
cbs.sru.importDate2021-12-16T09:45:27Z-
local.bibliographicCitationEnthalten in Continuum mechanics and thermodynamics - Berlin : Springer, 1989-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Maschinenbau (OA)

Files in This Item:
File Description SizeFormat 
Nazarenko et al._Positive_2021.pdfZweitveröffentlichung244.5 kBAdobe PDFThumbnail
View/Open