Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/78585
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hair, Joseph F. | - |
dc.contributor.author | Hult, G. Tomas M. | - |
dc.contributor.author | Ringle, Christian M. | - |
dc.contributor.author | Sarstedt, Marko | - |
dc.contributor.author | Danks, Nicholas P. | - |
dc.contributor.author | Ray, Soumya | - |
dc.date.accessioned | 2022-03-25T06:50:51Z | - |
dc.date.available | 2022-03-25T06:50:51Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/80539 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/78585 | - |
dc.description.abstract | Partial least squares structural equation modeling (PLS-SEM) has become a standard approach for analyzing complex inter-relationships between observed and latent variables. Researchers appreciate the many advantages of PLS-SEM such as the possibility to estimate very complex models and the method’s flexibility in terms of data requirements and measurement specification. This practical open access guide provides a step-by-step treatment of the major choices in analyzing PLS path models using R, a free software environment for statistical computing, which runs on Windows, macOS, and UNIX computer platforms. Adopting the R software’s SEMinR package, which brings a friendly syntax to creating and estimating structural equation models, each chapter offers a concise overview of relevant topics and metrics, followed by an in-depth description of a case study. Simple instructions give readers the “how-tos” of using SEMinR to obtain solutions and document their results. Rules of thumb in every chapter provide guidance on best practices in the application and interpretation of PLS-SEM. | eng |
dc.description.sponsorship | OVGU-Publikationsfonds 2021 | - |
dc.format.extent | 1 Online-Ressource(XIV, 197 p. 77 illus., 51 illus. in color.) | - |
dc.language.iso | eng | - |
dc.publisher | Springer International Publishing, Cham | - |
dc.publisher | Imprint: Springer, Cham | - |
dc.relation.ispartofseries | Classroom Companion: Business | - |
dc.relation.ispartofseries | Springer eBook Collection | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Structural Equation Modeling | eng |
dc.subject | RStudio | eng |
dc.subject | SEMinR package | eng |
dc.subject.ddc | 658.8 | - |
dc.title | Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R : A Workbook | eng |
dc.type | Book | - |
dc.identifier.urn | urn:nbn:de:gbv:ma9:1-1981185920-805393 | - |
dc.relation.issupplementedby | Classroom Companion: Business | - |
dc.relation.issupplementedby | Springer eBook Collection | - |
local.versionType | publishedVersion | - |
local.subject.keywords | An Introduction to Structural Equation Modeling -- Introduction to R and RStudio -- Introduction to SEMinR -- Evaluation of Reflective Measurement Models -- Evaluation of Formative Measurement Models -- Evaluation of the Structural Model -- Mediation Analysis -- Moderation Analysis. | - |
local.openaccess | true | - |
dc.identifier.ppn | 1776461029 | - |
local.publication.country | XA-CH | - |
cbs.sru.importDate | 2022-03-25T06:36:24Z | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Fakultät für Wirtschaftswissenschaft (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Hair et al._Partial least_2021.pdf | Zweitveröffentlichung | 12.44 MB | Adobe PDF | View/Open |