Please use this identifier to cite or link to this item:
http://dx.doi.org/10.25673/79520
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bakheet, Samy | - |
dc.contributor.author | Hamadi, Ayoub | - |
dc.date.accessioned | 2022-03-28T13:00:09Z | - |
dc.date.available | 2022-03-28T13:00:09Z | - |
dc.date.issued | 2021 | - |
dc.date.submitted | 2021 | - |
dc.identifier.uri | https://opendata.uni-halle.de//handle/1981185920/81474 | - |
dc.identifier.uri | http://dx.doi.org/10.25673/79520 | - |
dc.description.abstract | Robust vision-based hand pose estimation is highly sought but still remains a challenging task, due to its inherent difficulty partially caused by self-occlusion among hand fingers. In this paper, an innovative framework for real-time static hand gesture recognition is introduced, based on an optimized shape representation build from multiple shape cues. The framework incorporates a specific module for hand pose estimation based on depth map data, where the hand silhouette is first extracted from the extremely detailed and accurate depth map captured by a time-of-flight (ToF) depth sensor. A hybrid multi-modal descriptor that integrates multiple affine-invariant boundary-based and region-based features is created from the hand silhouette to obtain a reliable and representative description of individual gestures. Finally, an ensemble of one-vs.-all support vector machines (SVMs) is independently trained on each of these learned feature representations to perform gesture classification. When evaluated on a publicly available dataset incorporating a relatively large and diverse collection of egocentric hand gestures, the approach yields encouraging results that agree very favorably with those reported in the literature, while maintaining real-time operation. | eng |
dc.description.sponsorship | OVGU-Publikationsfonds 2021 | - |
dc.language.iso | eng | - |
dc.relation.ispartof | http://jivp.eurasipjournals.com/ | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Hand gesture recognition | eng |
dc.subject | Shape oriented features | eng |
dc.subject | Fourier descriptor | eng |
dc.subject | Moments invariants | eng |
dc.subject | SVM | eng |
dc.subject.ddc | 621.3 | - |
dc.title | Robust hand gesture recognition using multiple shape-oriented visual cues | eng |
dc.type | Article | - |
dc.identifier.urn | urn:nbn:de:gbv:ma9:1-1981185920-814741 | - |
local.versionType | publishedVersion | - |
local.bibliographicCitation.journaltitle | EURASIP journal on image and video processing | - |
local.bibliographicCitation.volume | 2021 | - |
local.bibliographicCitation.issue | 2021 | - |
local.bibliographicCitation.pagestart | 1 | - |
local.bibliographicCitation.pageend | 18 | - |
local.bibliographicCitation.publishername | Hindawi Publishing Corp. | - |
local.bibliographicCitation.publisherplace | New York, NY | - |
local.bibliographicCitation.doi | 10.1186/s13640-021-00567-1 | - |
local.openaccess | true | - |
dc.identifier.ppn | 1772241717 | - |
local.bibliographicCitation.year | 2021 | - |
cbs.sru.importDate | 2022-03-28T12:56:29Z | - |
local.bibliographicCitation | Enthalten in EURASIP journal on image and video processing - New York, NY : Hindawi Publishing Corp., 2007 | - |
local.accessrights.dnb | free | - |
Appears in Collections: | Fakultät für Elektrotechnik und Informationstechnik (OA) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Bakheet et al._Robust_2021.pdf | Zweitveröffentlichung | 1.26 MB | Adobe PDF | View/Open |