Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/79520
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBakheet, Samy-
dc.contributor.authorHamadi, Ayoub-
dc.date.accessioned2022-03-28T13:00:09Z-
dc.date.available2022-03-28T13:00:09Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/81474-
dc.identifier.urihttp://dx.doi.org/10.25673/79520-
dc.description.abstractRobust vision-based hand pose estimation is highly sought but still remains a challenging task, due to its inherent difficulty partially caused by self-occlusion among hand fingers. In this paper, an innovative framework for real-time static hand gesture recognition is introduced, based on an optimized shape representation build from multiple shape cues. The framework incorporates a specific module for hand pose estimation based on depth map data, where the hand silhouette is first extracted from the extremely detailed and accurate depth map captured by a time-of-flight (ToF) depth sensor. A hybrid multi-modal descriptor that integrates multiple affine-invariant boundary-based and region-based features is created from the hand silhouette to obtain a reliable and representative description of individual gestures. Finally, an ensemble of one-vs.-all support vector machines (SVMs) is independently trained on each of these learned feature representations to perform gesture classification. When evaluated on a publicly available dataset incorporating a relatively large and diverse collection of egocentric hand gestures, the approach yields encouraging results that agree very favorably with those reported in the literature, while maintaining real-time operation.eng
dc.description.sponsorshipOVGU-Publikationsfonds 2021-
dc.language.isoeng-
dc.relation.ispartofhttp://jivp.eurasipjournals.com/-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectHand gesture recognitioneng
dc.subjectShape oriented featureseng
dc.subjectFourier descriptoreng
dc.subjectMoments invariantseng
dc.subjectSVMeng
dc.subject.ddc621.3-
dc.titleRobust hand gesture recognition using multiple shape-oriented visual cueseng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-814741-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleEURASIP journal on image and video processing-
local.bibliographicCitation.volume2021-
local.bibliographicCitation.issue2021-
local.bibliographicCitation.pagestart1-
local.bibliographicCitation.pageend18-
local.bibliographicCitation.publishernameHindawi Publishing Corp.-
local.bibliographicCitation.publisherplaceNew York, NY-
local.bibliographicCitation.doi10.1186/s13640-021-00567-1-
local.openaccesstrue-
dc.identifier.ppn1772241717-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-03-28T12:56:29Z-
local.bibliographicCitationEnthalten in EURASIP journal on image and video processing - New York, NY : Hindawi Publishing Corp., 2007-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Elektrotechnik und Informationstechnik (OA)

Files in This Item:
File Description SizeFormat 
Bakheet et al._Robust_2021.pdfZweitveröffentlichung1.26 MBAdobe PDFThumbnail
View/Open