Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/81326
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGaidzik, Franziska-
dc.contributor.authorPathiraja, Sahani-
dc.contributor.authorSaalfeld, Sylvia-
dc.contributor.authorStucht, Daniel-
dc.contributor.authorSpeck, Oliver-
dc.contributor.authorThévenin, Dominique-
dc.contributor.authorJaniga, Gábor-
dc.date.accessioned2022-04-05T06:05:32Z-
dc.date.available2022-04-05T06:05:32Z-
dc.date.issued2021-
dc.date.submitted2021-
dc.identifier.urihttps://opendata.uni-halle.de//handle/1981185920/83281-
dc.identifier.urihttp://dx.doi.org/10.25673/81326-
dc.description.abstractPurpose The anatomy of the circle ofWillis (CoW), the brain’s main arterial blood supply system, strongly differs between individuals, resulting in highly variable flow fields and intracranial vascularization patterns. To predict subject-specific hemodynamics with high certainty, we propose a data assimilation (DA) approach that merges fully 4D phase-contrast magnetic resonance imaging (PC-MRI) data with a numerical model in the form of computational fluid dynamics (CFD) simulations. Methods To the best of our knowledge, this study is the first to provide a transient state estimate for the three-dimensional velocity field in a subject-specific CoW geometry using DA. High-resolution velocity state estimates are obtained using the local ensemble transform Kalman filter (LETKF). Results Quantitative evaluation shows a considerable reduction (up to 90%) in the uncertainty of the velocity field state estimate after the data assimilation step. Velocity values in vessel areas that are below the resolution of the PC-MRI data (e.g., in posterior communicating arteries) are provided. Furthermore, the uncertainty of the analysis-based wall shear stress distribution is reduced by a factor of 2 for the data assimilation approach when compared to the CFD model alone. Conclusion This study demonstrates the potential of data assimilation to provide detailed information on vascular flow, and to reduce the uncertainty in such estimates by combining various sources of data in a statistically appropriate fashion.eng
dc.description.sponsorshipProjekt DEAL 2020-
dc.language.isoeng-
dc.relation.ispartofhttp://link.springer.com/journal/62-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/-
dc.subjectHemodynamicseng
dc.subjectCFDeng
dc.subjectUncertainty quantificationeng
dc.subjectPC-MRIeng
dc.subjectLETKFeng
dc.subject.ddc660-
dc.titleHemodynamic data assimilation in a subject-specific circle of Willis geometryeng
dc.typeArticle-
dc.identifier.urnurn:nbn:de:gbv:ma9:1-1981185920-832812-
local.versionTypepublishedVersion-
local.bibliographicCitation.journaltitleClinical neuroradiology-
local.bibliographicCitation.volume31-
local.bibliographicCitation.issue3-
local.bibliographicCitation.pagestart643-
local.bibliographicCitation.pageend651-
local.bibliographicCitation.publishernameUrban & Vogel-
local.bibliographicCitation.publisherplaceMünchen-
local.bibliographicCitation.doi10.1007/s00062-020-00959-2-
local.openaccesstrue-
dc.identifier.ppn1739115341-
local.bibliographicCitation.year2021-
cbs.sru.importDate2022-04-05T06:01:44Z-
local.bibliographicCitationEnthalten in Clinical neuroradiology - München : Urban & Vogel, 2006-
local.accessrights.dnbfree-
Appears in Collections:Fakultät für Verfahrens- und Systemtechnik (OA)

Files in This Item:
File Description SizeFormat 
Gaidzik et al._Hemodynamic_2021.pdfZweitveröffentlichung2.23 MBAdobe PDFThumbnail
View/Open