Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/120395
Titel: A Hybrid Deep Learning Model for Facial Emotion Recognition : Combining Multi-Scale Features, Dynamic Attention, and Residual Connections
Autor(en): Mahdi, Muthana Salih
Ali, Zaydon Latif
Rashid, Ahmed Ramzi
Ibrahim, Noor Khalid
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2025-06
Umfang: 1 Online-Ressource (9 Seiten)
Sprache: Englisch
Zusammenfassung: Facial emotion recognition is still a challenging task in computer vision because human facial expressions are very subtle and complex. In this paper, we address this issue and propose a novel deep-learning framework that combines multi-scale feature extraction with a dynamic attention mechanism and improved residual connection. The research aims to create a reliable system that identifies facial expressions correctly in different circumstances. The proposed method was validated rigorously on a standard face expression recognition data set, with an impressive overall accuracy of 96.1%. Additionally, the model performed remarkably well on extra metrics like precision, recall, and F1-score. These findings highlight the model’s ability to learn and distinguish subtle features in human faces, leading to improved performance compared to conventional methods. In summary, this research makes a noteworthy contribution to affective computing by paving the way for the future development of real-time systems that can recognize human emotions, enabling numerous potential applications in the fields of mental health assessment, human-computer interaction, and adaptive user interfaces.
URI: https://opendata.uni-halle.de//handle/1981185920/122353
http://dx.doi.org/10.25673/120395
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-8-ICAIIT_2025_13(2).pdf1.04 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen