Please use this identifier to cite or link to this item: http://dx.doi.org/10.25673/36119
Title: Femtosecond laser-based integration of nano-membranes into organ-on-a-chip systems
Author(s): Bakhchova, Liubov
Jonus̆auskas, Linas
Dovilė, Andrijec
Kurachkina, Marharyta
Baravykas, Tomas
Eremin, Alexey
Steinmann, Ulrike
Issue Date: 2020
Type: Article
Language: English
URN: urn:nbn:de:gbv:ma9:1-1981185920-363525
Subjects: Femtosecond laser
Microfluid channel
Adaptable membranes
Abstract: Organ-on-a-chip devices are gaining popularity in medical research due to the possibility of performing extremely complex living-body-resembling research in vitro. For this reason, there is a substantial drive in developing technologies capable of producing such structures in a simple and, at the same time, flexible manner. One of the primary challenges in producing organ-on-chip devices from a manufacturing standpoint is the prevalence of layer-by-layer bonding techniques, which result in limitations relating to the applicable materials and geometries and limited repeatability. In this work, we present an improved approach, using three dimensional (3D) laser lithography for the direct integration of a functional part—the membrane—into a closed-channel system. We show that it allows the freely choice of the geometry of the membrane and its integration into a complete organ-on-a-chip system. Considerations relating to sample preparation, the writing process, and the final preparation for operation are given. Overall, we consider that the broader application of 3D laser lithography in organ-on-a-chip fabrication is the next logical step in this field’s evolution.
URI: https://opendata.uni-halle.de//handle/1981185920/36352
http://dx.doi.org/10.25673/36119
Open Access: Open access publication
License: (CC BY 4.0) Creative Commons Attribution 4.0(CC BY 4.0) Creative Commons Attribution 4.0
Sponsor/Funder: DFG-Publikationsfonds 2020
Journal Title: Materials
Publisher: MDPI
Publisher Place: Basel
Volume: 13
Issue: 14
Original Publication: 10.3390/ma13143076
Page Start: 1
Page End: 13
Appears in Collections:Fakultät für Elektrotechnik und Informationstechnik (OA)

Files in This Item:
File Description SizeFormat 
Bakhchova et al._Femtosecond_2020.pdfZweitveröffentlichung2.09 MBAdobe PDFThumbnail
View/Open