Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/36486
Titel: Thyroid ultrasound texture classification using autoregressive features in conjunction with machine learning approaches
Autor(en): Poudel, Prabal
Illanes, Alfredo
Ataide, Elmer J. G.
Esmaeili, Nazila
Balakrishnan, Sathish
Friebe, Michael
Erscheinungsdatum: 2019
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-367201
Schlagwörter: Artificial neural network
Medical imaging
Support vector machine
Random forest classifier
Texture classification
Thyroid ultrasound
Zusammenfassung: The thyroid is one of the largest endocrine glands in the human body, which is involved in several body mechanisms like controlling protein synthesis, use of energy sources, and controlling the body’s sensitivity to other hormones. Thyroid segmentation and volume reconstruction are hence essential to diagnose thyroid related diseases as most of these diseases involve a change in the shape and size of the thyroid over time. Classification of thyroid texture is the first step toward the segmentation of the thyroid. The classification of texture in thyroid Ultrasound (US) images is not an easy task as it suffers from low image contrast, presence of speckle noise, and non-homogeneous texture distribution inside the thyroid region. Hence, a robust algorithmic approach is required to accurately classify thyroid texture. In this paper, we propose three machine learning based approaches: Support Vector Machine; Artificial Neural Network; and Random Forest Classifier to classify thyroid texture. The computation of features for training these classifiers is based on a novel approach recently proposed by our team, where autoregressive modeling was applied on a signal version of the 2D thyroid US images to compute 30 spectral energy-based features for classifying the thyroid and non-thyroid textures. Our approach differs from the methods proposed in the literature as they use image-based features to characterize thyroid tissues. We obtained an accuracy of around 90% with all the three methods.
URI: https://opendata.uni-halle.de//handle/1981185920/36720
http://dx.doi.org/10.25673/36486
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: DFG-Publikationsfonds 2019
Journal Titel: IEEE access
Verlag: IEEE
Verlagsort: New York, NY
Band: 7
Heft: 2019
Originalveröffentlichung: 10.1109/access.2019.2923547
Seitenanfang: 79354
Seitenende: 79365
Enthalten in den Sammlungen:Fakultät für Elektrotechnik und Informationstechnik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Poudel et al._Thyroid_2019.pdfZweitveröffentlichung1.03 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen