Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/37924
Titel: Convolutional neural network for drowsiness detection using EEG signals
Autor(en): Chaabene, Siwar
Bouaziz, Bassem
Boudaya, Amal
Hökelmann, Anita
Ammar, AchrafIn der Gemeinsamen Normdatei der DNB nachschlagen
Chaari, Lotfi
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-381676
Schlagwörter: Drowsiness detection
EEG signals
Emotiv EPOC+;
Deep learning
Data augmentation
Convolutional neural networks
Zusammenfassung: Drowsiness detection (DD) has become a relevant area of active research in biomedical signal processing. Recently, various deep learning (DL) researches based on the EEG signals have been proposed to detect fatigue conditions. The research presented in this paper proposes an EEG classification system for DD based on DL networks. However, the proposed DD system is mainly realized into two procedures; (i) data acquisition and (ii) model analysis. For the data acquisition procedure, two key steps are considered, which are the signal collection using a wearable Emotiv EPOC+ headset to record 14 channels of EEG, and the signal annotation. Furthermore, a data augmentation (DA) step has been added to the proposed system to overcome the problem of over-fitting and to improve accuracy. As regards the model analysis, a comparative study is also introduced in this paper to argue the choice of DL architecture and frameworks used in our DD system. In this sense, The proposed DD protocol makes use of a convolutional neural network (CNN) architecture implemented using the Keras library. The results showed a high accuracy value (90.42%) in drowsy/awake discrimination and revealed the efficiency of the proposed DD system compared to other research works.
URI: https://opendata.uni-halle.de//handle/1981185920/38167
http://dx.doi.org/10.25673/37924
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: OVGU-Publikationsfonds 2021
Journal Titel: Sensors
Verlag: MDPI
Verlagsort: Basel
Band: 21
Heft: 5
Originalveröffentlichung: 10.3390/s21051734
Seitenanfang: 1
Seitenende: 19
Enthalten in den Sammlungen:Fakultät für Humanwissenschaften (ehemals: Fakultät für Geistes-, Sozial- und Erziehungswissenschaften) (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Chaabene et al._Convolutional_2021.pdfZweitveröffentlichung704.44 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen