Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/71721
Titel: Structural equation models: from paths to networks (Westland 2019)
Autor(en): Sarstedt, MarkoIn der Gemeinsamen Normdatei der DNB nachschlagen
Ringle, Christian M.In der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2020
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:830-882.0112123
urn:nbn:de:gbv:ma9:1-1981185920-736735
Schlagwörter: Structural equation modeling (SEM)
Satistical fields
Path analysis
Data reduction
Zusammenfassung: Structural equation modeling (SEM) is a statistical analytic framework that allows researchers to specify and test models with observed and latent (or unobservable) variables and their generally linear relationships. In the past decades, SEM has become a standard statistical analysis technique in behavioral, educational, psychological, and social science researchers’ repertoire. From a technical perspective, SEM was developed as a mixture of two statistical fields—path analysis and data reduction. Path analysis is used to specify and examine directional relationships between observed variables, whereas data reduction is applied to uncover (unobserved) lowdimensional representations of observed variables, which are referred to as latent variables. Since two different data reduction techniques (i.e., factor analysis and principal component analysis) were available to the statistical community, SEM also evolved into two domains—factor-based and component-based (e.g., Jöreskog and Wold 1982). In factor-based SEM, in which the psychometric or psychological measurement tradition has strongly influenced, a (common) factor represents a latent variable under the assumption that each latent variable exists as an entity independent of observed variables, but also serves as the sole source of the associations between the observed variables. Conversely, in component-based SEM, which is more in line with traditional multivariate statistics, a weighted composite or a component of observed variables represents a latent variable under the assumption that the latter is an aggregation (or a direct consequence) of observed variables.
URI: https://opendata.uni-halle.de//handle/1981185920/73673
http://dx.doi.org/10.25673/71721
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: Projekt DEAL 2020
Journal Titel: Psychometrika
Verlag: Springer-Verl.
Verlagsort: New York
Band: 85
Heft: 3
Originalveröffentlichung: 10.15480/882.3063
Seitenanfang: 841
Seitenende: 844
Enthalten in den Sammlungen:Fakultät für Wirtschaftswissenschaft (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Sarstedt et al._Structural_2020.pdfZweitveröffentlichung198.09 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen