Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/78124
Titel: SFPD : simultaneous face and person detection in real-time for human-robot interaction
Autor(en): Fiedler, Marc-André
Werner, Philipp
Khalifa, Aly
Hamadi, AyoubIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-800788
Schlagwörter: Face detection
Person detection
Multi-task learning
Real-time detection
Zusammenfassung: Face and person detection are important tasks in computer vision, as they represent the first component in many recognition systems, such as face recognition, facial expression analysis, body pose estimation, face attribute detection, or human action recognition. Thereby, their detection rate and runtime are crucial for the performance of the overall system. In this paper, we combine both face and person detection in one framework with the goal of reaching a detection performance that is competitive to the state of the art of lightweight object-specific networks while maintaining real-time processing speed for both detection tasks together. In order to combine face and person detection in one network, we applied multi-task learning. The difficulty lies in the fact that no datasets are available that contain both face as well as person annotations. Since we did not have the resources to manually annotate the datasets, as it is very time-consuming and automatic generation of ground truths results in annotations of poor quality, we solve this issue algorithmically by applying a special training procedure and network architecture without the need of creating new labels. Our newly developed method called Simultaneous Face and Person Detection (SFPD) is able to detect persons and faces with 40 frames per second. Because of this good trade-off between detection performance and inference time, SFPD represents a useful and valuable real-time framework especially for a multitude of real-world applications such as, e.g., human–robot interaction.
URI: https://opendata.uni-halle.de//handle/1981185920/80078
http://dx.doi.org/10.25673/78124
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY 4.0) Creative Commons Namensnennung 4.0 International(CC BY 4.0) Creative Commons Namensnennung 4.0 International
Sponsor/Geldgeber: OVGU-Publikationsfonds 2021
Journal Titel: Sensors
Verlag: MDPI
Verlagsort: Basel
Band: 21
Heft: 17
Originalveröffentlichung: 10.3390/s21175918
Seitenanfang: 1
Seitenende: 17
Enthalten in den Sammlungen:Fakultät für Elektrotechnik und Informationstechnik (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Fiedler et al._SFPD_2021.pdfZweitveröffentlichung1.72 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen