Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.25673/86176
Titel: | Predicting visual search task success from eye gaze data as a basis for user-adaptive information visualization systems |
Autor(en): | Spiller, Moritz Liu, Ying-Hsang Hossain, Md Zakir Gedeon, Tom Koltermann, Julia Nürnberger, Andreas |
Erscheinungsdatum: | 2021 |
Art: | Artikel |
Sprache: | Englisch |
URN: | urn:nbn:de:gbv:ma9:1-1981185920-881283 |
Schlagwörter: | Human-centered computing User studies Computing methodologies Machine learning approaches Eye tracking Time series classification |
Zusammenfassung: | Information visualizations are an efficient means to support the users in understanding large amounts of complex, interconnected data; user comprehension, however, depends on individual factors such as their cognitive abilities. The research literature provides evidence that user-adaptive information visualizations positively impact the users’ performance in visualization tasks. This study attempts to contribute toward the development of a computational model to predict the users’ success in visual search tasks from eye gaze data and thereby drive such user-adaptive systems. State-of-the-art deep learning models for time series classification have been trained on sequential eye gaze data obtained from 40 study participants’ interaction with a circular and an organizational graph. The results suggest that such models yield higher accuracy than a baseline classifier and previously used models for this purpose. In particular, a Multivariate Long Short Term Memory Fully Convolutional Network shows encouraging performance for its use in online user-adaptive systems. Given this finding, such a computational model can infer the users’ need for support during interaction with a graph and trigger appropriate interventions in user-adaptive information visualization systems. This facilitates the design of such systems since further interaction data like mouse clicks is not required. |
URI: | https://opendata.uni-halle.de//handle/1981185920/88128 http://dx.doi.org/10.25673/86176 |
Open-Access: | Open-Access-Publikation |
Nutzungslizenz: | (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International |
Sponsor/Geldgeber: | Transformationsvertrag |
Journal Titel: | ACM transactions on interactive intelligent systems |
Verlag: | ACM |
Verlagsort: | New York, NY |
Band: | 11 |
Heft: | 2 |
Originalveröffentlichung: | 10.1145/3446638 |
Seitenanfang: | 1 |
Seitenende: | 25 |
Enthalten in den Sammlungen: | Medizinische Fakultät (OA) |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Spiller et al._Predicting visual_2021.pdf | Zweitveröffentlichung | 3.28 MB | Adobe PDF | Öffnen/Anzeigen |