Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/86176
Titel: Predicting visual search task success from eye gaze data as a basis for user-adaptive information visualization systems
Autor(en): Spiller, Moritz
Liu, Ying-Hsang
Hossain, Md Zakir
Gedeon, TomIn der Gemeinsamen Normdatei der DNB nachschlagen
Koltermann, JuliaIn der Gemeinsamen Normdatei der DNB nachschlagen
Nürnberger, AndreasIn der Gemeinsamen Normdatei der DNB nachschlagen
Erscheinungsdatum: 2021
Art: Artikel
Sprache: Englisch
URN: urn:nbn:de:gbv:ma9:1-1981185920-881283
Schlagwörter: Human-centered computing
User studies
Computing methodologies
Machine learning approaches
Eye tracking
Time series classification
Zusammenfassung: Information visualizations are an efficient means to support the users in understanding large amounts of complex, interconnected data; user comprehension, however, depends on individual factors such as their cognitive abilities. The research literature provides evidence that user-adaptive information visualizations positively impact the users’ performance in visualization tasks. This study attempts to contribute toward the development of a computational model to predict the users’ success in visual search tasks from eye gaze data and thereby drive such user-adaptive systems. State-of-the-art deep learning models for time series classification have been trained on sequential eye gaze data obtained from 40 study participants’ interaction with a circular and an organizational graph. The results suggest that such models yield higher accuracy than a baseline classifier and previously used models for this purpose. In particular, a Multivariate Long Short Term Memory Fully Convolutional Network shows encouraging performance for its use in online user-adaptive systems. Given this finding, such a computational model can infer the users’ need for support during interaction with a graph and trigger appropriate interventions in user-adaptive information visualization systems. This facilitates the design of such systems since further interaction data like mouse clicks is not required.
URI: https://opendata.uni-halle.de//handle/1981185920/88128
http://dx.doi.org/10.25673/86176
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Sponsor/Geldgeber: Transformationsvertrag
Journal Titel: ACM transactions on interactive intelligent systems
Verlag: ACM
Verlagsort: New York, NY
Band: 11
Heft: 2
Originalveröffentlichung: 10.1145/3446638
Seitenanfang: 1
Seitenende: 25
Enthalten in den Sammlungen:Medizinische Fakultät (OA)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Spiller et al._Predicting visual_2021.pdfZweitveröffentlichung3.28 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen