Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/101925
Titel: Image Segmentation as an Instrument for Setting Attention Regions in Convolutional Neural Networks for Bias Detection Purposes
Autor(en): Velichkovska, Bojana
Efnusheva, Danijela
Kalendar, Marija
Jakimovski, Goran
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2023
Umfang: 1 Online-Ressource (8 Seiten)
Sprache: Englisch
Zusammenfassung: Convolutional neural networks (CNNs) are constantly being used for medical image processing with increased application in publicly available datasets and are later being actively applied in medical practice. Therefore, since patient lives are at stake, it is important that the functionality of the neural network is beyond reproach. In this paper, due to dataset availability, we present two lung segmentation approaches using traditional image processing and deep learning methodologies; these approaches can later be used to focus a CNN for image segmentation and classification tasks, with implementations spanning everything from disease diagnosis to demographic and bias analysis. The aim of this paper is to provide a framework for segmentation in medical images of the chest cavity, as a way of applying attention regions and localizing sources of bias in images. Both of the proposed segmentation tools, the traditional image approach using computer tomography scans and the CNN applied to chest X-rays, provide excellent lung segmentation comparable to popular methods in the image processing sphere. This allows for an all-encompassing application of the developed methodology regardless of different image formats, therefore making it widely applicable in setting attention regions for CNNs.
URI: https://opendata.uni-halle.de//handle/1981185920/103876
http://dx.doi.org/10.25673/101925
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2_7 ICAIIT_2023_paper_6004.pdf1.31 MBAdobe PDFMiniaturbild
Öffnen/Anzeigen