Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.25673/101931
Titel: Mathematical and Statistical Methods of Analyzing the Successful Implementation of German-Ukrainian Projects
Autor(en): Scott, Cornelia
Vasylenko, Oksana
Körperschaft: Hochschule Anhalt
Erscheinungsdatum: 2023
Umfang: 1 Online-Ressource (10 Seiten)
Sprache: Englisch
Zusammenfassung: The extraordinary dynamism, complexity and ever-increasing interdependence of all transformation processes in the modern world in the face of crisis conditions necessitates strengthening partnerships and coordination of actions at the national, regional and international levels to ensure the quality and sustainability of higher education systems around the world. The research focuses on the successful practical implementation of German-Ukrainian projects of the Anhalt University of Applied Sciences, such as Digin.Net, Digin.Net 2, Study Visits, DigiJED, DigiJED 2, GLSs and Idea-East Hub. Based on the mathematical and statistical methods of analysis, a regression model was built to predict the attraction of funding for the development of education in Ukraine. A meta-analysis of existing practical projects and their financial plans was conducted, considering the definition of specific criteria for successful selection among competitors. Using factor analysis of quantitative and qualitative assessment of the indicators of implemented projects, the authors' model of criteria for successful selection of projects in DAAD was created.
URI: https://opendata.uni-halle.de//handle/1981185920/103882
http://dx.doi.org/10.25673/101931
Open-Access: Open-Access-Publikation
Nutzungslizenz: (CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International(CC BY-SA 4.0) Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International
Enthalten in den Sammlungen:International Conference on Applied Innovations in IT (ICAIIT)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
3_3 ICAIIT_2023_paper_1066.pdf857.28 kBAdobe PDFMiniaturbild
Öffnen/Anzeigen